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Abstract

In this paper we develop two approaches to find minmax robust efficient solutions for multi-
objective combinatorial optimization problems with cardinality-constrained uncertainty. First,
we extend an existing algorithm for the single-objective problem to multi-objective optimiza-
tion. We propose also an enhancement to accelerate the algorithm, even for the single-
objective case, and we develop a faster version for special multi-objective instances. Second,
we introduce a deterministic multi-objective problem with sum and bottleneck functions,
which provides a superset of the robust efficient solutions. Based on this, we develop a label
setting algorithm to solve the multi-objective uncertain shortest path problem. We com-
pare both approaches on instances of the multi-objective uncertain shortest path problem
originating from hazardous material transportation.

Keywords: Multiple objective programming, Robust optimization, Combinatorial
optimization, Multi-objective robust optimization, Shortest path problem

1. Introduction

Two of the main difficulties in applying optimization techniques to real-world problems are
that several (conflicting) objectives may exist and that parameters may not be known exactly
in advance. In multi-objective optimization several objectives are optimized simultaneously
by choosing solutions that cannot be improved in one objective without worsening it in an-
other objective. Robust optimization hedges against (all) possible parameter values, e.g., by
assuming the worst case for each solution (minmax robustness).
Often it is assumed that the uncertain parameters take any value from a given interval or
that discrete scenarios are given. A survey on robust combinatorial optimization with these
uncertainty sets is given by Aissi et al. (2009). Based on the interval case, Bertsimas and Sim
(2004) propose to consider scenarios where only a bounded number of parameters differ from
their expected value (cardinality-constrained uncertainty). This leads to less conservative
solutions that are of high practical use. Bertsimas and Sim (2003) provide an algorithm to
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find robust solutions for combinatorial optimization problems under this kind of uncertainty.
Only recently have robust optimization concepts for multi-objective problems been developed.
Kuroiwa and Lee (2012) and Fliege and Werner (2014) introduce a first extension of minmax
robustness for several objectives. They consider the uncertainties in the objectives indepen-
dently of each other. Ehrgott et al. (2014) develop another extension of minmax robustness,
in which they include the dependencies between the objectives. This is further generalized by
Ide et al. (2014). These concepts have been extensively applied, e.g., in portfolio management
(Fliege and Werner, 2014), in game theory (Yu and Liu, 2013) and in the wood industry (Ide
et al., 2015). Ide and Schöbel (2016) and Wiecek and Dranichak (2016) give an overview on
multi-objective robustness, including further robustness concepts. Newest developments in
this field include works by Chuong (2016) and Kalantari et al. (2016). Cardinality constrained
uncertainty is extended to multi-objective optimization by Doolittle et al. (2012) (only for
uncertain constraints) and Hassanzadeh et al. (2013) (for uncertain objective functions and
constraints).
To the best of our knowledge, only Kuhn et al. (2016) have developed a solution algorithm
for multi-objective uncertain combinatorial optimization problems. They consider problems
with two objectives, of which only one is uncertain, with discrete and polyhedral uncertainty
sets.
In this paper, however, we consider problems with any fixed number of objectives of which
all may be uncertain. The main contribution of this paper is that we develop two solu-
tion approaches for multi-objective combinatorial optimization problems with cardinality-
constrained uncertainty. We further derive specific algorithms for the multi-objective uncer-
tain shortest path problem.
The remainder of this paper is structured as follows: In Section 2 we give a short introduc-
tion to multi-objective robust optimization. We present two solution approaches for multi-
objective combinatorial optimization problems with cardinality-constrained uncertainty in
Section 3: In Section 3.1 we extend an algorithm by Bertsimas and Sim (2003) to multi-
objective optimization. Additionally, we propose an acceleration for both the single-objective
and the multi-objective case and a faster version for multi-objective problems with a special
property. In Section 3.2 we introduce a second approach and show how it can be applied to
solve the multi-objective uncertain shortest path problem as an example. In Section 4, we
compare our methods on instances of the multi-objective uncertain shortest path problem
originating from hazardous material transportation.

2. Multi-objective combinatorial optimization with cardinality-constrained un-
certainty

First, we give an introduction to multi-objective combinatorial optimization. We use bold
font for vectors and vector valued functions.
An instance (E,Q, c) of a multi-objective combinatorial optimization problem is given by a
finite element set E, a set Q ⊆ 2E of feasible solutions, which are subsets of E, and a cost
function c, that assigns a cost vector c(e) = (c1(e), ..., ck(e)) to each element e ∈ E. The cost
z(q) of a set q ∈ Q is the sum of the costs of its elements. We call

(MOCO) min
q∈Q

z(q) =

z1(e)
...

zk(e)

 =


∑

e∈q c1(e)
...∑

e∈q ck(e)
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a multi-objective combinatorial optimization problem.
A solution that minimizes all objectives simultaneously does usually not exist. Therefore, we
use the well-known concept of efficient solutions.

Notation 1. For two vectors y1,y2 ∈ Rk we use the notation

y1 ≤ y2 ⇔ y1
i 5 y2

i for i = 1, ..., k and y1 6= y2,

y1 5 y2 ⇔ y1
i 5 y2

i for i = 1, ..., k.

In the following, we only use the symbols < (strictly less than) and 5 (less than or equal to)
to compare scalars.

Definition 2. A solution q′ ∈ Q dominates another solution q ∈ Q if z(q′) ≤ z(q). We also
say that z(q′) dominates z(q). A solution q ∈ Q is an efficient solution, if there is no q′ ∈ Q
such that q′ dominates q. Then z(q) is called non-dominated.
Two efficient solutions q, q′ ∈ Q are called equivalent if z(q) = z(q′). A set of efficient
solutions Q̄ ⊆ Q is called complete if all q ∈ Q \ Q̄ are either dominated by or equivalent to
at least one q′ ∈ Q̄.

Solving (MOCO) means to find a complete set of efficient solutions.

We now assume that the input data is uncertain, i.e., the feasible set and/or the element
costs c(e) are not exactly known in advance. If the set of feasible solutions is uncertain, we
aim to find solutions which are feasible in all scenarios (as proposed in the seminal works
on robustness, see, e.g., Soyster (1973); Ben-Tal et al. (2009)). For this purpose, the sets
of feasible solutions can be intersected in advance to obtain a (deterministic) set of robust
feasible solutions. Hence, in the following, we assume the set Q to be a deterministic set.
The uncertainty set U is then the set of all possible cost functions c. The considered uncer-
tainty set often strongly influences the solvability of uncertain optimization problems and the
solution approaches. The idea of cardinality-constrained uncertainty is to assume that the
parameters vary in intervals independent of each other, but not more than a given number of
elements will be more expensive than their minimal cost. For example, there will not be an
accident on every road of a transportation network at the same time, thus, a delay because
of an accident does not need to be considered on all roads simultaneously. Bertsimas and
Sim (2003) were the first to introduce cardinality-constrained uncertainty for single-objective
uncertain combinatorial optimization problems. With ĉe being the minimal or nominal value
of c(e) and ĉe + δe its maximal value, the considered uncertainty set can be written as

Ucc := {c : E → R | c(e) ∈ [ĉe, ĉe + δe] ∀ e ∈ E, |{e ∈ E | c(e) > ĉe}| 5 Γ}. (1)

One possible extension to multi-objective optimization is to apply this approach to each
objective independently (see Hassanzadeh et al., 2013):

Definition 3. For each element e ∈ E and each objective i let two real values ĉe,i and
δe,i = 0 be given. We assume that the uncertain cost ci(e) can take any value in the interval
[ĉe,i, ĉe,i + δe,i], with ĉe,i being the undisturbed value, called the nominal value. For each
objective i let an integer Γi 5 |E| be given. The cardinality-constrained uncertainty set
contains all cost functions, with which for each objective i at most Γi elements differ from
their nominal costs:

Umcc := {c : E → Rk |ci(e) ∈ [ĉe,i, ĉe,i + δe,i] ∀ e ∈ E, ∀ i = 1, ..., k,

|{e ∈ E | ci(e) > ĉe,i}| 5 Γi ∀ i = 1, ..., k} (2)
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We call the family of optimization problems

(MOUCO)

(
min
q∈Q

(
z(q) =

∑
e∈q
c(e)

)
, c ∈ Umcc

)

a multi-objective uncertain combinatorial optimization problem with cardinality-constrained
uncertainty. An instance of (MOUCO) is hence given by (E,Q, Ĉ,∆,Γ), with

Ĉ :=

 ĉe1,1 . . . ĉe1,k
...

...
ĉe|E|,1 . . . ĉe|E|,k

 ,∆ :=

 δe1,1 . . . δe1,k
...

...
δe|E|,1 . . . δe|E|,k

 ,Γ := (Γ1, ...,Γk).

Note that with the uncertainty set Umcc, (MOUCO) is objective-wise uncertain, as it was
defined by Ehrgott et al. (2014), i.e., the uncertainty sets in the objective functions are inde-
pendent of each other.
This can usually be assumed, if the objectives are uncorrelated. However, also for correlated
nominal values, the uncertainty can often be assumed to be uncorrelated, if unexpected events
influence only one of the objectives.
To decide what is a good solution for a multi-objective uncertain problem is not trivial.
In single-objective robust optimization one looks for so-called robust optimal solutions. Of-
ten these are defined as solutions, which have a minimal worst case value, i.e., one solves
minq∈Q maxc∈U z(q) (see, e.g., Ben-Tal et al., 2009). This concept has been generalized to
robust efficiency for multi-objective problems in various ways (see, e.g., Kuroiwa and Lee,
2012; Ehrgott et al., 2014). In this paper we determine the worst case independently for each
objective (see Definition 4), as proposed by Kuroiwa and Lee (2012). This yields a single vec-
tor for each solution and these vectors can be compared using the methods of multi-objective
optimization.

Definition 4. A solution q ∈ Q is robust efficient for (MOUCO) if q is an efficient solution
for the robust counterpart

(MORCO) min
q∈Q

zR(q) =


sup

c∈Umcc
z1(q)

...
sup

c∈Umcc
zk(q)

 =


sup

c∈Umcc

∑
e∈q

c1(e)

...
sup

c∈Umcc

∑
e∈q

ck(e)


 .

Remark 5. Since (MOUCO) is objective-wise uncertain, robust efficiency, as defined in
Definition 4, coincides with point-based and set-based minmax robust efficiency defined by
Ehrgott et al. (2014). Therefore, all results shown in this paper are valid for both concepts.

Analogously to Definition 2 we define:

Definition 6. Two robust efficient solutions q, q′ ∈ Q are called equivalent if zR(q) = zR(q′).
A set of robust efficient solutions Q̄ ⊆ Q is called complete if all q ∈ Q\Q̄ are either dominated
w.r.t. zR or equivalent to at least one q′ ∈ Q̄.
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2.1. Example: A multi-objective uncertain shortest path problem

Consider a graph G = (V,E) with node set V and edge set E, a start node s ∈ V and a
destination node t ∈ V . A path is a sequence of edges connecting adjacent nodes. In a simple
path at most two edges are incident to each node. For a given cost function c : E → Rk

the cost of a path is obtained by following the path and adding up the costs of the edges
traversed. Because simple paths do not contain any edge more than once, for a simple path
q we have z(q) =

∑
e∈q c(e).

In the following we assume conservative edge costs, i.e., every cycle C has non-negative cost
zi(C) = 0 for each cost function c ∈ Umcc and objective i = 1, ..., k. Then, there always
exists a complete set of robust efficient paths containing only simple paths. Hence, the multi-
objective shortest path problem with cardinality-constrained uncertainty can be written as a
combinatorial problem

(MOUSP )

(
min
q∈Q

∑
e∈q
c(e), c ∈ Umcc

)

with Q being the set of simple paths from s to t in G. We use the following example to
illustrate the results and algorithms in this paper.

Example 7. Consider the network in Figure 1 with s = v1 and t = v6 and Γ1 = Γ2 = 2. The
edge costs are given in the form (

[ĉe,1, ĉe,1 + δe,1]
[ĉe,2, ĉe,2 + δe,2]

)
.

For this instance of (MOUSP), the set of robust efficient paths consists of the two paths

q1 := {(v1, v2), (v2, v4), (v4, v6)} with zR(q1) =

(
13
9

)
,

q2 := {(v1, v2), (v2, v3), (v3, v5), (v5, v6)} with zR(q2) =

(
11
16

)
.

3. Algorithms for finding robust efficient solutions in multi-objective uncertain
combinatorial optimization

We now consider (MOUCO), hence, we aim to find a complete set of efficient solutions for
the robust counterpart (MORCO).

3.1. Deterministic Subproblems Algorithm (DSA)

The algorithms in this subsection are built upon an algorithm by Bertsimas and Sim (2003)
for single-objective cardinality-constrained uncertain combinatorial optimization problems,
which we call Deterministic Subproblems Algorithm (DSA). Its idea is to find solutions for
the uncertain problem by solving up to |E|+ 1 deterministic problems of the same type and
comparing their solutions.

In Section 3.1.2, we first describe the algorithm by Bertsimas and Sim (2003) for single-
objective problems. While the authors prove correctness of the algorithm with help of duality,
we provide an alternative explanation, which we later extend to (MORCO). In Section 3.1.2,
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s = v1

v2

v3

v4

v5

v6 = t

Γ1 = Γ2 = 2

(
[2, 3]
[1, 2]

)

(
[4, 7]
[3, 8]

)
(

[1, 2]
[1, 6]

)

(
[3, 7]
[4, 5]

)

(
[3, 8]
[2, 7]

)
(

[2, 5]
[2, 7]

)

(
[1, 3]
[1, 6]

)

(
[3, 4]
[2, 3]

)

(
[2, 5]
[3, 8]

)

Figure 1: An instance for (MOUSP).

we extend the algorithm for the general multi-objective case and show that the number of
subproblems can be further reduced for multi-objective problems with a special property.
We present several ways to reduce the number of subproblems to be solved for both the
single-objective and the multi-objective case.

3.1.1. The DSA for single-objective problems

We first consider the single-objective problem (minq∈Q z(q), c ∈ Ucc) with Ucc defined as in
Equation (1).
We now explain the algorithm by Bertsimas and Sim (2003). A solution q ∈ Q has maximal
cost (we call this its worst case cost), if the costs of those Γ elements, which have the largest
cost intervals δe among all elements in q, take their maximal values c(e) = ĉe + δe. If q has
fewer than Γ elements, in the worst case the cost of all elements in q take their maximal value.
Assume that the elements are ordered with respect to the interval length δ, i.e.,

δ̄1 := δe1 = δ̄2 := δe2 = ... = δ̄|E| := δe|E| = δ̄|E|+1 := 0.

For each l ∈ {1, ..., |E|+ 1} we define the function gl (see Bertsimas and Sim, 2003):

gl(q) :=
∑
e∈q

ĉe + Γ · δ̄l +
∑
ej∈q
j5l

(δej − δ̄l).

The function gl(q) is an approximation of the worst case costs of the set q. It contains

• the nominal cost ĉe for each element e ∈ q, which has to be paid also in the worst case,

• δ̄l · Γ since, in the worst case, the interval length δe has to be added to the costs for (at
most) Γ elements,

• the positive summand max{0, δe− δ̄l} for each element e ∈ q to account for all elements
in the set with higher interval lengths than δ̄l.
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The idea of the algorithm by Bertsimas and Sim (2003) is to solve all problems

(P(l)) min
q∈Q

gl(q)

for l = 1, . . . |E| + 1 and compare the worst case values of all obtained solutions to choose a
solution with minimal worst case cost. Instead of computing the worst case cost vectors, it is
even sufficient to compare the objective values gl(q) of the obtained solutions and choose the
solution with minimal objective value. This idea works due to the following two properties:

1. For every set q and every l ∈ {1, . . . , |E|+ 1} we have that gl(q) is always greater than
or equal to the worst case cost zR(q).

2. For every set q there exists some l ∈ {1, . . . , |E| + 1} such that gl(q) equals the worst
case cost zR(q).

To show the first property, let q be a set and let {ea1 , . . . , eah} be a subset of h elements in

q with the largest cost intervals, where h = min{|q|,Γ}. Then zR(q) =
∑

e∈q ĉe +
∑h

j=1 δeaj
and we get

gl(q) =
∑
e∈q

ĉe +

h∑
j=1

δ̄l +

h∑
j=1

max{0, δeaj − δ̄l} = zR(q).

For the second property we show that for each set q there exists at least one index l with
gl(q) = zR(q) : If q has less than Γ elements, then

g|E|+1(q) =
∑
e∈q

ĉe + Γ · 0 +
∑
e∈q

(δe − 0) = zR(q).

If q has at least Γ elements, let el̄ be the element in q with the Γ-th smallest index. Then the
Γ elements {ej ∈ q : j 5 l̄} have the largest cost intervals in q and it follows that

g l̄(q) =
∑
e∈q

ĉe + Γ · δ̄l̄ +
∑
ej∈q
j5l̄

(δej − δ̄l̄) =
∑
e∈q

ĉe +
∑
ej∈q
j5l̄

δ̄l̄ +
∑
ej∈q
j5l̄

(δej − δ̄l̄) = zR(q).

Having these two properties, we see that a robust optimal solution q∗ is optimal for the
problem (P(l̄)), since none of the other sets q ∈ Q can have a better objective value. Therefore,
at least one robust optimal solution will be found by the algorithm.
Algorithm 1 shows the basic structure of the described algorithm. First, the elements are
ordered with respect to their interval lengths. Then the subproblems defined above are solved.
Finally, of all obtained solutions the one with minimal objective value w.r.t. the respective
subproblem is chosen. The efficiency of Algorithm 1 depends on the time complexity to
solve the subproblems (P(l)). Because the summand Γ · δ̄l is solution-independent, a solution
for (P(l)) can be found efficiently by solving a problem of the same kind as the underlying
deterministic problem with element costs

cl(ej) :=

{
ĉej + (δej − δ̄l) for j < l

ĉej for j = l.
(3)

Hence, Algorithm 1 finds a robust optimal solution in polynomial time for many combinatorial
optimization problems. Examples are the minimum spanning tree and the shortest path
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Algorithm 1 Basic structure of DSA (based on Bertsimas and Sim, 2003)

Input: an instance I = (E,Q, ĉ, δ,Γ) of (MOUCO) with k = 1
Output: a robust efficient solution for I

1: Sort E w.r.t. δe such that δ̄1 := δe1 = δ̄2 := δe2 = ... = δ̄|E| = δ̄|E|+1 := 0.
2: Set L := {1, ..., |E|+ 1}.
3: For all l ∈ L find an optimal solution ql for (P(l)).
4: Compare the objective values zR(ql) for all l ∈ L. The solution with the smallest objective

value is a robust optimal solution.

problem.
In the following, we show how Algorithm 1 can be enhanced. It is not necessary to solve all
of the |E|+ 1 subproblems introduced above. The following three results (see Bertsimas and
Sim, 2003; Lee and Kwon, 2014; Park and Lee, 2007) can be used to reduce the number of
subproblems (Lemma 8): First, if two elements have the same interval length δe, then their
associated subproblems are identical. Second, the worst case cost of a set q with at least Γ
elements equals its objective value gl(q) not only for one subproblem, but for two consecutive
subproblems. Therefore, we do not miss any solutions if we only solve every second problem.
Third, none of the first Γ − 1 elements can be the one with the Γ-th smallest index for any
set in Q, so their associated subproblems need not to be solved.

Lemma 8 ((Bertsimas and Sim, 2003; Lee and Kwon, 2014; Park and Lee, 2007)). The

number of subproblems to be solved by Algorithm 1 can be reduced to at most
⌈
|E|−Γ

2

⌉
+ 1 in

the following ways:

1. If there are several elements el, ..., e(l+h) with the same interval length δel = ... = δel+h
,

only one of the subproblems P(l), ...,P(l + h) needs to be solved (Bertsimas and Sim,
2003).

2. Only every second subproblem and the last subproblem need to be solved (Lee and Kwon,
2014).

3. It is sufficient to start with the Γ-th subproblem (Park and Lee, 2007).

Depending on the solutions that are found while the algorithm is executed, we can further
reduce the number of subproblems to be solved. We refer to this newly proposed enhancement
as solution checking.

Lemma 9. Let 1 5 l̃ < l 5 |E|+ 1 and let q l̃ be an optimal solution for P(l̃). If q l̃ does not
contain any of the elements e1, ..., el−1, then it is optimal for P(l).

Proof. We can find a solution of P(l) by solving a problem with the deterministic costs given
in (3). For these costs we have

l̃ 5 l⇒ δ̄l̃ = δ̄l ⇒ cl̃(ej) 5 cl(ej) ∀ ej : j < l̃,

j 5 l⇒ δej = δ̄l ⇒ cl̃(ej) = ĉej 5 ĉej + (δej − δ̄l) = cl(ej) ∀ ej : l̃ 5 j < l,

l̃ 5 l⇒ cl̃(ej) = ĉej = cl(ej) ∀ ej : j = l.

If q l̃ does not contain any element ej : j < l, then∑
e∈ql̃

cl(e) =
∑
e∈ql̃

cl̃(e) 5
∑
e∈q

cl̃(e) 5
∑
e∈q

cl(e) ∀ q ∈ Q,

8



Algorithm 2 Improved step 3 of Algorithm 1: Solve subproblems (with solution checking).

Input: I = (E,Q, ĉ, δ,Γ) with E ordered w.r.t. δ, δ̄, an index set L of subproblems
Output: a set of solutions {ql : l ∈ L}

1: l̃ := 0
2: for all l ∈ L in increasing order do
3: if l̃ = 0 or q l̃ contains any element in {e1, ..., el−1} then
4: Find an optimal solution ql for (P(l)).

5: else ql := q l̃

6: end if
7: l̃ := l
8: end for

hence, q l̃ is optimal for P(l).

We can therefore replace Step 3 of the basic structure (Algorithm 1) with Algorithm 2.

Lemma 9 does not contain any theoretical complexity result since, in the worst case, still⌈
|E|−Γ

2

⌉
+ 1 subproblems are solved. Nevertheless, the results of our experiments in Section 4

show the practical use of this improvement.

3.1.2. The DSA for multi-objective problems

In this subsection, we extend the DSA to multi-objective problems. The idea presented in
Subsection 3.1.1 is still valid. A set q has maximal cost in the i-th objective, if the cost of
its Γi elements with the largest cost intervals δe,i take their maximal value. However, the
sorting of the elements by interval lengths often results in a different order for each objective.
An element that has the Γi-th longest interval in q for all i = 1, ...k is not likely to exist.
To ensure that the worst case vector of q equals the objective vector of a subproblem, we
have to iterate through all elements for each objective independently and consider all possible
combinations. The subproblems to be solved are hence constructed in the following way:
For j = 1, ..., |E|, i = 1, ..., k let Ei

j be a set of the j elements with the largest intervals for the i-

th objective with Ei
1 ⊂ Ei

2 ⊂ ... ⊂ Ei
|E| = E. I.e., |Ei

j | = j and δe,i = δe′,i ∀ e ∈ Ei
j , e
′ ∈ E\Ei

j .

We further define δ̄ij := mine∈Ei
j
δe,i and δ̄i|E|+1 := 0 ∀ i. For each l = (l1, ..., lk) ∈ L :=

{1, ..., |E|+ 1} × ...× {1, ..., |E|+ 1} we define the problem

(MP(l)) min
q∈Q

gl(q) :=



∑
e∈q

ĉe,1 + Γ1 · δ̄1
l1

+
∑

e∈q∩E1
l1

(δe,1 − δ̄1
l1

)

...∑
e∈q

ĉe,k + Γk · δ̄klk +
∑

e∈q∩Ek
lk

(δe,k − δ̄klk)

 .

We are now looking for a complete set of solutions for each of the subproblems. Such a
solution set can be found by solving a deterministic multi-objective problem of the same kind
as the original problem. We denote the solution set that we obtain for MP(l) by OPT l.
Algorithm 3 preserves the basic structure of DSA: First, the elements are sorted w.r.t. δe,i for
each i = 1, ..., k. Instead of changing the indices, we store the set Ei

j of the first j elements
for all j = 1, ..., |E|, because the order of the elements depends on the objective. Then the
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Algorithm 3 DSA for general multi-objective instances

Input: an instance I = (E,Q, Ĉ,∆,Γ) of (MOUCO)
Output: a complete set of robust efficient solutions for I

1: For i := 1, ..., k: Sort E w.r.t. δe,i descending and save the first j elements in Ei
j for

j = 1, ..., |E|. Set Ei
|E|+1 := E. Set δ̄ij := mine∈Ei

j
δe,i ∀ j = 1, ..., |E| and δ̄i|E|+1 := 0.

2: Determine L = L1 × L2 × ...× Lk: Li := {1, ..., |E|+ 1} ∀ i = 1, ..., k.
3: For all l ∈ L find a complete set of efficient solutions OPT l for (MP(l)).
4: Compare the objective vectors zR(q) of all solutions in ∪l∈LOPT l. The solutions with

non-dominated objective vectors form a complete set of robust efficient solutions.

set L is determined, which contains vectors instead of scalar values. For each element in L
the subproblem defined above is solved and their solutions are compared to obtain the robust
efficient solutions.

Theorem 10. Algorithm 3 finds a complete set of robust efficient solutions for (MOUCO).

Proof. First, we show that gl never underestimates zR for any objective. Further, we prove
that for each feasible solution q there is an l ∈ L with gl(q) = zR(q). We conclude that
Algorithm 3 finds a complete set of robust efficient solutions.
For each q ∈ Q, l ∈ L and i ∈ {1, ..., k} we show zR

i (q) 5 gli(q). Let {ea1 , . . . , eah} be a set of
h elements in q with the largest cost intervals δe,i, where h = min{|q|,Γi}. Then

zR
i (q) =

∑
e∈q

ĉe,i +

h∑
j=1

(δeaj ,i − δ̄
i
li

+ δ̄ili)

5
∑
e∈q

ĉe,i + Γi · δ̄ili +

h∑
j=1

(δeaj ,i − δ̄
i
li

) since h 5 Γi

5
∑
e∈q

ĉe,i + Γi · δ̄ili +
∑
e∈q

max{0, δe,i − δ̄ili} since {ea1 , . . . , eah} ⊆ q

=
∑
e∈q

ĉe,i + Γi · δ̄ili +
∑

e∈q∩Ei
li

(δe,i − δ̄ili) since e ∈ Ei
li
⇒ δe,i = δ̄ili , e /∈ E

i
li
⇒ δe,i 5 δ̄ili

= gli(q).

We conclude gl(q) 5 zR(q) for all q ∈ Q and l ∈ L.
We show now that for every q ∈ Q there is an l̄ ∈ L with gl̄(q) = zR(q). Given q ∈ Q we
construct l̄ as follows: For all i ∈ {1, ..., k} with Γi > |q|, we set l̄i := |E|+ 1, since

zR
i (q) =

∑
e∈q

ĉe,i +
∑
e∈q

δe,i =
∑
e∈q

ĉe,i + Γi · 0 +
∑
e∈q

(δe,i − 0).

For all i ∈ {1, ..., k} with Γi 5 |q| we choose l̄i such that q ∩Ei
l̄i

contains exactly Γi elements.
These Γi elements have the largest cost intervals δe,i among all elements in q, i.e., the worst

10



case cost for q is

zR
i (q) =

∑
e∈q

ĉe,i +
∑

e∈q∩Ei
l̄i

δe,i

=
∑
e∈q

ĉe,i +
∑

e∈q∩Ei
l̄i

δ̄il̄i +
∑

e∈q∩Ei
l̄i

(δe,i − δ̄il̄i)

=
∑
e∈q

ĉe,i + Γi · δ̄il̄i +
∑

e∈q∩Ei
l̄i

(δe,i − δ̄il̄i) since |q ∩ Ei
l̄i
| = Γi.

We conclude zR(q) = gl̄(q). If q is robust efficient, then there is no q′ ∈ Q with zR(q′) ≤
zR(q). It follows that

@q′ ∈ Q : zR(q′) 5 zR(q)
zR(q′)5gl̄(q′)⇒ @q′ ∈ Q : gl̄(q′) 5 zR(q) = gl̄(q).

Therefore, q or an equivalent solution is found at least once in the algorithm. It follows that in
Step 4 the objective vector of each found solution is compared to all non-dominated objective
vectors, thus only robust efficient solutions remain. It follows that the output is a complete
set of robust efficient solutions.

Example 11. Consider the instance in Example 7 (Figure 1). In Step 1 of Algorithm 3 we
obtain

δ̄1 = (5, 4, 3, 3, 3, 2, 1, 1, 1)T , δ̄2 = (5, 5, 5, 5, 5, 5, 1, 1, 1)T

and for example

E1
1 = {(v2, v5)} E1

2 = E1
1 ∪ {(v2, v4)} E1

3 = E1
2 ∪ {(v1, v3)} E1

4 = E1
2 ∪ {(v3, v4)}

E1
5 = E1

4 ∪ {(v5, v6)} E1
6 = E1

5 ∪ {(v3, v5)} E1
7 = E1

6 ∪ {(v1, v2)} E1
8 = E1

7 ∪ {(v2, v3)}
E1

9 = E1
8 ∪ {(v4, v6)}

E2
1 = {(v2, v5)} E2

2 = E2
1 ∪ {(v2, v4)} E2

3 = E2
2 ∪ {(v1, v3)} E2

4 = E2
2 ∪ {(v3, v4)}

E2
5 = E2

4 ∪ {(v5, v6)} E2
6 = E2

5 ∪ {(v3, v5)} E2
7 = E2

6 ∪ {(v1, v2)} E2
8 = E2

7 ∪ {(v2, v3)}
E2

9 = E2
8 ∪ {(v4, v6)}.

Step 2 sets L := {1, ..., 9} × {1, ..., 9} and in Step 3 (MP(l)) is solved for all l ∈ L.
As an example, we consider l = (7, 8). Recall, that the path q1 := ((v1, v2), (v2, v4), (v4, v6)) is
robust efficient. Since |E1

7 ∩ q1| = 2 and |E2
8 ∩ q1| = 2, we know from the proof of Theorem 10

that g(7,8)(q1) = zR(q1) and that q1 is an efficient solution for

(MP(7, 8)) min
q∈Q

g(7,8)(q) :=


∑
e∈q

ĉe,1 + Γ1 · δ̄1
7 +

∑
e∈q∩E1

7

(δe,1 − δ̄1
7)∑

e∈q
ĉe,2 + Γ2 · δ̄2

8 +
∑

e∈q∩E2
8

(δe,2 − δ̄2
8)

 .

A complete set of efficient solutions OPT (7,8) for (MP(7, 8)) can be obtained by solving the
instance of the deterministic multi-objective shortest path problem shown in Figure 2. The
edge costs are

c
(7,8)
1 (e) :=

{
ĉe,1 + δe,1 − δ̄1

7 if e ∈ E1
7

ĉe,1 else
c

(7,8)
2 (e) :=

{
ĉe,2 + δe,2 − δ̄2

8 if e ∈ E2
8

ĉe,2 else.
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s = v1

v2

v3

v4

v5

v6 = t

(
2
1

)

(
6
7

)
(

1
5

)

(
6
4

)

(
7
6

)
(

4
6

)

(
2
5

)

(
3
2

)

(
4
7

)

Figure 2: OPT (7,8) in Example 11 is obtained by solving this instance of the multi-objective shortest path
problem.

The path q1 is indeed efficient for this instance with c(7,8)(q1) = (11, 7)T . It follows

g(7,8)(q1) =

(
Γ1 · δ̄1

7 + 11
Γ2 · δ̄2

8 + 7

)
=

(
13
9

)
= zR(q1).

The path q3 := {(v1, v2), (v2, v3), (v3, v4), (v4, v6)} is efficient for this instance as well, hence
q1, q3 ∈ OPT (7,8).
In Step 4 of Algorithm 3, all obtained solutions are compared to each other. The path q3 is
not robust efficient, because zR(q2) = (11, 16)T ≤ (12, 16)T = zR(q3). Since q2 ∈ OPT (4,4),
zR(q2) and zR(q3) are compared to each other in Step 4 and the returned solution set does
not contain q3. However, it contains q1, because q1 is robust efficient and hence there does
not exist any path q′ with zR(q′) ≤ zR(q1).

As for the single-objective version, we can reduce the number of subproblems to be solved.
The results of Lemma 8 are still valid for each objective independently. Therefore we can
replace the Li as described in the following lemma.

Lemma 12. The number of subproblems to be solved by Algorithm 3 can be reduced to∏k
i=1

(⌈
|E|−Γi

2

⌉
+ 1
)

in the same ways as in the single-objective case (Lemma 8):

1. Let i ∈ {1, ..., k} be given. If there are several elements with the same interval length
δe,i, i.e., there exist pairwise different indices j1, ..., jh ∈ {1, ..., |E|} with δ̄ij1 = ... = δ̄ijh,
then it is sufficient that li takes one of the values in {j1, ..., jh}.

2. For all i ∈ {1, ..., k} it is sufficient, that li takes every second value in {1, .., |E|} and
the value |E|+ 1.

3. It is sufficient that li takes values that are greater or equal to Γi.

Proof.

1. Let l̂1, l̂2, ..., l̂i−1, l̂i+1, ..., l̂k ∈ {1, ...., |E| + 1} be fixed values. We define the vector
l̂x := (l̂1, l̂2, ..., l̂i−1, x, l̂i+1, ..., l̂k). From δ̄ij1 = ... = δ̄ijh it follows directly∑

e∈q
ĉe,i + Γi · δ̄ij1 +

∑
e∈q∩Ei

j1

(δe,i − δ̄ij1) = . . . =
∑
e∈q

ĉe,i + Γi · δ̄ijh +
∑

e∈q∩Ei
jh

(δe,i − δ̄ijh)

12



and therefore MP(l̂j1) = ... =MP(l̂jh).

2. Let q ∈ Q be a feasible solution. We have shown in the proof of Theorem 10 that there
exists an l̄ ∈ L with zR(q) = gl̄(q) and either l̄i = |E| + 1 or Γi = |q ∩ Ei

l̄i
|. In the

second case, since q ∩ Ei
l̄i

contains the Γi elements in q with the largest cost intervals
δe,i, we have

zR
i (q) =

∑
e∈q

ĉe,i + Γi · δ̄il̄i +
∑

e∈q∩Ei
l̄i

(δe,i − δ̄il̄i)

=
∑
e∈q

ĉe,i + Γi · δ̄il̄i +
∑

e∈q∩Ei
l̄i

(δe,i − δ̄il̄i) + Γi · (δ̄i(l̄i+1) − δ̄
i
l̄i

) + Γi · (δ̄il̄i − δ̄
i
(l̄i+1))

=
∑
e∈q

ĉe,i + Γi · δ̄i(l̄i+1) +
∑

e∈q∩Ei
l̄i

(δe,i − δ̄i(l̄i+1)), because |q ∩ Ei
li
| = Γi

=
∑
e∈q

ĉe,i + Γi · δ̄i(l̄i+1) +
∑

e∈q∩Ei
(l̄i+1)

(δe,i − δ̄i(l̄i+1)),

because δe,i = δ̄i
(l̄i+1)

for e ∈ Ei
(l̄i+1)

\ Ei
l̄i

. Therefore, if Γi 5 |q|, it is sufficient that

li either takes the value l̄i or l̄i + 1. If Γi = |q|, it is sufficient that li takes the value
|E|+ 1.

3. In the proof of Theorem 10 we have show that for every q ∈ Q there is an l̄ ∈ L with
zR(q) = gl̄(q) and either l̄i = |E|+ 1 or Γi = |q ∩ Ei

l̄i
| 5 |Ei

l̄i
| = l̄i.

From statement 3 we know that li takes at most |E| + 1 − (Γi − 1) different values. From
statement 2 it follows that of these values the last one and every second of the other ones are
sufficient. This leads to at most⌊

|E|+ 1− (Γi − 1)− 1

2

⌋
+ 1 =

⌊
|E| − Γi + 1

2

⌋
+ 1 =

⌈
|E| − Γi

2

⌉
+ 1

different values of li. Therefore, it is sufficient to solve
∏k

i=1

(⌈
|E|−Γi

2

⌉
+ 1
)

subproblems.

Here again, we can use solution checking, i.e., skip some additional subproblems, depending
on the solutions found so far. However, we now have to ensure that l̃ ≤ l and that none of

the solutions in OPT l̃ contains any of the elements, whose costs have been increased.

Lemma 13. Let l, l̃ ∈ Zk be given with l̃ ≤ l and let J be the set of indices i with l̃i < li.

Let OPT l̃ be a complete set of efficient solutions for MP(l̃). If none of the sets in OPT l̃

contains an element in ∪i∈JEi
li

, then OPT l̃ is a complete set of efficient solutions forMP(l).

Proof. Since Γi · δ̄lii are solution independent constants, the minimization problem to be solved
is a deterministic multi-objective problem with costs cl(e) = (cl1(e), ..., clk(e)) :

cli(e) :=

{
ĉe,i + (δe,i − δ̄ili) for e ∈ Ei

li

ĉe,i else.
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Algorithm 4 Improved Step 3 of Algorithm 3: Solve subproblems (with solution checking).

Input: an instance I = (E,Q, Ĉ,∆,Γ), δ̄ji and Ei
j ∀ i, j ∈ {1, ..., k}, an index set L of

subproblems
Output: solution sets (OPT l, l ∈ L)

1: l̃1 := (0, ..., 0)
2: h := 1
3: for all l1 ∈ L1 in increasing order do
4: for all l2 ∈ L2 in increasing order do
5: ...
6: for all lk ∈ Lk in increasing order do
7: l := (l1, ..., lk)

8: if l̃h = (0, ..., 0) or any of the sets in OPT l̃h contains any element in Eh
lh

then

9: Find a complete set of efficient solutions OPT l for (MP(l)).

10: else OPT l := OPT l̃h

11: end if
12: for i = h, ..., k do
13: l̃i := l
14: end for
15: h := k
16: end for
17: ...
18: h := 2
19: end for
20: h := 1
21: end for

Since l̃i 5 li ⇒ δ̄i
l̃
= δ̄il , it follows

cl̃i(e) = cli(e) ∀ i with li = l̃i, ∀ e ∈ E

cl̃i(e) = cli(e) ∀ i with l̃i < li, ∀ e ∈ E \ Ei
li

cl̃i(e) 5 cli(e) ∀ i, ∀ e ∈ E.

Hence, if none of the sets in OPT l̃ contains any element in ∪i∈JEi
li

, we have cl̃i(e) = cli(e) for

all elements that are contained in any set in OPT l̃, and cl̃i(e) 5 cli(e) for all elements in E.

It follows, that every q ∈ OPT l̃ is also efficient w.r.t cl. Furthermore, for every q′ /∈ OPT l̃

exists a q ∈ OPT l̃ with ∑
e∈q
cl(e) =

∑
e∈q
cl̃(e) 5

∑
e∈q′

cl̃(e) 5
∑
e∈q′

cl(e),

so q′ is either dominated w.r.t. cl or has an equivalent solution in OPT l̃. Therefore, OPT l̃ is
a complete set of efficient solutions for MP(l).

A fast way to use this result is to replace Step 3 of Algorithm 3 with Algorithm 4.

14



We loop through all l ∈ L. In Lines 8 to 11, OPT l is found for the current l: Either (MP(l))
is solved, or OPT l is set to the solution set of an already solved subproblem. For this purpose,
we store one vector l̃h for each h = 1, ..., k, which is updated in Line 13 whenever the value
lh has changed, i.e. whenever li was increased for some i 5 h in the respective for-loop.
When lh is increased in the for-loop, during the next execution of Line 8 we have

l̃hi =


li for i < h, because l̃h was updated after the previous change of li,

li − 1 for i = h, because lh was increased, but l̃h is not updated yet,

1 = li for i > h, as, due to the nested for-loops, li is set to 1 whenever lh changes.

Hence, if no set in OPT l̃h contains any element in Eh
lh

the conditions of Lemma 13 are satisfied

for l̃ := l̃h.

Corollary 14. Algorithm 3, with Algorithm 4 replacing Step 3 and the construction of L
(Step 2) adjusted according to Lemma 12, finds a complete set of robust efficient solutions

for (MOUCO). During its execution at most
∏k

i=1

(⌈
|E|−Γi

2

⌉
+ 1
)

deterministic subproblems

have to be solved.

For problems with the following property, the number of subproblems to be solved can be
reduced significantly.

Definition 15. An instance (E,Q, Ĉ,∆,Γ) has partial objective-independent element order
if there exists a subset J := {i1, ..., ir} ⊆ {1, ..., k} with

• Γi1 = Γi2 = ... = Γir and

• there exists an order of the elements in E, such that

δe1,i = ... = δe|E|,i ∀ i ∈ J.

If J = {1, ..., k}, the instance has objective-independent element order.

Example 16. Consider an instance with E = {e1, e2, e3} and

δe1 = (1, 1, 1)T , δe2 = (3, 2, 1)T , δe3 = (2, 2, 1)T .

Then δe1,i ≤ δe3,i ≤ δe2,i ∀ i = 1, ..., 3, hence the instance has objective-independent element
order. With

δe1 = (1, 2, 3)T , δe2 = (3, 2, 1)T , δe3 = (2, 2, 2)T

the instance does not have objective-independent element order, because δe1,1 < δe3,1 and
δe3,3 < δe1,3. However, it has partial objective-independent element order, because, e.g., δe2,i 5
δe3,i 5 δe1,i for i = 2, 3.

Lemma 17. Let an instance (E,Q, Ĉ,∆,Γ) with partial objective-independent element order
be given and let J be the set of indices defined in Definition 15. Then the nested for-loops
changing li1 , ..., lir in Algorithm 4 can be replaced by a single for-loop. The number of solved
deterministic subproblems in Algorithm 3 with Algorithm 4 (with replaced for-loops) as Step
3 and L adjusted according to Lemma 12 is then less than or equal to(⌈

|E| − Γi1

2

⌉
+ 1

)
if J = {1, ..., k}(⌈

|E| − Γi1

2

⌉
+ 1

)
·

∏
i∈{1,...,k}\{i1,...,ir}

(⌈
|E| − Γi

2

⌉
+ 1

)
otherwise.
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Proof. In the proof of Theorem 10 we have shown that for each q ∈ Q there exists an l ∈ L
with zR(q) = gl(q). We show that there always is such an l with li1 = ... = lir .
Since there exists an order of the elements in E such that δe1,i = ... = δe|E|,i ∀ i ∈ J , we can

choose the sets Ei
j such that Ei1

j = ... = Eir
j ∀ j = 1, ..., |E|. In the proof of Theorem 10 we

choose l̄i such that Ei
l̄i
∩q has exactly Γi elements. With Γi1 = ... = Γir it follows l̄i1 = ... = l̄ir .

Hence, we have zR(q) = gl̄(q) and l̄i1 = ... = l̄ir .
It follows that the nested for-loops changing li1 , ..., lir can be replaced by a single for-loop,
which leads directly to the stated number of subproblems.

3.2. Bottleneck approach

In the algorithms presented in the previous section, the number of subproblems that have
to be solved increases with decreasing values of Γi. In this section we present a method
whose complexity decreases with decreasing values of Γi. Its idea is to transfer (MOUCO)
with k objectives into a deterministic combinatorial optimization problem of the same kind
with

∑k
i=1(Γi + 1) objective functions, some of which are bottleneck functions instead of

sum functions. The concept is particularly useful if an efficient algorithm for solving the
deterministic multi-objective problem with sum and bottleneck functions is available. As an
example we present such an algorithm for the shortest path problem in Section 3.2.2.

3.2.1. Bottleneck approach for cardinality-constrained uncertain combinatorial optimization
problems

We first explain the approach for the single-objective uncertain problem (minq∈Q z(q), c ∈ Ucc)
with Ucc as given in Equation (1). The robust counterpart (MORCO) then reduces to

(RCO) min
q∈Q

(
zR(q) = max

c∈Ucc

∑
e∈q

c(e)

)
.

Definition 18. For a subset q ⊆ E and given interval lengths δe for all e ∈ E, we sort the
elements in q by decreasing interval lengths and define j- maxe∈q δe as the interval length of
the j-th element according to this sorting.

Theorem 19. Every optimal solution for (RCO) is an efficient solution for the deterministic
multi-objective problem

(DCO) min
q∈Q

zD(q) :=



∑
e∈q ĉe

maxe∈q δe
2- maxe∈q δe

...
Γ- maxe∈q δe



 .

Proof. Recall that any feasible set q ∈ Q has maximal cost if the cost of its Γ elements with
the largest cost intervals take their maximal values. Let q be an optimal solution for (RCO).
Assume that q is not efficient for (DCO). Then there exists a solution q′ ∈ Q that dominates
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q and it follows∑
e∈q′

ĉe 5
∑
e∈q

ĉe and j- max
e∈q′

δe 5 j- max
e∈q

δe ∀ j = 1, ...,Γ, with at least one inequality

⇒ zR(q′)=
∑
e∈q′

ĉe +
Γ∑

j=1

j- max
e∈q′

δe <
∑
e∈q

ĉe +
Γ∑

j=1

j- max
e∈q

δe = zR(q).

This contradicts q being optimal for (RCO).

The reverse of Theorem 19 does not hold: There exist efficient solutions for (DCO), which
are not optimal for (RCO), as the following example shows.

Example 20. Let G be a graph that consists of two disjoint paths q, q′ from s to t with three
edges each. Let the cost interval of all edges in q be [1, 1] and of all edges in q′ be [0, 1] and
let Γ = 2. Then both paths are efficient solutions for (DCO), because

zD(q) = (3, 0, 0) � (0, 1, 1) = zD(q′) and zD(q′) = (0, 1, 1) � (3, 0, 0) = zD(q).

But only q′ is robust efficient, because

zR(q′) = 2 < 3 = zR(q).

Lemma 21. A complete set of efficient solutions for (DCO) contains at least one optimal
solution for (RCO).

Proof. Let Q′ ⊆ Q be a complete set of efficient solutions for (DCO). Assume, that (RCO)
has an optimal solution q that is not contained in Q′. According to Theorem 19, q is an
efficient solution for (DCO), so Q′ contains a solution q′ with

∑
e∈q ĉe

maxe∈q δe
2- maxe∈q δe

...
Γ- maxe∈q δe

 =



∑
e∈q′ ĉe

maxe∈q′ δe
2- maxe∈q′ δe

...
Γ- maxe∈q′ δe

⇒ zR(q) =
∑
e∈q

ĉe +
Γ∑

j=1

j- max
e∈q

δe = zR(q′)

and q′ is optimal for (RCO).

Now, we transfer this approach to the multi-objective case. For a problem with k objectives,
we construct a deterministic problem with m :=

∑k
i=1(Γi + 1) objectives.

Theorem 22. Every efficient solution for the multi-objective robust counterpart (MORCO)
is an efficient solution for the deterministic multi-objective problem

(MODCO) min
q∈Q


zD(q) :=



∑
e∈q ĉe,1

maxe∈q δe,1
2- maxe∈q δe,1

...
Γ1- maxe∈q δe,1∑

e∈q ĉe,2
maxe∈q δe,2

...
Γk- maxe∈q δe,k




.

A complete set of solutions for (MODCO) contains a complete set of solutions for (MORCO).
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Proof. Let q be an efficient solution for (MORCO). Assume that q is not efficient for (MODCO).
Analogously to the proof of Theorem 19, there is a solution q′ ∈ Q dominating q and it fol-
lows that zR

i (q′) < zR
i (q) for at least one i ∈ {1, ..., k}, which contradicts q being efficient for

(MORCO).
Assume now, that q /∈ Q′ with Q′ being a complete set of efficient solutions for (MODCO).
Since q is efficient for (MODCO), there is a solution q′ ∈ Q′ equivalent to q w.r.t. the ob-
jective function of (MODCO) and it follows zR(q) = zR(q′) analogously to the proof of
Lemma 21.

With an algorithm to solve (MODCO) and a method to filter the obtained solutions we can
now find a complete set of robust efficient solutions for the uncertain problem. In the case
of a single-objective uncertain problem, Gorski et al. (2012) introduced an algorithm to solve
(DCO).

3.2.2. Label setting algorithm (LSA) for (MOUSP)

In this section, we show how to apply the bottleneck approach to the cardinality-constrained
uncertain shortest path problem. We propose an adjustment of standard multi-objective
labeling algorithms (label setting or label correcting) to find a complete set of robust efficient
solutions.
Let (MOUSP) be defined as in Section 2.1, i.e., E is the edge set of a graph and Q the set
of simple paths from a given start node s to a given end node t. Additionally we assume
non-negative edge costs (c(e) = 0 ∀ e ∈ E, c ∈ Umcc) and adjust a label setting algorithm as
an example.
We first recall the definition of a label, which is used in common multi-objective labeling
algorithms. A label l = (y, v′, l′) at a node v consists of

• a cost vector y, here y = (y1, ..., ym)T ,

• a predecessor node v′, and

• a predecessor label l′.

Every label at a node v 6= s with predecessor node v′ represents a path q from s to v whose
last edge is (v′, v). That means that its cost equals the cost of q and its predecessor label
l′ represents the subpath of q from s to v′. We assume here, that no parallel edges exist,
such that v and v′ uniquely define an edge (v′, v). If parallel edges have to be considered, the
respective edge can be contained in the label as well. The labels are constructed iteratively
from existing labels at the predecessor nodes and can at any time be either temporary or
permanent.
Algorithm 5 is a label setting algorithm for solving (MODCO) for the shortest path problem.
It is based on the label setting algorithm by Martins (1984) for multi-objective shortest path
problems, but we make the following adjustments:

1. In Step 4 a label must be chosen whose cost is not dominated by the cost of any other
temporary label. In the algorithm by Martins (1984) the lexicographically smallest label
is chosen. Based on Iori et al. (2010), we choose the label with the smallest aggregate
cost function

∑
j=1,...,m yj instead.

2. In multi-objective label setting algorithms with only sum functions (as considered by
Martins (1984)) a new label l = (y, v′, l′) at v is created by adding the cost y′ of
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Algorithm 5 Label setting algorithm to solve (MODCO) for the shortest path problem

Input: an instance I = (E,Q, Ĉ,∆,Γ) of (MOUSP)
Output: permanent labels at t, representing a complete set of efficient solutions for instance

I of (MODCO)
1: Set m :=

∑
i=1,...,k(Γi + 1).

2: Create a temporary label l0 with cost (0, ..., 0)T at node s.
3: while there exists at least one temporary label do
4: Select a temporary label l′ (at any node v′) with minimal aggregate cost

∑
j=1,...,m y

′
j

and make it permanent.
5: for all outgoing edges (v′, v) of v′ do
6: Create a new temporary label l at v by Algorithm 6.
7: if the cost of l is dominated by or equal to the cost of another label at v then
8: Delete l.
9: else if l dominates any temporary labels at v then

10: Delete these labels.
11: end if
12: end for
13: end while

the predecessor label l′ to the edge cost. For min-max functions the (entry-wise)
maximum of the edge cost and the predecessor label’s cost is taken (see Gandibleux
et al., 2006). To solve (MODCO) we need a new way to construct the labels: Let
ni := 1 +

∑
j=1,...,(i−1)(Γj + 1) denote the index of the first objective of (MODCO)

associated with the original objective zi of (MORCO). For the sum objective functions,
we add the nominal cost ĉe,i of the edge e := (v′, v) to the corresponding predecessor
cost entry y′ni

. For the j- max objective functions, we compare for each objective zi the
interval length δe,i of e to each of the Γi longest interval lengths so far y′ni+1, ..., y

′
ni+Γi

and insert it at the right position (see Algorithm 6). We will use the following notation:
y := y′ ⊕ (ĉe, δe).

3. In the algorithm by Martins (1984) a newly created label is only deleted if it is dominated
by a label at the same node. We delete the new label even if another label with equal
cost exists at the same node, because we are only looking for a complete set of efficient
solutions. This is also the reason why we do not need to consider hidden labels, which
Gandibleux et al. (2006) introduced for problems with bottleneck functions. Since new
labels with the same cost as existing labels are immediately deleted, Algorithm 5 works
even without the assumption that no cycles of cost (0, ..., 0) exist.

Example 23. We show the first steps of Algorithm 5 with the instance given in Example 7
as input.

1. In Lines 1 and 2, m is set to (2 + 1) + (2 + 1) = 6 and a temporary label l0 with cost
(0, 0, 0, 0, 0, 0)T is created at node v1.

2. The label l0 is made permanent in Line 4 and new temporary labels are created at the
nodes v2, v3:

l12at v2 with cost (2, 1, 0, 1, 1, 0)T representing {(v1, v2)}
l13at v3 with cost (4, 3, 0, 3, 5, 0)T representing {(v1, v3)}.
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Algorithm 6 Step 6 of Algorithm 5: Create a new temporary label.

Input: an instance I = (E,Q, Ĉ,∆,Γ), an edge (v′, v) ∈ E, a label l′ with cost y′ at v′

Output: a new label l at v with predecessor label l′

1: for i = 1, ..., k do
2: Set ni := 1 +

∑
j=1,...,(i−1)(Γi + 1).

3: yni := y′ni
+ ĉ(v′,v),i

4: a := 1
5: while a 5 Γi do
6: if δ(v′,v),i > y′ni+a then
7: yni+a := δ(v′,v),i

8: for b := a+ 1, ...,Γi do yni+b := y′ni+b−1

9: end for
10: a := Γi + 1
11: else
12: yni+a := y′ni+a

13: a := a+ 1
14: end if
15: end while
16: end for
17: Create the temporary label l := ((y0, ..., ym)T , v′, l′) at node v.

We now have one permanent label l0 and two temporary labels l12, l
1
3. The aggregated

cost of l12 is smaller than the aggregated cost of l13.

3. Because of its smaller aggregated cost, l12 is made permanent in the next iteration of
Line 4. New labels are created:

l23at v3 with cost (3, 1, 1, 2, 5, 1)T representing {(v1, v2), (v2, v3)}
l14at v4 with cost (5, 4, 1, 5, 1, 1)T representing {(v1, v2), (v2, v4)}
l15at v2 with cost (5, 5, 1, 3, 5, 1)T representing {(v1, v2), (v2, v5)}.

As an example, we look at the creation of l23 in detail: The cost vector of l12 is (2, 1, 0, 1, 1, 0)T =:
y′. We obtain

y′ ⊕ (ĉ(v2,v3), δ(v2,v3)) =



2
1
0
1
1
0

⊕
((

1
1

)
,

(
1
5

))
=



y′1 + ĉ(v2,v3),1

y′2
δ(v2,v3),1

y′4 + ĉ(v2,v3),2

δ(v2,v3),2

y′5

 =



3
1
1
2
5
1

 ,

because y′2 = δ(v2,v3),1 > y′3 and δ(v2,v3),2 > y′5. The cost vectors of the two labels l13, l
2
3 at

v3 are compared to each other. As none dominates the other, both are kept.
The labels l0, l

1
2 are now permanent. We have four temporary labels l13, l

2
3, l

1
4, l

1
5, among

which l23 has the smallest aggregated cost.

After several iterations of Lines 4 to 13, there do not exist any temporary labels. Algorithm 5
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returns 3 permanent labels at node v6:

one with cost (8, 4, 1, 7, 1, 1)T representing q1 = {(v1, v2), (v2, v4), (v4, v6)},
one with cost (6, 3, 2, 6, 5, 5)T representing q2 = {(v1, v2), (v2, v3), (v3, v5), (v5, v6)},
one with cost (8, 3, 1, 6, 5, 5)T representing q3 = {(v1, v2), (v2, v3), (v3, v4), (v4, v6)}.

In Algorithm 7 non-dominated paths according to their worst case cost will be identified from
the obtained labels, see Example 29.

Lemma 24. In Algorithm 5 for every label l = (y, v′, l′) at a node v there exists a path q
from s to v with y = zD(q).

Proof. We show the statement by induction:
The first label has cost (0, ..., 0) and represents the path only consisting of node s.
Let y′ = (y′1, ..., y

′
m) be the cost of the predecessor label l′ and assume that y′ equals the cost

zD(q′) of a path q′ from s to v′. Let q := q′ ∪ (v′, v). Then we have

∀i = 1, ..., k : yni = y′ni
+ ĉ(v′,v),i =

∑
e∈q′

ĉe,i + ĉ(v′,v),i =
∑
e∈q

ĉe,i.

Further, we distinguish two cases for all i = 1, ..., k:

• Case 1: δ(v′,v),i 5 y′ni+a∀ a = 1, ...,Γi. In this case the Γi edges e with biggest intervals
δe,i of q′ and q′ ∪ (v′, v) are the same and yni+a = y′ni+a for all a = 1, ...,Γi. Therefore,
(yni , ..., yni+Γi) = (zD

ni
(q), ..., zD

ni+Γi
(q)).

• Case 2: Either δ(v′,v),i > y′ni+a for a = 1 or ∃ a ∈ {2, ...,Γi} with y′ni+a−1 = δ(v′,v),i >
y′ni+a. Then

∀ b < a : yni+b = y′ni+b and b- max
e∈q′

δe,i = b- max
e∈q′∪(v′,v)

δe,i

for b = a : yni+b = δ(v′,v),i = b- max
e∈q′∪(v′,v)

δe,i

∀ b : Γi = b > a : yni+b = y′ni+b−1 = b- max
e∈q∪(v′,v)

δe,i

It follows (y1, ..., ym) = zD(q).

In the deterministic case with only sum functions, subpaths of efficient paths are efficient as
well, which plays an important role in the proof of Martin’s algorithm. If some of the objective
functions are bottleneck functions, this property does not hold any more (Gandibleux et al.,
2006). In our case, since we only look for a complete set of efficient solutions, the weaker
property given in Lemma 26 is sufficient (this was observed but not proven by Iori et al.
(2010)).
We use the following notation to specify subpaths.

Notation 25. Let q be a simple path and v, w two nodes on q (v before w). Let then qv,w
denote the part of q from node v to node w.

Lemma 26. Let q from s to t be an efficient path with respect to zD and v, w two nodes on
q (v before w). Then either qv,w is an efficient path from v to w or there exists an efficient
path p from v to w such that q′ := qs,v ∪ p ∪ qw,t is equivalent to q.
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Proof. Assume that qv,w is not efficient w.r.t zD. Then there exists an efficient path p from
v to w that dominates qv,w. We have∑

e∈q′
ĉe =

∑
e∈qs,v

ĉe +
∑
e∈p

ĉe +
∑

e∈qw,t

ĉe 5
∑
qs,v

ĉe +
∑

e∈qv,w
ĉe +

∑
e∈qw,t

ĉe =
∑
e∈q
ĉe.

As p dominates qv,w, it follows ∀ i = 1, ..., k, a = 1, ...,Γi : a- maxe∈p δe,i 5 a- maxe∈qv,w δe,i,
and hence a- maxe∈q′ δe,i 5 a- maxe∈q δe,i ∀ i = 1, ..., k, a = 1, ...,Γi.
It follows zD(q′) 5 zD(q) and we conclude zD(q′) = zD(q), because q is efficient with respect
to zD.

Theorem 27. When Algorithm 5 (with Algorithm 6 as Step 6) stops, the permanent labels
at t represent a complete set of efficient solutions for (MODCO).

Proof. We have to show that each permanent label at t represents an efficient path from s to
t and that for each efficient path q from s to t a permanent label at t representing q or an
equivalent path exists.
The proof of the first part is analogous to the proof by Ehrgott (2006) of the multi-objective
label setting algorithm by Martins (1984). For substituting the lexicographic order with the
aggregate cost order we refer to Iori et al. (2010).
Now, we show that for each efficient path q from s to t a permanent label at t representing q
or an equivalent path exists. Assume that we have an efficient path q from s to t, such that
there is no permanent label l at t with label costs y = zD(q). Consider the predecessor node
v′ of t on q. From Lemma 26 it follows that there is an efficient path p from s to v′ with
zD(p ∪ (v′, t)) = zD(q).
If there exists a permanent label l′ at v′ with label costs y′ = zD(p), then, after it was made
permanent in Line 4, a new label l̄ at node t with label costs ȳ = y′ ⊕ (ĉ(v′,t), δ(v′,t)) was
constructed in Line 6. It follows

ȳ = y′ ⊕ (ĉ(v′,t), δ(v′,t)) = zD(p)⊕ (ĉ(v′,t), δ(v′,t)) = zD(p ∪ (v′, t)) = zD(q).

Consider the first label with cost zD(q) that was constructed at node t. If this label was
deleted again, its cost vector is dominated, which contradicts the efficiency of q. If it was not
deleted, then it was made permanent, which contradicts our assumption that no permanent
label with costs zD(q) exists at t.
Therefore, there is no permanent label at the predecessor node v′ of t with costs y′ such that
y′ ⊕ (ĉe, δe) = zD(q). In the same way, we can show that there is no permanent label at the
predecessor node v′′ of v′ with costs y′′ such that(

y′′ ⊕ (ĉ(v′′,v′), δ(v′′,v′))
)
⊕ (ĉ(v′,t), δ(v′,t)) = y′ ⊕ (ĉ(v′,t), δ(v′,t)) = zD(q).

By induction it follows that there is no permanent label at node s with cost (0, ..., 0), which
is a contradiction, because such a label is constructed in Line 2 of the algorithm and made
permanent during the first execution of Line 4.
We conclude that for each efficient path q from s to t there exists a permanent label at t
representing q or a path that is equivalent to q. Furthermore, each permanent label at t
represents an efficient path from s to t. Therefore, the paths represented by the permanent
labels are a complete set of efficient solutions.
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Algorithm 7 LSA for the shortest path problem with cardinality-constrained uncertainty

Input: an instance I = (E,Q, Ĉ,∆,Γ) of (MOUSP)
Output: a complete set of robust efficient solutions for I

1: Solve (MODCO) with Algorithm 5.
2: For every permanent label l in t compute the worst case costs zR(q) of its represented

path q by zR
i (q) :=

∑
i=ni,...,ni+Γi

yi and choose the non-dominated ones.
3: Obtain the represented paths by backtracking the predecessor labels.

To find a a complete set of robust efficient solutions we have to filter the solutions obtained
by the labeling algorithm (see Algorithm 7).

Corollary 28. Algorithm 7 finds a complete set of robust efficient solutions for an instance
I = (E,Q, Ĉ,∆,Γ) of (MOUSP) with Ĉ being entry-wise non-negative.

Example 29. Consider the instance given in Example 7. From the permanent labels returned
by Algorithm 5 (see Example 23), the worst costs of their represented paths are computed:

zR(q1) = (8 + 4 + 1, 7 + 1 + 1)T = (13, 9)T

zR(q2) = (6 + 3 + 2, 6 + 5 + 5)T = (11, 16)T

zR(q3) = (8 + 3 + 1, 6 + 5 + 5)T = (12, 16)T .

Since zR(q3) is dominated by zR(q2), only the paths q1 and q2 are returned by Algorithm 7.

4. Experimental evaluation

In this paper we presented two approaches to find a complete set of robust efficient solutions
for (MOUCO). DSA solves the uncertain problem, assuming that we know how to solve the
deterministic multi-objective problem. To use the bottleneck approach we need a method to
solve a deterministic multi-objective problem with several objective functions, some of which
are sums and some of which are bottleneck functions. We introduced such an algorithm for
the shortest path problem (LSA) and, hence, we test our approaches on the shortest path
problem (MOUSP).

4.1. Hazardous material transportation

We test our algorithms for (MOUSP) on a hazardous material transportation instance: When
transporting hazardous materials, on one hand, the shipping company wants to minimize
travel time, distance or fuel costs. On the other hand, if an accident happens, environment
and population are exposed to the hazardous material. Hence, another objective is to keep
the risk and negative impacts of accidents to a minimum. Erkut et al. (2007) give an overview
about objectives for hazardous material transportation and about approaches for estimating
the risk and the impacts of an accident.
For our experiments we consider the travel time and the population affected by a potential
accident. We assume a nominal travel time on each road and a potential delay resulting from
congestion or incidents like accidents or road construction works on some of the roads. We
further assume a nominal population level, which can be increased locally by events like fairs
or sport events, or due to regular shifts in population during the workday.
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Figure 3: Section of the Chicago regional road network with distribution of population (see Kuhn et al., 2016).
The red dots show start and end node chosen for our experiments and two exemplary robust efficient paths
are marked in blue.

Our problem instance for hazardous material transportation is based on the instance used by
Kuhn et al. (2016) to test an algorithm for bi-objective shortest path problems with only one
uncertain objective. The underlying network (Chicago-regional) is a sector of the Chicago
region road network available from Bar-Gera et al.. The sector contains 1301 nodes and 4091
edges.
To obtain plausible travel times, Kuhn et al. (2016) solve a traffic assignment problem with
an iterative algorithm. It models the simultaneous movement of network users, assuming
travelers follow their shortest paths. Congestion effects are taken into account by a nonlinear
relationship between the flow on an edge and the travel time. Until an equilibrium solution
is found, each iteration of the algorithm produces a flow and resulting travel times on the
edges. To obtain the lower (upper) limit of the travel time interval for each edge we choose the
smallest and largest travel times obtained during several stages of the iterative equilibrium
algorithm.
For the population we use the distribution of the population described by Kuhn et al. (2016)
as nominal values (lower interval limits). We randomly assign integer interval lengths (δe,2)
up to x% of the respective nominal value. By varying x we obtain several test instances. We
call x the population uncertainty.
We choose an appropriate start and end node with an agglomeration of population between
them. Figure 3 shows two exemplary robust efficient paths for the instance with x = 10
and Γ = (5, 5). One of the paths goes directly through the area with high population. Here
the time objective function has a small value, whereas the number of people exposed to the
risk of health damage in case of an accident is relatively high. The other path avoids highly
populated areas, which results in a longer travel time.

4.2. Results

The algorithms are implemented in C++, compiled under Debian 8.6 with g++ 4.9.2 compiler,
and run on a Laptop with 2.10 GHz quad core processor and 7.71 GB of RAM. If not stated
otherwise, we use an implementation of DSA that contains all enhancements described in
Section 3.1. In addition, it checks in the beginning, whether the instance has objective-
independent element order. If this is the case, we use a special version of DSA, as proposed
in Lemma 17, which we will refer to as DSA-oi: Instead of the nested for-loops in Lines 3 to
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6 of Algorithm 4 it only contains one for-loop.
For solving the subproblems we use an implementation of the algorithm by Martins (1984)
(with the difference that the labels are selected w.r.t. their aggregate cost instead of using
the lexicographic order). There and in the implementation of LSA, we additionally delete
new labels at any node if they are dominated by an existing label at t.
In the figures, one data point represents one measurement, except for Section 4.2.3, where we
took the average running time of 40 runs.
To compare the performance of our solution approaches, we solve the bi-objective hazardous
material transportation instance described above for different values of population uncertainty
x and Γ. We always choose the same value for Γ1 and Γ2 and we will refer to this value as Γi

in the following. In addition, we compare the performance of the algorithms on an instance
with with two correlated objective functions and on an instance with three objectives. We
further evaluate the improvement gained by our enhancement of DSA (solution checking).
Finally, we generate an instance with objective-independent element order and investigate to
which extent the performance time of the DSA benefits from the results in Lemma 17.

4.2.1. Number of robust efficient solutions for the hazardous material transportation instance

Figure 4 shows the minimal cardinality of a complete set of robust efficient solutions for
the generated instances for several values of x and Γi. In general, for increasing values of
population uncertainty x the number of robust efficient solutions increases as well, because of
the higher variation allowed in the second objective. We do not observe a direct dependency
on Γi, but for values greater than 25 the number of robust efficient solutions stays the same
or differs only little. The reason is that the robust efficient solutions contain only between 39
and 56 edges. Furthermore, the interval lengths δe,1 resp. δe,2 of some edges are 0. Hence, at
some point, allowing more edges to differ from their minimal cost makes no difference.
In Table 1 we present the number of solutions generated in total: For DSA we add the
number of solutions obtained by solving the subproblems (which possibly contain identical
solutions several times). For LSA we list the number of solutions found by the multi-objective
labeling algorithm before the filtering step. The number of solutions generated increases with
the population uncertainty x (as does the number of robust efficient solutions). It tends
to decrease for increasing Γi (with a few exceptions). For the DSA that is because of the
decreasing number of subproblems solved (see Figure 8(b)).

4.2.2. Comparison of the two solution approaches

Figure 5 shows the running time of DSA and LSA for several values of Γi and x. The
running time of LSA increases with Γi, whereas the running time of DSA decreases (see also
Figure 8(a)). The reason is that for increasing Γi, the number of objectives in the deterministic
multi-objective problem solved during LSA increases as well. However, the maximal number
of subproblems solved during DSA decreases. For small values of Γi LSA solves the given
instances faster, for higher values DSA has a better performance.
Choosing a higher value for x results in a greater maximal and mean deviation from the
nominal value and a higher number of different values of δe,2. When x is increased, the
running time of both algorithms increases. In the case of DSA, this can be explained by the
higher number of different values of δe,2, which leads to a higher number of subproblems.
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Figure 4: Number of robust efficient solutions for several values of Γi and population uncertainty x.

pop. unc. 5 5% pop. unc. 5 10% pop. unc. 5 50% pop. unc. 5 100%

Γi sol tDSA tLSA sol tDSA tLSA sol tDSA tLSA sol tDSA tLSA

1 75 26288 6991 76 52887 8886 81 226008 13189 94 468828 16768
2 83 26278 4529 84 52867 5879 88 225928 7830 93 468668 10228
3 86 26579 2972 87 53544 3732 91 229031 4727 102 475140 5860
4 84 26569 1679 85 53524 2057 84 228951 2184 89 474980 2843
5 80 26569 691 80 53524 944 79 228951 843 81 474980 940
10 80 25179 – 84 50665 – 94 216596 – 106 449430 –
20 65 23306 – 68 46912 – 81 200709 – 85 407281 –
30 65 21762 – 68 39437 – 82 178838 – 91 367987 –
40 65 20264 – 68 32655 – 82 154478 – 91 330851 –
50 65 15011 – 68 30306 – 82 135934 – 91 296009 –

Table 1: Number of generated solutions for several values of Γi and population uncertainty: sol = minimal
number of robust efficient solutions in a complete set, tDSA = total number of solutions generated in the
subproblems, tLSA= total number of solutions found with the multi-objective labeling algorithm (before
filtering the robust efficient solutions).
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Figure 5: Running time of DSA and LSA for several values of Γi and population uncertainty x on two different
scales.

4.2.3. Correlated objective functions

We additionally generate an instance with two strongly correlated objective functions: We use
the travel time as one objective and generate a second travel time objective by multiplying
the nominal times and the interval lengths each by a random factor between 0.9 and 1.1.
Both algorithms benefit a lot from the correlation, all running times are now less than four
seconds, as shown in Figure 6. In comparison, LSA benefits more from correlated objective
function values: The values of Γi, for which it is still faster than DSA, are much higher on
this instance than on the original hazardous material transportation instance considered in
Section 4.2.2. For small values of Γi it is much faster than DSA.

4.2.4. Three objectives

Since we are also interested in the performance of the algorithms for problems with more
than two objectives, we generate an artificial third objective: For the nominal values we use
again the nominal population. We generate random interval lengths in the same range as the
other population objective. That means, the value of population uncertainty in general is the
same for both population objectives, but the specific interval lengths of each edge may differ.
Because of the identical nominal values, two of the three objectives are correlated. Figure 7
shows the running times on this instance in comparison to the instance with two objectives
described above.
The running time of both algorithms increases by including the additional objective, even
though it is strongly correlated to one of the original objectives. The relative difference
between the running time of the instance with two objectives and the instance with three
objectives increases with Γi for LSA, whereas it decreases for DSA.
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Figure 6: Running time of DSA and LSA for an instance with two strongly correlated objective functions.
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Figure 7: Running time of DSA and LSA for an instance with three objectives and an instance with two
objectives.
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Figure 8: Running time and number of solved subproblems of DSA with and without solution checking
(Population uncertainty 50%).

4.2.5. Evaluation of the improvement obtained by solution checking

To evaluate the obtained improvement by using solution checking in DSA, we use Algorithm 4
as Step 3 of Algorithm 3. We compare the running time of the version containing solution
checking to the running time of the version without this enhancement (Figure 8(a)). Addition-
ally, we count the solved subproblems (Figure 8(b)). Where fewer subproblems were solved
because of the enhancement, the running times differ significantly, for all other instances they
are nearly equal. Hence, the check itself does not slow down the algorithm significantly in
comparison to the acceleration that we obtain when subproblems can be skipped. We con-
clude that it is worth using the enhancement, but as Γi increases solution checking becomes
less effective.
Note that, since Lemma 13 allows to exclude even more subproblems than excluded in Algo-
rithm 4, further speed-ups may be achieved by implementing a more sophisticated solution
checking. However, already when using Algorithm 4, the benefit of solution checking is clearly
visible.

4.2.6. Evaluation of DSA for instances with objective-independent element order

For instances with objective-independent element order, we use the special version DSA-oi
as proposed in Lemma 17. To compare its performance to the general version of DSA we
construct an instance with objective-independent element order: Instead of generating interval
lengths for the population objective we use the interval lengths of the travel time objective.
Figure 9 shows that DSA-oi has a much better performance than the general algorithm. The
test, whether the instance is objective-independent, only takes a small fraction of the running
time (for our instances 1.4 · 10−5 seconds). Therefore, it is reasonable to check each instance
for objective-independent element order before solving it with DSA.

5. Conclusion

In this paper we developed two approaches to find minmax robust solutions for multi-objective
combinatorial optimization problems with cardinality-constrained uncertainty. We extended

29



10 20 30 40 50

0

100

200

300

Γ1(= Γ2)

ti
m

e
in

se
co

n
d

s

DSA-oi

DSA

Figure 9: Comparison of DSA and DSA-oi for instances with objective-independent element order.

an algorithm by Bertsimas and Sim (2003) to multi-objective optimization (DSA), suggested
an enhancement and developed a special version for instances with objective-independent el-
ement order. We also introduced a second approach and used it to develop a label setting
algorithm (LSA) for the multi-objective uncertain shortest path problem.
We tested our algorithms on several instances of the multi-objective uncertain shortest path
problem arising from hazardous material transportation. On most of the tested instances
DSA has a better performance, but LSA is faster for small values of Γi. If the two objec-
tive functions are strongly correlated, LSA is competitive even for higher values of Γi. This
appears often in shortest path problems, where, e.g., the distance, travel time and fuel con-
sumption are correlated.
When implementing DSA we recommend to use the proposed enhancements and to check
whether the special version for instances with (partial) objective-independent element order
can be used. The checks do not take long in comparison to the total running time, and if
their result is positive, the algorithm can be accelerated significantly.
For further investigations other variants of multi-objective cardinality-constrained uncertainty
are of interest. A second way to extend the single-objective concept is to require the edges
whose costs differ from their minimal values to be the same for all objectives. In this case the
uncertainties in the objectives are no longer independent of each other and using point-based
or set-based minmax robust efficiency leads to different solution sets. An interesting variation
of cardinality-constrained uncertainty is not to consider a bound on the cardinality, but on
the sum of the deviation from their minimal values.
Further research on robust multi-objective optimization includes other types of uncertainty,
e.g., discrete scenario sets or polyhedral or ellipsoidal uncertainty. Also the case of decision
uncertainty, in which the solution found cannot be realized exactly, is of interest, see (Eich-
felder et al., 2017) for first results.
The algorithms for the multi-objective cardinality-constrained uncertain shortest path prob-
lem presented in this paper can easily be extended to the multi-objective single-source shortest
path problem. There, a complete set of efficient paths from a start node s to all other nodes is
to be found. In the deterministic case, there exist algorithms (e.g. the algorithm by Martins
(1984)) for which it can be shown that the running time is polynomial in the output size. It
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would be interesting to investigate whether this is the case for the uncertain problem, too.
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Eichfelder, G., Krüger, C., and Schöbel, A. (2017). Decision uncertainty in multiobjective
optimization. Journal of Global Optimization, pages 1–26. online first.

Erkut, E., Tjandra, S. A., and Verter, V. (2007). Hazardous materials transportation. Hand-
books in operations research and management science, 14:539–621.

Fliege, J. and Werner, R. (2014). Robust multiobjective optimization & applications in
portfolio optimization. European Journal of Operational Research, 234(2):422–433.

Gandibleux, X., Beugnies, F., and Randriamasy, S. (2006). Martins’ algorithm revisited for
multi-objective shortest path problems with a maxmin cost function. 4OR, 4(1):47–59.

Gorski, J., Klamroth, K., and Ruzika, S. (2012). Generalized multiple objective bottleneck
problems. Operations Research Letters, 40(4):276–281.

31



Hassanzadeh, F., Nemati, H., and Sun, M. (2013). Robust optimization for multiobjective
programming problems with imprecise information. Procedia Computer Science, 17:357 –
364.
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