Understanding and measuring flow in aortic stenosis with MRI

Kieran Robert O’Brien

Supervised by Associate Professor Alistair Young in collaboration with
Associate Professor Brett Cowan and Dr Matthew Robson

This thesis, submitted in partial fulfilment of the requirements for a
Doctor of Philosophy degree,
in Bioengineering,
The Auckland Bioengineering Institute,
The University of Auckland,
15th June 2009

is entirely my own work and, except where otherwise indicated,
describes my own research.
This thesis is dedicated to my family

Strongest hand uppermost
Abstract

In patients with aortic stenosis, accurate assessment of severity with echocardiography is central to surgical decision making. But, when image quality is poor or equivocal results obtained, another robust non-invasive technique would be invaluable. Cardiac magnetic resonance (CMR) may be a useful alternative.

Phase contrast CMR can measure flow and velocity, therefore it is theoretically possible to estimate the main determinant of severity aortic valve area, using the continuity approach. However, it was found that the phase contrast estimate of stroke volume, sampled in the stenotic jet, systematically underestimated left ventricular stroke volume. This underestimation was greater with increasing aortic stenosis severity.

Critical clinical treatment decisions depend on the ability to reliably differentiate between patients with moderate and severe aortic stenosis. To achieve accurate estimation of aortic valve areas the velocity and flow data obtained in these turbulent, high velocity jets must be accurate.

In this thesis, non-stenotic and stenotic phantoms were designed and constructed to experimentally interrogate the error. It was determined that signal loss, due to intravoxel dephasing, decreased the reliability of the measured forward flow jet velocities. Extreme signal loss in the jet eventuated in salt and pepper noise, which, with a mean velocity of zero, resulted in the underestimation.

Intravoxel dephasing signal loss due to higher order motions, turbulence and spin mixing could all be mitigated by reducing the duration of the velocity sensitivity gradients and shortening the overall echo time (TE). However, improvements in an optimised PC sequence (TE 1.5ms) were not satisfactory. Flow estimates remained variable and were underestimated beyond the aortic valve.

To reduce the TE further, a new phase contrast pulse sequence based on an ultrashort TE readout trajectory and velocity dependent slice excitation with gradient inversion was designed and implemented. The new sequence’s TE is approximately 25% (0.65ms) of what is currently clinically available (TE 2.8ms). Good agreement in the phantom was maintained up to very high flow rates with improved signal characteristics shown in-vivo. This new phase contrast pulse sequence is worthy of further investigation as an accurate evaluation of patients with aortic stenosis.
Acknowledgements

This PhD thesis is the culmination of several year’s work and would not have been possible without the help and support of many people.

Firstly, I would like to thank my supervisor, Associate Professor Alistair Young, and my pseudo-visor, Associate Professor Brett Cowan, for their ruthless questioning, their suggestions and guidance throughout the PhD and their general assistance in making all the opportunities, the sojourn to Oxford, conferences, courses and meetings, possible.

I am greatly indebted to Dr Matthew Robson for his invitation to join his group at the Oxford Centre for Clinical Magnetic Resonance, John Radcliffe Hospital, UK (OCMR). His time expertise and generous contributions to this project were immense. Without the opportunity to undertake the year at Oxford I am not sure if this project would have come this far.

I have been very fortunate in the financial support I have received from various institutions. The financial support I received throughout the PhD, from the Foundation of Research, Science and Technology’s Top Achievers scholarship and the Dr Joost Henkel foundation Stiftung, has been invaluable. Furthermore, the grants I received from the William Georgetti scholarship, the Freemasons and the Shirtcliffe Fellowship were instrumental in making the Oxford endeavour a reality.

A PhD is never possible without considerable input, advice and assistance from colleagues. I will begin with extending an all encompassing thanks to my colleagues at the Auckland Bioengineering Institute and the Centre for Advanced MRI. But, I would particularly like to single out the contributions from

- Andreas Grieser, Edgar Mueller and members of the Cardiac team at Siemens A.G. for modifications to the product sequence, provision of the source code and advice during the experimentation;

- Andrew Kerr and Ruvin Gabriel from Middlemore hospital and Saul Myerson from OCMR for their clinical expertise, interest and desire to apply this work in-vivo.

- Professor Paul Callaghan from Victoria University and Drs Phillip Kilner, David Firmin and Peter Gatehouse from the Royal Brompton Hospital for crucial discussions that ultimately shaped the path of the work;
• Peter Dooley who endlessly toiled away with me on the MR scanner; and
• Peter Blythe, Rob Kirton, Tom Macky and Yingmin Liu for the contributions to the design or running of the experimental apparatus.

Last but not least, I would like to thank my parents and family for their unquestioning support; my girlfriend, Ronida Myftiu, for her encouragement, her ready ear and understanding of stressful times; and my friends for their uncanny ability to keep me grounded.

Thank you all.
Contents

Abstract iii
Acknowledgements v
Table of Contents xii
List of Figures xv
List of Tables xvii
Glossary xix
Acronyms xx

1 Introduction 1

1.1 Motivation ... 1
 1.1.1 Aortic stenosis: its special significance in New Zealand . 1
 1.1.2 An alternative modality is needed 2
 1.1.3 Discrepancies in the ZEST data 2
 1.1.4 Chapter overview 3
1.2 Basic heart anatomy and function 4
 1.2.1 The cardiac cycle 5
 1.2.2 Cardiac indexes 7
 1.2.3 The aorta and its valve 8
1.3 Aortic stenosis .. 9
 1.3.1 Causes of aortic stenosis 9
 1.3.2 Pathophysiology of aortic stenosis 10
 1.3.3 Treatment ... 11
1.4 Characteristics of Blood Flow 13
 1.4.1 Flow regimes ... 13
 1.4.2 Turbulence ... 13
 1.4.3 Unsteady flow .. 14
 1.4.4 Blood flow in the heart 15
1.5 Clinical diagnosis of aortic stenosis 16
 1.5.1 Catheterisation 16
 1.5.2 Echocardiography 17
CONTENTS

1.5.3 Assessment of aortic stenosis.................. 22
1.6 Cardiac magnetic resonance, a potential alternative? 26
 1.6.1 Development into a clinical tool 27
 1.6.2 The ZEST trial 30
 1.6.3 Previous phase contrast results in the literature 33
1.7 Ultra short TE imaging 35
1.8 Thesis Outline 37

2 The phase contrast pulse sequence 39
 2.1 Introduction 39
 2.2 MR basic principles 41
 2.2.1 A brief review of the quantum physics 41
 2.2.2 Classical magnetic resonance 43
 2.2.3 Detecting a signal 45
 2.2.4 Relaxation Mechanisms 46
 2.3 K-space ... 48
 2.3.1 K-space’s mathematical definition 48
 2.3.2 Slice excitation 50
 2.3.3 Phase encoding 52
 2.3.4 Frequency encoding 55
 2.3.5 Populating K-space 57
 2.4 Sensitivity to velocity and flow 60
 2.4.1 Phase accrual: The qualitative description 60
 2.4.2 Phase accrual: The quantitative description 61
 2.4.3 Velocity encoding 62
 2.5 Motion artefact suppression 64
 2.5.1 Respiratory motion 64
 2.5.2 Cardiac triggering 65
 2.5.3 Motion artefacts from flow 67
 2.5.4 Flow compensated imaging gradients 67
 2.6 Image reconstruction 69
 2.6.1 Phase difference reconstruction 69
 2.6.2 Aliasing velocity 70
 2.6.3 Unwanted background phase errors 71
 2.6.4 Phase difference image reconstruction algorithm 75
 2.7 Gradient spoiling 77
 2.8 Encasing the spins in a voxel 78
CONTENTS

2.8.1 The source of noise ... 78
2.8.2 The voxel’s signal to noise ratio 79
2.9 Where to go for more ... 81

3 In-vitro examination of phase contrast errors 83
 3.1 Introduction .. 83
 3.2 Experimental Design .. 85
 3.2.1 Constructing the phantom 85
 3.2.2 Phantom validation 89
 3.2.3 Experimental protocol and analysis methods 90
 3.2.4 Sequence modification 94
 3.3 Experimental results ... 95
 3.3.1 Non-stenotic phantom 95
 3.3.2 Stenotic phantom .. 96
 3.3.3 Errors as a function of position 96
 3.4 Signal loss and intravoxel dephasing 99
 3.4.1 Signal loss in the phantom 99
 3.4.2 Signal loss in the ZEST trial data 101
 3.5 Conclusions .. 103

4 Examinations of factors influencing intravoxel dephasing 105
 4.1 Introduction .. 105
 4.2 Flow characteristics in a jet 108
 4.2.1 Jet structure ... 108
 4.2.2 Vena Contracta .. 109
 4.2.3 Boundary layer turbulence 110
 4.2.4 Turbulence in the jet 111
 4.2.5 Signal loss due to turbulence 111
 4.3 Intravoxel dephasing experiments 114
 4.3.1 Partial excitation 114
 4.3.2 Choice of Venc ... 117
 4.3.3 Voxel size and partial voluming 118
 4.3.4 Acceleration .. 123
 4.3.5 Jet alignment ... 127
 4.4 Discussion and conclusions 132
 4.4.1 Recommendations for further experimentation 133
 CONTENTS

4.4.2 Recommendations for further phase contrast sequence optimisation ... 134

5 Aortic stenosis in-vivo flow measurement .. 135
 5.1 Introduction .. 135
 5.2 Clinical Trial Protocol .. 137
 5.2.1 Echocardiography ... 137
 5.2.2 Magnetic Resonance Data ... 138
 5.2.3 Statistical Analysis .. 141
 5.3 Results ... 142
 5.3.1 Validation in a phantom .. 142
 5.3.2 Stroke volume results ... 142
 5.4 Discussion and conclusions ... 145

6 Background phase correction .. 147
 6.1 Introduction .. 147
 6.2 Characterising the residual background phase .. 148
 6.3 Proposed background phase correction methods .. 150
 6.3.1 Basic subtraction methods .. 150
 6.3.2 Phantom correction methods .. 150
 6.3.3 Surface correction methods .. 151
 6.4 Extension of the surface background phase correction .. 154
 6.4.1 Surface types .. 154
 6.4.2 Selection of Stationary tissue .. 155
 6.5 Comparison of surface background phase methods .. 159
 6.5.1 In-vivo flow correction results .. 159
 6.5.2 Implications for subsequent analysis .. 161
 6.6 Trial results ... 162
 6.6.1 Estimation of stroke volume with MRI flow data .. 162
 6.6.2 Assessment of aortic stenosis ... 165
 6.7 Discussion and conclusions ... 172
 6.7.1 Background phase correction .. 172
 6.7.2 Stroke volume flow measurement in aortic stenosis 172
 6.7.3 Comparison between peak velocity and VTI ... 173
 6.7.4 Assessment of AVA by CMR compared with echo .. 173
 6.7.5 Clinical implications ... 175
 6.7.6 Conclusion ... 175
CONTENTS

A.1.5 Energy balance equation for fluctuations 215
A.2 The boundary Layer 216
A.3 Jet structure’s variability 217
 A.3.1 Jet Flapping 217
 A.3.2 Jet Precession 218
 A.3.3 Strouhal Number 219

B Background phase algorithm development 221
 B.1 Surface fitting 221
 B.2 Background phase in a stationary phantom 222
 B.3 Stroke volume results before and after correction 223

C Velocity dependent slice excitation 227

References 229

Nomenclature 241
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>The heart’s basic anatomy</td>
<td>4</td>
</tr>
<tr>
<td>1.2</td>
<td>The cardiovascular circuit</td>
<td>4</td>
</tr>
<tr>
<td>1.3</td>
<td>The phases of the cardiac cycle</td>
<td>6</td>
</tr>
<tr>
<td>1.4</td>
<td>The aorta’s anatomy and role in managing blood flow</td>
<td>8</td>
</tr>
<tr>
<td>1.5</td>
<td>Examples of a normal, bicuspid and calcified aortic valve</td>
<td>9</td>
</tr>
<tr>
<td>1.6</td>
<td>Aortic stenosis pathology</td>
<td>10</td>
</tr>
<tr>
<td>1.7</td>
<td>Valvuloplasty repair method and examples of replacement valves</td>
<td>11</td>
</tr>
<tr>
<td>1.8</td>
<td>Effect of pulsatile flow on velocity stability</td>
<td>14</td>
</tr>
<tr>
<td>1.9</td>
<td>Pressure recording from a J-tipped pigtail catheter</td>
<td>16</td>
</tr>
<tr>
<td>1.10</td>
<td>The basic principles of ultrasound</td>
<td>19</td>
</tr>
<tr>
<td>1.11</td>
<td>The lateral resolution of an ultrasound beam</td>
<td>20</td>
</tr>
<tr>
<td>1.12</td>
<td>1-D Echo display modes</td>
<td>21</td>
</tr>
<tr>
<td>1.13</td>
<td>The formation of a 2D ultrasound image</td>
<td>21</td>
</tr>
<tr>
<td>1.14</td>
<td>The Doppler shift</td>
<td>22</td>
</tr>
<tr>
<td>1.15</td>
<td>Doppler ultrasound measurement of velocity</td>
<td>23</td>
</tr>
<tr>
<td>1.16</td>
<td>Lauterbar’s gradient concept for spatial localisation</td>
<td>26</td>
</tr>
<tr>
<td>1.17</td>
<td>First image of a human brain</td>
<td>26</td>
</tr>
<tr>
<td>1.18</td>
<td>Examples of cardiac MR imaging</td>
<td>29</td>
</tr>
<tr>
<td>1.19</td>
<td>Planning of various slice orientations in the heart</td>
<td>31</td>
</tr>
<tr>
<td>1.20</td>
<td>Zest substudy results</td>
<td>32</td>
</tr>
<tr>
<td>1.21</td>
<td>Contradictory aortic stenosis results from the literature</td>
<td>34</td>
</tr>
<tr>
<td>1.22</td>
<td>Coronal image of the cortical bone in the knee using UTE imaging</td>
<td>36</td>
</tr>
<tr>
<td>2.1</td>
<td>Spin angular momentum [1]</td>
<td>39</td>
</tr>
<tr>
<td>2.2</td>
<td>The clinical phase contrast pulse sequence</td>
<td>40</td>
</tr>
<tr>
<td>2.3</td>
<td>Zeeman splitting of a proton’s two spin states (adapted from [2].</td>
<td>41</td>
</tr>
<tr>
<td>2.4</td>
<td>Precession of a nucleus about an external magnetic field [1].</td>
<td>42</td>
</tr>
<tr>
<td>2.5</td>
<td>Net magnetisation (adapted from [1])</td>
<td>44</td>
</tr>
<tr>
<td>2.6</td>
<td>The rotating frame of reference</td>
<td>45</td>
</tr>
<tr>
<td>2.7</td>
<td>Free induction decay</td>
<td>46</td>
</tr>
<tr>
<td>2.8</td>
<td>T_1 and T_2 relaxation</td>
<td>47</td>
</tr>
<tr>
<td>2.9</td>
<td>K-space: the Fourier transform of an image</td>
<td>49</td>
</tr>
<tr>
<td>2.10</td>
<td>Slice selection</td>
<td>52</td>
</tr>
<tr>
<td>2.11</td>
<td>Spatial localisation using phase encoding</td>
<td>53</td>
</tr>
<tr>
<td>2.12</td>
<td>Spatial Aliasing</td>
<td>54</td>
</tr>
<tr>
<td>2.13</td>
<td>Spatial localisation using frequency encoding</td>
<td>55</td>
</tr>
<tr>
<td>2.14</td>
<td>Spin echo vs gradient echo</td>
<td>57</td>
</tr>
<tr>
<td>2.15</td>
<td>K-space trajectories</td>
<td>59</td>
</tr>
<tr>
<td>2.16</td>
<td>Phase accumulation of three moving spins in a bi-polar gradient</td>
<td>60</td>
</tr>
<tr>
<td>2.17</td>
<td>Moment nulling gradient waveforms</td>
<td>62</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure Reference</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.18</td>
<td>Velocity encoding schemes</td>
<td>63</td>
</tr>
<tr>
<td>2.19</td>
<td>Cardiac triggering methods</td>
<td>66</td>
</tr>
<tr>
<td>2.20</td>
<td>The phase contrast pulse sequence diagram with gradient moments superimposed</td>
<td>68</td>
</tr>
<tr>
<td>2.21</td>
<td>Phase difference reconstruction of a bi-polar lobe</td>
<td>70</td>
</tr>
<tr>
<td>2.22</td>
<td>Arctangent phase difference reconstruction of a stationary phantom</td>
<td>70</td>
</tr>
<tr>
<td>2.23</td>
<td>Velocity aliasing</td>
<td>71</td>
</tr>
<tr>
<td>2.24</td>
<td>Distortion of a trapezoid waveform due to eddy currents</td>
<td>73</td>
</tr>
<tr>
<td>2.25</td>
<td>Phase correction algorithm</td>
<td>76</td>
</tr>
<tr>
<td>3.1</td>
<td>Phantom setup</td>
<td>87</td>
</tr>
<tr>
<td>3.2</td>
<td>The phantom's system characteristic and accuracy</td>
<td>88</td>
</tr>
<tr>
<td>3.3</td>
<td>Validation of experimental set-up</td>
<td>90</td>
</tr>
<tr>
<td>3.4</td>
<td>The effect of area in flow calculations</td>
<td>91</td>
</tr>
<tr>
<td>3.5</td>
<td>Unwrapping aliased velocity profiles</td>
<td>91</td>
</tr>
<tr>
<td>3.6</td>
<td>The effect of dynamic range</td>
<td>92</td>
</tr>
<tr>
<td>3.7</td>
<td>Validation of stenotic phantom</td>
<td>93</td>
</tr>
<tr>
<td>3.8</td>
<td>Validation of PC with high velocity steady flow is a non-stenotic phantom</td>
<td>95</td>
</tr>
<tr>
<td>3.9</td>
<td>Varying TE’s effect on flow underestimation in the stenotic phantom</td>
<td>97</td>
</tr>
<tr>
<td>3.10</td>
<td>Flow error as a function of axial image position in the stenotic jet</td>
<td>98</td>
</tr>
<tr>
<td>3.11</td>
<td>Magnitude and phase difference images in the stenotic-jet</td>
<td>99</td>
</tr>
<tr>
<td>3.12</td>
<td>Velocity reliability as a function of relative signal intensity</td>
<td>100</td>
</tr>
<tr>
<td>3.13</td>
<td>Flow compensated magnitude and phase images from three ZEST cases</td>
<td>101</td>
</tr>
<tr>
<td>4.1</td>
<td>Intravoxel dephasing mechanisms</td>
<td>106</td>
</tr>
<tr>
<td>4.2</td>
<td>The structure of a confined jet in a sudden expansion jet</td>
<td>108</td>
</tr>
<tr>
<td>4.3</td>
<td>The vena contracta</td>
<td>109</td>
</tr>
<tr>
<td>4.4</td>
<td>Turbulence's intensity as a function of position</td>
<td>111</td>
</tr>
<tr>
<td>4.5</td>
<td>The magnitude and phase difference images as a function of position</td>
<td>113</td>
</tr>
<tr>
<td>4.6</td>
<td>Relative signal intensity as a function of entrance velocity</td>
<td>114</td>
</tr>
<tr>
<td>4.7</td>
<td>The effect of partial excitation on accuracy in a stenotic jet</td>
<td>116</td>
</tr>
<tr>
<td>4.8</td>
<td>The effect of varying V_{enc}</td>
<td>117</td>
</tr>
<tr>
<td>4.9</td>
<td>The effect of varying voxel volume through the FOV and slice thickness</td>
<td>120</td>
</tr>
<tr>
<td>4.10</td>
<td>Effect of in-plane resolution and voxel shape</td>
<td>121</td>
</tr>
<tr>
<td>4.11</td>
<td>Phase contrast sequences inherent higher order motion encoding</td>
<td>122</td>
</tr>
<tr>
<td>4.12</td>
<td>Longitudinal velocity and average acceleration profiles in a jet</td>
<td>122</td>
</tr>
<tr>
<td>4.13</td>
<td>Effect of varying the bipolar duration</td>
<td>125</td>
</tr>
<tr>
<td>4.14</td>
<td>PC accuracy for various stenosis</td>
<td>126</td>
</tr>
<tr>
<td>4.15</td>
<td>Jet alignment and spin mixing</td>
<td>128</td>
</tr>
<tr>
<td>4.16</td>
<td>Effect of spin mixing on intravoxel dephasing, 35mm downstream</td>
<td>130</td>
</tr>
<tr>
<td>4.17</td>
<td>Effect of spin mixing on intravoxel dephasing, 12mm downstream</td>
<td>131</td>
</tr>
<tr>
<td>5.1</td>
<td>The numerical integration of flow to obtain the PC estimate of SV</td>
<td>140</td>
</tr>
<tr>
<td>5.2</td>
<td>Stenotic phantom validation of the clinical trial’s sequences</td>
<td>142</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

5.3 Bland-Altman analysis of SV error .. 143
5.4 Background phase error's effect on the estimation of SV 144

6.1 The residual background phase of the phase contrast sequences 148
6.2 The residual background phase of the PC sequences at different orientations and Venc .. 149
6.3 The danger of using distal tissue to correct for background phase 151
6.4 Stationary tissue identification with a temporal standard deviation mask 152
6.5 The surfaces ability to fit to a simulated data set 154
6.6 Comparison of the identified stationary tissue 157
6.7 Frequency spectrum algorithm for identifying stationary tissue 158
6.8 Error before and after correction for each position and TE 161
6.9 Bland Altman comparison of SV and the PCSV estimate vs. LVSV 164
6.10 Variation of the patients' nominal interval across the scan 165
6.11 Comparison of the PC VTI against the Doppler VTI 166
6.12 Comparison of peak PC velocity against the peak Doppler velocity 167
6.13 Comparison of the maximum VTI and the corresponding peak velocity 169
6.14 Comparison of PC AVA with Doppler AVA 171

7.1 Velocity dependent slice excitation 180
7.2 The maximum Venc's dependence on slice thickness and RF shape 181
7.3 Slice thickness and corresponding TE versus gradient strength 182
7.4 UTE k-space trajectory .. 183
7.5 Background phase dependence on spoiler gradient durations 186
7.6 Effect of the polarity of spoiler gradients on image quality 187
7.7 Proposed PC-UTE sequence diagram 187
7.8 The effect of gradient, slew rate, and TE on the background phase 189
7.9 Background phase’s dependence on Venc, orientation and slice offset 190
7.10 Background phase’s reliance on FOV, matrix size, and readout bandwidth 191
7.11 Stenotic phantom validation of the PC-UTE sequence 193
7.12 PC-UTE magnitude and phase difference images in the stenotic phantom 194
7.13 \textit{In-vivo} comparison of the PC-UTE and standard PC sequences 196
7.14 Systolic magnitude and phase difference images from an AS patient ... 198

A.1 Boundary layer across a smooth plate 216
A.2 Jet Flapping .. 217
A.3 Variation in reattachment lengths .. 218
A.4 Jet Precession .. 219

C.1 Velocity dependent slice select waveform 227
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Reynolds number thresholds for flow regimes in a straight pipe</td>
<td>14</td>
</tr>
<tr>
<td>1.2</td>
<td>The velocity of sound in various mediums</td>
<td>18</td>
</tr>
<tr>
<td>1.3</td>
<td>Classification of aortic stenosis severity</td>
<td>25</td>
</tr>
<tr>
<td>1.4</td>
<td>Image parameters used in the ZEST substudy</td>
<td>30</td>
</tr>
<tr>
<td>1.5</td>
<td>Patient characteristics of the ZEST substudy</td>
<td>31</td>
</tr>
<tr>
<td>2.1</td>
<td>Changing SNR, T_{scan} and K-space coverage in the phase direction.</td>
<td>80</td>
</tr>
<tr>
<td>2.2</td>
<td>Changing SNR, T_{scan} and K-space coverage in the frequency direction.</td>
<td>80</td>
</tr>
<tr>
<td>3.1</td>
<td>Typical image parameters used for investigating aortic stenosis</td>
<td>89</td>
</tr>
<tr>
<td>3.2</td>
<td>Validation of flow underestimation</td>
<td>90</td>
</tr>
<tr>
<td>3.3</td>
<td>Measured peak velocities and the PC flow error from two flow rates</td>
<td>96</td>
</tr>
<tr>
<td>4.1</td>
<td>Image parameters for variable RF duration and V_{enc} experiments.</td>
<td>115</td>
</tr>
<tr>
<td>4.2</td>
<td>Image parameters for partial voluming experiments</td>
<td>119</td>
</tr>
<tr>
<td>4.3</td>
<td>Image parameters for acceleration encoding experiments</td>
<td>124</td>
</tr>
<tr>
<td>4.4</td>
<td>Image parameters for spin mixing experiments</td>
<td>128</td>
</tr>
<tr>
<td>5.1</td>
<td>Typical breath-hold image parameters</td>
<td>139</td>
</tr>
<tr>
<td>5.2</td>
<td>Comparison of PC flow estimates of SV with LVSV</td>
<td>144</td>
</tr>
<tr>
<td>6.1</td>
<td>Summary of the statistical significance of performing background phase correction.</td>
<td>159</td>
</tr>
<tr>
<td>6.2</td>
<td>Comparison of PC flow estimate of SV with LVSV</td>
<td>162</td>
</tr>
<tr>
<td>6.3</td>
<td>Peak velocity, VTIs, SV and mean AVA at the level of the max VTI</td>
<td>168</td>
</tr>
<tr>
<td>6.4</td>
<td>Bland-Altman and linear regression analysis between Doppler and CMR methods for AVA estimation</td>
<td>170</td>
</tr>
<tr>
<td>7.1</td>
<td>Image parameters for UTE validation experiments</td>
<td>192</td>
</tr>
<tr>
<td>7.2</td>
<td>Stroke volumes and peak velocities of the AS patient</td>
<td>197</td>
</tr>
<tr>
<td>7.3</td>
<td>Sequence comparison of the minimum slice thickness, TE, RF pulse duration and the acceleration encoding</td>
<td>202</td>
</tr>
<tr>
<td>B.1</td>
<td>Effect of fitted surface on the relative error across the surface</td>
<td>222</td>
</tr>
<tr>
<td>B.2</td>
<td>Effect of fitted surface on the relative error at the isocentre</td>
<td>223</td>
</tr>
<tr>
<td>B.3</td>
<td>Convergence statistics of the fitted surfaces</td>
<td>224</td>
</tr>
<tr>
<td>B.4</td>
<td>Error before and after correction</td>
<td>225</td>
</tr>
</tbody>
</table>
Glossary of Key Terms

Aortic stenosis a narrowing of the aortic valve that causes the formation of a jet during systole.

Diastole relaxation or dilation phase of the heart.

Rheumatic fever inflammatory disease due to a group A streptococcal infection that can affect the heart, joints, skin and brain.

Systole the ejection/contraction phase of the heart.

Magnetic Resonance Imaging is the creation of soft tissue images by manipulating the precessional frequency of hydrogen nuclei.

- **T_1 relaxation** is the time taken for the longitudinal magnetisation (M_z) to return to 63% of its original value M_0.
- **T_2 relaxation** time taken for the NMV’s transverse magnetisation (M_{xy}) to decay to 37% of its original value.
- **T_2^* relaxation** is the combined loss of phase coherence due to true T_2 and inhomogeneities, it defines the FID envelope.

Echo time (TE) time between the excitation RF pulse and readout centres.

Intravoxel Dephasing the phase dispersal of spins within a voxel.

- **Higher order motion encoding** refers to the additional phase accrual due to acceleration, jerk and other higher order motions.
- **Iso delay time** is the effective dephasing time that results in the phase dispersion.
- **Partial excitation** occurs when a spin does not remain in the desired slice for the duration of the RF pulse.
- **Partial voluming** is where the signal from a voxel has a mixture of different tissues, or experiences bi-directional flow.
- **Spin mixing** is the mixing of fast and slow moving spins within a voxel due to the delay between excitation and readout.

K-space is the spatial frequency representation of a magnetic resonance image.

Phase contrast is a Magnetic resonance imaging technique that allows for the quantification of velocity and flow.

Pulse sequence an instruction set of gradient and RF pulses and ADC events that describes how the MR scanner manipulates spins.

Repetition time (TR) time between two successive excitation RF pulses centres.

Ultrashort TE (UTE) a family of pulse sequences that can achieve very short TEs for imaging of tissues with a majority of short T_2 components.

V enc is the maximal encoding velocity or aliasing velocity of a PC sequence.

Turbulence the random velocity fluctuations superimposed on the flow.

- **Boundary layer** is a region with steep velocity gradients, typically near surfaces or in bidirectional flow. It is characterised by large shear stresses and turbulence.
- **Reynolds number** (Re) the ratio of inertial and viscous forces acting on a fluid.
List of Acronyms

ADC analogue to digital converter.
AR aortic root.
ascAo ascending aorta.
AV aortic valve.
AV0cm image plane located on the aortic valve.
AV1cm image plane located 1cm distal to the aortic valve.
AV2.5cm image plane located 2.5cm distal to the aortic valve.
AVA aortic valve area.
CIM Cardiac Image Modeller.
cineCT cine computed tomography.
CMR cardiac magnetic resonance.
CO cardiac output.
DoF degrees of freedom.
Doppler continuous wave Doppler.
FID free induction decay.
fMRI Functional magnetic resonance imaging.
FOV field of view.
LV left ventricle.
LVOT left ventricular outflow tract.
LVSV left ventricular stroke volume.
MPA main pulmonary artery.
MR magnetic resonance.
NMR nuclear magnetic resonance.
NMV net magnetisation vector.
PC phase contrast.
PCSV PC estimate of stroke volume.
PET positron emission tomography.
RF radio-frequency.
ROI region of interest.
RSI relative signal intensity.
SI signal intensity.
SNR signal to noise ratio.
STJ sino-tubular junction.
SV stroke volume.
VTI velocity time integral.
ZEST New Zealand Eplerenone in Aortic Stenosis Trial.

For ease of reading, the acronyms are redefined each chapter.