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Abstract: The bacterial species Neisseria gonorrhoeae (N. gonorrhoeae) and Staphylococcus aureus (S. 
aureus) are amongst the main microorganisms that cause ophthalmia neonatorum. The current 
treatment involves the use of various antibiotics such as ciprofloxacin, cephalosporin, ceftriaxone 
and cefotaxime. However, this treatment strategy is becoming more ineffective due to the antibiotic 
resistance in N. gonorrhoeae. The current study explores the potential use of fatty acid based 
microemulsions (ME) to prevent N. gonorrhoeae and S. aureus infections in new-borns’ eyes without 
harmful side effects such as corneal or conjunctiva irritation. Pseudo-ternary phase diagrams were 
constructed to evaluate microemulsion regions and six different α-linolenic acid based 
microemulsions were prepared. The prepared formulations were characterized for α-linolenic acid 
content, size, transparency, zeta potential, Polarized light Microscopy, antimicrobial activity and ex 
vivo ocular toxicity. The mean droplet size of the ME formulations was in the range of 190.4 to 350.5 
nm and polydispersity index (PDI) values were in the range of 0.102 to 0.561. All formulations were 
found stable upon storage for at least 8 weeks. In addition, self-diffusion coefficients determined by 
nuclear magnetic resonance (NMR) reflected that the diffusability of water increased at higher than 
30% w/w water, while that of fatty acids and surfactants was in reverse. The antimicrobial efficacy 
of microemulsions was determined against N. gonorrhoeae and S. aureus. It was concluded that all 
microemulsions have strong antimicrobial effects against N. gonorrhoeae and S. aureus. Finally, 
bovine corneal opacity permeability (BCOP) and hen’s egg chorioallantoic (HET-CAM) tests results 
showed that all microemulsion formulations were not strong ocular irritants. 

Keywords: fatty acid; ophthalmia neonatorum; microemulsion; pseudo-ternary phase diagram; 
ocular toxicity/irritation potential 
 

1. Introduction 

Ophthalmia neonatorum is a form of conjunctivitis in new-borns, usually contracted during 
birth from passage through the infected birth canal of the mother [1]. The bacterial species Neisseria 
gonorrhoeae is the cause of the sexually transmitted disease gonorrhoea [2] and the cause of 
ophthalmia neonatorum. Neisseria gonorrhoeae (N. gonorrhoeae) accounts for 30% to 45% of ophthalmia 
cases [3,4]. Nonsexually transmitted bacteria, such as Staphylococcus aureus (S. aureus), can also cause 
neonatal conjunctivitis. S. aureus accounts for 30% to 50% cases of ophthalmia neonatorum [3,4]. N. 
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gonorrhoeae infection is of particular concern as it cannot be successfully treated, it can cause corneal 
ulceration and perforation of the globe of the eye, which can rapidly lead to blindness. If left 
untreated, the neonatal bacterial eye infections can potentially spread, causing life threatening 
conditions such as septicaemia and meningitis. Opthalmia neonatorum occurs in 1% to 12% of new-
born infants and leads to blindness in approximately 10,000 babies annually worldwide [5]. 

There are a variety of treatments that can be used against gonococcal ophthalmia neonatorum 
(GCON). Control strategies include the treatment of gonococcal infection in pregnant women, 
diagnosis and treatment of GCON and eye prophylaxis in the new born at birth. The treatment of 
gonococcal infections in pregnant women requires screening and is expensive [5]. Eye prophylaxis 
by the instillation of 1% silver nitrate in the first h of life is not always possible and no longer in use 
as silver nitrate is toxic and causes chemical conjunctivitis [6,7]. Recently, various antibiotics such as 
ceftriaxone IV or IM and cefotaxime IM are recommended as first line therapy for gonococcal 
ophthalmia neonatorum and other gonococcal infections in the new born [8,9]. However, in the last 
few years, mutants of gonococci expressing significant resistance to these antibiotics have been 
identified worldwide [10,11]. 

It has been proposed that a fatty acid based eye formulation can be used as an alternative control 
strategy [8]. Several fatty acids have a broad spectrum of microbicidal activity against enveloped 
viruses and various Gram positive and Gram negative bacteria, including N. gonorrhoeae and S. aureus 
[8,12]. In recent years, microbicidal effects of medium- and long-chain fatty acids and their 
corresponding 1-monoglycerides have been studied. They have been found to have a broad spectrum 
of microbicidal activity against enveloped viruses and various bacteria in vitro, including pathogens 
such as herpes simplex virus (HSV), Neisseria gonorrhoea and Chlamydia trachomati [8,12]. 

Nearly 10 years ago, the bactericidal potencies of saturated and unsaturated fatty acids and 
monoglycerides (MGs) against Helicobacter pylori were determined following short incubations with 
freshly harvested cells over a range of pHs. Lauric acid was found to kill the bacterial species at a 
minimum bactericidal concentration (MBC) of 1 mM at pH 7.4, myristoleic and linolenic acid were 
found to be potent at MBC of 0.5 mM at pH 7.4 and monolaurin was found to be the most potent 
monoglyceride (MBC 0.5 mM). The bactericidal potencies of unsaturated fatty acids were found to 
increase with degree of unsaturation [13]. It has been found that N. gonorrhoeae is highly susceptible 
to lauric acid (C12:0), myristic acid (C14:0), oleic acid (C18:1), linoleic acid (C18:2), linolenic acid 
(C18:3) and arachidonic acid (C20:4) but is resistant to straight-chain, saturated fatty acids with 18 or 
more carbons [14]. Various long-chain polyunsaturated fatty acids (LC-PUFAs)—including 
eicosapentaenoic acid (EPA; C20:5n-3), docosahexaenoic acid (DHA; C22:6n-3), γ-linolenic acid 
(GLA; C18:3n-6) and dihomo-γ-linolenic acid (DGLA; C20:3n-6)—have shown to exert highly potent 
activity against S. aureus [15]. In 1990, Bergsson et al. tested several fatty acids and their 1-
monoglycerides for their microbicidal activities against N. gonorrhoea at a short inactivation time of  
1 min. It was shown that 1 min exposure to 2.5 mM lauric acid and monocaprin—a monoglyceride of 
capric acid—causes the fastest and most effective killing of all strains of N. gonorrhoea tested [8]. Over 
ten years ago, a hydrogel containing 10 mM monocaprin was found to kill high titres of N. gonorrhoea 
within 1 minute [16]. Although many studies looked at the microbial effects of fatty acids on various 
microbes, no studies evaluated the effect of fatty acid formulations on bacteria, fungi or viruses. 

In the present study, a fatty acid based microemulsions were prepared. α-linolenic acid was 
selected because of its significant antimicrobial activity against N. gonorrhoeae and S. aureus as per our 
previous studies [17,18]. The prepared microemulsions (ME) formulations were characterized by 
polarized light microscopy and self-diffusion NMR (Nuclear magnetic resonance). Different 
pharmaceutical formulation properties such as clarity, pH, particle size, viscosity, physical and 
chemical stability and sterility of the formulations were investigated as part of the development phase 
of an eye formulation. In addition, antibacterial activity of the α-linolenic acid-based ME was tested 
against N. gonorrhoeae and S. aureus. Finally, the eye formulations were tested for ocular 
toxicity/irritation potential using the bovine corneal opacity and permeability (BCOP) test and the 
hens egg chorioallantoic membrane test (HET-CAM). The estimated costs for routine neonatal ocular 
prophylaxis are $7.7 per child and $1.94 for treatment using erythromycin. Nonetheless the costs will 
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increase with the development of resistance to the current antibiotics used for treatment of 
ophthalmia neonatorum conditions. The use of fatty acids can minimize the costs associated with the 
antimicrobial resistance [19]. 

2. Results and Discussion 

2.1. Saturation Solubility 

Absorbance was measured by UV spectrophotometer at 350 nm to determine the solubility of α-
linolenic acid in various surfactants. The correlation between concentration (mg/mL) and absorbance 
(average of 3 determinations) was plotted to find out saturation point of a compound. It was found 
that all excipients were able to dissolve α-linolenic acid, although not to the same extent. 

Solubility of α-linolenic acid in different excipients is summarized in Figure 1A. The results of 
saturation solubility studies revealed that α-linolenic acid has high solubility in Cremophor EL and 
Tween 80 as compared to Tween 20, Labrasol, Labrafil M2125 and Caproyl 90. Amongst the tested 
co-surfactants, Transcutol P and PEG 400 solubilized α-linolenic acid the most. Therefore, Tween 80 
and Cremophor EL were selected as surfactants and Transcutol P and PEG 400 were selected as 
cosurfactants, respectively, for the phase behaviour study. 

 

Figure 1. Saturation solubility of α-linolenic acid in different surfactant (A) and different ratios of 
surfactants blends (B). Mean ± SD, n = 3.  

The solubility profile of α-linolenic acid in the selected surfactant/co-surfactant blends as shown 
in Figure 1B reveals that α-linolenic acid had the highest solubility in Tween 80/Transcutol P mixture 
compared with Cremophor EL/Transcutol P. 

The high solubility of α-linolenic acid in Tween 80 and Cremophor EL could be due to the 
structural similarities between α-linolenic acid, Tween 80 and Cremophor EL. α-linolenic acid is a 
long chain (C18) of unsaturated fatty acid. Tween 80 is structurally composed of polyoxyethylene 
sorbitan (head group) and unsaturated oleic acid (tail group). Tween 80 shares a carbon chain tail of 
similar length (C18) to α-linolenic acid. 

Cremophor EL head portion consists of polyethylene glycols and glycerol ethoxylates, whereas 
the tail portion is composed of oxyethylated triglycerides of a long chain (C18) unsaturated ricinoleic 
acid, which is structurally similar to the long chain (C18) of unsaturated α-linolenic acid. 
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Both Tween 80 and Cremophor EL have a hydrophobic tail of similar length (C18) to α-linolenic 
acid. It is possible that these hydrophobic chains were responsible for increasing the solubility profile 
for α-linolenic acid. Both Tween 80 (Hydrophilic-Lipophilic Balance; HLB = 15) and Cremophor EL 
(HLB = 14) have high hydrophilic nature and good emulsion forming capacity due to their high HLB 
values. However, α-linolenic acid solubility was higher in Cremphor EL as compared to Tween 80. 
This could be because Tween 80 consists of a single chain of oleic acid as lipophilic part while 
Cremophore EL has three fatty acid chains attached to PEG-glycerol. This bulkier lipophilic part 
enhances the emulsification properties of Cremophore EL [20]. Nonetheless, Tween 20 (HLB = 16.7) 
showed low solubility capacity despite having high HLB value. This could be due the different 
hydrophobic tail group, which is composed of saturated medium-chain lauric acid (C12). These 
results are in agreement with the results of the previous study conducted by Mosca et al. [21] and 
show that the length and size of the hydrophobic side chains of surfactants determines the 
interactions with the oil phase [21]. Labrasol (HLB = 12), labrafil M2125 (HLB = 4) and Caproyl 90 
(HLB = 6) showed the lowest solubility enhancement for α-linolenic. This might be due to their low 
HLB values that cause incompatibility between these hydrophilic surfactants and α-linolenic acid. 

Based on saturation solubility studies, Transcutol P was selected as co-surfactant because α-
linolenic acid showed good solubility in this solvent. A blend of surfactants and co-surfactant is 
needed to increase drug solubility and to obtain a stable microemulsion [22]. These co-surfactants 
help to further reduce the surface tension and fluidize the surfactant film, which increases the entropy 
of the system leading to its thermodynamic stability. Co-surfactants also increase the flexibility of the 
interfacial film around the microemulsion droplet [23,24]. 

It is known that a single surfactant is not sufficient to form balanced microemulsions and a 
combination of surfactant and co-surfactant is required to optimize the formation of a microemulsion 
[25]. Therefore, the selection of surfactant/co-surfactant blends is important in the formulation of a 
stable dispersion system. 

The selected surfactants were blended with the selected co-surfactant in ratios of 1:1, 1:4 and 4:1 
(w/w). Among the surfactant/co-surfactant blends, two mixtures had the highest solubilisation 
capacities for α-linolenic acid: Tween 80/Transcutol P 1:1 (w/w) and Cremophor EL/Transcutol P 4:1 
(w/w). Thus, these two blends were selected to study the phase behaviour of α-linolenic acid. 

2.2. Construction of Pseudo-Ternary Phase Diagrams 

The pseudo-ternary phase diagrams were constructed using phase diagram by micro-plate 
dilution (PDMPD) method. Ternary phase diagrams were constructed by taking 1:1 ratio of Tween 
80/Transcutol P and 4:1 ratio of Cremophor EL/Transcutol P. The shaded area of the phase diagrams 
shows the ME region, whereas the non-shaded area displays the none ME region. The pseudo-ternary 
phase diagrams of the α-linolenic acid/surfactant:co-surfactant/water are shown in Figure 2. The 
phase behaviour study revealed that the emulsion region was larger with 1:1 Tween 80/Transcutol P 
(Figure 2A) in comparison with Cremophor EL/Transcutol P (Figure 2B). From the phase diagrams, 
it can be observed that ME regions increase with increasing surfactant:co-surfactant mix ratio. This 
could be due to the effect of the hydrophilic co-solvents and/or co-surfactants that reduce the 
interfacial tension and increase the fluidity of the oil-water interface and hence, promoted the 
formation of microemulsions [23,24]. 
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Figure 2. Pseudo-ternary phase diagrams of α-linolenic acid, water, surfactant/cosurfactant (S/CoS) 
mix made of (A) Tween 80/Transcutol P (1:1), (B) Cremophor EL/Transcutol P (4:1). 

2.3. Preparation and Characterization of Microemulsions 

Formulations were developed based on the microemulsion zone of pseudo-ternary phase 
diagrams. The composition of selected ME formulations is given in Table 1. All the developed 
formulations were found to be clear/transparent on visual inspection. The clarity of microemulsions 
was also checked by transparency, measured as percent transmittance (%T). All ME formulations 
showed % transmittance value greater than 98% (Table 1). These results indicate t that these 
compositions are isotropic one-phase systems 
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Table 1. Composition and characterisation criteria of the selected microemulsion formulations, fatty acid microemulsions were characterised for their particle size 
(nm), zeta potential (mV), light transmittance (%), viscosity (mPa∙S) and contact angle (ߠ). Data is presented as mean ± standard deviation (SD), where n = 3. 

Formulation 

Composition
Particle 

Size ± SD 
(nm) 

PDI ± SD 
Zeta Potential 

(mV) 
% Transmittance 

(at 600 nm) 
pH 

Viscosity 
(mPa∙S) 

α-Linolenic 
Acid Content 

% 

Contact Angle 
on 

Hydrophilic 
Surface (°) 

Contact Angle 
on Hydrophobic 

Surface (°) 

Fatty 
Acid 

(FA)% 
S/CoS% Water%

T1  
(Tween80/Transcutol P) 

4 88 8 190.4 ± 2.3 0.309 ± 0.12 0.124 ± 0.022 98% 5.96 ± 0.02 65.32 ± 2.15 92.5 14.1 ± 0.85 29.5 ± 2.43 

T2  
(Tween8/Transcutol P) 

6 60 34 205.1 ± 1.2 0.551 ± 0.085 0.107 ± 0.014 98% 4.66 ± 0.01 96.12 ± 4.22 95.9 12.2 ± 0.06 35.2 ± 3.73 

T3  
(Tween8/Transcutol P) 

35 60 5 219.1 ± 1.5 0.383 ± 0.056 0.394 ± 0.035 115% 5.33 ± 0.02 56.67 ± 2.32 99.8 15.7 ± 2.51 25.9 ± 3.70 

C1  
(Cremophor EL/Transcutol P) 

4 86 10 340.1 ± 1.9 0.561 ± 0.032 0.025 ± 0.011 99% 6.23 ± 0.02 82.53 ± 1.63 91.8 25.1 ± 2.41 34.8 ± 3.08 

C2  
(Cremophor EL/Transcutol P) 

6 62 32 225.6 ± 2.1 0.392 ± 0.14 0.303 ± 0.054 98% 5.43 ± 0.01 101.42 ± 3.11 93.3 16.2 ± 3.36 43.8 ± 4.30 

C3 
(Cremophor EL/Transcutol P) 

35 60 5 246.4 ± 3.3 0.484 ± 0.025 0.102 ± 0.012 97% 5.47 ± 0.02 74.46 ± 2.56 96.4 25.2 ± 2.60 38.0 ± 5.68 
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2.3.1. Characterization of Microemulsions 

Polarized light microscopy can distinguish between isotropic and anisotropic materials. The ME 
samples containing water/surfactant:co-surfactant/oil were examined under polarized light for 
sample anisotropy and birefringence. The binary systems containing only water/surfactant were also 
observed under polarized light. The ME samples did not show any birefringence and appeared 
completely dark under polarized light (Figure 3C) characteristic of isotropic material. On the other 
hand, textures characteristic of lyotropic lamellar liquid crystals (were seen with water/surfactant 
micrographs as shown in Figure 3A,B. These observations indicate that all the ME formulations were 
optically isotropic colloidal dispersions. 

 
Figure 3. Photomicrographs of samples under polarized light microscopy (A) Lamellar liquid crystals 
of Tween 80/water, (B) Lamellar liquid crystals of Cremophor EL/water, (C) Microemulsion. 

The droplet size plays a significant role in the microemulsion stability and performance because 
it determines the rate and extent of drug release as well as in vivo absorption. It has been reported 
that the smaller droplet size of the emulsion provides better drug absorption by increasing the 
interfacial area in contact with biological membranes [26,27]. Table 1 shows the results of particle size 
analysis, polydispersity index (PDI) and zeta potential of prepared microemulsions. All ME 
formulations showed an average droplet size of more than 200 nm except T1 which showed the 
smallest droplet size of 190.4 ± 2.31 nm. The overall higher droplet size could be due to the fact that 
both surfactants used in ME formulations, Tween 80 and Cremophor EL, have alkyl carbon chain 
lengths of 18, which is similar to the long chain (C18) of unsaturated α-linolenic acid (oil). This finding 
was consistent with a previous study which reported that oil with carbon chain length similar to that 
of surfactant increases the average droplet size [28–30]. The PDI value for all formulations was less 
than 1 which is desirable (Table 1). The lower PDI value indicates a higher uniformity of the droplet 
size in the formulation [31]. Zeta potential is related to the stability of colloidal dispersions. Zeta 
potential indicates the degree of repulsion between adjacent, similarly charged particles in 
dispersion. When the zeta potential value is high, the electrostatic repulsive forces between the 
droplets increase which prevents the coalescence of the droplets. So, colloids with high zeta potential 
(negative or positive) are electrically stabilized [32,33]. The mean zeta potential value of the prepared 
microemulsions was consistently negative and ranged between −0.025 ± 0.011 and −0.394 ± 0.035 mV, 
which was generally of smaller magnitude (Table 1). These low zeta potential values could be due to 
the larger droplet sizes. The use of non-ionic surfactants, Tween 80 and Cremophor EL also lowers 
the zeta potential values [34]. Negative zeta potential measurements indicate that the interface is 
negatively charged. This negative charge imparts stability to the ME system by producing 
electrostatic repulsive forces of head groups which thereby hindering aggregation with nearby 
droplets [35]. 

The pH values of all ME formulations are given in Table 1. The pH of all ME formulation ranged 
between 4.66 and 6.23, which is within the normal pH range of marketed ophthalmic solutions. The 
normal pH value is one of the formulation considerations that may help reducing the eye irritation 
produced upon instillation. 

All microemulsion samples were found to have viscosities in the range of 56 to 101 mPa∙S.  
Table 1 gives the viscosity measurements for all ME formulations. These results indicate that 
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formulation C2 showed the highest viscosity. It was observed that there was an increase in viscosity 
with an increase in the water content and surfactant:co-surfactant ratio. 

The drug content in the ME formulations was measured using the previously published Gas-
chromatography (GC) method [17]. The percent drug content of all ME formulations is shown in 
Table 1. The amount of the FA in all ME formulations ranged from 92% to 99% of the original amount 
which indicates that the FA is stable when loaded into these ME systems. 

To evaluate the stability of the selected ME formulations, they were kept at different 
temperatures (4 °C, 25 °C and 40 °C) for 8 weeks and were evaluated periodically. Results of stability 
studies indicated that after 8 weeks, there were no significant changes (p value > 0.05) in the initial 
droplet size and drug content of the microemulsions stored at 4 °C and 25 °C and there were no sign 
of phase separation or drug precipitation on storage. However, slight changes were observed in the 
initial droplet size and drug content of the microemulsions stored at 40 °C. This might be due to the 
oxidative degradation of the linolenic acid in the MEs at higher temperatures as suggested earlier by 
[36]. The results are shown in Figures 4 and 5. Earlier reports [37] suggested the autoxidation of 
linolenic acid into hydroperoxides at carbon 9, 12, 13 and 16. Also secondary oxidation products such 
as propanal, 2-butenal and 2-pentenal were reported. The relative autoxidation rate of linolenic acid 
ranges between 1:40 and 50:100 according to the oxygen update [37]. According the current results it 
is evident that the stability of linolenic acid in the microemulsion formulations is high. Possibly the 
ME formulations reduced the oxygen contact with the fatty acid, hence protected the FA from 
degradation caused by autoxidation. 

 
Figure 4. Particle size of microemulsion formulations at 0, 1 week, 4 weeks and 8 weeks interval at 4 
°C, 25 °C and 40 °C. Mean ± SD, n = 3.  
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Figure 5. Drug content of microemulsion formulations after 8 week storage at various temperatures. 
Mean ± SD, n = 3. 

2.3.2. Contact Angle Measurements 

Therapeutic activity of the ophthalmic microemulsions depends on the extent to which the fluid 
wets and covers the corneal surface. Spreading is a fundamental phenomenon in which the fluid 
phase is displaced completely or partially on the surface of a solid. One of the most useful parameters 
that is typically used to describe spreading and wetting properties of ophthalmic MEs is the contact 
angle of the liquid on the hydrophilic corneal surface [38]. The surface of the cornea is typically 
covered with a hydrophilic mucoid or mucin layer of the tear film to transform the hydrophobic 
corneal surface into a hydrophilic surface [39]. Therefore, an ophthalmic microemulsion needs to both 
wet and spread on the corneal surface and then penetrate to maximize the therapeutic activity. The 
contact angle depends on surface tension of the liquid, surface free energy (interfacial tension 
between the liquid and the solid) and the interaction forces between the liquid and solid surface and 
between the liquid molecules themselves. If adhesive forces between the solid surface and the liquid 
are stronger, the droplet will completely spread out on the solid surface resulting in smaller contact 
angle. If the cohesive forces within the liquid drop (i.e. hydrogen bonds and Van der Waals forces) 
are stronger, the droplet will avoid contact with the solid surface resulting in larger contact angle 
[40]. If the contact angle is low, the fluid will spread to cover or “wet” a larger area of the surface. If 
the contact angle is high, the fluid will form a compact, self-contained droplet on the surface [41]. The 
results of contact angle measurements are given in Table 1. The contact angle of all ME formulations 
ranged from 12.2° to 25.2° on hydrophilic surface and from 25.9° to 43.8° on hydrophobic surface. 
These results indicate that all MEs had relatively low contact angle demonstrating good spreading 
ability. These results also revealed that all MEs possessed larger contact angle on hydrophobic surface 
as compared to hydrophilic surface. This could be due to the fact that interfacial tension is high on a 
hydrophilic surface and low on a hydrophobic surface. The high interfacial tension causes low 
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interaction between the hydrophobic solid surface and ME droplet (low surface energy) which results 
in high contact angle, hence the poor spreading ability. 

Overall results indicate that contact angle values for all MEs did not exceeded 90° on both 
hydrophilic and hydrophobic surfaces (Table 1), confirming that all MEs have the ability to cover and 
wet the ocular surface which could potentially translate to increased therapeutic effect. 

2.3.3. Self-Diffusion NMR 

Self-diffusion NMR spectroscopy (DOSY) is a powerful technique for characterisation of 
microemulsion structures. It is used to distinguish between bicontinuous and droplet type 
microemulsions [42,43]. It utilizes apparent translational diffusion coefficients in characterizing the 
microemulsions [44,45]. The diffusion coefficients (D) were obtained from the slope of the equation: 

ln ൬I୥I଴൰  = − [γ2g2 δ2 ൬∆− δ3൰ ]D (1) 

The characteristic NMR peaks for fatty acid (α-linolenic acid), surfactants (Tween 80 and 
Cremophor EL), Transcutol P and water. The proton signal of the terminal methyl group of fatty acid, 
surfactants and Transcutol P appeared at around 1.02 ppm, 0.95 ppm and 1.25 ppm, respectively, 
whereas a small peak at approximately 4.7 ppm assigned to water. 

The self-diffusion coefficients of fatty acid, surfactants (Tween 80 and Cremophor EL), 
Transcutol P and water in ME systems were around 10−1 m2/s as shown in Figure 6A,B. These low 
self-diffusion coefficient values indicate that the bicontinuous microemulsions were not likely to have 
formed. The self-diffusion coefficients of pure components were also calculated as shown in Figure 
6A,B. Then the self-diffusion coefficient values of components in all ME samples were compared with 
that of the pure component to determine the microemulsion type [42,43]. 

If the ME system is of a droplet-type, the self-diffusion of the components of the internal pseudo-
phase is determined by the diffusion of the droplet itself and therefore will be slower than that of the 
pure components. In a bicontinuous microemulsion, where both oil and water are forming larger 
domains, the diffusion of both components is high and of the same magnitude as that of the pure 
components [42,43]. 

These results indicate that self-diffusion coefficients of fatty acid, surfactants, Transcutol P and 
water in the MEs were lower than that of the pure components. These results suggest the formation 
of droplet type microemulsions as there is no evidence on the presence of a bicontinuous 
microstructure from the current NMR data. These results also indicate that the self-diffusion 
coefficient of fatty acid and surfactants further decreased upon increase of water concentration. The 
self-diffusion coefficient of water was higher than that of α-linolenic acid, Tween 80, Cremophor EL 
and Transcutol P in all systems but a stronger increase in the water self-diffusion coefficient started 
at samples containing 30% w/w of water or more. This suggests a possible change from water-in-oil 
to oil in water at this point.  
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Figure 6. The self-diffusion coefficients of each component in α-Linolenic acid/water/Tween 
80:Transcutol P(1:1) systems containing various concentrations of water from 0 to 50% (w/w) (A) and 
each component in α-Linolenic acid/water/CR-EL:Transcutol P(4:1) systems containing various 
concentrations of water from 0 to 50% (w/w) (B). 

2.3.4. Bovine Corneal Opacity and Permeability (BCOP) Test  

The bovine corneal opacity and permeability (BCOP) test measures changes in corneal opacity, 
determined by changes in light transmission and permeability, measured by increases in 
permeability to fluorescein, as a result of exposure to a test substance. The opacity and permeability 
values are used to calculate an in vitro score, in order to reflect the ocular irritation potential [46]. 
This test is well suited to identify substances moderately and severely irritating to the eye [47]. Figure 
7 shows the cumulative bovine eye test scores for the controls and test substances. Apart from 
Transcutol P and formulation T1 and C1, the average cumulative scores calculated for individual 
components (Tween 80, Cremophor EL and α-linolenic acid) and MEs (T2, T3, C2, C3) were found to 
be less than 0.5 (<0.5) indicating that they are non-irritating. These test substances did not show any 
signs of corneal injuries with no changes in corneal opacity, corneal permeability, or epithelial 
damage]. Transcutol P and ME formulation T1 and C1 with an average cumulative score of 1.5, 0.8 
and 0.8, respectively, indicated minor irritation based on corneal opacity and fluorescein 
permeability. 
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Figure 7. Cumulative BCOP scores of NaOH (strong positive control), Acetone (moderate positive 
control), Normal Saline (negative control), Tween 80, Cremophor EL, Transcutol P, and the 
microemulsion formulations; T1, T2, T3 and C1, C2 and C3. Results are expressed as mean values ± 
SD, n = 3. 

The healthy cornea is transparent and completely impermeable to fluorescein dye, due to the 
exclusive tight junctions of the corneal epithelium. Figure 8 show photographs of corneal opacity and 
fluorescein permeability for controls and test materials. These results showed that NaOH induced 
marked opacity and complete fluorescein staining of cornea whereas saline (negative control) caused 
no corneal opacity or staining as shown in Figure 8. Transcutol P caused slight irritation manifested 
as weak corneal opacity and permeability. Two formulations (T1 and C1) also exhibited slight corneal 
opacity and fluorescein staining which could be due to the high percentage of surfactant:co-surfactant 
in T1 and C1 (88% and 86%, respectively). Overall, the tested formulaions did not cause any strong 
corneal irritation signs and as such were regarded as safe to further test in live animals. 

 
Figure 8. Degree of corneal opacity and fluorescein permeability for Tween 80, Cremophor EL, 
Transcutol P, NaOH and the microemulsion formulations; T1, T2, T3 and C1. 
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2.3.5. Hen’s Egg Test Chorioallantoic Membrane (HET-CAM) 

The HET-CAM provides invaluable information on the conjunctival irritation potential of the 
test substance. The CAM responds to injury with a complete inflammatory process similar to that 
induced by the conjunctival tissue of the eye [46]. After the treatment, the surface of the CAM was 
observed for any changes at different time points (after 30 s, 1 min, 2 min and 5 min) and the average 
cumulative HET-CAM test scores for the controls and test materials were calculated (Figure 9). The 
average cumulative scores calculated for individual components (Tween 80, Cremophor EL and α-
linolenic acid) and MEs (T2, C2, C3) were found to be less than 0.9 (<0.9). These results reveal that 
these tested substances are practically non-irritant when applied to the surface of the CAM. In 
contrast, Transcutol P and three ME formulation (T1, T3 and C1) showed slight irritant effects with 
an average cumulative score of 4.6, 1.2, 1.4 and 1.1, respectively (Figure 9). The results of the ocular 
irritation of Transcutol P are in agreement with the findings of Liu et al. who found that Transcutol 
P causes slight irritation at a concentration of 0.05% without any visible ocular damage or abnormal 
clinical signs involving the cornea, iris, or conjunctivae at all concentrations [48]. 

 
Figure 9. Cumulative HET-CAM scores of NaOH, Acetone, Normal Saline, Tween 80, Cremophor EL, 
Transcutol P, and the microemulsion formulations; T1, T2, T3 and C1, C2 and C3. Results are 
expressed as mean values ± SD, n = 3.  

Figure 10 shows the effects induced by the tested formulations and the selected controls on the 
surface of the CAM before and after treatment for 5 min of contact. These results showed that NaOH 
(positive control) induced major damage and caused complete lysis and degradation of immature 
blood vessels when applied to the surface of the CAM (Figure 10A), whereas the normal saline 
showed no effect (Figure 10B). Transcutol P caused slight degradation of blood vessels (Figure 10C). 
Three microemulsion formulations (T1, T3 and C1) developed minimal irritation potential manifested 
as very slight lysis of blood vessels after 5 min as shown in Figure 10E–G) respectively. Overall, none 
of the tested formulations caused any major damage to the blood vessels. These results indicate that 
all of the tested formulations did not show strong irritant effect when applied to the surface of the 
CAM. 
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Figure 10. Effect of controls and test substances on the surface of the chorioallantoic membrane (CAM) 
after treatment for 5 min (A) NaOH, (B) Normal saline, (C) Transcutol P, (D) Tween 80, (E) 
microemulsion (T1), (F) microemulsion (T2), (G) microemulsion (T3), (H) microemulsion (C1), (I) 
microemulsion (C3), (J) microemulsion (C2).  

2.3.6. Antibacterial Activity of Microemulsions against N. gonorrhoeae and S. aureus 

In this study, the individual components (α-linolenic acid, Tween 80, Cremophor EL and 
Trascutol P) and six formulated MEs were tested against N. gonorrhoeae and S. aureus (Table 2). The 
results showed that both N. gonorrhoeae and S. aureus were susceptible to all ME formulations. Fatty 
acids are known to kill or inhibit the growth of bacteria by disrupting cell membrane which is caused 
by interference with the electron transport chain and the disruption of oxidative phosphorylation. 
The electron transport chain is located in the inner membrane of bacterium and is essential source of 
energy for bacterium. The disruption of electron transport chain is caused either by directly binding 
of FAs to the electron carriers of the electron transport chain or by insertion into the inner membrane 
so the ability of the electron transport chain to transfer electrons is impaired. This result in reduced 
proton gradient and membrane potential which results in reduced ATP production, an essential 
source of energy for bacterium. FAs may also inhibit the bacterial growth by cell lysis, inhibition of 
enzyme activity, impairment of nutrient uptake and the generation of toxic peroxidation and 
autoxidation products [49]. Among the individual components Tween 80, Cremophor EL and 
Transcutol P exhibited antibacterial activity against only S. aureus. These results also indicate that T3 
(35% α-linolenic acid and 60% surfactant:co-surfactant) and C3 (35% α-linolenic acid and 60% 
surfactant:co-surfactant) exhibited the larges antibacterial zones of inhibition against both microbial 
agents compared to other formulations. T1, T2, C1 and C2 showed medium antibacterial zone against 
S. aureus whereas these MEs showed lowest antibacterial zone against N. gonorrhoeae. Overall, all ME 
formulations showed strong inhibitory effect against S. aureus compared to N. gonorrhoeae. This might 
be due to the fact that all excipients (Tween 80, Cremophor EL, Transcutol P) showed strong 
antimicrobial effect against S. aureus compared to N. gonorrhoeae. 

Table 2. Growth inhibition zone diameter of three selected α-linolenic acid based ME formulations 
and individual components against N. gonorrhoeae and S. aureus mean ± SD% (n = 3). 

Formulation 
Zone of Inhibition against

N. gonorrhoeae 
Zone of Inhibition against

S. aureus 
T1 6.5 ± 0.7 mm 14.5 ± 0.7 mm 
T2 8.5 ± 0.7 mm 15 ± 1.00 mm 
T3 22 ± 1.00 mm 21.5 ± 0.7 mm 
C1 6.75 ± 0.4 mm 17.75 ± 0.4 mm 
C2 8 ± 1.00 mm 16.2 ± 0.8 mm 
C3 22.75 ± 0.4 mm 22.25 ± 1.06 mm 

Active ingredients 
Tween 80 0.00 16.0 ± 1.4 mm 

Cremophor–EL 0.00 11.5 ± 0.7 mm 
Transcutol P 0.00 7.5 ± 0.7 mm 

α-linolenic acid (1 mM) 10.2 ± 0.6 7.5 ± 0.6 
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3. Materials and Methods 

3.1. Materials 

Tween 80, Tween 20, Transcutol P, Cremophor EL, PEG 400 and α-linolenic acid were purchased 
from Sigma (Sigma Aldrich, Dorset, UK). The derivatisation reagent, BCl3-methanol 12% w/w (12% 
boron trichloride in methanol), n-hexane (HPLC grade, purity, ≥99%) were also purchased from 
Sigma (Sigma Aldrich, Dorset, UK). Labrasol, Capryol 90 and Labrafil M2125 were kindly gifted from 
Gattefosse Company (Bracknell, UK). 

3.2. Microorganisms 

Fresh cultures of N. gonorrhoeae strain NCCP11945 were grown on GC agar (Oxoid, Basingstoke, 
UK) at 37 °C in an atmosphere of 5% CO2 for 24 h. The colonies were removed from the culture plate 
with a loop and suspended into a 3 mL GC broth until cloudy. The culture was mixed well and 
standard density was adjusted to 107 CFU per mL.  

Fresh cultures of S. aureus strain NCTC06571 were grown on nutrient agar (Oxoid, Basingstoke, 
UK) at 37 °C for 24 h. The colonies were removed from the culture plate with a loop and suspended 
into a 3 mL Ringer solution until cloudy. The culture was mixed well and the standard density was 
adjusted to 0.5 McFarland (1.5 × 108 CFU per mL). 

3.3. Preformulation Studies 

3.3.1. Excipient Selection (Surfactants & Co-Surfactants) 

The selection of suitable excipients is essential in the development of microemulsion. Excipients 
having maximum solubilizing potential for the fatty acid are selected for the formulation of the α-
linolenic acid based ME. Selection of excipients was done by reviewing the published literature. 
Surveying the literature, a range of excipients was checked for use in ophthalmic preparations. Tween 
20, Tween 80, Cremophor EL, Capryol 90, Labrasol and Labrafil M2125 were selected as surfactants 
and Transcutol P and PEG 400 were selected as co-surfactants. 

3.3.2. Determination of Saturation Solubility of α-Linolenic Acid in Different Surfactants and Co-
Surfactants 

The solubility of α-linolenic acid in various surfactants and co-surfactants was determined using 
a 96 well plate method reported by Bharate et al. [50]. Stock solutions of fatty acid were prepared in 
methanol (1 µg/mL to 1800 µg/mL). 250 µL of each of stock solution was transferred into the 96-well 
plates and the solvent was evaporated then 250 µL of different surfactants and co-surfactants was 
added into the wells and plates were shaken horizontally at 600 rpm for 5 h at room temperature. 
The plates were then centrifuged at 3000 rpm for 15 min and then samples were analysed by UV 
spectrophotometer at 350 nm. Each experiment was performed in triplicate. The solubility of α-
linolenic acid was also determined in different ratios of surfactant and co-surfactant as 1:1, 1:4 and 
4:1 using 96 well plate method reported above. 

3.3.3. Selection of Surfactant & Co-Surfactant Blend 

Based on the individual solubility studies, Tween 80 and Cremophor EL were selected as 
surfactants and Transcutol P was selected as co-surfactant. The solubility of α-linolenic acid was also 
determined in various surfactants and co-surfactants mixtures. The individual non-ionic hydrophilic 
surfactant was blended with the selected co-surfactant in ratios of 1:1, 1:4 and 4:1 (w/w). 
  



Nanomaterials 2018, 8, 51  16 of 22 

 

3.3.4. Construction of Pseudo-Ternary Phase Diagram 

The pseudo-ternary phase diagrams were constructed to determine the concentration range of 
all components (α-linolenic acid/surfactant/co-surfactant/water) in which they form a 
microemulsion. The surfactant and co-surfactant were mixed at 1:1 and 4:1 ratio. Different mixtures 
of α-linolenic acid and surfactant/co-surfactant mixtures were prepared at weight ratios of 0:10, 
0.5:9.5, 1:9, 2:8, 3:7, 4:6, 5:5, 6:4, 7:3, 8:2 and 9:1, respectively. The pseudo-ternary phase diagrams were 
constructed by using the phase diagram by micro-plate dilution (PDMPD) method, a novel technique 
based on the water titration method [51]. The microtitre plates were filled by pipette in accordance 
with the filling scheme: The wells A1 to D5 were filled in two steps. Fatty acids/surfactants/co-
surfactants mixture was filled into the wells with 200 µL at the first well and down by increments of 
5 µL to reach 0 µL. Then, water was added to each well to make a final volume of 200 µL. After the 
plates had been filled, they were sealed and then shaken for 24 h at room temperature (25 °C). After 
that, the microplates were characterised by measuring absorbance using microplate reader at 600 nm 
and by making a visual evaluation of the isotropy and the border between the homogeneous or the 
heterogeneous system. 

The percentage of transmittance of the microemulsion formulations was determined using the 
following formula, where T is transmittance and A is absorbance. 

%T = antilog (A − 2) (2) 

3.3.5. Preparation of Microemulsion Formulations 

According to microemulsion region in the phase diagram, ME formulations were selected at 
different component ratios. α-linolenic acid (ALA) was used as an oil phase. Tween 80 and 
Cremophor EL were selected as surfactants. Transcutol P was selected as co-surfactant with water as 
aqueous phase. Surfactant and co-surfactant were mixed at different mass ratios (1:1, 4:1). α-linolenic 
acid was dissolved under stirring in mixture of S/CoS. Then, the appropriate amount of water was 
added to the mixture drop by drop with continuous stirring. 

3.3.6. Characterization of Microemulsions 

Visual Evaluation 

Microemulsions were first monitored for transparency, signs of phase separation and 
birefringence with the aid of visual evaluation. Visual evaluation helps to differentiate between 
microemulsions and other two phase systems such as emulsions. Visually microemulsions are 
transparent or translucent, whereas emulsions are turbid. 

After visual inspection, the formulations which have better clarity and no phase separation were 
confirmed for selection as clarity of the formulation is the initial priority of the microemulsion [52]. 

Polarized Light Microscopy 

Plane polarized light microscopy was used to distinguish between pure microemulsions and 
microemulsions containing lamellar liquid crystals. ME samples were prepared by placing a drop of 
ME between a coverslip and a glass slide and were then examined using cross-polarized light 
microscopy (Polarizing Microscope RPL-55 Series, Radical Instruments, Ambala Cantt, India). The 
isotropic and anisotropic behaviour of the samples was observed. Isotropic materials such as 
microemulsion, in contrast to anisotropic liquid crystals, do not interfere with the polarized light and 
the field of view remains dark because the analyser absorbs light passing through the polarizer.  

Droplet Size and Zeta Potential Measurement 

The droplet size, polydispersity index (PDI) and zeta potential (ZP) of MEs were measured by 
dynamic light scattering using a Zetasizer (Malvern instruments Ltd., Malvern, UK). ME samples 
were analysed in triplicate at 25 °C. 
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Determination of pH 

The pH values for microemulsions were determined at 25 °C by pH meter (JENWAY model 
3305, JENWAY Ltd., Stone, UK). All measurements were carried out in triplicate. 

Viscosity Measurements 

Viscosity of samples was measured at 25 °C with a Brookfield viscometer (DV-II+Pro Brookfield., 
Middleboro, MA 02346, USA) using spindle No. 34. With shear rate 50 rpm. Each measurement was 
performed in triplicate. 

Drug Content Determination 

Concentration and drug content of FA-based ME formulations were determined using the Gas 
Chromatography-Flame Ionization Detector (GC-FID) method [17]. ME samples were derivatised by 
using BCl3-methanol (12% w/w) in a water bath at 60 °C for 8 min. Then, samples were extracted with 
n-hexane (1–2 mL) by hand-shaking for 1 min until both layers were clear. The layers were allowed 
to settle and the upper (organic) layer was transferred into a clean vial. The organic layer containing 
fatty acid methyl esters (FAMEs) was dried by adding 500 mg of anhydrous sodium sulphate. Then, 
samples were analysed by the GC-FID method [17]. 

Contact Angle Measurements 

Contact angles of prepared microemulsions were measured with goniometer method [40].  
A 5 µL droplet of the microemulsion was placed on the surface of a plate and the image was 
immediately sent via the CCD camera to the computer for analysis. Contact angles were determined 
as the cosine (θ) of the contact angle (θ) between the ME droplet attached to the hydrophilic surface 
(dry glass slide) or hydrophobic surface (glass slide covered with parafilm) and the droplet. For all 
tests, the mean value of at least three replicate evaluations was reported. 

3.3.7. Stability Studies 

Physical and chemical stability testing of selected microemulsions were performed under the 
accelerated conditions in triplicate (n  =  3) to find out the stable microemulsions. For stability testing, 
microemulsions were kept at various temperatures (4 °C, 25 °C and 40 °C) for 8 weeks. The clarity, 
phase separation, particle size, zeta potential and drug content of tested microemulsions were 
determined at 0, 1 week, 4 weeks and 8 weeks [53]. 

3.3.8. Self-Diffusion NMR 

Self-diffusion NMR measurements were carried out at 600 MHz using a Bruker Avance DRX 
600 (Billerica, MA, USA) at 25 °C. Each sample was dissolved in D2O (internal standard) and filled 
into NMR tube. The self-diffusion coefficients of pure components were calculated. The self-diffusion 
coefficients of components in the microemulsion samples were compared with those of the single 
components to determine the type of microemulsion. The diffusion coefficients (D) were obtained 
from the slope of the Stejskal-Tanner equation [54]:  

ln ൬۷۷܏૙൰  = − [γ2g2 δ2 ൬∆− δ3൰ ]D (3) 

where Ig and I0 are intensities of the NMR signal in the presence and absence of field gradient pulses; 
γ is the gyromagnetic constant for 1 H; g is the duration of the z-gradient pulse; δ is the gradient 
strength; and Δ is the time interval between the gradient pulses. 

3.3.9. Antibacterial Activity of MEs against N. gonorrhoea and S. aureus 

The antimicrobial activity of prepared microemulsions and its individual components against 
N. gonorrhoea and S. aureus were checked using disc diffusion method [17,18]. Blank paper discs  
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(6 mm diameter) were loaded with 10 µL of the microemulsion formulations and its individual 
components and allowed to air-dry at room temperature. Nutrient agar plates were inoculated with 
bacterial suspension by dipping a sterile cotton wool swab into the suspension and spreading the 
inoculum evenly over the entire surface of the plates by swabbing in three directions. Plates were 
allowed to dry before applying discs. Then, the discs containing the test agents were applied to the 
surfaces of inoculated plates. Plates were inverted and incubated at 37 °C for 24 h to allow for bacterial 
growth. Inhibition zone diameters were measured in millimetres. All measurements were carried out 
in triplicate. 

3.3.10. Ocular Irritation Testing 

In this study, BCOP & HET-CAM tests were used to investigate the ocular irritation potential of 
prepared microemulsions and their ingredients. 

BCOP Test 

Bovine’s eyes acquisition and examination. Bovine eyes were obtained from a local slaughter 
house. The eyes were examined for epithelium detachment, corneal opacity and corneal 
vascularization. Eyes with corneal damage or abnormalities were discarded. 

Test substances. NaOH (0.5 M) was used as a positive control strong irritant, acetone as a 
moderate irritant and normal saline as a negative control [46]. Microemulsions and all used 
ingredients (α-linolenic acid, Tween 80, Cremophor EL and Transcutol P) were investigated for their 
corneal irritation potential using BCOP test. 

Irritation testing, scoring and classification. The eyes were held with small plastic cups (cornea 
upwards) in the humid atmosphere of a closed water bath at 37 °C + 0.5 °C for 10 min. A silicon O-
ring was carefully placed on the central part of the cornea. One drop of saline was applied inside the 
ring and eyes were equilibrated in a closed water bath for 5 min. Then the test substance was applied 
to the cornea inside the ring at a volume of 0.1 mL. After 30 s, the eyes were rinsed with approximately 
10 mL saline and further incubated in the closed water bath for 10 min. The extent of corneal injury 
was assessed by evaluating the opacity. Then sodium fluorescein solution (2% w/v and pH 7.4) was 
applied to the cornea and corneal permeability was assessed using examination lamp and cobalt blue 
filter and following the scoring systems [46] in Table 3. 

Table 3. Bovine eye scoring system. 

Opacity Score Fluorescein Permeability Score Cumulative Score Interpretation
None 0 None 0 ≤0.5 None 
Slight 1 Diffuse and weak 0.5 0.6–1.9 Slight 

Marked 2 Confluent and weak 1 2.0–4.0 Moderate 
Severe 3 Confluent and intense 1.5 >4 Severe 

Opaque 4 - - - - 

HET-CAM Test 

Preparation of the CAMs. CAMs were prepared following the protocol early described by 
Reference [18]. Briefly, freshly collected fertilised hen’s eggs were incubated at 37.5 °C ± 0.5 °C and 
66% ± 5% relative humidity (RH) for 3 days. During incubation, eggs were turned by hand five times 
per day to prevent the attachment of the embryo to one side of the egg. On day three, the eggshells 
were opened by cracking the underside of the egg against the edge of a plastic Petri dish. The content 
of the shell was then poured into a growing chamber. The growing chamber was made of a glass 
beaker over which a piece of cellophane membrane was attached and fixed in position using a circular 
plastic sleeve. Once in the growing chamber, each egg was examined for the viability of the embryo 
(intact CAM and yolk sac). Defective or non-viable eggs were discarded and only viable embryos 
with intact CAMs and yolk sacs were further incubated [46,55]. 
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NaOH (0.1 M) was used as a positive control strong irritant and normal saline as a negative 
control. All prepared microemulsions and excipients; (Tween 80, Transcutol P, PEG 400, α-linolenic 
acid) were tested for their ocular irritation potential. 

Irritation testing, scoring and classification. On day 10, 0.2 mL of the test substances was placed 
onto the CAM. For each test substance three eggs were used. After treatment with test substances, 
the blood vessels and capillaries were examined for the irritant effects of hyperaemia, haemorrhage, 
clotting and/or coagulation at different times post application [25,26]. A time dependent numerical 
score was then allocated to each test compound or formulation. The sum of the time dependent 
numerical scores for all three responses of hyperaemia, haemorrhage, clotting and/or coagulation 
gives a single numerical value (Table 4). The mean value of four tests allows for the assessment by a 
classification scheme similar to the Draize test [56]. 

Table 4. Irritation scores and interpretations used in HET-CAM test. 

 Score Cumulative Score Irritation Assessment
Effect 0.5 min 2 min 5 min 0–0.9 None 

Hyperaemia 5 3 1 1.0–4.9 Slight 
Haemorrhage 7 5 3 5.0–8.9 Moderate 
Coagulation 9 7 5 9.0–21.0 Severe 

3.3.11. Statistical Analysis 

All the experiments were repeated three times and data were expressed as the mean value ± SD. 
Statistical analysis was performed using the software Graphpad Prism (Graphpad Prism software, 
Inc., San Diego, CA, USA). Statistical data were analysed by one-way analysis of variance (ANOVA) 
and Student’s t test. Differences were considered significant for p < 0.05. 

4. Conclusions 

In this study, fatty acid based microemulsions were prepared and evaluated. The selection of 
surfactant and cosurfactants were selected after evaluating the saturation solubility of lineolenic acid 
in different systems while Pseudo-ternary phase diagrams were constructed to evaluate the regions 
of microemulsion. Nine different fatty acid-based microemulsions were prepared comprising of α-
linolenic acid as oil phase, Tween 80 and Cremophor EL as surfactant, Transcutol P as co-surfactant 
and water as aqueous phase. The prepared microemulsions were characterized, showing an average 
particle size around 250 nm and a pH of 5.5. The prepared ME formulations were isotropic colloidal 
dispersions and did not show any lamellar and hexagonal liquid crystals when examined using 
polarized light microscopy. 

All ME formulations were stable upon storage for 8 weeks without significant change in particle 
size and drug content as it is believed that the ME formulations protected the α-linolenic acid from 
autoxidation. All MEs exerted strong antimicrobial effects against N. gonorrhoeae and S. aureus 
without being irritant to the eye as suggested by the BCOP and HET-CAM studies. The study 
suggests that α-linolenic acid ME can be used as an effective and stable therapy for treatment of 
ophthalmia neonatorum conditions caused by Neisseria gonorrhoeae and Staphylococcus aureus. 

Author Contributions: Raid G. Alany, Lori A. S. Snyder, Adam Le Gresley, Ali A. Alkinani and Amr ElShaer 
conceived and designed the experiments; Ummara Butt and Ali A. Al-kinani performed the experiments; 
Ummara Butt analysed the data; Ali Alkinani, Adam Le Gresley and Lori Snyder contributed 
reagents/materials/analysis tools; Ummara Butt and Amr ElShaer wrote the paper. 

Conflicts of Interest: The authors declare no conflict of interest. 
  



Nanomaterials 2018, 8, 51  20 of 22 

 

References 

1. Di Bartolomeo, S.; Mirta, D.H.; Janer, M.; Rodriguez, M.R.; Sauka, D.; Magarinos, F.; De Torres, R.A. 
Incidence of Chlamydia trachomatis and other potential pathogens in neonatal conjunctivitis. Int. J. Infect. 
2001, 5, 139–143. 

2. Kellogg, D.S., Jr.; Peacock, W.L., Jr.; Deacon, W.E.; Brown, L.; Pirkle, D.I. Neisseria Gonorrhoeae. I. 
Virulence Genetically Linked to Clonal Variation. J. Bacteriol. 1963, 85, 1274–1279.  

3. Matejcek, A.; Goldman, R.D. Treatment and prevention of ophthalmia neonatorum. Can. Fam. Physician 
2013, 59, 1187–1190. 

4. Palafox, S.K.V.; Jasper, S.; Allyson, D.; Foster, S.C. Ophthalmia Neonatorum. J. Clin. Exp. Ophthalmol. 2011, 
2, 119, doi:10.4172/2155-9570.1000119. 

5. Laga, M.; Meheus, A.; Piot, P. Epidemiology and control of Gonococcal ophthalmia neonatorum. Bull. 
World Health Organ. 1989, 67, 471–477. 

6. Laga, M.; Plummer, F.A.; Piot, P.; Datta, P.; Namaara, W.; Ndinya-Achola, J.O.; Nzanze, H.; Maitha, G.; 
Ronald, R.A.; Pamba, O.H. Prophylaxis of Gonococcal and chlamydial ophthalmia neonatorum. A 
comparison of silver nitrate and tetracycline. N. Engl. J. Med. 1988, 318, 653–657. 

7. Nishida, H.; Resenberg, H.M. Silver nitrate ophthalmic solution and chemical conjunctivitis. Pediatrics 1975, 
56, 368–373. 

8. Bergsson, G.; Steingrimsson, O.; Thormar, H. In vitro susceptibilities of Neisseria Gonorrhoeae to fatty 
acids and monoglycerides. Antimicrob. Agents Chemother. 1999, 43, 2790–2792. 

9. Lepage, P.; Bogaerts, J.; Kestelyn, P.; Meheus, A. Single-dose cefotaxime intramuscularly cures gonococcal 
ophthalmia neonatorum. Br. J. Ophthalmol. 1988, 72, 518–520. 

10. Ohnishi, M.; Saika, T.; Hoshina, S.; Iwasaku, K.; Nakayama, S.; Watanabe, H.; Kitawaki, J. Ceftriaxone-
resistant Neisseria Gonorrhoeae, Japan. Emerg. Infect. Dis. 2011, 17, 148–149. 

11. Ohnishi, M.; Golparian, D.; Shimuta, K.; Saika, T.; Hoshina, S.; Iwasaku, K.; Nakayama, S.; Kitawaki, J.; 
Unemo, M. Is Neisseria Gonorrhoeae initiating a future era of untreatable Gonorrhoea? Detailed 
characterization of the first strain with high-level resistance to ceftriaxone. Antimicrob. Agents Chemother. 
2011, 55, 3538–3545. 

12. Bergsson, G.; Arnfinnsson, J.; Steingrimsson, O.; Thormar, H. In Vitro Killing of Candida albicans by Fatty 
Acids and Monoglycerides. Antimicrob. Agents Chemother. 2001, 45, 3209–3212. 

13. Sun, C.Q.; O’Connor, C.J.; Roberton A.M. Antibacterial actions of fatty acids and monoglycerides against 
Helicobacter pylori. FEMS Immunol. Med. Microbiol. 2003, 36, 9–17.  

14. Miller, R.D.; Brown, K.E.; Morse, S.A. Inhibitory action of Fatty acids on the growth of Neisseria 
Gonorrhoeae. Infect. Immun. 1977, 17, 303–312. 

15. Desbois, A.P.; Lawlor, K.C. Antibacterial Activity of Long-Chain Polyunsaturated Fatty Acids against 
Propionibacterium acnes and Staphylococcus aureus. Mar. Drugs 2013, 11, 4544–4557. 

16. Thormar, H.; Bergsson, G.; Gunnarsson, E.; Georgsson, G.; Witvrouw, M.; Steingrimsson, O.; De Clercq, E.; 
Kristmundsdottir, T. Hydrogels containing monocaprin have potent microbicidal activities against 
sexually transmitted viruses and bacteria in vitro. Sex. Transm. Infect. 1999, 75, 181–185. 

17. Butt, U.; ElShaer, A.; Snyder, L.A.; Chaidemenou, A.; Alany, R.G. Fatty acid microemulsion for the 
treatment of neonatal conjunctivitis: Quantification, characterisation and evaluation of antimicrobial 
activity. Drug Deliv. Transl. Res. 2016, 6, 722–734. 

18. Snyder, L.; Churchward, C.; Alany, R.; Kirk, R.S.; Walker, T. Prevention of ophthalmia neonatorum from 
‘Neisseria gonorrhoea’ using a fatty acid-based formulation. mBio 2017, 8, doi:10.1128/mBio.00534-17. 

19. Keenan, J.; Eckert, S.; Rutar, T. Cost analysis of povidone-iodine for ophthalmia neonatorum prophylaxis. 
Arch. Ophthalmol. 2010, 128, 136–137. 

20. Patel, K.; Sarma, V.; Vavia, P. Design and evaluation of Lumefantrine—Oleic acid self-nanoemulsifying 
ionic complex for enhanced dissolution. DARU J. Pharm. Sci. 2013, 21, 1–10. 

21. Mosca, M.; Cuomo, F.; Lopez, F.; Ceglie, A. Role of emulsifier layer, antioxidants and radical initiators in 
the oxidation of olive oil-in-water emulsions. Food Res. Int. 2013, 50, 377–383. 

22. Narang, A.S.; Delmarre, D.; Gao, D. Stable drug encapsulation in micelles and microemulsions. Int. J. 
Pharm. 2007, 345, 9–25. 

23. Junyaprasert, V.B.; Boonme, P.; Wurster, D.E.; Rades, T. Aerosol OT microemulsions as carriers for 
transdermal delivery of hydrophobic and hydrophilic local anesthetics. Drug Deliv. 2008, 15, 323–330. 



Nanomaterials 2018, 8, 51  21 of 22 

 

24. El Maghraby, G.M. Transdermal delivery of hydrocortisone from eucalyptus oil microemulsion: Effects of 
cosurfactants. Int. J. Pharm. 2008, 355, 285–292. 

25. Djekic, L.; Primorac, M.; Jockovic, J. Phase behaviour, microstructure and ibuprofen solubilization capacity 
of pseudo-ternary non-ionic microemulsions. J. Mol. Liq. 2011, 160, 81–87. 

26. Tarr, B.D.; Yalkowsky, S.H. Enhanced intestinal absorption of cyclosporin in rats through the reduction of 
emulsion droplet size. Pharm. Res. 1989, 6, 40–43. 

27. Liu, L.; Pang, X.; Zhang, W.; Wang, S. Silymarin-loaded self microemulsifying drug delivery systems. Asian 
J. Pharm. Sci. 2007, 2, 150–160. 

28. James-Smith, M.A.; Alford, K.; Shah, D.O. A novel method to quantify the amount of surfactant at the 
oil/water interface and to determine total interfacial area of emulsions. J. Colloid Interface Sci. 2007, 310, 590–
598. 

29. Patist, A.; Chhabra, V.; Pagidipati, R.; Shah, R.; Shah, D.O. Effect of chain length compatibility on micellar 
stability in sodium dodecyl sulfate/alkyltrimethylammonium bromide solutions. Langmuir 1997, 13, 432–
434.  

30. Adhikary, T.P.; Chowdhury, P.; Chakravorti, S. Modulation of photophysics of 2-hydroxy-1-
naphthaldehyde in non-ionic micelles. Chem. Phys. Lett. 2007, 442, 504–510. 

31. Patel, R.B.; Patel, M.R.; Parikh, J.R.; Solanki, A.B.; Patel, B.G. Effect of formulation components on the in 
vitro permeation of microemulsion drug delivery system of fluconazole. AAPS Pharm. Sci. Tech. 2009, 10, 
917–923. 

32. Gupta, S.; Kesarla, R.; Omri, A. Formulation Strategies to Improve the Bioavailability of Poorly Absorbed 
Drugs with Special Emphasis on Self-Emulsifying Systems. ISRN Pharm. 2013, 2013, 1–16. 

33. Yadav, P.S.; Yadav, E.; Verma, A.; Amin, S. Development, Characterization and Pharmacodynamic 
Evaluation of Hydrochlorothiazide Loaded Self-Nanoemulsifying Drug Delivery Systems. Sci. World J. 
2014, 2014, 1–10. 

34. Niculae, G.; Lǎcǎtuşu, I.; Badea, N.; Opera, O.; Meghea, A. Optimization of lipid nanoparticles composition 
for sunscreen encapsulation. U.P.B. Sci. Bull. Ser. B. 2013, 75, 79–92. 

35. Gupta, S.; Bansal, B.; Ali, J.; Gabrani, R.; Dang, S. Development and Characterization of Polyphenon 60 and 
Caffeine Microemulsion for Enhanced Antibacterial Activity. BioMed Res. Int. 2014, 2014, 1–7.  

36. Choe, E.; Min, D. Mechanisms and Factors for Edible Oil Oxidation. Compr. Rev. Food Sci. Food Saf. 2006, 5, 
169–186. 

37. Allen, R.R.; Jackson, A.; Kummerow, F.A. Factors which affect the stability of highly unsaturated fatty 
acids. I. Differences in the oxidation of conjugated and nonconjugated linoleic acid. J. Am. Oil Chem. Soc. 
1949, 26, 395–399. 

38. Wang, W.; Wei, H.; Du, Z.; Tai, X.; Wang, G. Formation and Characterization of fully dilutable 
microemulsion with fatty acid methyl esters as oil phase. ACS Sustain. Chem. Eng. 2015, 3, 443−450, 
doi:10.1021/sc500667n. 

39. Montgomery, T.M. Anatomy, Physiology & Pathology of the Human Eye: The Cornea. Available online: 
http://www.tedmontgomery.com/the_eye/cornea.html (accessed on 25 July 2017). 

40. Yuan, Y.; Lee, T.R. Contact Angle and Wetting Properties: Surface Science Techniques; Springer Series in Surface 
Sciences; Springer: Berlin, Heidelberg/Germany, 1998; Volume 51, pp. 3–34. 

41. Kwok, D.Y.; Neumann, A.W. Contact angle techniques and measurements. In Surface Characterization 
Methods: Principles, Techniques and Applications; Milling, A.J., Ed.; Marcel Dekker: New York, NY, USA, 1999; 
p. 37.  

42. Boonme, P.; Krauel, K.; Graf, A.; Rades, T.; Junyaprasert, V.B. Characterisation of microstructures formed 
in isopropyl palmitate/water/Aerosol OT: 1-butanol (2:1) system. Pharmazie 2006, 61, 927–932. 

43. Boonme, P.; Krauel, K.; Graf, A.; Rades, T.; Junyaprasert, V.B. Characterization of Microemulsion Structures 
in the Pseudoternary Phase Diagram of Isopropyl Palmitate/Water/Brij 97:1 Butanol. AAPS Pharm. Sci. Tech. 
2006, 7, E1–E6. 

44. Liu, H.; Wang, Y.; Lang, Y.; Yao, H.; Dong, Y.; Li, S. Bicontinuous cyclosporin a loaded water-AOT/Tween 
85-isopropylmyristate microemulsion: Structural characterization and dermal pharmacokinetics in vivo. J. 
Pharm. Sci. 2009, 98, 1167–1176. 

45. Hathout, R.M.; Woodman, T.J. Applications of NMR in the characterization of pharmaceutical 
microemulsions. J. Control Release 2012, 161, 62–72. 



Nanomaterials 2018, 8, 51  22 of 22 

 

46. Abdelkader, H.; Ismail, S.; Hussein, A.; Wua, Z.; Al-Kassasa, R.; Alany, R.G. Conjunctival and corneal 
tolerability assessment of ocular naltrexone noisome and their ingredients on the hen’s egg chorioallantoic 
membrane and excised bovine cornea models. Int. J. Pharm. 2012, 432, 1–10. 

47. Shafaie, S.; Hutter, V.; Cook, M.T., Brown, M.B., Chau, D.Y.S. In Vitro Cell Models for Ophthalmic Drug 
Development Applications. Biores. Open Access 2016, 5, 94–108. 

48. Liu, Z.; Li, J.; Nie, S.; Guo, H.; Pan, W. Effects of Transcutol P on the corneal permeability of drugs and 
evaluation of its ocular irritation of rabbit eyes. J. Pharm. Pharmacol. 2006, 58, 45–50. 

49. Desbois A.P.; Valerie, J.S. Antibacterial free fatty acids: Activities Mechanism of action and Biotechnological 
potential. Appl. Microbiol. Biotechnol. 2010, 85, 1629–1642. 

50. Bharate, S.S.; Vishwakarma, R.A. Thermodynamic equilibrium solubility measurements in simulated fluids 
by 96-well plate method in early drug discovery. Bioorg. Med. Chem. Lett. 2015, 25, 1561–1567. 

51. Schmidts, T.; Nocker, P.; Lavi, G.; Kuhlmann, J.; Czermak, P.; Runkel, F. Development of an alternative, 
time and cost saving method of creating pseudoternary diagrams using the example of a microemulsion. 
Colloids Surf. A Physicochem. Eng. Asp. 2009, 340, 187–192.  

52. Patel, R.B.; Patel, M.R.; Bhatt, K.K.; Patel, B.G. Formulation and evaluation of Microemulsion based Drug 
Delivery system for intra nasal administration of Olanzapine. Int. J. Biomed. Pharm. Sci. 2012, 7, 20–27. 

53. European Medicines Agency. Stability Testing on New Drug Substances and Products. In Proceedings of the 
International Conference on Harmonization Guidance for Industry Q1A (R2); Geneva International Federation 
of Pharmaceutical Manufacturers & Associations: Geneva, Switzerland, 2000. 

54. Stejskal, E.O.; Tanner, J.E. Spin diffusion measurements: Spin echoes in the presence of a time dependent 
field gradient. J. Chem. Phys. 1965, 42, 288–292. 

55. Alany, R.G.; Rades, T.; Nicoll, J.; Tucker, I.G.; Davies, N.M. W/O microemulsions for ocular delivery: 
Evaluation of ocular irritation and precorneal retention. J. Control. Release 2006, 111, 145–152. 

56. Luepke, N.P. Hen’s egg chorioallantoic membrane test for irritation potential. Food Chem. Toxicol. 1985, 23, 
287–291. 

© 2018 by the authors. Submitted for possible open access publication under the  
terms and conditions of the Creative Commons Attribution (CC BY) license 
(http://creativecommons.org/licenses/by/4.0/). 

 


