
CDMTCS
Research
Report
Series

D-Wave Experimental
Results for an Improved
QUBO Formulation
of the Broadcast Time
Problem

Yan Kolezhitskiy
Michael J. Dinneen
André Nies
Department of Computer Science,
University of Auckland,
Auckland, New Zealand

CDMTCS-525
April 2018

Centre for Discrete Mathematics and
Theoretical Computer Science

D-Wave Experimental Results for an Improved QUBO Formulation
of the Broadcast Time Problem

Yan Kolezhitskiy, Michael J. Dinneen and André Nies
Department of Cumputer Science, University of Auckland, Auckland, New Zealand

Contents

1 Introduction 2

2 Quantum Computing 2
2.1 What is Quantum Computing . 2

2.1.1 The Mathematics . 2
2.1.2 Physical Implementation . 3

2.2 History of Quantum Computing . 3
2.3 Different Types of Quantum Computing . 3

2.3.1 Quantum Gate model . 3
2.3.2 Adiabatic Model . 4

3 D-Wave 4
3.1 Company, History, and Overview . 4
3.2 The D-Wave 2X Mathematical Model . 5

3.2.1 The Ising Model Problem . 6
3.2.2 The QUBO Problem . 6

3.3 QUBO Formulation and Embedding . 6
3.4 The Contraversy . 7

4 The Broadcast Problem 7
4.1 Definition . 7
4.2 QUBO formulation . 8
4.3 Proof of Correctness . 9
4.4 Comparing with Previous Methods . 10

4.4.1 Complexity comparison . 10

5 Results: Running on the D-Wave 10
5.1 Comparison to Previous Results . 11
5.2 Analysis . 11

5.2.1 Chimera Embedding . 11
5.2.2 Spin Reversals . 11
5.2.3 Comparison to Heuristic QUBO solvers . 11

6 Conclustion, References and Appendices 15

1

1 Introduction

Quantum computing has been a popular phenomena in Computer Science over the past few decades.
More specifically in recent years, the D-Wave, a commercially available quantum computer, has
been receiving significant attention due to the fact that it can take in as input non-trivial NP hard
problems and produce results of varying accuracy.

The broadcast problem is a popular optimization problem of graph theory, it asks if there is
an efficient way to spread a message across a network in a given time frame. The main purpose
of our efforts is two-fold; To evaluate the capacity of the D-Wave quantum computer to tackle
this type of problem. Also to evaluate the current QUBO formulation (a specific presentation of
the problem which the D-Wave can solve) of the broadcast problem and compare to a previous
formulation. We present here the results as generated by the D-Wave on the current best-known
QUBO formulation. We also compare them to the previous results, concluding that indeed the
current QUBO formulation of the broadcast problem is more efficient.

2 Quantum Computing

2.1 What is Quantum Computing

The simplest, and yet the least precise, way of understanding quantum computing, is that it is
computing performed by a device (i.e. a computer) that utilizes ‘quantum phenomena’ such as
super-positioning and entanglement. Although indeed this definition captures all current forms of
quantum computing, it is still quite vague and also technically encapsulates phenomena which may
arguably not be considered as quantum computing. For example if we take a classical computer
with an attached quantum random number generator, is that a quantum computer? In order to
be more precise we give some descriptions as to how a quantum computer is implemented, and
mathematically modelled.

An important feature of a quantum computer is that it is probabilistic. So any result it generates
is not guaranteed to be accurate, but is only correct with a probability of x percent. Although
at first glance this does seem quite problematic, it can be mitigated with multiple runs. This will
be realistic, especially if a quantum computer does indeed offer a significant speedup to a given
computation.

Conventionally, a quantum computer operates on qubits, as opposed to bits that are used by a
standard digital computer. A qubit, or quantum bit, is essentially a super-positioned bit that can
be anywhere between a 1 and a 0. The idea here is to perform computations on super-positioned
qubits in such a way that when the computations are completed, and the super-positioning of the
string of qubits is collapsed, it will be probablisitcally likely that what we will get will be the
solution to the problem.

2.1.1 The Mathematics

Mathematically, a qubit is represented as an element of C2, and is written as |a〉 (Dirac bra-ket
notations). The idea of measuring a qubit, and consequently collapsing its super-positioning, is the
same as projecting |a〉 onto the basis {0, c}. There are a number of different ways to mathematically
model a quantum computation. In a later section we will discuss two such methodologies, and give
a brief overview of the mathematics behind them.

2

2.1.2 Physical Implementation

Unlike bits, which are implemented by electrical current, qubits have to be implemented by some
entity which exhibits the desired quantum properties. So a good choice, for instance, is a particle
which can have a super-positioned ‘spin’1. That way we can identify the mathematical value 0
with one spin (i.e. positive) and 1 with another spin (i.e. negative). And when the computation
is completed, the spin is simply measured by some canonical procedure, and results returned for
further computation.

2.2 History of Quantum Computing

Quantum computing borrows heavily from contemporary physics. It was first suggested by Manin
in 1980 [10], and shortly thereafter independently introduced by Feynman in 1981 [6].

A mathematical model of a quantum computer followed shortly, with Deutsch introducing the
Quantum Turing Machine in 1985.

QC did receive interest, but it was not until 1994 when Shor’s algorithm [9] was first introduced
that people had a direct example of the type of computational power that could be available with
quantum computing. To summarize, Shor’s algorithm can factor numbers in polynomial time,
something that is believed to be hard.

The model of adiabatic quantum computation, which we are interested in, was introduced in
2000. The company D-Wave Systems began experimenting with the implementation, producing a
prototype quantum computer in 2007. In 2011 they released the world’s first commercially available
quantum computer, D-Wave One. Their latest model, the D-Wave 2000Q was released in 2017.

2.3 Different Types of Quantum Computing

There are a few different types of models of a quantum computer. Here we discuss two models; the
quantum gate model and the adiabatic model. It is noteworthy that the results suggest that the two
models are polynomially equivalent, and indeed that does make conceptual sense as the adiabatic
model can solve NP hard problems. By definition this means that any problem that is in NP, and
by extension P, can be translated in polynomial time into the given NP hard problem.

Here we discuss two:

2.3.1 Quantum Gate model

This is perhaps the most popular model of a quantum computer. It is very much analogous to
the implementation of a classical computer. Wherein a standard computer is implemented using
circuits that are composed of various logic gates (i.e. NOT , OR, XOR etc.), this model of a
quantum computer has circuits composed of quantum gates. One way to conceptually understand
a quantum gate, is that it changes the quality of a superposition of a qubit, but perhaps a more
sensical notion can be derived from looking at it mathematically. Within the mathematical model,
a quantum gate is represented as an invertible matrix that acts on the tuple over the complex
numbers, thereby facilitating the evolution of the qubit. Because the matrix is invertible, we know
that all quantum gates have inverses. That is to say any operation can be reversed. This is quite
different to standard computing, where operators like XOR cannot easily be reversed without more
information about the original state.

1Spin is the angular momentum of a particle.

3

Obviously some quantum gates, such as the NOT gate, can be replicated classically, but not
others. For instance there is something called the

√
NOT gate, which in essence has its double

application serve as the NOT gate. There is no classical gate that can flip a bit with a double
application, and then flip it again with another double application.

A quantum gate computer, then, uses a circuit of quantum gates to evolve qubits in desired
ways, after which a ‘reading’ is taken that collapses the super-positioning and yields a result.

2.3.2 Adiabatic Model

The adiabatic model is significantly different from the quantum gate model. The D-Wave quantum
computer falls into this category.

The term adiabatic is defined to describe a process in which heat does not leave a given system.
Here it is used due to the adiabatic theorem, which plays a vital part in any computations performed
under this model.

The adiabatic theorem, introduced by Max Born and Vladimir Fock in 1928 [3] reads as such:

“A physical system remains in its instantaneous eigenstate if a given perturbation is acting
on it slowly enough and if there is a gap between the eigenvalue and the rest of the Hamiltonian’s
spectrum.”

The idea here, is to use a mixture of processes to minimize the free energy of a system, thereby
forcing it to fall into its lowest energy state.

Of course this in-itself would not solve any mathematical problems. What needs to be done
happens through a very specific encoding of a problem into the actual state of the system in such
a way, where the lowest energy state will represent an optimum solution to the problem, under the
given encoding. This can be done by constructing a specific Hamiltonian2.

Because this process approaches a global minima, the overall approach is considered heuristic.
If the global minima, i.e. ground state of the Hamiltonian, is reached, then we get an exact solution.
But due to the probabilistic nature of quantum computing, we may only get the value of a local
minima, corresponding to a sub-optimal solution.

In latter sections we give specific examples of this in regards to the D-Wave.

3 D-Wave

3.1 Company, History, and Overview

The D-Wave is the world’s first commercially available quantum computer. It is designed and
manufactured by the Canadian company D-Wave Systems inc. The company was founded in 1999,
and the name refers to their early efforts in using the D-Wave superconductors3. It began as an
offshoot of the University of British Columbia (UBC), but now has expanded into its own entity,
with a number of physical locations across Canada and USA.

In 2011, D-Wave Systems announced the D-Wave One, a quantum computer running on a 128
qubit processor. It is worth mentioning that a research team led my Daniel Lidar concluded that

2The operator H(t) that corresponds to the total energy of a system.
3A type of high temperature superconductor.

4

the D-Wave one showed no speed increase in comparison to a classical computer, even though there
was evidence that quantum annealing did occur [1].

In 2012, D-Wave Two was released, operating with a QPU (quantum processing unit) of 512
qbits.

Three years lates in 2015, D-Wave 2X was released, operating with 1200 qubits,
In 2017 the D-Wave 2000Q was released, and as the name suggest operated with 2000 qubits.
The D-Wave QPU consists of qubits in a Chimera graph. A Chimera graph is a grid of complete

four by four bipartite graphs (K4,4), with specific connections between these:

3.2 The D-Wave 2X Mathematical Model

The University of Auckland has access to an D-Wave 2X quantum computer, which was used in all
our work as discussed in the latter sections.

The D-Wave uses quantum annealing to solve the Ising Model problem, which is an optimization
problem. This is very similar to the QUBO problem, which is the one we use. Indeed the two are
easily interchangeable using a specific function. In overview, we produce an objective function, and
the D-Wave utilizes its processes to find the global minima thereof.

5

3.2.1 The Ising Model Problem

As previously mentioned, the actual problem that is solved by the D-Wave is the Ising model
problem, which is NP hard.

The Ising model problem looks at finding some s ∈ {1,−1}n such that the following formula is
minimized:

∑
1≤i<j≤n

Ji,jsisj +
∑

1≤i≤n

hisi

Where hi ∈ R are biases and Ji,j ∈ R are couplings.

This is particularly useful here because the physical qubits (ie particles) either have a positive
spin (i.e. 1) or a negative spin (i.e. -1).

3.2.2 The QUBO Problem

The QUBO (Quadratic Unconstrained Binary Optimization) problem is a specific instance of In-
terger Programming4. Given a binary vector x of length n and an n×n upper triangular matrix Q

with values in the reals, we try to find an x ∈ Bn such that xQxt = b for some b is minimal. When
this is a decision problem (i.e. either x is a solution or its not), then usually xQxt = 0.

Specifically we note that it is very easy to transfrom a QUBO problem into an Ising model
problem through the following mappings:

xi 7→
si + 1

2 for i = 1, ..., n

Qi,j 7→ Ji,j for 1 ≤ i < j ≤ n

Qi,i 7→
1
2
(
hi −

∑
i<j

Ji,j +
∑
i>j

Ji,j

)
for i = 1, ..., n

3.3 QUBO Formulation and Embedding

As discussed, in order to solve any problem using the D-Wave, we first have to transcribe it into
a QUBO instance. This is not a straight forward procedure. Although in some cases it can be
trivial, for the most part it is an act of ingenuity. The first part to this is to decide what each
binary component of the vector x ∈ Bn will represent, and then what remains is to come up with
a set of equations that equal 0 when all the right xi are 1. The QUBO formulation presented in
the following section serves as a clear example of this. The general strategy as utilized by Fowler
in [7] was to look at the conditions that ensured any given instance of a certain format was indeed
a solution, and transcribe them into specific summations.

Once the summations are given, it is an algorithmic process to construct the QUBO matrix.
All the terms of the form cxixj are looked at, and the associated constant c becomes the ijth entry
of the matrix Q. With linear terms such as cxi, we simply treat them as cx2

i and apply the same
procedure. This is allowed because they are in B, and we note that xi = x2

i . We also ignore all
4An optimiztion problem where some values are restricted to Z.

6

constants, and add them to the offset. This is enough to convert any appropriate summations into
an appropriate matrix Q.

This Q will then need to be embedded into the Chimera graph architecture of the D-Wave
QPU. We treat each i as a qubit, and if the ijth entry of the matrix is of some value c 6= 0, we
appropriately weigh the entanglement of the qubits corresponding to i and j. The problem here,
of course, is that not every such matrix we deal with represents a sub-graph of the Chimera graph,
and so we have to compromise. The compromise itself revolves around looking for a graph minor
of the graph of Q in the QPU. In a nutshell we look for an embedding of the graph where each
logical qubit is mapped to some chain of physical qubits that will then be entangled to act as one
qubit. Indeed this is known in literature as the graph minor problem, and itself is NP complete.

This raises two issues; first the fact that the embedding is an NP complete problem takes away
from the efficiency of the D-Wave. Secondly, the smaller the ratio of logical qubits to physical
qubits, the more the chance of an incorrect solution, due to a number of factors. That is, one such
issue is when the physical qubits in one chain return different values, in which case it becomes an
important question as to how to read the actual returned value from these.

3.4 The Contraversy

It is still debated as to whether or not the D-Wave is a quantum computer. Most definitely it is
not a universal quantum computer, as it only solves de-facto one mathematical problem. Further,
it is questionable whether or not the D-Wave offers any speedup to classical computation. As of
now there are mixed results.

However, the D-Wave is getting significant attention, and more and more is known about its
properties as time passes. Thus it is the authors’ opinion that this is a noteworthy phenomena
regardless of the truth about its ultimate nature, which will no doubt sooner or later become a
solved problem.

4 The Broadcast Problem

In his thesis [7], Fowler introduced the QUBO formulation of the broadcast problem, which we
base our work on. We present an improved version thereof, which is nonetheless equivalent. The
improvement lies in the simplification of H2.

4.1 Definition

The broadcast time problem asks if, given a graph G and some positive integer t, if its possible to
effectively spread a message across a network from some originator vertex v0 in t steps, such that
each node, once in possession of the message, can only transmit to one other node per time. To
formalize this, we consider the following:

A broadcast tree of depth t for a graph G = (V, E), with originator vertex v0 ∈ V is a sequence
Vi ∈ P (V) (where V0 = {v0}) with 0 ≤ i ≤ t, and a sequence of arcs Aj with 1 ≤ j ≤ t, such that:

(B1) Each arc in Ai is an oriented edge of E.

(B2) Vi = Vi−1 ∪ {w | (u, w) ∈ Ai, u ∈ Vi−1, w /∈ Vi−1}.

7

(B3) for any (u, v) ∈ Ai, u ∈ Vi−1 and v /∈ Vi−1.

(B4) a vertex appears at most once in Ai.

(B5) Vt = V .

4.2 QUBO formulation

Task: Given a graph G, a positive integer t, and some starting vertex v0, does there exist a broad-
cast tree with these parameters?

We present the following QUBO formulation (HI , MI), where MI = 0 is the cut off variable,
and HI is the Hamiltonian.

The Hamiltonian involves the following variables:

• The two variables euv,i and evu,i for each edge {u, v} ∈ E and 2 ≤ i ≤ t.

• The single variable ev0u,i, for every {v0, u} ∈ E and 1 ≤ i ≤ t.

Essentially a variable euv,i ∈ B represents whether or not the vertex u broadcasts the message
to the vertex v in th ith step. Hence a given e ∈ Bdim(HI) represents both the sequences Ve,i and
Ae,i, where:

Ve,i = {v ∈ V | euv,j = 1 for some 1 ≤ j ≤ i} ∪ {v0} and
Ae,i = {(u, v) | euv,i = 1}

Note that the variables involving v0 are defined separately to the others. This is due to the fact
that v0 cannot receive a message, and thus we do not need to bother with variables of the form eu0,i.

We now define the Hamiltionian:
Hamiltonian: HI(e) = H1(e) + H2(e) + H3(e), where:

H1(e) =
∑

v∈V \{v0}

(
1−

∑
(u,v)∈E

∑
i

euv,i

)2

H2(e) =
∑

v∈V,i

(∑
(u,v),(w,v)∈E

evu,ievw,i

)

H3(e) =
∑

v∈V \{v0}

(∑
(u,v)∈E,i

euv,i

(∑
j≤i,w 6=v0

evw,j

))
We interpret these constraints as thus:

• H1(e) returns 0 if each vertex excluding v0 has exactly one incoming arc (i.e. receives the
message exactly once). It returns a value greater or equal to 1 otherwise.

• H2(e) returns 0 if no vertex is the source node to two arcs in any Ai (i.e. no vertex broadcasts
to two different nodes simultaneously). It returns a value greater or equal to 1 otherwise.

• H3(e) returns 0 if no vertex broadcasts the message before or simultaneously to receiving it
(when there is no arc (u, v) in any Ai with u ∈ Vi−1). It returns a value greater or equal to
1 otherwise.

8

4.3 Proof of Correctness

Claim 1. When HI(e) = 0, e encodes a broadcast tree of depth t in G.

Proof. First we recall the following definitions:

Ve,i = {v ∈ V | euv,j = 1 for some 1 ≤ j ≤ i} ∪ {v0}, and
Ae,i = {(u, v) | euv,i = 1}.

The claim is proven by showing that all the 5 criteria for a broadcast tree (introduced above) hold:

(B1) Each arc in Ae,i is an oriented edge of E.
If (u, v) ∈ Ae,i, then by definition euv,i = 1. But this variable is only defined when {u, v} ∈ E.
Thus each arc of Ae,i, for all i is an oriented edge of E.

(B2) Ve,i = Ve,i−1 ∪ {w | (u, w) ∈ Ae,i, u ∈ Ve,i−1, w /∈ Ve,i−1}.
We note that Ve,i = {v ∈ V | euv,j = 1 for some 1 ≤ j ≤ i} ∪ {v0}.
Clearly, Ve,i−1 ⊆ Ve,i. If we take some v ∈ Ve,i \Ve,i−1, then eyv,i = 1 for some vertex y, which
means that (y, v) ∈ Ae,i.
For a contradiction suppose that y /∈ Ve,i−1 or v ∈ Ve,i−1. If y /∈ Ve,i−1, then exy,k = 0 for all
k ≤ i−1 and x ∈ V . But by H1(e) = 0 , it must be the case that exy,j = 1 for some j > i−1.
But since eyv,i = 1 and exy,j = 1 with j ≥ i, this means that y broadcasts a message before
(or during) receiving it. This contradicts the fact that H3(e) = 0.
Further, suppose that v ∈ Ve,i−1, but then v /∈ Ve,i\Ve,i−1, which contradicts our assumptions.

(B3) For every 1 ≤ i ≤ t, and any (u, v) ∈ Ae,i, u ∈ Ve,i−1 and v /∈ Ve,i−1.
Suppose (u, v) ∈ Ae,i, which means that euv,i = 1. If u = v0, then by construction, v0 ∈ Vi−1.
If u 6= v0 we observe the following: H1(e) = 0 means that there is some j ≤ t such that
ewu,j = 1, for some w ∈ V . Suppose for a contradiction that j ≥ i. But as H3(e) = 0, it
must be that euv,i = 0, as otherwise u will be broadcasting before it receives, a contradiction.
Thus j < i and hence u ∈ Vi−1.
For another contradiction, suppose that v ∈ Vi−1. This means that ewv,j = 1 for some
j ≤ t. But then H1(e) > 0, as v has two incoming arcs, one at stage j and one at stage i, a
contradiction.

(B4) For each i, a vertex appears at most once in Ae,i.
Suppose for a contradiction that for some Ai a vertex v appeared more than once. This is
divided into three cases:
Case 1 v is the source node of two or more arcs. Say (v, u), (v, w) ∈ Ai, which means that
evu,i = 1 and evw,i = 1. But that would mean that H2(e) > 0, a contradiction.
Case 2 v is the source node of one arc, and the receiving node of another. Say (v, u), (w, v) ∈
Ai, which means that evu,i = 1 and ewv,i = 1, i.e. v broadcasts a message simultaneously to
receiving it. But this implies that H3(e) > 0, a contradiction.
Case 3 v is the end node of two arcs. Say (u, v), (w, v) ∈ Ai, which means that euv,i = 1 and
ewv,i = 1. But then H1(e) > 0, so again we have a contradiction.

9

(B5) Vt = V .
Since H1(e) = 0, every vertex v ∈ V {v0} has an incoming arc, and since Ve,t = {v ∈ V | euv,i =
1 for some 1 ≤ i ≤ t} ∪ {v0}, B5 is true.

4.4 Comparing with Previous Methods

Another QUBO formulation of the broadcast problem exists, as presented by Calude and Dinneen
in [4]. What they have done was create an integer programming (IP) instance of the problem, and
then using a number of proven steps, converted it into a QUBO formulation. We present the IP
variant below:

Given a graph G = (V, E) with n vertices V = {0, 1, ..., n − 1}, and m edges we present the
following set of equations, where t is the time required to build a broadcast tree, vi ∈ {0, ..., t} is
the time when vertex i receives the message, and bi,j ∈ B is a decision variable that states whether
or not i broadcasts to j. We have the following summations:

∑
j 6=0

bj,0 = 0

∑
j 6=i

bj,i = 1 for all i ∈ V \ {0}

With the following constraints:

bi,j(1 + vi − vj) ≤ 0 for all {i, j} ∈ E

bi,j + bi,j − (vj − vk)2 ≤ 1 for all {i, j} ∈ E, {i, j} ∈ E with j 6= k.

Even though the IP formulation seems relatively straight forward, the process of converting it
into a QUBO instance does create significantly more variables. In a latter section we show graph
per graph comparison with Fowler’s method that highlights this fact. Further, we present data
relevant to this formulation in Appendix 6.

4.4.1 Complexity comparison

The previous QUBO formulation requires O(|V |3 log(|V |)2) variables, and O(|V |6 log(|V |)4) interac-
tions between variables. In comparison Fowler’s formulation has a total of 2(t−1)(|E|−degG(v0))+
t · degG(V0) variables. And in worst case, when t = |V | and |E| = |V |2, the number of variables is
O(|V |3), with density of O(|V |5). Thus simply in comparison of complexity, Fowler’s formulation
surpasses the existing results.

5 Results: Running on the D-Wave

We generated QUBO matrices for thirty five instances of the Broadcast Problem. We also utilized
the CPLEX QUBO solver in order to check that these were indeed accurate. Then we ran the
D-Wave on these problems.

10

There were three runs. The first two runs were composed of 5000 sub-runs, and had as their
settings respectively spin = 1 and spin = 10. The third run had 10,000 sub-runs, with spin = 20.
Respectively these are presented in Tables 1, 2, and 3. Here spin denotes the parameter that tells
us whether each spin direction of a qubit is interpreted or assigned 1/true or -1/false. This should
eliminate hardware bias for multiple samples.

5.1 Comparison to Previous Results

In Appendix 6, we present the table containing the results of Calude and Dinneen’s efforts from [4].
In Table 4 we give a table comparing key graphs and the number of qubits needed by each QUBO
formulation. Again we note that Fowler’s formulation requires significantly less qubits.

5.2 Analysis

It can be seen that the more physical qubits per logical qubit there are, the worse the quality of the
solution is. For example with graphs such as K3, where there are only two more physical qubits
than logical, and all results are correct. In contrast with C9 where there are roughly ten times
more physical qubits (with a ratio of 66 to 606) in each of the three cases we have a small fraction
of results being accurate, namely around less than 1%.

5.2.1 Chimera Embedding

This leads us to the first point of discussion regarding the matter; the embedding algorithm that is
used to embed the logical graph of Q in the physical Chimera graph. The hypothesis is, the better
the embedding, the better the results. And indeed there is a lot of truth to this. Firs we note that a
longer a chain of entangled qubits is, the bigger the chance of error is for various reasons. The most
obvious potential error here is, of course, the scenario where they return different values, but this
in itself is caused by more subtle issues. Playing around with different embedding algorithms and
quantifying over the differences is a key point to explore, and is worth a lot of attention. Indeed
since the embedding algorithms are heuristic, its is likely that they don’t provide optimum answers.

5.2.2 Spin Reversals

It is also not clear from a brief analysis as to how the ‘spin’ setting affects the solution, as there
are mixed results. For example for the ‘Bull’ graph, the results with spin=10 are definitely more
favourable than the results with ‘spin = 1’, but even though there are more correct results for this
graph when spin = 20, there are significantly more inaccurate results. A more in-depth study over
a number of problems should be used to determine the effects of ‘spin’ on the quality of the
result, but the current hypothesis, is there is a ‘golden’ number of spins, and anything over/under
will yield inferior results.

5.2.3 Comparison to Heuristic QUBO solvers

It is also noteworthy that at the moment, the results of the D-Wave are inferior to those produced
by standard QUBO solvers in regards to the quality of the result. The QUBO solver CPLEX that
was used for testing produced multiple solutions, all accurate. Wherein the D-Wave output was,
more or less, riddled with errors.

11

Table 1: Spin = 1, 5000 runs.
Graph order s t # of Logical Qubits # Physical Qubits Total Solutions True False
Bull 5 0 3 18 94 440 64 376

Butterfly 5 0 3 22 123 823 134 689
C4 4 0 2 8 17 2 2 0
C5 5 0 3 18 63 139 72 67
C6 6 0 4 32 190 2941 619 2322
C7 7 0 4 38 241 3742 548 3194
C8 8 0 4 44 285 4873 287 4586
C9 9 0 5 66 606 4995 35 4960

Diamond 4 0 2 10 27 17 6 11
Grid2x3 6 0 3 26 163 1485 215 1270
Grid3x3 9 0 4 68 871 5000 28 4972

Hexahedral 8 0 3 45 394 4672 76 4596
House 5 0 3 22 136 996 239 757
K2,3 5 0 3 21 111 557 234 323
K2x1 3 0 2 4 5 1 1 0
K3,3 6 0 3 33 280 3515 413 3102
K3 3 0 2 6 8 4 4 0
K4 4 0 2 12 46 21 15 6

Octahedral 6 0 3 44 702 4486 159 4327
Q3 8 0 3 45 431 4848 66 4782
S3 4 0 3 9 22 6 6 0
S4 5 0 4 16 64 59 24 35
S5 6 0 5 25 163 632 51 581
S6 7 0 6 36 307 3218 68 3150
S7 8 0 7 49 675 3352 1 3351

Wagner 8 0 4 66 917 4916 11 4905
chromatic+1 8 0 5 44 542 4610 110 4500
chromatic+1 8 2 4 40 373 4681 12 4669

P4 4 0 3 11 30 26 10 16
P4 4 1 2 6 9 1 1 0
P5 5 0 4 22 118 702 166 536
P5 5 1 3 14 39 26 10 16
P6 6 0 5 37 282 4508 340 4168
P6 6 1 4 26 121 952 314 638
P6 6 2 3 18 55 56 21 35

12

Table 2: Spin = 10, 5000 runs.
Graph order s t # of Logical Qubits # Physical Qubits Total Solutions True False
Bull 5 0 3 18 94 283 61 222

Butterfly 5 0 3 22 123 715 143 572
C4 4 0 2 8 17 5 3 2
C5 5 0 3 18 63 174 89 85
C6 6 0 4 32 190 2781 693 2088
C7 7 0 4 38 241 3258 505 2753
C8 8 0 4 44 285 4806 111 4695
C9 9 0 5 66 606 4985 31 4954

Diamond 4 0 2 10 27 7 3 4
Grid2x3 6 0 3 26 163 1738 238 1500
Grid3x3 9 0 4 68 871 4990 10 4980

Hexahedral 8 0 3 45 394 4282 57 4225
House 5 0 3 22 136 750 196 554
K2,3 5 0 3 21 111 434 211 223
K2x1 3 0 2 4 5 1 1 0
K3,3 6 0 3 33 280 2789 243 2546
K3 3 0 2 6 8 4 4 0
K4 4 0 2 12 46 33 18 15

Octahedral 6 0 3 44 702 3494 49 3445
Q3 8 0 3 45 431 4098 35 4063
S3 4 0 3 9 22 6 6 0
S4 5 0 4 16 64 44 24 20
S5 6 0 5 25 163 730 51 679
S6 7 0 6 36 307 2506 71 2435
S7 8 0 7 49 675 3786 0 3786

Wagner 8 0 4 66 917 4677 28 4649
chromatic+1 8 0 5 44 542 4531 59 4472
chromatic+1 8 2 4 40 373 4777 8 4769

P4 4 0 3 11 30 29 13 16
P4 4 1 2 6 9 1 1 0
P5 5 0 4 22 118 818 247 571
P5 5 1 3 14 39 25 10 15
P6 6 0 5 37 282 3790 450 3340
P6 6 1 4 26 121 1360 366 994
P6 6 2 3 18 55 59 23 36

13

Table 3: Spin = 20, 10000 runs.
Graph order s t # of Logical Qubits # Physical Qubits Total Solutions True False
Bull 5 0 3 18 94 686 91 595

Butterfly 5 0 3 22 123 2127 290 1837
C4 4 0 2 8 17 8 4 4
C5 5 0 3 18 63 205 103 102
C6 6 0 4 32 190 6794 1486 5308
C7 7 0 4 38 241 8849 1250 7599
C8 8 0 4 44 285 9902 732 9170
C9 9 0 5 66 606 10000 108 9892

Diamond 4 0 2 10 27 24 9 15
Grid2x3 6 0 3 26 163 4751 633 4118
Grid3x3 9 0 4 68 871 10000 20 9980

Hexahedral 8 0 3 45 394 9914 303 9611
House 5 0 3 22 136 2422 378 2044
K2,3 5 0 3 21 111 1260 312 948
K2x1 3 0 2 4 5 1 1 0
K3,3 6 0 3 33 280 8522 830 7692
K3 3 0 2 6 8 4 4 0
K4 4 0 2 12 46 64 22 42

Octahedral 6 0 3 44 702 9941 191 9750
Q3 8 0 3 45 431 9929 216 9713
S3 4 0 3 9 22 6 6 0
S4 5 0 4 16 64 149 24 125
S5 6 0 5 25 163 2483 118 2365
S6 7 0 6 36 307 8298 224 8074
S7 8 0 7 49 675 9927 10 9917

Wagner 8 0 4 66 917 10000 70 9930
chromatic+1 8 0 5 44 542 9990 141 9849
chromatic+1 8 2 4 40 373 9979 24 9955

P4 4 0 3 11 30 34 15 19
P4 4 1 2 6 9 1 1 0
P5 5 0 4 22 118 1373 331 1042
P5 5 1 3 14 39 67 23 44
P6 6 0 5 37 282 9293 1013 8280
P6 6 1 4 26 121 2746 759 1987
P6 6 2 3 18 55 221 59 162

Table 4: Brief Comparison of the number of qubits needed by each method.
New Formulation New Formulation Old Formulation Old Formulation

Graph Order # Logical Qubits # Physical Qubits # Logical Qubits # Physical Qubits
C6 6 32 190 735 4164

Grid3x3 9 68 871 2648
K3x3 6 33 280 915

S7 8 49 675 1244
Hexahedral 8 45 394 1446

Wagner 8 66 917 1446

14

We do make a point that no procedure to measure and compare the speed of processing was
implemented, therefore it would be unfair to conclude that the current version of the D-Wave used
is ultimately inferior to CPLEX, but only in terms of the quality of the solution.

6 Conclusion

In conclusion we have effectively demonstrated that the new QUBO formulation of the broadcast
problem is superior to the previous one rooted in integer programming. Further, we have performed
some very basic testing involving the D-Wave 2X as a QUBO solver. Having examined the results
we can conclude that although the quantum computer performs quite well when the number of
logical and physical qubits are similar, the performance drops as these numbers diverge.

Suggestions for future work are two-fold: the exploration of the full effects of the various settings
of the D-Wave, such as ‘spin’, and the exploration of better embedding algorithms which will allow
to map logical qubits to fewer physical qubits.

References

[1] Sergio Boixo, Troels F Rønnow, Sergei V Isakov, Zhihui Wang, David Wecker, Daniel A Lidar,
John M Martinis, and Matthias Troyer. Quantum annealing with more than one hundred
qubits. e-print. arxiv, 1304, 2013.

[2] Simon Bone and Matias Castro. A brief history of quantum computing. Imperial College in
London, http://www. doc. ic. ac. uk/˜ nd/surprise 97/journa l/vol4/spb3, 1997.

[3] Max Born and Vladimir Fock. Beweis des adiabatensatzes. Zeitschrift für Physik, 51(3-4):165–
180, 1928.

[4] Cristian S Calude and Michael J Dinneen. Solving the broadcast time problem using a d-wave
quantum computer. In Advances in Unconventional Computing, pages 439–453. Springer, 2017.

[5] Michael J Dinneen and Richard Hua. Formulating graph covering problems for adiabatic quan-
tum computers. In Proceedings of the Australasian Computer Science Week Multiconference,
page 18. ACM, 2017.

[6] Richard P Feynman. Simulating physics with computers. International journal of theoretical
physics, 21(6-7):467–488, 1982.

[7] Alexander Fowler. Improved qubo formulations for d-wave quantum computing. Master’s
thesis, University of Auckland, 2017.

[8] Richard Hua. Adiabatic quantum computing with qubo formulations. Master’s thesis, Re-
searchSpace@ Auckland, 2016.

[9] Peter W Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on
a quantum computer. SIAM review, 41(2):303–332, 1999.

[10] Manin Yu. Computable and uncomputable. Sovetskoye Radio, Moscow, 1980.

15

A QUBO formulation Algorithm

Here we present the Python 3 code that takes as input the triple G, s, t, where G is the adjacency
list for some graph, s is the starting vertex, and t is the maximum time. The output is a python
dictionary where the entry (i, j) corresponds to the ijth entry in the QUBO matrix.

1 #Based on Richard Hua’s work
2 import sys, math , networkx as nx
3
4 # takes input from command line "G S T"
5
6 def read_graph():
7 file = open(sys.argv[1],"r")
8 n=int(file.readline().strip())
9 G=nx.Graph()

10 for i in range (n):
11 G.add_node(i)
12 for u in range(n):
13 neighbors=file.readline().split()
14 for v in neighbors:
15 G.add_edge(u,int(v))
16 return G
17
18 def generateQUBO(G,s,t): #G is the graph, s is the starting vertex, and t is the depth of

the broadcast tree.
19 """"NOTE:␣we␣establish␣to␣dictionaries;␣Q␣and␣Qf.␣While␣the␣former␣is
20 ␣␣the␣dictionary␣that␣will␣be␣used␣to␣construct␣the␣QUBO␣matrix,
21 ␣␣the␣latter␣is␣used␣to␣calculate␣the␣entry␣in␣the␣latter␣for␣a␣variable␣U_{vi,vj,k},
22 ␣␣given␣parameters␣vi,␣vj,␣and␣k.␣Also␣fQ␣is␣just␣the␣reverse␣of␣Qf,␣and␣is␣only␣used␣in␣

the␣verification␣process."""
23 Q = {} # dictionary with values of the QUBO matrix
24 Qf= {} # intermediary dictionary that maps vertices X vertices X time to appropriate

matrix coordinates:
25 fQ ={} # reverse of Qf, used in verification process
26
27 count = 0
28 for u in G.neighbors(s): #here we initialize the variables
29 for i in range(t): #note here we have 0 \leq i < t, instead of 1 \leq i \leq t
30 Qf[(s,u,i)] = count
31 fQ[count] = (s,u,i)
32 count +=1
33 for v in G:
34 if v != s:
35 for u in G.neighbors(v):
36 if u != s:
37 for i in range(1,t):
38 Qf[(v,u,i)] = count
39 fQ[count] = (v,u,i)
40 count +=1
41 for i in range(count):
42 for j in range(count):
43 Q[i,j] = 0

16

44 numOfVar = count
45
46 #initialize Q, note, constant of 1 was removed.
47 for v in G:
48 #(4) Corresponding to H_2(e), makes sure each vertex outputs only once per round.
49 for i in range(t):
50 if i != 0 or v==s:
51 for u in G.neighbors(v):
52 for w in G.neighbors(v):
53 if w != u and u != s and w != s:
54 a = Qf[(v,u,i)]
55 b = Qf[(v,w,i)]
56 Q[a,b] +=1
57
58 if v != s:
59 for u in G.neighbors(v):
60 # Corresponding to H_1(e), ensures each v \neq s has exactly one incoming

transmission. Broken into 2 parts:
61 for i in range(0,t):#(1.1)
62 if i != 0 or u==s:
63 a = Qf[(u,v,i)]
64 b = a
65 Q[a,b] -= 2
66 for j in range(0,t):
67 if i != 0 or u==s:
68 for w in G.neighbors(v):#(1.2)
69 if j != 0 or w==s:
70 a = Qf[(u,v,i)]
71 b = Qf[(w,v,j)]
72 Q[a,b] +=1
73 for k in range(1,i+1): #(3), corresponding to H_3(e), ensures that no vertex

broadcasts the message before or simultaneously to receiving it.
74 for w in G.neighbors(v):
75 if w != s:
76 a = Qf[(u,v,i)]
77 b = Qf[(v,w,k)]
78 Q[a,b] +=1
79 # Moving all entries to upper triangle:
80 for i in range(numOfVar):
81 for j in range(numOfVar):
82 if j>i:
83 Q[i,j] +=Q[j,i]
84 Q[j,i] = 0
85 print(Qf)
86 file = open("kmatrix.txt.","w")
87 file.write(str(numOfVar))
88 file.write("\n")
89 var =""
90 for i in range(numOfVar):
91 a = ""
92 for j in range(numOfVar):
93 a = a + str(Q[i,j]) +"␣"

17

94 file.write(a)
95 file.write("\n")
96 file.close
97
98 G = read_graph()
99

100 s = 0
101 t = sys.argv[2]
102 generateQUBO(G,s,t)

B Solution Versifier Algorithm

Here we present the Python 3 code that verifies the solution to this specific QUBO problem. Namely
it verifies whether or not the binary vector indeed represents a broadcast tree. Because the QUBO
matrix was composed using two dictionaries storing important information, we need to re-compute
these dictionaries, and so the input is of the form (G, s, t, x) where G, s, t are the same as in the
original algorithm, and x is the solution. We also note that in essence it incorporates the previous
algorithm, because of this.

1 #Based on Richard Hua’s work
2 import sys, math , networkx as nx
3
4 #INPUT GST x
5
6 def read_graph():
7 filename = str(sys.argv[1])
8 file = open(filename,"r")
9 n=int(file.readline().strip())

10 G=nx.Graph()
11 for i in range (n):
12 G.add_node(i)
13 for u in range(n):
14 neighbors=file.readline().split()
15 for v in neighbors:
16 G.add_edge(u,int(v))
17 return G
18
19 def generateQUBO(G,s,t): #G is the graph, s is the starting vertex, and t is the depth of

the broadcast tree.
20 """"NOTE:␣we␣establish␣to␣dictionaries;␣Q␣and␣Qf.␣While␣the␣former␣is
21 ␣␣the␣dictionary␣that␣will␣be␣used␣to␣construct␣the␣QUBO␣matrix,
22 ␣␣the␣latter␣is␣used␣to␣calculate␣the␣entry␣in␣the␣latter␣for␣a␣variable␣U_{vi,vj,k},
23 ␣␣given␣parameters␣vi,␣vj,␣and␣k.␣Also␣fQ␣is␣just␣the␣reverse␣of␣Qf,␣and␣is␣only␣used␣in␣

the␣verification␣process."""
24 Q = {} # dictionary with values of the QUBO matrix
25 Qf= {} # intermediary dictionary that maps vertices X vertices X time to appropriate

matrix coordinates:
26 fQ ={} # reverse of Qf, used in verification process
27
28 count = 0

18

29 for u in G.neighbors(s): #here we initialize the variables
30 for i in range(t): #note here we have 0 \leq i < t, instead of 1 \leq i \leq t
31 Qf[(s,u,i)] = count
32 fQ[count] = (s,u,i)
33 count +=1
34 for v in G:
35 if v != s:
36 for u in G.neighbors(v):
37 if u != s:
38 for i in range(1,t):
39 Qf[(v,u,i)] = count
40 fQ[count] = (v,u,i)
41 count +=1
42 for i in range(count):
43 for j in range(count):
44 Q[i,j] = 0
45 numOfVar = count
46
47 #initialize Q, note, constant of 1 was removed.
48 for v in G:
49 #(4) Corresponding to H_2(e), makes sure each vertex outputs only once per round.
50 for i in range(t):
51 if i != 0 or v==s:
52 for u in G.neighbors(v):
53 for w in G.neighbors(v):
54 if w != u and u != s and w != s:
55 a = Qf[(v,u,i)]
56 b = Qf[(v,w,i)]
57 Q[a,b] +=1
58
59 if v != s:
60 for u in G.neighbors(v):
61 # Corresponding to H_1(e), ensures each v \neq s has exactly one incoming

transmission. Broken into 2 parts:
62 for i in range(0,t):#(1.1)
63 if i != 0 or u==s:
64 a = Qf[(u,v,i)]
65 b = a
66 Q[a,b] -= 2
67 for j in range(0,t):
68 if i != 0 or u==s:
69 for w in G.neighbors(v):#(1.2)
70 if j != 0 or w==s:
71 a = Qf[(u,v,i)]
72 b = Qf[(w,v,j)]
73 Q[a,b] +=1
74 for k in range(1,i+1): #(3), corresponding to H_3(e), ensures that no vertex

broadcasts the message before or simultaneously to receiving it.
75 for w in G.neighbors(v):
76 if w != s:
77 a = Qf[(u,v,i)]
78 b = Qf[(v,w,k)]

19

79 Q[a,b] +=1
80 # Moving all entries to upper triangle:
81 for i in range(numOfVar):
82 for j in range(numOfVar):
83 if j>i:
84 Q[i,j] +=Q[j,i]
85 Q[j,i] = 0
86 print(Qf)
87 file = open("kmatrix.txt.","w")
88 file.write(str(numOfVar))
89 file.write("\n")
90 var =""
91 for i in range(numOfVar):
92 a = ""
93 for j in range(numOfVar):
94 a = a + str(Q[i,j]) +"␣"
95 file.write(a)
96 file.write("\n")
97 file.close
98 x = sys.argv[4]
99 vari = test_solution(x,Qf,fQ,G,s,t)

100 print(vari)
101
102 def test_solution(x,Qf,fQ,G,s,t): #takes as input a vector returned by D-Wave and the

variables dictionary, its reverse, the graph G, number of steps t and initial vertex
v:

103 count = -1
104 for i in x:
105 count += 1
106 if i == 1:
107 print(fQ[count])
108 v,u,j = fQ[count] #get the corresponding vertices and step
109 #first we check that every ’1’ actually corresponds to an edge in G
110 if v == s:
111 if not(u in G.neighbors(v)):
112 print(1)
113 return False
114 elif j == 0:
115 print(2)
116 return False
117 else:
118 if not(u in G.neighbors(v)):
119 print(3)
120 return False
121 # This corresponds to H(2): if v,u,i = 1, check that for all x, v,x,i = 0, ie that a

vertex broadcasts to at most 1 other vertex per step.
122 for a in Qf:
123 v1,u1,j1 = a
124 if v == v1 and j == j1:
125 if u != u1:
126 b = Qf[(v1,u1,j1)]
127 if x[b] == 1:

20

128 print(a,4)
129 return False
130
131 # Corresponds to H(3): if v,u,i = 1, check that for all j \leq i and all x, u,x,j =

0.
132 for k in range(j+1):
133 for v2 in G.neighbors(u):
134 if v2 != v:
135 if v2 == s or k>0:
136
137 var1 = Qf[(v2,u,k)]
138 if x[var1] == 1:
139 print(5)
140 return False
141
142 # This corresponds to H(1): for all v \in G, there are unique u and i s.t. u,v,i = 1.
143
144 for v in G:
145 if v !=s:
146 varset=0
147 for u in G.neighbors(v):
148 for i in range(t):
149 if i != 0 or u == s:
150 if x[Qf[(u,v,i)]] == 1:
151 if varset == 0:
152 varset = 1
153 elif varset == 1:
154 print(6)
155 return False
156 if varset == 0:
157 print(7)
158 return False
159 return True
160
161 G = read_graph()
162
163 s = int(sys.argv[2])
164 t = int(sys.argv[3])
165 generateQUBO(G,s,t)

C The D-Wave Run Script

Below we present the program used to submit the generated QUBO onto the D-Wave System using
its software API.

1 #!/usr/bin/env python
2 # Broadcast QUBO (with embedding) -> Ising -> DWave
3
4 import sys, time, math, traceback
5
6 from dwave_sapi2.remote import RemoteConnection

21

7 from dwave_sapi2.util import get_hardware_adjacency
8 from dwave_sapi2.embedding import embed_problem, unembed_answer
9 from dwave_sapi2.util import qubo_to_ising, ising_to_qubo

10 from dwave_sapi2.core import solve_ising
11
12 from sys import exc_info
13
14 # coupler streingth for embedded qubits of same variable
15 s,s2=1.0,1.0
16 if (len(sys.argv)==2): s = float(sys.argv[1])
17 if (len(sys.argv)==3): s,s2 = float(sys.argv[1]),float(sys.argv[2])
18 print ’Embed␣scale=’,s,s2
19
20 # read input
21
22 line=sys.stdin.readline().strip().split()
23 n=int(line[0])
24 print(’n=’, n, ’␣graph=’, line[1], ’s=’, line[2], ’t=’, line[3])
25
26 #Q = defaultdict(int)
27 Q = {}
28 for i in range(n):
29 line=sys.stdin.readline().strip().split()
30 for j in range(n):
31 t = float(line[j])
32 if j>=i and t!=0: Q[(i,j)]=t
33 print(’Q=’,Q)
34
35 (H,J,ising_offset) = qubo_to_ising(Q)
36
37 # scale by maxV
38 maxH=0.0
39 if len(H): maxH=max(abs(min(H)),abs(max(H)))
40 maxJ=max(abs(min(J.values())),abs(max(J.values())))
41 maxV=max(maxH,maxJ)
42
43 for i in range(n):
44 if len(H)>i:
45 H[i]=s2*H[i]/maxV
46 for j in range(n):
47 if j>=i and (i,j) in J:
48 J[(i,j)]=s2*J[(i,j)]/maxV
49
50 embedding=eval(sys.stdin.readline())
51 print ’embedding=’, embedding
52 qubits = sum(len(embed) for embed in embedding)
53 print ’Physical␣qubits␣used=␣%s’ % qubits
54
55 # create a remote connection using url and token and connect to solver
56 #
57 url = "dwave␣url"
58 token = "secret"

22

59 solver_name = "DW2X"
60
61 print(’Attempting␣to␣connect␣to␣network...’)
62 try:
63 remote_connection = RemoteConnection(url, token)
64 solver = remote_connection.get_solver(solver_name)
65 except:
66 print(’Error:␣%s␣%s␣%s’ % sys.exc_info()[0:3])
67 traceback.print_exc()
68
69 #print(’Solver properties:\n%s\n’ % solver.properties)
70 A = get_hardware_adjacency(solver)
71
72 # Embed problem into hardware
73 (h0, j0, jc, new_emb) = embed_problem(H, J, embedding, A)
74 h1= [val*s for val in h0]
75 j1 = {}
76 for (key, val) in j0.iteritems():
77 j1[key]=val*s
78 j1.update(jc)
79 #print ’new_emb=’,new_emb
80 assert new_emb==embedding
81 print ’d-wave␣Ising’
82 print ’h1=’,h1
83 print ’j1=’,j1
84 (Q,offset) = ising_to_qubo(h1,j1)
85
86 # call the solver
87
88 annealT,progT,readT=20,100,100
89 print ’annealT=’,annealT,’progT=’,progT,’readT=’,readT
90 result = solve_ising(solver, h1, j1, num_reads=10000, annealing_time=annealT,
91 programming_thermalization=progT, readout_thermalization=readT,
92 postprocess=’optimization’, num_spin_reversal_transforms=20)
93 print ’result:’, result
94
95 #newresult = unembed_answer(result[’solutions’], new_emb, broken_chains=’discard’, h=H, j

=J)
96 newresult = unembed_answer(result[’solutions’], new_emb, broken_chains=’vote’, h=H, j=J)
97 print ’newresult:’, newresult

D Information on Previous QUBO Broadcast Formulation

For comparison, here is the information regarding the QUBO formulation of the broadcast problem
as done in [4].

23

Table 5: Number of qubits required for some small graphs families.
Integer Quadratic Binary Binary Slack Logical Chimera

Graph Order Size Variables Constraints Variables Constraints Variables Qubits Qubits
C3 3 3 10 16 50 86 96 146 394
C4 4 4 13 21 74 131 146 220 662
C5 5 5 16 26 178 324 366 544 3258
C6 6 6 19 31 240 443 495 735 4164
C7 7 7 22 36 311 580 642 953
C8 8 8 25 41 391 735 807 1198
C9 9 9 28 46 778 1484 1608 2386
C10 10 10 31 51 944 1809 1948 2892
C11 11 11 34 56 1126 2166 2320 3446
C12 12 12 37 61 1324 2555 2724 4048
Grid2x3 6 7 21 37 254 472 543 797 4306
Grid3x3 9 12 34 65 832 1597 1816 2648
Grid3x4 12 17 47 93 1414 2745 3084 4498
Grid4x4 16 24 65 133 2420 4737 5252 7672
Grid4x5 20 31 83 173 5537 10909 11815 17352
K2 2 1 5 7 9 15 13 22 47
K3 3 3 10 16 50 86 96 146 394
K4 4 6 17 33 94 171 202 296 1378
K5 5 10 26 61 248 469 606 854 7973
K6 6 15 37 103 366 713 981 1347
K7 7 21 50 162 507 1014 1482 1989
K8 8 28 65 241 671 1375 2127 2798
K9 9 36 82 343 1264 2591 4200 5464
K10 10 45 101 471 1574 3279 5588 7162
K2x1=P2 3 2 8 12 36 59 64 100 170
K1x2=S2 3 2 8 12 40 68 76 116 238
K2x2=C4 4 4 13 21 74 131 146 220 662
K2x3 5 6 18 32 192 353 414 606 4823
K3x3 6 9 25 49 282 529 633 915
K3x4 7 12 32 69 381 727 894 1275
K4x4 8 16 41 97 503 973 1227 1730
K4x5 9 20 50 129 976 1906 2432 3408
K5x5 10 25 61 171 1214 2391 3124 4338
K5x6 11 30 72 118 1468 2914 3896 5364
K6x6 12 36 85 277 1756 3511 4804 6560
Q3 8 12 33 65 447 851 999 1446
Q4 16 32 81 193 2564 5045 5860 8424

24

Table 6: Number of qubits required for hypercubes and some other small known graphs.
Integer Quadratic Binary Binary Slack Logical Chimera

Graph Order Size Variables Constraints Variables Constraints Variables Qubits Qubits
S2=K1x2 3 2 8 12 40 68 76 116 238
S3 4 3 11 18 64 114 130 194 505
S4 5 4 14 25 164 301 354 518 3711
S5 6 5 17 33 226 423 501 727 5120
S6 7 6 20 42 297 564 672 969
S7 8 7 23 52 377 724 867 1244
S8 9 8 26 63 760 1471 1736 2496
S9 10 9 29 75 926 1803 2132 3058
S10 11 10 32 88 1108 2168 2568 3676
BidiakisCube 12 18 49 97 1432 2779 3124 4556
Bull 5 5 16 28 178 324 366 544 3523
Butterfly 5 6 18 33 192 353 414 606 5927
Chvatal 12 24 61 145 1540 3013 3604 5144
Clebsch 16 40 97 273 2708 5373 6628 9336
Diamond 4 5 15 27 84 151 174 258 742
Dinneen 9 21 52 142 994 1950 2552 3546
Dodecahedral 20 30 81 161 5515 10855 11645 17160
Durer 12 18 49 97 1432 2779 3124 4556
Errera 17 45 108 320 4480 8900 10890 15370
Frucht 12 18 49 97 1432 2779 3124 4556
GoldnerHarary 11 27 66 209 1414 2814 3792 5206
Grotzsch 11 20 52 118 1288 2508 2968 4256
Heawood 14 21 57 113 1894 3691 4100 5994
Herschel 11 18 48 101 1252 2429 2800 4052
Hexahedral 8 12 33 65 447 851 999 1446
Hoffman 16 32 81 193 2564 5045 5860 8424
House 5 6 18 32 192 353 414 606 4176
Icosahedral 12 30 73 205 1648 3257 4164 5812
Krackhardt 10 18 47 114 1088 2116 2548 3636
Octahedral 6 12 31 73 324 619 795 1119
Pappus 18 27 73 145 4514 8869 9575 14089
Petersen 10 15 41 81 1034 1995 2276 3310
Poussin 15 39 94 276 2446 4863 6152 8598
Robertson 19 38 96 229 5211 10287 11570 16781
Shrikhande 16 48 113 369 2852 5715 7508 10360
Sousselier 16 27 71 154 2474 4849 5452 7926
Tietze 12 18 49 97 1432 2779 3124 4556
Wagner 8 12 33 65 447 851 999 1446

25

