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Abstract. In this study we investigate the influence of grid resolution on a 
near-wall resolved LES model of a lock-exchange particle-driven gravity 
current. The simulations are performed using the finite volume Boussinesq 
code SnS with a Smagorinsky turbulence model for a buoyant Reynolds 
number of 60,000 on 4 grid sizes. According to previous studies, two-point 
correlations are most appropriate to estimate LES resolution. With the 
largest scales of the flow being resolved by more than 20 cells, well-resolved 
LES is obtained for grid resolutions of 1925×62×125 and finer. In addition, 
in order to apply the turbulence model correctly, we show that the velocity 
power spectrum densities provide useful information for the maximum cell 
size. The ratio of the subgrid scale viscosity to the molecular viscosity and 
the subgrid scale shear-stress to the resolved Reynolds stress show good 
convergence with grid refinement. The ratios 0.3SGS    above the 
current and ( ' ') 0.05SGS aveu v   inside the mixing layer, are chosen as 
threshold values, based on our evaluation study. 

1. Introduction
Turbidity currents are an extended form of gravity currents where the individual inertial 
effects of each particle, which tend to settle down due to their larger size, become non-
negligible and impact the evolution, sustainability and sediment deposition of the particle 
wave, particularly during the later stage of its propagation [1, 2]. Despite an early 
identification of the existence of particle charged underflows inside the Rhone River by Forel 
[3], the interest in sediment-driven underwater flows has only started growing during the past 
forty years with the recognition of their impact on submarine infrastructure. Experimental 
studies have aimed to describe their large scales features [1, 4-7], as well as their behaviour 
in specific conditions such as when turbidity currents impinge on obstacles [8]. To 
compensate for their intrinsic opacity, and the intrusive nature of the experimental 
measurements, computational fluid dynamics (CFD) has become increasingly used as a 
method to study the inner turbulent dynamics of turbidity currents. 

Since the first Direct Numerical Simulation (DNS) by Härtel, et al. [9], the characteristics 
of gravity currents have been thoroughly investigated numerically [10-12]. Necker, et al. [13] 
proposed an extended version of a model accounting for the particles settling within turbidity 
currents, which was implemented in the CFD code TURBINS [14] and applied to the study 
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of turbidity currents interacting with complex sea-floors [15]. The computational 
requirements limit the use of high resolution simulations to fairly low Reynolds numbers and 
Large Eddy Simulation (LES) has been shown to be an alternative method to reduce the 
computational times for high Reynolds number flows [16]. 

Grid resolution is a key parameter for a proper representation of the fluid features by an 
LES model, however the dependence of the LES subgrid scale (SGS) models on the cell size 
renders it difficult to specify general guidelines on how to assess the quality of the 
simulations. Several estimators have been developed to quantify the numerical errors such as 
the subgrid activity parameter s [17] or the relative Kolmogorov scale, SGS viscosity and 
resolved turbulence kinetic energy indices of resolution quality LES_IQ, LES_IQ and 
LES_IQk [18]. Their calculation requires either experimental or DNS data often unavailable, 
or the application of the Richardson extrapolation to estimate the potential DNS total kinetic 
energy [18, 19]. Therefore, the reliability of the latter method is questionable [20]. It may 
lead to overestimation of the indices caused by the difficulty to represent the strong inter-
dependency between the numerical error, due to the spatial discretization, and the modelling 
error, due to the turbulence modelling, which may sum up or negate the total error. 

 Davidson [21] proposed a case related approach based on the comparison of several 
turbulent statistics in areas where the turbulence is critical in the flow. It was shown that two-
point correlations and the ratio of the SGS shear-stress to the resolved Reynolds stress are 
the most suitable characteristics to assess the grid resolution, whereas the turbulence spectra 
do not seem to provide any conclusive results. As for the ratio of the SGS viscosity to the 
molecular one, its reliability is arguable. Despite showing good convergence for the LES of 
the dispersion around an isolated cubic building [22], it leads to incorrect evaluation of the 
resolved turbulence within the domain for a channel recirculating flow [23] and  shows better 
resolved turbulence in areas where the other parameters indicate the opposite. 

The purpose of this study is to qualify the applicability of these parameters to the 
assessment of grid resolution in the case of three dimensional lock-exchange turbidity 
currents at high Reynolds number. 

2. Problem definition and numerical model 
The 3D model is inspired by the standard lock-exchange setup of the experiment of Wilson, 
et al. [8], as shown in Fig. 1. The header box is filled with sediment-laden fluid and the flume 
channel is filled with the same fluid without sediment. At 0t  , the sediment-laden fluid is 
released and the current starts flowing into the channel. 

 
Fig. 1. Lock-exchange flume, left (blue) the header box, followed by the flume channel. 

The problem is described by the continuity and the momentum equations together with a 
transport equation for the dimensionless particle concentration. An in depth description of 
the coupling between the equations is given by Necker, et al. [13] and the approach is briefly 
summarised in this section. Contrarily to the standard gravity current formulation which rely 
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The problem is described by the continuity and the momentum equations together with a 
transport equation for the dimensionless particle concentration. An in depth description of 
the coupling between the equations is given by Necker, et al. [13] and the approach is briefly 
summarised in this section. Contrarily to the standard gravity current formulation which rely 

on a Boussinesq approximation to qualify the buoyant forces caused by the fluids inner 
density variations, the driving forces are directly derived from the force applied by the 
particles on the fluid. In the case of spherical particles of diameter dp smaller than the 
Kolmogorov scale, the effort caused by the concentration distribution on the fluid fp is 
modelled by the product of the Stokes drag force on an individual particle Fp and the particle 
volume fraction m. The response of the particles to the flow motion is assumed to be faster 
than the time scale of the smallest flow structures, so that the particle velocity associated to 
the concentration transport can be corrected as +p Su u u . u  is the fluids velocity and Su  the 
vertical settling velocity of a particle inside an immobile fluid derived from balancing the 
Stokes drag force with the Archimedes force. 
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The settling velocity is set to 0.0035Su  . The equations are presented in their 
dimensionless form. The characteristic quantities for scaling the variables are chosen to be 
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The simulations are performed using the structured non-staggered Cartesian finite volume 
SnS code developed by Norris [24]. The filtered equations are solved for using a fractional-
step method, where the advection terms are discretized in time using an Adams-Bashforth 
scheme and the diffusion terms using the Crank-Nicolson scheme. A second order central 
differencing scheme is applied for the spatial discretization of the advection and diffusion 
terms. The momentum and pressure Poisson equations are solved using a bi-conjugate 
gradient stabilised (BICGSTAB) method with a strongly implicit procedure preconditioner. 
A Jacobi method is used for the concentration transport equation. The time step varies to 
maintain the value of the Courant-Lewy-Friedrich number ( iC L tF u x   ) within the range 
0.15-0.25, and convergence is assured at each time step by ensuring a velocity divergence of 
less than 10-6. The code was originally designed for the efficient modelling of buoyancy-
driven convective flows, and has been applied to the modelling of natural [25] and mixed 
convection [26], and to the LES modelling of wind turbines [27]. 

Four grid resolutions were compared in this study, as listed in Table 1. A uniform grid 
size was chosen except in the near-wall region. To ensure a proper resolution at the bottom 
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wall, the first vertical grid size was set to 0.00133y   which ensured it was located in the 

near-wall viscous sublayer ( 5y  ). The vertical mesh spacing was progressively increased 
over the layer 0 0.667y   and the number of cells Ny,w was chosen so the ratio between 
two consecutive vertical mesh size remain in the range  0.85 1.15y   . 

Table 1. Grid resolution features 

 ,x y d zN N N   ih  1i ir h h  ,y wN  

G1 740×24×48 0.0567 1.44 55 

G2 1140×37×74 0.036 1.54 55 

G3 1925×62×125 0.0213 1.68 60 

G4 3150×100×200 0.0128 1.62 85 

3. Results and discussion 
The propagation of a gravity or turbidity current is typically described by the evolution of its 
front position and velocity, shown in Fig. 2. Limited sensitivity to the grid resolution is 
observed. The simulations predict the initial slumping phase with a similar quasi-constant 
velocity before decreasing following a t-0.56 power law. The transition occurs after 16fx   
corresponding to eight lock height, which lies within the range of 5H to 10H, as generally 
observed in experiments [8, 28]. The deceleration rate lies halfway between the characteristic 
t-1/3 and t-4/5 power law observed in gravity currents. The former describes the self-similar 
phase dominated by buoyant and inertial effects and occurs just after the slumping phase 
[29]. The latter represents the buoyant-viscous phase, dominated by viscous forces, 
distinctive of the current’s later stage [28]. This highlights the impact of the settling velocity 
on the efforts balance at early stage of the currents propagation [15]. 

 
Fig. 2. Evolution of the front position xf (left) and velocity uf (right). 

Fig. 3 shows the impact of the grid resolution on the internal structure of the current. 
Upon the gate release, the typical Kelvin-Helmholtz instability, characterised by large 
billows at the upper boundary of the current and large coherent vorticity structures, is 
observed as well as the lobe and cleft instability at the front of the current are observed. The 
structure of the billows is blurred by the presence of the smallest turbulent structures resolved 
at finer grid resolutions. Those structures have been shown to be the result of shear effects at 
the front propagating into the body induced by the lobes [16]. However, refining the grid also 
reduces the size of the lobes while increasing their number, so that the turbulence production 
at the front is altered. The induced modifications inside the current can either enlarge or 
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negate the simulations errors and shows a clear need for qualifying the lobes effect on the 
turbulence creation to prevent from misinterpreting the influence of grid refinement on the 
simulations. 

 

Fig. 3. Concentration isosurfaces 0.1c   and vorticity fields on the symmetry plane 0y   after 
release of the lock ( 9.3t  , left) and for fully developed turbulence ( 29.1t  , right) for grid sets G2 
(top) and G4 (bottom). 

 
Fig. 4. Averaged two-point correlation of the streamwise (left) and spanwise (right) components of 
velocity along the spanwise direction at 29.1t  . 

According to Davidson [21], [23] and Bazdidi-Tehrani, et al. [22], two-point correlations 
are most suited to assess the grid quality of a LES. From them, we can find the number of 
grid points needed to resolve the largest structures of the flow.  It is given that a minimum of 
8 cells is required to achieve a coarse LES and 16 cells for a well-resolved LES [21]. The 
streamwise two-point correlations indicate that the largest structures are resolved with more 
than 20 cells for each case, therefore only the spanwise two-point correlations Ruu(z) and 
Rww(z) averaged over the whole domain are displayed in Fig. 4. The correlations Ruu and Rww 
decrease to 0.1 within only 11 and 8 cells respectively for grid G1, and 17 and 13 for G2 
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highlighting the coarseness of this mesh. A well-resolved LES is attained with G3 and finer, 
with a minimum of 30 and 22 cells used to resolve the largest structures. 

LES requires the positioning of the filter’s cut-off wavenumber of the turbulence model 
on the decaying k-5/3 inertial subrange of the turbulence spectra. While Davidson [21], [23] 
concludes that the energy spectra are of little use in the assessment of grid resolution for LES, 
they still provide important information to justify the latter condition. The spanwise power 
spectrum densities PSDz{U} and PSDz{W} are plotted on Fig. 5. They have a standard 
structure regardless of the resolution, even though the PSDz{W} exhibit a decaying range 
smoother than the typical t-5/3 law and surprising “pile-ups” at high wavenumbers. This 
behaviour is also observed for a channel flow by Davidson [21]. He attributes it to inaccuracy 
of the turbulence model which fails to predict the SGS dissipation at very high wavenumber 
and transfers the dissipative functions at lower wavenumbers. The LES filter’s width being 
defined by the cell size, the cut-off wavelength corresponds to the largest wavenumber 
representing the PSDzs. Both PSDzs do not reach the k-5/3 decay inertial range for mesh G1, 
indicating an inappropriate filter width and an overly coarse mesh size for the turbulence 
model. As for the two-point correlations, grid G2 barely reach the k-5/3 range and can be 
considered a coarse LES, while G3 and G4 show the correct decay range for both 
components. 

 
Fig. 5. Averaged power spectrum densities of the streamwise (left) and spanwise (right) velocity 
components along the spanwise at 29.1t  . 

Particle-driven gravity currents are not quasi-steady. Time averaging, which is typically 
used for the statistical analysis of LES models, is thus not applicable. Furthermore, the 
prediction of the position of the current and its internal dynamics varies significantly between 
simulations, and so a comparison of the instantaneous fields is thus unreasonable. 
Consequently, instead of time-averaging the flow is spatially averaged in the spanwise 
direction and in a sufficiently long streamwise layer to have a sufficiently large number of 
points to give a meaningful average. The layer is chosen in the most energetic region of the 
current with developed turbulence and minimal vertical variation, and the extractions are 
taken at 29.1t   corresponding to the time of current’s peak of turbulence. Based on the 
vorticity fields (Fig. 3) and the turbulent kinetic energy fields (not shown), the layer is 

4 2f fx x x   . 
The direct observation of the averaged streamwise velocity aveU  and resolved Reynolds 

stress ( ' ')aveu v , see Fig. 6. do not show convergence. The streamwise velocity predicts 
similar results with differences at the area of rapid variation of its gradient. Likewise, 
( ' ')aveu v  evolves without converging with grid refinement. This can be explained by the 
flow’s non-homogeneities and the limited number of averaging points. Small changes in the 
layer length or position can lead to significant differences and it is worth indicating that 
similar conclusions are obtained at different Reynolds numbers (not shown). 
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The ratios of the SGS viscosity to the molecular one, and the SGS shear-stresses to the 
resolved Reynolds stresses (Fig. 7), are suited for grid resolution assessment [21-23]. The 
high mixing region stress ratios (Fig. 6) correspond to the peak of ( ' ')aveu v . Both ratios show 
convergence to lower values when the grid is refined. High values indicate poor grid 
resolution. Care needs to be taken in the analysis of the peaks of ( ' ')SGS aveu v observed for 
G2, G3 and G4. The high values of G2 and G3 are not due to an increase in the SGS shear-
stress compared to the Reynolds stress, but to an artefact resulting from the shrinking of 
( ' ')aveu v  at the sides of the mixing layer. The minimum observed for G4 is the result of the 
increase of SGS  from near-null negative values inside the current to a positive peak inside 
the mixing layer. The ratios SGS   increase as expected in the mixing layer and decrease 
inside the ambient fluid. Although threshold values for the peak are difficult to choose as no 
reference value to remain in an acceptable range is available in the literature, one can assume 
that the flow should be entirely resolved in the low turbulence region above the current. This 
is indicated by 1SGS   and 0.3SGS    is chosen as a limiting value, due to G3 being 
resolved enough. Similarly, one can consider good convergence when the SGS shear-stress 
represents roughly less than 5% of the Reynolds stress inside the mixing layer. 

 
Fig. 7. Ratio of SGS viscosities and molecular viscosities (left) and SGS shear-stresses and resolved 
Reynolds stresses (right), averaged over the spanwise direction at 29.1t  . 

4. Conclusions 
Several LES grid resolution assessment methods have been compared for the study of lock-
exchange sediment-driven gravity currents at a buoyant Reynolds number of 60,000. Unlike 
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streamwise values, which do not give any particular information to assess the quality of the 
simulations, it is concluded that the most useful quantities are the spanwise two-point 
correlations. Those quantities inform on the number of cells to be used to resolve the largest 
scales of the current. It is the responsibility of the user to choose a suitable number of cells, 
therefore 16 cells is commonly considered a minimum for a well-resolved LES. It is found 
that the grid G2=1140×37×74 is too coarse for LES, whereas G3=1925×62×125 enables a 
well-resolved LES solution. The velocity power spectrum densities lead to similar 
conclusions. Only resolutions finer than G2 respect a proper positioning of the filter’s cut-
off wavenumber in the inertial subrange of the turbulence spectra. 

For statistical assessment, difficult for a non-quasi-steady current, values are averaged on 
the spanwise direction for the strongly turbulent and energetic streamwise layer 

4 2f fx x x   . The ratios of viscosities SGS   and stresses ( ' ')SGS aveu v  decrease 
with grid refinement inside the current body. However, threshold values for a well-resolved 
LES are case related and no guidelines are generally given to quantify them. We show that 
recommendations can be made with the help of the two-point correlations and power 
spectrum densities. Thus, we conclude that a complete resolution of the flow in the lowly 
turbulent region above the current, should be reflected by 1SGS   . The ratios of stresses 
inside the turbulent mixing layer is assessed to converge for ( ' ') 0.05SGS aveu v  . 
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