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Abstract

This thesis is concerned with estimation problems in graphical models of time

series. In the case of vector autoregressive (VAR) processes, the conditional in-

dependence relations between variables can be inferred by finding the zeros of

the inverse spectral density matrix (ISDM). This generally involves two prob-

lems: (i) select the order of the VAR model and (ii) choose the sparsity pattern

of its ISDM. We first introduce a novel information theoretic (IT) criterion for

order selection, the Renormalized Maximum Likelihood (RNML). We prove

that RNML criterion is strongly consistent. We also demonstrate empirically its

good performance for examples of VAR which have been considered in recent

literature because they possess a particular type of sparsity.

As a second contribution, we introduce novel algorithms for inferring the

conditional independence graph of a VAR process. We propose a new family of

convex optimization algorithms that can be used to solve this problem; in our

approach the high-sparsity assumption is not needed. We conduct experiments

with simulated data, air pollution data and stock market data for demonstrating

that our algorithms are faster and more accurate than similar methods proposed

in the previous literature.

Finally, we focus on latent-variable graphical models for multivariate time

series. We generalize an algorithm introduced in the previous literature for

finding zeros in the inverse of the covariance matrix such that to identify the

sparsity pattern of the ISDM of a time series containing latent components.
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Abstract

When applied to a given time series, the algorithm produces a set of candidate

models. Various IT criteria are employed for deciding the winner. We conduct

an empirical study in which the method we propose is compared with the state-

of-the-art.
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Chapter 1

Introduction

1.1 Fundamental notions

Graphical models are instrumental in the analysis of multivariate data. Orig-

inally, these models have been employed for independently sampled data, but

their use has been extended to multivariate, stationary time series Brillinger

(1996), Dahlhaus, Eichler and Sandkühler (1997), which triggered their popu-

larity in statistics, machine learning, signal processing and neuroinformatics.

For better understanding the significance of graphical models, let x be a ran-

dom vector having a Gaussian distribution with zero-mean and positive definite

covariance matrix Γ. A graph G = (V,E) can be assigned to x in order to

visualize the conditional independence between its components. The symbol V

denotes the vertices of G, while E is the set of its edges. There are no loops

from a vertex to itself, nor multiple edges between two vertices. Hence, E is a

subset of {(a, b) ∈ V × V : a ̸= b}. Each vertex of the graph is assigned to an

entry of x. We conventionally draw an edge between two vertices a and b if the

random variables xa and xb are not conditionally independent, given all other

components of x. The description above follows the main definitions from Speed

and Kiiveri (1986) and assumes that the graph G is undirected. Proposition 1

from the same reference provides a set of equivalent conditions for conditional

independence. The most interesting one claims that xa and xb are conditionally

1



1. Introduction

independent if and only if the entry (a, b) of Γ−1 is zero. This shows that the

missing edges of G correspond to zero-entries in the inverse of the covariance

matrix, which is called the concentration matrix.

There is an impressive amount of literature on graphical models. In this

thesis, we focus on a generalization of this problem to time series. The main

difference between the static case and the dynamic case is that the former relies

on the sparsity pattern of the concentration matrix, whereas the latter is looking

for zeros in the inverse of the spectral density matrix. One of the main difficulties

stems from the fact that the methods developed in the static case cannot be

applied straightforwardly to time series.

1.2 Graphical models for time series

We consider a zero-mean, Gaussian, stationary stochastic vector process {yt}.

It is assumed that, for all t ∈ Z, the vector yt has K real-valued entries (K >

2). For any integer h, let R(h) = Cov(yt,yt−h) be the autocovariance matrix

at lag h, for the time series {yt}. The spectral density matrix is defined as

S(ω) =
∞∑

h=−∞

R(h)e−jhω, where j =
√
−1. For each ω ∈ R, S(ω) is a Hermitian

matrix of size K×K. Additionally, S(ω) is a periodic function of period 2π, and

this explains why the values of ω are restricted to (−π, π] in spectral analysis.

Additionally, we assume that the eigenvalues of S(ω) are bounded and bounded

away from zero, uniformly for all frequencies in (−π, π].

All the definitions introduced so far can be found in most of the textbooks

on time series. The interested reader can find them, for example, in Dahlhaus

(2000). This is widely used in the analysis of multivariate time series. In

Dahlhaus (2000), it is shown how PSC can be employed for constructing graph-

ical models that, in the particular case of Gaussian time series, reduce to the

conditional independence graph. Even if the extension to the non-Gaussian

case is very interesting, we prefer to follow the traditional approach and use

the Gaussian assumption. This is particularly convenient for the derivation of

2



1.2. Graphical models for time series

a novel information theoretic criterion which is instrumental for the estimation

methods that we propose. Before discussing the estimation problem, we provide

some more details on the definition of PSC and its numerical evaluation.

Assume that the a-th and the b-th components of {yt} are denoted by {yt,a}

and {yt,b}, respectively. The notation {yt,−ab} is employed for the rest of K − 2

components. We are interested to compute the correlation between {yt,a} and

{yt,b}, conditional on {yt,−ab}. To this end, the following steps are considered

(Davis, Zang and Zheng, 2016): (i) Find the optimal linear filter which removes

the linear effect of {yt,−ab} from {yt,a} and get the residual series which is the

outcome of this filter; (ii) Do the same as in step (i) after replacing {yt,a}

with {yt,b}; (iii) Compute the correlations between the two residual series and

then use them in order to compute the residual cross-spectral density; (iv) For

ω ∈ (−π, π], define PSCab(ω) to be the scaled cross-spectral density between the

two residual series (see (Davis, Zang and Zheng, 2016, Eq. (2.4))).

From the algorithm outlined above, we have that {yt,a} and {yt,b} are uncor-

related (given {yt,−ab}) if and only if PSCab(ω) = 0 for all ω ∈ (−π, π]. This is

equivalent with saying that the cross-spectral density for the two residual series

is zero, for all values of ω. Even if the definition introduced above is very intu-

itive, it is difficult to be used in practice because it involves the optimal filters.

A more convenient expression of PSC can be obtained from the equation which

relates the residual cross-spectral density and the entries of the spectral density

matrix of the process {y(t)}. More precisely, according to Brillinger (1996), we

have that the cross-spectral density of the residual series corresponding to {yt,a}

and {yt,b}, at frequency ω, is given by

[S(ω)]ab − [S(ω)]a,−ab {[S(ω)]−ab,−ab}−1 [S(ω)]−ab,b,

where the symbol [S(ω)]ab is used for the entry located at the intersection of

the a-th row and the b-th column of S(ω). The matrix [S(ω)]−ab,−ab is obtained

from S(ω) after removing the rows and columns whose indices are a and b.

The significance of the rest of symbols which appear in the equation above is
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evident. The main drawback is that computing the PSC for one single pair of

marginal series of {yt} requires to invert a matrix of size (K − 2) × (K − 2).

The computational burden can be further lowered by using the following result

from (Dahlhaus, 2000):

PSCab(ω) = −
[S−1(ω)]ab√

[S−1(ω)]aa[S−1(ω)]bb
, (1.1)

where the notation for the entries of S−1(ω) is similar to the one used previously

for the entries of S(ω). Most interestingly, the formula involves the computation

of the inverse for one single matrix of size K × K instead of inverting many

matrices of size (K − 2) × (K − 2). The most important consequence is that

{yt,a} and {yt,b} are conditionally uncorrelated if and only if the (a, b)-entry of

the inverse of the spectral density matrix (ISDM) is zero.

This result has a strong connection with the problem of inferring graphical

models. For instance, the undirected graph which corresponds to {yt} has ex-

actly K vertices, one for each component of the multivariate time series. The

vertices of two distinct components, say a and b, are not connected with an edge

if {yt,a} and {yt,b} are uncorrelated, conditional on all other components of the

time series. Otherwise, they are connected. It follows that the edges which are

missing from the undirected graph assigned to {y(t)} correspond to the zero-

entries of ISDM. This shows clearly that the problem of graphical models for

times series is a generalization of the similar problem for the “static” case. As

we already pointed out, the main difference in the case of time series is that

we are looking for zeros in the ISDM and not in the inverse of the covariance

matrix. When ISDM is estimated from a finite number of measurements, the

(a, b)-entry will not be exactly zero even when {yt,a} and {yt,b} are conditionally

uncorrelated. Hence, it is needed a test for deciding which entries are equal to

zero. Next, we will briefly discuss various solutions proposed in the previous

literature, for solving this problem.
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1.3. Estimation methods

1.3 Estimation methods

In Dahlhaus (2000), a non-parametric estimator is used to compute the spectral

density matrix for all the points of a regular grid on (0, 2π]. For each ω on the

grid, the estimated S(ω) is inverted and rescaled in order to calculate the PSC.

For any pair (a, b), the test for deciding if the corresponding entry of ISDM is zero

relies on the asymptotic distribution of maxω|PSCab(ω)|2 under the hypothesis

that {ya,t} and {yb,t} are conditionally uncorrelated (see also Dahlhaus, Eichler

and Sandkühler (1997)).

Another pioneering contribution to the problem of graphical models for time

series is (Bach and Jordan, 2004). The focus of their article is on constructing

directed graphs which are used in prediction. An important result is (Bach and

Jordan, 2004, Prop. 2), which gives the expression of Kullback-Leibler (KL)

divergence between two zero-mean stationary vector-valued Gaussian processes

whose spectral density matrices are invertible. The formula is a generalization of

KL-divergence between two positive-definite matrices (see, for example, (Speed

and Kiiveri, 1986, Eq. (6))).

The expression of KL-divergence was also employed in Matsuda (2006), but

in a slightly different context. More precisely, Matsuda (2006) uses an itera-

tive algorithm initialized with the graph which has all possible edges. At each

iteration, an edge is collapsed; the non-parametrically-estimated KL-divergence

between the graphical model which contains the edge and the one which does

not contain it is computed. This quantity is further employed for a test which

decides if the model with the collapsed edge contains the “true” graph. A faster

variant of the method in Matsuda (2006) was recently developed in Wolsten-

holme and Walden (2015).

From the recent literature, we mention Jung (2015), which addresses the

problem of graphical models for high-dimensional time series. Their method

assumes that the observed process is sufficiently smooth in the frequency domain

and its ISDM is very sparse. These assumptions allow to find the pattern of zeros
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of ISDM when the sample size is smaller than the number of the time series

that are measured. The estimation is performed by combining the well-known

Blackman-Tukey method (Stoica and Moses, 2005) with the multitask LASSO

(Buhlmann and van der Geer, 2011).

The parametric methods rely on the fact that the observations are outcomes

of a vector autoregressive (VAR) process. The well-known difference equation

of the process is (Lutkepöhl, 2005):

yt = A1yt−1 + · · ·+Ap◦yt−p◦ + ut, t = 1, 2, . . . , T, (1.2)

where A1, . . . ,Ap◦ are matrix coefficients of size K×K and {ut}Tt=1 is a sequence

of independently and identically distributed random K-vectors. The vectors

{ut}Tt=1 are drawn from a K-variate Gaussian distribution with zero mean vector

and covariance matrix Σ ≻ 0. Additionally, the vectors {yt}0t=1−p◦ are assumed

to be constant. Hereafter, we use the notation Y = [y1, . . . ,yT ]
′, where (·)′ is

the transposition operator.

It follows that ISDM has the expression (Songsiri, Dahl and Vandenberghe,

2010):

S−1(ω) = AH(ω)Σ−1A(ω) =

p◦∑
m=−p◦

Qme
−jωm, (1.3)

where (·)H is the operator for conjugate transpose. We define A0 = −I and

A(ω) = −
∑p◦

m=0Ame
−jωm. We make the convention that I stands for the iden-

tity matrix of appropriate size. Form ≥ 0, we have that Qm =
∑p◦−m

i=0 A′
iΣ

−1Ai+m

and Q−m = Q′
m.

The first work on the problem of graphical models for VAR is Eichler (2006),

using Whittle’s approximation for the log-likelihood function and introducing

iterative algorithms which extend those previously applied to infer graphical

models for variables that are sampled with independent replications (Lauritzen,

1996).

The parametric methods use various information theoretic (IT) criteria for

finding the order of the VAR-model and for identifying the sparsity pattern (SP)
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of ISDM. Interestingly enough, they do not assume that only very few of the

entries of the ISDM are non-zero. As the high sparsity is not included in the

set of assumptions, the authors of these works employ “classical” IT criteria:

SBC - Schwarz’s Bayesian Criterion (Schwarz, 1978), AIC - Akaike Information

Criterion (Akaike, 1974), AICc - “corrected” AIC (Brockwell and Davis, 1991).

In Davis, Zang and Zheng (2016), a non-parametric estimator is used “to

guess” the entries of S−1(ω) which are likely to be non-zero. This leads to a list

of competing models, VAR(p, SP), where p does not exceed a pre-defined pmax-

order and SP denotes the sparsity pattern of S−1(ω). SP is further converted

into zeros of [A1 · · ·Ap], then each candidate model is fitted to the data and

the winner is selected by using SBC. The results are refined in the second stage

of the procedure, where SBC is applied again.

The approach from Songsiri, Dahl and Vandenberghe (2010) is more com-

putationally intensive because a VAR-model is fitted to the data for each pair

(p, SP) when all possible SP’s are considered. The major contribution of Songsiri,

Dahl and Vandenberghe (2010) consists in recasting the model fitting as a con-

vex optimization problem. A faster method based on convex optimization is

proposed in Songsiri, Dahl and Vandenberghe (2010) and is further developed

in Avventi, Lindquist and Wahlberg (2013), where vector autoregressive moving-

average (VARMA) models are considered instead of VAR. They show how the

Maximum Entropy estimate of VARMA model can be produced as the solution

of a convex optimization problem in which the ISDM is constrained to have a

certain sparsity pattern. Avventi, Lindquist and Wahlberg (2013) provide an

algorithm for generating a set of candidates for the ISDM sparsity pattern by

exploiting the distributional properties of the estimated PSC. The best candi-

date is selected by evaluating a fitness function which takes into consideration

the adherence of the model to the measurements as well as the sparsity of the

model.
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1.4 Other families of graphical models

So far the presentation was mainly focused on the idea that constructing an

undirected graph for a multivariate time series {yt} reduces to find zeros in its

ISDM. In the case of VAR-model, with the notation from (1.3), we have that

{ya,t} and {yb,t} are conditionally independent if
∑p◦−m

i=0

∑K
u=1[Ai]au[Ai+m]bu =

0 for m = 0, . . . , p◦ (see also (Eichler, 2006, Sec. 3)). This clearly shows that

the relationship between conditionally independence and the matrix coefficients

of VAR is complicated, even if we have assumed that Σ = I.

However, if the goal is to draw a directed graph for VAR, then one should

be looking for zeros in A1, . . ., Ap. The connection between this approach and

Granger causality is well-known (see, for example, (Lutkepöhl, 2005, Sec. 2.3)).

More importantly, VAR-models for which the coefficients A1, . . ., Ap are sparse

are known to have good predictive capabilities (Davis, Zang and Zheng, 2016).

The fundamental differences between the two family of graphical models for

time series (directed graphs and undirected graphs) were already pointed out

in the seminal work of Brillinger (Brillinger, 1996). In this thesis, we are only

concerned with the sparsity in the frequency domain (zeros in the ISDM) and

not with the sparsity in the time domain (zeros in the matrix coefficients of the

model).

Chandrasekaran, Parrilo and Willsky (2012) extend the static case by allowing

the presence of latent variables. The key point of their approach is to express

the manifest concentration matrix as the sum of a sparse matrix and a low-

rank matrix. Additionally, they provide conditions for the decomposition to

be unique, in order to guarantee the identifiability. The two matrices are esti-

mated by minimizing a penalized likelihood function, where the penalty involves

both the ℓ1-norm and the nuclear norm. Interestingly enough, Lauritzen and

Meinhausen (2012) pointed out that an alternative solution, which relies on the

Expectation-Maximization algorithm, can be easily obtained.
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A happy marriage between the approach from Chandrasekaran, Parrilo and

Willsky (2012) and the use of Maximum Entropy led to the solution proposed

in Zorzi and Sepulchre (2016) for the identification of graphical models of au-

toregressive processes with latent variables. Similar to Chandrasekaran, Parrilo

and Willsky (2012), the estimation is done by minimizing a cost function whose

penalty term is given by a linear combination of the ℓ1-norm and the nuclear

norm. The two coefficients of this linear combination are chosen by the user and

they have a strong influence on the estimated model. The method introduced

in Zorzi and Sepulchre (2016) performs the estimation for various pairs of coef-

ficients which yield a set of candidate models; the winner is decided by using a

score function.

1.5 Contributions

In Chapter 2, we derive a new IT criterion, the Renormalized Maximum Likeli-

hood (RNML) for VAR-models. After deriving the expression of RNML for the

case when p > 0 and the case when p = 0, we perform an asymptotic analysis of

the RNML, where we prove that RNML and SBC reduce to the same formula

when T → ∞. An important consequence of this result is that RNML is a

strongly consistent estimator for the order of the model. After that, we run a

series of simulations in order to show the superiority of RNML with respect to

other IT criteria.

In Chapter 3, we propose an alternative solution to the convex optimization-

based estimation method for VAR graphical models from Songsiri, Dahl and

Vandenberghe (2010). Our approach consists of two stages: (i) select the order

of the model by using an IT criterion; (ii) for each sparsity pattern (SP) in

a given list, solve a convex optimization problem which finds the VAR-model

whose ISDM zeros are located according to SP and is closest from the VAR-

model produced in the first stage. We introduce a family of efficient algorithms

for generating the list of SP-candidates, and show how RNML and other IT
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criteria can be altered for selecting the best SP from the list. A theoretical

analysis demonstrates that the computational complexity of the newly proposed

method is lower than the complexity of the existing algorithms. The estimation

accuracy is tested in an experimental study that involves simulated and real-life

data.

And lastly, in Chapter 4, we focus on latent-variable graphical models for

multivariate time series. We show how the algorithm introduced in Lauritzen

and Meinhausen (2012) can be generalized such that to identify the sparsity pat-

tern of the ISDM of a time series containing latent components. When applied

to a given time series, the algorithm produces a set of candidate models. As

before, various IT criteria are employed for deciding the winner. We conduct an

empirical study in which the algorithm is compared with the state-of-the-art.

Chapter 5 concludes the thesis.
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Chapter 2

Renormalized Maximum

Likelihood

2.1 Preliminaries

Model selection is concerned with choosing a statistical model from a set of

candidate models. Naturally, simple models are preferred to complex ones. But

formalizing what is meant by ‘simple’ and ‘complex’ is not a straightforward

task, because it is not easy to decide how the number of parameters in the

model should be balanced against its fit to data. To solve this problem, many

information theoretic criteria have been developed. Those criteria belong either

to the frequentist or the Bayesian frameworks, in both of which it is assumed

that there exists a true probability distribution f(·) from which the observed

data were sampled, and the goal is to develop models that approximate this

truth. It follows that the goal of model selection is to find the model that is

closest to the truth. However, this approach has many shortcomings.

According to the Minimum Description Length (MDL) principle, the founda-

tional assumption according to which there is a certain probability distribution

f(·) from which the observed data were sampled is incorrect. According to this

view, the question of whether the true distribution f(·) even exists is inherently

unanswerable.
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The MDL principle adopts a different approach to modelling. It proposes that

the basic goal should be to find regularities in data, and use these regularities to

compress the data set so as to unambiguously describe it using fewer symbols

than the number of symbols needed to describe the data literally. The more a

model permits data compression, the more it enables us to discover the regular-

ities underlying the data.

One recent technique based on the MDL principle is the Normalized Maximum

Likelihood (NML). The NML criterion was developed for both cases when the

models are of the discrete type and when they are of the continuous type. The

major problem in the continuous case stems from the fact that the denominator

of the criterion is not finite because it involves an integral for which the inte-

gration space is infinite. To deal with this issue, Rissanen (2000) proposed to

constrain the integration space. He also proposed a second normalization of the

criterion so as to get rid of the hyper parameters. The resulting criterion was

therefore named the Renormalized Maximum Likelihood (RNML).

Since the RNML has been introduced more recently compared to other tradi-

tional criteria, therefore it has greater potential than the traditional methods,

and new applications of the idea are emerging continuously.

2.2 RNML for VAR models

Consider the scenario in which a VAR(p)-model is fitted to the data Y =

[y1, . . . ,yT ]
′. Similar to the notation used in (1.2), Σ is the covariance ma-

trix of the driven noise. Assuming that A1, . . . ,Ap are the coefficients of the

model, we define B = [A1, . . . ,Ap]
⊤. According to Rissanen (2000, 2007), the

normalized maximum likelihood (NML) equals the negative logarithm of

f̂(Y; p) =
f
(
Y; B̂(Y), Σ̂(Y)

)
Cp

. (2.1)

In our calculations, we use natural logarithms, denoted by log(·). In (2.1), the

numerator is the maximum value of the likelihood function, given the measure-
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ments Y. B̂(Y) and Σ̂(Y) are the maximum likelihood (ML) estimates of the

parameters of the model. For the denominator, we have

Cp =

∫
f
(
Y; B̂(Y), Σ̂(Y)

)
dY, (2.2)

where the domain of integration is the entire space of observations. Since the

integral above diverges, we apply the same type of constraint as the one pro-

posed in Rissanen (2000). This leads to a finite result which depends on some

hyper-parameters. Because we do not want to choose subjectively the val-

ues of the hyper-parameters, we follow the recommendations from (Rissanen,

2000) and perform a second normalization step. The resulting formula is named

RNML(Y; p).

According to the best of our knowledge, the expression of RNML for VAR-

models was not obtained so far. The first attempt at estimating the order of

univariate AR models by RNML is the one from Giurcăneanu and Rissanen

(2006). The approach from Giurcăneanu and Rissanen (2006) was further ex-

tended in Schmidt and Makalic (2011), where the focus is still on the univariate

case. We note in passing that, the method employed in Schmidt and Makalic

(2011) for evaluating the criterion does not allow the use of the second nor-

malization step. More interestingly, the work of Schmidt and Makalic (2011)

relies on the re-parametrization of the AR model by partial autocorrelations

(PARCOR).

The univariate PARCOR function was extended to vector time series by in-

troducing (i) the partial autoregression matrix function, (ii) the partial lag auto-

correlation matrix function and (iii) the partial autocorrelation matrix function

[see (Wei, 2006, Section 16.5) for a tutorial review]. The last one is best known

for its use in the normalized Whittle-Wiggins-Robinson algorithm (Morf, Vieira

and Kailath, 1978). However, none of these functions enables the calculation of

the integral in (2.2).

In order to overcome the difficulties, we recast VAR in the form of a linear

regression model, which means that the random vectors {yt}T−1
t=1 are treated as
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fixed predictors. This technique is widely used in time series analysis (see, for

example, Lutkepöhl (2005), Ting et al. (2015), Neumaier and Schneider (2001)).

We are encouraged to apply it by the experimental results reported by Rissanen,

T.Roos and Myllymäki (2010) which show, for the univariate case, that the

RNML criterion devised for variable selection in linear regression works properly

when is employed to estimate the order of autoregressions.

In our derivations, we will use some techniques from (Hirai and Yamanishi,

2013), which appears to be the only work that considers the problem of RNML-

computation for the case when the measurements are vector-valued and not

scalar-valued. However, their results for multidimensional data are confined to

Gaussian mixture model.

In the next section, we show how can be derived the expression of RNML(Y; p)

for the case when p > 0. The formula for RNML(Y; p = 0) is given in Sec-

tion 2.4. In practice, these formulae are employed to evaluate RNML(Y; p) for

p ∈ {pmin, . . . , pmax}; the estimate of the order (p̂) equals the value of p which

minimizes the criterion.

2.3 RNML formula for p > 0

Assume that VAR(p)-model with order p > 0 (see eq. (1.2)) is fitted to the data

Y. We prove the following result:

Proposition 2.3.1. Under the hypotheses that T ≥ K(p + 1) and the vectors

{ut}Tt=1 are Gaussian distributed, the expression of the RNML-criterion is

RNML(Y; p) = GOF +
3∑
i=1

PENi,
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where

GOF = [(T −Kp−K + 1)/2] log det Σ̂p (2.3)

PEN1 = − log ΓK [(T −Kp)/2] (2.4)

PEN2 = − log Γ[(K2p)/2] (2.5)

PEN3 = [(K2p)/2] log tr
[
(Y′Y)/T − Σ̂p

]
. (2.6)

Here Γ[·] is Gamma function and ΓK [·] is the multivariate Gamma function. The

operators det(·) and tr(·) stand for the determinant and the trace, respectively.

By Σ̂p we denote the estimate of the error covariance matrix obtained when

VAR(p)-model is fitted to the measurements Y.

Proof.

Preliminary calculations

For ease of writing, we introduce the notation ℓ = Kp and define:

Zt = [y′
t, . . . ,y

′
t−p+1]

′ (ℓ× 1),

Z = [Z0, . . . ,ZT−1]
′ (T × ℓ),

U = [u1, . . . ,uT ]
′ (T ×K).

Remark that the size of each newly defined quantity is listed in the parentheses.

As Y = [y1, . . . ,yT ]
′ and B = [A1, . . . ,Ap]

′, it follows that

Y = ZB+U. (2.7)

Under the hypotheses that T ≥ K + ℓ and the vectors {ut}Tt=1 are Gaussian dis-

tributed, the conditional ML estimators are given by (Mardia, Kent and Bibby,

1979):

B̂ = (Z′Z)−1Z′Y, (2.8)

Σ̂ = (Y′P⊥
ZY)/T, (2.9)

where P⊥
Z = I− Z(Z′Z)−1Z′ is the projection matrix onto the subspace orthog-

onal to the columns of Z.
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After applying the column stacking operator (·)V to both sides of the identity

in (2.7), we obtain

YV = (I⊗ Z)BV +UV,

where ⊗ denotes the Kronecker product. It is evident that UV ∼ NTK(0,Σ⊗I).

The generalized least-squares estimator for BV is (Mardia, Kent and Bibby,

1979)

B̂V = [I⊗ (Z′Z)−1Z′]YV

and coincides with the ML estimator for B [see (2.8)].

From the standard properties of the ML estimators, we have (Mardia, Kent

and Bibby, 1979): (P1) B̂V ∼ N (BV,Ω), where Ω = Σ ⊗ (Z′Z)−1; (P2) T Σ̂ ∼

WK(Σ, T − ℓ) [Wishart distribution with scale matrix Σ and degrees of freedom

parameter T − ℓ]; (P3) B̂V is statistically independent of Σ̂.

First normalization step

We introduce the supplementary notation θ = (BV,Σ). For simplicity, we

write B̂V instead of B̂V(YV) and Σ̂
V instead of Σ̂V

(YV). Hence, θ̂ = (B̂, Σ̂).

Using the properties (P1)-(P3) along with the fact that the statistics θ̂ are

sufficient for θ (Mardia, Kent and Bibby, 1979), we get the following chain of

identities for the likelihood function:

f(Y;θ) = f(Y|θ)g(θ; θ̂),

g(θ; θ̂) = g1(B̂
V;θ)g2(Σ̂;Σ),

g1(B̂
V;θ) =

exp
[
−
(
δ′
BΩ

−1δB

)
/2
]

(2π)ℓK/2(detΣ)ℓ/2(detZ′Z)−K/2
,

g2(Σ̂;Σ) =
T (detT Σ̂)(T−ℓ−K−1)/2 exp

[
−T

2
tr(Σ−1Σ̂)

]
2(T−ℓ)K/2(detΣ)(T−ℓ)/2ΓK [(T − ℓ)/2]

,

where δB = B̂V −BV. After little algebra, we get:

g(θ̂; θ̂) = G(det Σ̂)−(ℓ+K+1)/2, (2.10)
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where

G =
T 1+K(T−ℓ−K−1)/2

(2TK/2)(πℓK/2)

det(Z′Z)K/2 exp(−TK/2)
ΓK [(T − l) /2]

, (2.11)

det Σ̂ =
K∏
j=1

λ̂(j). (2.12)

Additionally, we assume that the eigenvalues of Σ̂ are ordered as follows: λ(K) ≥

· · · ≥ λ(1) > 0.

As a preliminary step for constraining the integration domain in (2.2), we

consider the hyper-parameters R > 0 and λ
(K)
min ≥ · · · ≥ λ

(1)
min > 0. We take

Λmin =
{
λ
(j)
min

}K
j=1

. With the convention that ∥·∥ denotes the Euclidean norm,

we define:

B(R) =
{
B̂V : ∥(I⊗ Z)B̂V∥2/(TK) ≤ R

}
,

L(Λmin) =
{
Σ̂ : λ̂(j) ≥ λ

(j)
min for j = 1, K

}
,

T (R,Λmin) =
{
θ̂ : B̂V ∈ B(R) and Σ̂ ∈ L(Λmin)

}
,

Y(R,Λmin) =
{
YV : θ̂(YV) ∈ T (R,Λmin)

}
,

Y(θ̂) =
{
YV : θ̂(YV) = θ̂

}
.

The constrained normalization factor is:

Cp(R,Λmin)

=

∫
Y(R,Λmin)

f
(
YV; ˆθ(YV)

)
dYV

=

∫
T (R,Λmin)


∫

Y(
ˆθ)

f(YV|θ̂)dYV

 g(θ̂; θ̂)dθ̂ (2.13)

= G


K∏
j=1

∞∫
λ
(j)
min

[
λ̂(j)

]− ℓ+K+1
2 dλ̂(j)


∫

B(R)

dB̂V (2.14)

= G


K∏
j=1

[
λ
(j)
min

]−(l+K−1)/2

(l +K − 1)/2

 vol [B(R)] . (2.15)
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In (2.13), we used the fact that the inner integral equals one, while in (2.14)

we applied the identities in (2.10)-(2.12). For the volume which appears in (2.15),

it is easy to show [see, for example, (Giurcăneanu, Razavi and Liski, 2011)] that

vol [B(R)] = ηRζKℓ,

where

η =
(TKπ)lK/2

Γ [(lK)/2 + 1] det((I⊗ Z)′(I⊗ Z))1/2
,

ζ = 1/2.

One possible option for computing Cp(R,Λmin) is to make subjective selec-

tions for the value of R and the entries of Λmin. However, we follow the rec-

ommendations from (Rissanen (2007)) and perform another normalization step.

Before discussing this step, we observe that Cp(R,Λmin) becomes smaller when

R decreases. Keeping in mind that we want to minimize the “code length” given

by

− log f̂(YV; p) = − log f
(
YV; B̂(YV), Σ̂(YV)

)
+ logCp(R,Λmin).

we take

R =

∥∥∥(I⊗ Z)B̂V
∥∥∥2

KT
, (2.16)

=
tr
(
Y′Y − T Σ̂

)
KT

. (2.17)

The selection of the R-value in (2.16) is mainly determined by the definition of

B(R). The identity in (2.17) is straightforwardly obtained from Σ̂ = (Y′P⊥
ZY)/T ,

where P⊥
Z = I− Z(Z′Z)−1Z′ is the projection matrix onto the subspace orthog-

onal to the columns of Z [see (Mardia, Kent and Bibby, 1979)].

Similar considerations lead to

λ
(j)
min = λ̂j, j = 1, . . . , K.
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2.3. RNML formula for p > 0

Hence, we have:

logCp(R,Λmin) = − log ΓK [(T − ℓ)/2] +K log
2

ℓ+K − 1

− ℓ+K − 1

2
log det Σ̂+

ℓK

2
log

tr
(
Y′Y − T Σ̂

)
T

+ logCt,

where

Ct =
T 1+K(T−K−1)/2 exp(−TK/2)

2TK/2
.

Remark that logCt does not depend on the order p of the model, so it can be

ignored in our future calculations.

Second normalization step

We choose R1, R2, λ1, λ2 such that R2 > R1 > 0 and λ2 > λ1 > 0. As in the

previous definitions, we have:

B(R1, R2) =

{
B̂V : R1 ≤

∥(I⊗ Z)B̂V∥2

TK
≤ R2

}
,

L(λ1, λ2) =
{
Σ̂ : λ1 ≤ λ̂(j) ≤ λ2 for j = 1, K

}
,

T (R1, R2, λ1, λ2) =
{
θ̂ : B̂V ∈ B(R1, R2) and Σ̂ ∈ L(λ1, λ2)

}
,

Y(R1, R2, λ1, λ2) =
{
YV : θ̂(YV) ∈ T (R1, R2, λ1, λ2)

}
.

The normalization term Cp(R1, R2, λ1, λ2) is computed as follows:

Cp(R1, R2, λ1, λ2) =

∫
Y(R1,R2,λ1,λ2)

f
(
YV; ˆθ(YV)

)
Cp(R,Λmin)

dYV

=

∫
T (R1,R2,λ1,λ2)

g(θ̂; θ̂)

Cp(R,Λmin)
dθ̂

=

[
2

ℓ+K − 1

]−K  K∏
j=1

λ2∫
λ1

1

λ̂(j)
dλ̂(j)

× R2∫
R1

Kℓ

2

1

R
dR

For proving the last identity, we have used the expression of g(θ̂; θ̂) from (2.10)-

(2.12) as well as the expression of Cp(R,Λmin) from (2.15). For computing the

integral of the inverse of the volume from Cp(R,Λmin)-formula, we have observed
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2. Renormalized Maximum Likelihood

that the expression of the volume coincides with the one from (Giurcăneanu,

Razavi and Liski, 2011, Eq. (10)) and we employed the identities from (Giur-

căneanu, Razavi and Liski, 2011, Appendix A). Hence, we get:

logCp(R1, R2, λ1, λ2)

= −K log
2

ℓ+K − 1
+ log ℓ

+ log
K

2
(2.18)

+K log log
λ2
λ1

(2.19)

+ log log
R2

R1

. (2.20)

We ignore the term in (2.18) because is constant. Due to the same reasons as

those invoked in (Rissanen, 2007, Hirai and Yamanishi, 2013), we drop the terms

in (2.19) and (2.20).

After collecting all the terms corresponding to logCp(R,Λmin) and logCp(R1,

R2, λ1, λ2) along with negative log-likelihood, we obtain the RNML criterion

which is presented in Proposition 2.3.1.

2.4 RNML formula for p = 0

In this case, we only need to compute the estimate Σ̂0 = (Y′Y)/T . All other

calculations are similar to those from the previous section, but simpler. It is

easy to show that the logarithm of the normalization factor which corresponds

to logCp(R,Λmin) is

logC0(Λmin,0) = −
K − 1

2
log det Σ̂0 − log ΓK

(
T

2

)
+K log

2

K − 1
,

where Λmin,0 is the set of eigenvalues of Σ̂0. Furthermore, if we constrain these

eigenvalues to the interval [λ3, λ4], then we get the logarithm of the normalization

factor which corresponds to logCp(R1, R2, λ1, λ2):

logC0(λ3, λ4) = K log log
λ4
λ3
−K log

2

K − 1
.
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2.4. RNML formula for p = 0

It follows that

RNML(Y; p = 0) =
T −K + 1

2
log det Σ̂0

− log Γ

(
T

2

)
+K log log

λ4
λ3
.

It is a simple exercise to verify that the expression above reduces to the one

in (Rissanen, 2007, Eq. (9.40)) when K = 1 (univariate case). The discussion

on the role of the hyper-parameters, λ3 and λ4, goes along the same lines as in

(Rissanen, 2007). From identity in (2.17) and the definitions of B(R1, R2) and

L(λ1, λ2) in Section 2.3, we have the double inequality:

R1 + λ1 ≤ tr(Σ̂0)/K ≤ R2 + λ2.

At the same time, λ3 ≤ tr(Σ̂0)/K ≤ λ4, which makes it natural to choose

λ3 = R1+λ1 and λ4 = R2+λ2. If we apply the same technique as in (Rissanen,

2007) by taking λ1 = R1 = a and λ2 = R2 = b (0 < a < b), the contribu-

tion of the hyper-parameters to RNML(Y; p) is (K + 1) log log(b/a) for p > 0.

When comparing this result with K log log(b/a), which is the contribution of

the hyper-parameters to RNML(Y; p = 0), we can conclude that neglecting the

hyper-parameters might have a negative impact on the selection of the model.

The formula for RNML(Y; p = 0) is not used in this thesis and its derivation

was included only for the sake of completeness. The expression of RNML which

we use is the one given in Proposition 2.3.1. For better understanding the signif-

icance of this formula, we demonstrate below that it is asymptotically equivalent

to the well-known Bayesian Information Criterion (BIC). Because in the time

series literature, the term Schwarz Bayesian Criterion (SBC) is employed instead

of BIC, we prefer to use this acronym.
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2. Renormalized Maximum Likelihood

2.5 Asymptotic equivalence between RNML

and SBC

This analysis aims to clarify the relationship between RNML and SBC, whose

formula is (Schwarz, 1978)

SBC(Y; p) =
T

2
log det Σ̂p +

K2p

2
log T.

We are interested in their relative behavior when T →∞. Before presenting the

main proposition of this section, we prove an auxiliary result.

Lemma 2.5.1. Assume that T → ∞, K is fixed and p does not increase with

T . With the notation from Proposition 2.3.1, we have:

GOF =

[
T

2
log det Σ̂p

]
[1− o(1)]

and

PEN1 =

[
K2p

2
log T

]
[1− o(1)] .

Proof.

The identity for GOF can be obtained straightforwardly. For PEN1, we note

that the multivariate Gamma function can be written as

ΓK
[
T−Kp

2

]
π

K(K−1)
4

=
K∏
i=1

Γ

[
T −Kp+ 1− i

2

]
. (2.21)

Furthermore, we use the Stirling approximation (Artin, 1964, p. 24):

log Γ(z) =
1

2
log(2π) +

(
z − 1

2

)
log z − z + θ

12z
,

where z > 0 and 0 < θ < 1.
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2.5. Asymptotic equivalence between RNML and SBC

We neglect the factor πK(K−1)/4 in (2.21) because it does not depend on the

model order. With the convention that ℓ = Kp, we have:

log ΓK

(
T − ℓ
2

)
=

K∑
i=1

log Γ

(
T − ℓ+ 1− i

2

)

=
K∑
i=1

T − ℓ− i
2

log
T − ℓ+ 1− i

2

−
K∑
i=1

T − ℓ+ 1− i
2

+
K

2
log(2π) +O

(
1

T

)
.

Because the terms which do not depend on p can be ignored, we write

−PEN1

=
1

2

K∑
i=1

(T − ℓ− i) log(T − ℓ+ 1− i) + Kℓ

2
(1 + log 2)

=
1

2

K∑
i=1

(T − ℓ− i) log T

+
1

2

K∑
i=1

(T − ℓ− i) log
(
1− ℓ− 1 + i

T

)
+
Kℓ

2
(1 + log 2).

We drop the constant terms and use the Maclaurin series expansion for
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2. Renormalized Maximum Likelihood

log [1− (ℓ− 1 + i)/T ] when 1 ≤ i ≤ K:

−PEN1

= −Kℓ
2

log T +
Kℓ

2
(1 + log 2)

+
1

2

K∑
i=1

(T − ℓ− i) log
(
1− ℓ− 1 + i

T

)
= −Kℓ

2
log T +

Kℓ

2
(1 + log 2)

−1

2

K∑
i=1

(T − ℓ− i)ℓ− 1 + i

T
−O

(
1

T

)
= −Kℓ

2
log T +

Kℓ

2
log 2

+
1

2T

K∑
i=1

(ℓ+ i)(ℓ+ i− 1)−O
(
1

T

)
= −Kℓ

2
log T +

Kℓ

2
log 2

+
1

2T

[
ℓ2K + ℓK2 +

K3

3
− K

3

]
−O

(
1

T

)
= −

[
Kℓ

2
log T

]
[1− o(1)]

= −
[
K2p

2
log T

]
[1− o(1)] .

This concludes the proof.

Proposition 2.5.1. RNML and SBC reduce to the same formula when T →

∞. Assuming that the measurements {yt}Tt=1 are outcomes from a stable and

stationary VAR-process with zero-mean vector and order p◦ > 0, RNML is a

strongly consistent estimator for the order of the process.

Proof.

From the definitions given in Proposition 2.3.1, it is obvious that PEN2 becomes

negligible with respect to PEN1 as T → ∞. We will show below (see Remark

1) that PEN3 is bounded when T → ∞. Then, Lemma 2.5.1 gives the stated

relation between RNML and SBC. The consistency property of RNML is hence

the same as for SBC, proved in (Lutkepöhl, 2005, p. 150).
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2.5. Asymptotic equivalence between RNML and SBC

We now analyze PEN3, which is the most intriguing penalty term because

it does not depend only on the number of variables (K), sample size (T ), VAR-

order (p), but also on the measurements [see (2.6)]. We propose to find an upper

bound for PEN3 when T → ∞. For any integer h, let R(h) = Cov(yt,yt−h)

be the autocovariance matrix at lag h, for the time series Y. According to

(Reinsel, 1993, Section 3.3), the model of the time series can be “approximated”

by a VAR(p). For convenience, we assume that both p and p◦ are from the set

{1, . . . , pmax}.

Remark 1. We make the convention that Σ0 = R(0). It is known from (Reinsel,

1993, p. 75) that (Y′Y)/T converges to Σ0 almost surely as T →∞. Similarly,

for p > 0, Σ̂p → Σp almost surely. Hence, asymptotically in T we have: PEN3 ≤

(K2p/2) log tr(Σ0). Note that the upper bound for PEN3 does not depend on

T .

We show in the next proposition how the upper bound for PEN3 can be

further improved. More importantly, the proof of the proposition reveals the

relationship between PEN3 and the partial autocorrelation matrix.

Proposition 2.5.2. When T → ∞, if RNML(Y; p) is evaluated for a data

matrix Y produced by a VAR(p◦)-model, then the following inequality holds:

PEN3 ≤
Kp

2
log detΣp +

K2p

2
logK +

K2p

2
log

[
ϕ(Σ0)

ψ(p, p◦)
− 1

]
,

where ϕ(Σ0) =
tr(Σ0)

K(detΣ0)1/K
and ψ(p, p◦) has the properties: (i) ψ(p, p◦) ∈

(0, 1) for all p, p◦ ∈ {1, . . . , pmax}; (ii) ψ(p+1, p◦) ≤ ψ(p, p◦) for p = 1, . . . , p◦−1;

(iii) ψ(p, p◦) = ψ(p◦, p◦) for p = p◦ + 1, . . . , pmax.

Proof.

Firstly we employ the result from (Reinsel, 1993, p. 75) which says that the

sample covariance matrix R̂(h) converges to R(h) almost surely as T → ∞.

This result along with Yule-Walker equations (Reinsel, 1993, Eq. (9.a)) allow

us to replace, in our asymptotic analysis, Σ̂p with Σp for all p ≥ 0.
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2. Renormalized Maximum Likelihood

As in (Reinsel, 1993, p. 69), we take up,t and ←−u p,t−p to be the residual

vectors from the multivariate regressions of yt and yt−p on the set of predictor

variables yt−1, . . . ,yt−p+1. Hence, we have Σp−1 = Cov(up,t). Additionally, we

introduce the notation ←−Σ p−1 = Cov(←−u p,t−p).

Furthermore, for p > 0, we define the partial correlation matrix (see also

(Reinsel, 1993, p. 70)(Wei, 2006, Eq. (16.5.52))):

Q̆(p) =

[
←−
Σ

1/2

p−1

]−1

Cov
(←−u p,t−pu

′
p,t

) [
Σ

1/2
p−1

]−1

, (2.22)

where ←−Σ
1/2

p−1 and Σ
1/2
p−1 are the symmetric square roots of ←−Σ p−1 and Σp−1, re-

spectively. If in (2.22) we replace ←−Σ
1/2

p−1 with the lower triangular root of ←−Σ p−1

and Σ
1/2
p−1 with the upper triangular root of Σp−1, then we obtain the transpose

of the matrix defined in (Morf, Vieira and Kailath, 1978, Eq. (14)).

Note that the entries of Q̆(p) are correlation coefficients only in the particular

case when K = 1 [see (Wei, 2006, p. 413-414) for a more detailed discussion].

However, the eigenvalues of Q̆′(p)Q̆(p) belong to the interval [0, 1] and they are

equal to “the (squared) partial canonical correlations between the vectors yt and

yt−p after adjustment for the dependence of these variables on the intervening

values yt−1, . . . ,yt−p+1” (Reinsel, 1993, p. 71).

It follows from (Morf, Vieira and Kailath, 1978, p. 646) that

detΣp = detΣ0

p∏
i=1

det(I− Q̆′(i)Q̆(i)). (2.23)

Additionally, we have that Q̆(i) = 0 when i > p◦. Since we assume that Σp ≻ 0,

all squared partial canonical correlations are strictly smaller than one.

Using the inequality of arithmetic and geometric means, we readily obtain

tr(Σ0 −Σp) ≤ tr(Σ0)−K detΣ1/K
p

= K detΣ1/K
p

[
ϕ(Σ0)

ψ(p, p◦)
− 1

]
,

where ψ(p, p◦) =

p∏
i=1

det(I − Q̆′(i)Q̆(i))1/K . All that remains is to employ the

inequality above in conjunction with the definition of PEN3.
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2.6. Experimental Results

Remark 2. From (2.23), we have that ψ(p, p◦) = (detΣp/detΣ0)
1/K , which leads

to the identity K2p
2

log tr(Σ0) =
Kp
2
log detΣp +

K2p
2

logK + K2p
2

log ϕ(Σ0)
ψ(p,p◦)

. This

demonstrates that the upper bound for PEN3 in Proposition 2.5.2 is sharper

than the one in Remark 1.

Remark 3. Note that, in the proof of Proposition 2.5.2, we have shown the

relationship between the upper bound for PEN3 and the eigenvalues of the partial

correlation matrix. As we have already pointed out, the statistical significance of

these eigenvalues is well-known in the literature focused on time series analysis.

2.6 Experimental Results

In this section, we conduct experiments with simulated data for comparing

RNML with other six IT criteria. The formulae of the criteria as well as a

short description of their derivations can be found in Table 2.1.

2.6.1 Example 1

We consider a VAR-model for which K is large (K = 20) and the “true” or-

der takes small values (p◦ = 1 or p◦ = 2). This model was originally pro-

posed in (Ting et al., 2015) and assumes that the driven noise is Gaussian and

Σp◦ = I. The matrix coefficients of the model (A1 p◦ , . . . ,Ap◦ p◦) are of the form

[D1 0;0 D2], where both D1 and D2 are 10×10. Remark that we use notational

conventions like those from Matlab. The entries of D1 and D2 are statistically

independent and they are drawn from a uniform distribution on the interval

(−1/2, 1/2). Additionally, all entries of the matrix coefficients which do not be-

long to the main diagonal are divided by 1.35p
◦ . We emphasize that, for p◦ = 2,

the non-zero entries of A1 2 and A2 2 are statistically independent and they are

statistically independent with respect to the driven noise. In our experiments,

for each p◦, we consider 104 realizations of the matrix coefficients. For each

realization, a set of 275 samples is produced by randomly generating the driven

noise. The first 200 samples are employed to estimate Â1 p, . . . , Âp p and Σ̂p for
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2. Renormalized Maximum Likelihood

Acronym Penalty Term Reference
SBC K2p

2
log T Schwarz

(1978)
log FPE

KT

2
log

T + pK

T − pK
Akaike
(1971)

Based on the approximate covariance matrix of one-step ahead forecast errors
AIC pK2 Akaike

(1974)
Asymptotically unbiased estimator for Kullback directed divergence

AICc
T

T − pK −K − 1

[
pK2 +

K(K + 1)

2

]
Hurvich
and
Tsai
(1993)

AIC corrected for small sample sizes

KIC
3pK2

2
Cavanaugh
(1999)

Asymptotically unbiased estimator for Kullback symmetric divergence

KICc
TK(2pK +K + 1)

2(T − pK −K − 1)
+

TK

2(T − pK)− (K − 1)
+

2pK2 +K2 −K
4

Seghouane
(2006)

KIC corrected for small sample sizes

Table 2.1: Expressions of various IT criteria for a VAR of order p fitted to a
data set that contains K time series of length T . For all the criteria listed in
the table, the goodness-of-term is (T/2) log det Σ̂p. For simplicity, we remove
from the penalty terms those quantities which do not depend on p. We prefer
to write the formula of log FPE instead of FPE for facilitating the comparison
with other criteria. It is easy to see that the formula of SBC is the same with
the one given in Section 2.5.

p = 1, 8 by using the ARFIT-algorithm (Neumaier and Schneider, 2001). Then

the best order is selected with RNML and six other IT criteria which are pre-

sented in Table 2.1. The same is done for the first 225 samples, then for the first

250 samples and eventually the whole data is used in the estimation process.

According to the plots shown in Figure 2.1, when p◦ = 1, we have: (i) SBC,

RNML, AICc and KICc perfectly estimate the correct order in all trials; (ii) AIC

overestimates the order in all runs for which the sample size is T = 200; (iii) For
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2.6. Experimental Results

T = 225, AIC estimates correctly the order only 40 times out of 104; (iv) The

performance of KIC is only slightly worse than that of KICc; (v) FPE and KIC

have the same level of performance.

As we can see Figure 2.1, the ranking of criteria changes when p◦ = 2: (i)

SBC severely underestimates the order and achieves a moderate score of 60%

correct estimations only when T = 275; (ii) RNML is correct in at least 90% of

the runs, disregarding the sample size; (iii) AICc is ranked the best and is much

better than AIC; (iv) KICc is better than KIC; (v) FPE is very good, except

for T = 200. We note that, in (Ting et al., 2015), FPE was not considered and

the estimation results were reported only for T = 200. The results we report

for this sample size are similar to those in (Ting et al., 2015) and we assume

that the differences are due to the fact that we apply a different algorithm for

estimating the matrix coefficients of the model.

2.6.2 Example 2

We simulate data according to a VAR-model for which K = 5 and p◦ ∈

{1, 5, 10, 15}. As we are interested in the sparsity of ISDM of the VAR-model,

we define NSP = 9 sparsity patterns which are denoted {SPi}8i=0. After setting

SP0 = ∅ and (u, v) = (1, 2), we apply the following recursions, for i = 0, 7:

(i) SPi+1 ← SPi ∪ {(u, v)} and (ii) if v < K, then (u, v) ← (u, v + 1), else

(u, v)← (u+ 1, u+ 2). Remark that SP0 ⊂ SP1 ⊂ · · · ⊂ SP8.

Inspired by (Songsiri and Vandenberghe, 2010, Example 2), we generate for

each SP in {SPi}8i=0 an ISDM with the property that the entries of {Qm}p
◦

m=1

[see (1.3)] are zero in the positions corresponding to SP, and all other entries

are randomly drawn from the univariate Gaussian distribution with mean 2 ×

10−1 and variance 10−4. The matrix Q0 is similarly produced, except that

integer multiples of the identity matrix are added to it until ISDM is positive

definite. Furthermore, we use spectral factorization of ISDM [see (Dumitrescu,

2007, App.B.5)] for obtaining the matrix polynomial ASP of order p◦. The

covariance matrix ΣSP is a byproduct of this procedure. We simulate Nr different
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K-variate time series of length Tmax by using ASP and ΣSP in (1.2).

In our settings, Nr = 100 and Tmax = 27000. Hence, for each p◦-order, the

number of simulated K-variate time series is NSP ×Nr = 900. Each time series

is used to estimate the matrix coefficients and Σ̂p for p = 1, 20 by employing

again the implementation of ARFIT algorithm (Neumaier and Schneider, 2001),

available at http://climate-dynamics.org/software/#arfit. As in Exam-

ple 1, the order is selected by the RNML and the criteria listed in Table 2.1.

Firstly a subset of measurements (Y = [y1, . . . ,yT ]
′) with T = 600 is employed

for VAR-order estimation and then the value of T is increased as follows: (i)

T ← T +100 when 600 ≤ T ≤ 900 and (ii) T ← 3T when 1000 ≤ T ≤ 9000. We

count how many times each criterion selects the correct order. The results are

shown in Figure 2.2. For p◦ = 1, all seven criteria correctly estimate the order

of the model in all runs and for all sample sizes. However, the ability of the

criteria to correctly estimate the order changes for higher orders. When p◦ = 5,

FPE, RNML, AIC and AICc yield the best estimates when T ≤ 900 by correctly

selecting the order in 70% to 100% of the cases, while KIC and KICc are much

weaker; SBC selects wrong orders in all runs for which T ≤ 1000. When p◦ = 10

and T ≤ 900, we can observe in Figure 2.2 that SBC, KIC, and KICc fail to

estimate correctly the order. For these experimental settings, RNML is ranked

the best. It is remarkable that, for p◦ = 10 and T ∈ {900, 1000}, RNML is the

only IT criterion which selects correctly the order in more than 50% of the cases.

For p◦ = 15, the performance of all IT criteria declines when T is small. RNML

is the only criterion which, at least for some runs, selects the true order when

T ≤ 900. This is evident in Figure 2.2. We can conclude that RNML is superior

to other criteria when p◦ is large.

As this thesis is mainly focused on the estimation of the ISDM, we perform

the following experiment. After the order p̂ of the model is selected with an IT

criterion, the autocovariance matrices R̂(0), . . . , R̂(p̂) can be easily estimated

from the data. Furthermore, an estimate of ISDM can be obtained by solving a

convex optimization problem which maximizes the entropy rate subject to the
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following constraints: (i) the spectral density matrix matches R̂(0), . . ., R̂(p̂)

and (ii) the sparsity pattern of ISDM is SP. For details, we refer to (Songsiri,

Dahl and Vandenberghe, 2010). The optimization problem will be also presented

in Section 3.1. Because we want to evaluate the impact of model order selection

on the accuracy of this estimation, we assume that SP is known. More precisely,

we generate data as described above, but only for p◦ = 10. This time, we reduce

the number of sample sizes by dropping T = 27000 and the number of SP’s is also

diminished because we do not consider SP0. The number of runs is Nr = 100,

which means that the number of K-variate time series for each sample size is

(NSP − 1)×Nr = 800.

In order to clarify the notation, let us assume that S(ω) and Ŝ(ω) are the

matrix spectral densities for the “true” model and the estimated model, respec-

tively. Recall that the order of the “true” model is p◦, while the order of the

estimated model is p̂. The maximum entropy estimate, ŜME(ω), corresponds also

to a model of order p̂ and has the property that the sparsity of its ISDM is the

same as the “true” SP. We takeNgrid = 1024 and we evaluate S(ω), Ŝ(ω), ŜME(ω)

for ω ∈ G, where G =
{

0×π
Ngrid

, 1×π
Ngrid

, · · · , Ngrid×π
Ngrid

}
. In order to investigate how far

is S(ω) from Ŝ(ω), we calculate the I-divergence between them by applying the

general formula for two positive-definite matrices F and G (Speed and Kiiveri,

1986):

D(F||G) = −1

2

[
log det(FG−1) + tr

(
I− FG−1

)]
Given that I(ω) is the I-divergence between S(ω) and Ŝ(ω), we compute Imax =

max
ω∈G

I(ω). Similarly, IME
max is the maximum of the I-divergence between S(ω) and

ŜME(ω) when ω ∈ G. Statistics concerning Imax and IME
max are plotted in Figure

2.4. Observe that RNML is the best among all criteria because it minimizes the

maximum for each of the two I-divergences. This is true for all sample sizes that

we have considered in our experiment (see again Figure 2.4). We also give an

interpretation of the estimation results by resorting to multivariate Itakura-Saito

divergence.

The multivariate Itakura-Saito divergence between the “true” VAR(p◦) and
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2. Renormalized Maximum Likelihood

the estimated VAR(p̂) is given by J = 1
2π

∫ 2π

0
D(S(ω)||Ŝ(ω))dω (Bach and Jor-

dan, 2004, Ferrante, Masiero and Pavon, 2012). An approximation of J can be

easily obtained from the values of the I-divergence computed on the grid G. The

same method can be applied for the evaluation of JME, the multivariate Itakura-

Saito divergence between the “true” model and its maximum-entropy estimate.

The statistics for J and JME are shown in Figure 2.4. When T ≤ 1000, RNML

yields values of J and JME which are larger than the values of divergences pro-

duced by other IT criteria. Bearing in mind that, for these sample sizes, RNML

is the best in selecting the model order, we calculate a new set of statistics only

from those runs where RNML estimates correctly the order. For differentiating

between these statistics and those computed previously, we use the notation Jc

instead of J and JME
c instead of JME. Observe in Figure 2.5 that, when T is

small and p̂RNML = p◦, Jc computed for RNML exceeds the values of Jc corre-

sponding to other IT criteria. At the same time, in all these cases, RNML yields

the greatest improvement of JME
c in comparison with Jc.

As a final observation, we note for T = 1000 that only SBC, KIC and KICc

lead to large values of J , Jc, JME and JME
c . However, when T increases from

1000 to 3000, SBC is the only criterion which produces relatively large values of

Itakura-Saito divergence.

2.7 Summary

In this chapter, we introduced the RNML criterion for VAR-order selection. In

our theoretical analysis, we proved that the criterion is strongly consistent. The

results reported for experiments with simulated data demonstrate its abilities

in estimating properly the order when the sample size is small or moderate.

It can be used as part of an algorithm which firstly estimates the order and

then identifies the sparsity pattern of ISDM. This application will be further

developed in the next chapter.
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Figure 2.1: Example 1: Performance of various criteria in estimating the order
of VAR-model. The value of ”true” VAR-order is written on the vertical axes of
the plots.
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Figure 2.2: Example 2: Performance of various criteria in estimating the order
of VAR-model. All graphical conventions are the same as Figure 2.1.
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Figure 2.3: Example 2: Statistics for the maximum value of I-divergences com-
puted on the G-grid. For each IT criterion, we plot two error bars, each of which
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Figure 2.5: Example 2: Statistics computed only for the cases when p̂RNML = 10.
All conventions are as in Figure 2.3: Imax is replaced by I c and Jmax
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Chapter 3

Efficient Algorithms for VAR

Graph Estimation

3.1 Preliminaries

Maximum entropy (ME) estimation We consider the zero-mean, Gaussian,

stationary stochastic vector process {yt} defined in (1.2). The order of the

model (p◦) as well as the the sparsity pattern (SP) of the ISDM are assumed

to be known. We have already mentioned in Section 2.6.2 that, for this K-

variate model, an estimate of the ISDM can be obtained from the measurements

{yt}Tt=1 by solving a convex optimization problem which maximizes the entropy

rate subject to the following constraints: (i) the spectral density matrix matches

the autocovariance matrices R̂(0), . . . , R̂(p◦) which are estimated from the data;

(ii) the sparsity pattern of the ISDM is SP. The convex formulation is as follows

(Songsiri, Dahl and Vandenberghe, 2010):

minX tr(T (R̂)X)− log detX00

s.t. X ⪰ 0

[TRm(X)]ab = 0, ∀(a, b) ∈ SP, m ∈ {−p◦, . . . , p◦}

(3.1)

Note that

R̂ = [R̂(0), . . . , R̂(p◦)] (3.2)
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3. Efficient Algorithms for VAR Graph Estimation

and the operator T (·) constructs a symmetric block-Toeplitz matrix from its

first block-row:

T (R̂) =


R̂(0) . . . R̂(p)

... . . . ...

R̂′(p) . . . R̂(0)

 . (3.3)

The variable X ∈ RK(p◦+1)×K(p◦+1) is symmetric and X00 ≻ 0 is the K × K

subblock in the upper left corner of X. The symbol TRm(·) stands for the block

trace operator, with m the index of the block diagonal:

TRm(X) =

p◦−m∑
h=0

Xh,h+m, m ∈ {0, . . . , p◦}.

For negative indices, the relation TR−m(X) = [TRm(X)]′ holds. From (1.3), we

get for all ω ∈ (−π, π] that Ŝ−1
SP(ω) =

∑p̂
m=−p̂ Q̂me

−jωm, where Q̂m = TRm(X).

The coefficients of the model can be obtained from X by spectral factorization

(see (1.2) and (1.3)).

It is convenient to use CVX for finding the ME-estimate. According to Grant

and Boyd (2010), CVX solves log det-problems with a successive approximation

method which involves several semidefinite programming problems. Each such

problem is initialized with the previous solution, hence needing less iterations

than when solving from scratch. In our implementation, we prefer to employ

CVX, even if the use of specialized algorithms could be better.

CVX is good especially because of its versatility. One can easily add or re-

move constraints to the optimization problem. With a special purpose algorithm

like alternating direction method of multipliers (ADMM), the complexity would

indeed scale better with size, but flexibility is difficult (Boyd et al. (2010)).

Normally, we should test the solution with CVX and, when the optimization

problem is well defined and becomes interesting for a large real application,

then some more efficient algorithm can be implemented.
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Because in practical situations, the order of the model and the sparsity pat-

tern are not known, Songsiri, Dahl and Vandenberghe (2010) proposed to solve

this problem for all pairs (p, SP), where p ≤ pmax. The value of pmax is chosen

by the user, and pmin is set to zero. All possible SP’s are considered. For each

p ∈ {pmin, . . . , pmax}, and each SP in the list of sparsity patterns, a VAR-model

is fitted to the data. The best pair (p̂, ŜP), or equivalently the best model, is

the one which minimizes an IT criterion. This method is called Full-Search.

As the criteria presented in Table 2.1 cannot be applied striaghtforwardly,

Songsiri, Dahl and Vandenberghe (2010) modified three of them (AIC, AICc,

BIC-for which we use the name SBC) such that to be suitable for this problem.

In Section 3.5, we will provide more information on how the criteria can be

altered.

Two-stage approach Instead of the Full-Search from Songsiri, Dahl and Van-

denberghe (2010), where each pair of p and SP are considered as the candidate

models, we propose the two-stage approach, which is described in Algorithm 1.

Remark that the stages for our estimation procedure are different from those

in Davis, Zang and Zheng (2016). In our case, in Stage1, an IT criterion is

employed to select the best order, say p̂ (see Chapter 2). The most important

consequence is that, in Stage2, all the estimations are performed only for order

p̂ and not for all the orders within the set {1, . . . , pmax}.

As can be seen in Algorithm 1, at Step2.1, we find Ŝ−1
SP(ω) which has a given

sparsity pattern (SP) and is nearest from Ŝ−1(ω). We call this method Nearest-

Sparse (NS). This is different from the approach used in Songsiri, Dahl and

Vandenberghe (2010), where Ŝ−1
SP(ω) is obtained by using a convex optimization

formulation of the ME-problem. In (Avventi, Lindquist and Wahlberg, 2013),

NS was applied to get a good initialization for the ME-optimization problem. In

Section 3.2, we show how the exact solution for NS can be computed efficiently.

This allows us to use NS without applying the supplementary ME-optimization

step. In contrast with Avventi, Lindquist and Wahlberg (2013), we do not
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Algorithm 1 Two-Stage Method
Stage1 [Select p̂]:

for all p ∈ {1, . . . , pmax} do
Fit VAR(p) to Y and compute ITC(Y; p).

end for
p̂← arg min

1≤p≤pmax

ITC(Y; p). Save in Ŝ−1(ω) the ISDM of VAR(p̂).

Stage2 [Select ŜP]:
for all SP in the list of sparsity patterns for VAR(p̂)-models do

Step2.1: Find Ŝ−1
SP(ω) by minimizing ∥E(ω)∥∞= ∥Ŝ−1(ω)− Ŝ−1

SP(ω)∥∞,
where ∥E(ω)∥∞ is the H∞-norm of the transfer function E(ω), i.e. its
largest singular value for ω ∈ (−π, π].
Step2.2: Find the VAR(p̂, SP)-model by spectral factorization of
Ŝ−1
SP(ω) and compute ITC(Y; p̂, SP).

end for
ŜP← argmin

SP
ITC(Y; p̂, SP).

assume the order of the model to be given.

At Step2.2, we evaluate how suitable is VAR(p̂), whose ISDM has the sparsity

pattern SP, to model the data Y by computing ITC(Y; p̂, SP). This implies the

use of spectral factorization which is described in Section 3.2. Our approach has

a solid justification and, more importantly, it does not involve a non-parametric

estimator for the spectral density matrix.

In Stage2, the difficulty stems from the fact that all sparsity patterns for VAR(p̂)-

models are evaluated. As the total number of SP’s increases exponentially with

K, it follows that the Exhaustive-Search can be applied only when K is small.

In order to circumvent this difficulty, we propose two solutions: (i) Instead of

enumerating from the very beginning all possible SP’s, the list of candidates is

generated dynamically; (ii) The number of SP’s which compete is reduced by

exploiting the peculiarities of ISDM. These solutions are presented in Section

3.3.1. In Section 3.3.2, we show how the combination of the two solutions leads

to an entire family of algorithms.
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3.2 Main algorithmic steps and their

computational complexity

Stage1 This is a classical problem, and for solving it we employ the ARFIT

algorithm which guarantees that the complexity of computing the estimates for

all considered orders isO(TK2p2max) (see (Neumaier and Schneider, 2001, Section

3.3)).

Stage2 At Step 2.1, E(ω) is a symmetric matrix polynomial, hence minimizing

the H∞-norm amounts to minimizing the maximum over ω ∈ (−π, π] of the

absolute value of its eigenvalues. Denoting X(ω) the unknown sparse ISDM, the

optimization problem becomes

minX λ

s.t. −λI ⪯ Ŝ−1(ω)−X(ω) ⪯ λI

X(ω) ⪰ 0

[X(ω)]ab = 0,∀(a, b) ∈ SP

(3.4)

The first constraint ensures the minimization of ∥E(ω)∥∞. The second con-

straint imposes that the ISDM is positive semidefinite (symmetry is assumed by

construction). Note that p̂ is fixed in (3.4) as it was already chosen in Stage

1. Since X(ω) is a trigonometric matrix polynomial, these constraints reduce

to linear matrix inequalities as shown in (Dumitrescu, 2007, Section 3.10). The

third constraint imposes the sparsity pattern SP and is a simple linear con-

straint. Overall, the optimization in (3.4) is a semidefinite programming (SDP)

problem.

The problem (3.4) can be solved with CVX (Grant and Boyd, 2010) and

the specialized library Pos3Poly (Şicleru and Dumitrescu, 2013), dedicated to

optimization with positive polynomials. It is known that the complexity for such

optimization problems is DIM2 × CON2, where DIM is given by the size of the

matrices involved and CON stands for the number of constraints (Dumitrescu,

2007). In our case, DIM = K(p̂+ 1) and CON = K2(p̂+ 1).

43



3. Efficient Algorithms for VAR Graph Estimation

The Exhaustive-Search, which was mentioned in Section 3.1, assumes that all

possible pairs (p̂, SP) are considered. With the convention that K = K(K−1)/2,

we have that the number of zeros which are located below the main diagonal in

the sparsity pattern SP belongs to {1, . . . , K}. Hence, in the case of Exhaustive-

Search, the complexity of Step2.1 has the expression:

K∑
q=1

(
K

q

)
K2(p̂+ 1)2K4(p̂+ 1)2 = O(2K2/2K6p̂4). (3.5)

For comparison, we also calculate the complexity for the situation when all

models (p, SP) with 1 ≤ p ≤ pmax are evaluated:

pmax∑
p=1

K∑
q=1

(
K

q

)
K2(p+ 1)2K4(p+ 1)2 = O(2K2/2K6p5max). (3.6)

At Step2.2, the spectral factorization of the positive matrix trigonometric

polynomial Ŝ−1
SP(ω) can be computed by solving another SDP problem (see (Du-

mitrescu, 2007, App. B.5),McLean and Woerdeman (2002)). The estimated

model is stable if Ŝ−1
SP(ω) is strictly positive definite for all ω ∈ (−π, π]. A

more cautious approach would be to replace the second constraint of (3.4) with

X(ω) ⪰ ϵI, where ϵ is a small positive constant.

Straightforward calculations lead to the conclusion that the complexity for

Step2.2 is the same as for Step2.1. More importantly, according to (3.5) and

(3.6), the computational burden becomes rapidly prohibitive when K raises.

Below we propose some methods which can be applied when K is moderately

large.

3.3 Faster algorithms

3.3.1 Description

Dynamic selection of ŜP (Greedy) The complexity of Stage2 can be low-

ered as follows: We firstly run Step2.1 and Step2.2 for all SP’s that contain

exactly one zero below the main diagonal. Let SP1 be the sparsity pattern from
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Full-Search Method : O(2K2/2K6p5max)

Two-Stage Method
Stage1 [Select p̂] Stage2 [Select ŜP]
O(TK2p2max) Exhaustive O(2K2/2K6p̂4)

Greedy O(K10p̂4)
Static List O(K8p̂4)

Table 3.1: Computational complexity of various algorithms used to infer the
conditional independence graph for VAR.

this family which minimizes a certain IT criterion we decide to apply. Then

we perform Step2.1 and Step2.2 for all SP’s of the form SP1∪{(u, v)}, where

1 ≤ v < u ≤ K and {(u, v)}
∩

SP1 = ∅. The one which minimizes the IT

criterion is called SP2. The procedure continues until we get SPK , which is

a diagonal matrix. Remark that SP1 ⊂ · · · ⊂ SPK . From these nested SP’s,

the winner is selected by comparing again the scores given by the IT criterion.

When this algorithm is applied, the computational complexity for Stage2 is
K∑
q=1

(K − q + 1)K6(p̂+ 1)4 = O(K10p̂4).

Selection of ŜP from a reduced list of candidates (Static List) Greedy

procedure outlined above is inspired from techniques applied in linear regression

(see, for example, Miller (2002)). However, in the case of our problem, we

can take advantage of the fact that an estimate Ŝ−1(ω) of ISDM can be easily

computed after Stage1. Furthermore, this can be used to evaluate

Ma b[Ŝ
−1] = max

ω∈(−π,π]
r̂a b[Ŝ

−1(ω)], where (3.7)

r̂a b[Ŝ
−1(ω)] =

∣∣∣[Ŝ−1(ω)
]
a b

∣∣∣√[
Ŝ−1(ω)

]
a a

[
Ŝ−1(ω)

]
b b

, (3.8)

for all pairs (a, b) with property 1 ≤ b < a ≤ K (Dahlhaus, 2000). The larger

is Ma b[Ŝ
−1], the higher is the chance that the marginal time series ya and yb

are conditionally correlated (Davis, Zang and Zheng, 2016). This is why we
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order the M -values increasingly and then define, based on this order, the list

SP1 ⊂ · · · ⊂ SPK of SP’s which will compete in Stage2. If Ma1 b1 [Ŝ
−1] ≤ · · · ≤

MaK bK
[Ŝ−1], then SPi =

i∪
q=1

{(aq, bq)}. A possible modification might be to

replace the expression of Ma b[Ŝ
−1] in (3.7) with

∑
ω∈G

(
r̂a b[Ŝ

−1(ω)]
)2

, where G

is a grid on [0, π] (see Section 2.6.2).

It is easy to observe that the cost of evaluating (3.8), for all pairs (a, b)

which are needed, is O(K2p̂4). Considering the cost of all operations in Stage2,

it follows that the computational complexity isO(K8p̂4). For ease of comparison,

this result is shown in Table 3.1, along with the computational complexities of

all estimation methods we discussed so far.

A scheme relying on a reduced list of candidates was already used in the lit-

erature (see Avventi, Lindquist and Wahlberg (2013) and the references therein).

The main difference between our proposal and previous work stems from the esti-

mation of ISDM. In our case, Ŝ−1(ω) is produced at the end of Stage1, whereas

the other authors firstly calculate Ŝker(ω) by using a non-parametric method

with some kernel function ker and then compute its inverse for all frequencies

on a grid. The fact that we do not need to get the inverse for any matrix is a

computational advantage.

Under the null hypothesis that ra b[S−1(ω)] is zero for all frequencies ω ∈ (−π, π],

the real and imaginary part of
√
T
(
r̂a b[Ŝ

−1
ker(ω)]− ra b[S

−1(ω)]
)

are asymptoti-

cally independent and Gaussian distributed with zero-mean and variance which

depends on ker (Dahlhaus, Eichler and Sandkühler, 1997). The proof of this

result is based on δ-method from Lutkepöhl (2005). The same method can

be applied for finding the limiting distributions for real and imaginary part of

[Ŝ−1(ω)]a b, which we use in (3.8). Below we present the distributional properties

for VAR(1), but they can be easily extended to VAR-models of any order. The

key finding is that the real and imaginary part of
√
T − 1

([
Ŝ−1(ω)

]
a b
−
[
S−1(ω)

]
a b

)
are asymptotically Gaussian distributed with zero-mean and variance indepen-

dent of T . The closed-form expression of the variance is generally given by a
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complicated formula, but this is unimportant for us because we do not select the

positions of the zero entries of ISDM by comparing Ma b[Ŝ
−1] with a threshold.

Because we assume that the order of VAR equals one, the imaginary part of

ISDM is given by

ℑ
{
S−1(ω)

}
= sin(ω)

[
−A′

1Σ
−1 +Σ−1A1

]
. (3.9)

We define g
(
(A′

1)
V
)
= [ℑ{S−1(ω)}]V, for a fixed value of ω. The vec-operator

(·)V denotes the vector obtained by stacking the columns of the matrix in the

argument on top of one another. We want to get the asymptotic distribution

of g
((

Â′
1

)V
)

, which is obtained from (3.9) by replacing A1 with Â1. To this

end, we employ a well-known result (Reinsel, 1993, p. 81):

N1/2

[(
Â′

1

)V

− (A′
1)

V

]
D−→ N

(
0,Σ⊗R(0)−1

)
,

where N = T − 1. The use of δ-method (Lutkepöhl, 2005, p. 693) leads to

N1/2

[
g

((
Â′

1

)V
)
− g

(
(A′

1)
V
)]

D−→

N

0,
∂g

(
(A′

1)
V
)

∂
[
(A′

1)
V
]′ (

Σ⊗R(0)−1
) ∂g′ ((A′

1)
V
)

∂ (A′
1)

V

 .

Now we focus on the expression of the covariance matrix which appears in the

equation above. After some algebra, we get

∂
(
A′

1Σ
−1
)V

∂
[
(A′

1)
V
]′ = Σ−1 ⊗ I, (3.10)

∂
(
Σ−1A1

)V
∂
[
(A′

1)
V
]′ =

(
I⊗Σ−1

)
Ξ, (3.11)

where Ξ denotes the commutation matrix which has the property that (M′)V =

ΞMV for any K2 ×K2 matrix M.
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3. Efficient Algorithms for VAR Graph Estimation

In order to simplify the calculations, we further assume that Σ = I. So,

∂g
(
(A′

1)
V
)

∂
[
(A′

1)
V
]′ (

Σ⊗R(0)−1
) ∂g′ ((A′

1)
V
)

∂ (A′
1)

V

= sin2(ω)(−I+Ξ)(I⊗R(0)−1)(−I+Ξ)

= sin2(ω)(I−Ξ)
[
(I⊗R(0)−1) + (R(0)−1 ⊗ I

)
].

Now we do the same type of analysis for the ℜ{S−1(ω)}. Firstly we note

that

ℜ{S−1(ω)} = − cos(ω)[A′
1 +A1] +A′

1A1 + I.

We take g
(
(A′

1)
V
)
= [ℜ{S−1(ω)}]V (for a fixed value of ω), and compute the

asymptotic covariance matrix of N1/2

[
g

((
Â′

1

)V
)
− g

(
(A′

1)
V
)]

by using the

δ-method. Note that

∂ (A′
1A)V

∂
[
(A′

1)
V
]′ = (I⊗A′

1)Ξ+ (A′
1 ⊗ I).

This result along with (3.10)-(3.11) lead to the following expression of the co-

variance matrix:

(I+Ξ) [− cos(ω)I+ (A′
1 ⊗ I)] (I⊗R(0)−1) [− cos(ω)I+ (A1 ⊗ I)] (I+Ξ)

= (I+Ξ)
[
− cos(ω)(I⊗R(0)−1) + (A′

1 ⊗R(0)−1)
]
[− cos(ω)I+ (A1 ⊗ I)] (I+Ξ)

= (I+Ξ)[cos2(ω)(I⊗R(0)−1)− cos(ω)(A1 ⊗R(0)−1)

− cos(ω)(A′
1 ⊗R(0)−1) + (A′

1A1 ⊗R(0)−1)].

3.3.2 Further refinements

Refinement I The strengths of Greedy and List can be combined by employ-

ing Algorithm 2 in Stage2. We make the convention that NS(Ŝ−1, SP) stands

for the ISDM with sparsity pattern SP which is nearest from Ŝ−1(ω). Even if

not written explicitly in the algorithm, note that the evaluation of ITC[Y; p̂, SP]

involves the spectral factorization of NS(Ŝ−1, SP).
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3.3. Faster algorithms

Algorithm 2 Select ŜP Procedure

SP0 ← ∅; ŜP← SP0; Ŝ−1
0 ← Ŝ−1; ÎTC← ITC[Y; p̂]

for all i ∈ {1, . . . , K} do
Compute : Ma b[Ŝ

−1
i−1] for (a, b) ∈ (SPK \ SPi−1); N i

tot ←
∣∣∣SPK \ SPi−1

∣∣∣
Sort: Ma1 b1 [Ŝ

−1
i−1] ≤ · · · ≤Ma

Ni
0
b
Ni
0

[Ŝ−1
i−1] ≤ · · · ≤Ma

Ni
tot

b
Ni
tot

[Ŝ−1
i−1]

for all (a, b) ∈
{
(a1, b1), . . . , (aN i

0
, bN i

0
)
}

do
SPtemp ← SPi−1∪{(a, b)}; Ŝ−1

temp ← NS(Ŝ−1, SPtemp)

if ITC[Y; p̂, SPtemp] < ÎTC then
SPi ← SPtemp; ŜP← SPi; Ŝ−1

i ← Ŝ−1
temp; ÎTC← ITC[Y; p̂, SPtemp]

end if
end for

end for
return ŜP

Algorithm 2 is initialized with the SP which does not contain any zero. At

each step (i), a zero is inserted below the main diagonal of SP. The location of

the inserted zero is chosen from N i
0 possible positions by using an IT criterion.

The parameter N i
0 is selected by the user. The most complex algorithm in this

family corresponds to the case when N i
0 = N i

tot for all i, and is the same as

the Greedy procedure which was introduced above. When N i
0 = 1 for all i, the

algorithm has the lowest computational complexity and we call it List. It is

worth pointing out that, in Algorithm 2, the list of candidates is not computed

only in the beginning of Stage2, but it is renewed after each insertion of a zero

below the main diagonal of ISDM. This makes List algorithm to be different

from the Static List, which was discussed in the previous section. However, the

computational complexity is about the same for both List and Static List.

Refinement II The results on complexity reported in Table 3.1 are based on

the assumption that, in Stage2, Ŝ−1
SP(ω) is taken to be the nearest from Ŝ−1(ω),

in the class of ISDM that satisfy all the required constraints. A more advanced

option is to find Ŝ−1
SP(ω) as the ME-solution corresponding to the sparsity pattern

SP (see (3.1)). This assumes that the autocovariance matrices R̂(0), . . . , R̂(p̂)

should be estimated from the data. Recall that p̂ was chosen in Stage1.
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3. Efficient Algorithms for VAR Graph Estimation

Refinement III Under the hypothesis that, at each step (i), exactly one

zero is inserted below the main diagonal of SP, the fastest algorithm is List (see

again Refinement I). However, a Fast List algorithm can be obtained by allowing

more zeros to be inserted at each step. For example, if a group of GN0 > 1 zeros

is added to SP at each step i, then the total number of models which compete

will be ⌈K/G0⌉+1. As usual, ⌈·⌉ is the smallest integer greater than or equal to

the real number in the argument. The reduction in the number of calculations

is evident, but the accuracy of estimation might deteriorate as well. We will

investigate this aspect in Section 3.6.
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3.4. Comparison with other methods based on convex optimization

3.4 Comparison with other methods based on

convex optimization

The comparison is focused on three aspects: (i) if a non-parametric estimator

is needed; (ii) which optimization problem should be solved; (iii) how many

candidates are evaluated by using IT criteria. The outcome of this analysis is

presented in Table 3.2. This can be used in conjunction with the results from

previous sections for deriving the computational complexity of each method. For

instance, it is obvious that the method we propose is much faster than the one

in Songsiri, Dahl and Vandenberghe (2010).

However, the comparison with Songsiri and Vandenberghe (2010) is not

straightforward because the method introduced in this reference involves the

following optimization problem:

minX tr(T (R)X)− log detX00 + λg(X)

s.t. X ⪰ 0
(3.12)

Remark that the notation is the same as in (3.1). The value of λ as well as the

sparsity promoter g(·) are given by the user. An estimate of ISDM is obtained,

and is further used to get an estimate of PSC. Even if some of the entries of

the estimated PSC have small magnitudes, they are not exactly zero. In order

to decide which of them are zeros, Songsiri and Vandenberghe (2010) compare

the PSC entries with a threshold Th: All values smaller than Th lead to zeros

in the sparsity pattern SPλ. The final ISDM estimate corresponding to λ is

the solution of the optimization problem in (3.1), for which SP = SPλ. As it

does not exist a particular value of λ which is best for all data sets, a method

for generating a sequence of λ-values is proposed in Songsiri and Vandenberghe

(2010). For each value in this sequence, the problems (3.1) and (3.12) should

be solved. Hence, the complexity of the algorithm depends on the length of the

sequence.

51



3. Efficient Algorithms for VAR Graph Estimation

In Avventi, Lindquist and Wahlberg (2013), the model is assumed to be

yt =

p◦∑
m=1

Amyt−m +

p◦∑
m=0

bmut−m, t = 1, 2, . . . , T, (3.13)

where {Am} and {ut} have the same significance as in (1.2). Additionally,

b0, . . . , bm are real numbers with property that b0 = 1. All the poles and the

roots of the model are assumed to be located inside the unit disc. As explained

in Avventi, Lindquist and Wahlberg (2013), any VARMA model can be written

like in (3.13). Remark that the value of p◦ is assumed to be known. This makes

difficult the comparison with our method in which the estimation of the order

plays a central role. Moreover, the use of RNML-formula derived in Prop. 2.3.1

is restricted to VAR-models.

In the next section, we show how the IT criteria outlined in Table 2.1 can

be altered such that to be used in Stage 2 of Algorithm 1.

3.5 Modified IT criteria

We have already pointed out in Chapter 2 that the IT criteria can be expressed

as the sum of a goodness-of-fit (GOF) term and a penalty. They are derived on

various grounds, but their expressions cannot be obtained easily for the problem

we investigate. Due to this reason, we resort to the methodology applied previ-

ously to VAR topology selection problems, where the criteria originally proposed

for model order selection have been modified such that to be employed for find-

ing the best sparsity pattern. As the GOF term is obtained straightforwardly by

fitting the model to the data, the difficult part is the alteration of the penalty

term. Based on the observation that all the penalty terms of the criteria for

model order selection involve the number of parameters of the model, Songsiri,

Dahl and Vandenberghe (2010) proposed to replace it with the effective number

of parameters:

Nef =
K(K + 1)

2
−N0 + p(K2 − 2N0). (3.14)
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3.5. Modified IT criteria

Methods from previous literature
Ref. Description Computations
(Songsiri, Dahl
and Vanden-
berghe, 2010)

Input: pmax NS: No

ITC: SBC, AIC, AICc ME: Eq. (3.1)
RME: No

Enumeration: Full-Search #Candidates: 2K × pmax

(Songsiri and
Vandenberghe,
2010)

Input: pmax, #λ, Th NS: No

ITC: SBC, AIC, AICc ME: Eq. (3.1)
RME: Eq. (3.12)

Enumeration: Each λ leads to
a candidate

#Candidates: #λ× pmax

Newly proposed method
Description Computations
Input: pmax, N i

0 or G0, option
for NS/ME

NS: Eq. (3.4) [if chosen]

ITC: RNML and others ME: Eq. (3.1) [if chosen]
RME: No

Enumeration: Greedy #Candidates: ≈ K
2
/2

Enumeration: Combination
Greedy/List

#Candidates: ≈ KN i
0

Enumeration: List #Candidates: ≈ K

Enumeration: Fast List #Candidates: ≈ K/G0

Table 3.2: Comparison of parametric methods for inferring graphical models
via convex optimization: For the optimization problems we use the acronyms
NS (Nearest Sparse), ME (Maximum Entropy), RME (Regularized Maximum
Entropy), and indicate the equations where the problems are explicitly written.

Note that N0 is the number of zeros in the lower triangular part of the ISDM.

The expression above can be obtained straightforwardly by counting the number

of non-zero entries in the SPi matrices produced by Algorithm 2.

The formula in (3.14) was used in Songsiri, Dahl and Vandenberghe (2010)

in order to modify three celebrated criteria mentioned in Section 3.1. Based on

the empirical evidence from Songsiri, Dahl and Vandenberghe (2010), SBC is

ranked best when the sample size is large, whereas AICc works better for small

sample sizes. This makes us to employ these two criteria in our experiments.
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3. Efficient Algorithms for VAR Graph Estimation

Their expressions are (Songsiri, Dahl and Vandenberghe, 2010):

SBC = T log det Σ̂+Nef log T, (3.15)

AICc = T log det Σ̂+
2NefT

T −Nef − 1
,

where Σ̂ is the error covariance matrix.

Additionally, we show how the asymptotic analysis helps to alter log FPE in

order to be used in Stage2 of the estimation procedure. According to Lutkepöhl

(2005, p. 148), log FPE and AIC reduce to the same criterion when T → ∞.

Moreover, in AIC, the number of parameters per component is given by Kp. As

we aim to maintain the relationship between FPE and AIC after alteration, we

substitute the term Kp with η = Nef/K, in the formula of log FPE (see Table

2.1). Hence, we get:

log FPE = log det Σ̂+K log
T + η

T − η

Similarly, the RNML-criterion is modified by putting η instead of Kp in

(2.3)-(2.4) and Nef instead of K2p in (2.5)-(2.6):

RNML =
T − η −K + 1

2
log det Σ̂+

Nef

2
log tr

(
R̂(0)− Σ̂

)
− log ΓK

(
T − η
2

)
− log Γ

(
Nef

2

)
, (3.16)

where R̂(0) has the same significance as in (3.1).

3.6 Simulated data

Evaluation of the novel algorithms The data are simulated according to the

procedure described in Section 2.6.2. After the order p̂ of the model is selected

with an IT criterion, an estimate of ISDM can be obtained by using either NS

or ME. Because we want to evaluate the accuracy of this estimation, we assume

that SP is known. More precisely, we generate data as in Section 2.6.2, but only

for p◦ = 10. As the number of runs is Nr = 10, it follows that the number of

K-variate time series is NSP ×Nr = 100. Based on the results shown in Figure
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Figure 3.1: Performance of estimation methods evaluated by the SIM index
defined in (3.17): The closer is SIM to value one, the better is the estimation.
In the legend, we indicate for each method the optimization used in Stage2 (NS
or ME) as well as the IT criteria employed in Stage1 and Stage2. Note that
K = 5 and p◦ = 10.

2.2, we include in competition only four IT criteria: SBC, FPE, RNML and

AICc. In experiments, we use Algorithm 2, with the following options for N i
0,

i ∈ {1, . . . , K̄}: (i) N i
0 = 1 (List); (ii) N i

0 = min(4, N i
tot) and (iii) N i

0 = N i
tot

(Greedy). Interestingly enough, the performance is almost the same for all three

options, which makes us to show in Figure 3.1 only the results for List, which

has the lowest computational complexity.

The performance of an estimation method, met, in the r-th trial is evaluated

by computing Emet
SP,r, which is the number of positions below the main diagonal

where the estimated SP is different from the true SP. Remark that Emet
SP,r ∈

{0, . . . , K}. This leads naturally to the definition of the following similarity

index:

SIMmet = 1−
∑NSP

i=1

∑Nr

r=1 Emet
SP,r

NSP ×Nr ×K
. (3.17)

Remark in Figure 3.1 that RNML is the best amongst all the tested criteria

when the sample sizes are small or moderate. This is perfectly in line with what

we already observed in Figure 2.2. Another interesting peculiarity of RNML
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Figure 3.2: Results similar to those presented in Figure 3.1, except that this
time K = 10 and p◦ = 5.

is that it is the only criterion for which the estimation performance shown in

Figure 3.1 clearly improves when applying ME instead of NS.

The experiments are further extended by considering time series with K = 10

components. We take the true order to be five and, when fitting the models, we

select the order from the set {1, . . . , 10} by using SBC, FPE, RNML and AICc.

In what concerns the true SP’s, we generate them randomly such that to have

one SP for each #0 ∈ {0, 1, 5, 10, 15, 20, 25, 30, 35, 40}.

In Stage2, we apply List for NS-ITC and ME-ITC, where ITC stands for the

four criteria which have been also employed in Stage1. The estimation results are

presented in Figure 3.2. Remark in Figure 3.2 that ME-RNML is the best, but

the gap between the best and the second best method is smaller than in Figure

3.1. For T = 1000, the performance of NS-FPE in Figure 3.2 is surprisingly

good.

Comparisons with other methods This makes us to investigate more care-

fully this case by considering various estimation methods in Stage2. Because we

do not want our conclusions to be influenced by the outcome of Stage1, we as-

sume that the order of the model is known (p◦ = 5). Furthermore, we select only
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3.6. Simulated data

two SP’s from the larger set used in the experiment for which the results are

reported in Figure 3.2 because we want to study how the estimation accuracy

depends on the sparsity of SP. Hence, we take SP’s for which #0 is 10 and 40.

Note that the maximum possible number of zeros is K = 45 because K = 10.

For each SP, ten different data sets with T = 1000 each are simulated.

Similar to Figure 3.2, the methods employed in estimation use List (L) al-

gorithm for generating the set of candidates and, for optimization, either NS or

ME are applied. Additionally, we consider the case when NS/ME are applied to

a smaller set of competing models which are produced by Fast List (FL). More

precisely, for the method described in Refinement III, we choose G0 = 3 and

this makes all the competing SP’s to have a number of zeros which is multiple

integer of three. Therefore, the two “true” SP’s are not amongst the candidates.

For the sake of comparison, the algorithms L and FL are also used in conjunc-

tion with the method from Eichler (2006), where an ISDM with a given sparsity

pattern SP is fitted to the data by a cyclic algorithm. Each cycle begins with

fitting a VAR(p◦)-model to the data by Yule-Walker equations (Reinsel, 1993).

The number of the remaining steps for each cycle equals the number of zeros in

SP because, at each such step, a zero is forced below the main diagonal of ISDM

by Wermuth-Scheidt (WS) algorithm (Wermuth and Scheidt, 1977). We note

that, for the very first cycle, the estimates in (3.2) with p̂ = p◦ are used for solv-

ing the Yule-Walker equations. For all other cycles, the autocovariances used in

Yule-Walker equations are calculated from the expression of SDM obtained at

the end of the previous cycle. It was proven in Eichler (2006) that the algorithm

converges to the ISDM with the desired SP. Based on this theoretical result,

in our implementation we stop the iterations when the following condition is

satisfied: ∑
(a,b)∈SP

∑p◦

m=0

∣∣∣[Q̂m]ab

∣∣∣
(p◦ + 1)× (#0)

< 10−4,

where
{
Q̂m

}p◦
m=0

are the estimates for the matrices in (1.3) and #0 is the number

of zeros in SP. Additionally, the number of iterated cycles cannot be smaller
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3. Efficient Algorithms for VAR Graph Estimation

than three nor larger than twenty.

In this experiment, we also evaluate the method from Songsiri and Van-

denberghe (2010), called here Regularized ME (RME), for which the sparsity

promoter g(·) in (3.12) is given by the formula in equation (22) from the afore-

mentioned study. For generating the set of λ-values employed in the algorithm,

we rely on theoretical results from Basu and Michailidis (2015) and choose

λ(T ) =
√

log(K)/T . Furthermore, we calculate c = ⌈log10[1/λ(T )]⌉, where

log10(·) denotes the logarithm with base 10 and ⌈·⌉ is the smallest integer greater

than or equal to the real number in the argument. Then we take λi = i× 10−c,

for i = 1, . . . , 20. In this way, we obtain solutions that are denser than the true

one as well as solutions that are sparser than the true one.

The results of the experiment are shown in Figure 3.3. The acronyms of

the methods are recapitulated in the caption. The method called Oracle knows

the “true” SP and selects from the list of SP’s created by each method the one

which is the most similar with the truth (has the highest SIM index). Observe

that the methods FL-NS and FL-ME which we propose are the fastest. The

execution time for RME-ME, which is the combination of (3.12) and (3.1), is

about the same as the time for FL-WS, which is the combination of FL with the

method from Eichler (2006). If List (L) is employed together with NS or ME,

the algorithm is still reasonably fast. However, L plus the method from Eichler

(2006) leads to an average time of 2.1×103 sec., without improving significantly

the accuracy in selecting the structure. For the clarity of the picture, we do not

include this method in Figure 3.3. In general, ME is slower than NS. Another

important observation is that, disregarding how the family of candidate models

is produced (FL, L or RME), the SIM-index computed for the Oracle is almost

one and this demonstrates that all the approaches are able to include in this

family models which are very close to the “true” SP. Therefore, in this case, the

use of Full-Search, Exhaustive-Search or Greedy-Algorithm can only improve

marginally the quality of the estimation. The capability of various IT criteria in

selecting, from the family of candidates, the one which is closest to the “true” SP
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3.7. Air pollution data

depends very much on the sparsity of the model for which data were simulated.

For example, in Figure 3.3 (b) where the number of zeros below the main diagonal

in the ISDM of the simulated model is forty, all the criteria have good and very

good performance (SIM-index greater than 0.84). When the number of zeros

is only ten (see Figure 3.3 (a)), SIM can be as low as 0.2. In fact, the worst

performance in Figure 3.3 (a) is that of SBC. In the same figure, we can see

that the performance of RNML is reasonably good for all six methods which are

compared.

3.7 Air pollution data

We investigate the conditional independence of the concentration levels for air

pollutants. The data analyzed in the previous works are multivariate time se-

ries which consist of measurements of carbon monoxide (CO), nitrate monoxide

(NO), nitrate dioxide (NO2), ozone (O3) and the solar radiation intensity (R)

(Dahlhaus, 2000, Eichler, 2006, Songsiri, Dahl and Vandenberghe, 2010, Davis,

Zang and Zheng, 2016, Avventi, Lindquist and Wahlberg, 2013). We use the

same type of data, which are publicly available (California Environmental Pro-

tection Agency, 2016). They have been hourly recorded at Azusa, California,

during 2004-2010. The subset corresponding to the year 2006 was already used

in Songsiri, Dahl and Vandenberghe (2010), Davis, Zang and Zheng (2016).

In the pre-processing phase, we split the data into subsets, based on the year

when they have been recorded. For the imputation of the missing data, we use

the function minimput from the R-package mtsdi (Junger and de Leon, 2016).

After this step, all negative values are turned to zero and the resulting time

series are altered to have zero mean vector. The percentage of imputed data

varies from 3.8% (in 2006) to 12.9% (in 2004). We get seven time series, with

K = 5. For five of them, T = 8760 and for the other two, T = 8783 (leap years).

We run Stage1 of Algorithm 1 on these data sets, by allowing the pre-specified

model orders to range from pmin = 1 to pmax = 8. RNML selects the best order
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Figure 3.3: Experimental results for Stage2, obtained when K = 10 and T =
1000. In estimation, the order of the model is assumed to be known (p◦ =
5). In Figure 3.3 (a), the “true” SP has ten zeros, whereas in Figure 3.3 (b)
has forty zeros. Each vertical line corresponds to an estimation method, and
the methods are ordered on the horizontal axis based on the average execution
time (in sec. divided by 103) computed from ten runs (2.6 GHz-processor).
The significance of the acronyms is as follows: FL=Fast List, L = List, ME
= Maximum Entropy, NS = Nearest Sparse, RME = Regularized Maximum
Entropy and WS = Wermuth-Scheidt.
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3.7. Air pollution data

to be 4 (for five years) and 5 (for two years). More compactly, we write [RNML :

order4(5); order5(2)]. Similarly, the results obtained by the other criteria can be

written [SBC : order4(4); order5(3)], [FPE : order8(7)] and [AICc : order8(7)].

As it is almost generally accepted that the order should be four (Eichler, 2006,

Songsiri, Dahl and Vandenberghe, 2010, Davis, Zang and Zheng, 2016), it means

that the most accurate results are produced by RNML and SBC, whereas FPE

and AICc overestimate the order of the model.

We show in Figure 3.4 the pairs of components of the multivariate time

series, which are found to be conditionally independent when running Stage2 of

the algorithm. For each such pair, we plot the number of times it was deemed to

be conditionally independent (divided by the number of years). It is important

to emphasize that all pairs of pollutants presented in the figure are conditionally

independent according to the ground knowledge from environmental chemistry

(see Dahlhaus (2000) and the references therein). Additionally, “NIL” is used

for the situation when the best ranked SP does not contain any zero. When NS

is applied, all SP’s for which the smallest eigenvalue of ISDM over (−π, π] is not

greater than 10−6 are automatically disqualified from competition.

In Figure 3.4(a), which is produced by employing List, the large counts of

NIL for ME-FPE and ME-AICc demonstrate that these two methods fail to

find conditional independence in the multivariate time series. ME-RNML is the

most successful in identifying the conditional independence and its performance

is followed closely by ME-SBC. In Figure 3.4(b), the results yield by ME-FPE

and ME-AICc are disappointing. It is interesting that the pair (Rad,CO) is

always properly identified in Figure 3.4(b) if NS is used for optimization. In

spite of the fact that the plot in this figure is different from the one in Figure

3.4(a), ME-RNML and ME-SBC remain superior to other methods.

For the sake of clarity, we present in Tables 3.3-3.9 all the results we obtained for

air pollution data. Each table shows the pairs of components which are found

to be statistically independent by various methods, for a specific year; the year

when the measurements were collected is mentioned in the caption of the table.
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3. Efficient Algorithms for VAR Graph Estimation
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Figure 3.4: Number of times each pair of components of air pollution multivariate
time series is found to be conditionally independent (divided by the number of
analyzed years). The pairs which have never been selected are not shown in the
figure. The results in panel (a) are obtained with the List and those in panel
(b) are produced by applying Greedy.
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3.8. International stock markets

The acronym L-G is used for denoting Algorithm 2 when N i
0 = min(4, N i

tot).

A very rapid inspection of the content of the tables leads immediately to the

conclusion that, in all the cases, the selected ISDM has very few zeros. In fact,

there are situations when the selected ISDM does not contain zeros at all, and

these are counted as “NIL” in Figure 3.4. Moreover, (O3, CO), (Rad, NO), (Rad,

CO) and (O3, NO) are the only pairs which, at least in one of the tables, are

reported to be statistically independent. In light of this discussion, we conclude

that none of the entries of ISDM are misclassified as zeros.

Estimated orders for the VAR model
SBC FPE RNML AICC

4 8 4 8
Near Sparse

SBC FPE RNML AICC
List (Rad,CO) (Rad,CO) (Rad,CO) (Rad,CO)
L-G (Rad,CO) (Rad,CO) (Rad,CO) (Rad,CO)
Greedy (Rad,CO) (Rad,CO) (Rad,CO) (Rad,CO)
Maximum Entropy

SBC FPE RNML AICC
List (Rad,CO) (Rad,CO) (Rad,CO) (Rad,CO)
L-G (Rad,CO) (Rad,CO) (Rad,CO) (Rad,CO)
Greedy (Rad,CO) (Rad,CO) (Rad,CO) (Rad,CO)

Table 3.3: Year 2004

3.8 International stock markets

Another typical application of graphical models is in modeling the interdepen-

dence of financial markets. The undirected graph is obtained from the stock

markets returns (at closing time) of K financial markets, for T consecutive

days. Two such data sets, for which K = 5, were analyzed in Songsiri, Dahl

and Vandenberghe (2010). We consider a data set with K = 10 which was

previously used to produce the graphical model in (Abdelwahab, Amor and

Abdelwaheb, 2008, Figure 4) by applying the method from Fried and Didelez

(2003). After downloading the data for the period Jan.2000 - Dec.2005 from
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3. Efficient Algorithms for VAR Graph Estimation

Estimated orders for the VAR model
SBC FPE RNML AICC

4 8 4 8
Near Sparse

SBC FPE RNML AICC
List (Rad,NO) (Rad,NO) (Rad,NO) (Rad,NO)
L-G (Rad,CO) (Rad,CO) (Rad,CO) (Rad,CO)
Greedy (Rad,CO) (Rad,CO) (Rad,CO) (Rad,CO)
Maximum Entropy

SBC FPE RNML AICC
List (Rad,NO)

(O3,CO)
None (Rad,NO)

(O3,CO)
None

L-G (Rad,NO)
(O3,CO)

None (Rad,NO)
(O3,CO)

None

Greedy (Rad,NO)
(O3,CO)

None (Rad,NO)
(O3,CO)

None

Table 3.4: Year 2005

Estimated orders for the VAR model
SBC FPE RNML AICC

5 8 4 8
Near Sparse

SBC FPE RNML AICC
List (Rad,NO) (Rad,NO) (Rad,NO) (Rad,NO)
L-G (Rad,CO) (Rad,CO) (Rad,CO) (Rad,CO)
Greedy (Rad,CO) (Rad,CO) (Rad,CO) (Rad,CO)
Maximum Entropy

SBC FPE RNML AICC
List (Rad,NO) None (Rad,NO) None
L-G (Rad,NO) None (Rad,NO) None
Greedy (Rad,NO) None (Rad,NO) None

Table 3.5: Year 2006

http://finance.yahoo.com/ and applying the same pre-processing as in Ab-

delwahab, Amor and Abdelwaheb (2008), we get a 10-variate time series for

which T = 1546.

In Stage1 of our algorithm, we take pmin = 1 and pmax = 9; SBC and RNML

select p̂ = 1, whereas FPE and AICc choose p̂ = 2. Selection of small orders is
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3.8. International stock markets

Estimated orders for the VAR model
SBC FPE RNML AICC

4 8 4 8
Near Sparse

SBC FPE RNML AICC
List (Rad,NO)

(Rad,CO)
(Rad,NO)
(Rad,CO)

(Rad,NO)
(Rad,CO)

(Rad,NO)
(Rad,CO)

L-G (Rad,CO) (Rad,CO) (Rad,CO) (Rad,CO)
Greedy (Rad,CO) (Rad,CO) (Rad,CO) (Rad,CO)
Maximum Entropy

SBC FPE RNML AICC
List (Rad,NO) None (Rad,NO) None
L-G (Rad,NO) None (Rad,NO) None
Greedy (Rad,NO) None (Rad,NO) None

Table 3.6: Year 2007

Estimated orders for the VAR model
SBC FPE RNML AICC

5 8 5 8
Near Sparse

SBC FPE RNML AICC
List (Rad,NO)

(Rad,CO)
(Rad,NO) (Rad,NO)

(Rad,CO)
(Rad,NO)

L-G (Rad,CO) (Rad,CO) (Rad,CO) (Rad,CO)
Greedy (Rad,CO) (Rad,CO) (Rad,CO) (Rad,CO)
Maximum Entropy

SBC FPE RNML AICC
List (Rad,NO) None (Rad,NO) None
L-G (O3,NO) None (O3,NO) None
Greedy (O3,NO) None (O3,NO) None

Table 3.7: Year 2008

perfectly in line with the results reported previously (see, for example, Songsiri,

Dahl and Vandenberghe (2010)). In Stage2, we apply List and Greedy for NS-

ITC and ME-ITC, where ITC ∈ {SBC,FPE,RNML,AICc}. Each resulting

graph is compared with the one in (Abdelwahab, Amor and Abdelwaheb, 2008,

Figure 4) by calculating the similarity index in (3.17) with NSP = Nr = 1. The

largest value of the index (0.84) is obtained when List is used in combination with
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3. Efficient Algorithms for VAR Graph Estimation

Estimated orders for the VAR model
SBC FPE RNML AICC

5 8 5 8
Near Sparse

SBC FPE RNML AICC
List (Rad,NO)

(Rad,CO)
(Rad,NO)
(Rad,CO)

(Rad,NO)
(Rad,CO)

(Rad,NO)
(Rad,CO)

L-G (Rad,CO) (Rad,CO) (Rad,CO) (Rad,CO)
Greedy (Rad,CO) (Rad,CO) (Rad,CO) (Rad,CO)
Maximum Entropy

SBC FPE RNML AICC
List (Rad,NO) None (Rad,NO)

(O3,CO)
None

L-G (Rad,NO) None (Rad,NO)
(O3,CO)

None

Greedy (Rad,NO) None (Rad,NO)
(O3,CO)

None

Table 3.8: Year 2009

Estimated orders for the VAR model
SBC FPE RNML AICC

4 8 4 8
Near Sparse

SBC FPE RNML AICC
List (Rad,CO) (Rad,CO) (Rad,CO) (Rad,CO)
L-G (Rad,CO) (Rad,CO) (Rad,CO) (Rad,CO)
Greedy (Rad,CO) (Rad,CO) (Rad,CO) (Rad,CO)
Maximum Entropy

SBC FPE RNML AICC
List (Rad,NO)

(O3,CO)
(Rad,CO)

None (Rad,NO)
(O3,CO)

(Rad,CO)

None

L-G (Rad,NO)
(O3,CO)

(Rad,CO)

None (Rad,NO)
(O3,CO)

(Rad,CO)

None

Greedy (Rad,NO)
(O3,CO)

(Rad,CO)

None (Rad,NO)
(O3,CO)

(Rad,CO)

None

Table 3.9: Year 2010
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3.9. Summary

ME-SBC. The second largest is 0.78 and is produced by List plus ME-RNML.

As these two results are the best, we show in Figure 3.5 the values of the two

IT criteria for all SP’s considered in List. Remark in Figure 3.5 (a) that the

vertical line corresponding to the minimum value of SBC divides the panel into

two parts. The red markers in the left part represent edges which, by mistake,

have not been included in the ME-SBC graph. However, all of them correspond

to pairs of components with “weak PSC” and, according to Abdelwahab, Amor

and Abdelwaheb (2008), they represent “doubtful links”. Hence, not including

them in the graph is not that severe. At the same time, the green markers in

the right half of the panel represent four edges which are erroneously included in

the ME-SBC graph. A similar interpretation can be done for the plot in Figure

3.5 (b).

3.9 Summary

In this chapter, we have proposed a family of algorithms for inferring the con-

ditional independence graph of a VAR(p)-model for K-variate time series. Our

theoretical and empirical results demonstrate that the algorithms from this fam-

ily can be used when p ≤ 20, K ≤ 10 and K × p ≤ 100. Thus far, the methods

which rely on convex optimization and do not ask the user to make subjective

choice of parameters have been suitable only for much smaller values of p and K.

Another important feature of our method is the guaranteed stability of the fitted

model. However, the algorithm does not include the case of latent variables, i.e.

when one or more variables is not measurable. This will be the subject of the

next chapter.
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3. Efficient Algorithms for VAR Graph Estimation
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Figure 3.5: International stock markets: ITC(Y; p̂, SPi) −
min0≤q≤K ITC(Y; p̂, SPq) for ITC ∈ {SBC,RNML}, when the index i in
Algorithm 2 takes values from zero (no zeros in the fitted SP) to K (maxi-
mum number of zeros in SP). Graphical conventions are the same for both
plots. The vertical line marks the SP for which the ITC is minimized. Let
{(ai, bi)} = SPi \ SPi−1 for 0 < i ≤ K. To the point whose abscissa is i, we
assign a marker according to the classification from Abdelwahab, Amor and
Abdelwaheb (2008) of the PSC of marginal time series yai and ybi (“strong
PSC”, “weak PSC”, “null PSC”).
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Chapter 4

Latent-Variable VAR Graphical

Models

4.1 Preliminaries

In the previous chapters we have addressed the problem of inferring the condi-

tional independence graph for the VAR model given in (1.2). Here we focus on

the identification of graphical models for VAR processes with latent variables.

The definition for such processes is presented below.

Let x1, . . . ,xT be a κ-dimensional (κ > 1) time series generated by a sta-

tionary and stable VAR process of order p. We assume that the spacing of

observation times is constant and xt = [x1t, . . . ,xκt]
′. The difference equation

of the process is

xt = A1xt−1 + . . .+Apxt−p + ϵt, t = 1, T , (4.1)

where A1, . . . ,Ap are matrix coefficients of size κ × κ and ϵt is a sequence of

independently and identically distributed random κ-vectors. We assume that

the vectors {ϵt}Tt=1 are drawn from a κ-variate Gaussian distribution with zero

mean vector and covariance matrix Σ ≻ 0. Additionally, the vectors {xt}0t=1−p

are assumed to be constant.
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4. Latent-Variable VAR Graphical Models

As we already know from Section 1.2, the conditional independence relations

between the variables in xt are provided by ISDM, which has the expression

Φ−1 (ω) = AH (ω)Σ−1A (ω) =

p∑
i=−p

Qie
−jωi. (4.2)

Similar to the notation used in (1.3), we define A0 = −I and A (ω) = −
∑p

i=0Aie
−jωi.

For i ≥ 0, we have that Qi =
∑p−i

k=0A
′
kΣ

−1Ak+i and Q−i = Q′
i. The sparse

structure of the ISDM contains conditional dependence relations between the

variables of xt, i.e. two variables xa and xb are independent, conditional on the

other variables, if and only if (Brillinger, 1996, Dahlhaus, 2000)[
Φ−1(ω)

]
ab
= 0, ∀ω ∈ (−π, π] . (4.3)

In a latent-variable graphical model it is assumed that κ = K + r, where K

variables are accessible to observation (they are called manifest variables) and r

variables are latent, i.e., not accessible to observation, but playing a significant

role in the conditional independence pattern of the overall model. The existence

of latent variables in a model can be described in terms of the ISDM by the

block decomposition

Φ (ω) =

 Φm(ω) Φ′
ℓm(−ω)

Φℓm(ω) Φℓ(ω)

 , Φ−1 (ω) =

 Υm(ω) Υ′
ℓm(−ω)

Υℓm(ω) Υℓ(ω)

 , (4.4)

where Φm (ω) and Φℓ (ω) are the manifest and latent components of the spectral

density matrix, respectively.

Using the Schur complement, the ISDM of the manifest component has the

form (Zorzi and Sepulchre, 2016, Eq. (21)):

Φ−1
m (ω) = Υm (ω)−Υ′

ℓm (−ω)Υ−1
ℓ (ω)Υℓm (ω) . (4.5)

When building latent variable graphical models, we assume that r ≪ K, i.e.,

few latent variables are sufficient to characterize the conditional dependence

structure of the model. The second term in (4.5) has low rank because the

middle matrix has small size. The previous formula can therefore be written

Φ−1
m (ω) = S(ω)−Λ(ω), (4.6)

70



4.1. Preliminaries

where S(ω) is sparse, and Λ(ω) has (constant) low-rank almost everywhere in

(−π, π]. Furthermore, we can write (Liegeois et al., 2015, Eq. (4)):

S(ω)−Λ(ω) = ∆(ω)X∆(ω)H, (4.7)

Λ(ω) = ∆(ω)L∆(ω)H, (4.8)

where ∆ (ω) = [I, ejωI, . . . , ejωpI] is a shift matrix, and X and L are K(p+ 1)×

K(p+ 1) positive semidefinite matrices. We split all such matrices in K × K

blocks, e.g.,

L =


L00 . . . L0p

... . . . ...

L′
0p . . . Lpp

 . (4.9)

According to the definition from Section 3.1, the block trace operator for such

a matrix is

TRi(L) =

p−i∑
h=0

Lh,h+i, i = 0, p. (4.10)

For negative indices, the relation TR−i(L) = TRi(L)
⊤ holds. Note that (4.8)

can be rewritten as

Λ(ω) =

p∑
i=−p

TRi(L)e
jωi.

The first p+1 sample covariances of the VAR process are (Brockwell and Davis,

1991):

Ĉi =
1

T

T−i∑
t=1

xt+ix
′
t, i = 0, p. (4.11)

However, only the upper left K×K blocks corresponding to the manifest variables

can be computed from data; they are denoted R̂i. With R̂ = [R̂0 . . . R̂p], we

build the block Toeplitz matrix [see also (3.3)]

T
(
R̂
)
=


R̂0 . . . R̂p

... . . . ...

R̂′
p . . . R̂0

 . (4.12)
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4. Latent-Variable VAR Graphical Models

Zorzi and Sepulchre (2016) proposed to estimate the matrices X and L by solving

the optimization problem

minX,L tr(T
(
R̂
)
X)− log detX00 + λγf (X+ L) + λtr(L)

s.t. X ⪰ 0 L ⪰ 0
(4.13)

Minimizing tr(L) induces low rank in L and λ, γ > 0 are trade-off constants.

The function f(·) is a group sparsity promoter whose expression is given by

f (Z) =
K∑
a=1

a−1∑
b=1

max
i=0,p
|TRi(Z)(a, b)|. (4.14)

Note that TRi(X+ L)(a, b) is the i-th degree coefficient of the polynomial that

occupies the (a, b) position in the matrix polynomial Φ−1
m (ω). Sparsity is encour-

aged by minimizing the ℓ1-norm of the vector formed by the coefficients that are

maximum for each position (a, b). Once X and L are solved, the coefficients of

the VAR model are obtained by spectral factorization.

4.2 Maximum Entropy

Expectation-Maximization algorithm

The obvious advantage of the optimization problem in (4.13) is its convexity,

which allows the safe computation of the solution. However, a possible drawback

is the presence of two parameters, λ and γ, whose values should be chosen. A

way to eliminate one of the parameters is to assume that the number r of latent

variables is known. At least for parsimony reasons, it is natural to suppose that

r is very small. Since a latent variable influences all manifest variables in the

ISDM (4.5), there cannot be too many independent latent variables. So, giving

r a fixed small value is likely to be not restrictive.

In this section, we describe an estimation method which is clearly different

from the one in Zorzi and Sepulchre (2016). More precisely, we generalize the

Expectation-Maximization algorithm from Lauritzen and Meinhausen (2012),

developed there for independent and identically distributed random variables,
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4.2. Maximum Entropy Expectation-Maximization algorithm

to a VAR process. To this purpose, we work with the full model (4.4) that

includes the ISDM part pertaining to the r latent variables. Without loss of

generality, we assume that Υℓ(ω) equals the identity matrix I; the effect of the

latent variables on the manifest ones in (4.5) can be modelled by Υℓm alone.

Combining with (4.2), the model is

Φ−1(ω) =

 Υm(ω) Υ′
ℓm(−ω)

Υℓm(ω) I

 =

p∑
i=−p

Qie
−jωi, (4.15)

where the matrices Qi have to be found.

The main difficulty of this approach is the unavailability of the latent part

of the matrices (4.11). Were such matrices available, we could work with SDM

Φ(ω) estimators (confined to order p) of the form

Φ̃(ω) =

p∑
i=−p

Cie
−jωi, (4.16)

where Ci denotes the i-th covariance lag for the VAR process {xt} [see also (4.1)

and (4.11)]. We split the matrix coefficients from (4.15) and (4.16) according to

the size of manifest and latent variables, e.g.,

Ci =

 Cm,i C′
ℓm,−i

Cℓm,i Cℓ,i

 . (4.17)

To overcome the difficulty, the Expectation-Maximization algorithm alterna-

tively keeps fixed either the model parameters Qi or the matrices Ci, estimating

or optimizing the remaining unknowns. The expectation step of Expectation-

Maximization assumes that the ISDM Φ−1(ω) from (4.15) is completely known.

Standard matrix identities (Lauritzen and Meinhausen, 2012) can be easily ex-

tended to matrix trigonometric polynomials for writing down the formula

Φ(ω) =

 Φm(ω) −Φm(ω)Υ
′
ℓm(−ω)

−Υℓm(ω)Φm(ω) I+Υℓm(ω)Φm(ω)Υ
′
ℓm(−ω)

 . (4.18)

Identifying (4.16) with (4.18) gives expressions for estimating the matrices Ci,

depending on the matrices Qi from (4.15). The upper left corner of (4.18) needs
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4. Latent-Variable VAR Graphical Models

no special computation, since the natural estimator is

Φm(ω) =

p∑
i=−p

R̂ie
−jωi,

where the sample covariances R̂i are directly computable from the time series.

It results that

Cm,i = R̂i, i = −p, p. (4.19)

The other blocks from (4.17) result from convolution expressions associated with

the polynomial multiplications from (4.18). The lower left block of the coeffi-

cients is

Cℓm,i = −
∑
k+s=i

Qℓm,kR̂s = −
min(p,i+p)∑

k=max(−p,i−p)

Qℓm,kR̂i−k, i = −2p, 2p. (4.20)

Note that the trigonometric polynomial Υℓm(ω)Φm(ω) has degree 2p, since its

factors have degree p. With (4.20) available, we can compute

Cℓ,i = δiI+
∑
k−s=i

Cℓm,kQ
′
ℓm,−s = δiI+

min(2p,i+p)∑
k=max(−2p,i−p)

Cℓm,kQ
′
ℓm,i−k, i = −p, p,

(4.21)

where δi = 1 if i = 0 and δi = 0 otherwise. Although the degree of the polynomial

from the lower right block of (4.18) is 3p, we need to truncate it to degree p,

since this is the degree of the ISDM Φ−1(ω) from (4.15). This is the reason

for computing only the coefficients i = −p, p in (4.21). The same truncation is

applied on (4.20); note that there we cannot compute only the coefficients that

are finally needed, since all of them are required in (4.21).

In the maximization step of Expectation-Maximization, the covariance ma-

trices Ci are assumed to be known and are fixed; the ISDM can be estimated

by solving an optimization problem that will be detailed below. The overall

solution we propose is outlined in Algorithm 3, explained in what follows.

The initialization stage provides a first estimate for the ISDM, from which the

Expectation-Maximization alternations can begin. An estimate for the left upper

corner of Φ−1(ω) is obtained by solving the classical Maximum Entropy problem
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4.2. Maximum Entropy Expectation-Maximization algorithm

Algorithm 3 Algorithm for Identifying SP of ISDM (AlgoEM)
Input: Data (x1:K,1, . . . ,x1:K,T ), VAR-order p, number of latent variables r,
an information theoretic criterion (ITC).
Initialization:
Evaluate R̂i for i = 0, p; [see (4.11) and the discussion below it]
R̂← [R̂0 . . . R̂p];

Φ̂m(ω)←
p∑

i=−p

R̂ie
−jωi;{

Q̌
(0)
i (1 : K, 1 : K)

}p
i=0
← MEI(R̂) [see (4.22)];

Compute Υ̌
(0)

ℓm(ω) from EIG of Q̌(0)
0 ;

for all λ ∈ {λ1, . . . , λL} do
Maximum Entropy Expectation-Maximization (penalized set-
ting):
for it = 1, . . . , Nit do

Use Φ̂m(ω) and Υ̌
(it−1)

ℓm (ω) to compute Č(it) [see (4.16)-(4.18)];{
Q̌

(it)
i

}p
i=0
← MEII(Č

(it), λ) [see (4.23)];

Get Υ̌
(it)

ℓm (ω) from
{
Q̌

(it)
i

}p
i=0

[see (4.15)];
end for
Use

{
Q̌

(Nit)
i

}p
i=0

to compute Φ̌
−1

λ (ω);
Determine SPλ [see (4.24)];
if ADAPTIVE then

Υ̌
(0)

ℓm(ω)← Υ̌
(Nit)

ℓm (ω)
end if
Υ̂

(0)

ℓm(ω)← Υ̌
(Nit)

ℓm (ω);
Maximum Entropy Expectation-Maximization (constrained set-
ting):
for it = 1, . . . , Nit do

Use Φ̂m(ω) and Υ̂
(it−1)

ℓm (ω) to compute Ĉ(it) [see (4.16)-(4.18)];{
Q̂

(it)
i

}p
i=0
← MEIII(Ĉ

(it), SPλ) [see (4.25)];

Get Υ̂
(it)

ℓm (ω) from
{
Q̂

(it)
i

}p
i=0

[see (4.15)];
end for
Use

{
Q̂

(Nit)
i

}p
i=0

to compute Φ̂
−1

λ (ω);
Find the matrix coefficients of the VAR-model by spectral factorization of
Φ̂

−1

λ (ω) and compute ITC(Data; SPλ).
end for
ŜP← argmin

λ
ITC(Data; SPλ);
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for a VAR(p)-model, using the sample covariances of the manifest variables [see

(3.1)]. We present below the matrix formulation of this problem which allows

an easy implementation in CVX (Grant and Boyd, 2010). The mathematical

derivation of the matrix formulation from the information theoretic formulation

can be found in Songsiri, Dahl and Vandenberghe (2010), Avventi, Lindquist

and Wahlberg (2013).

First Maximum Entropy Problem [MEI(R̂)]:

minX tr(T (R̂)X)− log detX00

s.t. X ⪰ 0
(4.22)

The block Toeplitz operator T is defined in (4.12). The size of the positive

semidefinite matrix variable X is K(p + 1) × K(p + 1). For all i = 0, p, the

estimate Q̌
(0)
i (1 : K, 1 : K) of the ISDM (4.15) is given by TRi(X).

In order to compute an initial value for Υℓm(ω), we resort to the eigenvalue

decomposition (EIG) of Q̌(0)
0 (1 : K, 1 : K). More precisely, after arranging the

eigenvalues of Q̌(0)
0 (1 : K, 1 : K) in the decreasing order of their magnitudes, we

have Q̌
(0)
0 (1 : K, 1 : K) = UDU′. Then, we set Q̌

(0)
0 (K + 1 : K + r, 1 : K) =

D1/2(1 : r, 1 : r)U′(1 : K, 1 : r) and Q̌
(0)
i (K + 1 : K + r, 1 : K) = 0 for i = 1, p.

When the covariances Ci are fixed in the maximization step of the Expectation-

Maximization algorithm, the coefficients of the matrix polynomial that is the

ISDM (4.15) are estimated from the solution of the following optimization prob-

lem:

Second Maximum Entropy Problem [MEII(C, λ)]:

minX tr(T (C)X)− log detX00 + λf(X)

s.t. X ⪰ 0

TR0(X)(K + 1 : K + r,K+ 1 : K + r) = I

TRi(X)(K + 1 : K + r,K+ 1 : K + r) = 0, i = 1, p

(4.23)

Since now we work with the full model, the size of X is (K+r)(p+1)×(K+r)(p+

1). The function f(·) is the sparsity promoter defined in (4.14) and depends only

on the entries of the block corresponding to the manifest variables. The equality
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4.2. Maximum Entropy Expectation-Maximization algorithm

constraints in (4.23) guarantee that the latent variables have variance one and

they are independent, given the manifest variables, corresponding to the lower

right block of (4.15).

The estimates
{
Q̌

(Nit)
i

}p
i=0

obtained after these iterations are further em-

ployed to compute Φ̌
−1

λ (ω) by using (4.15). If λ is large enough, then Φ̌
−1

λ (ω) is

expected to have a certain sparsity pattern, SPλ. Since the objective of (4.23)

does not ensure exact sparsification and also because of the numerical calcu-

lations, the entries of Φ̌
−1

λ (ω) that belong to SPλ are small, but not exactly

zero. In order to turn them to zero, we apply a method similar to the one from

(Songsiri, Dahl and Vandenberghe, 2010, Sec. 4.1.3). We firstly compute the

maximum of PSC [see also (3.7)-(3.8)]:

max
ω∈(−π,π]

∣∣∣[Φ̌−1

λ (ω)
]
a b

∣∣∣√[
Φ̌

−1

λ (ω)
]
a a

[
Φ̌

−1

λ (ω)
]
b b

, (4.24)

for all a ̸= b with 1 ≤ a, b ≤ K. Then SPλ comprises all the pairs (a, b) for

which the maximum PSC is not larger than a threshold Th. The discussion on

the selection of parameters Nit and Th is deferred to Section 4.4.

The regularized estimate of ISDM is further improved by solving a problem

similar to (4.23), but with the additional constraint that the sparsity pattern of

ISDM is SPλ, more precisely:

Third Maximum Entropy Problem [MEIII(C, SP)]:

minX tr(T (C)X)− log detX00

s.t. X ⪰ 0

TR0(X)(K + 1 : K + r,K+ 1 : K + r) = I

TRi(X)(K + 1 : K + r,K+ 1 : K + r) = 0, i = 1, p

TRi(X)(a, b) = 0 , i = 0, p, if SP(a, b) = 0

(4.25)

This step of the algorithm has a strong theoretical justification which stems

from the fact that Φ̂
−1
(ω) is the Maximum Entropy solution for a covariance

extension problem (see (Zorzi and Sepulchre, 2016, Remark 2.1)). The number

of iterations, Nit, is the same as in the case of the first loop.
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4. Latent-Variable VAR Graphical Models

The spectral factorization of the positive matrix trigonometric polynomial

Φ̂
−1

λ (ω) is computed by solving a semidefinite programming problem. The im-

plementation is the same as in Chapter 3, except that the model contains latent

variables. Therefore, the matrix coefficients produced by spectral factorization

are altered to keep only those entries that correspond to manifest variables.

The resulting VAR model is fitted to the data and then various IT criteria are

evaluated. The accuracy of the selected model depends on the criterion that is

employed as well as on the strategy used for generating the λ-values that yield

the competing models. In the next section, we list the model selection rules that

we apply; the problem of generating the λ-values is treated in Section 4.4.

As already mentioned, the estimation problem is solved for several values of

λ: λ1 < λ2 < · · · < λL. From the description above we know that, for each value

of the parameter λ, Υℓm(ω) gets the same initialization, which is based on (4.22).

It is likely that this initialization is poor. A better approach is an ADAPTIVE

algorithm which takes into consideration the fact that the difference λi−λi−1 is

small for all i = 2, L. This algorithm initializes Υℓm(ω) as explained above only

when λ = λ1. When λ = λi for i = 2, L, the initial value of Υℓm(ω) is taken

to be the estimate of this quantity that was previously obtained by solving the

optimization problem in (4.23) for λ = λi−1. The effect of the ADAPTIVE

procedure will be investigated empirically in Section 4.4.

The newly proposed estimation method outlined in Algorithm 3 is dubbed

AlgoEM.

4.3 Extended IT criteria

For model selection purpose, we apply the same IT criteria as those we used

in the previous chapter. The effective number of parameters is computed with

formula:

Nef =
K(K + 1)

2
−N0 + p(K2 − 2N0), (4.26)
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4.3. Extended IT criteria

where N0 is the number of zeros in the lower triangular part of SPλ. With the

notational conventions from Algorithm 3, we write ITC(Data; SP) instead of

ITC.

A common feature of all the criteria presented in Section 3.5 is that they do

not take into consideration how big is the family of the competing candidates.

This might be problematic because the total number of possible sparsity patterns

is as large as 2K , where K = K(K−1)/2. The solutions proposed in the previous

literature for circumventing this difficulty are called extended IT criteria. We

show below how these criteria can be applied for selecting the sparsity pattern.

In this context, we also propose a novel variant of RNML.

First we write down the expression of the extended SBC proposed in Chen

and Chen (2008). In the statistical literature, this criterion is named EBIC

(Extended Bayesian Information Criterion):

EBIC(Data; SP) = SBC(Data; SP) + 2γ log

(
K

N0

)
, (4.27)

where γ ∈ [0, 1]. It is evident that EBIC is equivalent to SBC when γ = 0. More

interestingly, Wallace (2005) and Roos, Myllymäki and Rissanen (2009) rely

on arguments from information theory for justifying the use of a penalty term

which counts the number of models that have the same number of parameters.

For our problem, this is equivalent to choosing γ = 1 in (4.27). Because this

is also the value of γ that we use in this work for evaluating EBIC, we explain

briefly the significance of the supplementary penalty term. The key point is

to consider a scenario in which Data should be transmitted losslessly from an

encoder to a decoder by employing the model given by SP. According to Roos,

Myllymäki and Rissanen (2009), the first step is to transmit the value of N0.

The assumption that all possible values of N0 are equally probable leads to the

conclusion that the code length for N0 is − log
(
1/(K + 1)

)
= log(K + 1). As

this quantity is the same for all models, it can be neglected. Then the decoder

should be informed about the actual locations of the zeros in the sparsity pattern

SP. Since the list of all sparsity patterns for a given N0 is known by both the
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4. Latent-Variable VAR Graphical Models

encoder and the decoder, all that remains is to send to the decoder the index

of SP in this list. Under the hypothesis that all the sparsity patterns in the list

are equally probable, the code length for the index is log

(
K

N0

)
. In (4.27), this

quantity is multiplied by two because of the scaling factor used in the definition

of SBC(Data; SP) [see (3.15)].

Another formulation of EBIC was introduced by Foygel and Drton (2010)

for finding the graphical structure of a Gaussian model (static case), in the

situation when the number of variables and the number of observations grow

simultaneously. After modifying the criterion from Foygel and Drton (2010)

by replacing the number of edges of the graph with Nef , we get the following

formula:

EBICFD(Data; SP) = SBC(Data; SP) + 4γNef log K, (4.28)

where γ has the same significance as in (4.27), and again we take γ = 1. Re-

mark that the term 4γNef log K grows when N0 decreases; the term in (4.27),

2γ log

(
K

N0

)
= 2γ log

(
K

K −N0

)
, does not have the same property.

Relying on the asymptotic equivalence between RNML and SBC (see Sec-

tion 2.5), we alter RNML by adding half of the extra penalty from (4.28); the

scaling factor is needed because the ratio between the GOF term in (3.16) and

the GOF term in (3.15) tends to 1/2 when T →∞. The new criterion, which is

dubbed RNMLFD, has the following expression:

RNMLFD(Data; SP) = RNML(Data; SP) + 2Nef log K. (4.29)

For all the selection rules listed above, the best model is the one which min-

imizes the value of the criterion. For evaluating the performance of IT criteria,

we conduct an empirical study. The main results of this study are reported in

the next section.
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4.4. Experimental results

4.4 Experimental results

4.4.1 Artificial data

In our simulations, the order of the VAR model in (4.1) is taken to be one, the

number of manifest variables is K = 15, and there is one single latent variable

(r = 1). Let KS denote the number of non-zero entries in the lower triangular

part of the sparsity pattern of size K × K. We consider three different values

for KS: 2, 3 and K. Remark that the larger is KS, less sparse is the ISDM. The

locations of the non-zero entries for each value of KS are graphically represented

in Figure 4.1.

When generating the ISDM, all the matrices {Qi}pi=0 in (4.2) have only ones

on their main diagonals. The entries of the K×K upper-left block of the matrix

Qi, which should be non-zero according to Figure 4.1, are equal to 0.5/(i + 1).

Additionally, the entries on the last row and on the last column of Qi, except

the one on the main diagonal, are equal to 0.3/(i + 1). Integer multiples of

the κ × κ identity matrix are added to Q0 until the resulting ISDM is positive

definite. Furthermore, the spectral factorization is applied in order to obtain the

matrix coefficients of the VAR-model from the ISDM (see Section 2.6.2 for more

details). Hence, for each value of KS, one single VAR-model is produced and this

is used for generating Ntr = 10 κ-variate time series of length T = 50000. To this

end, we utilize Matlab functions from the package available at the address http:

//climate-dynamics.org/software/#arfit. After discarding from each time

series the component corresponding to the latent variable, the simulated data

are used for evaluating the performance of AlgoEM.

4.4.2 Settings for AlgoEM

The order of VAR, as well as the number of latent variables, is assumed to be

known. The parameter λ takes values on a regular grid defined on the interval

[10−3, 10−1], for which the grid step is 10−3. It follows that the total number of
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4. Latent-Variable VAR Graphical Models

(a) KS = 2 (b) KS = 3 (c) KS = 15

Figure 4.1: Sparsity patterns for the ISDM of the generated data: KS is the
number of non-zero entries in the lower triangular part of SP. The black dots
represent the locations of the non-zero entries, whereas the light grey dots are
the zero entries.

values for λ is L = 100. The threshold Th, which is used in conjunction with

(4.24) in order to get the estimated sparsity pattern, equals 10−3.

We are interested to evaluate the impact of the adaptive initialization pro-

cedure that was introduced in Section 4.2. This is why we run AlgoEM with

and without this procedure, for all the time series we have generated. For each

time series and for each value of λ on the grid, the estimated SPλ is compared

to the true sparsity pattern. The comparison reduces to computing the distance

between the two sparsity patterns, which is given by the number of positions

below the main diagonal where the patterns differ. For the case KS = 15, statis-

tics related to this distance are presented in Figure 4.2. Remark that values of

λ close to zero lead to estimated patterns which are not sparse. As expected,

this happens disregarding if the adaptive procedure is applied or not. The use

of the procedure has the positive effect that, for a large range of λ-values, the

estimated patterns are close to the true one. The same is true for both KS = 2

and KS = 3, which makes us apply the adaptive procedure in all the experiments

outlined below.

The results reported in Figure 4.2 are obtained by taking the number of it-

erations to be Nit = 4. As the computational burden of the algorithm depends

strongly on Nit, we investigate the effect of reducing the number of iterations
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Figure 4.2: Results for VAR-models with KS = 15, for which the true sparsity
pattern is shown in Figure 1c. With the convention that dist denotes the distance
between the estimated sparsity pattern and the true one, we plot mean ±1
standard deviation (dist) versus the parameter λ. The statistics are computed
from Ntr = 10 trials, for both the adaptive and the non-adaptive case.

to Nit = 3 and Nit = 2, respectively. In each case, the evaluation of perfor-

mance is done by an oracle having complete knowledge about the true sparsity

pattern. From the set of sparsity patterns produced when applying AlgoEM to

a particular time series, the oracle selects the one which is closest to the true

sparsity pattern. The closeness is measured by the distance defined above. The

average distances computed from Ntr = 10 trials are plotted in Figure 4.3. We

can see in the figure that, in the case when KS = 2 and AlgoEM performs only

two iterations, the true sparsity pattern is always in the set of the candidates

produced by the algorithm and this makes the average distance to be zero. In

general, all the results shown in the figure are good as the average distance is

smaller than one in all cases. Since the increase of Nit does not guarantee the

improvement in performance, we take Nit = 2 for reducing the complexity of the

algorithm.

It is clear from the description of Algorithm 3 that Nit is the same for the two

major loops of AlgoEM. We name the first loop MEEM(Pen) and the second
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Figure 4.3: Impact of Nit on the performance of AlgoEM: Evaluation is done
by replacing in AlgoEM the IT criterion with an oracle having full knowledge
about the true sparsity pattern. For each KS and for each Nit we run Ntr = 10
trials for calculating the average distance between the true sparsity pattern and
the sparsity pattern selected by oracle.

one MEEM(Con). Obviously, MEEM is the acronym for Maximum Entropy

Expectation-Maximization, Pen stands for penalized settings, and Con means

constrained settings. Because we want to quantify the influence of MEEM(Con)

on the accuracy of the estimation, we show in Figure 4.4 the average distances

to the true pattern, when the estimates are produced by MEEM(Pen) and by

MEEM(Con), respectively. This time we do not report results obtained only

when an oracle is used for selecting the sparsity pattern, but also for the case

when the selection is done with the IT criteria defined in Section 4.3. We can

observe that AICc and FPE perform very poorly, whereas both EBICFD and

RNMLFD are very good. The fact that RNMLFD is superior to RNML demon-

strates the importance of the extra-term in (4.29). Remark also that EBICFD

is more accurate than SBC, while EBIC has the same level of performance as

SBC. The most important conclusion is that removing MEEM(Con) from Al-

goEM does not deteriorate the final outcome.

The next step is to compare AlgoEM with the algorithm that solves the op-
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timization problem in (4.13). We use the implementation from Liegeois et al.

(2015), which is publicly available at the address https://drive.google.com/

file/d/0BykD2O6uX6KjSGlkQTRYWFVBZGM/view, and we call it AlgoSL. The

name comes from the fact that the method in (4.13) is sparse plus low-rank.

4.4.3 Comparison of AlgoEM and AlgoSL

In Liegeois et al. (2015), the sparsity pattern for a given pair of parameters (λ, γ)

is found by solving (4.13); Zorzi and Sepulchre (2016) uses further this sparsity

pattern as an initialization for a constrained optimization problem [see also the

discussion below equation (4.25)]. In both cases, a set of sparsity patterns is

generated by choosing various values for the parameters λ and γ. For selecting

the best one, they consider an alternative to IT criteria, which is dubbed score

function (SF). The key point is that, when using SF, it is not needed to compute

explicitly the matrix coefficients of the VAR-model. More details are provided

below.

Let Φ̂m be an estimate of Φm in (4.4), which is constrained to have a certain

sparsity pattern, SP. Using an idea from Avventi, Lindquist and Wahlberg

(2013), Zorzi and Sepulchre (2016) suggests to employ Data for computing the

correlogram Φ̂
c

m (with Bartlett window) (Stoica and Moses, 2005), and then to

evaluate the relative entropy rate:

D(Φ̂
c

m||Φ̂m) = −
1

4π

∫ π

−π
log detΩ(ω) + tr(I−Ω(ω))dω, (4.30)

where Ω(ω) = Φ̂
c

m(ω)Φ̂
−1

m (ω) for all ω ∈ (−π, π]. A discussion about this

formula can be found in Section 2.6.2. It is worth noting that this index belongs

to the Tau divergence family (Zorzi, 2015b) and to the Beta divergence family

(Zorzi, 2015a). It has been proven in these references that the use of (4.30) in

the formulation of the Maximum Entropy problem leads to the simplest solution,

in the sense of the minimum McMillan degree.

The most important is that, in Zorzi and Sepulchre (2016), D(Φ̂c

m||Φ̂m) is

utilized for quantifying the adherence of the model to the data. The complexity
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Figure 4.4: Performance of IT criteria compared to that of an oracle: (a) Only
the first major loop, MEEM(Pen), of AlgoEM is executed; (b) Both MEEM(Pen)
and MEEM(Con) are executed.
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of the model is determined by Ne, the total number of edges in the graph (includ-

ing the edges that connect the latent variables to the manifest variables). For

instance, if the model has a single latent variable, then Ne = K(K + 1)/2−N0.

Note that N0 has the same significance as in (4.26). It follows that Nef =

Ne + p(K2 − 2N0), which leads to the conclusion that Nef > Ne, and the differ-

ence between the two quantities increases when the order of the model raises. If

p = 1 and the number of latent variables is at least three (r ≥ 3), then Nef < Ne

when N0 is large.

The score functions given in Zorzi and Sepulchre (2016) are:

log SF1(Data; SP) = logD(Φ̂
c

m||Φ̂m) + logNe, (4.31)

SF2(Data; SP) = D(Φ̂
c

m||Φ̂m) +
Ne

T
, (4.32)

SF3(Data; SP) = D(Φ̂
c

m||Φ̂m) +
Ne log T

T
, (4.33)

where D(·||·) is defined in (4.30). The formula of SF1 is log-transformed for ease

of reading.

We apply AlgoSL to all the time series we have simulated (see again Sec-

tion 4.4.1). In our experiments, we consider the pairs (λ, γ) for which λ ∈

{0.1, 0.2, . . . , 0.6} and γ ∈ {0.01, 0.02, . . . , 0.5}. For the selection of the sparsity

pattern, we do not use only the score functions in (4.31)-(4.33), but we also

employ the IT criteria from Section 4.3. The results are shown in Figure 4.5.

The best criterion is RNMLFD, which is able to find the true sparsity pattern

in all the experiments; the second best is EBICFD. The comparison of the plots

in Figure 4.5 to those in Figure 4.4 leads to the conclusion that AlgoSL works

better than AlgoEM when RNMLFD is employed for selecting the model. For

understanding these results, we should take into consideration two important

aspects: (i) Oracle gives perfect results for all KS in the case of AlgoSL, but not

in the case of AlgoEM; to some extent this is due to the fact that 300 (λ, γ)-pairs

allow to produce a better set of candidates for AlgoSL than the one generated

by 100 λ-values for AlgoEM; (ii) The score functions have been used in Zorzi
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and Sepulchre (2016) for time series of hundreds of samples, whereas the size of

the time series we simulated is much larger (T = 50000).
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Figure 4.5: Estimation results obtained when AlgoSL is applied to the same
time series which have been used to evaluate the performance of AlgoEM in
Figure 4.4. For selection of the sparsity pattern, we employ the score functions
in (4.31)-(4.33) and the IT criteria from Section 4.3. Score function SF2 is not
shown in the graph because it leads to large values of the average distance: 102.4
for KS = 2, 101.5 for KS = 3, and 89.1 for KS = 15.

In order to clarify the second aspect, we conduct an experiment with sim-

ulated time series for which T = 500. The simulation procedure is the same

as in Section 4.4.1 and all the settings are the same, except that the non-zero

entries of the matrices {Qi}pi=0 (which are not located on the main diagonal)

have values that are fifty times larger. For AlgoEM, we only change the uniform

grid for λ, which this time takes values on the interval [10−3, 10−1]; the grid step

is 10−3. Remark that the total number of values for λ is the same as before

(100), and the new grid is obtained from the old one by applying a scaling factor

suggested by Basu and Michailidis (2015). Based on some empirical evidence,

we use the parameters λ ∈ {0.02, 0.03, . . . , 0.3} and λγ ∈ {0.01, 0.015, . . . , 0.2}
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for AlgoSL. All IT criteria and all the score functions are used for both AlgoEM

and AlgoSL, and the estimation results are reported in Figure 4.6. In general,

they are worse than the results for large sample size (T = 50000), and the dif-

ference is more evident when KS = 15. This shows that, for small T , it might be

difficult to recover the true structure of ISDM when it is not sparse enough. It

is encouraging that, even for KS = 15, oracle used in conjunction with AlgoSL

finds the true pattern in all trials.

To gain more insight, we give in Figure 4.7 and Figure 4.8 a graphical rep-

resentation of all the distances which are computed by oracle for a time series

whose ISDM has KS = 15. It follows from the way in which we have chosen

the experimental parameters that the total number of such distances calculated

for AlgoSL is more than eleven times larger than the number of distances for

AlgoEM. We should keep in mind that we need to compute the distance from

the pattern estimated by each candidate in the list to the true sparsity pattern.

After a laborious process of selecting the values of λ and λγ, we ended-up with a

two-dimensional grid which yields a good number of estimated patterns that are

identical to the true pattern (see the black area inside the square shown in Fig-

ure 4.8). The behaviour of AlgoEM is different: For a large range of λ-values,

the K × K upper-left block of the estimated pattern is equal to the identity

matrix, which makes the distance to the true pattern to be equal to KS. This

happens when the number of latent variables used in AlgoEM equals the true

number (r = 1) as well as when r = 2 is utilized in estimation. However, it

is evident in Figure 4.7 that the estimation results are better when r = 1. If

the number of latent variables is not known a priori, one possibility might be to

use an ITC for selecting it. Note that the definition of Nef in (4.26) should be

modified. The score functions given in (4.31)-(4.33) do not need to be altered

in order to be employed in selection of the number of latent variables.
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Figure 4.6: Estimation results when sample size is small (T = 500).
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4.4. Experimental results
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Figure 4.7: Distances computed for sparsity patterns which are estimated from
a time series of length T = 500; the value of KS for the true sparsity pattern is
15: AlgoEM (r is the number of latent variables used in estimation).
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Figure 4.8: Distances computed for sparsity patterns which are estimated from
a time series of length T = 500; the value of KS for the true sparsity pattern is
15: AlgoSL.

4.4.4 Real-world data

In addition to the experiments with simulated data, we test the capabilities of

AlgoEM on multivariate time series of daily stock markets indices at closing time,

which can be downloaded from the following address: http://au.mathworks.
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com/matlabcentral/fileexchange/48611-international-daily-stock-return-

data-for-system-identification. This dataset was produced by pre-processing

the original data from http://finance.yahoo.com, which have been measured

from 4th January 2012 to 31st December 2013. We refer to Zorzi and Sepulchre

(2016) for details regarding the pre-processing. The time series is K-variate with

K = 22, and the sample size is T = 518.

For each component of the time series, we give the name of the country where

was measured and we write in parentheses the acronym used in this analysis:

Australia (AU), New Zealand (NZ), Singapore (SG), Hong Kong (HK), China

(CH), Japan (JA), Korea (KO), Taiwan (TA), Brazil (BR), Mexico (ME), Ar-

gentina (AR), Switzerland (SW), Greece (GR), Belgium (BE), Austria (AS),

Germany (GE), France (FR), Netherlands (NL), United Kingdom (UK), United

States (US), Canada (CA), Malaysia (MA). The official names of the price in-

dices can be found in Zorzi and Sepulchre (2016).

Similar to Zorzi and Sepulchre (2016), we take the order of VAR-model to

be p = 1, and we assume that there is a single latent variable (r = 1). For

AlgoEM, we have Nit = 4 and λ takes values on a uniform grid on the interval

[2× 10−3, 2× 10−1], for which the grid step is 2× 10−3. When AICc is used for

choosing the model, the results are disappointing because the selected sparsity

pattern contains very few zeros. The same type of outcome is also obtained

when applying SF2 or SF3. It is interesting that SF1 as well as six different IT

criteria (SBC, EBIC, EBICFD, FPE, RNML, RNMLFD) select exactly the same

sparsity pattern. This one is compared in Figure 4.9 to the sparsity pattern

given in Zorzi and Sepulchre (2016), for the same data set. Observe that the

conditional independence graph yielded by AlgoEM has only four edges which

connect manifest variables: Three of them connect vertices corresponding to

Asian markets, (HK,CH), (HK,JA), (JA,KO), and the fourth one connects two

European markets, (GR,AS). This is different from the conditional graph in

Zorzi and Sepulchre (2016), where all the edges between manifest variables con-

nect only the European markets (with the exception of Greece). An in-depth
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AUNZSGHKCHJA KO TA BR ME AR

SWGRBEASGEFR NL UK US CA MA

Figure 4.9: International stock markets data: Comparison between the sparsity
pattern for manifest variables from Zorzi and Sepulchre (2016) (red) and the
pattern produced by AlgoEM (green) when either SF1 or one of the following
IT criteria is used: SBC, EBIC, EBICFD, FPE, RNML, RNMLFD.

analysis of the two graphs is beyond the interest of this thesis.

4.5 Summary

The main motivation for the work presented in this chapter is the solution pro-

posed in Lauritzen and Meinhausen (2012) for the static case, as an alternative to

the method from Chandrasekaran, Parrilo and Willsky (2012). We have shown

how the estimation method from Lauritzen and Meinhausen (2012) can be gen-

eralized for the dynamic case. The resulting algorithm is dubbed AlgoEM. We

have conducted an empirical study in which we have investigated the capabilities

of AlgoEM and we have also compared it with the generalization of the method

from Chandrasekaran, Parrilo and Willsky (2012), which was proposed in Zorzi

and Sepulchre (2016). It is important to emphasize that the two methods for

latent-variable autoregressive models, which we have compared, have some com-

mon features: apply the Maximum Entropy principle, use convex optimization,

and generate a set of candidate models from which the best one is selected by a
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certain rule. In the case of AlgoEM, the set of the candidates depends strongly

on the parameter λ, which is chosen by the user. For the method in Zorzi and

Sepulchre (2016), the user should choose two parameters, λ and γ. Based on

our experience, the selection of the two parameters is much more difficult than

the selection of the single parameter for AlgoEM. Another important aspect is

how to pick-up the winner from the competing models. In Zorzi and Sepulchre

(2016), this was restricted to the use of score functions. We have demonstrated

empirically that the IT criteria might be an option to consider. Especially when

the sample size is large, it is recommended to employ the criterion RNMLFD

which we have introduced in this work.
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Chapter 5

Final remarks

In the first chapter, we introduced the RNML criterion for VAR-order selection.

In our theoretical analysis, we proved that the criterion is strongly consistent.

The results reported for experiments with simulated data demonstrate its abili-

ties in estimating properly the order when the sample size is small or moderate.

It can be used as part of an algorithm which firstly estimates the order and then

identifies the sparsity pattern of ISDM.

In the second chapter, we have proposed a family of algorithms for infer-

ring the conditional independence graph of a VAR(p)-model for K-variate time

series. Our theoretical and empirical results demonstrate that the algorithms

from this family can be used when p ≤ 20 , K ≤ 10 and K × p ≤ 100 . Thus

far, the methods which rely on convex optimization and do not ask the user to

make subjective choice of parameters have been suitable only for much smaller

values of p and K. Another important feature of our method is the guaranteed

stability of the fitted model. As part of this work, the new RNML criterion

for VAR- order selection was derived and its consistency property was proven.

Given its good performance for small and moderate sample sizes, RNML can be

also applied in other signal processing problems, not necessarily related to the

inference of graphical models.
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5. Final remarks

In the last chapter, we have shown how the estimation method from Lauritzen

and Meinhausen (2012) can be generalized for the dynamic case. The resulting

algorithm is dubbed AlgoEM. We have conducted an empirical study in which

we have investigated the capabilities of AlgoEM and we have also compared it

with the generalization of the method from Chandrasekaran, Parrilo and Will-

sky (2012), which was proposed in Zorzi and Sepulchre (2016). It is important

to emphasize that the two methods for latent-variable autoregressive models,

which we have compared, have some common features: apply the Maximum En-

tropy principle, use convex optimization, and generate a set of candidate models

from which the best one is selected by a certain rule. In the case of AlgoEM,

the set of the candidates depends strongly on the parameter λ, which is chosen

by the user. For the method in Zorzi and Sepulchre (2016), the user should

choose two parameters, λ and γ. Based on our experience, the selection of the

two parameters is much more difficult than the selection of the single parameter

for AlgoEM. Another important aspect is how to pick-up the winner from the

competing models. In Zorzi and Sepulchre (2016), this was restricted to the use

of score functions. We have demonstrated empirically that the IT criteria might

be an option to consider. Especially when the sample size is large, it is recom-

mended to employ the criterion RNMLFD which we have introduced in this work.

All experiments can be reproduced by using the Matlab code which can be

downloaded from https://www.stat.auckland.ac.nz/~cgiu216/PUBLICATIONS.

htm.
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