
rsos.royalsocietypublishing.org

Research
Cite this article:Mitchell L, Cheney KL,
Cortesi F, Marshall NJ, Vorobyev M. 2017
Triggerfish uses chromaticity and lightness for
object segregation. R. Soc. open sci. 4: 171440.
http://dx.doi.org/10.1098/rsos.171440

Received: 26 September 2017
Accepted: 17 November 2017

Subject Category:
Biology (whole organism)

Subject Areas:
behaviour

Keywords:
colour vision, generalization, chromatic cues,
visual segregation, reef fish

Author for correspondence:
Misha Vorobyev
e-mail: m.vorobyev@auckland.ac.nz

Electronic supplementary material is available
online at https://dx.doi.org/10.6084/m9.
figshare.c.3946249.

Triggerfish uses
chromaticity and lightness
for object segregation
Laurie Mitchell1,3, Karen L. Cheney3, Fabio Cortesi3,

N. Justin Marshall4 and Misha Vorobyev2
1Institute of Marine Science, and 2School of Optometry and Vision Science, University
of Auckland, Private Bag 92019, Auckland, AKL 1142, New Zealand
3School of Biological Sciences, and 4Queensland Brain Institute, University of
Queensland, St Lucia, Brisbane, Queensland 4072, Australia

LM, 0000-0003-4967-4113; KLC, 0000-0001-5622-9494;
FC, 0000-0002-7518-6159; NJM, 0000-0001-9006-6713;
MV, 0000-0001-7615-5816

Humans group components of visual patterns according to
their colour, and perceive colours separately from shape. This
property of human visual perception is the basis behind the
Ishihara test for colour deficiency, where an observer is asked to
detect a pattern made up of dots of similar colour with variable
lightness against a background of dots made from different
colour(s) and lightness. To find out if fish use colour for object
segregation in a similar manner to humans, we used stimuli
inspired by the Ishihara test. Triggerfish (Rhinecanthus aculeatus)
were trained to detect a cross constructed from similarly
coloured dots against various backgrounds. Fish detected this
cross even when it was camouflaged using either achromatic
or chromatic noise, but fish relied more on chromatic cues
for shape segregation. It remains unknown whether fish may
switch to rely primarily on achromatic cues in scenarios where
target objects have higher achromatic contrast and lower
chromatic contrast. Fish were also able to generalize between
stimuli of different colours, suggesting that colour and shape
are processed by fish independently.

1. Introduction
The survival of visually adept animals depends on their ability
to detect and identify prey, predators and conspecifics that are
often concealed by shadows and/or camouflaged by disruptive
patterns [1–3]. Colour vision enhances the ability of animals
to detect objects and it has been suggested that colour vision
originally evolved as an adaptation for object detection in
conditions of changing and patchy illumination [4,5]. Different
animals solve these problems in different ways depending on the
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constraints imposed both by the external light environment of their specific habitat and the internal
neural processing capability provided by the brain.

Humans group the components of visual patterns according to their colour, and perceive colours
largely separate from shape [6,7]. Both these features of our perception can be explained as a by-
product of certain aspects of processing of visual information in the human retina and brain [8].
Perceptual grouping is the substance of Gestalt psychology, and in humans, the grouping is explained
by complex cortical processing that allows us to perceive a whole object that is different from
the sum of its elements [9,10]. The separate perception of colour and shape can, to an extent, be
attributed to parallel processing of visual information in the human brain [7]. On the other hand,
perceptual grouping on the basis of colour, and the independent processing of colour and shape
can be explained as an adaptation for the optimal detection and identification of objects in natural
conditions. The separate processing of shape and colour is advantageous for object identification,
because the shape alone permits us to recognize an object, while colour conveys information about its
quality, such as ripeness of a fruit [4,6,11]. The two information streams are combined during the final
decision.

For humans, chromaticity has higher saliency than lightness and accordingly we group components
of visual patterns predominantly on the basis of their chromaticity [4]. While we perceive lightness
largely separately from chromaticity, animals may or may not perceive lightness separately from
chromatic aspects of colour. In animals, the separation of chromaticity from lightness can be revealed
from the analysis of the dependence of spatial resolution on colour [12,13]. It has been demonstrated
that the honeybees [14], budgerigars [15] and some fishes [16,17] have lightness vision that is largely
separate from chromatic vision, with lightness having higher spatial resolution than chromaticity.
Similar to humans, these animals do not use the short-wavelength photoreceptors for high spatial
resolution lightness vision [12–17]. However, some animals, such as goldfish and the hummingbird
hawk moths, probably use all photoreceptors for high spatial resolution vision [18,19]. Our spatial
vision and detection of borders is predominantly mediated by lightness [20] with chromaticity attributed
to spatial location possibly at the late stages of visual processing [21]. Therefore, our reliance on
chromaticity for grouping components of patterns cannot be easily explained on the basis of neural
processing of colour. The saliency of chromatic cues for grouping of elements can be explained
as an adaptation to detection of objects in natural lighting conditions [4]. For primates, lightness
does not provide a reliable cue for object segregation in their natural forest habitat, due to the
heterogeneous (patchy) light environment [4]. In such conditions, objects can be segregated on the basis
of chromatic consistency and, accordingly, humans rely predominantly on chromatic cues for segregating
objects [4].

Our ability to recognize shape irrespective of colour and our reliance on chromatic cues for object
segregation forms the essence of the Ishihara test for colour deficiency [22]. In this test, people are
presented with plates that are composed of scattered dots, which construct target shapes (e.g. numerals)
and backgrounds. The dots belonging to a target shape are either consistent in their chromaticity, but
have variable lightness, or have variable chromaticity but are consistent in lightness. People with normal
colour vision easily detect shapes on the basis of their chromaticity, whereas colour deficient individuals
rely predominantly on achromatic cues [22].

In this study, we investigated how fish use colour for the detection and identification of objects
and asked if they also segregate different components of potential cues such as chromaticity, lightness
and shape. We used the triggerfish (Rhinecanthus aculeatus), a reef fish that dwells in shallow marine
environments usually close to or on coral reefs, in which illumination is highly contrasting and patchy
due to shadows and water surface motion [5]. In such conditions, luminance does not provide a reliable
cue for object segregation; therefore, object detection and identification are probably primarily based on
chromaticity.

Vision of R. aculeatus has been studied in some detail [17,23–26]. This fish is trichromatic and has
three spectral types of visual pigments (figure 1a), which are housed in single and double cones [23–25].
Single cones contain the short-wavelength (S) pigment while the two members of double cones contain
either middle (M)- or long-wavelength (L) pigments [23,24]. It has been demonstrated that Rhinecanthus
aculeatus can detect a 0.38° dot when it has no contrast for the short-wavelength or middle-wavelength
photoreceptors, while the dots that do not have contrast for combined signal of double cones or the
long-wavelength cones in order to be detected need to subtend at least 3.3° and 1.7°, respectively [17].
Therefore, Rhinecanthus aculeatus uses double cones and possibly the long-wavelength cones for high
spatial resolution lightness vision.
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Figure 1. (a) Taken from Cheney et al. [24], the spectral sensitivities of the S, M and L cones of R. aculeatus. (b) The within-tank
illumination, where the measured reflectance spectra of colours presented on stimuli (c) were taken under. (d) Maxwell’s triangle
showing a visualization of colour distance between colour loci (dark yellow, ‘Dy’; bright yellow, ‘By’; dark blue, ‘Db’; and bright blue,
‘Bb’; background, ‘bg’), within the modelled trichromatic colour space of R. aculeatus. (e) Normalized signal of each colour provided as
quantum catches of individual cones (qs, qM, qL) and double cones (summed M and L, qM+L).

2. Material and methods
2.1. Animals
Wild-caught R. aculeatus were collected from shallow reef flats around Lizard Island, Great Barrier
Reef, Australia (14°40′8′′ S, 145°27′34′′ E) using hand nets (collecting permits: Great Barrier Reef Marine
Park Authority G12/35688 and Queensland Fisheries 161624). Fish ranged in size from 5.7 to 14.5 cm
(standard body length, SL) and were individually housed in natural daylight exposed experimental
aquaria (see electronic supplementary material, figure S1), at the Lizard Island Research Station. At
the end of the study, fish were released at site of original capture. Experiments were conducted
under the approval of the University of Queensland’s Animal Ethics Committee, approval number:
SBS/111/14/ARC.

2.2. Stimuli design
Stimuli were constructed using Wolfram Mathematica (10.1), then printed using a Ricoh Aficio MPC4501
onto white (80 gsm) paper, and laminated using a clear sleeve laminator. The reflectance spectra of all
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colours (figure 1c) used in the stimuli were measured using a PR-655 SpectraScan

®
Spectroradiometer

(Photo Research Inc.) under a standard light source (Carl Zeiss, 60 Hz microscope-mounted lamp)
relative to a 99% (300–700 nm) white reflectance standard (Ocean Optics). Yellow and blue colours
(dark and bright) were chosen because of their known visibility to R. aculeatus [24] (figure 1a), as
well as their common occurrence in reef fish skin patterns [27]. The stimuli were mounted on an
achromatic background and experiments were performed under natural illumination in blue tanks
(electronic supplementary material, figure S1). The receptor quantum catches (figure 1e) were calculated
using the illumination measured inside tanks (figure 1b). The RGB values of stimuli were adjusted,
so that the dark yellow and the bright yellow shared similar chromaticity for fish, as did the dark
blue and the bright blue (figure 1d). The double cone (M + L), M- and L-cone quantum catches
of bright colours differed substantially from those of dark colours (figure 1e). On the other hand,
the double cone (M + L), M- and L-cone quantum catches of bright blue and yellow were similar
to each other, as were the double cone (M + L), M- and L-cone quantum catches dark of yellow
and blue colours (figure 1e). Because the lightness vision in R. aculeatus is mediated by double
cones and/or by the L cones [17], bright colours are predicted to be easily discriminated from dark
colours on the basis of their lightness. Also, because S cones do not contribute to the R. aculeatus
lightness vision [17] the bright yellow and bright blue are similar in their lightness, as are the dark
yellow and dark blue colours. To quantify the difference between colours, we used the receptor
noise limited model [27,28] (for details of calculations see electronic supplementary materials, contrast
calculations). Calculations show that all colours used in this study can be discriminated from each
other; however, there is a highly salient difference between chromatic properties of yellow and blue
and achromatic properties of dark and bright colours (figure 1d,e; see electronic supplementary material,
table S1).

Square-shaped stimuli (5.0 × 5.0 cm) were composed of hexagonally arranged rows of coloured
dots presented against a neutral grey background (figure 2). Dots that are 3 mm in diameter have
previously been shown to be visible to R. aculeatus at a viewing distance of 10 cm [25,29]. Stimuli
used during the training phase of the experiment were a cross shape comprising bright yellow dots
on a background of dark blue or vice versa (figure 2a,b). In testing, cross stimuli were composed of
dots which either had consistent chromaticity, but inconsistent lightness (achromatic noise) (figure 2e,f )
or consistent lightness, but inconsistent chromaticity (chromatic noise) (figure 2g,h). Visual noise was
generated by printing, in addition to the dark blue and bright yellow dots, the bright blue and
dark yellow dots in random order. Stimuli with chromatic noise had a random arrangement of blue
and yellow dots, with the cross being composed from dots having similar lightness and different
chromaticity. Stimuli with achromatic noise had a random arrangement of dark and light dots, with
the cross being composed of dots having similar chromaticity and different lightness. Distractor stimuli
(figure 2c,d,i) were composed of randomly arranged dots with the same number of dots of a given
colour as in the corresponding stimuli with a cross. For each stimulus with randomly arranged dots,
we designed 25 replicates using a random number generator (Wolfram Mathematica 10.1). These were
presented in a randomly shuffled order each session, to prevent the learning of non-cross related
features.

2.3. Training
To test the hypothesis that fish can segregate shape on the basis of common colour, we trained R. aculeatus
via operant conditioning to detect a cross composed of dots presented among a surround of different
coloured dots. For the first 5 days in captivity, fish were exposed to the presence of feeding boards
in the tank for an hour per day. Fish were initially encouraged to approach cross stimuli by smearing
cross stimuli with squid until they approached without food present. Fish were then encouraged to peck
stimuli to receive a food reward delivered from above. Group 1 (n = 10) were trained to discriminate a
bright yellow cross presented against a surround of dark blue dots, from random arrays of dark blue
dots and bright yellow dots (figure 2a,c). Group 2 (n = 10) were trained to discriminate a dark blue cross
presented against a surround of bright yellow dots, from random arrays of bright yellow and dark blue
dots (figure 2b,d). Stimuli were attached to white acrylic feeding boards (12 × 40 cm), and held 10 cm
apart at the presenting tank-end (electronic supplementary material, figure S1). To prevent any side-
biases from developing, the position of positive stimuli (left or right) was changed pseudo-randomly
between each trial, never being presented on one side for more than three consecutive trials. A choice
counted as a single peck anywhere on a single stimulus. A correct choice for the cross-shaped stimulus
was immediately rewarded with a small (1–1.5 mm) piece of squid by tweezers from above at the centre
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Figure 2. Training stimuli: bright yellow cross and dark blue surround (a), dark blue cross and bright yellow surround (b), scattered
bright yellow distracter (c), and scattered dark blue distracter (d). Camouflaged stimuli: achromatically camouflaged yellow cross (e),
achromatically camouflaged blue cross (f ), chromatically camouflaged blue cross (g), chromatically camouflaged yellow cross (h), and
distracter stimulus with scattered camouflage colours (i).

of the tank. An incorrect choice went unrewarded and punished by immediate trial termination, with no
interaction for 30 s. Stimuli were immediately removed following a choice, to prevent multiple choices
being made. Depending on the motivation of a fish, between three and six trials were recorded per
session. Most fish learnt the task within 8–12 days and made anywhere between 28 and 62 choices. Fish
had successfully learnt the task after reaching a probability threshold of ≥70% correctness held over five
consecutive sessions, with five to six trials per session (binomial test, n = 28–30, p < 0.05).

2.4. Experiment

2.4.1. Do fish predominantly use chromatic or achromatic cues when given a direct choice?

After fish had been trained to select the cross stimulus, we performed unrewarded trials where fish
had to select between two cross shapes: one camouflaged with achromatic noise (figure 2e,f ), another
camouflaged with chromatic noise (figure 2g,h). These trials were unrewarded to prevent fish from
forming a preference for one of the crosses, as this may not be indicative of its saliency. Unrewarded
trials were separated by a minimum of three rewarded trials involving training stimuli. Each fish was
tested 30 times, over a period of 13–15 sessions.

2.4.2. Do fish predominantly use chromatic or achromatic cues when given an indirect choice?

To further investigate the ability of fish to segregate shape camouflaged by chromatic or achromatic noise,
we presented fish with camouflaged crosses (rewarded) (figure 2e,f ), against a random arrangement of
dots of different colours (unrewarded) (figure 2i). The proportion of dots of each colour in rewarded
and unrewarded stimuli was equal. For Group 1 (originally trained using a bright yellow cross), the
rewarded stimulus was initially a yellow cross camouflaged with achromatic noise (figure 2e) followed
by, a bright cross camouflaged with chromatic noise (figure 2g). For Group 2 (originally trained using
a dark blue cross), the rewarded stimulus was initially a blue cross camouflaged with achromatic noise
(figure 2f ) and then a dark cross camouflaged with chromatic noise (figure 2h). All fish conducted a total
of 30 choices per set of camouflaged stimuli over a period of five sessions, with the exception of one fish
(that conducted n = 20 trials) due to an infected fin.

2.4.3. Can fish generalize shape over difference in colour?

To test whether fish generalize shape over difference in colour, we presented fish with a reverse coloured
set of stimuli with a distracter stimulus: fish trained with a bright yellow cross (figure 2a) (Group 1) were
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presented with a dark blue cross (figure 2b) and those trained with a dark blue cross (Group 2) (figure 2b)
were presented with a bright yellow cross (figure 2a).

2.5. Statistical analysis
All statistical tests were conducted using the software package R v. 3.2.2 [30]. All three tests in our
experiment were analysed using generalized linear mixed models (GLMM) with a binomial distribution
with log link function, from the lmer function in the lme4 package [31]. The outcome (1, correct or
achromatically camouflaged stimulus; 0, incorrect or chromatically camouflaged stimulus) was entered
as the dependent variable. Rewarded stimuli position (L, left; R, right) and test (chromatic camouflage or
achromatic camouflage) were used as fixed factors, and fish identity was a random factor to account for
fish being tested multiple times. Analysis was performed separately for fish trained to a bright yellow
cross (Group 1) and for fish trained to dark blue cross (Group 2). Initially, the size of the fish (SL) was
also included in the model as a covariate, but was found to be insignificant (all models: p > 0.73) and
subsequently disregarded. Any fish that was found to have a side bias in a test was excluded from that
choice analysis, this included one individual in the first test and two individuals in the second test (see
electronic supplementary material, tables S2 and S3a,b).

3. Results
3.1. Training
All, but one fish from Group 1 learnt to detect the cross shape with a minimum of 70% correct choices
(figure 3a; for individual performance of fish during training see electronic supplementary material,
figure S2). This indicated that fish could group dots into a shape on the basis of common chromaticity
and/or lightness. The fish that did not learn the task was dropped from the experiment. There was
no difference between Group 1 (yellow cross; n = 9) and Group 2 (blue cross; n = 10) in the overall
performance during the last 5 session of training, i.e. in their ability to learn the task (GLMM; binomial:
z = −0.47, n trials = 753, n fish = 19, p = 0.635; figure 3a).

3.1.1. Do fish predominantly use chromatic or achromatic cues when given a direct choice?

When presented with a chromatically camouflaged cross (similar lightness and different colour) and
an achromatically camouflaged cross (similar colour and different lightness), fish from both training
groups were significantly more likely to choose the chromatic cross (figure 3b, Group 1, GLMM; binomial:
z = 2.87, n fish = 8, n trials = 240, p < 0.01; Group 2: z = 3.45, n fish = 10, n trials = 300, p < 0.001; for
individual performance see electronic supplementary material, table S2). This suggests that fish relied
more heavily on chromatic cues for object segregation.

3.1.2. Do fish prefer chromatic or achromatic cues when given an indirect choice?

When fish were presented with a chromatic cross and a distracter stimulus, they were significantly
more likely to choose crosses than the distracter stimulus (figure 3c, chromatic cross; Group 1, GLMM;
binomial: z = 5.54, n fish = 9, n trials = 260, p < 0.001; Group 2, z = 4.88, n fish = 8, n trials = 240, p < 0.001).
Only fish in Group 1 were also found to be significantly more likely to choose achromatic crosses over
the distracter stimulus (figure 3d, achromatic cross; Group 1, GLMM; binomial: z = 3.67, p < 0.001; Group
2, z = 0.56, p = 0.576). Additionally, fish made significantly more correct choices when choosing between
chromatic crosses compared with achromatic crosses (Group 1, GLMM; binomial: z = 7.01, n trials = 520,
p < 0.01; Group 2: z = 5.58, n trials = 480, p < 0.001). These results suggest that fish were able to detect
crosses camouflaged by both achromatic and chromatic noise, and that it was easier for fish to segregate
crosses based on chromaticity than on lightness.

3.1.3. Can fish generalize shape over difference in colour?

When fish were presented with stimuli of reversed colour from those presented in training, they were
significantly more likely to make a correct choice for the cross-shape stimulus compared with the
distracter stimulus (figure 3e, Group 1, GLMM; binomial: z = 4.80, n fish = 8, n trials = 240, p < 0.001;
Group 2: z = 5.83, n fish = 10, n trials = 300, p < 0.001). The level of performance during this generalization
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Figure 3. (a) Training: Group 1 (n= 9 trained to the bright yellow cross) and Group 2 (n= 10 trained to the dark blue cross) chose the
cross pattern stimulus over the distracter stimulus during training. (b) Experiment 1: After training, fish (Group 1: n= 8, Group 2: n= 10)
chose achromatically camouflaged crosses more frequently than crosses that were chromatically camouflaged. (c) and (d) Experiment
2: The chromatic cross was reliably detected when presented alongside a distracter stimulus (c) by both Group 1 (n= 9) and Group 2
(n= 8). Group 1 also reliably detected the achromatic cross from a distracter stimulus (d). (e) and (f ) Experiment 3: Group 1 (n= 8),
and Group 2 (n= 10) reliably detected a novel coloured cross from a distracter stimulus (e) during the generalization task. A comparison
between the performance of the generalization task and the final four pre-experimental sessions (that involved training stimuli) (f ),
shows little difference in the total number of correct choices across each session. Bars represent mean values, and error bars are± 1 s.e.,
‘**’ denotes statistical significance (p< 0.05), ‘***’ denotes statistical significance (p< 0.001).

test was also similar to the initial training for at least 14 out of the 18 fish (five failed to discriminate,
see electronic supplementary material, table S4). For both Groups 1 and 2, performance during the
first session of the generalization test (figure 3f ) was very similar to the estimated overall level of
performance [mean (%) ± s.e. = 75.3 ± 2.8], as well as to the overall level of performance for the final
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four pre-experimental sessions with training stimuli [mean (%) ± s.e. = 82.5 ± 2.0]. It seems most fish
generalized the shape of the training stimulus over its colour, rather than relearned the novel stimulus.

4. Discussion
We have shown that R. aculeatus groups dots to segregate shape and generalizes shape irrespective of
colour and lightness. These findings support the hypothesis of a similarity of object detection strategies
among different animals and humans.

R. aculeatus was able to detect the cross shape when it was camouflaged both with chromatic and
achromatic noise. However, fish were better at distinguishing the cross when it was chromatically
consistent compared with crosses with chromatic variability/noise. From this, we conclude that
R. aculeatus relied more heavily on chromatic cues for object segregation. Previous studies have
demonstrated that a number of animals including the honeybee (Apis mellifera) [14], birds [15,32] and
humans [33] mainly rely on lightness (achromatic) cues for detecting and discriminating shape and small
targets, while chromatic cues are primarily used for discriminating colours of stimuli subtending large
visual angles. A recent study also demonstrated that R. aculeatus chose stimuli based on achromatic cues
rather than chromatic cues when viewing small stimuli [29]. Newport et al. also found that R. aculeatus
learnt larger stimuli via chromaticity, rather than pattern/shape or luminance/lightness [29]; however,
in their study, rewarded conspicuous stimuli were discriminated against similarly conspicuous distracter
stimuli. The present study is a detection task, rather than a discrimination task, therefore different
results may be expected as discrimination tasks require memory of specific objects, whereas detection
tasks do not [13].

The importance of chromatic cues for object segregation can be explained as an adaptation to detection
and identification of objects in conditions of spatially and temporally variable illumination. Spatial
variation of illumination renders lightness unreliable and, hence, chromaticity becomes a more stable cue
for segregation of object shape [4,6]. The patchiness of illumination is characteristic of forest habitat and
it has been proposed that variations of lighting conditions explains the greater weight given to chromatic
signals by primates [4] and other forest-dwelling species [34–36]. In shallow aquatic environments,
wave motion produces patchy illumination, which may explain the usefulness of chromatic cues for
segregation of objects for reef fish. However, whether fishes that dwell in habitats at greater depths with
uniform illumination [37] rely on chromaticity for object segregation, remains unclear.

Our conclusion that chromaticity is a dominant cue for object segregation is based on comparing
extreme chromatic contrast (yellow–blue) to extreme achromatic contrast (bright–dark). Both differences
correspond to the range of 30–50 just noticeable differences (JNDs) (electronic supplementary material,
table S1) and are probably close to the saturation of the saliency of contrasts. Generally, animals rely on
a more salient cue and, therefore, in the case of unsaturated colours strong achromatic contrast is likely
to be more salient than chromatic contrast. It would be interesting to investigate how the ability of fish
to segregate objects depends on the relative amounts of chromatic and achromatic contrast, and how
the saliency of contrast depends on chromatic and achromatic contrasts. For humans, chromaticity and
lightness belong to different modalities; therefore, comparing the two on the same scale is a difficult task
[38]. Human observers can make reliable pair-wise contrast matches between gratings that differ along
chromatic and achromatic axes [38]. Aside from previous behavioural work on the vision of the honeybee
[39] and crow [40], the comparison of the saliency of chromatic and achromatic cues of different contrasts
for shape segregation has not yet been performed for humans, nor for most animals.

Similar to primates, fish generalize shape over colour, which probably helps in the recognition of
objects when colour changes depend on illumination, viewing angle and distance to object [41]. The
fact that fish generalize shape over colour, suggests that similar to humans, fish also process colour and
shape separately. In humans, the separation of colour and shape is achieved by independent processing
of different aspects of visual stimuli in the visual cortex [7].

Previous studies have shown that fish and other animals are capable of performing tasks that
are thought to require complex cortical processing in humans. For example, archerfish can recognize
faces [42] and various species of fish amodaly complete objects [43,44]. Fish can also be tricked by
optical illusions including the Ebbinghaus illusion [45], illusory motion [46] and lightness illusion [46].
Additionally, fishes and bees have been found to perceive illusory contours [47–49]. The ability of
animals to carry out complex visual tasks and perceive visual illusions, which we also perceive, supports
the hypothesis that fish and other ‘lower animals’, including insects, use similar neural strategies for
object detection and discrimination. However, since ‘lower animals’ do not have a visual cortex, the
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neural implementation of these ‘algorithms’ in fish may be more down-stream, even starting with the
retina [50,51].

Natural lighting conditions have a strong influence over which visual cues are most salient to
observers. R. aculeatus appears to depend more on chromatic cues for object segregation and this may
be due to the presence of high achromatic noise in shallow marine habitats. However, our conclusion is
derived using extreme chromatic difference between colours. Further investigation involving a range of
intermediate colours with less extreme chromatic contrast and greater differences in intensity is necessary
to fully understand the importance of chromatic and achromatic cues. Finally, the non-cortical structures
in fish that are responsible for independently processing the visual signals of colour and shape seem to
exhibit a similar neural strategy implemented by relevant cortical structures found in humans.
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