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ABSTRACT 

 

 

The thesis presents a method of calculating the radiated sound power of vibrating structures 

based on the time domain estimation of acoustic radiation modes (ARMs). Each ARM is 

frequency-dependent, radiates power independent of the other ARMs and can be estimated in 

the time domain from measurements made at discrete sensor locations on the surface of the 

radiating structure. The individual ARM components are estimated digitally in the time 

domain using finite impulse response filters, which are designed to provide a best weighted 

fit to the ARMs in the frequency domain. The ARM amplitudes are estimated by filtering the 

vectors of measured velocities at points on the radiating surface with these ARM filters, 

before summing the product of the square of these amplitudes multiplied by the relevant 

ARM eigenvalues to estimate the radiated sound power. The method is described with 

reference to one and two dimensional radiators, namely a simply supported beam and a 

clamped plate. The results show that the sound power calculated from the proposed approach 

and from a frequency domain approach are comparable. Next, real time simulations of active 

structural acoustic control are performed using real-time ARM amplitudes as the cost 

function of the controller. The primary path is the path between the disturbance signal and the 

error signal, in this case, the ARM amplitude. The secondary path is from the controller 

output to the error signal. Two control strategies are considered here. The first one is non-

adaptive feedforward active structural acoustic control, which is applied to a baffled beam. 

The controller transfer function is defined by the ratio of the primary path and secondary path 

frequency responses. This technique requires the control path to be accurately estimated 

using an FIR filter to get good attenuation. The second strategy is adaptive feedforward 

active structural acoustic control with reference to the baffled plate as the radiator. The 

controller is based on the filtered-x version of the adaptive LMS algorithm. Here two FIR 

filters are required to estimate the secondary and the control paths. To get good attenuation, 

the optimal locations of the control actuators are obtained using a swarm intelligent algorithm 

called Ant Colony Optimization. Finally, physical experiments are conducted to validate the 

findings. 
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CHAPTER 1 : INTRODUCTION 

 

 

1.1 Overview 

 

Recent technology advances in the automotive and aircrafts industries, requirement of 

improved fuel economy and environmental and socioeconomic factors have created consumer 

demands for lighter vehicles. Such vehicles, usually made of simple beams, plates, panels 

etc., are prone to noise and vibration problems caused by aerodynamic sources (e.g. turbulent 

boundary layer pressure fields on aircraft skins or on car bodyworks), by external sources 

(e.g. jet or reciprocating engine noise), and by structure-borne noise (e.g. engine induced or 

road induced vibrations) [1-2]. Impaired performance, degraded communication, increased 

fatigue, and hearing loss are some of the risks encountered by the passengers due to 

uncontrolled interior noise in the vehicle cabin. Thus, understanding of the vibro-acoustic 

characteristics of thin-walled enclosures typical of cabin structures is important, and 

necessary countermeasures need to be taken to reduce noise levels.  

 

 Acoustic noise transmission is often passively suppressed by adding mass, stiffening 

or damping material to the structure to reduce the undesired effects in the dynamic response 

of lightweight structures. This is done by introducing enclosures, barriers and silencers to the 

system to absorb or block the acoustic waves [3-4]. One of the successful examples is the use 

of Helmholtz resonators (HRs) to increase acoustical damping by tuning the parameters of 

HR (volume and neck dimensions) in order to tune the natural frequency of the HR to the 

frequency of the acoustic noise. [5-6]. They have been proven to be very efficient in 

controlling noise over a narrow frequency band and have been applied successfully in many 

acoustic enclosures [4, 7-8]. Besides, Leung et al. [9] utilised passive noise reduction through 

enhancement of aero-acoustic interference due to two cavities when considering a laminar 

flow.  

 

Passive noise control can effectively reduce noise at mid and high frequencies. 

However, there is typically much less noise reduction at low frequencies, and reduction 

requires a substantial implementation cost with the addition of size and weight, simply 

because the acoustic wavelengths are much longer than the structure [4]. Advancements of 
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sensors, actuators and microprocessors nowadays have provided more possibilities for noise 

control, namely active noise control (ANC) and active structural acoustic control (ASAC), 

that could satisfy both the requirements for low weight and low vehicle interior noise levels. 

In ANC additional noise is introduced to cancel out unwanted noise, while in ASAC the 

vibration characteristics of the radiating surface are controlled to reduce the radiated sound 

power, without necessarily reducing the mean square vibrational velocity. 

 

The thesis presents a method of estimating the radiated sound power of vibrating 

structures based on the time domain estimation of acoustic radiation modes (ARMs). These 

ARMs represents independent velocity patterns of the radiator that radiate sound to the far-

field [10-11]. The benefit of the real-time estimates of ARM approach is that it gives 

broadband estimation of radiated sound power from strongly radiating vibration. A method of 

controlling the radiated sound power using the ASAC approach is also presented, where real-

time ARM amplitudes are used as the cost function of the controller. Finally, physical 

experiments are conducted to validate the findings. 

 

 

1.2 Literature review  

1.2.1 Measurement of the radiated sound power 

 

The accurate measurement of the radiated sound power is important in an active control 

system, since the objective is to suppress the sound radiation. Over many years, the radiated 

sound from a vibrating surface has been studied extensively, with a rectangular plate often 

considered [12-13]. The radiated sound pressure in the far-field can be calculated using 

Rayleigh integral [14] (equation 2.1), which is an integral over the surface of the vibrating 

plate. Alternatively the power can be estimated by integrating the far-field acoustic intensity 

over a hemisphere enclosing the plate [15]. These are chosen to be the standard methods of 

calculating the sound power and typically require a special acoustic environment, i.e. an 

anechoic or reverberation chamber [16]. 

 

In the 1990s, a new technique of estimating the sound power radiated from a vibrating 

structure using the radiation resistance matrix was proposed [10, 17]. This method discretises 

the radiator surface into elementary pistons and the radiated sound power is estimated as the 

product of the radiation resistance matrix, which relates the pressures and velocities of the 
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discrete elemental piston radiators, and the squared velocity vectors [4, 18]. The radiation 

resistance matrix contains mutual radiation impedances between the elementary pistons. 

Later, it was shown that the sound power radiated by a vibrating structure can be expressed as 

the sum of linear contributions of the acoustic radiation modes (ARMs), where these ARMs 

are the eigenvectors of the radiation resistance matrix [2, 10-11]. 

 

1.2.2 Acoustic radiation modes 

 

In recent years, significant attention has been drawn to use the concept of ARMs in 

developing efficient design strategies for ASAC systems. ARMs can be defined as the 

velocity distributions that radiate power independently to the acoustic far-field. Physically, 

ARMs are basis vectors orthogonal to each other in vector space and each basis vector 

represents a possible velocity pattern that radiates sound independent of the other ARMs. 

Each ARM has a specific radiation efficiency, thus, the radiated power can be estimated as a 

superposition of the ARM contributions [10-11]. Sound power estimation using the ARMs 

approach eliminates the complex coupling terms in the structural vibration modes in the 

model. Besides, at low frequencies, often control of only a few ARMs is required, as 

compared to vibraiton modes. These simplify the calculation and active control of the 

structure-borne radiation. 

 

The unique feature of ARMs is that they depend only on the radiator geometry and 

frequency. Thus, the far-field sound power can be estimated even without information of the 

mechanical properties and boundary conditions of the radiators [10]. The summation of the 

product of the ARM shape and the corresponding surface velocity produces the ARM 

amplitude. The radiated sound power W can then be calculated as  

 

1

2

j

j jW y




 , (1.1) 

 

where yj is the j
th

 ARM amplitude and    is the eigenvalue of j
th

 ARM. Equally, by reducing 

the corresponding distributed surface velocities that contribute to the radiation modes with 

the most significant radiation efficiencies, which are normally the first few ARMs, by using 

actuators, the overall radiated sound power can be reduced considerably.  
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The ARM approach has been used by many researchers in sound radiation problems. 

Tao and Qiu [19] estimated the radiated sound power of lightly damped, baffled, simply 

supported rectangular plates by using ARMs and velocity sensors. A mapped ARM method 

proposed by Wu et al. [20] was used to simplify the ARM computation for convex structures, 

e.g. a sphere. Estimation of the radiated sound power from the structure-dependent radiation 

modes based on the modal velocity distributions was proposed by Ji et al. [21-22] as a 

replacement for the classical ARMs. Yamaguchi et al. [23] proposed the force radiation mode 

concept to understand the relationship between sound power and driving force distribution. 

Hesse et al. [24] estimated the acoustic potential energy of an enclosure using a frequency-

independent radiation modes method. 

 

1.2.3 Active control approaches 

 

Rapid development of digital signal processers and A/D and D/A converters since 1990s, has 

made active control methods feasible in attenuating noise especially at low frequencies. 

Active control is realized by introducing additional signals to the system through a set of 

secondary actuators. The responses from these actuators are added to those of the primary 

actuators through superposition. With correct tuning, the additional inputs are able to modify 

the characteristic of the control system appropriately to yield the desired response. There are 

two types of active controls, namely active noise control (ANC) and active structural acoustic 

control (ASAC). 

 

Active noise control was first introduced in 1936 in a patent by Lueg [25].  ANC uses 

secondary sources to generate a sound signal, which has equal magnitude and is 180 degrees 

out of phase with the unwanted noise signal, in order to cancel that noise [26-28]. Unwanted 

noise is often created due to vibrating structures. Active noise control methods that are based 

on modifying the sound field are not always effective for this type of problem.  

 

 The ASAC method however can reduce the complexity of controlling a 3-dimensonal 

sound field to the 2-dimensional problem of controlling the vibration of a vibrating surface to 

suppress transmitted or radiated noise. This requires a smaller number of structural actuators 

to produce global far-field attenuation as compared to ANC [29-32]. It is an extension of a 

technique used to control vibration of a structure, called active vibration control (AVC) [31] 

but with a different cost function. The other difference between ASAC and AVC is their 
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control objective. The AVC technique is aimed at vibration reduction. However, some of the 

vibration modes, for example an even-even mode of a simply supported plate, is not an 

efficient radiator thus suppressing this mode will not reduce the radiated sound power 

significantly. In ASAC, the objective is to control only the vibrations which are important to 

sound radiation  [31]. 

 

1.2.4 Active structural acoustic control 

 

For the realisation of ASAC, numerous methods have been developed. For instance, Pinte et 

al. [33] proposed iterative learning control for active control of repetitive impact noise. The 

approaches of vibro-acoustic modes were proposed to control both sound and vibration 

simultaneously [34-36]. Bianchi et al. [37] and Gardonio et al. [38-39] developed a sound 

radiation control system using direct velocity feedback (DVF) with a collocated configuration 

of accelerometers and piezoelectric patches. Sound radiation from structural vibration modes 

was decoupled by investigating the ARMs and radiation modal expansion before application 

to practical real-time control [40-41]. With the identified model, the control system was 

designed according to a Hankel-Norm specification to suppress noise radiated from a 

vibrating structure [42]. Hesse et al. [24] used H∞ control based on frequency-independent 

radiation modes to reduce the acoustic potential energy of a plate-cavity system under 

stochastic excitation. 

 

Volume velocity is a measurable quantity on the surface of the plate and has a similar 

appearance to the lowest order ARM [10]. Volume velocity control has proven to be an 

effective strategy to reduce overall sound radiation especially at low frequencies, [43-44]. 

Gardonio et al. [45] applied direct velocity feedback control using a matched volume velocity 

sensor and a uniform force actuator bonded to a plate to control sound radiation. Good 

control results were achieved for excitation frequencies below 100 Hz. However, the 

controller was unstable at higher frequencies. This was due to the sensor–actuator response 

being controlled by the in-plane longitudinal and shear vibration of the panel. Implementation 

of volume velocity control requires a relatively large number of structural sensors. In the 

paper by Sors and Elliott [44], 62 sensors were used to estimate the volume velocity 

accurately for a steel rectangular plate whose smallest dimension was 483 mm [46]. Another 

control metric of ASAC for the low frequency range, termed the composite velocity, is based 



 

6 

 

on the weighted sum of the spatial velocity gradient (also known as WSSG). This was 

proposed by Fisher [47]. Using this method, control results comparable to volume velocity 

control were achieved but with fewer sensors [48-50]. However, both control methods are 

only applicable for the low frequency range (i.e. frequency range before the second ARM 

becomes important).   

 

1.3 Motivation 

 

One problem associated with ASAC is that the ARMs are frequency dependent: in frequency 

domain approaches the system is designed based on the ARM shape at a specific frequency, 

similar to the approximation of volume velocity approaches at low frequencies. Unlike 

frequency-domain approaches, time-domain methods enable a broader frequency range of 

approximation of radiated sound power [51] and allow for real-time implementation. 

However, few studies focus on calculating the radiated sound power using a time-domain 

approach. Borgiotti and Jones [52] estimated the sound power using frequency-independent 

radiation spatial filters, where they used ARMs weighted at a discrete frequency. At other 

frequencies, the ARM was normalised with respect to this frequency, thus the radiated sound 

power can only be measured accurately if all self and mutual radiation efficiencies are taken 

into account. 

 

Later, the discrete structural acoustic sensing (DSAS) technique was proposed by 

Maillard [53]. His work provides time domain estimates of the radiated far-field sound 

pressure. Arrays of finite impulse response (FIR) filters, whose impulse responses were 

constructed from the appropriate Green function, were employed to process the measured 

acceleration signal in the time domain. Validation of the sensing technique was performed on 

a baffled rectangular plate and finite cylinder.  

 

Berkhoff [51] identified the ARMs by extracting the underlying Green function using 

time-domain inverse filtering technique. Using this method, the ARMs obtained are the 

optimum vibration patterns in an average sense evaluated over a predefined frequency band 

and thus selection of a normalization frequency as in [52], was not required. The work of Wu 

[54] managed to calculate the sound power using time-domain acceleration distribution 

instead of velocity distribution.  
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However, none of the previous studies estimate the sound power from the time-

domain estimates of the ARM itself. The ARM shape is frequency-dependent and can be 

reconstructed in the time domain using digital filters weighted across the frequency range of 

interest. Moreover, the real-time ARM amplitudes can be calculated from the convolution of 

the ARM filters and the corresponding velocity responses. These ARM amplitudes can also 

be used as the cost function in ASAC system. Addressing these issues is the scope of this 

thesis.  

 

1.4 Objectives 

 

This research focuses on developing a method of calculating and controlling the radiated 

sound power of vibrating structures based on the time domain estimation of ARMs. The main 

objectives of this research are: 

1. to develop digital filters that estimate the ARMs and radiated sound power in the time 

domain, 

2. to develop non-adaptive and adaptive feedforward controllers to attenuate the sound 

radiated from a structure using real-time ARM amplitude as an error function, 

3. to determine the optimal location of the actuators used to control the sound radiation, 

and 

4. to verify the simulation results experimentally. 

 

1.5 Contributions 

 

The main contributions of this thesis can be summarised as follows. 

 In order to allow for real-time implementation, a method to estimate the ARM 

amplitude in the time domain using digital filter is proposed using a causal-delayed 

FIR filter, which is also called the ARM filter. This ARM filter is designed by 

introducing a time delay in the frequency response of the ARM estimator (Chapter 3). 

 The ARM filter is then used to estimate the radiated sound power of one and two 

dimensional radiating structures. The ARM filters allow for the frequency dependence 

of the ARM shapes, and hence give a better approximation across the frequency range 

of interest (Chapter 3). 
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 Methods to use ARM estimates in active structural acoustic control on both non-

adaptive and adaptive feedforward control system are proposed. Generally, the ASAC 

controller is designed in a way that it minimises the real-time ARM amplitudes. In the 

non-adaptive feedforward control case (applied on the beam radiator), the ARM 

estimates are used to derive the controller model, which is obtained from the transfer 

function ratio of the primary path to the secondary path and reconstructed in discrete 

time using an FIR filter. In the adaptive feedforward control case (applied on the plate 

radiator), the controller is designed using filtered-x least mean square (LMS) 

algorithm whereby the ARM estimates are used as the error functions of the adaptive 

controller (Chapter 4).  

 A method to determine the optimal control actuator locations for adaptive control case 

(applied on the plate radiator) using offline optimisation is proposed. Here, the 

optimisation is done using ant colony optimisation (ACO) algorithm, although other 

optimisation algorithms can equally be used (Chapter 4). 

 

1.6 Thesis outline 

 

In the following chapter of this thesis, the theory of radiated sound power from vibrating 

structures is discussed. Numerical examples of the first few ARMs for one and two-

dimensional structures are also presented. In Chapter 3, the method for estimating the ARM 

amplitudes and radiated sound power in real time, which is implemented in discrete time, is 

described. The method is described with reference to one and two-dimensional radiators, 

namely a simply supported beam and a clamped plate. Various forms of the digital filters 

used are discussed and numerical simulations are performed to verify the performance of the 

estimation method. Chapter 4 discusses control of radiated sound power using feedforward 

ASAC strategies. Here two control cases are considered. The first case is non-adaptive 

control applied to a baffled beam and the second is adaptive control using the filtered-X least 

mean square (FxLMS) algorithm applied to a baffled rectangular plate. Selection of optimal 

locations of the control actuators is also discussed. Chapter 5 presents the experimental 

results, which aim to validate the estimation and control of the radiated sound power from a 

vibrating plate using the ARM estimation approach. Finally, Chapter 6 concludes this thesis 

and some recommendations for future work are also presented. 
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CHAPTER 2 : RADIATED SOUND POWER FROM 

VIBRATING STRUCTURES AND ACOUSTIC RADIATION 

MODES 

 

 

2.1 Introduction 

 

This chapter discusses the acoustic pressure derived from the Rayleigh Integral equation. The 

corresponding radiated power is found by solving the integral of the product of acoustic 

pressure and particle velocity over the radiating surface. Alternatively, this radiated acoustic 

power can also be calculated using the superposition of radiation modes, i.e. the velocity 

distributions that radiated power independently to the acoustic far-field; the shapes of the 

acoustic radiation mode (ARM) vary with the excitation frequency. Numerical examples of 

the first few radiation modes for one and two-dimensional structures are also presented. Here, 

a simply supported beam and a rectangular clamped plate are selected as the one and two-

dimensional structures. To simulate the radiated sound power, the structural response needs 

to be calculated first. Thus, the equations of motion of a beam and a plate are derived, 

together with some numerical examples of the structural mode shapes and radiated sound 

power. Finally numerical examples of the radiated sound powers are presented.  

 

 

2.2 Radiated sound power from a plane radiating surface 

 

A structure lies in a rigid baffle in the x-y plane with the origin of the coordinates lying at the 

centre of the structure (see Figure 2.1). The shape of the radiator is arbitrary, although the 

figure shows a rectangular radiator. An acoustic fluid occupies the half-space z > 0. The far 

field acoustic pressure can be estimated at an arbitrary position  , ,R  r  expressed in the 

spherical coordinate system, in terms of the velocity of the structure using the Rayleigh 

integral [14] 

  

   
0

0
0

0

,
2

ik
i t

A

i e
p t v e dA



 




r r

r r
r r

, (2.1) 
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where   is the angular frequency, k  is the wavenumber, 
0  is the density of the fluid, A  is 

the area of the structure, 
0r r  is the distance from the location on the vibrating surface to 

the observation point, and  0v r  is the transverse velocity of the structure. For the far-field 

case, the distance 
0r r  is large compared to the characteristic dimension of the structure and 

can be approximated by 
0R  r r  in the denominator. Thus, the time-independent far-field 

pressure in Equation (2.1) becomes 

 

    00
02

ik

A

i
p v e dA

R





 
 

r r
r r . (2.2) 

 

 

 

Figure 2.1: Coordinate system of plane baffled structure [55]. 

 

 

The time-averaged acoustic intensity at any observation point r and direction is given 

by the product of the complex conjugate of particle velocity  v r  and the complex acoustic 

pressure  p r . Integrating the sound intensity over the surface of the radiator, the sound 

power radiated to the farfield by the structure equals [15]  
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   
1

Re
2

A

W v p dA 
 

  r r . 
(2.3) 

 

Here, the evanescent component of the sound pressure is neglected. Substituting Equation 

(2.1) into Equation (2.3) yields 

 

     
 

 
0 00 0

sin
Re

4 4

ik

q q

A A A A

p p

kie
W v v dAdA v dAdA v

R R

 

 
 

  
 
 
  


    

r r r r
r r r r , (2.4) 

 

where qr and qr  are any two arbitrary position vectors on the surface of the radiator. For 

practical implementation, the radiating surface can be discretised into N small elements of 

equal area A , which converts the integration into a summation of elementary radiators.  

 

The total radiated sound power of Equation (2.3) is expressed as 

  

 
2

0

1 1

sin( )

4

N N
pq

p q
pqp q

kr
W v v A

r






 

  , (2.5) 

 

where pv and qv are the complex velocities of the p
th

 and  q
th

 elements normal to the surface, 

respectively, 
pq p qr  r r  is the distance between the p

th
 element and the q

th
 element. 

Equation (2.5) can also be re-written in a vector-matrix form as [10] 

 

HW = v Mv , (2.6) 

 

where superscript H is the Hermitian transpose, v is the velocity vector whose entries are the 

elemental velocities and M is the radiation resistance matrix whose entries are given by 
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krM
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
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 (2.7) 

 



 

12 

 

2.3 Acoustic radiation modes 

 

The radiation resistance matrix M in Equation (2.7) is real and symmetric because of 

reciprocity. Also, due to the fact the radiated sound power is always greater than zero, except 

for the case where the surface velocity of the radiator is zero, M is positive semi-definite. 

Thus, matrix M can be diagonalised through an orthogonal transformation and written as 

 

TM QΛQ , (2.8) 

 

where the superscript T is the transpose,  1

T

r  Λ  is the vector of the eigenvalues of 

M , ordered such that 
1 rr   , and Q  is a matrix whose columns are the orthogonal 

eigenvectors of M . Each eigenvector in Q  is known as an acoustic radiation mode (ARM). 

ARMs are functions of position and frequency only but not boundary conditions, hence are 

not dependent on the natural modes of the structure but only on the shape of the radiating 

surface. Each ARM represents a possible velocity pattern of the radiator’s surface and has a 

radiation efficiency related to the eigenvalue  . 

 

The radiation efficiency is defined as the ratio of the spatial acoustic power    

radiated by a vibrating structure to the average acoustic power radiated by a piston of the 

same surface area vibrating with the same mean-square velocity        of the structure [56], 

i.e. 

 

2

0 0

W

c v



 , (2.9) 

 

where 

 

2 2

1

1

2

N

n

n

v v A
A 

  . (2.10) 

 

 

Thus, the radiation efficiency of the individual ARM r is given by [57] 
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0 0

2
r r

N

c A
 


 . (2.11) 

 

 

The radiated sound power contributed by the r
th

 ARM is given by  

 

2

r r rW y  , (2.12) 

 

where yr is the r
th

 ARM amplitude, while the total radiated acoustic power of a vibrating 

structure W is determined by the summation of the sound power radiated from each ARM, as 

[10-11] 

 

1

rN
H

r
r

W W


 y Λy , (2.13) 

 

where           
       is the vector of ARM amplitudes and Nr is the total number 

of ARMs. Equation (2.13) shows that the radiated acoustic power of one ARM is completely 

independent of all others. In other words, suppressing an individual radiation mode amplitude 

will reduce the total radiated power by an amount which depends on the contribution that 

particular radiation mode gives to the total radiated power. This is basically the essence of 

active structural acoustic control (ASAC), as mentioned in Chapter 1. 

 

 

2.3.1 Numerical example: One dimensional radiator 

 

Figure 2.2 shows the first six ARM shapes of a one-dimensional radiating plane structure, 

e.g. a baffled beam, when excited in the frequency range of kl=0 to kl=10, where kl is the 

dimensionless frequency, k=ω/c0 is the wavenumber, l is the length of the structure and x 

represents position on the beam. At low frequencies, i.e. kl ≤ 1, the velocity distributions for 

the first two ARMs are similar to monopole-like and dipole-like motions, respectively. The 

higher ARMs are characterised by higher order functions. As frequency increases, their 
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shapes become more curved. Note that the ARM shapes are frequency dependent, in contrast 

to, for example, vibration mode shapes. 

 

Using Equation (2.11), the radiation efficiencies of the first six ARMs of the radiator 

are shown in Figure 2.3. In general, the efficiency increases as frequency increases. It can be 

seen that the lower order ARMs are substantially more efficient radiators at low frequencies. 

This means that significant attenuation of the total radiated sound power at low frequencies 

can be achieved by controlling the sound power of only the first few ARMs. At higher 

frequencies, the efficiencies approach a constant value of 1. 

 

 

Figure 2.2: The first six ARMs of a one-dimensional baffled structure as functions of position 

and dimensionless frequency kl. 
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Figure 2.3: Radiation efficiencies of individual ARMs for 1-D radiator. 

 

 

2.3.2 Numerical example: Two dimensional radiator 

 

The two-dimensional radiator selected as a reference model is a rectangular plate with length 

Lx = l and width Ly = 0.75l. Figure 2.4 shows the first four ARM shapes of the two-

dimensional radiator. In this figure, the first ARM shape is nearly uniform over the surface of 

the radiator at low frequencies, i.e. kl ≤ l, whereas it is distorted towards a dome-shape at 

higher frequencies. The second and third modes are rocking-type, dipole-like modes oriented 

along the two axes of the panel at low frequencies and become distorted as the frequency 

increases. The fourth ARM is defined by the shape of higher order functions which have 

maximum and minimum values located at the two opposite vertices and becomes distorted at 

higher frequencies. Note again that these shapes are frequency dependent, which are quite the 

opposite to vibration mode shapes. 

 

The radiation efficiencies of the first five ARMs of the plate are shown in Figure 2.5. 

From this figure, similar to the beam case, the lower ARMs are seen to be more efficient 

radiators especially at low frequencies; in other words, they generally contribute more to the 

radiated sound power than the higher ARMs.  Note also the efficiencies for the second and 

third
 
ARMs as well as also for the fourth and fifth ARMs are nearly equal due to the aspect 

ratio y xL L being near to unity. The efficiencies increase as the frequency increases and 

finally tend to 1. 
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(a) 

 

(b) 
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(c) 

 

(d) 

Figure 2.4: (a) First, (b) second, (c) third and (d) fourth ARM shapes of a rectangular 2-D 

structure when dimensionless frequency kl = 0.1, 1, 5 and 10, respectively. 
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Figure 2.5: Radiation efficiencies of individual ARMs of the plate. 

 

 

2.4 Equation of motion of the radiators 

 

In this research, a thin simply supported beam and a thin, rectangular, clamped plate are used 

to simulate the one and two-dimensional radiators, respectively. This section presents the 

equations of motion and the developed expressions for the frequency response functions 

(FRFs) in terms of modal sums. Finally numerical examples of the structural mode shapes 

and the radiated sound power are presented.  

 

 

2.4.1 Simply supported beam 

 

 

Figure 2.6: Thin beam. 

 

Consider a thin beam of width b, thickness hb and length l lying along the x-axis as shown in 

Figure 2.6. The half-space (x, y) above the beam is occupied by an acoustic fluid. Euler-

Bernoulli beam theory is used to model the behaviour. For a uniform beam that undergoes 

undamped free vibration, the governing equation of motion can be obtained as [58]  
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4 2

4 2

( , ) ( , )
0b

w x t w x t
EI m

x t

 
 

 
, (2.14) 

 

where ( , )w x t  is the transverse displacement of the neutral axis (at point x and time t) due to 

bending, E is the Young’s modulus, mb is the mass per unit length of the beam, 3 12bI bh  is 

the area moment of inertia.  

 

Using the modal analysis approach, the displacement can be separated into space and 

time functions of the form 

 

      , p p

p

w x t x t  , (2.15) 

 

where  p x  and  p t  are the mass normalised mode shapes and the modal coordinates, 

respectively. Substituting Equation (2.15) into Equation (2.14) yields  

 

 
 

 
 4 2

4 2

1 1bp p

p p

x t

x

m

tx EI t

 

 

 
 

 
. (2.16) 

 

Since the left side of Equation (2.16) is independent of time t and the right side is 

independent of x, the equality holds for all values of t and x. Assuming each side of Equation 

(2.16) to be equal to 4
p , the variables can be separated into  
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where 
p is the p

th
 natural frequency and the relationship between 

p  and p is given by 
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The general solution to the differential equation, i.e. Equation (2.17), is  

 

         1 2 3 4sin cos sinh coshp p p p pA x A x A xx x A        , (2.20) 

 

where A1, A2, A3 and A4 are constants. For the simply supported beam, the boundary 

conditions are 

 

 
 2

2
0

x
x

x





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
 at 0x  and x l . (2.21) 

 

Substituting Equation (2.20) into the boundary conditions in Equation (2.21) yields  

 

2 3 4 0A A A   , (2.22) 

p

p

l


  , (2.23) 

  1 sinp

p
A xx

l




 
 
 

 . (2.24) 

 

Substituting Equation (2.23) into Equation (2.19), the p
th

 natural frequency of the beam is  

 

2

p
b

EI p

m l




 
 
 

 . (2.25) 

 

 

The vibration modes are orthogonal. Substituting Equation (2.19) into Equation (2.18) 

yields 

 

 
 

4

4
2 0p pb

p
E

x
I m

x
x


 


 


. (2.26) 

 

Similarly for mode q, 
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 
 

4

4
2 0p qb

q
E

x
I m

x
x


 


 


. (2.27) 

 

Multiplying Equation (2.26) and Equation (2.27) by  p x  and  q x , respectively, and 

integrating over the length of the beam yields 

 

     
 

0 0

4
2

4
0

l l
p

p p q qb
dx dxm EI

x

x
x x x


    




  , (2.28) 

     
 

0 0

4
2

4
0

l l
q

q p q pb
dx dxm EI

x

x
x x x


    




  . (2.29) 

 

 Subtracting Equation (2.28) from Equation (2.29) yields 

 

       
 

 
 

0 0

4 4

4
2 2

4

l l
p q

p bq p q q pdx dx
x x

m Ex x x xI
x x

 
     

 
 
 
 


 

 
  

. (2.30) 

 

Performing integration by parts on the right side of Equation (2.30) and applying boundary 

conditions from Equation (2.21) yields 

 

     
0

2 2 0

l

p q p qb
dxxm x     . (2.31) 

 

Taking into account the fact that 
p q  if p q , then Equation (2.31) is reduced to 

 

   
0

l

pqb p qm dxx x   , (2.32) 

 

where 
pq is the Kronecker delta function defined by 

 

0 if  ,

1 if  .
pq

p q

p q



 



 (2.33) 
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Equation (2.32) implies orthogonality of eigenfunctions with respect to the mass 

distribution. For a simply supported beam, the mass-normalised mode shape is given by 

 

 
2

sin
b

p
m l

p x

l
x


 
 
 

 . (2.34) 

 

Substituting Equation (2.32) into Equation (2.28), performing integration by part on the left 

side of the equation, and applying boundary conditions, yields 

 

   

0

2
2 2

2 2

p q
l

pqp

x x
EI dx

x x


 


 


  , (2.35) 

 

which implies that the eigenfunctions are orthogonal with respect to the stiffness distribution.  

 

The response to external excitation is now expressed in terms of modal contributions. 

The equation of motion of a uniform beam subjected to an external force  ,f x t  per unit 

length is given by [58]  

 

 
4 2

4 2

( , ) ( , )
,b

w x t w x t
I m f x t

x t
E

 
 

 
. (2.36) 

 

Substituting Equation (2.15) into Equation (2.36) gives 

 

         4
1

4 2

2
1

,bp p p p

p p

EI m f x t
x t

x t x t   
 

 

 
 

 
  . (2.37) 

 

Multiplying both sides of Equation (2.37) by the mass-normalised mode shapes  q x and 

integrating over the length of the beam, yields 

 

           

   

1 10 0

4 2

4 2

0

,

l l

p q p p q p

p p

b

l

q

t x x dx t x xEI m
x t

f x t dx

dx

x

     



 

 

 


 



  



. (2.38) 
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Substituting the orthogonality relations of Equations (2.32) and (2.35) into Equation (2.38) 

and considering the boundary conditions given by Equation (2.21),  the equation reduces to  

 

     
2

2

2
p pp p tt t F

t
  


 


, (2.39) 

 

where 

 

     
0

,p

l

p t dx xF f x t  , (2.40) 

 

is the generalised force on mode p. Using the Duhamel integral, the solution for Equation 

(2.39) for zero initial conditions can be expressed as 

 

     
0

1
sinp

t

p

p

pt t dt
b

F 


    . (2.41) 

 

In real life, free vibration of any structure will die gradually due to the internal 

damping effect. It is found that in practice the presence of damping can be included for time 

harmonic behaviour by allowing the elastic modulus to be complex, i.e.  1 bE E i  , 

where 
b  is the loss factor of the beam and is generally much smaller than unity. Assuming 

the external force    0, i tf x t Fe x x    is a time harmonic point force of frequency   and 

amplitude F  acting at point x0, Equation (2.41) becomes [59] 

 

 
 

 
0

2 21

i t

p b

p

p

Fex
t

i



 







 
. (2.42) 

 

Thus, from Equation (2.15), the response of the beam becomes 

 

 
   
 

0

1
2 2

,
1

i t

q b

q q

p

Fe

i

x x
w x t



 










 

 , (2.43) 
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and is hence a sum of contributions from the modes of vibration. The surface velocity of the 

beam at point nx  is, in the frequency domain for time harmonic excitation, [57, 60] 

 

 
   

 
0

2 2
1 1

p p n
n

pp b

x x
V i F

i

 
 

  






  . (2.44) 

 

 

2.4.1.1 Numerical simulation: Structural mode shapes and natural frequencies 

 

The parameters of the simply supported beam used in the numerical examples are given in 

Table 2.1. The mass-normalised mode shapes of the beam are shown in Figure 2.7 and the 

natural frequencies are given in Table 2.2. There are 5 structural modes within the frequency 

range up to 1 kHz. 

 

Table 2.1: Parameters of simply supported beam and fluid 

Parameter Value 

Length l 0.5 m 

Width b 0.04 m 

Thickness hb 0.004 m 

Density of beam ρb 7800 kg m
-3

 

Young Modulus E 200 GPa 

Loss factor ηb 0.02 

Density of air, ρ0 1.239 kg m
-3

 

Speed of sound in air, c0 340 m s
-1

 

 

 

Table 2.2: Natural frequency of the simply supported beam 

Mode number 1 2 3 4 5 

Frequency (Hz) 36.7 147.0 330.6 587.8 918.5 
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Figure 2.7: Mode shapes of a simply supported beam. 

 

 

2.4.1.2 Numerical simulation: Radiated sound power of beam radiator 

 

Suppose the beam is excited by a point force at x0 = 0.075 m.  The radiated sound power of 

the beam calculated from Equation (2.12) and Equation (2.13) are shown in Figure 2.8. From 

the total sound power plot (black line), there are 5 peaks corresponding to 5 natural 

frequencies and 3 ARMs with radiation efficiencies greater than 0.1 below 1 kHz. It can be 

seen that there is strong radiation around the structural resonances due to the large response at 

the resonance frequencies.  

 

Figure 2.9 shows the ratio of the sound power contributed by the individual ARMs to 

the total sound power. For the lower frequency range below 110 Hz, the power is dominantly 

contributed by the first ARM. The second ARM begins to radiate power efficiently near the 

second resonance frequency while the third ARM begins near the fifth resonance frequency. 

It is also shown in the figure that the first ARM does not radiate significant power around the 

second and the fourth resonance frequencies. This is due to the asymmetric nature of the 

second and fourth structural mode shapes that have zero displacement, hence velocity, at the 

centre of the beam. These modes dominate the response and the total radiated power around 

their natural frequencies. As shown earlier in Figure 2.2, at higher frequencies, the first ARM 

radiates more power from the central region of the beam and less power from the beam’s 

edges. Similar statements can be made for the second ARM which does not radiate power 

near the third resonance frequency, as the second ARM radiates less power at the centre 
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region of the beam due to its dipole-like ARM shape. All these phenomena are due to the fact 

that for both vibration and acoustic radiation modes, the odd modes are symmetric, while the 

even modes are antisymmetric. Around one resonance, one vibration mode dominates, and 

hence only ARMs with similar symmetry are the strong radiators. For this particular case, the 

radiated sound power of the beam for frequencies up to 1 kHz is mostly determined by the 

first 3 ARMs.  

 

 

Figure 2.8: Radiated sound power of beam radiator. 

 

 

Figure 2.9: Ratio of sound powers of individual ARMs to the total sound power of beam 

radiator. 
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2.4.2 Clamped rectangular plate 

 

 

Figure 2.10: Thin plate. 

 

Suppose the two-dimensional radiating surface is a rectangular thin plate. Assuming the 

classical Kirchhoff thin plate theory (i.e. the plate is thin with respect to the wavelength and 

rotary inertia and shear deformation of the cross-section are neglected), the deformations can 

be described entirely in terms of the deformation of the mid-surface plane; hence, the plate is 

reduced to the study of a two-dimensional problem consisting of the plate mid-surface. The 

plate lies in the region 0 ≤ x ≤ Lx and 0 ≤ y ≤ Ly as shown in Figure 2.10 and is subjected to an 

external pressure excitation  , ,f x y t . The governing equation of bending vibration is given 

by the Kirchhoff equation [61] 

 

 
 

 
24 4 4

4 2 2 4 2

, ,
2 , , , ,s

w x y t
D w x y t m f x y t

x x y y t

 
 
 
 

  
   

    
, (2.45) 

 

where  , ,w x y t  is the transverse displacement in the z direction at the point  ,x y ,  

D=Eh
3
/12(1-v

2
) is the plate’s bending stiffness, E  is the Young’s modulus, h is the plate 

thickness,   is the Poisson’s ratio, and sm  is the mass per unit area of the plate material. In 

the homogeneous form, Equation (2.45) becomes  
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 
 24 4 4

4 2 2 4 2

, ,
2 , , 0s

w x y t
D w x y t m

x x y y t

 
 
 
 

  
   

    
. (2.46) 

 

The displacement  , ,w x y t  can be expressed as the superposition of an infinite 

number of mode shape functions  ,pq x y  as in the case of a beam in section 2.4.1. Here the 

approximation 

 

      
1 1

, , ,pq pq

p q

tx y t x yw 
 

 

   (2.47) 

 

is used, where pq  is the modal amplitude of the (p, q)
th

 mode of the plate, and p and q are the 

mode number in x- and y-directions, respectively. Substituting Equation (2.47) into Equation 

(2.46) yields 

 

 
 

 
 2

4
2

1
,

,

pqs
pq

pq pq

D
tm

x y
x y t t







  
 

, (2.48) 

 

where      
4 4 4

4
4 2 2 4

2
x x y y

  
   

   
is the biharmonic operator. Let each side of Equation 

(2.48) equal 4
pq , thus the variables can be separated into  

 

   4 4, 0,pq pq pqx y x y     , (2.49) 

 
 

2
2

2
0p

q
pq

p
q

t
t

t






 


, (2.50) 

 

where 
pq is the (p, q)

th
 natural frequency and  

 

4

2

pq

s pqm

D



 . (2.51) 

 

As an assumption, it is now assumed that the mode shape functions are written as the 

product of two independent beam functions [62-63] 
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     ,pq p qx y x y  , (2.52) 

 

where the function  p x is the p
th

 mode shape for a clamped-clamped beam. General 

solution to the differential equation, i.e. Equation (2.49), is given by  

 

         1 2 3 4sin cos sinh coshp p p p pA x A x A xx x A        , (2.53) 

 

where A1, A2, A3 and A4 are constants. The mode shape functions  p x  and  q y in Equation 

(2.52) can be arbitrarily chosen if and only if they are orthogonal i.e. 

 

   
   

0 0

2 2

2 2
0

x x

p j
L

j

L

p

x x
x x dx d f j

x
x i

x
p

 
 

 
 

 
  , (2.54) 

   
   

0 0

2 2

2 2
0

y y

q k

L

k

L

q

y y
y y dy d f k

y
y i

y
q

 
 

 
 

 
  , (2.55) 

 

and both of them satisfy the boundary conditions given by 

 

 
 

0
x

x
x





 


 at 0x   and xx L , 

 
 

0
y

y
y





 


 at 0y   and yy L . 

(2.56) 

 

Substituting Equation (2.53) into the boundary conditions in Equation (2.56) yields [62]  

 

 
   
   

cosh cos
cosh cos sinh sin

sinh sin

p pp p p p
p

x x x xp p

x x x x
x

L L L L
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

 

        
        

                


   


, (2.57) 

 

where p and q  are the roots of the equation    cosh cos 1   . 

 

From Equation (2.48), using the orthogonality relationship in Equations (2.54) and 

(2.55), the natural frequencies are given by [62] 
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51 2 3 4 6

2 6

2
pq

s

I I I I I ID

m I I


 
  , (2.58) 

 

where  
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

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2
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0

xL

pI x dx  . (2.59) 

 

Substituting Equation (2.47) into Equation (2.45) yields 

 

         
2

4
2

1 1 1 1

, , , ,pq pq s pq pq

p q p q

D x y t m x y t f x y t
t

 
   

   


    

  . (2.60) 

 

Multiplying both sides of Equation (2.60) by the mass-normalised mode shapes  ,pq x y  

and integrating over the length and width of the plate yields 
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
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 (2.61) 

 

After applying the orthogonality conditions, assuming the external pressure 

     0 0, , i tf x y t F x x y y e     is a time harmonic point force of frequency   and amplitude 

F  acting at point  0 0, yx , the modal displacement becomes [59] 
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Allowing the elastic modulus to be complex, i.e.  1 sE E i  , to represent the internal 

damping for time harmonic behaviour, where 
s  is the loss factor of the plate, Equation 

(2.62) becomes  
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. (2.63) 

 

 

Thus, from Equation(2.47), the response of the plate is given by 
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and is hence a sum of contributions from the modes of vibration. The surface velocity of the 

plate at point  ,n nx y  is, in the frequency domain for time harmonic excitation, [57, 60] 
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Detailed derivation of these equations can be found in [57, 60, 64-65]. 

 

 

2.4.2.1 Numerical simulations: Mode shapes and natural frequencies 

 

The parameters of the clamped rectangular plate used in the numerical simulation are given in 

Table 2.3. The mode shapes  ,pq x y  of the plate are shown in Figure 2.11 while the natural 

frequencies are tabulated in Table 2.4. There are 12 structural modes below 1 kHz, which is 

the upper frequency limit in the numerical simulations presented later in this thesis. 
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Figure 2.11: Mode shapes of the clamped plate. 
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Table 2.3: Parameters of clamped plate 

Parameter Value 

Length Lx 0.4 m 

Width Ly 0.3 m 

Thickness h 0.002 m 

Density ρ 7800 kg m
-3

 

Young Modulus E 200 GPa 

Loss factor ηs 0.01 

Poisson’s ratio ν 0.3 

 

Table.2.4: Natural frequencies of the clamped plate  

Mode (p, q) Frequency (Hz)  Mode (p, q) Frequency (Hz) 

1, 1 156.1  4, 1 675.0 

2, 1 262.2  1, 3 688.6 

1, 2 367.5  2, 3 784.3 

3, 1 436.8  4, 2 862.6 

2, 2 466.0  3, 3 942.6 

3, 2 630.9  5, 1 974.9 
     

 

 

2.4.2.2 Numerical simulations: Radiated sound power of plate radiator 

 

Suppose the plate is excited by a point force at (x0, y0) = (0.06 m, 0.045 m). From Equations 

(2.12) and (2.13), the radiated sound power W of the plate can be calculated and is plotted in 

Figure 2.12. The figure also shows the individual contribution Wj of the j
th

 radiation mode.  

There are 12 peaks shown in the total radiated sound power plot which correspond to the 12 

natural frequencies of the plate below 1 kHz. These peaks also indicate strong radiation due 

to the large response at the resonance frequencies. Similar to the beam radiator case, this 

figure also shows that some individual ARMs are strong radiators at certain frequencies and 

weak radiators at other frequencies. These happen when the shapes of individual ARMs are 

similar to the vibration mode shapes at a particular resonance frequency.  
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For example, the first ARM radiates most of the power at resonance frequencies 

number one (mode (1, 1)), four (mode (1, 3)) and eight (mode (3, 1)), which are symmetric 

about the plate centreline about both the x and y axes. These three vibration modes have the 

highest net volume displacement and hence the velocity at the central area of the plate, while 

the first ARM also has a large amplitude in this area. In contrast, the first ARM radiates 

weakly at other vibration modes, which are antisymmetric about one or both centrelines of 

the plate. This issue is related to symmetry of the mode and ARM shapes. Around one 

resonance, one vibration mode dominates, and hence only ARMs with similar symmetry are 

the strong radiators. Similar statements can be made to explain the reasons behind the strong 

radiation by other ARMs, for instances, the second ARM radiates strongly at resonance 

frequencies number three (mode (1, 2)) and six (mode (3, 2)), and the third ARM at 

resonance frequencies number two (mode (2, 1)), seven (mode (4, 1)) and nine (mode (2, 3)).  

 

 

Figure 2.12: Radiated sound power of plate radiator, where Wj  is the individual sound power 

from j
th 

ARM. 

 

 

Figure 2.13 shows the ratio of the sound power contributed by the individual ARMs 

to the total sound power. For the lower frequency range below 210 Hz, the sound power is 

dominated by the first ARM. The sound power contributed by the first two ARMs is 

dominant up to the fifth resonance frequency (mode (2, 2)), except at the mode (2, 1), while 
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the first three ARMs generate most of the sound power below 800 Hz, except at the fifth 

resonance frequency, where ARM 4 contributes strongly. This is because they are more 

efficient radiators as compared to higher order ARMs. If the first five ARMs are considered, 

the sound power can be accurately estimated for frequencies up to 900 Hz. For this particular 

case, the radiated sound power of the plate for frequencies up to 1 kHz can be accurately 

estimated using five ARMs. 

  

 

Figure 2.13: Ratio of sound powers of individual ARMs to the total sound power of plate 

radiator. 

 

 

2.5 Summary 

 

In summary, this chapter concerns the theoretical calculation of radiated sound power from 

vibrating structures. This chapter provides the theoretical basis for the time-domain 

estimation of radiated sound power which will be discussed in the next chapter. This chapter 

began by discussing the sound power radiated by vibrating structures. Expressions were 

developed for radiated sound power in Equation (2.4). Then the concept of acoustic radiation 

modes (ARMs) was described. These are found from eigenanalysis of the radiation resistance 

matrix in Equation (2.5), where the eigenvectors are the ARMs and their radiation 

efficiencies are functions of the corresponding eigenvalues. Note that the shapes of the ARMs 

depend only on radiator geometry and frequency. Their radiation efficiencies are also 

frequency dependent, where the lower ARMs are seen to be more efficient radiators than the 

higher ARMs especially at low frequencies.  
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Next, the dynamics of a simply supported beam and a clamped rectangular plate, 

which are used to illustrate the 1-D and 2-D radiators, were described. Finally, numerical 

examples of the sound power radiated from vibrating beam and plate were presented. It is 

found that there is a strong radiation when the vibration mode and ARM shapes are both 

symmetric or both anti-symmetric, and weak radiation when otherwise.   

 

The next chapter concerns time-domain estimation of ARM amplitudes and radiated 

sound power. These are then used in Chapter 4 in an active noise control system aimed at 

controlling the ARMs, which are the most significant radiators. Experimental verification of 

estimation and active control of radiated sound power based on time domain ARM estimates 

is then carried out and presented in Chapter 5. 
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CHAPTER 3 : TIME-DOMAIN ESTIMATION OF ACOUSTIC 

RADIATION MODE AMPLITUDES 

 

 

3.1 Introduction 

 

This chapter describes the method for estimating the ARM amplitudes and hence radiated 

sound power in real time, which is implemented in discrete time. The chapter begins with the 

development of Finite Impulse Response (FIR) filters for real-time estimation of ARM 

amplitudes and sound power. These are estimated from measurements of the response at a 

number of points on the structure. Causality is seen to be an issue for real-time 

implementation. Various forms of filters are discussed. To verify the performance of the 

estimation method, numerical simulations are presented. These include the performance of 

the proposed filters in estimating the ARMs and the structural response of the radiator, as 

well as comparison between theoretical and estimated radiated sound power. 

  

 

3.2 Acoustic radiation modes estimated using FIR filters 

 

As described in Section 2.3, the ARM shapes are frequency-dependent, thus the ARM 

amplitude vector,  y , can be written in the frequency domain as   

 

     
T

  y Q v , (3.1) 

 

where ( )Q  is the ARM matrix and ( )v  is the velocity vector. Note that Equation (3.1) is 

meant for a continuous structure. In a practical application, the surface of the radiator is 

discretised into many elemental radiators. The discretisation is based on the zero-order 

elements strategy found in the Boundary Element Method (BEM). This technique requires 

single node per element and each element is assumed to be monopole [53, 66].  

 

Now suppose that these ARM estimates are given by measuring the response of the 

structure at a relatively small number of discrete points on the radiating surface and then 
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weighting and summing these point measurements. Suppose Ns structural sensors are used to 

estimate the ARMs. Hence the ARM amplitudes in Equation (3.1) are approximated by 
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, 
(3.2) 

 

where Vn(ω) is the velocity at the n
th

 sensor location and Qr,n(ω) is the value of the r
th

 ARM 

at the n
th

 sensor location. In effect this means that a (small) number of point response 

measurements are taken and then filtered by Qr,n(ω) and summed to provide an estimate (in 

the frequency domain) of the ARM amplitude Yr(ω), 

 

     ,
1

sN

r r n n
n

Y Q V  


 . (3.3) 

 

 

3.3 Practical implementation of ARM FIR filters 

 

The multiplication in the frequency domain becomes a convolution in the time domain. The 

ARM amplitude, yr (t) can be approximated in real-time by passing the measured velocity 

signals through the array of ARM FIR filters [67] 

 

     ,

1

*
sN

r r n n

n

y t q t v t


 , (3.4) 

 

where qr,n(t) and vn(t) are the inverse Fourier transforms of Qr,n(ω) and Vn(ω), respectively, 

and * denotes a convolution. This implies the ARM amplitude can be calculated by applying 

a filter whose frequency response is Qr,n(ω) and whose impulse response is qr,n(t) to the 

sensor velocities vn(t), and then summing the outputs from each of these point sensor 

measurements together. The configuration of ARM filters used to measure the real-time 

ARM amplitude yr(t) from an array of sensor velocities is illustrated in Figure 3.1. 
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Figure 3.1: Real-time r
th

 ARM filter. 

 

 

 In discrete-time applications, the ARMs can be estimated at discrete times t=mτ, 

where τ is the sampling period and fs=1/τ is the sampling frequency, and m is the sample 

index. Hence, Equation (3.4) becomes 
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1
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 
  

   , (3.5) 

 

where yr(m) and qr,n(m) are the estimate of the r
th

 ARM amplitude and sampled value of 

qr,n(t), respectively. 

 

Due to finite approximation using an FIR filter, in a practical implementation the 

infinite sum has to be truncated. Given that Qr,n(ω) always has zero phase, the best 

approximation will have qr,n = qr,-n, but this implies the FIR filter will be non-causal. 

However, a non-causal filter is not practical due to the fact that future values of   nv m s  

(with s < 0) are not known in real-time. For real time implementation, the filter must be 

causal, i.e. qr,n(s) = 0 for all s < 0,  so that the sum over s in Equation (3.5) can only run from 

0 to +∞. These restrictions lead to the approximated, causal ARM amplitude estimate 
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 
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The causal FIR filter in Equation (3.6) will never be better than a non-causal filter that 

uses future values of vn, i.e. for s < 0, because causality adds a constraint to the 

approximation. Figure 3.2 illustrates the differences between causal and non-causal FIR 

filters of 7-th order which approximate the same zero-phase frequency response. In this 

figure, the coefficients of the non-causal FIR filter are symmetric about m=0, suggesting a 

good approximation of the impulse response occurs at m=0. However, the causal FIR filter is 

only able to approximate half of the impulse response. Note also that the non-causal filter has 

zero phase but the causal filter does not. 

 

 

Figure 3.2: Coefficients of non-causal and causal FIR filters for q1,n, q2,n and q3,n for 

ARMs 1, 2 and 3 as functions of time sample index m, for d=7. 

 

 

To make a causal, practically realisable filter for real-time implementation that 

provides a good approximation to the non-causal filter, a causal version of the filter is 

introduced by delaying the non-causal filter by d samples [68]. This new filter will be called 

the causal delayed filter throughout this thesis. This filter approximates a frequency response 

Qr,n(ω)exp(-iωd/fs) and produces an approximation of yr(m) at time sample m+d . The phase 

is linear with a time delay of d steps. It uses (2d +1) coefficients for the optimal estimation of 

Qr,n(ω) in the least square sense, i.e. 
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As an illustration, the FIR filter coefficients for the first three ARM shapes for the rectangular 

plate (Ly / Lx = 0.75) at point (0.1Lx, 0.3Ly) are shown in Figure 3.3. In this figure, both the 

causal FIR filter from Equation (3.6) and causal-delayed FIR filter from Equation (3.7) are 

15
th

 order filters. Here, 7 samples delay are implemented in the causal-delayed FIR filters 

(i.e. d=7). These filters are symmetric, that is    , , 2r n r nq s q d s  .  

 

 

Figure 3.3: Coefficients of FIR filters for q1,n, q2,n and q3,n for ARMs 1, 2 and 3 as functions 

of time step m, for d=7, measured at point (0.1Lx, 0.3Ly). 

 

For certain applications, such as in estimating the radiated sound power or using the 

ARM amplitude as an error function in adaptation schemes, allowing d samples delay to 

derive an ARM estimate will not be important. The output of the filter then provides an 

estimate at time step m of the ARM amplitude (or radiated sound power) at the time m-d, i.e. 

d time steps earlier. 
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3.4 Filter quality 

 

This section briefly discusses the quality of the ARM estimates of the filters using finite 

number of discrete sensors.  In general, n sensors are required to estimate n ARMs exactly. 

The sensor outputs are passed to a set of ARM filters to estimate the ARM amplitude. The 

weights of these ARM filters depend on the sensor locations on the radiator. The sensor 

outputs are of course affected by motion in the other ARMs. Thus the filter estimates are also 

affected by the presence of other ARMs, and this is called as observation spillover. The 

locations of the sensors affect the amount of spillover, hence the location of the sensors can 

be selected to minimise the sensitivity to certain ARMs. The same thing occurs for control 

using a number of point actuators. The location of point actuators must be selected carefully 

in order to excite a specific ARM and also to avoid control spillover occurs.  

 

 

3.5 Structural response estimation using IIR filters 

 

For real-time simulation purposes, the structural response must be estimated in real-time. The 

clamped plate is selected as the reference model to illustrate the approach used to estimate the 

structural response in real time, although it is also applicable to the one-dimensional radiator. 

Re-arranging Equation (2.64), the structural FRF in terms of a sum of modal contributions is 

given by   
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 

    .  (3.8) 

  

These transfer functions have many resonance peaks. Thus, it is not practical to estimate the 

response using FIR filters due to the very large number of filter coefficients required for the 

FIR filter to give an accurate estimate. Instead, infinite impulse response (IIR) filters are 

more suitable for this case. However, care must be taken to ensure the IIR filters are stable. 

To ensure the filter’s stability, each resonant modal response is approximated by an IIR filter, 

and these modal IIR filters are summed to give the total response of the structure.  

 

A general IIR filter is defined as  
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

 

       , (3.9) 

 

where  y m and  x m  are the output and input of the filter at time m, respectively, and there 

are K 'feedback' coefficients ak and J 'feedforward' coefficients bj. The z-transform of 

Equation (3.9) can be written in the form of the transfer function [69] 
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where  
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  1 1

0 1 1... J

JB z b b z b z  

   . (3.12) 

 

Assuming N
 resonance frequencies in the frequency range of interest, the velocity response 

at the n
th

 sensor can be approximated in the time domain by 
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where * denotes a convolution , ,n  is the mode shape of mode β at location  ,n nx y , ,0  is 

the mode shape of mode β at the excitation point  0 0,x y  and  f t is a point force at the 

excitation point.  h t  is the impulse response of mode β
 
and its frequency response is  
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In the discrete time domain, the velocity at location  ,n nx y  contributed by mode β 

can be estimated using IIR filters [69] 
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where 
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

( sb = 0,1,…,nb
 

 ), and 
 

sa


( sa = 0,1,…,na
  ), are the coefficients of the 

numerator and denominator of  H  , respectively. The z-transform of the Equation (3.15) 

is 
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These IIR filters, as illustrated in Figure 3.4, are used to estimate the response in each 

resonant mode and will be called resonant filters throughout the thesis.  

 

The real time velocity at a particular position on the radiator is then obtained by 

multiplying the output of the resonant filters with the array of shape function constants.  The 

velocity of the radiating structure at point  ,n nx y  is the sum of all modes  
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Figure 3.5 shows the configuration of the resonant filters and the arrays of shape 

functions used to estimate structural surface velocities of the radiator in real time. This is later 

implemented in Simulink for real-time simulations. Each resonant modal response given in 

Equation (3.15) can be approximated sufficiently by a 3
rd

 order IIR filter, where the 

coefficients are calculated using Matlab function invfreqz. 
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Figure 3.5: Configuration of resonant filters to simulate the real-time structural surface 

velocities. 

 

 

3.6 Estimation of radiated sound power 

 

This section describes the method used in this thesis to estimate the sound power based on the 

ARM estimates developed in the previous section. The estimates of the ARM amplitudes are 

found by filtering the time series of the surface velocities measured by sensors at points on 

the radiator with the array of causal-delayed ARM filters, before summing them. Note that 

each ARM amplitude requires a number Ns of ARM filters. As mentioned in Chapter 2, 

 

Figure 3.4: Resonant filter of mode β, Hβ (z). 
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information on the shapes of the ARMs and vibration modes within a particular frequency 

range provide a general guess of the optimal locations for the structural sensors. However, 

optimisation of the sensor locations will not be covered in this thesis. Instead, for simplicity, 

an equally spaced array of sensors will be used in the rest of this thesis.   

 

Figure 3.6 shows the block diagram of the method to estimate the radiated sound 

power. Here, the number of sensors required must be equal to or greater than the number of 

ARMs of the radiating structure within the frequency range of interest that it is desired to 

estimate. The measured surface velocities are filtered and summed to estimate the ARM 

amplitude yj. The radiated sound power is estimated by calculating the product of the square 

of these amplitudes with the corresponding eigenvalues. To compare real-time estimates with 

the actual radiated sound power, the power was also estimated in the frequency domain. In 

the simulations below, short-time Fourier transform was applied to the time series of ARM 

amplitudes yj using 512-points Hann-window with 50% frame-overlap which created 30 

frames. Zero-padding (1536-points zeros) was applied for interpolating the power spectrum. 

Then the frequency-domain estimate of the ARM amplitude was obtained by finding the 

average of the power spectrum across frames of these time series. 

 

 

Figure 3.6: Block diagram representation of the time domain radiated sound power 

estimation. 

 

 

3.7 Numerical simulations 

 

This section begins with numerical examples of the performance of the ARM filters and 

structural transfer function filters in approximating the theoretical ARM shapes and structural 
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responses, respectively. The methods are illustrated using a baffled rectangular plate as the 

radiating structure, although the methods are also applicable to a one-dimensional radiator. A 

total of Ns structural sensors, equally spaced, are used to measure the surface velocities of the 

radiator. Finally simulations on estimating the radiated sound power with reference to one 

and two-dimensional radiators are performed. The parameters of the beam and plate radiators 

are given in Table 2.1 and Table 2.3, respectively. 

 

 

3.7.1 Performance of acoustic radiation mode filters 

 

The implementation of ARM filters  ,r nQ   to approximate the theoretical ARM amplitude is 

illustrated with reference to a baffled plate model with parameters given in Table 2.3. These 

FIR filters are designed by a weighted least-squares fit to the ideal frequency responses at 

1000 uniformly spaced frequencies from 0 Hz to the Nyquist frequency fn, i.e. 1 kHz with 

rectangular-windowed weighting from 0.1fn to 0.9fn. Here, the Matlab function invfreqz is 

used to calculate the filter coefficients of the FIR filters and the frequency response of the 

implemented filter is calculated using the function freqz. The performance of the ARM filter 

is measured in term of mean square error  
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where 
lf  and 

hf  are the low and high cut-off frequencies whose values are chosen to be 

0.1fn and 0.9fn, respectively. In practice the low and high frequency components of the signals 

will often be filtered out, for example by anti-aliasing filters and by AC coupling, and this 

will substantially reduce the effects of the poor approximation in these frequency ranges. 

 

Examples of the magnitudes of the frequency response of the ARM filters 

approximated using causal FIR filters, are plotted in Figure 3.7(a) for various order of filter 

coefficients s. Based on this figure, the causal FIR filters provide accurate estimates in the 

middle region of the frequency range but not in the lower and upper frequency ranges. Figure 

3.7 (b) shows the mean square error as a function number of filter order for the first six ARM 
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filters. Increasing the filter order does not improve the estimation significantly as the mean 

squares errors of all six ARM filters are greater than 10
-3

. This is because, as mentioned 

earlier, the causal FIR filter is only able to approximate half of the impulse response of ARM, 

i.e. that for which 0t  . 
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(b) 

Figure 3.7: (a) Magnitude of the frequency response of the ARM filters for the first three 

ARMs using causal FIR filters and (b) mean square error as a function of number of filter 

coefficient s.  

 

Next, the ARM filters are estimated using causal-delayed FIR filters and their 

performance is illustrated in Figure 3.8. As mentioned earlier, the estimation of ARMs can be 

further improved by implementing the causal-delayed FIR filters. Looking at Figure 3.8(a), it 

can be seen that the magnitude is estimated much more accurately using the causal-delayed 

FIR filter. Moreover, Figure 3.8(b) shows the mean square error as a function filter order for 

the first six ARM filters approximated using causal-delayed FIR filters. In this figure, the 

mean square errors decrease with the increase in the number of filter coefficients. There is 

therefore a trade-off between accuracy of ARM filters (i.e. improved by larger d) and 

controller delay (improved by decreasing d). Here, the mean square errors are below 10
-3

 for 

the first three ARM filters when the filter length is 23 (i.e. when d =11). Hence, a 22
th

 order 

causal-delayed FIR filters will be used as the ARM filters throughout the rest of the thesis.  

 

Comparison of the phases between the theoretical and estimated ARMs is shown in 

Figure 3.9. It is worth emphasising that the phases of the causal-delayed ARM filters are 

exact, since the coefficients are symmetric about the filter centre and the phase is linear due 

to the time delay. Stability is also guaranteed due to the nature of FIR filters.  
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(a) 

 

(b) 

Figure 3.8: (a) Magnitude of the frequency response of the ARM filters for the first three 

ARMs using causal-delayed FIR filters and (b) mean square error as a function of number of 

filter coefficient s (where s=2d+1). 
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Figure 3.9: Phases comparison of the theoretical and estimated first 3 ARM frequency 

responses using causal and causal-delayed FIR filters, measured at (0.1Lx, 0.3Ly). 

 

 

3.7.2 Structural transfer function filters 

 

Each resonant mode is modelled by an IIR filter using the Matlab function invfreqz and the 

frequency response of the implemented filter is calculated using the function freqz. Figure 

3.10 shows the performance of the IIR filters in approximating the frequency response of the 

plate at (0.3Lx, 0.1Ly) for the first three structural modes, when the force is applied at (0.15Lx, 

0.15Ly). In this figure, the frequency responses are well approximated for both magnitude and 

phase within the range 0.1fn to 0.9fn. Note that the frequencies below or above this range are 

not important and will often be filtered out. These resonant filters are also stable. Based on 
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mode which confirms their stability. In numerical simulations, the estimated velocity 

frequency response is obtained by performing a fast Fourier transform on the time-domain 

velocity signals. It is found that the magnitude of the estimated frequency response agrees 

with the theoretical value within the range 0.1fn to 0.9fn, as illustrated in Figure 3.12.  

 

 

Figure 3.10: Magnitudes and phases of the theoretical and estimated modal frequency 

responses for the first three modes. 

 

 

 

Figure 3.11: z-plane pole-zero plots of the estimated resonant filters        for each resonant 

mode, where ‘o’ is zero and ‘x’ is pole. 
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Figure 3.12: (a) Magnitude and (b) phase of the velocity frequency response at (0.3Lx, 

0.1Ly). 

 

 

3.7.3 Estimation of radiated sound power  

 

In this section, real time simulations of the estimation of radiated sound power for one and 

two-dimensional radiators using Matlab and Simulink are presented.  

 

 

3.7.3.1 Baffled beam 

 

The method is illustrated with reference to a baffled, simply supported beam with parameters 

given in Table 2.1. The simulation is run for 10 seconds with sampling frequency fs =1024 

Hz, long enough for the frequency range and resolution shown. For these parameters, there 

are 3 vibration modes and 2 acoustic radiation modes with efficiencies greater than 0.1 in the 

frequency range 0.1fn to 0.9fn. Therefore 3 resonant filters and 2 ARM filters are used in the 

estimation of the radiated sound power. The ARM filters are constructed in the time domain 

using 23
rd

 order FIR filters with 11-step delay. These FIR filters are designed by a weighted 

least-squares fit to the ideal frequency responses at 512 uniformly spaced frequencies 

between 0 Hz and the Nyquist frequency, i.e. 512 Hz, with rectangular window weighting 

between 0.1fn to 0.9fn. 

 

The primary source is a random point force, Fp (t) (band-pass filtered using a 5
th

 order 

elliptical filter with normalised edge frequencies of 0.1fn and 0.9fn, 0.5 dB passband ripple 
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and 20 dB stopband attenuation) acting on the beam at x0/l = 0.15. The number of sensors 

used must be equal or greater than the number of ARMs. Because there are 3 radiation modes 

involved here, a total of at least 3 sensors are required. The sensors are located at the centre 

of every one-third length of the beam, i.e. at x/L= 1/6, 1/2 and 5/6. These make the distance 

between the radiator’s edges and the closest sensors from the edges, and the distance between 

each sensor be l/6 and l/3, respectively.  The sensors and point force locations are shown in 

Figure 3.13. 

 

 

Figure 3.13: Sensor and point force arrangements on the simply supported beam. 

 

 

Figure 3.14 shows the radiated sound power obtained using the theoretical and time-

domain estimation methods. There are 3 significant peaks corresponding to 3 natural 

frequencies at 37 Hz, 147 Hz and 331 Hz, suggesting strong radiation occurs at the resonance 

frequencies. Here, only the first two ARM filters were used in the computation. This is 

because for this frequency range, only the first two ARMs are important (i.e. radiation 

efficiency more than 0.1) in radiating the sound power. It is seen that the radiated sound 

power estimated from the time-domain ARM method using only two ARM filters, is in good 

agreement with the theoretical value, except above 0.9fn where the signals are filtered out. 

Figure 3.15 shows the theoretical and estimated sound power radiated by the first and second 

ARMs. Again, it can be seen the individual sound powers are approximated well using the 

time-domain ARM estimation method.  
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Figure 3.14: The sound power radiated from beam with primary force located at    

x0/l = 0.15, estimated by ARM filters. 

 

 

 

Figure 3.15: The individual sound powers radiated from beam with primary force 

located at x0/l = 0.15, estimated by the first two ARM filters.  

 

 

3.7.3.2 Baffled plate 

 

For the case of a two-dimensional radiator, a baffled rectangular steel plate clamped at all 

edges with parameters given in Table 2.3 is used as a model.  The simulation is performed 

with a sampling frequency fs of 2 kHz for 10 seconds. For these parameters, there are 12 

vibration modes and 8 acoustic radiation modes with efficiency more than 0.1 in the 

0 50 100 150 200 250 300 350 400 450 500
10

20

30

40

50

Sound Power (Theoretical vs Time-domain estimation)

Frequency (Hz)

S
o
u
n
d
 P

o
w

e
r 

[d
B

, 
re

f.
 1

p
W

]

 

 

Theoretical

Estimation

0 100 200 300 400 500
-50

0

50

W
1

Frequency (Hz)

S
o
u
n
d
 P

o
w

e
r 

[d
B

, 
re

f.
 1

p
W

]

 

 

0 100 200 300 400 500
-50

0

50

W
2

Frequency (Hz)

S
o
u
n
d
 P

o
w

e
r 

[d
B

, 
re

f.
 1

p
W

]

 

 

Theoretical

Estimation

Theoretical

Estimation



 

56 

 

frequency range 0.1fn to 0.9fn. Thus, 12 resonant filters and 8 ARM filters are used in the 

computation.  

 

The causal-delayed ARM filters used here are constructed in the time domain using 

23
rd

 order FIR filters with 11-samples delay. These FIR filters are designed by the least-

squares method to fit to the ideal frequency responses at 1000 uniformly spaced frequencies 

up to the Nyquist frequency, i.e. 1 kHz, with rectangular window weighting between 0.1fn to 

0.9fn. The sensor’s transfer functions are represented in the time domain using a set of modal 

filters with each a 3
rd

 order IIR filter. 

 

The structure is excited by a random primary point force, Fp (t) (band-passed filtered 

using a 5
th

 order elliptical filter with normalised edge frequencies of 0.1fn and 0.9fn) acting at 

(x0/Lx, y0/Ly) = (0.15, 0.15).  The real-time surface velocities of the plate are measured from a 

5x5 array of equally spaced sensors. The distance of the sensor array from the edges in the x 

and y axes are thus Lx /10 and Ly /10, respectively, and the spacing between the sensors to be 

Lx /5 and Ly /5 in x and y directions, respectively. Figure 3.16 shows the arrangements of the 

accelerometers and the point force on the plate. 

 

ISO view Top view 

  

Figure 3.16: Location of sensors and point force on the clamped plate. 

 

 

The comparison of the theoretical radiated sound power and its time domain 

estimation using ARMs is given in Figure 3.17. Note that there are 12 peaks corresponding to 

12 resonance frequencies below 1 kHz, which are the same as in Table 2.4. It can be seen that 

the radiated sound power is estimated well across the whole frequency band of interest, i.e. 
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0.1 fn to 0.9fn. Figure 3.18 shows the theoretical and estimated individual sound powers 

radiated by the first eight ARMs whose efficiencies are more than 0.1. Here, for each ARM, 

the estimated and theoretical sound powers are overlapped across the frequency range of 

interest, implying the design accuracy of these eight ARM filters. It is also clearly shown in 

this figure, that more sound powers are generated from the lower order ARMs at low 

frequencies. This is because the lower ARMs are more efficient radiators, as mentioned in 

Chapter 2.  

 

 

 

Figure 3.17: The sound power radiated from plate with primary force located at (x0/Lx, y0/Ly) 

= (0.15, 0.15), estimated by ARM filters. 
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Figure 3.18: The individual sound powers radiated from plate with primary force located at 

(x0/Lx, y0/Ly) = (0.15, 0.15), estimated by the first eight ARM filters. 
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3.8 Summary 

 

In this chapter, a method of estimating the ARM amplitudes and hence the radiated sound 

power from the time-domain estimates of acoustic radiation modes was presented. The 

method estimates the ARM amplitudes in discrete time domain using digital filters.  The 

chapter began with the derivation of real time ARM estimates using FIR filters. Causality is 

seen to be an issue, and here, causal-delayed ARM filters are proposed. This ARM filter is 

designed by introducing a time delay in the frequency response of the ARM estimator, so that 

the output of the filter will be some time later. This approach is found able to approximate the 

ideal frequency response of ARMs better than a truncated causal FIR filter, and thus leads to 

more accurate estimation. Moreover, the mean square errors between theoretical and 

implemented frequency response of ARMs using this approach decrease with the increase in 

the number of delays, hence filter coefficients, implying there is a trade-off regarding the 

accurate ARM filters (i.e. large d) and the amount of delays caused by the algorithm. Here, 

the chosen filter size of the ARM filters to be used throughout the thesis is 23, i.e. when the 

MSE for the first three ARM filters are below 1x10
-3

. 

 

For real-time simulation purposes, the structural responses from an array of sensors 

mounted on the radiating surface can be reconstructed in the time domain using an array of 

resonant filters, with each being a 3
rd

 order IIR filter. The outputs from these resonant filters 

are then multiplied with the corresponding shape functions and summed to give the total 

response of the structure. Finally, numerical examples comparing theoretical and estimated 

radiated sound power from vibrating beam and plate were presented. The benefit of the real-

time estimates of ARM approach is that it gives broadband estimation of radiated sound 

power from strongly radiating vibration. At low frequencies, it approximates the sound power 

as in the volume velocity approach. The ARM filters allow for the frequency dependence of 

the ARM shapes, and hence give a better approximation across the frequency range of 

interest. 

 

The next chapter concerns real-time attenuation of radiated sound power from 

vibrating structures, where the feedforward controller is designed in a way that it cancels the 

first few ARM amplitudes. In Chapter 5, the real-time estimation of radiated sound power 

and control methods are verified experimentally.   
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CHAPTER 4 : ACTIVE CONTROL OF RADIATED SOUND 

POWER OF VIBRATING STRUCTURES 

 

 

4.1 Introduction 

 

The active control of radiated sound power from a vibrating structure requires knowledge of 

sound generation and propagation. Reduction of the structural response via active vibration 

control or control of the near-field acoustic field does not guarantee that the far-field sound is 

attenuated accordingly. This chapter outlines the methods of attenuating radiated sound 

power from vibrating structures actively using feedforward control strategies. Numerical 

simulations of real-time control are presented for two cases in this chapter, a beam and a 

plate, with experimental results for a plate presented in Chapter 5. As mentioned in Chapter 

2, at low frequencies the first few ARMs contribute the most to the sound power radiated 

from a vibrating structure.  This also means, using superposition, that significant sound 

attenuation can be achieved by introducing one or more control actuators that cancels these 

first few ARMs.  

 

In Chapter 3, the real time ARM estimates were developed. They are used to estimate 

the instantaneous ARM amplitudes, hence the radiated sound power of a vibrating structure. 

Thus, in this chapter, the controller is designed in a way that it minimises the real-time ARM 

amplitudes. Here, two control cases are considered. The first case (Section 4.3) is the 

reduction of radiated sound power from a vibrating beam using feedforward control. 

Assuming the disturbance signal is known, the controller model is obtained from the transfer 

function ratio of the primary path to the secondary path and reconstructed in discrete time 

using an FIR filter. The second control case, discussed in Section 4.4, is adaptive feedforward 

control of radiated sound power from a vibrating plate. The filtered-x least mean square 

(LMS) algorithm is used for the automatic adjustment of an FIR digital filter used as the 

controller. In each case, numerical simulations showing the control performances are 

presented.  

 

Next, the optimal actuator locations for the second control case, i.e. when a baffled 

rectangular plate is the radiator, are determined through offline optimisation. Note that the 
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second control case is verified experimentally and discussed in Chapter 5. Different control 

actuator locations give different control performance and changing the control actuator 

locations in the real environment is difficult. Therefore in the last part of this chapter, the 

offline optimisation of the actuator locations is performed using an ant colony optimisation 

(ACO) algorithm, although other optimisation algorithms can equally be used.  

 

 

4.2 Cancellation of the first few acoustic radiation modes  

 

As was seen in Chapter 2, the lower order ARMs are more efficient in radiating sound and 

generally contribute more to the radiated sound power. This also means that reducing the first 

few ARM amplitudes can give significant attenuation. In theory, at least j actuators are 

needed to control j ARM amplitudes [57]. To obtain a significant sound attenuation, ideally 

the first j controlled ARM amplitudes should be zero, so that  

 

c c

T y Q v 0 ,  (4.1) 

 

where cQ  is the Ns x j matrix of controlled ARMs, v is the Ns x 1 vector of surface velocities, 

Ns is the number of structural sensors and  cy  is the j x 1 controlled ARM amplitudes. 

Furthermore, as a direct consequence of the linearity of the model, the velocity of the 

controlled plant can be obtained by the superposition principle by adding the part caused by 

the primary force, vp, to that caused by the j secondary forces, vs, i.e.  

 

p s, j

j

v = v + v . (4.2) 

 

 

Now assume that the radiator is excited by a primary force Fp, Equation (4.2) can then 

be written as 

 

p p s sFv = H + H F , (4.3) 

 



 

62 

 

where pH is the Ns x 1 vector of sensor transfer functions of the primary paths (i.e. from 

primary force to sensor locations), sH is the Ns x j vector of sensor transfer functions of the 

secondary paths (i.e. the responses at the sensor locations due to the secondary forces), and  

sF  is the j x 1 vector of secondary forces.  Substituting Equation (4.3) into Equation (4.1) and 

rearranging, gives 

 

 
1

s c s c p p

T T F


 F Q H Q H , (4.4) 

 

as the vector of secondary forces required to completely cancel the j ARMs [57]. Equation 

(4.4) can also be written as  

 

s c pFF H , (4.5) 

 

where 

 

 
1

c c s c p

T T


 H Q H Q H  (4.6) 

 

is the N x j vector of control frequency responses, relating 
sF  and 

pF . 

 

Equation (4.5) is a feedforward control law assuming 
pF  is known. If, on the other 

hand, some reference signal R is known, and 
p prF H R , then the vector of feedforward 

control frequency responses becomes such that  

 

s rF R H , (4.7) 

 

where  

 

r c prHH H . (4.8) 
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4.3 Feedforward active structural acoustic control applied to the vibrating beam 

 

This section discusses feedforward control applied to the active structural acoustic control of 

a beam. There are two prerequisites to use the feedforward control strategy, which are: (i) the 

system under control is linear, and (ii) the secondary actuators are fully active [70]. The 

simulations are performed under certain idealised circumstances, to illustrate the approach. In 

feedforward control there are at least two signal paths involved. The first one is the primary 

path. This path consists of everything from the reference signal to the error sensors. This 

includes the physical system, data converters, analogue anti-aliasing filters and reconstruction 

filters. The other signal path is called the secondary path, between the controller output and 

the error sensors.  

 

Figure 4.1 shows the block diagram representation of the feedforward ASAC system 

used in this thesis. It can be seen from this figure that the same reference signal that drives 

the primary actuator is used as an input to the series of feedforward controllers. These 

controllers then produce signals which, when used to drive an appropriate actuation system, 

are able to reduce the targeted responses. In this case, the targeted responses to be reduced are 

the ARM amplitudes, hence reducing the overall radiated sound power.  

 

 

Figure 4.1: Feedforward control system. 

 

 

Assume that j secondary forces are applied to control j ARMs. From Equation (4.6) 

the control transfer function to the k
th

 secondary force is 
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   
1

s,

c, 1 s, 1 p

p

T Tk

k k k k

F
H

F



   Q ……Q H Q ……Q H , (4.9) 

 

where k =1,2,3,...j. Equation (4.9) shows that the controller transfer function is highly 

dependent on the structural transfer function of the beam excited by the primary and 

secondary forces.  

 

 

4.3.1 Real time implementation of feedforward controller 

 

This section focuses on the design of controller filters to be implemented in real-time. The 

frequency response of the j
th

 feedforward controller in Equation (4.9) can be written as  

 

     s, c, p   j jF H F   . (4.10) 

 

In real-time, the j
th

 secondary force  s, jf t  is approximated by the FIR filter 

 

     s, c, p

1

*  
sN

j j

n

t h tf f t


 , (4.11) 

 

where  c, jh t  is the inverse Fourier transform of   c, jH   and also the impulse response of 

a filter whose frequency response is  c, jH   and  pf t   is the inverse Fourier transform of  

 pF  .  

 

 The digital feedforward controller is designed in a manner similar to the causal-

delayed FIR filter approach discussed in Section 3.2, which is found to be more accurate and 

stable than using IIR filters. Using the causal-delayed filter approach, a time-delay of the 

controller dc is introduced to the frequency response of the j
th

 feedforward controller, which 

becomes    c, c exp /j sH i d f  . By doing this, the controller filter will produce an 

approximation of the control force signal at time sample m+dc while the phase is linear with a 

time delay of dc samples. It is reported that optimal estimation of the j
th

 controller frequency 
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response  c, jH   requires 2dc+1 coefficients [67-68]. Hence Equation (4.11) can be written 

in discrete time as 

 

     
c2

s, c, p c

0

d

j j

s

F m h s F m s d


   . (4.12) 

 

It is important to highlight that the secondary force signal  s, jF m , which is also the 

output of the controller filter, is only available after 
cd  time samples. Moreover, since this 

control method is non-adaptive, a small error in the timing of the control signal will cause 

inaccurate control results. Therefore, the same amount of delay must be applied to the 

primary force reference signal to match the timing between signals from both primary and 

secondary paths. In numerical simulations, adding a time-delay to the input of the primary 

path of the system is not an issue.  

 

 

4.3.2 Real-time simulation: Feedforward active structural acoustic control of beam 

radiator 

 

This section demonstrates real time simulations of feedforward controller described in 

Section 4.3.1 in attenuating the sound power radiated from a vibrating beam, using Matlab 

and Simulink. The beam is simply supported at both ends with parameters given in Table 2.1. 

The simulation sampling frequency fs and duration are 1024 Hz and 10 seconds, respectively. 

For the frequency range between 0 Hz and the Nyquist frequency (i.e. fn =512 Hz), there are 3 

resonance frequencies i.e. at 36.7 Hz, 147.0 Hz and 330.6 Hz, as shown in Table 2.2. The 

beam is excited with a random point force Fp (t) at point x0/l = 0.15. A total of 3 structural 

sensors, equally spaced a distance l/3 apart, are used to measure the surface velocities of the 

radiator. The distance between the radiator’s ends and the sensors closest from the edges are 

l/6, respectively.  The real-time ARM amplitudes are then obtained by filtering the outputs of 

the structural sensors with the ARM filters described in Chapter 3.  

 

In this simulation, three control cases are considered. These are cancellation of (i) the 

first, (ii) the first two, and (iii) the first three ARM amplitudes. Note that one control force is 

only able to control one ARM amplitude [57]. Thus the number of control forces for cases (i), 
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(ii) and (iii) are at least 1, 2, and 3, respectively. The locations of these actuators are 

determined by the ARM shapes and vibration modes shapes of the beam, as illustrated in 

Figure 2.2 and 2.7, respectively, as well as the radiation efficiencies of the ARMs in Figure 

2.8. Generally, an actuator placed at a nodal point of a particular vibration mode will not be 

able to excite this mode of the structure. Due to the simply supported boundary conditions, 

exciting the structure at the end of the beam is also not possible. Moreover, to attenuate an 

individual ARM amplitude, the control actuator is best placed near the point where the ARM 

shape has the highest magnitude. In addition, the efficiency of the ARM to radiate sound 

power must also be considered. In Figure 2.8, the second ARM begins to radiate efficiently 

(i.e. efficiency > 0.1) around the second resonance frequency while the third ARM around the 

fifth resonance frequency (i.e. 918.5 Hz). Hence third ARM is not important here. 

Considering all these conditions, the chosen locations of the first, second and third secondary 

actuators are listed in Table 4.1. The configuration of the sensors and the actuators for this 

feedforward active structural acoustic control system is shown in Figure 4.2. 

 

 

Figure 4.2: The configuration of the sensors and the actuators for the feedforward control of 

the sound power radiated from a vibrating beam.  
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Table 4.1: Locations of the secondary actuators  

Secondary actuators Location on the beam 

First xs,1/l = 0.5 

Second xs,2/l = 0.3 

Third xs,3/l = 0.75 

 

4.3.2.1 Frequency responses of the feedforward controllers 

 

Each control transfer function to the secondary forces obtained from Equation (4.9) is 

reconstructed in the time domain using a 65
th

 order FIR filter with 32-step delay. The same 

amount of delay is applied to the primary force reference signal to match the timing between 

signals from both primary and secondary paths. The calculation of the controller filter 

coefficients is performed by the Matlab function invfreqz and the frequency response of the 

implemented controller filter is obtained using the function freqz. The magnitudes of the 

FRFs of the theoretical and estimated feedforward controllers for the three cases considered 

are shown in Figure 4.3.  

 

Overall, the implemented frequency responses of the controller are able to 

approximate the theoretical values reasonably well. Here, the phases of the controllers FRFs 

for all cases are linearly approximated with a dc time delays. Note that these FRFs represent 

the transfer function ratios of the primary path to the secondary paths. In Figure 4.3(a) the 

controller transfer function has a minimum value (i.e. almost zero) at 281 Hz, which means 

that almost no secondary force is needed to control the sound power at this frequency. On the 

other hand, having a peak in the plot means the sound power is difficult to control at that 

particular frequency. Generally the occurrences of the maximum or minimum values in the 

plots are due to the effects of the differences in the transfer function between the primary and 

secondary paths. If the control force is placed at the same or a symmetric location as the 

primary force, the controller frequency response is expected to be approximately constant 

across the whole frequency range.  
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(c) 

Figure 4.3: Theoretical and estimated frequency responses of the feedforward controllers 

using causal-delayed FIR filters for the case of cancellation of (a) the first, (b) the first two 

and (c) the first three ARM amplitudes, using the first, second and third control forces located 

at points xs,1/l = 0.5, xs,2/l = 0.3 and xs,3/l = 0.75, respectively. 

 

 

4.3.2.2 Control results 

 

Figure 4.4 shows the amplitudes of the first three ARM amplitudes when cancelling (a) the 

first, (b) the first two, and (c) the first three ARM amplitudes. The control is turned on at t = 5 

seconds. Note that, here, only the first 2 ARMs are important i.e. have radiation efficiencies 
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more than 0.1 (refer Figure 2.3). However, the third ARM amplitude is also included here to 

illustrate the control performance when more ARM amplitudes are controlled.  

 

Overall, the targeted ARM amplitudes in each case are reduced significantly and 

almost immediately after the controllers are turned on. However, some of the non-targeted 

ARM amplitudes are affected as well. In Figure 4.4(a) for example, there is a small reduction 

in y3. There is also a slightly bigger reduction in y3 when the first two ARM amplitudes are 

cancelled. These happen because the shapes of the first and the third ARMs are both 

symmetric. Similarly, those ARMs with similar symmetry will typically experience a similar 

effect, and vice versa.  

 

 

(a) 

 

(b) 

 

(c) 

Figure 4.4: Time histories of the first three ARM amplitudes of beam for the cases of 

cancellation of (a) the first, (b) the first two, and (c) the first three ARM amplitudes, when 

the controllers are enabled at t=5 seconds. 

0 5 10

-5

0

5

x 10
-4

time(s)

y 1

ARM1

0 5 10
-2

-1

0

1

2
x 10

-3

time(s)

y 2

ARM2

0 5 10
-2

-1

0

1

2
x 10

-3

time(s)

y 3

ARM3

0 5 10

-5

0

5

x 10
-4

time(s)

y 1

ARM1

0 5 10
-2

-1

0

1

2
x 10

-3

time(s)

y 2

ARM2

0 5 10
-2

-1

0

1

2
x 10

-3

time(s)

y 3

ARM3

0 5 10

-5

0

5

x 10
-4

time(s)

y 1

ARM1

0 5 10
-2

-1

0

1

2
x 10

-3

time(s)

y 2

ARM2

0 5 10
-2

-1

0

1

2
x 10

-3

time(s)

y 3

ARM3



 

71 

 

 

Figure 4.5 shows the spectra of the uncontrolled and controlled individual sound 

powers from the first ARM (W1), the second ARM (W2) and the third ARM (W3). It can be 

seen that cancelling the first ARM amplitude reduces W1 significantly and W3 slightly. This is 

due to the fact that the first and the third ARM shapes are symmetric. On the other hand, W2 

is not affected as the location of the first control actuator is at the nodal point of the second 

ARM. It is also worth noting that the second resonant peak is not evident in W1 and the first 

and third resonant peaks are not evident in W2. As explained earlier, these phenomena are due 

to the fact that for both vibration and acoustic radiation modes, the odd modes are symmetric, 

while the even modes are antisymmetric. Around one resonance, one vibration mode 

dominates, and hence only ARMs with similar symmetry are strong radiators. 
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(c) 

 

Figure 4.5: The uncontrolled and controlled sound powers from beam, contributed by (a) the 

first ARM (W1), (b) the second ARM (W2) and (c) the third ARM (W3). 

 

 

The spectra of the total radiated sound powers can be seen in Figure 4.6 for different 

numbers of control forces. The attenuations of the radiated sound power at the natural 

frequencies of the beam using up to three control forces are listed in Table 4.2. Generally, 

having more shakers and attempting to cancel more ARMs increases the attenuation as well 

as the control bandwidth. When the first ARM amplitude is cancelled, the sound power is 

attenuated up to the second resonance frequency, and the control bandwidth increases to 450 

Hz when the first two ARM amplitudes are controlled. Moreover, cancellation of the first 

three ARM amplitudes attenuates the sound power for the whole frequency range of interest 

(i.e. 0 to 512 Hz). These happen due to the difference in radiation efficiencies of the ARMs, 

where the lower order ARMs are more efficient radiators (see Figure 2.3). For the frequency 

range of 0.05fn to 0.95fn (i.e. 26 Hz to 489 Hz), the frequency-averaged reduction achieved 

when cancelling the first, the first two and the first three ARM amplitudes are 3.1 dB, 14.5 

dB and 63.8 dB, respectively.  
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Figure 4.6: The total radiated sound powers from the vibrating beam, controlled 

using feedforward control. 

 

 

Table 4.2: Reduction of the radiated sound powers from beam 

Frequency 

(Hz) 

Attenuation (dB) 

Cancellation of y1 Cancellation of y1, y2 Cancellation of y1, y2, y3 

37 32.6 39.2 74.5 

147 0.0 58.9 69.3 

331 21.4 31.6 81.0 

Frequency-averaged 3.1 14.5 63.8 

 

 

4.4 Adaptive control of radiated sound power from a vibrating plate 

 

This section discusses the application of adaptive feedforward control for attenuating the 

sound power radiated from a vibrating plate. This method is basically an advanced version of 

the non-adaptive feedforward control discussed in Section 4.3 and it is also more practical. 
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transfer function, the system can give poor results due to filter approximation errors, causality 

issues and phase differences if this delay is not taken into account.  

 

On the other hand, the adaptive controller can cope with effects caused by 

approximation errors or the delays by iteratively changing the controller filter coefficients so 

that the error signal is minimised. The optimal solution for the controller filter coefficients is 

obtained by minimising a cost function. To ensure this solution is optimal, the cost function is 

required to have a quadratic form. The hyper-parabolic surface characteristic of a quadratic 

function ensures the presence of a single, global minimum rather than having many local 

minima. Here, a decentralised control system is employed. In other words, there will be a 

number j of controllers, each meant to control a single error signal. In this research, the error 

signal is defined as the individual ARM amplitude.   

 

 

4.4.1 Filtered-x LMS controller 

 

The adaptive controller is designed by using the filtered-x least mean square (FxLMS) 

method. Here, two digital filters are required. The first filter is the estimator  s(z) of the 

secondary path Gs(z), which is between the controller output and the error sensors e(m). The 

second filter is the controller filter. This filter is used to minimise the error signals from the 

primary path, Gp(z), which is between the input signal u(m) and the error signal e(m). Figure 

4.7 illustrates the block diagram of the filtered-x LMS algorithm. From this figure, the 

desired signal from the primary path, dp(m), is given by 

 

   
1 1

p p,

0

( )
K

k

k

d m g k u m k




  , (4.13) 

 

where K1 is the number of samples considered for the convolution of the primary path 

response, and gp,k are the coefficients of the primary path filter. 
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Figure 4.7: Block diagram of the filtered-x LMS algorithm. 

 

 

The error signal e(m) can then be calculated from  

 

   
2 1

p s, s

0

( ) ( )
K

k

k

e m d m g k f m k




   , (4.14) 

 

where K2 is the number of samples considered for the convolution of the secondary path 

response, gs,k are the coefficients of the secondary path filter, and fs(m) is the secondary force 

signal which is also the output of the controller. Here, fs(m) is calculated from 

 

   
3 1

s

0

( )
K

k

k

f m w k u m k




  , (4.15) 

 

where wk are the coefficients of the controller filter and K3 is the number of controller filter 

coefficients. Substituting Equation (4.15) into Equation (4.14) and with some adjustment in 

the order of the convolutions, the error signal can be written as  

 

   
3 1

p

0

( ) ( )
K

k

k

e m d m w k r m k




   , (4.16) 

  

where r(m) is the reference signal obtained by filtering the input signal u(m) with the impulse 

response of the secondary path  
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   
2 1

s,

0

( )
K

k

k

r m g k u m k




  . (4.17) 

 

Equation (4.16) can be written in vector form as  

 

p( ) ( ) Te m d m w r , (4.18) 

 

where                 
 
 and                             .  

  

As mentioned earlier, the cost function J must be a quadratic function of the error 

signal to ensure the presence of optimal values for the filter weights. The cost function J is 

defined as the mean square error or the power of the error signal, i.e.  

 

 2J E e m    , (4.19) 

 

where E[ ] is the expected value. Here, the error signal is the relevant ARM amplitude. The 

FxLMS algorithm updates the filter weights iteratively in real-time. This algorithm relies on 

the steepest descent technique, in which the filter weights are updated using the negative 

gradient of the cost function with respect to the filter weights. The updated weights are 

calculated from [71] 

 

     1
J

m m m
w




  


w w , (4.20) 

 

where µ is the step-size which determines the speed and stability of adaptation, while  

 

   2
J

E m e m


    
u

w
, (4.21) 

 

where                                . According to Widrow and Hoff 

[72], the filter weights can be updated at every sample time using an instantaneous estimate 
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of the gradient, called stochastic gradient. Thus, the update quantity 
J

w
is equal to the 

derivative of the instantaneous error with respect to the filter weights, 

 

 
   

2

2
e n

m e m


 


u
w

. (4.22) 

 

Substituting Equation (4.21) into Equation (4.20) yields [71] 

 

     1 2 ( )m m e m m  w w u . (4.23) 

 

 

4.4.2 Estimation of secondary path 

 

For a moderately to highly damped system, the model of the secondary path can be described 

accurately using an FIR filter. The technique of estimating a transfer function is also called 

system identification. In this research, offline system identification is adopted. There are at 

least two ways of estimating the filter coefficients of the secondary path, i.e. (i) a direct 

method using auto-correlation properties of the signal and (ii) iterative estimation method 

using LMS algorithm [71]. 

 

The first method uses knowledge of the autocorrelation of the reference signal and the 

cross-correlation between the reference and desired signal to estimate the FIR filter 

coefficients of the secondary path. This method requires information on the time histories of 

the signals, which involves a considerable amount of data collection to accurately estimate 

the path and therefore can be time consuming in practice. Also, the reference and desired 

signals are assumed to be stationary to avoid their correlation varying with time, which might 

not be accurate in practical implementation. This method however is easy to implement in 

simulation and will be used in the numerical simulation in this research. 

 

 The second system identification is estimating the FIR filter coefficients adaptively 

using least mean square (LMS) algorithm. Each filter coefficient is adjusted iteratively in 

order to minimise the mean square error of the secondary path es(m) (calculated from 
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Equation (4.24)). A new set of weight values is produced at each iteration. If the step-size   

is kept to a sufficiently small value, the weights will gradually converge to one set of values 

after some time. This set of values is then taken as the FIR filter coefficients of the secondary 

path. This method is illustrated in Figure 4.8.  

 

 

Figure 4.8: Identification of secondary path using LMS algorithm. 

 

 

Here, the error is calculated from  

 

s s s( ) ( ) Te m d m w x , (4.24) 

 

where ds(m) is the desired signal from the secondary path,                    
 
 is the 

vector of weights of the secondary path filter,                              is the 

reference signal and K4 is the number of coefficients of the estimated secondary path filter. 

For the broadband estimation of an ARM amplitude, band-limited noise is used as the 

reference. The weights of the secondary path filter are then updated using  

 

     s s s1 2 ( )m m e m x m     w w . (4.25) 

 

System identification using the LMS algorithm is able to automatically re-adjust the filter 

coefficients if the correlation properties of the desired and reference signals change. Due to 

its practicality, this system identification technique is used in the experiments described in 

Chapter 5.   
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4.4.3 Real-time simulation: Adaptive control of radiated sound power from vibrating 

plate  

 

This section demonstrates the application of the adaptive controllers to reduce the sound 

power radiated from the 2-D radiator described in Section 4.3.1 in real-time using Matlab and 

Simulink. The radiator is a baffled rectangular steel plate clamped at all edges with 

parameters given in Table 2.3. The simulation is run at sampling frequency fs = 2 kHz for t = 

500 seconds with the average responses over a 100 s period from t = 400 s being found. This 

time is chosen to allow the controller weights to fully converge. For these parameters, there 

are 12 vibration modes and 8 acoustic radiation modes with efficiencies more than 0.1 in the 

frequency range 0.1fn to 0.9fn, where fn = fs/2. Thus, 12 resonant filters and 8 ARM filters will 

be used here to calculate the radiated sound power. 

 

 The plate is excited by a random point force fp(t), while a 5x5 array of equally spaced 

sensors is used to measure the surface velocities of the plate. The locations of these sensors 

and the primary force actuator are adopted from Section 3.6.2.2. Here, three control cases are 

considered, i.e. cancellation of (i) the first, (ii) the first two, and (iii) the first three ARM 

amplitudes. Thus, three secondary force actuators are needed. The locations of the three 

secondary forces are listed in Table 4.3. Note that these are not optimal locations. In the next 

section, the optimisation of control actuator locations is presented. 

 

 

Table 4.3: Locations of the control actuators on the plate  

Control actuator locations x and y coordinates 

 c,1 c,1,x y  (300 mm, 225 mm) 

 c,2 c,2,x y  (300 mm, 75 mm) 

 c,3 c,3,x y  (200 mm, 225 mm) 
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4.4.3.1 Adaptive controller settings 

 

In the filtered-X LMS controller, the estimator filters corresponding to the secondary paths 

must be designed first. In this simulation, the estimation of the secondary paths is performed 

using Matlab function arx. From the time histories of the reference and the desired signals of 

the secondary paths, this Matlab function calculates the corresponding FIR filter coefficients 

of the estimated secondary paths. Here, the estimator filters for all control cases are 

constructed using 40
th

 order FIR filters. To control the first 3 ARM amplitudes, 3 sets of 

independent adaptive controllers are needed, as illustrated in Figure 4.9.  

 

 

Figure 4.9: Block diagram representation of the adaptive feedforward ASAC using FxLMS 

algorithm. 

 

 

When the adaptive controllers are turned on, it will take some take for the controllers 

to reach their optimum weights. To ensure the convergence of the controller weights, the 

convergence step-sizes for each control case are set as in Table 4.4. These values were found 

to be able to make the error signals converge properly. 
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Table 4.4: Convergence step-size 

Control case 
Convergence step-size µ 

µ1 µ2 µ3 

Cancellation of y1 0.0005 - - 

Cancellation of y1, y2 0.0002 0.0001 - 

Cancellation of y1, y2, y3 0.0005 0.0003 0.0003 

 

 

4.4.3.2 Results of adaptive control 

 

Figure 4.10 shows the time histories of the first three ARM amplitudes of the plate when 

cancelling (a) the first, (b) the first two, and (c) first three ARM amplitudes. Here, the 

adaptive controllers are enabled at t = 50 seconds to show the performance of the controllers. 

It can be seen that the ARM amplitudes (which are also the error signals here), gradually 

converge to their minimum values. Also, it is worth highlighting that the speed of the 

convergence is dependent on the step-size values. A larger step-size value produces faster 

convergence, but there is also risk of instability. In Figure 4.10(a) the magnitude of y1 is 

reduced to about one quarter of its original magnitude. There are also slight increases in y2 

and y3. This happens because the first ARM shape is symmetric in both x and y directions, 

while the second and third ARM shapes are asymmetric in one direction. As mentioned 

earlier, those ARMs with similar symmetry will experience similar effects, and vice versa. 

Similar statements can be made to the plots in Figure 4.10(b), where when the first two ARM 

amplitudes (i.e. y1 and y2) are cancelled, the magnitude of y3 is also attenuated.  

 

Figure 4.11 shows the spectra of the uncontrolled and controlled individual sound 

powers for the vibrating plate contributed by the first ARM (W1), the second ARM (W2) and 

the third ARM (W3). In general, it can be seen that the sound power from the lower order 

ARMs are higher at low frequencies. When y1 is controlled, there is significant reduction in 

W1 especially at 156 Hz (mode (1, 1)) and 437 Hz (mode (3, 1)), while W2 and W3 are almost 

unaffected.  
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 (a) 

 

(b) 

 

(c) 

Figure 4.10: Time histories of the first three ARM amplitudes of the plate for cancellation 

of the first, (b) the first two, and (c) the first three ARM amplitudes, when the adaptive 

controllers are enabled at t=50 seconds. 
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(a) 

 

(b) 

 

(c) 

 

Figure 4.11: The uncontrolled and controlled sound powers from plate, contributed by (a) the 

first ARM (W1), (b) the second ARM (W2) and (c) the third ARM (W3). 
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Figure 4.12 shows the results of applying adaptive control in reducing the total 

radiated sound power from the plate. It can be seen that substantial attenuation is achieved at 

the first natural frequency due to the high radiation efficiency of the first ARM. The sound 

powers at some natural frequencies are not necessarily attenuated when the control forces are 

activated. For example in Figure 4.12, when y1 is cancelled, a significant reduction of sound 

power occurs at 156 Hz (mode (1, 1)) and 437 Hz (mode (3, 1)), but poor control 

performance at 262 Hz (mode (2, 1)). As mentioned in Chapter 2, this issue is related to the 

symmetry of the vibration mode and ARM shapes as well as the radiation efficiency of this 

ARM. If they are symmetric, then they will have the same control effect. Since the first ARM 

shape is symmetric in both the x and y directions, those natural frequencies with symmetic 

mode shapes (i.e. mode (1, 1) and mode (3, 1)) will experience some reduction in sound 

powers, provided that the ARM contributes significantly to the total radiated sound power. 

As illustrated in Figure 2.13, the sound power is dominated by the first ARM at frequencies 

below 210 Hz and at mode (3, 1), thus illustrating the need to control y1. Similar statements 

can be made for other control results.  

 

The attenuation at the natural frequencies of the plate for each control case is 

summarised in Table 4.5. For each control case, significant reductions occur at 156 Hz and 

437 Hz. Besides, poor control performance occurs at 262 Hz (mode (2, 1)) even when y1, y2 

and y3 are controlled. As shown in Figure 2.12, the radiated sound power at mode (2, 1) is 

dominated by the third ARM. However, the actuator used to control y3 is located at the nodal 

line of mode (2, 1). It can also be seen that at some resonances, employing more secondary 

actuators reduces the attenuation. The broadband control performances are measured using 

frequency-averaged reductions. Note that, as shown in Figure 2.5, the first ARM, the first 

three ARMs, and the first five ARMs radiate efficiently (i.e. radiation efficiency > 0.1) within 

the frequency ranges of 0.1fn to 0.3fn, 0.1fn to 0.5fn and 0.1fn to 0.9fn, respectively. The 

frequency-averaged reductions of the radiated sound power achieved from cancelling the 

first, the first two, and the first three ARM amplitudes within the frequency range 0.1fn to 

0.5fn are 6.1 dB, 6.2 dB and 10.7 dB, respectively. Also, in order to control radiated sound 

power at higher frequencies (i.e. > 500 Hz), more control actuators are needed to control 

more ARM amplitudes. Based on Table 4.5, cancelling more ARM amplitudes reduces more 

sound powers as well increases the control bandwidth. The attenuation level and control 
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bandwidth can be further improved if the control actuators are placed at the optimal locations, 

which will be discussed in Section 4.5. 

 

 

Figure 4.12: The radiated sound powers from vibrating plate, controlled using adaptive 

controller. 

 

Table 4.5: Reduction of the radiated sound power from plate 

Frequency 

(Hz) 

Attenuation (dB) 

Cancellation of y1 Cancellation of y1, y2 Cancellation of y1, y2, y3 

156 23.7 28.3 24.3 

262 -2.7 -1.6 -1.4 

368 -1.0 15.6 7.4 

437 25.2 22.8 23.8 

466 14.5 -4.8 5.4 

631 -4.7 2.6 1.9 

675 -1.3 0.6 -0.1 

689 1.0 5.1 4.5 

784 -0.3 15.3 11.5 

863 1.0 2.5 1.2 

Frequency-average 

(0.1fn to 0.3fn) 
8.8 10.1 10.6 

Frequency-average 

(0.1fn to 0.5fn) 
6.1 6.2 9.1 

Frequency-average 

(0.1fn to 0.9fn) 
-0.5 3.5 4.0 
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4.5 Optimisation of location of control actuators 

 

This section discusses the selection of the optimal locations of the control actuators to control 

the radiated sound power from the vibrating plate. Similar to the simulation setup in the 

Section 4.4, the sensors are placed equally-spaced on the plate in a 5x5 array and the 

controller gains are determined adaptively. Different locations of the control actuators will 

result in different levels of sound power attenuation for a particular frequency range of 

interest. These locations also depend on the plate geometry, mode shapes and ARM shapes. 

Finding the optimal actuator locations manually is very difficult since there are many 

possible combinations of actuator locations. Therefore, an optimisation method will be used 

here. Optimisation is a method to find the best available value (maximum or minimum) of a 

given objective function from all feasible solutions. The optimisation algorithm used here is 

based on swarm intelligence called Ant Colony Optimisation (ACO), although other 

optimisation algorithms can also be used. Similar approach could also be applied to sensor 

locations, to optimise sensing of the selected ARMs while minimising sensitivity of other 

ARMs.  

 

 

4.5.1 Ant colony optimisation algorithm 

 

Ant colony optimisation (ACO) was inspired by the foraging behaviour of ants in searching 

for food. While searching, these ants deposit a pheromone trail on the ground in order to 

mark the trails that should be followed by other members of the colony. Over time, the 

pheromone trails decrease progressively by evaporation. Therefore, the stronger trails will be 

the most favourable. In most cases, these favourable trails are the shortest path between the 

nest and the food source. 

 

In the ACO algorithm, artificial ants move from node to node (i.e. possible value of 

the optimised variable ( see Figure 4.14)) and have memory of their previous actions [73]. 

The amount of pheromone deposited is highly dependent on the quality of the path. Artificial 

ants use pheromone trails, denoted by    , and heuristic information, denoted by     , to 

build a probability of choosing an edge over others. Note subscript mn refers to the 

movement of an ant on the edge from node m to node n. The heuristic value is normally set to 

encode prior knowledge of the problem by favouring the choice of some nodes over others. In 
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the simple-ACO algorithm (S-ACO), a variation of ACO, the heuristic value is set to unity so 

that all nodes have equal chances of being selected. This S-ACO algorithm has successfully 

been used in many optimisation problems [74-76] and will be used here to find the optimal 

locations of the control actuators. 

 

The artificial ants decide the value of variables based on the probability equation  
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where α is constant that define the relative importance of the pheromone values on the 

decision of an ant, and    is the set of all possible paths selected by the ant k at a given time. 

The value of the tour taken by each ant can be calculated from 

 

 
 ,  if   ,  is walked by ant 

 

0, otherwise                    
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 (4.27) 

 

where Q is a constant and Lk is the cost of the tour by ant k. After each ant performs a 

complete tour, the pheromone trails are updated using  

 

     
1

1mn mn m

NA

k

nt t t  


    , (4.28) 

 

where   is the pheromone decay        to introduce the forgetting of the bad choices 

and NA is the number of ants. The flowchart of the S-ACO algorithm is shown in Figure 4.13. 
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Figure 4.13: Flowchart of Simple Ant Colony Optimisation (S-ACO). 

 

 

4.5.2 Objective function 

 

This optimisation is aimed to find the three actuator locations, to minimise the first three 

ARM amplitudes, respectively over a frequency range from fi to ff. Note that each control 

actuator location consists of 2 variables, i.e. the x and y coordinates, thus for 3 control 

actuators, the number of variables is 6. It is found that optimisation of many variables 

simultaneously is a time consuming process, but it can be expedited by dividing it into 

several small optimisation steps [77].  

 

Moreover, since the radiation efficiency of the ARM is higher for the lower order 

ARMs, it is appropriate to conduct the optimisation sequentially, starting from the actuator 

location that cancels the lowest order ARM amplitude. Also, to make sure that each location 
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is optimised at the optimal controller gain, the filtered-x LMS controller developed in Section 

4.4, is used. Here, the controllers are allowed to run for 500 seconds to ensure that the 

controller gains are at their optimal values. The optimisation is divided into these three steps, 

which are, 

i. enable the first controller and find the optimal location of  c,1 c,1,x y  that optimises 

the first objective function
1J , 

ii. enable the first and second controllers and find the optimal location of  c,2 c,2,x y  

that optimises the second objective function 
2J  while  c,1 c,1,x y  is the same as the 

location found in step (i), and, 

iii. enable the first, second and third controllers and find the optimal location of 

 c,3 c,3,x y  that optimises third objective function 
3J  while  c,1 c,1,x y  and 

 c,2 c,2,x y  are held constant.  

 

 

The individual objective function (Jj) is defined as the minimum ratio of the 

controlled to uncontrolled average ARM amplitudes, i.e. 
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where  
NCjY and  

CjY  are the frequency-average of the j
th

 ARM amplitude with and 

without control, respectively. These can be calculated from    
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where subscripts ‘NC’ and ‘C’ represent without and with control, respectively. Here, fi and ff 

are taken to be 0.1fn and 0.9fn, respectively.  

 

4.5.3 Optimisation settings 

 

Due to velocity being zero at the boundaries of the clamped plate, the area in which the 

actuators are allowed to lie exclude a strip around the perimeter. The width of this strip was 

chosen to be 0.05 m. Thus, the optimisation is performed in the area 0.05 m away from 

plate’s boundaries, i.e. 0.05 m ≤ x ≤ Lx - 0.05 m and 0.05 m ≤ y ≤ Ly - 0.05 m, where Lx and Ly 

are chosen to be 0.4 m and 0.3 m, respectively. This area is then divided into 100 x 100 

nodes, with the distance between consecutive nodes in the x and y directions being 0.003 m 

and 0.002 m, respectively. This also means there are 10000 possible locations of the control 

actuator. The optimisation problem is illustrated in the ACO graph in Figure 4.14. Each ant 

will first try to find the optimal x coordinate of the control actuator, before moving to the y 

coordinate. The ACO parameters used are given in Table 4.6. Note that the number of ants 

will determine how many random locations are chosen for each iteration and 5 ants are found 

sufficient for this optimisation.  

 

Here, the plate is excited by a point force at point (xp/Lx, yp/Ly) = (0.15, 0.15). In 

theory, the best location for the control actuator is exactly at the disturbance point, since the 

plate vibration, hence the radiated sound power, can be directly attenuated. However, in 

reality, it is difficult to obtain information of the external disturbance such as the magnitude 

and location, that causes vibration or the disturbance could be distributed over the structure. 

Here, the actuator locations are required to be at least 0.05 m apart. 
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Figure 4.14: ACO graph for optimisation of j
th

 control actuator location. 

 

 

Table 4.6: ACO parameters 

Parameter Value 

Number of ants, NA 5 

Maximum generation 50 

α 1 

Pheromone decay,   0.95 

 

 

4.5.4 Optimisation results 

 

The convergences of the objective functions specified in Equation (4.29) are shown in Figure 

4.15 .The optimal control actuator locations generated from the optimisation are listed in 

Table 4.7 and shown in Figure 4.17. Figure 4.16 shows the permissible zone (in red colour) to 

place the first, the second and the third control actuators. From Table 4.7, it shows that the 

best location to place a control actuator to reduce the first ARM amplitude y1 is close to the 

centre of the plate. This is because the first ARM shape has the highest magnitude at the 

centre of the plate. As for the second and third control actuators, the best locations obtained 

are near the edges of the plate. Using these optimal control locations, the time histories of the 

first three ARM amplitudes are shown in Figure 4.18. In Figure 4.18(a), cancelling y1 does 

not affect y2 and y3 (as compared to Figure 4.10) because the first control actuator is placed at 

the node of the second and third ARMs. Since the second and third ARMs are asymmetric 

while the first ARM is symmetric, the attenuation of y1 is reduced when y2 and y3 are 

cancelled.  
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(a) 

 

(b) 

 

(c) 

Figure 4.15: Convergence plots when optimizing (a) the first control actuator location, (b) the 

second control actuator location, and (c) t the third control actuator location. 
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(a) 

 
(b) 

 
(c) 

Figure 4.16: Permissible zone (in red colour) to place (a) the first (b) the second, and (c) the 

third control actuators. 

 

Table 4.7: Optimal locations of the control actuators 

Control actuator locations x and y coordinates 

 c,1 c,1,x y  (0.1894 m, 0.1490 m) 

 c,2 c,2,x y  (0.0591 m, 0.2157 m) 

 c,3 c,3,x y  (0.3409 m, 0.0520 m) 
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Figure 4.17: Optimal actuator locations. 

 

 
 (a) 

 

(b) 

 

(c) 

Figure 4.18: Time histories of the first three ARM amplitudes of plate using optimal 

control actuator locations, for cancellation of (a) the first, (b) the first two, and (c) the first 

three ARM amplitudes, when the adaptive controllers are enabled at t=50 seconds. 

 

Figure 4.19 shows the control results when placing the actuators in the optimal 
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control case. In Figure 4.19, substantial attenuation is achieved below 200 Hz for all three 

control cases, due to the high radiation efficiency of the first ARM in the lower frequency 

range. Comparing the plots from this figure and from Figure 4.12 (non-optimal actuator 

locations), the attenuations are improved in general. As shown in Table 4.8, the frequency-

averaged reduction within 0.1fn to 0.9fn, obtained when cancelling the first, the first two, and 

the first three ARM amplitudes are 0.5 dB, 5.1 dB and 5.5 dB, respectively. This means, the 

optimisation of control actuator locations increases the frequency-averaged reductions by 1.0 

dB, 1.6 dB and 1.5 dB for control cases (a), (b) and (c), respectively. Similarly, more powers 

are reduced at the narrowband, i.e. 0.1fn to 0.3fn, where the attenuation for control cases (a), 

(b) and (c) improved by 4.3 dB, 1.4 dB and 1.7 dB, respectively. Note that the results 

obtained here are determined by the selection of the objective function (Equation (4.29)). 

Different locations, and hence different levels of the control, may be obtained if a different 

objective function (e.g. different frequency range or weighting different frequencies by 

different amounts etc.) is used.  

 

Table 4.8: Reduction of the radiated sound power from plate using optimal control actuators 

Frequency 

(Hz) 

Attenuation (dB) 

Cancellation of y1 Cancellation of y1, y2 Cancellation of y1, y2, y3 

156 27.5 30.5 28.4 

262 2.4 2.6 2.0 

368 -0.7 19.5 11.2 

437 25.5 19.6 21.6 

466 0.3 -0.2 0.6 

631 -0.6 11.3 7.5 

675 -1.9 2.7 1.9 

689 4.2 7.7 4.4 

784 -0.4 10.9 17.5 

863 -0.3 8.1 2.7 

Frequency-average 

(0.1fn to 0.3fn) 
13.1 11.5 12.3 

Frequency-average 

(0.1fn to 0.5fn) 
6.6 8.4 8.6 

Frequency-average 

(0.1fn to 0.9fn) 
0.5 5.1 5.5 
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Figure 4.19: The radiated sound powers from vibrating plate using optimal control actuator 

locations, controlled using adaptive controller. 

 

4.6 Summary 

 

In this chapter, active structural acoustic control methods using non-adaptive and adaptive 

feedforward control strategies were presented. Numerical simulations of real-time control 

were presented for two, a beam and a plate, with experimental results for a plate presented in 

Chapter 5. The chapter began with a derivation of the control transfer functions used to 

cancel the first few ARM amplitudes. These control transfer functions were then used in the 

non-adaptive feedforward control of radiated sound power with reference to the baffled 

beam. For real-time simulation purposes, the controller filter was constructed using the 

causal-delayed FIR filter approach presented in Section 3.2. The numerical results show that 

the frequency-averaged attenuations achieved were 0.5 dB, 14.5 dB and 63.8 dB, when 

cancelling the first, the first two, and the first three ARM amplitudes, respectively.    

 

Next, the adaptive control of radiated sound power from a vibrating plate was 

discussed. The adaptive controller was designed using the FxLMS algorithm, where the real-

time ARM amplitudes are treated as the error signals of the controllers. Numerical 

simulations were first conducted using non-optimal control actuator locations and the 

frequency-averaged attenuation obtained from cancelling the first, the first two, and the first 

three ARM amplitudes within the frequency range 0.1fn to 0.9fn are -0.7 dB, 3.3 dB and 3.7 

dB, respectively.  
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In the last part of the chapter, offline optimisation of the control actuator locations 

was performed using ACO algorithm, although other optimisation methods can equally be 

used. The objective of the optimisation is to find the locations that produce the maximum 

frequency-averaged attenuation, and the optimal locations obtained are listed in Table 4.7. 

The numerical results show that the attenuation for cancelling the first, the first two, and the 

first three ARM amplitudes are 0.5 dB (increase by 0.8 dB), 5.1 dB (increase by 1.8 dB) and 

2.1 dB (increase by 0.8 dB), respectively. Different optimisation results may be obtained if a 

different objective function is used.  

 

In Chapter 5, the adaptive controller developed in Section 4.4 will be implemented 

experimentally, where the control actuators will be placed at the locations found in Section 

4.5. It is worth to highlight that the performance achieved in the simulations are not going to 

be achieved in practice due to other issues such as data acquisition (DAQ) resolution, noise, 

constraints on achievable dynamic range, small nonlinearities in sensors and etc. 
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CHAPTER 5 : EXPERIMENT 

 

 

5.1 Introduction 

 

This chapter presents experimental results, which aim to validate the practicality of the 

estimation and control of the radiated sound power of vibrating structures using the ARM 

approach. The radiating structure is a baffled thin rectangular plate. The chapter first 

describes the experimental setup used in this study, including test structure, instrumentation, 

sensor arrangements and software-hardware integration. Then procedures of estimating and 

controlling the radiated sound power are presented. Finally, experimental results are 

discussed for radiated sound power estimation and various control cases.  

 

 

5.2 Test structure 

 

The radiator used in the experiment is a steel plate with dimensions of 450 mm x 350 mm x 2 

mm. Each edge of the plate is clamped between a pair of steel beams 25 mm wide and 10 mm 

thick. The screws are 40 mm apart from each other. This produces a plate clamped at all 

edges with area of 400 mm x 300 mm, as shown in Figure 5.1, which are the same 

dimensions as in the simulations. It is assumed that the plate has approximately the same 

parameters as in Table 2.3.  

 

 

Figure 5.1: Clamped plate. 
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The tests were conducted in the reverberant chambers of the acoustics laboratories at 

the University of Auckland. The floor plan of the laboratories is shown in Figure 5.2. The test 

setup was built by attaching the plate in a wall between reverberation chambers A and C. 

Figure 5.3 shows the chambers A and C when the wall between them is removed.  When the 

steel doors between the two chambers are fully closed, there is an opening about 1 m wide 

and 2.7 m high.  This gap is used to attach the test structure. The gap is filled with a wall 

made of a wooden frame, 10 mm medium-density fireboard (MDF) plates and fibre materials 

for sound insulation purposes. The clamped plate is then fixed to the wooden frame of the 

wall so that the sound radiation is predominantly made from this steel plate. The location of 

the clamped plate on the opening is shown in Figure 5.4. 

 

 

 

Figure 5.2: Floor plan of the acoustics laboratories at the University of Auckland. 
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Figure 5.3: View of reverberation chamber A and C when the wall between them 

is removed. 

 

 

Figure 5.4: Location of the clamped plate on the wall between two reverberation chambers. 

 

5.3 Structural sensors and actuators 

 

The plate response was measured using a 3x3 array of equally spaced small accelerometers 

model 352C22 (7 units) and 352C23 (2 units) from PCB Piezotronics (Sensor specification is 

listed in Table 5.1). The acceleration signals from the accelerometers were input to signal 

conditioners (model 483B21 from PCB Piezotronics) and integrated to generate the 

corresponding velocity signals, before being input to the controller hardware for signal 

processing.  

 

Chamber C 
Chamber A 

Plate 
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A total of four shakers model ET-132 from Labworks Inc. (specification given in 

Table 5.2) were used to excite the plate. One of the shakers, located at (60 mm, 45 mm) from 

one corner of the plate, was used to provide the primary disturbance input Fp. The 

disturbance signal was generated using white noise. This shaker was also equipped with a 

force sensor (model 208C01 from PCB Piezotronics Inc.). The other three shakers served as 

the control force actuators, whose aims are to reduce the first three ARM amplitudes. The 

locations of the control actuators are listed in Table 4.3 and shown in Figure 5.5. These 

locations were obtained from the optimization results presented in Section 4.5. Due to the 

space limitation, two shakers were attached to the plate on the side facing reverberation 

chamber A and the other two shakers in reverberation chamber C, as shown in Figure 5.6.  

 

 

Table 5.1: Specification of the sensors  

Specification  

 Value  

Accelerometer model 

352C22 

Accelerometer model 

352C23 

Force sensor model 

208C01 

Sensitivity (±15%) 1.0 mV/(m/s²) (±20%) 0.5 mV/(m/s²) (±15%) 112410 mV/kN 

Measurement 

Range 
±4900 m/s² pk ±9810 m/s² pk 0.04448 kN 

Broadband 

Resolution 
0.04 m/s² rms 0.03 m/s² rms 0.00045 N-rms 

Frequency Range 1.0 to 10000 Hz 2.0 to 10000 Hz 0.01 to 36000 Hz 

Weight 0.5 gm 0.2 gm 22.7 gm 
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Table 5.2: Specification of the shaker model ET-132 

Specification Value 

Sine Force 4.5 lbs force pk 

Random Force 3.2 lbf rms random 

Shock Force 9.6 lbf pk shock 

Frequency range 
DC to 11000 Hz, Voltage Source mode 

DC to 14,000 Hz, Current Source mode 

Max. Acceleration 

64 g pk, bare table 

26 g pk, 0.1 lb. load 

9.6 g pk, 0.4 lb. load 

Max. Displacement 0.20 inch pk-pk, bare table 

Power Requirements 200 VA @95-125, 190-250V, 1ø, 50/60 Hz 

 

 

 

Figure 5.5: Location of the actuators on the plate (view from Chamber C). 
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Table 5.3: Locations of the control actuators on the plate  

Control actuator locations x and y coordinates 

 c,1 c,1,x y  (0.1894 m, 0.1409 m) 

 c,2 c,2,x y  (0.0591 m, 0.2157 m) 

 c,3 c,3,x y  (0.3409 m, 0.0520 m) 

 

 

Reverberation chamber A  Reverberation chamber C 

 

 

 

 

 

 

(a)  (b) 

Figure 5.6: Arrangements of accelerometers and shakers attached to the plate, viewed from 

(a) Reverberation chamber A and (b) Reverberation chamber C. 

 

 

 

 

 

Accelerometers 
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5.4 Instrumentation 

 

Real-time data acquisition and signal processing were performed using a National 

Instruments (NI) compact RIO real-time controller model c-RIO 9035. This real-time 

controller is embedded with a 1.33 gigahertz dual-core central processing unit (CPU), 1 

gigabyte dynamic random access memory (DRAM), 4 gigabyte storage, and a Kintex-7 70T 

field-programmable gate array (FPGA) microchip and an 8-slot chassis. It features a real-time 

processor for communication and signal processing and an FPGA for implementing high-

speed control, custom timing and triggering, and signal processing directly in hardware. The 

controller was programmed using Labview 2014 software.  

 

Velocity signals from the signal conditioners were acquired by NI analogue input 

modules model NI 9234, which are equipped with four input channels. This module has a 

voltage range of ± 5V with 24-bit resolution. To acquire signals from the 9 accelerometers 

and 2 force sensors, 3 input modules were used. The system also outputs four analogue 

signals (i.e. 1 excitation signal and 3 control signals) through a 4-channel NI analogue output 

module model NI 9263, which has ±10 V and 0 to 20 mA analogue output ranges with 16-bit 

resolution. These output signals were first amplified using four fixed amplifiers (from 

DIGITECH) before transmitted to the shakers. Figure 5.7 shows the experimental setup used 

in this research.   
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Figure 5.7: Experimental setup. 

 

 

5.5 Compact RIO Controller programming 

 

In this experiment, the Compact RIO controller was used to estimate the ARM amplitudes 

and control the sound power radiated from the vibrating plate in real-time. It was 

programmed using Labview software. Inside the controller, the code can be written in two 

modes, i.e. FPGA and real-time scan mode (also known as RT scan mode). The maximum 

clock speed for the controller to process the signal inside the FPGA and RT modes are about 

40 MHz and 2 kHz, respectively. However, due to the limited amount of programming code 

that can be written inside the FPGA, the code was written in both modes. Code for signal 
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acquisition and output was written in FPGA mode as shown in Appendix A.1. The signal 

processing parts, i.e. signal convolution with ARM filters, FxLMS algorithm and data 

logging are implemented in the RT scan mode. This configuration enables the controller to 

run at a maximum speed of 1 kHz, without any signal loss.  

 

In estimating the radiated sound power, the real-time ARM amplitudes were first 

computed by filtering the input signals obtained from the sensors with a series of ARM 

filters. Here, the coefficients of the ARM filters were pre-calculated using Matlab and the 

method presented in Chapter 3. In this experiment, only the first five ARM filters were 

implemented. Based on the radiation efficiencies of the plate in Figure 2.5, only the first five 

ARMs are important radiators for frequencies below 500 Hz.  The Labview code written to 

implement these ARM filters is shown in Appendix A.2.  

 

In controlling the sound power, the secondary paths of the control system, i.e. from 

input signals to the ARM amplitude signals were first identified using the LMS algorithm. 

The weights of the secondary path FIR filters were updated until the error between the 

desired signals (output signals from physical system) and the output signals from the 

secondary path filters converged. This system identification method was discussed in Section 

4.4.2. Here, there are three secondary paths corresponding to the three control actuators. Each 

was estimated using 39
th

 order FIR filters, which is also the maximum filter order that can be 

implemented in this Compact RIO controller. The Labview code written inside the Compact-

RIO controller for identifying the secondary paths is shown in Appendix A.3.  

 

 

 

(a) (b) (c) 

Figure 5.8: FIR filter coefficients for the (a) first, (b) second and (c) third secondary paths. 
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This system identification code was run for 60 seconds to allow for convergence of 

errors and the final coefficients of the secondary path filters obtained are shown in Figure 5.8. 

The filter coefficients obtained from the system identification are then used for the secondary 

path FIR filters inside the Labview code shown in Appendix A.4, which was used for two 

purposes. The first is to measure the real-time ARM amplitudes from the input signals 

obtained by the 3x3 array of accelerometers. These ARM amplitudes are then processed in 

Matlab to estimate the radiated sound power from the vibrating plate, using the method 

discussed in Section 3.5. The second purpose of the code is to enable the Compact-RIO 

controller to act as an adaptive controller using the FxLMS algorithm. Here, the controller 

filter is designed using 39
th

 order FIR filter. When the control part is enabled, this code 

computes the appropriate control signals that minimise the error signals (i.e. real-time ARM 

amplitudes) in real-time. These signals are then output to the shakers attached to the plate. 

 

5.6 Calculation of the sound power radiated from the vibrating plate  

 

5.6.1 ISO 3741 method 

 

The sound power radiated from the plate was measured inside the reverberation chambers by 

following ISO 3741. Briefly, this was done by measuring the average sound pressure of the 

chamber for 1 minute using a microphone (model 4190 from Bruel & Kjӕr) attached to a 

rotating boom (model 3923 from Bruel & Kjӕr), which was installed in the reverberation 

chamber A. The signal from the microphone was analysed using a 01dB analyser model 

01381. The average sound pressure was then used to calculate the sound power in each 

octave or one-third octave band within the frequency range of interest using [78-79] 

 

10 10 10 10

0 0

10log 10log 10log 1 10log 14dB
8 1000

cST V B
W P

T V V

 
       

 
, (5.1) 

 

where W is the band power level of the source under test (in dB, ref. 1 pW), P  is the mean 

band pressure level after background noise correction (in dB, ref. 20 μPa), T is the 

reverberation time of the chamber (in seconds), T0 = 1 s, V is the volume of the chamber (in 

m
3
), V0 = 1 m

3
, λ is the wavelength at the centre frequency of the octave or one-third octave 
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band (in m), S is the total surface area of the room (in m
2
), and B is the barometric pressure 

(in mbar).   

 

5.6.2 Statistical method 

 

Based on Equation (2.9), by the definition of the radiation impedance the sound power is 

given by 

 

2

0 0W c v . (5.2) 

 

The radiation efficiency for a rectangular simply supported plate can be estimated from [79] 
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Here g1 and g2 are given by 
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where 1 crf f   and
crf  is the critical frequency calculated from  

 

2

0
cr

1.8 L

c
f

c h
  (5.5) 

 

where 
Lc  is the speed of sound in the structure. For a steel plate, 

Lc =5790 m/s.  
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5.7 Experimental results 

 

This section discusses the experimental results for estimation and control of the radiated 

sound power. 

 

5.7.1 Estimation of radiated sound power 

 

Here, the plate is excited by the primary force shaker using random noise for 60 seconds. The 

frequency range considered is between 50 Hz to 450 Hz. The velocity responses obtained are 

shown in Figure 5.9. Based on this figure, there are eight frequencies with significant peaks, 

i.e. 90 Hz, 106 Hz, 133 Hz, 166 Hz, 201 Hz, 282 Hz, 333 Hz and 404 Hz. These frequencies 

are considered to be resonance frequencies of the clamped plate. Note that these frequencies 

are different from the resonance frequencies found in the simulations. This is due to the 

boundary conditions, which are only an approximation of clamped edges, together with the 

accelerometers, force sensors and shaker, which create a non-uniform structure and affected 

the mass and stiffness of the system slightly.  

 

Despite this difference, the sound power estimation approach based on the ARM 

estimates (presented in Chapter 3) can be used here since the approach is independent of 

boundary conditions. Comparison of the radiated sound powers in one-third octave band 

calculated using ISO 3741, the ARM estimates approach and the statistical approach is shown 

in Figure 5.10. The one-third octave bands considered in this frequency range are listed in 

Table 5.4. In general, the radiated sound power estimated using ARM estimates is close to the 

power calculated using ISO 3741 and statistical approach. It can be seen that at most of the 

bands, the sound power differences between ARM estimates approach and ISO 3741 are less 

than 3 dB, except for the 200 and 400 Hz bands with about 4.5 dB difference. Comparing the 

radiated sound power between ARM estimates and statistical approaches, less than 5 dB 

differences are observed at most of the bands except for 200 and 400 Hz bands.  
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Figure 5.9: Velocity responses from the 3x3 array of sensors. 

 

Table 5.4: Third octave band considered in the experiment  

Band number Nominal centre frequency (Hz) Passband (Hz) 

1 100 89.1 - 112 

2 125 112 - 141 

3 160 141 - 178 

4 200 178 - 224 

5 250 224 - 282 

6 315 282 - 355 

7 400 355 - 447 

 

 

Figure 5.10: Radiated sound power measured according to ISO 3741, ARM estimates and 

statistical methods. 
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5.7.2 Control of radiated sound power using FxLMS control  

 

The second part of the experiments was to control the sound power radiated from the plate. 

Two different reference signals, i.e. tonal disturbance and broadband random noise, were 

used to excite the plate. The adaptive feedforward controller was applied for about 120 

seconds while the control performance was measured after 60 seconds from the start. Here, 

the FxLMS controllers were used to cancel the first, the first two and the first three ARM 

amplitudes. The frequency range considered in this experiment was between 50 Hz and 450 

Hz.  

 

5.7.2.1 Tonal excitation  

 

The frequencies of the tonal signals were 100 Hz, 125 Hz, 160 Hz, 200 Hz, 250 Hz, 315 Hz 

and 400 Hz, which are the same as the nominal centre frequencies of the one-third octave 

bands in Table 5.4. The results, calculated in one-third octave bands, are shown in Figure 

5.11 and Table 5.5. Since the reference signal is monotonic, the sound powers are dominant 

at the excitation frequency. It can be seen in this figure, when the plate is excited at 100 Hz 

and 125 Hz, more than 10 dB attenuation occurs for all three control cases at relevant 

frequency bands.  The sound power is also reduced by more than 5 dB for excitation at 160 

Hz. However, almost no attenuation and some amplifications occur when the plate is excited 

at higher frequencies, implying that the controllers are only effective at lower frequencies. As 

mentioned earlier in Chapter 2, the lower order ARMs are more efficient radiators at low 

frequencies; hence the controllers can only reduce the radiated sound power up to certain 

frequencies.  

 

It is also seen in Figure 5.11 that, increasing the number of control actuators did not 

increase the control performance. This might be caused by the fact that, using more control 

actuators increases the total processing time because of the group delay associated with serial 

connection of hardware. Besides, the nonlinearity issues due to the attachments of sensors 

and actuators on the plate might also be one of the causes. 
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Figure 5.11: Attenuation of radiated sound power, tonal reference at various frequencies. 

 

 

Table 5.5: Attenuation of the radiated sound power for tonal excitation, calculated using 

ARM estimates method  

Frequency (Hz) 
Attenuation (dB) 

Cancellation of y1 Cancellation of y1, y2 Cancellation of y1, y2, y3 

100 12.1 11.4 12.1 

125 13.8 12.5 11.7 

160 12.3 7.6 8.9 

200 0.2 -1.3 -1.4 

250 2.8 -2 -0.2 

315 1.3 -0.4 0.1 

400 -0.6 -0.6 -0.1 

 

 

5.7.2.2 Broadband, random noise excitation 

 

The control experiment was then repeated using several broadband, random noise reference 

signals. Figure 5.12 shows the one-third octave band attenuation of the radiated sound power 

when the plate was excited by broadband noise. The highest reduction is 2.2 dB obtained at 

Band 1 (nominal centre frequency = 100 Hz). The attenuation in the other bands is not 

significant, i.e. less than 1 dB, and some of the bands experienced increases in sound power.   

100 125 160 200 250 315 400

-2

0

2

4

6

8

10

12

14
Sound power attenuation (Tonal excitation)

Excitation frequency (Hz)

A
tt

e
n
u
a
ti
o
n
 (

d
B

)

 

 

Cancellation of y
1

Cancellation of y
1
, y

2
 

Cancellation of y
1
, y

2
 & y

3



 

113 

 

Table 5.6 lists the attenuation of sound power at each frequency band calculated using ARM 

estimates approach presented in Chapter 3. There is a slight increase in the frequency-average 

attenuation when more than one ARM amplitude is cancelled for the frequency range 

between 100 Hz to 150 Hz. However, the overall control performance is trivial.   

 

Again, the poor control performance here might be due to the same reasons as that 

when tonal reference signals were used, i.e. nonlinearities, group delay and secondary path 

FIR filter length. Besides, the length of the secondary path FIR filters (Figure 5.8) might not 

be long enough to estimate the secondary paths accurately, hence affecting the control 

performance of the FxLMS controller. In addition to that, this might be due to the signal 

aliasing and reconstruction issues, i.e. the signal reconstructed from samples was different 

from the original continuous signal. The effects of these issues are expected to be much 

greater for broadband noise excitation since the controller process signals with many 

frequencies. 

 

 

 

Figure 5.12: Third octave band attenuation of radiated sound power calculated according to 

ISO 3741, when the plate is excited by noise signal. 
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Table 5.6: Attenuation of the radiated sound power for noise excitation, calculated using 

ARM estimates method  

Resonance 

frequency (Hz) 

Attenuation (dB) 

Cancellation of y1 Cancellation of y1, y2 Cancellation of y1, y2, y3 

100 2.2 1.8 2.2 

125 0.3 0.7 -0.1 

160 0.3 0 0.3 

200 0.9 0.2 -0.5 

250 0.3 0.1 0.2 

315 -0.3 -0.1 -0.1 

400 0.4 0.5 0.6 

Frequency-average 

(50 Hz to 150 Hz) 
0.10 0.24 0.22 

Frequency-average 

(50 Hz to 250 Hz) 
0.23 0.20 0.24 

Frequency-average 

(50 Hz to 450 Hz) 
0.27 0.18 0.24 

 

 

5.8 Summary 

 

This chapter presented experimental results of the approaches discussed earlier in Chapters 3 

and 4. The chapter began with the description of the experimental setup and instrumentation 

used in the experiment. The experiment was divided into two parts. The first part involved 

estimation of the radiated sound power from the vibrating plate using ARM estimates 

approach.  The result shows that the radiated sound power estimated using ARM estimates is 

comparable to the sound power calculated according to ISO 3741, implying that the proposed 

estimation method is practical and is able to estimate the sound power under broadband 

conditions.   

 

The second part of the experiment concerned controlling the radiated sound power 

using FxLMS controllers. Control results obtained for tonal excitation was good at low 

frequencies, i.e. at Band 1, 2 and 3. However, increasing the number of control actuators did 
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not increase the control performance. The control experiment was repeated using broadband, 

random noise excitation. The results were poor. The highest third octave attenuation achieved 

was only 2.2 dB at band 1 while the attenuation at the other bands is trivial.  

 

The poor performance of the FxLMS controllers for broadband signals and for tonal 

signals of 200 Hz and above here generally might be caused by several reasons. Larger FIR 

filters were needed to estimate the secondary paths accurately. This was clearly a 

computationally intensive system that gives significant group delay. There were also signal 

aliasing and reconstruction issues, which caused the controller to process signals at different 

frequencies from the original signals, especially for the case of broadband noise excitation.  

 

Moreover, the poor performance might also be related to the hardware issues. 

Attachments of many sensors and actuators might lead to modification of the system 

response. There might also be sound leakage through the walls. The conversion from 

acceleration to velocity signals using integrator in the signal conditioner might introduce 

phase errors to the output signals. There was also an issue on the sensor miscalibration. It is 

expected that better control performance can be achieved if all these issues are taken care of. 

This is a matter for future work. 
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CHAPTER 6 : CONCLUSIONS AND RECOMMENDATIONS 

 

 

6.1 Conclusions  

 

In this thesis, methods for estimating and controlling the radiated sound power using time-

domain estimates of acoustic radiation modes (ARMs) were developed. Chapter 2 reviewed 

ARMs and radiated sound power. In Chapter 3, a method of approximating the response of 

ARMs using FIR filters, also called ARM filters, was proposed to answer the first research 

objective, which is to develop digital filters that estimate the ARMs and radiated sound 

power in time domain. In particular, causal-delayed ARM filters were seen to give accurate 

estimates with relatively few filter coefficients. These filters are designed by introducing a 

time delay of d steps in the frequency response of the ARM estimator, so that the output of 

the filter gives the estimate of the ARM amplitude d steps later (refer Equation 3.6). This 

approach is found to be able to approximate the ideal frequency response of ARMs better 

than a truncated causal FIR filter, and thus leads to more accurate estimates. The 

approximation improves with the increase in the number of delays. However, there is a trade-

off between the accuracy of the ARM filters (i.e. large d) and the delays caused by the 

algorithm, which may affect the performance of the application in which the estimated ARM 

will be used. The time delay itself is unimportant for applications where estimates of radiated 

sound power are required.  However, for real-time control applications, the delay is more 

significant. 

 

For real-time simulation purposes, the structural responses were simulated in the time-

domain by using an array of resonant filters, one filter for predicting the response at one 

location, each being a 3
rd

 order IIR filter. Simulink was used to simulate the system in real-

time under broadband, random noise excitation, and the results showed that the estimated 

radiated sound power using real-time ARM estimates agreed well with the theoretical values 

(calculated using Equation 2.12) for both 1-D (i.e. beam) and 2-D (i.e. plate) radiators.  

 

 To answer the second research objective, which is to develop feedforward controllers 

to attenuate the sound radiated from a structure using real-time ARM amplitude as an error 

function, two control strategies, i.e. non-adaptive and adaptive feedforward control, were 
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implemented in real-time simulations and presented in Chapter 4. The first example 

concerned non-adaptive feedforward control applied to a baffled simply supported beam, 

where the controller transfer function was defined in terms of the primary and secondary 

paths (refer Equation (4.9)). The controller filter was constructed using the causal-delayed 

FIR filter approach presented in Section 3.2. Overall, the implemented frequency responses 

of the controller were able to approximate the theoretical values reasonably well. The second 

strategy involved adaptive feedforward control applied to a clamped, rectangular plate. The 

adaptive controllers were designed using the FxLMS algorithm, where the real-time 

amplitudes of one or more radiation modes were treated as the error signals. The secondary 

path response was identified by using the auto-correlation method between input and output 

signals of the secondary path. Both the estimator and controller filters were designed using 

high order FIR filters. In both strategies, the results showed that controlling more radiation 

modes in real-time increases the attenuation level and the control bandwidth. 

 

In the last part of Chapter 4, offline optimisation of the location of the control 

actuators using an ant colony optimisation (ACO) algorithm was presented to answer the 

third research objective, which is to determine the optimal location of the actuators used to 

control the sound radiation. The method was applied to the adaptive ASAC system developed 

earlier. Frequency-averaged attenuation (calculated using Equation (4.29)) was chosen as the 

objective function of this optimisation. The best location to place a control actuator on a plate 

to reduce the first ARM amplitude is close to the centre of the plate (i.e. (xc,1/Lx, yc,1/Ly) = 

(0.47, 0.47)), while optimal locations for the second and third control actuators were closer to 

the corners of the plate (i.e. (xc,2/Lx, yc,2/Ly) = (0.15, 0.72) and (xc,3/Lx, yc,3/Ly) = (0.85, 0.17)). 

The simulation results showed improvements in both attenuation and control bandwidth when 

the locations of the control actuators were optimised. Different optimisation results may be 

obtained if a different objective function is used. 

 

Chapter 5 described practical experiments on the estimation and control of radiated sound 

power for a plate using the ARM estimates approach developed in Chapters 3 and 4, 

respectively. This chapter was presented to address the last research objective, which was to 

validate the simulation results experimentally. The experiments were conducted in the 

reverberation chambers of the acoustics laboratories at the University of Auckland. Real-time 

data acquisition and signal processing were performed using an NI compact-RIO real-time 

controller. Results showed that the estimated radiated sound power under broadband, random 



 

118 

 

excitation was comparable to the sound power estimated according to ISO 3741. Control 

results obtained for tonal excitation were good at low frequencies, i.e. at third octave bands 1, 

2 and 3. However, increasing the number of control actuators did not increase the control 

performance. The results were poor when the control experiment was repeated using 

broadband, random noise excitation. The poor performance of the FxLMS controllers for 

broadband signals and for tonal signals of 200 Hz and above might be caused by issues 

related to signal processing (i.e. insufficient FIR filter length for estimator filters, group 

delay, and signal aliasing and reconstruction issues) and hardware (i.e. sensor miscalibration, 

integrator phase errors, sound leakage through the wall and modification of system responses 

due to the attachment of sensors).  

 

 

6.2 Recommendations for future work 

 

The first three objectives of this thesis have been achieved. As for the last objective, the real-

time estimation of the radiated sound power using ARM amplitude estimates was successful 

,as this power is comparable to the powers using ISO 3741 and statistical methods (refer 

Figure 5.10).  However, while reasonable control of tonal signals was achieved for lower 

frequency excitation, the results of the control were poor for broadband, random signals and 

for tonal signals of 200 Hz and above. Further experimental studies were not feasible due to 

time constraints and access to facilities, but should be pursued in future work.  

 

Considering all these factors, the following are suggested for future work.  

1. ARM estimation 

 

The ARM filters can be constructed in the time-domain to approximate the response 

of    ,r n rQ    , which might give a better estimation of the radiated sound power. 

The output of this filter can also be used as the cost function of the FxLMS controller, 

which is expected to improve the control results since it is weighted directly with 

respect to the eigenvalue (or radiation efficiency). However, there are rapid changes 

in the eigenvalues with respect to frequency, especially for higher order ARMs (refer 

Figures 2.3 and 2.5), hence a very long FIR filter might be needed to estimate the 
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response accurately. IIR filters might be more suitable in this case but there will be 

instability issue that needs to be considered.  

 

2. Optimisation of sensor and actuator locations  

 

In Chapter 3, the structural sensors were placed equally-spaced on the structures. 

Optimal sensor locations can be determined using an optimisation algorithm such as a 

genetic algorithm, ant colony optimisation, etc. Here the objective function is to 

optimise sensing of the selected ARMs while minimise the sensitivity to other ARMs. 

These could reduce the number of sensors used or provide more accurate estimates, 

and hence reduce the signal processing requirements of the controller, and hence 

reduce the processing time.  

 

The optimisation of actuator locations presented in Section 4.5 used an 

objective function that minimises the frequency-averaged attenuation of the total 

radiated sound power W. The optimisation results might be improved by choosing an 

objective function which comprises the radiated sound power contributed by the 

individual ARMs (i.e. W1, W2, etc.) and the frequency range used to calculate the 

average attenuation might also be the frequency range where only these individual 

ARM powers are important.  

 

3. Identification of the secondary path in the noise control experiment 

 

The poor performance of the control results in the experiments might be due in part to 

insufficient length of FIR filters used to estimate the secondary path responses. Based 

on Figure 5.11, the filter coefficients were not converging to zero even when using the 

39
th

 order FIR filters, which is the maximum filter can be written in Compact RIO 

controller. In other word, longer FIR filters are needed to accurately estimate the 

secondary path responses. However, care must be taken in choosing the filter length, 

because longer filters increase the computational cost, which is constrained by the 

hardware. Alternatively, IIR filters can be used to estimate the secondary path 

response and they have a much smaller group delay, but a constraint need to be added 

to make sure the optimised IIR filters are stable.  
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4. Excitation signal for noise control experiment 

 

Based on the control results, better attenuation was achieved at frequencies below 200 

Hz for tonal excitation and poor performance was seen for broadband, random 

excitation. One of the main reasons is the sheer computational intensity due to many, 

long FIR filters being used to estimate the ARMs (i.e. 9 ARM filters to output an 

individual ARM amplitude). Better results might be expected if the plate is excited by 

either low frequency multi-tone excitation (i.e. 100 Hz + 125 Hz + 160 Hz) or band-

limited noise (i.e. up to 160 Hz).  

 

5. Estimation of radiated sound power 

 

Accelerometers were used to measure the plate responses at discrete points. However, 

this creates a mass-loading effect due to the uneven distribution of mass of the 

accelerometers, which in turn results in a less accurate estimation of the radiated 

sound power. The measurement might be improved if the plate response was 

measured using for example a laser Doppler vibrometer (LDV), which is contactless, 

hence reducing measurement errors. Note that this sensing approach is not applicable 

for controlling the radiated sound power since there is a significant processing delay 

associated with LDV.  

 

 

6.3 Summary 

 

In summary, the main contributions of this thesis are as follows. 

 Propose a method to estimate the ARM in real-time using causal-delayed FIR filters. 

 Use the ARM filters to estimate the radiated sound power of one and two dimensional 

radiating structures.  

 Use ARM estimates as the errors functions in active structural acoustic control on 

both non-adaptive and adaptive feedforward control system.  

 Determine the optimal control actuator locations for adaptive control case (applied on 

the plate radiator) using offline optimisation technique.  
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The ARM estimation approach proposed in this thesis allows for real-time 

implementation and give broadband control of strongly radiating vibration. It approximates 

volume velocity control at low frequencies, while conventional ARM control could be 

designed based on the ARM shapes at one specific frequency. The advantage of the approach 

presented here is that the ARM filters allow for the frequency dependence of the ARM 

shapes, and hence give a better approximation across the frequency range of interest than 

either of those two methods. While the result is encouraging for simple beam and plate 

structure, further work is needed to investigate the effectiveness of this approach for more 

complex structure, such as ribbed plates, shells etc. The output of this thesis could be applied 

to reduce structure borne noise radiated into vehicle cabins (e.g. car, aeroplane). Although the 

thesis focuses specifically on beam and plate radiators, the proposed methods could also be 

applied to any structure or shape, provided that their ARMs are known. 
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