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Abstract

Background: Lactose provides an easily-digested energy source for neonates, and is the primary carbohydrate in
milk in most species. Bovine lactose is also a key component of many human food products. However, compared to
analyses of other milk components, the genetic control of lactose has been little studied. Here we present the first
GWAS focussed on analysis of milk lactose traits.

Results: Using a discovery population of 12,000 taurine dairy cattle, we detail 27 QTL for lactose concentration and
yield, and subsequently validate the effects of 26 of these loci in a distinct population of 18,000 cows. We next present
data implicating causative genes and variants for these QTL. Fine mapping of these regions using imputed, whole
genome sequence-resolution genotypes reveals protein-coding candidate causative variants affecting the ABCG2,
DGAT1, STAT5B, KCNH4, NPFFR2 and RNF214 genes. Eleven of the remaining QTL appear to be driven by regulatory
effects, suggested by the presence of co-locating, co-segregating eQTL discovered using mammary RNA sequence
data from a population of 357 lactating cows. Pathway analysis of genes representing all lactose-associated loci shows
significant enrichment of genes located in the endoplasmic reticulum, with functions related to ion channel activity
mediated through the LRRC8C, P2RX4, KCNJ2 and ANKH genes. A number of the validated QTL are also found to be
associated with additional milk volume, fat and protein phenotypes.

Conclusions: Overall, these findings highlight novel candidate genes and variants involved in milk lactose regulation,
whose impacts on membrane transport mechanisms reinforce the key osmo-regulatory roles of lactose in milk.

Keywords: QTL mapping, GWAS, Milk, Lactose, RNA sequencing, Genome sequencing

Background
Lactose is the most abundant carbohydrate in milk, pro-
viding an energy source for neonates that is more easily
digestible than other major milk components such as fats
and proteins. Concentrations of carbohydrates in milk
vary widely between species. In some seals, almost no
carbohydrate is present, where functional inactivation of
the α-lactalbumin gene (LALBA), a key lactose synthesis
component, helps prevent involution of the gland dur-
ing long foraging trips at sea [1]. By contrast, milk in
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prosimian primates, for example lemurs, is high in lactose
(up to 8.9%; [2]). Human and cow milks are intermedi-
ate between these two extremes, at 6.7% [3] and 5.1% [4].
In cows, lactose yield (LY) is highly correlated (both phe-
notypically and genetically) with milk volume, fat yield,
and protein yield [5, 6], while lactose concentration (LC)
is negatively correlated with yield traits.
Lactose is synthesised from UDP-galactose and glucose

in the epithelial cells of the lactating mammary gland.
This process is catalysed by a complex, known collectively
as lactose synthase, comprised of two protein subunits:
the catalytic β1,4-galactosyltransferase-I (B4GALT1) and
the regulatory unit LALBA [7]. B4GALT1 resides per-
manently on the Golgi apparatus, where its standard
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function is to attach UDP-galactose residues to the ter-
minal N-acetylglucosamine of glycans in the formation of
glycoproteins and glycolipids [7]. LALBA is a major pro-
tein component of whey, requiring a high level of LALBA
expression in mammary epithelial cells during lactation.
The presence of LALBA in these cells induces a confor-
mational change in the B4GALT1 enzyme which alters
its specificity from N-acetylglucosamine to glucose. This
structural change triggers the synthesis of lactose [8]. Lac-
tose is then secreted into milk via secretory vesicles, along
with milk proteins and ions. The presence of lactose in
these vesicles affects their osmolarity, causing the uptake
of water, which is also secreted into the milk [9]. Since
milk is isosmotic with blood, this mechanism generates a
strong correlation (0.99 [4]) between lactose production
and milk volume, with lactose content helping to define
the unique milk composition characteristics of individual
species.
The economic importance of dairy cattle has driven

the collection of very large genotypic and phenotypic
datasets that serve genomic prediction-based breeding
programmes. These same data can be used opportunis-
tically to conduct quantitative trait locus (QTL) map-
ping, and thus cattle have become one of the most
powerful and commonly investigated species for study-
ing genetic aspects of mammary biology and lactation
[10, 11]. Numerous major effect genes and mutations
have now been described, impacting diverse milk yield
and composition phenotypes (for example DGAT1[12],
ABCG2 [13], GPAT4 [14], and MGST1 [15]). Histori-
cally, lactose has been little studied, due in part to the
strong correlation between lactose yield and milk volume,
and that in New Zealand at least, dairy cattle breeding
objectives do not place a direct, commercial value on
lactose. More recently, the New Zealand dairy industry
has shifted focus towards producing dried milk powder
for export, causing deficits in lactose availability [16] and
providing impetus for research into this trait. Although
quantitative genetic parameters for lactose have been pub-
lished [5, 6], to our knowledge no studies have reported

genome-wide analyses focussed on investigation of lactose
traits. The aim of the current work was to conduct GWAS
analysis for lactose concentration (LC) and yield (LY)
traits in NewZealand dairy cattle. Subsequently, we aimed
to identify candidate causative genes underlying discov-
ered QTL, leveraging sequence-based datasets to impute,
fine-map and investigate the regulatory architecture of
lactose-associated loci.

Results
Lactose phenotypes and heritibilities
The lactose concentration (LC) phenotype was defined
as the percentage of the milk volume that consisted
of lactose, as quantified using calibrations of Fourier
transform infrared spectroscopy against a lactose mono-
hydrate standard. The lactose yield (LY) phenotype com-
prised the LC percentage multiplied by the total daily
milk volume expressed in units of kg/day. Genetic anal-
ysis was undertaken in several different populations.
These included 12,000 outbred New Zealand dairy cows
composed of Holstein-Friesians (HF), Jerseys, and their
crosses (the ‘QTL discovery’ set), a distinct group of
18,000 animals of similar breed composition (the ‘QTL
validation’ set), and two purebred cohorts of 14,857 HF
and 8 995 Jersey cows (see Methods for further details
and breed definitions). After all phenotype adjustments
(see Methods), the mean LC and LY phenotype val-
ues for the combined discovery and validation animals
(N=30,000) were 5.146 and 0.833 respectively (Table 1).
For the purebreds within this dataset, HF animals had
higher mean LY phenotypes (0.851) than Jersey animals
(0.809), and Jersey animals showed slightly higher LC
values (Table 1). Narrow sense heritabilities are also indi-
cated in Table 1. The LY heritability was 0.253 for the
combined population (N=30,000 animals), with estimates
also similar between the two breeds (Table 1). The LC
heritability was 0.557 in the combined population, though
lower for Jersey animals (h2 = 0.450; Table 1), presumably
reflecting the lower genetic diversity in this breed. Geno-
typic principle component analysis was used to visualise

Table 1 Summary statistics for lactose concentration and yield phenotypes

Breed N Phenotype Mean ± SD σ 2
P σ 2

A h2

All 30,000 LY (kg/day) 0.830 ± 0.119 0.0147 ± 0.0001 0.0037 ± 0.0001 0.253 ± 0.008

LC (%) 5.146 ± 0.130 0.0189 ± 0.0002 0.0105 ± 0.0003 0.557 ± 0.008

Jersey 3 998 LY 0.809 ± 0.106 0.0112 ± 0.0003 0.0030 ± 0.0003 0.269 ± 0.025

LC 5.152 ± 0.124 0.0156 ± 0.0004 0.0070 ± 0.0005 0.450 ± 0.025

Holstein-Friesian 8 292 LY 0.851 ± 0.132 0.0176 ± 0.0003 0.0041 ± 0.0003 0.236 ± 0.017

LC 5.135 ± 0.134 0.0189 ± 0.0004 0.0105 ± 0.0005 0.557 ± 0.016

Summary statistics for the lactose concentration (LC) and lactose yield (LY) phenotypes, calculated for 30,000 cows. Phenotype means are shown with standard deviations.
The phenotypic variance (σ 2

P ), additive genetic variance (σ
2
A ), and narrow-sense heritability (h2) are shown with standard errors. The Jersey and Holstein-Friesian subsets

included those animals where at least 15/16 of the animal’s ancestry is from the appropriate breed
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the genetic structure of the combined discovery and val-
idation population. Additional file 1: Figure S1 shows the
first two principal components of the population plotted
by breed.

SNP-chip-based genome-wide association analysis
Genome-wide association mapping was conducted using
1,091,000 variants in conjunction with LC and LY phe-
notypes in the discovery population (N=12,000), applying
generalised least-squares models that accounted for pop-
ulation structure and pedigree (see “Methods” section).
Analysis of the LC phenotype revealed genome-wide sig-
nificant effects on 22 of the 29 autosomes (Fig. 1). Apply-
ing a more conservative, additional inflation adjusted
threshold of 1.61 × 10−16 yielded eight discrete loci on
seven chromosomes (Fig. 1). Twenty chromosomes had
significant effects for LY, though compared to the LC trait,
the genetic architecture was comprised of fewer highly
associated regions, with only two loci passing the more
stringent, inflation adjusted threshold of 2.50 × 10−16

(Fig. 2).

Fine-mapping of lactose loci using imputed whole-genome
sequence data
To fine-map lactose QTL, we imputed whole-genome
sequence-resolution data into the highest priority regions
to attempt to map putative causative variants directly.
For these analyses, we focussed on the largest QTL,
applying an arbitrary threshold to include loci where the
top tag-SNP had − log10(p-value)> 1.5× the nominal,
Bonferroni-adjusted threshold. These criteria resulted in
22 loci for LC and five additional loci for LY (Table 2).
Importantly, this list included regions of biological inter-
est that would otherwise have been lost using the stricter,

inflation-adjusted threshold, comprising genes and loci
with previously demonstrated roles in milk composition
regulation and/or obvious mechanistic roles in lactose
synthesis (e.g. chr19:43Mbp, STAT5A and STAT5B [17];
chr5:32Mbp, LALBA [7]; chr20:32Mbp, GHR [18]).
For each of the 27 target regions, 1Mbp intervals

of sequence were imputed using Beagle software (see
“Methods” section), centred on the top tag-SNP identi-
fied from the genome-wide analysis. Association analysis
of imputed sequence was conducted as described for
analysis using SNP-chip content. Exploded-view (1Mbp),
sequence-resolution Manhattan plots for all 27 regions
are shown in Additional file 2: Figure S2. For 22 of
the 27 QTL, genome sequence based analysis yielded
an increase in the strength of association compared to
SNP-chip and RNA sequence based content, and in the
case of the chr6:37.76Mbp locus, this increase was sub-
stantial (Table 2). Using the top-associated variant as a
proxy for each of these loci, the 22 high-priority LC QTL
explained 21.1% of the phenotypic variance for this trait.
For LY, the top 5 tag-variants together explained 5.0% of
the phenotypic variance.

Validation of the largest lactose QTL
To validate the QTL observed in our initial genome-wide
screen, and obtain more robust estimates of likely effect
sizes, we conducted a validation study of the 27 impli-
cated regions. The validation sample of 18,000 lactating
cows was imputed for the 27 tag-variants of interest, com-
prising the most highly associated polymorphisms from
sequence-based fine mapping of the prioritised regions.
These animals were of similar breed composition to the
12,000 animals in the discovery set, selected to avoid
potential problems with varying allele frequencies across

Fig. 1Manhattan plot of QTL locations for lactose concentration. The X-axis shows the positions of 1.1 million variants across the 29 autosomes in
the UMD 3.1 Bos taurus reference genome; the Y-axis shows the negative log of the p-values calculated for each variant. Variants illustrated using a
triangle sit beyond the limit of the Y-axis. The black line shows the nominal significance threshold incorporating a Bonferroni correction for multiple
hypothesis testing. The red line shows the combined inflation and multiple testing-adjusted threshold
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Fig. 2Manhattan plot showing QTL locations for lactose yield. The X-axis shows the positions of 1.1 million variants across the 29 autosomes in the
UMD 3.1 Bos taurus reference genome; the Y-axis shows the negative log of the p-values calculated for each variant for a lactose yield QTL. Variants
illustrated using a triangle sit beyond the limit of the Y-axis. The black and red lines as per Fig. 1 legend

breeds. Association analysis validated 26 of the 27 QTL,
with only the chr5:21.14Mbp locus failing to replicate
(Table 2 and Additional file 3: Table S3). For the remain-
ing regions, the 21 LC tag-variants explained 17.5% of the
phenotypic variance, with the 5 LY loci together explain-
ing 4.4% of the variance.

Within-breed analyses
Since genome-wide analysis was conducted using mixed
breed animals, and QTL might represent false posi-
tive associations resulting from population stratification,
we also examined the impacts of QTL-tag SNPs within
breed. Tag-variant minor allele frequencies (MAFs) for
the discovery and validation animal sets are indicated in
Table 3. Several variants had markedly different frequen-
cies between breeds. Referencing the Jersey breed in the
discovery population, these included: rs208702482 (0.094
vs 0.277), rs43702337 (0.002 vs 0.008), rs478177439 (0.005
vs 0.362), rs110674951 (0.092 vs 0.658), rs211210569
(0.023 vs 0.535), rs210726760 (0.056 vs 0.330), and
rs208730573 (0.012 vs 0.495). For association analy-
sis, we took the purebred animals referenced above
(8 292 HF and 3 998 Jerseys present in the combined dis-
covery and validation sets), and augmented these with
an additional 6 656 HF and 4 997 Jersey animals for
which we also had genotype and phenotype records
(total N=14,857 and 8 995 HF and Jerseys respectively).
Imputing tag-variants and conducting association analysis
using the same approaches described above, these analy-
ses showed that, of the 26 previously validated QTL, all
surpassed a pointwise significance threshold of P < 0.05
in at least one breed, and 24 of 26 passed a genome-
wide Bonferroni threshold of P = 4.58 × 10−8 (Table 4).
Importantly, aside from a single locus that showed highly
significant, yet opposite allelic effects between breeds

(chr19:42.99Mbp), the sign of effect for all other loci was
the same between breeds, and agreed with the effects
estimated in the mixed breed populations. These results
suggested that, although some inflation was present in
the genome-wide results, breed stratification effects were
unlikely to be a major source of confounding for the
largest QTL detected in our study.

Analysis of other lactation traits
We have previously observed sharing of genetic signals
across different lactation traits [15], so to test whether
lactose-associated loci showed pleiotropic effects, we con-
ducted analysis of milk volume, fat, and protein pheno-
types in conjunction with the 26 validated tag-variants.
Phenotypes for the 12,000 discovery set of cows were
derived from herd test data using the same approach
outlined for lactose traits. Twenty-two of the 26 vali-
dated QTL passed a pointwise significance threshold of
P < 0.05 in at least one other trait, and 13 loci were
significant for at least one trait at the Bonferroni thresh-
old of P = 4.58 × 10−8 (Additional file 4: Table S4).
Nineteen of the 26 loci were significant (P < 0.05) for
more than one additional trait, and two loci were sig-
nificant across all additional traits (chr14:1.77Mbp and
chr20:31.69Mbp).

Positional candidate genes and variants
We employed two approaches to attempt to identify
causative genes and variants underlying the list of 26
validated lactose QTL, using methods that inform on
potential protein function-based effects and regulatory
mechanisms. For the first, bioinformatic annotation tools
were used to predict functional consequences of WGS-
resolution association data. For the second, we leveraged
a large RNA sequence resource to look for evidence of
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Table 3 Minor allele frequencies for lactose QTL tag variants

Discovery Validation

Pheno Chr Mbp Tag Var All (n=12,000) HF (n=3 704) Je (n=1 648) All (n=18,000) HF (n=4 588) Je (n=2 350)

LC 1 154.14 rs43282035 *0.226 *0.226 *0.209 *0.231 *0.211 *0.236

LC 2 127.64 rs208702482 0.203 0.277 0.094 0.204 0.281 0.092

LC 3 15.52 rs211336034 0.449 0.440 0.465 0.454 0.448 0.456

LC 3 53.84 rs109613143 0.365 *0.489 0.190 0.377 *0.483 0.189

LC 5 21.14 rs377953581 0.444 0.264 *0.291 0.464 0.291 *0.304

LC 5 31.56 rs137534989 *0.493 *0.368 0.324 *0.483 *0.341 0.326

LC 5 44.16 rs383349320 0.253 0.176 0.364 0.247 0.169 0.352

LC 6 37.76 rs43702337 0.008 0.008 0.002 0.006 0.007 0.003

LC 6 89.04 rs478177439 0.215 0.362 0.005 0.207 0.360 0.010

LC 7 8.77 rs210686953 0.450 0.458 0.452 0.448 0.460 0.446

LC 10 2.14 rs137774567 0.302 0.452 0.100 0.304 0.447 0.089

LC 15 28.36 rs211369213 0.096 0.151 0.008 0.084 0.129 0.006

LC 16 24.99 rs109379517 0.303 0.405 0.178 0.285 0.388 0.157

LC 16 67.77 rs380467601 0.406 0.411 0.364 0.403 0.420 0.352

LC 17 56.47 rs134672113 0.375 *0.462 0.161 0.366 0.484 0.173

LC 19 33.51 rs109514832 *0.351 *0.258 0.486 *0.385 *0.328 0.488

LC 19 42.99 rs517084099 0.088 0.072 0.120 0.106 0.114 0.122

LC 19 61.13 rs41923843 *0.338 *0.326 *0.351 *0.327 *0.321 *0.349

LC 20 58.45 rs135934727 0.242 0.193 0.313 0.238 0.180 0.317

LC 27 36.21 rs209987511 0.367 0.291 *0.496 0.387 0.271 *0.450

LC 28 6.56 rs110674951 *0.447 0.342 *0.092 *0.438 0.387 *0.116

LC 29 9.61 rs378183369 0.250 0.310 0.198 0.268 0.326 0.222

LY 5 93.94 rs211210569 0.320 *0.465 0.023 0.324 *0.468 0.029

LY 11 63.45 rs210726760 0.229 0.330 0.056 0.229 0.367 0.054

LY 14 1.77 rs109234250 *0.408 0.466 *0.225 *0.407 0.462 *0.207

LY 20 31.69 rs208881195 *0.458 0.401 *0.248 *0.499 0.329 *0.259

LY 26 22.96 rs208730573 0.292 0.495 0.012 0.275 0.472 0.013

Minor allele frequencies for tag variants from WGS, for discovery and validation set cows. Frequencies for each animal set are shown in total and for pure-bred subsets. Cows
are defined as belonging to the Holstein-Friesian (HF) or Jersey (Je) breed if 15/16 of their ancestry is recorded to that breed. Cases where the minor allele is the reference
allele are marked with an asterisk ( *), in the remaining cases, the minor allele is the alternative allele

genotypically-driven gene expression changes co-locating
with lactose QTL.

Protein function-based prediction of candidate causative
variants
To assess the candidacy of strongly associated variants in
the context of their predicted impact on protein sequence
and structures, we annotated all variants in each 1Mbp
of interest using SNPEff [19] and the Variant Effect Pre-
dictor [20]. Examples of QTL annotated with functional
predictions are shown in Fig. 3. Since errors in genotyp-
ing, phenotyping and imputation are expected to impact
the association rankings of candidate variants, we also
used a linkage disequilibrium (LD)-based approach to

prioritise variants, acknowledging that true functional
polymorphisms will not necessarily be the most signifi-
cantly associated variants [21]. Using an LD threshold of
R2 > 0.9, Table 5 shows those loci where at least one
protein-coding mutation was predicted in strong linkage
disequilibrium with the most strongly associated variant
from sequence-based analysis.
Seven loci had predicted protein effects that were highly

associated with LC or LY, with five of the locations hav-
ing only one plausible mutation for the effect. At the
chr6:37.76Mbp and chr14:1.77Mbp loci, the top variants
were missense mutations in the ABCG2 [22] and DGAT1
[12] genes. Both variants (ABCG2 Y581S and DGAT1
K232A) have been previously demonstrated to have major
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Table 4 Allele effects for lactose QTL tag variants in Holstein-Friesian and Jersey Cows

Holstein-Friesian (n=14,857) Jersey (n=8,995)

Pheno Chr Mbp Tag variant Beta ± SE PVal Beta ± SE PVal

LC 1 154.14 rs43282035 −0.014 ± 0.002 1.77 × 10−12 −0.016 ± 0.002 3.59 × 10−11

LC 2 127.64 rs208702482 −0.019 ± 0.002 2.26 × 10−24 −0.013 ± 0.003 1.04 × 10−4

LC 3 15.52 rs211336034 −0.015 ± 0.002 1.91 × 10−18 −0.018 ± 0.002 1.74 × 10−19

LC 3 53.84 rs109613143 −0.020 ± 0.002 2.06 × 10−33 −0.001 ± 0.002 0.595

LC 5 21.14 rs377953581 0.006 ± 0.002 6.30 × 10−4 0.002 ± 0.002 0.300

LC 5 31.56 rs137534989 −0.014 ± 0.002 6.85 × 10−15 −0.010 ± 0.002 2.25 × 10−7

LC 5 44.16 rs383349320 0.009 ± 0.002 2.37 × 10−5 0.005 ± 0.002 0.0205

LC 6 37.76 rs43702337 −0.329 ± 0.009 < 1.05 × 10−308 −0.294 ± 0.019 1.51 × 10−54

LC 6 89.04 rs478177439 −0.022 ± 0.002 6.07 × 10−36 −0.018 ± 0.009 0.0417

LC 7 8.77 rs210686953 0.005 ± 0.002 7.02 × 10−3 0.015 ± 0.002 6.81 × 10−14

LC 10 2.14 rs137774567 −0.012 ± 0.002 2.54 × 10−12 −0.020 ± 0.003 2.55 × 10−9

LC 15 28.36 rs211369213 −0.034 ± 0.002 1.20 × 10−43 −0.026 ± 0.009 5.07 × 10−3

LC 16 24.99 rs109379517 −0.018 ± 0.002 6.47 × 10−24 −0.015 ± 0.003 4.85 × 10−9

LC 16 67.77 rs380467601 0.015 ± 0.002 3.92 × 10−20 0.009 ± 0.002 1.27 × 10−5

LC 17 56.47 rs134672113 −0.012 ± 0.002 3.70 × 10−13 −0.011 ± 0.003 2.07 × 10−5

LC 19 33.51 rs109514832 −0.023 ± 0.002 6.05 × 10−37 −0.009 ± 0.002 4.46 × 10−6

LC 19 42.99 rs517084099 −0.018 ± 0.003 1.22 × 10−10 0.022 ± 0.003 2.49 × 10−12

LC 19 61.13 rs41923843 −0.025 ± 0.002 4.47 × 10−46 −0.007 ± 0.002 3.47 × 10−4

LC 20 58.45 rs135934727 −0.011 ± 0.002 5.46 × 10−7 −0.019 ± 0.002 2.72 × 10−20

LC 27 36.21 rs209987511 0.018 ± 0.002 2.58 × 10−22 0.021 ± 0.002 1.32 × 10−26

LC 28 6.56 rs110674951 −0.013 ± 0.002 4.64 × 10−15 −0.017 ± 0.003 7.37 × 10−9

LC 29 9.61 rs378183369 0.029 ± 0.002 1.48 × 10−58 0.023 ± 0.002 8.86 × 10−22

LY 5 93.94 rs211210569 0.021 ± 0.002 9.16 × 10−37 0.016 ± 0.004 1.91 × 10−4

LY 11 63.45 rs210726760 0.010 ± 0.002 9.81 × 10−9 0.005 ± 0.004 0.205

LY 14 1.77 rs109234250 −0.046 ± 0.002 9.03 × 10−170 −0.035 ± 0.002 1.08 × 10−61

LY 20 31.69 rs208881195 −0.010 ± 0.002 5.15 × 10−8 −0.005 ± 0.002 5.97 × 10−3

LY 26 22.96 rs208730573 0.008 ± 0.002 1.12 × 10−6 0.042 ± 0.006 1.61 × 10−13

Allele effects for each WGS tag variant for Holstein-Friesian and Jersey cows, assuming an additive model. P-values in bold font indicate tag variants which pass the
genome-wide Bonferroni-corrected threshold (4.58 × 10−8) for that breed. All but three variants pass Bonferroni in at least one breed; one of these three tags the QTL which
failed validation. The direction of the allele effect is the same in both breeds for all but one (rs517084099) of the variants. Allele effects are relative to the allele present in the
reference bovine genome. Phenotypes are lactose concentration (top) and lactose yield (bottom)

impacts on diverse milk composition phenotypes [23–25]
and, therefore, can be assumed to be the causative variants
for these QTL.
The remaining five QTL include loci that either appear

to be novel to the current study, or represent regions
that have been reported in other analyses of milk com-
position traits, but have had no causative gene and
variant definitively assigned. Of these QTL regions, the
chr19:42.99Mbp locus presented a number of candidates,
with 11 sequence variants spread across eight genes.
Notably, one of these was a predicted splice donor non-
sense mutation in the KCNH4 gene. The list of candidates
for this region also included a predicted tolerated STAT5B

G40S missense mutation, representing a gene that has
been previously speculated to underlie milk composition
and production traits in other populations [10, 26].

Expression analysis and identification of putative regulatory
eQTL
Since most QTL are expected to be underpinned by
regulatory mechanisms [27], and lack of functional
annotation resources in cattle makes prediction of
non-coding variants intractable, we next used a large
mammary RNA sequence dataset to identify causative
genes through co-segregating expression QTL (eQTL).
In this context, eQTL analyses can provide functional
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Fig. 3WGS QTL coloured by SNP effect predictions. Six example 1Mbp windows of imputed WGS resolution associations centred on five QTL for LC
and one QTL for LY (Chr14:1.77Mbp). Variants are coloured by predicted variant effect

evidence of the molecular basis of the QTL in ques-
tion: cases where genetic signals not only collocate,
but also share top associated variants, provide strong
evidence of causality for the implicated gene [28–30].
Using imputed whole genome sequence data in a pop-
ulation of 357 lactating cows, cis-eQTL mapping was
conducted using transformed mammary gene expression
values representing all genes in each 1Mbp target inter-
val (n=313 genes for all intervals; see “Methods” section).
In an approach similar to that described previously
[14, 15], analyses were also performed to calculate χ2 cor-
relation values for each 1Mbp interval of variants, with
the expectation that an eQTL and lactose QTL under-
pinned by a common genetic element would share similar
variant association statistics. Table 6 shows lactose QTL
and eQTL pairs that: shared top associated variants in

strong LD (R2 > 0.9) that exceeded the eQTL genome-
wide significance threshold of 2.53 × 10−7, and/or had an
eQTL where at least one of the Pearson and Spearman
(rank) correlations was greater than 0.7. Of the 26 loci, 14
have at least one gene meeting these criteria, with 11 hav-
ing only one such gene. Notably, seven of these genes also
shared top variants that were the same or were in strong
LD (Table 6). Four eQTL × QTL association plots are
illustrated in Fig. 4, showing examples of both highly
correlated, and non-correlated QTL pairs. Of the highly
correlated QTL, LRRC8C, RAB3IP, NREP, IVNS1ABP,
P2RX4,KCNJ2,ANKH,GPAT4, PICALM, andMGST1 are
strong candidate causative genes for these effects, repre-
senting loci for which there is only one co-segregating
eQTL, and where no plausible protein-coding variants
have been identified.
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Table 5 Peak variants with protein sequence mutations

Locus Phenotype ID Class LD Gene Description VEP SIFT

chr3:15.52Mbp LC rs109816684 Splice Region 0.997 SLC50A1 c.282+7G>A L —

chr6:37.76Mbp LC rs43702337 Missense 1.000 ABCG2 Y581S M 0.00 (D)

chr6:89.04Mbp LC rs110326785 Missense 0.987 NPFFR2 E392K M 0.56 (T)

chr15:28.36Mbp LC rs208325660 Missense 0.967 RNF214 G105E M 0.07 (TLC)

chr16:24.99Mbp LC rs110899826 Missense 0.986 MARC1 P194R M 0.27 (T)

chr16:24.99Mbp LC rs109896036 Splice Region 0.986 MARC1 c.628-5C>T L —

chr19:42.99Mbp LC rs377779402 Splice Donor 1.000 KCNH4 c.2663+2T>C H —

chr19:42.99Mbp LC rs209410283 Missense 1.000 KCNH4 S136R M 0.13 (T)

chr19:42.99Mbp LC rs211002889 Missense 1.000 GHDC P335R M 0.55 (T)

chr19:42.99Mbp LC rs208379505 Missense 1.000 GHDC P233A M 0.03 (D)

chr19:42.99Mbp LC rs207799702 Splice Region 0.999 KAT2A c.700-7C>G L —

chr19:42.99Mbp LC rs211108888 Splice Region 0.996 KAT2A c.1723-8T>C L —

chr19:42.99Mbp LC rs133665517 Missense 0.956 STAT5B G40S M 1.00 (T)

chr19:42.99Mbp LC rs381010891 Missense 0.919 ZNF385C P210A M 0.29 (T)

chr19:42.99Mbp LC rs132867911 Missense 0.919 FKBP10 T261I M 0.75 (T)

chr19:42.99Mbp LC rs209920132 Splice Region 0.916 ACLY c.1846-3T>C L —

chr19:42.99Mbp LC rs209373086 Splice Region 0.915 JUP c.1055-4C>G L —

chr14:1.77Mbp LY rs109234250 Missense 1.000 DGAT1 A232K M 1.00 (T)

chr14:1.77Mbp LY rs134364612 Missense 1.000 SLC52A2 K242E M 1.00 (T)

chr14:1.77Mbp LY rs135258919 Missense 0.902 HSF1 V344A M 1.00 (T)

Numbers of missense or splice region mutations in QTL for LC and LY which have LD >= 0.90 with the top whole-genome sequence mutation. Only those QTL with at least
one such variant are included. Mutation classifications are per SNPEff predictions. Abbreviations (L,M,H) for Variant Effect Predictor (VEP) are low, moderate and high impact
respectively. For SIFT, T is tolerated, TLC is tolerated with low confidence, and D is deleterious

Pathway analysis
We conducted functional clustering analysis using 44
genes using the DAVID database [31]. These genes rep-
resented candidates corresponding to predicted protein
and regulatory effects, or proximity to the QTL peak (see
“Methods” section). This analysis identified four signifi-
cantly enriched annotation clusters (see Additional file 5:
Table S1), using an alpha value of 0.05 (translating to
an enrichment threshold calculated as − log10(0.05) ≈
1.3 [31]). The most highly enriched cluster (enrichment
score 1.99) was for ion channels/transport, followed by
the endoplasmic reticulum cellular compartment (1.95),
potassium/voltage-gated ion channels (1.33), and lipid
metabolic process (1.31) annotations.

Discussion
Lactose heritability and genetic architecture
Association analyses of milk composition and yield
traits have now been published in multiple inde-
pendent cattle populations [10, 26, 32], however,
we are unaware of any such genome-wide studies
focussed on the identification of QTL for lactose traits.
Here we present such analyses, detailing 26 validated
QTL spanning 18 bovine autosomes. Although lactose
GWAS have been lacking, heritability estimates from

the literature broadly fit with the estimates yielded
for LC [4, 33] and LY [4, 34] in the current study.
The comparatively lower heritability of LY compared to
LC is similarly consistent with these estimates, and with
the genetic architecture of the observed QTL. Like other
milk composition phenotypes such as fat and protein [29],
fewer significant QTL were observed for yield compared
to concentration. Together, tag-variants of the validated
LC QTL explained 4× the phenotypic variance of the five
LY loci that also met our nominated p-value threshold,
confirming that, like the highly correlated trait of milk
yield, LY has a more distributed, infinitesimal genetic
architecture. Importantly, 26 of 27 prioritised QTL vali-
dated between populations, with only the chr5:21.15Mbp
locus failing to replicate. For the validated loci, inflation
of effects was relatively modest, with the cumulative vari-
ance for each trait >80% of that estimated at the discovery
stage (Table 2 and Additional file 3: Table S3).

Genomic inflation
Large genomic inflation factors were observed in the
discovery set for both the LC (2.28) and LY (2.25) phe-
notypes, potentially indicating the presence of false pos-
itive results. Since the most likely source of inflation
was population stratification due to the mix of breeds in
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Table 6 Correlations between lactose QTL and co-localised eQTL

Phenotype Locus Gene eQTL PVal Tag PVal Pearson Spearman LD (R2)

LC chr1:154.14Mbp SH3BP5 2.58 × 10−32 6.18 × 10−32 0.173 0.071 0.993

LC chr3:15.52Mbp SLC50A1 8.70 × 10−16 8.70 × 10−16 0.705 0.272 1.000

LC chr3:53.84Mbp LRRC8C 3.46 × 10−39 1.53 × 10−36 0.900 0.868 0.816

LC chr5:44.16Mbp RAB3IP 9.10 × 10−23 2.22 × 10−22 0.835 0.489 0.979

LC chr10:2.14Mbp NREP 6.12 × 10−10 1.55 × 10−9 0.822 0.774 0.676

LC chr16:67.77Mbp IVNS1ABP 4.54 × 10−27 6.54 × 10−24 0.812 0.339 0.887

LC chr17:56.47Mbp P2RX4 2.46 × 10−39 3.26 × 10−13 0.743 0.692 0.280

LC chr19:42.99Mbp GHDC 1.80 × 10−22 5.77 × 10−16 0.951 0.849 0.981

LC chr19:42.99Mbp DHX58 1.77 × 10−8 1.31 × 10−5 0.918 0.802 1.000

LC chr19:42.99Mbp STAT5B 5.72 × 10−9 1.51 × 10−6 0.915 0.773 0.524

LC chr19:61.13Mbp KCNJ2 1.72 × 10−26 1.72 × 10−26 0.870 0.645 1.000

LC chr20:58.45Mbp ANKH 2.40 × 10−16 2.40 × 10−16 0.783 0.404 1.000

LC chr27:36.21Mbp GPAT4 3.67 × 10−21 3.49 × 10−19 0.812 0.607 0.909

LC chr29:9.61Mbp PICALM 2.40 × 10−54 2.40 × 10−54 0.752 0.600 1.000

LC chr29:9.61Mbp EED 2.31 × 10−9 2.43 × 10−9 0.319 0.356 0.994

LY chr5:93.94Mbp MGST1 3.18 × 10−43 9.37 × 10−43 0.769 0.486 0.934

LY chr14:1.77Mbp DGAT1 8.87 × 10−42 3.68 × 10−39 0.946 0.829 0.923

LY chr14:1.77Mbp CCDC166 2.93 × 10−8 8.53 × 10−3 0.216 0.703 0.066

Co-localised genes for each lactose locus, where: the Pearson or Spearman correlation between the lactose QTL and eQTL is greater than 0.7, or, the LD between the top
variants in the lactose QTL and eQTL is greater than 0.9. The p-value shown for the eQTL is that of the most significant SNP. The tag p-value is the significance of the lactose
phenotype tag variant for the eQTL. Within each locus, genes are shown in descending order by Pearson correlation. Only eQTL which pass Bonferroni correction (threshold
p = 2.59 × 10−8) are shown

the data set, we also performed within-breed analyses.
Heritabilities calculated for pure-bred subsets of animals
were similar to those calculated for the total population,
indicating that model adjustments to the phenotypes are
likely adequately accounting for breeds and crosses in the
population. Likewise, 24 of the 26 validated QTL iden-
tified in the mixed-breed population were replicated in
at least one pure-bred subpopulation, with concordant
signs of effect between breeds for all but one locus. These
results suggest using the mixed-breed population has not
substantially distorted the results, and although effect
sizes might still be over-estimated, the QTL presented are
unlikely to represent false positive signals.

Pathway analysis highlights lactose regulation through
osmotic balancing mechanisms and pleiotropic fat
synthesis QTL
Functional clustering revealed four significantly enriched
annotation clusters for the 26 validated LC and LY loci
(Additional file 5: Table S1). These clusters encompass cel-
lular and molecular functions that support the key role
of lactose as the major osmolyte in milk. Notable classes
of genes include transmembrane transport molecules that
could be expected to impact osmotic balance through
modulation of ion concentrations (KCNH4, LRRC8C,
KCNJ2, ANKH). This is emphasised by the presence

of a second significantly enriched cluster represent-
ing voltage-gated potassium ion channels. The enrich-
ment of genes annotated to the endoplasmic reticulum
cluster include candidates overlapping with transport
functions (LRRC8C), and other endoplasmic reticulum
membrane-bound enzymes including MGST1, DGAT1,
and GPAT4. All three of these latter genes represent
QTL with major impacts on other milk composition traits
[12, 14, 15], with the enriched cluster encompassing lipid
metabolic processes also assigned due to the DGAT1 and
GPAT4 genes.

Discovery of candidate causative genes and variants
To attempt to identify causative genes and variants under-
lying the biggest QTL, we applied two complemen-
tary approaches to fine map prioritised loci and look
for co-locating, co-segregating eQTL as molecular sig-
natures of these effects. These methods relied on two
large-scale sequence-based datasets, comprising a whole-
genome sequence reference population of 565 HF, Jer-
seys, and crossbreeds, and a mammary RNAseq dataset
representing 357 lactating cows of similar composition.
Sequence-based association analysis revealed several QTL
where the top associated variants included polymor-
phisms anticipated to impact the coding sequence of
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Fig. 4 Correlations between lactose concentration QTL and eQTL. Panels a, b, and c show eQTL correlated with LC QTL where both QTL share the
same top variant (R2 = 1). Panel d shows a lactose QTL x eQTL pair for which no correlation is demonstrated. In each plot, the χ2 statistic for each
variant is plotted for the LC QTL on the X-axis and the eQTL on the Y-axis. Colours represent LD between each variant and the most
strongly-associated variant for lactose concentration

protein-coding genes, and cis-regulated eQTL genes that
likely underpin a proportion of the other lactose signals.

Protein-coding sequence variants
The two largest QTL with protein-coding effects were
the chr6:37.76Mbp and chr14:1.77Mbp loci, each likely
underpinned by the ABCG2 Y581S and DGAT1 K232A
amino acid substitutions, respectively. These QTL were
also the largest effects overall, with major impacts on LC
and LY. These previously described variants represent two
of the most highly cited and validated milk composition
variants in the bovine literature [12, 13, 23–25], and serve
as positive controls in our analyses.
Encouragingly, both missense variants appear in our list

of SNPEff-filtered protein-coding candidate mutations,
and both variants were the most highly associated mark-
ers in the sequence-resolution analysis of the respective
traits. The ability to directly resolve the causative vari-
ants as the top-associated variants is also encouraging,
though likely reflects the strength of association for these
two major effect mutations. The ABCG2 Y581S mutation

effect on LC is roughly equivalent to effects of the other
20 validated LC QTL combined, and it is also notable
that, despite the magnitude of effect, no genome-wide
significant effect was observed for LY (p=0.22). Given that
LY and milk yield are highly correlated (0.99 ± 0.01, [4]),
and that the Y581S mutation was initially described for
its impact on milk yield [13] and significantly impacts
that trait in the current study, the lack of a correspond-
ing effect on LY is surprising. This discrepancy could be
explained by limited statistical power as a consequence
of the very low MAF (0.009) of the Y581S variant in the
discovery population, though an alternative explanation
hints at a possible underlying mechanism for the vari-
ant. Although the Y581S mutation was first described
>10yrs ago [13], no obvious mechanistic role for the
impact on milk yield has yet emerged. A scenario where
Y581S impacts milk yield and LC, but not LY, would sug-
gest that ABCG2 may be pumping some as yet unknown,
osmotically active component into milk, with milk vol-
ume increasing as a consequence. This hypothesis fits
with the status of ABCG2 as an efflux transporter, and
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reconciles the profound impact of Y581S on LC (7.00% of
phenotypic variance in the validation population, despite a
low MAF).
Another curious observation is the substantial impact

of the DGAT1 K232A mutation on LY, in the absence
of an effect on LC. This is despite a major effect on
LC attributed to GPAT4 (chr27:36.21Mbp). The GPAT4
gene is a known causative gene for milk composition
traits [14], and is functionally paralogous to DGAT1, with
the two genes occupying adjacent nodes of the mam-
mary triglyceride synthesis chain [35]. This observation
is particularly puzzling given that the impact of DGAT1
K232A on milk yield is much larger than that of the
GPAT4 locus [14], demonstrating the capacity for idiosyn-
cratic effects of individual genes on milk composition,
despite pleiotropy of effects more broadly [15, 29, 30].
Comparing between the milk composition and yield
effects of other loci in the current study, similarly shows
instances where an individual locus may associate with
many traits (e.g. chr20:58.45Mbp for LC, fat, milk, and
protein yield, and protein percentage), or may have pro-
nounced effects on one characteristic, yet be completely
unassociated with others (e.g. chr16:24.99Mbp for LC).
The relativity of sign of effects between traits also appears
to follow some rules (i.e. increasing milk volume and
lactose yield, with decreasing component percentages),
though exceptions to these observations abound.
Two other previously reported milk production

and composition loci annotated with candidate
protein-coding mutations are the chr6:89.04Mbp and
chr19:42.99Mbp LC QTL. The chr6:89.04Mbp locus is
adjacent two genes of note: GC and NPFFR2, the former
favoured as a candidate gene for milk production and
mastitis QTL in other populations [36, 37], with the
latter highlighted by a highly significant missense muta-
tion as a possible causative variant in the current study.
These observations make both genes valid candidates for
the LC QTL, though the proximity of the locus to the
casein gene cluster at chr6:87Mbp should also be noted,
presenting the possibility of long-distance LD effects.
Since neither GC nor NPFFR2 were expressed in our
lactating mammary dataset, further differentiation on the
basis of expression information is not possible.
The chr19:42.99Mbp QTL has similarly been observed

in other populations, and although no causative vari-
ants have been functionally demonstrated for the region,
the signal has been generally assigned to the STAT5A
and STAT5B genes [10, 26]. These genes make excel-
lent candidates, given the key roles of the STAT5 tran-
scription factors in alveologenesis and milk protein gene
expression [38]. A STAT5B G40S missense mutation is
included on the list of candidates for the locus in the
present study. However, two other protein coding vari-
ants in the GHDC and KCNH4 genes also make this

list, encoding a predicted deleterious amino acid substitu-
tion (GHDC P233A) and a splice donor non-sense muta-
tion (KCNH4 c.2663+2T>C). The KCNH4 mutation in
particular represents a plausible alternative to the STAT5B
G40S variant as potentially underpinning this QTL,
predicted to disrupt the function of a gene whose role as
an ion transporter is part of an enriched class of genes
in our dataset. It is also noteworthy however that co-
segregating eQTL for the GHDC, STAT5B, and DHX58
genes also coincide with this QTL. On that basis, disen-
tangling the relative contribution of individual variants
and mechanisms to this QTL is likely to be particu-
larly challenging, potentially involving multiple molecular
effects in strong LD. A further indication of the potential
biological complexity at this locus can be gleaned from
the within-breed analyses. Curiously, the chr19:42.99Mbp
locus is the only QTL with opposite signs of effect
between HF and Jerseys. Although this might otherwise
make the locus a candidate false positive region, the
effects are highly significant in both breeds, and given
the variety of strong candidate genes, and observations
of the QTL in independent populations [10, 26], it seems
plausible the locus comprises multiple, functionally inde-
pendent variants.
Three other loci annotated with protein function-

based candidate causative variants appear to represent
QTL novel to the current study. Two of these are LC
QTL that we can find little reference to in GWAS of
other milk traits. These two QTL at chr15:28.36Mbp
and chr16:24.99Mbp are represented by highly signifi-
cant missense mutations in genes for which either lit-
tle is known (RNF214), or that have no straightforward
biological role in the context of lactation (MARC1).
With no alternative coding variants or co-segregating
eQTL, these variants are therefore the most plausible
candidates for these effects.
The chr3:15.52Mbp LC locus contains a strong

candidate gene, the sugar transporter SLC50A1 (aka
SWEET1). This gene is annotated with a single can-
didate mutation with a possible impact on coding
sequence, comprising a splice region variant c.282+7G>A.
Manual visualisation of RNAseq alignments of animals of
opposing QTL genotype suggest c.282+7G>A is unlikely
to be the causative variant for this QTL, with no appar-
ent impact on alternative splicing at the relevant SLC50A1
intron 3 junction. However, observation of a lone, co-
segregating SLC50A1 eQTL at the locus strongly sup-
ports the causative status of this gene, particularly given
its previously demonstrated roles in the murine mam-
mary gland. Mammary expression of SLC50A1 is strongly
induced during lactation in the mouse, where critically,
it is proposed to impact lactose production by alter-
ing glucose availability to the lactose synthase enzyme
complex [39].
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Expression-based effects
We previously generated a large, mammary RNAseq
dataset to act as a resource for identification of causative
genes for lactation traits. Our approach aims to identify
co-locating eQTL and milk composition/production QTL
with shared association signatures, providing functional
and genetic evidence of causality for the implicated gene
[14, 15, 29, 30]. Conversely, the presence of an uncor-
related eQTL may suggest that a gene is unlikely to be
involved, at least through an expression-based mecha-
nism. These methods rely on the assumption that the LD
structures between the RNAseq population and GWAS
population are similar at the loci of interest, and that the
strength of association is sufficient to resolve both top and
middle-order variants. These assumptions may not always
hold, so we also consider genes candidates for collocat-
ing QTL if the lead associated eQTL variant is the same
(or captures the same LD block) as the milk composition
QTL. Of the 26 lactose QTL prioritised in the current
study, 14 had strongly correlated, co-locating eQTL in
lactating mammary tissue.
Observation of strong correlations for MGST1 and

GPAT4 eQTL for LY and LC provide further positive
controls for our analyses, where the likely causality of
these genes in underlying QTL for other milk traits has
been confirmed previously [14, 15]. As with assessment
of the potential role of protein-coding variants for lac-
tose QTL, the remaining 12 candidate causative eQTL
represent both ‘simple case’ loci for which causality can
be assumed (collocating with a single, highly correlated
eQTL), to confounded regions presenting multiple over-
lapping expression and protein sequence-based candidate
effects. Some of the more straightforward, and novel,
examples are discussed below.
The P2RX4, KCNJ2, LRRC8C, and ANKH genes encode

transmembrane proteins involved in ion transport, all
four of which show strong, highly correlated eQTL. The
LRRC8C, ANKH and KCNJ2 genes in particular make
likely candidates for these effects, since the top associated
eQTL variants are also in strong LD with the lead LC vari-
ant for each region. TheKCNJ2 gene encodes an inwardly-
rectifying potassium transporter that has previously been
identified in the membranes of secretory cells in murine
mammary glands [40]. Early work examining ionic con-
centrations in milk demonstrated the strong correlation
between concentrations of lactose and various ions inmilk
(including K+) [41], so an eQTL that drives changes in
abundance of KCNJ2 protein (and consequently K+ ion
transport) could be expected to result in some form of
osmotic compensation impacting LC. The same is true of
LRRC8C, an anion channel that is part of a family of genes
with a key role in osmotic regulation [42]. Members of the
LRRC8 gene family are sensitive to changes in cell volume,
specifically activated through cell swelling in response

to osmotic challenge [42]. The ANKH gene is another
small molecule transporter with potential impact on the
osmotic status of mammary cells and vesicles, responsi-
ble for transport of the oxyanion inorganic pyrophosphate
[43]. As a related or additional mechanism, the interaction
of ANKH with LC might somehow derive from the regu-
lation of calcium availability in the mammary gland, given
the importance of pyrophosphate to calcium sequestra-
tion [43], and the fact that calcium is the most abundant
mineral in milk. The PICALM gene is another excellent
candidate causative gene that, although not involved in
ion transport, is involved in vesicle transport and assem-
bly as a clathrin recruitment protein [44]. Although it is
unclear whether the class of vesicles targeted by PICALM
are directly relevant to vesicular secretion of lactose
[9], the gene displays a highly significant, highly corre-
lated mammary eQTL, and could equally be expected to
impact LC through secondary effects of vesicular trans-
port of other milk components, or vesicle membrane
recycling [45].

Conclusions
We have conducted the first GWAS experiments focussed
on milk lactose phenotypes, detailing discovery and val-
idation of 26 QTL with large to moderate effects. Com-
pared to previous GWAS of other lactation phenotypes,
these 26 loci represent a mixture of novel and previously-
described chromosomal regions. Using a combination
of eQTL mapping and sequence-resolution association
analysis, we propose candidate genes and mutations at
the majority of these loci. Pathway analysis indicates
that a number of the novel QTL are associated with
ion transport and pathways impacting the osmolality
of milk, emphasising the importance of lactose in this
context. Together, these new QTL enhance our under-
standing of lactation physiology, and may have further
implications for breeding dairy animals with customised
milk characteristics.

Methods
Animal populations, lactose phenotypes and heritability
estimation
Heritability estimation and GWAS was conducted in sev-
eral different populations, consisting of varying propor-
tions of HF, J, and their crosses. Purebreds were defined
as animals with at least 15/16ths HF or J ancestry. The
study populations comprised 12,000 mixed breed cows
(3 704 HF, 1 648 J, and 6 648 crosses; referred to as
the ‘discovery’ set), a distinct group of 18,000 animals of
broadly matched breed composition (4 588 HF, 2 350 J,
and 11,062 crosses; the ‘validation’ set), and two pure-
bred cohorts of 14,857 Holstein-Friesians and 8 995 Jersey
cows. All purebred cows from the discovery and validation
sets were included in the enlarged, purebred-only cohorts.
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All 30,000 cows were located in commercial New Zealand
dairy herds.
LC and LY phenotypes were derived from measure-

ments taken as part of standard herd-testing procedures.
Milk samples were processed by LIC Testlink (Newstead,
Hamilton, New Zealand) using Fourier transform infrared
spectroscopy with the Milkoscan FT6000 instrument
(FOSS, Hillerød, Denmark) against a lactose monohydrate
standard. Individual phenotypic measurements for each
animal were estimated from repeated measures models
in ASReml-R, where concentrations and yield values were
fitted against birth year, stage of lactation, and age of
calving as fixed effects, animal as a random effect, and
contemporary group as an absorbed/sparse effect. Mea-
surements were restricted to herd tests during the cow’s
first lactation, with somatic cell count <250k and at peak
lactation (October to January inclusive). Subject to these
restrictions, 59.5% of the discovery animals had data from
at least two herd tests available, and 57.6% of the valida-
tion animals.
Narrow-sense heritabilities (h2) were calculated for LC

and LY using the GCTA (version 1.25.3) software package
[46] for 30,000 animals, including those in both the test
and validation sets. Heritabilities were determined using
the genomic relationship matrix (GRM) calculated for
these animals by GCTA from a combination of physically
genotyped and imputed Illumina BovineHD genotypes
(see Genotypes and imputation for GWAS section below),
with MAF>0.05. These heritability estimates were used
as parameters in the linear models to map associations
between the phenotypes and the SNP genotypes. Geno-
typic principal component analysis was also conducted
in the combined discovery and validation animal popu-
lation, using the same BovineHD genotype set used for
heritability calculations.

Genotypes and imputation for GWAS
Lactose GWASwere conducted using SNPs imputed from
a reference population of animals for which both SNP chip
and RNAseq-derived genotypes were available. Animals
were imputed using Beagle 4 software [46], using a step-
wise procedure. In the first step, Illumina BovineHD SNP-
chip content was imputed into the subset of 27 cows that
had been genotyped on a lower density panel (Illumina
Bovine SNP50 BeadChip platform) than the other RNA-
sequenced animals. This process yielded 400 animals with
675,321 BovineHD SNPs.
To increase the density of variants available for genetic

mapping, RNAseq alignments (see “RNA sequencing and
gene expression phenotypes” section below) were used
as inputs for variant calling. These variants were chosen
since they represented mammary-expressed genes, and
hence had higher a priori likelihoods of affecting lactation
phenotypes. Variants were called using Samtools (version

1.0)[47] and GATK HaplotypeCaller (version 3.3) [48].
Variants not called by both callers were excluded, with
the remainder phased using Beagle 4 [49]. Variants that
generated poor phasing metrics, as defined by an allelic
R2 < 0.95, were also excluded, along with markers with
read depth <8, call rate <0.9 or minor allele frequency
<2.5%. These criteria resulted in an RNAseq variant set of
410 animals and 477,531 variants. The imputation refer-
ence population was generated by merging genotypes for
animals in both the HD and RNAseq variant sets. Phas-
ing the merged variant set and excluding variants with
allelic R2 < 0.95 yielded the final imputation reference
population of 394 animals and 1,093,581 variants.
This variant set was then used to impute all vari-

ants into the GWAS population of dairy cows (n=12,000:
the discovery set) that had been physically genotyped
on a mixture of Illumina BovineSNP50 (N=10,217),
BovineHD (N=189), and GeneSeek Genomic Profiler
BeadChip (N=1,945; GeneSeek/Illumina) SNP platforms.
Three hundred and forty six animals had been genotyped
on at least two platforms. After imputation, additional
variants that did not impute well in this population, pri-
marily multi-allelic indel mutations, were also removed,
yielding 1,090,999 variants for GWAS. Because of dif-
ficulties in imputing sex chromosomes, only autosomal
variants were targeted.

Generalised least squares models
Generalised least squares models were run for both LC
and LY phenotypes, as well as for the gene expression
phenotypes described below. Variant effects were esti-
mated using the single-SNP linear model in Eq. 1, where
X is a matrix of SNP genotypes (coded 0,1,2 and cen-
tred to a mean of zero) and y is the vector of phenotypes.
This model accounted for covariances between animals,
caused by family relatedness or population stratification
(different breeds), by using the covariance matrix in Eq. 2,
which partitioned the phenotypic variance (σ 2

P ) into an
additive genetic component, with covariance modelled
by the numerator relationship (A) matrix, and an envi-
ronmental component, with covariance modelled by an
identity matrix (I). The proportions of variance allocated
to each component were determined by the heritability.
In this study, the A matrix was calculated from pedigree
records.

β̂ = (
X′W−1X

)−1 · X′W−1y (1)

W = σ 2
p · (

h2A + (1 − h2)I
)

(2)

The association strength for each SNP was calculated
as per Eq. 3. The resulting statistic was χ2-distributed
with one degree of freedom, under the null hypothesis
of no association between the SNP and phenotype. The
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calculation for the standard error of the estimated SNP
effect is given in Eq. 4.

χ̂2 =
(

β̂2

s.e(β̂2)

)2

(3)

s.e(β̂) =
√
diag(X′W−1X)−1 (4)

Because the expected distribution of the association
statistic is known, the inflation factor of the statistics,
denoted by λ, could be estimated by comparing the
observed and theoretical medians of the χ2 statistics. In
particular, the theoretical median of the χ2

df=1 distribution
is 0.45494, and dividing the observed median by this value
yielded the inflation factor.
Significance levels were calculated using Bonferroni

corrections to adjust for multiple testing. Thresholds were
calculated for each discrete experiment, where the nom-
inal p-value for each of the lactose phenotypes was P =
4.58×10−8 (n=1,090,999 variants). Bonferroni thresholds
were set for the whole-genome sequence window analysis
by considering all variants cumulatively, yielding a value
of P=2.53 × 10−7 (n=197,338 total variants). To calculate
inflation-adjusted values, the value in the χ2

df=1 distribu-
tion with an upper tail equal to this p-value was obtained
and multiplied by λ. The λ inflation factors for the LC and
LY phenotypes were 2.28 and 2.25 respectively, yielding
nominal inflation adjusted thresholds of 1.61× 10−16 and
2.52 × 10−16. Due to the exclusion of obvious true posi-
tive signals, inflation values are reported and visualised in
Figs. 1 and 2 for comparison purposes, though not used
subsequently.

Whole genome sequencing, imputation, and association
analysis
Whole genome sequencing was performed as described
previously [11, 15]. Briefly, 565 animals comprising
Holstein-Friesians, Jerseys, and crossbreeds thereof were
sequenced using 100bp paired-end reads on the Illu-
mina HiSeq 2000 instrument. Mapping was conducted
using BWA MEM 0.7.8 [50], yielding mean and median
mapped read depths of 15× and 8× respectively for the
565 samples. Variant calling was conducted using GATK
HaplotypeCaller (version 3.2) [48] with base quality score
recalibration. This variant set was phased using Beagle 4
[49], and variants with allelic R2<0.95 were excluded.
To conduct sequence-based association analysis, 1Mbp

windows centred on the top LC and LY QTL markers
were imputed to whole-genome sequence resolution using
Beagle 4 [49] with the reference population of 565 ani-
mals described above. Across all 27 chromosomal regions,
this process resulted in a total of 197,338 variants (aver-
age 7 309; min 3 862; max 11,307 per interval). Although
we have no truth set with which to directly determine

the imputation accuracy for these animals, previous work
we have performed [15] indicates accuracies of around
98–99% when imputing BovineHD genotypes to WGS.
Association analysis was conducted as for analysis of other
populations, using the same generalised least square mod-
els described.
Following discovery of the 27 LY and LC large to mod-

erate effect QTL, a validation study using tag-variants
of these regions was conducted in a separate popula-
tion of 18,000 animals. These 27 sequence variants were
imputed as described above. Association analysis was con-
ducted as for analysis of other populations, using the same
generalised least square models described above.
To determine whether or not the 27 observed QTL were

segregating in both the HF and Jersey breeds, we cal-
culated the within-breed MAF for each tag variant for
both the discovery and validation animal sets (Table 3).
MAFs were calculated using PLINK software [51] ver-
sion 1.90b3i. To verify that effect directions were concor-
dant across breeds and look for potential indicators of
population stratification, genotypes of tag variants were
extracted for larger pure-bred populations (n=14,875 for
HF; 8 995 for Jersey), where these populations included
all pure-bred animals from the discovery and validation
populations. Allele effects were calculated using the gen-
eralised least-squares model as described above.

RNA sequencing and gene expression phenotypes
Mammary biopsy, RNA sequencing, and RNAseq bioin-
formatics were performed as reported previously [15].
Briefly, high-depth mammary RNAseq was conducted on
tissue from 411 cows, sampled as three groups at differ-
ent points in time. Following library preparation, samples
were sequenced using the Illumina HiSeq 2000 instru-
ment to produce 100 bp paired-end reads, multiplexed at
two samples per lane [15].
RNASeq reads for all 411 cows were mapped to the

UMD3.1 bovine reference genome using Tophat2 (version
2.0.12) [52], mapping an average of 88.9 million read-
pairs per sample. Duplicate reads were marked using the
MarkDuplicates command in the Picard software pack-
age (version 1.89; Broad Institute) and were excluded
from SNP calling. Gene expression, in fragments per kilo-
base of transcript per million mapped reads (FPKM) and
transcripts per million (TPM) [53], was quantified using
Stringtie software (version 1.2.4) [54], and Ensembl geneb-
uild release 81. Animals were filtered to remove those with
outlier gene expression values using principal component
analysis (PCA). Those with values more than three stan-
dard deviations from the mean in any of the first six com-
ponents were excluded, based on the guidelines of Ellis
et al. [55]. The resultant data set contained 375 animals.
Expression data were also processed using the bioconduc-
tor package DESeq [56] to transform read counts using
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the “variance stabilising transformation” (VST) function,
resulting in gene expression data suitable for linear model
analysis. Only reads that mapped to exons (Ensembl
release 81) were counted.

Functional prediction of protein-coding variants and
identification of co-segregating eQTL
For each 1Mbp window of whole genome sequence-
resolution genotypes, SNPEff [19] (version 4.3) was used
to predict functional consequences of candidate vari-
ants in conjunction with the Ensembl UMD3.1.82 gene
annotations. Variants predicted to impact protein-coding
sequences were also annotated using the Variant Effect
Predictor [20] (Ensembl release 87). For eQTL analyses,
transformed gene expression phenotypes for all expressed
genes overlapping each of the 1Mbp windows were used
to identify eQTL, where a nominal expression threshold
of >8 exonic reads per animal was used. Animals whose
genotypes were not concordant with genotypes from their
sire (n=5) or dam (n=11), or had excessively low call rates
(n=2) were not imputed to sequence resolution, yielding
a final eQTL dataset of 357 animals. For these 357 ani-
mals, mapping was performed using imputed sequence
variants and VST-transformed read counts, using the
same generalised least squares models described above.
Additional file 6: Figure S3 shows the Manhattan plots for
each eQTL tested.
Following eQTL detection, correlation analysis of eQTL

and lactose QTL association statistics was performed to
highlight shared regulatory architecture between QTL.
This method assumes that pairs of QTL regulated by
a common genetic element will have similar associa-
tion statistics, sharing the same highly associated (and
un-associated) variants for a given interval. Correlations
between the eQTL and the LC or LY QTL were calcu-
lated in the discovery animal set using Pearson (r) and
Spearman (ρ) statistics between the χ2 for each SNP in
the window. Linkage disequilibrium statistics (r2) between
the genotypes of the top SNP for each lactose QTL and
eQTL pair were also calculated.

Pathway analysis
Candidate genes were nominated based on a triage of one
or more of the following features: a protein-coding muta-
tion with r2 > 0.9 with the top LC or LY QTL variant; an
eQTL with r > 0.7 or ρ > 0.7 with the LC or LY QTL;
the top variants in the eQTL and the LC or LY QTL with
r2 > 0.9. This generated a list of 30 candidate genes cov-
ering 18 of the 26 validated QTL. For the eight remaining
loci, for which genes could be less definitively impli-
cated, candidates were added based on their proximity to
the lead tag-QTL SNP, and/or the presence of an eQTL
(whether this was co-segregating with the lactose QTL or
otherwise) and/or strong a priori candidacy. The latter

classification was invoked for LALBA (chr5:31.56Mbp)
and GHR (chr20:31.69Mbp) only. The final candidate list
consisted of 44 genes (Additional file 5: Table S1).
Ensembl IDs for candidate genes were input into

the Database for Annotation, Visualization and Inte-
grated Discovery (DAVID; [31]) online pathway analysis
software (version 6.8; https://david.ncifcrf.gov/home.jsp).
The Functional Annotation Clustering tool on this
site was run using Bos taurus as the background
species and using all DAVID default annotations as
input, with the exception of the gene ontology anno-
tations, where GOTERM_MF_ALL, GOTERM_CC_ALL
and GOTERM_BP_ALL were used. Classification strin-
gency for clustering was set to Highest.

Additional files

Additional file 1: Figure S1. Stratification in the 30,000 discovery and
validation animals, illustrated using PCA on the GRMmatrix. Animals are
coloured by the percentages of ancestry recorded in the LIC animal
recording database. Breeds are Jersey and Holstein-Friesian. PCA was
performed using GCTA [46]. (PDF 1770 kb)

Additional file 2: Figure S2. WGS resolution for 1Mbp windows centred
on QTL peaks for lactose phenotypes. (PDF 1010 kb)

Additional file 3: Table S3. Tag-variant results for LC and LY QTL peaks in
the validation data set. (XLSX 7 kb)

Additional file 4: Table S4. Associations between tag variants and milk
phenotypes. Tag variants represent the 26 validated QTL detected for the
LC and LY phenotypes. Phenotypes are milk yield (litres/day), milk fat and
milk protein yield (kg/day) and milk fat and protein concentrations
(percentage). (XLSX 42 kb)

Additional file 5: Table S1. All genes used in the functional annotation
clusters pathway analysis tool (DAVID), along with the output clusters and
associated enrichment scores and enriched annotation classes. (XLSX 41 kb)

Additional file 6: Figure S3. WGS resolution for eQTL of all gene located
within 1Mbp windows centred on QTL peaks for lactose phenotypes. (PDF
8428 kb)
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