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Abstract

Designers are ambitious; we want to make embedded systems that are more capa-
ble, more connected, and ultimately, more complex. To tackle myriad design goals,
the development of heterogeneous Multiprocessor System on Chips (MPSoCs) has
emerged as a fashionable design paradigm. Embedded systems can be implemented
more easily when various components, such as processors, memories, hardware ac-
celerators, and other Intellectual Property (IP) blocks are integrated into a Network
on Chip (NoC). This approach allows designers to better leverage parallelism and
reduce costs through consolidation of many different functionalities into a single
chip.

However, as embedded systems become more capable and Internet connected,
so too are malicious entities—as we come to deploy embedded systems in more ap-
plication domains, attackers have greater incentive to discover and exploit vulnera-
bilities for illicit gain. Where once security was handled as a secondary concern, or
even worse, as an afterthought, designers acknowledge the value in treating secu-
rity upfront. This thesis investigates strategies to introduce security into the design
of multiprocessor-based systems from the very outset. The research we present is
focussed on improving security, with the aim of reducing the impact of successful
compromises.

After identifying the opportunities for hardware-based support for security
mechanisms from a thorough examination of the literature, we begin by develop-
ing a conceptual model for describing the relationships between components in a
MPSoC and the potential threats in a design. This leads us towards research into po-
tential low-level mechanisms for improving security, and we present digital hard-
ware for implementing decentralised and dynamic access controls in an MPSoC.
One challenge in design for security is that design flows are often ad-hoc, so we
propose a security-aware design process that systematically generates a security-
enhanced MPSoC. Decentralised and dynamic access controls form the foundation

for security improvement. Raising the abstraction level once more, we present
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research on context-aware protections, where we re-frame memory accesses as
service consumption, and enhance access controls with information about when
an access should occur as part of a service. Our contributions are a system-level
security-aware approach for MPSoC design, hardware support for decentralised

and dynamic access controls, and systematic automated design methodologies.
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CHAPTER

Introduction

Computer systems are ubiquitous, and designs are becoming more complex as designers
become more ambitious. This thesis begins with an infroduction to the landscape of em-
bedded system design, and highlights some motivations for research into techniques for
improving security. After presenting some examples of security exploits and their signifi-
cant impacts, we examine different facets of security. This leads us towards a discussion
of important challenges and opportunities for embedded systems security with a specific
focus on multiprocessor system on chip designs. From there we lay out the progression
of research work presented in this thesis, and describe the contributions resulting from

our efforts in this domain.

1.1 Security: An Ongoing Battle

Computers are everywhere. People use computers for work or pleasure, and the
entire world is becoming more interconnected through the Internet. Alongside
explicitly visible desktop and laptop computers, the number of computers hidden
and embedded within specific application domains has risen exponentially. Embed-
ded systems can be found in numerous sensing and actuating contexts [38], such
as within automobiles, industrial automation, medical devices, smart homes, and
robotics. Various reports estimate the number of embedded systems in the so-called
Internet of Things (IoT) to swell to at least the tens of billions [81, 89] by 2020. De-
signs are becoming more complicated and feature-rich [103], and designers often
need to create solutions that satisfy several competing requirements, such as re-
source cost, performance, safety, and timing [93]. The economic value of the IoT

has been estimated to reach between $3.9 trillion to $11.1 trillion annually by 2025




2 Introduction

[82]. The scale and rapid pace of technological developments in the embedded space
is incredible.

Embedded systems are often a difficult class of computer systems to categorise,
as their functionality can be wide and varied [128]; however, each design typically
has an element of being application specific, performing a specialised role in a spe-

cific environment, for example:

« Cyber-physical systems, such as in automotives, robotics, customizable

and reconfigurable manufacturing

« Financial systems, such as point-of-sale (POS) terminals, Automatic Teller
Machines (ATMs)

+ Medical systems, such as pacemakers, insulin pumps, wireless health mon-

itoring

« Infrastructure, such as smart power grids, building condition sensors, in-

telligent transportation systems

« Consumer products, such as IoT-enabled appliances, wearables, and mobile

devices

These types of applications often have sensitive or valuable components, such
as private data (for example, financial data, or medical data), or safety-critical parts.
In recent years, technology improvements have increased the performance of em-
bedded systems, and ambitions for more efficient and smaller devices has created
a shift from uniprocessor systems towards consolidation and integration of many
functionalities into heterogeneous multiprocessor systems on chip (MPSoC) [103].
And yet, while there is great potential for new innovations and greater human con-
veniences in the design of new embedded systems, such designs may be deployed
into a potentially dangerous and hostile environment. Malicious entities aim to
reap financial benefit through illicit means, sneak and steal information to further
political agendas, and disrupt or destroy valuable targets for some insidious gain.
Designers should be vigilant; they need tools and strategies to prevent, detect, and
mitigate security attacks.

Currently, devices ranging from cars to insulin pumps have all been demon-
strated to contain critical vulnerabilities [134]. To get a sense of the current land-

scape, consider a few examples of recently disclosed attacks’.

!Not all attacks or vulnerabilities are disclosed by victims in a timely fashion, and some may
not even be disclosed at all. Even so, these known security breaches stir up plenty of anxiety about
the present state of affairs by themselves
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In 2010, the Stuxnet worm [65] was discovered and publicised, when it was
found to have infected at least 14 industrial sites in Iran, including at least one
uranium enrichment plant. In addition to being considered a prime example of
state-sponsored cyberwarfare, the worm was especially noted for specifically tar-
geting and subverting an industrial control system, upending the assumption that
industrial systems are fundamentally robust by default, or obscure enough to be
“immune” to security exploits. As discussed in [70], the developers of the worm
had significant understanding of the target operating environment, and worked to
undermine the system’s performance over a period of time, instead of causing a
single catastrophic failure.

In 2011, vulnerabilities in cars were reported [17], demonstrating that deter-
mined attackers with modest resources were able to exploit a variety of different
physical channels for causing harm on modern vehicles. Subsequent research pre-
sented in 2014 [2] highlighted risks in “smart cars”, where less-critical parts of the
system (like the CD player) could be exploited to access and disrupt control func-
tionality. The impact and reach of a successfully compromised part of the design
was increased by the consolidation and interconnection of separate Electronic Con-
trol Units (ECUs) to improve performance and reduce costs. Modern cars provide
a classic example of a mixed-critical embedded system, with a mixture of sensitive
tasks for actuation, alongside less-critical tasks for things like infotainment.

In 2013, Target, a large consumer retail company in the United States of Amer-
ica, was attacked by malware known as BlackPOS [90]. Approximately 70-110 mil-
lion people had credit card information, mailing and email addresses, phone num-
bers, and names stolen from Target’s system, resulting in significant financial fraud
and identity theft [41]. Point-of-sale systems are a type of embedded system, de-
signed to facilitate financial transactions in stores. The BlackPOS malware oper-
ated by quietly installing itself in the device’s operating system (OS) after which
it monitored and scanned process memory to identify credit card information. The
sensitive information was logged, and exfiltrated on a daily basis. This anomalous
(and ultimately, malicious) behaviour was not immediately detected, resulting in
losses for many ordinary citizens.

In 2016, a huge Denial-of-Service (DoS) attack was carried out on parts of the
Internet’s infrastructure, affecting the availability of many popular websites [117].
While DoS attacks are not new, the novelty in this particular instance was the
malicious manipulation of millions of vulnerable IoT devices for generating the
excessive and disruptive web traffic in the attack. The IoT devices were comman-

deered to do something they were not designed to do. The sheer volume of devices,
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coupled with the immature state of 10T security meant that the attack had quite a
significant impact.

Despite the disparate nature of these different attacks, several commonalities
emerge. Security was either ignored, or not successfully incorporated into the de-
sign of each system. Attacks caused the embedded systems to behave in a way that
was unintended by designers, and merely responding to security exploits is insuffi-
cient; simply reacting to threats can still lead to considerable losses. Because there
can be huge motivation for malicious exploitation, attackers often have significant
resources at their disposal. Hence, work needs to be done to improve the security
of future devices—we need to develop strategies to add more hurdles for potential
attackers. Security should be considered from the very start of the design process
instead of being treated as an afterthought.

Consider a future where embedded systems perform many different functions.
The design is composed of many different components, sourced from many differ-
ent places, with many different parts working in parallel. How do we reduce the
impact of a compromised part on the system as a whole? Is it possible to improve
security such that critical parts of the system continue to operate, even in an at-
tack? The best place to consider security is at design time, where security is treated
as a first-class design requirement, as opposed to an after-thought, and with this
challenge in front of us, this thesis proposes contributions for improving security.
But first, before we proceed, we must first consider the fundamental question: what

is security? What does it mean for something to be secure?

1.2 Understanding Security

1.2.1 What is Security?

Intuitively, people want to protect their valuable “things” from being harmed or
stolen by a malicious entity. Some things might be physical objects, like a favourite
toy or electronic device, or even perhaps other people. Other things might be more
abstract, such as private information, or secrets, such as intellectual property. We
can refer to these valuable or sensitive things as assets [75]. Security is therefore a
type of non-functional requirement which specifies that a given asset should be pro-
tected. In the literature, security is typically considered as the problem of managing
the relationship between attackers (malicious entities that aim to disrupt, damage,

or steal assets), and defenders (who are trying to make a system more secure by
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introducing various mechanisms) [114, 122]. In an ideal case, there should be no
relationship at all—a defender should be able to block all attackers.

However, security is itself a broad concept, which can have different meanings
for different people in different contexts [3]. As such, security is often decomposed

into several smaller properties 3, 10, 11, 75], which includes the properties of:

Secrecy—sensitive information is kept private/confidential, such that only a specific

entity (or set of entities) can access said information
Integrity—specific assets are protected from unwarranted modification

Availability—resources in a system which need to be accessible are accessible, or

that the system functions as expected when expected

By devising a design that can satisfy a specific mix of different security proper-
ties, we aim to make it trustworthy, and develop confidence that our system behaves
exactly as we intend. The different security requirements indicate properties of the
states that our system as a whole is allowed to be in (e.g. the house is always com-
fortable). If our system is always in one of the allowed states, our system is secure
[10, 68]. On the other hand, if our system can be made to enter a disallowed state
(e.g. the occupancy data is extracted by a malicious party), the system is insecure.
Naturally, as designers, we should aspire towards the design of a perfectly secure
system. However, in the next section, we will explore why development of com-

pletely secure systems proves to be an ongoing challenge.

1.2.2 In Pursuit of Perfect Security

Consider the scenario where we are tasked with the design of an internet-accessible
embedded system that is used in automation of a “smart” home (Figure 1.1). The
embedded system interacts with various sensors and controls various actuators. As
part of its functionality, this system should detect for the presence of occupants, and
ensure that the environmental conditions are maintained based on the preferences
set by the owners.

We want this design to be secure, and so at an informal level, we might want to

define a few “high-level” security requirements:

1. We don’t want an attacker to make the house uncomfortable (by misconfig-

uration of the actuators)
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Figure 1.1: An embedded system for controlling a “smart” home—different threats
from different potential adversaries provides a system-wide challenge

2. We don’t want an attacker to know when we are in (or out) of the house (by

stealing occupancy sensor data)

The first requirement relates to the functional operation of the embedded sys-
tem; it deals with what the system does. The second requirement relates to data
or information flow related aspects of the embedded system. However, this is not
enough detalil for trying to design a secure system. To accommodate these require-
ments, we need to consider where potential threats might come from, or try and
determine the potential attack surface.

For one, the users might be worried about unknown external malicious actors;
they may try to access the embedded system through the internet. Or perhaps
within the group of legitimate users, some are more trustworthy, or have more au-
thority than others, and one or more of these users might need to be prevented
from misconfiguring the design.

How might we find ways to prevent malicious actions? If we want to ensure
that the environment in the house is always comfortable, we may need to consider
elements within the design; the software (SW) and hardware (HW) that constitutes
the interface between the embedded device and the actual actuators in the house
may need to be protected in some way. However, let’s consider further potential
risks. What if a designer that is involved in the production of the embedded system
(either in-house or 3rd party) has malicious intentions? They might introduce bugs,
or even deliberately incorrect functionality, which can trigger after the embedded

system is deployed. Or perhaps consider issues outside the embedded system itself;
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what happens if the physical sensors in the house are tampered with such that they
give misleading (false) readings to the embedded system, thus triggering unwanted
actuation? If an attacker wanted to really cause damage, they might even simply
break in to the house and cut power to the device, or perhaps steal the embedded
system itself!

As a means of addressing different security requirements, we need to design
and apply an appropriate security policy, which specifies the details about how the
system should operate, and the environment that it is in. A security policy aims
to capture, in detail, the relationships between all the entities inside and outside a
system. From our informal discussion thus far, it is clear that security, as a whole, is
non-trivial. Security is a cross-system issue, where technical, logistical, and human
aspects should be considered to better safeguard assets.

The key point here is that “high-level” security requirements may appear to be
misleadingly “simple”, and they often entail complex issues across many abstrac-
tion levels for real-world systems. One should appreciate that implementing and
guaranteeing complete or total protection in the face of all potential adversaries
and risks is a gargantuan undertaking. Obviously, the scope of research presented
in a single doctoral thesis cannot address or solve all aspects of security, so in the
next section we examine more closely some of the technical security challenges for
embedded systems, with full acknowledgement that our contributions should be

considered one part of a far larger picture.

1.3 Challenges for Embedded Systems Security

1.3.1 Multiprocessor Systems on Chip

With the growing complexities of embedded system applications, heterogeneous
MPSoCs have become a popular platform architecture paradigm. In this thesis, we
explore issues related to MPSoC security. MPSoCs are an evolution of the System-
on-Chip concept, where a fully fledged computing system is produced by combin-
ing a processor (or microcontroller), memories, peripherals, and accelerators into
a single chip [108]. One of the key benefits is the adoption of pre-designed and
pre-verified hardware and software components, also known as Intellectual Prop-
erty (IP) blocks, which improves designer productivity, particularly when design-
ers need to implement several different functionalities, with a multitude of various
timing, safety, or security requirements [59, 93]. As the next logical progression,

MPSoCs integrate more processors to leverage parallelism and further consolidate
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different parts of an application. Various heterogeneous blocks (with varying levels
of complexity, as shown in Figure 1.2(a)) are interconnected using some common
communication infrastructure, such as shared buses, or a Network on Chip (NoC)
[22, 31, 36, 106], as shown in Figure 1.2(b). Designers increasingly use IP blocks
sourced from different vendors for their MPSoC designs [77, 103].

1.3.2 Integrating Security into the Design Flow

A general embedded system design flow is illustrated in Figure 1.3. First, designers
must elicit and refine both functional and non-functional requirements for a given
application. These requirements are then transformed into more detailed design
specifications, which are used as the basis for prototyping/implementation of the
design. This design process is often iterative, with further refinements to require-
ments and specifications as more information or gaps in knowledge are revealed,
and trade-offs are made. The implementation is then tested, validated, and refined,
before ultimately being deployed. In some applications, the final design may also
undergo periodic maintenance, such as via firmware updates.

Throughout the design process, high level descriptions and requirements are

progressively refined into lower level implementation details, either manually, or
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through the use of some sort of automated framework [96]. Various levels of ab-
straction (and automation techniques) are useful for designers, particularly to im-
prove productivity, and to reduce errors from manual implementations. This also
helps with design exploration, where different potential configurations can be ex-
plored to see how different design metrics are affected by different design decisions.

In order to improve the security of a design, security requirements should be
introduced and managed throughout the entire design process [116]. The challenge
is in selecting appropriate levels of abstraction throughout the design process, and
how to design-for-security. Firstly, different abstraction levels can better model
various threats and adversaries for a design, and so to achieve certain security re-
quirements, we need to decide how we represent threats, and how to represent
our mechanisms for mitigating those threats. The choice of abstraction affects how
well a design “factors in” security issues, and describes the coverage of the chosen
security approach. This is an important consideration if we aim for security to be
built into the design. Essentially, we need to formulate a security model which is
compatible with the design flow. Another challenge that exists is that it is difficult
to measure security—there are different perspectives with which to reason about
security, and thus challenges with respect to defining how security could fit in to
an exploration/trade-off of different design requirements [94, 119].

Furthermore, when describing complex behaviours, abstraction can help make
aspects of the design process more manageable by hiding certain complexities. Ab-
stractions are also useful when utilising 3rd party components where implemen-
tation details are obfuscated or unavailable, as designers can focus on an applica-
tion’s intended behaviour and functionality separately from work on underlying
architecture or implementation. As part of the design flow, some assumptions and
simplifications are made, and these need to be consolidated with the intended se-
curity approach. For example, we might assume that an IP block that is used for
accelerating signal processing is used only for signal processing, but in reality, it
may have the ability to access arbitrary regions of memory. This type of extra-
functional capability should be considered as part of our chosen design abstraction
so it can be addressed at the same level of abstraction, particularly if we want to

achieve the required protection against spurious accesses.

1.3.3 Heterogeneity in Embedded Systems Design

Embedded systems are typically characterised as being tightly constrained (in

terms of resource cost, form factor restrictions, computation capabilities, power
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consumption etc.) [102, 128]. Applications often have real-time and reactivity re-
quirements as they perform continuous sensing and actuating to control the envi-
ronment in some way. Some systems generally operate autonomously (such as in
certain control applications), while others (like IoT devices) feature human inter-
faces, either directly on the device, or remotely through an Internet-enabled inter-
face. The design environment has rising time-to-market pressures, which encour-
ages design re-use [48, 59, 101, 103], whereby general architectures are customised
and tuned for specific applications, and deployed on execution platforms like Field
Programmable Gate Arrays (FPGAs) [48]. As such, MPSoCs are becoming more het-
erogeneous, with many parallel and concurrent behaviours implemented in both
hardware and software. Platform building blocks can be sourced from a variety of
vendors, and different parts of an application can have differing levels of criticality
and vulnerability.

These trends highlight a challenge for embedded system security; how do we
integrate different functionalities and requirements, while also building security
into the design? The challenge lies in creating security approaches that are usable in
the context of heterogeneity, as well as in the context of many different concurrent
and loosely-coupled functionalities.

In uniprocessor platforms, it is typical to employ a central privileged authority
for managing security, usually an operating system (OS) (such as Linux [99]), or
hypervisor (such as Xen [137]). This central authority then manages the security
features provided by the execution platform. There is an explicit privilege hierar-
chy, where highly privileged entities (such as the OS) can control access, to all the
resources in the system; hence, privilege escalation attacks can cause a significant
negative impact. However, in heterogeneous systems, it may be challenging or in-
convenient to deploy a single OS across the entire platform. Furthermore, some
tasks may execute “bare-metal” for performance or timing reasons, and there may
be multiple IP blocks (that implement some fixed functionality) with direct memory
access (DMA) capabilities. These system components need to be managed properly
to ensure that security restrictions that are defined by the designer are respected.

As will be explained later in this thesis, there are many different security mech-
anisms that could be used to better safeguard assets in a system. Development of
new security approaches, especially for a multiprocessor context, remains an on-
going topic for exploration. However, it is challenging to select and integrate a
given mechanism to address a given security requirement. For example, designers

might identify memory protection [76] as a useful general approach for improving a
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design’s security. Part of the challenge is knowing where to deploy the memory pro-
tection mechanism, and how the specific parts of the mechanism can be mapped to
entities within the specific application (or vice versa). In other words, which permis-
sions should be created, and where should they be enforced—security mechanisms
should be linked to specific security requirements. We need to develop a suitable
protection infrastructure for the given application, even when components do not
have a common software foundation, are not security-aware (i.e. without built-in
security mechanisms), or even if their internal designs are not fully accessible by
system designers. Moreover, designers should be able to quantify the implications
of adding a mechanism into the design (for example, in terms of cost overhead),
or understand the implications of omitting security additions in lieu of other de-
sign requirements. As such, the process for exploring and incorporating security

features into an embedded system design should be systematic.

1.4 Aims and Contributions

As a response to these various challenges in the arena of embedded system secu-
rity, this thesis proposes and explores novel approaches for improving security of

MPSoCs. Broadly, our primary aims are to:

Reduce the impact of an initially successful incursion in a heterogeneous
MPSoC

Facilitate easier accommodation of security concerns into the design flow

Provide frameworks for design space exploration which are security-aware

Investigate the feasibility of customising MPSoC architectures to provide a

hardware-supported security foundation

To achieve these aims, our research story begins at an abstract level, where we first
develop a conceptual model for describing the relationships between components
in a MPSoC and the potential threats in a design. This leads us towards development
of low-level mechanisms for improving security; these are then used to influence
the concrete design of digital hardware for supporting decentralised and dynamic
access controls. To deal with the bigger problem of designing for security, we then
create a security-aware design flow to systematically generate a security-enhanced

platform. This thread culminates in our research on context-aware protections at
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Figure 1.4: A high-level view of research progression in this thesis

a higher service-level abstraction. The progression of this research is illustrated in

Figure 1.4. Overall, this thesis will present the following contributions:

+ A system-level security-aware approach for MPSoC design: A security
model provides the framework for formulating security requirements/specifi-
cations, capturing potential security risks, and management of potential secu-
rity issues. At the system-level we want to reason about the design at a high
level of abstraction. By considering several general approaches, alongside the
specific context of heterogeneous MPSoC design, we propose a security ap-
proach and novel abstractions to incorporate security into the design flow.
With this approach, we can define security rules to specify requirements
for protecting parts of a design with different levels of criticality. The pro-
posed approach serves as the foundation for novel system-level techniques

and tools for improving security that are presented in this thesis.
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- Hardware support for decentralised and dynamic access control: A
security infrastructure as part of the MPSoC architecture is necessary for
improving security. In this thesis we present prototype implementations of
the Isolation Unit (IU), which are customisable hardware blocks that can be
inserted into a MPSoC design to improve system security. These IUs are ded-
icated memory protection blocks that do not require an OS for run-time cus-
tomisation. Two variations of the IU, implemented in VHDL, are described
and characterised by their resource cost when synthesised for an FPGA-based
execution platform. We also investigate the feasibility and utility of enhanc-
ing and integrating the functionality of the Isolation Unit into a Network-
on-Chip (NoC) network interface. Access controls are also further enhanced
with the notion of context, where the time of an access or sequence of opera-

tions is also checked for correctness.

« Systematic and automated design methodologies: To move away from
ad-hoc design methodologies, we present some novel approaches to improve
security as part of the design flow. We propose a systematic methodology
for generating and exploring customised MPSoC architecture configurations,
and analysing the specific realisation of the application to check for compli-
ance with certain security rules. This presents groundwork for facilitating
a more robust trade-off between security and other design metrics. We also
present a novel top-down design flow for customizing a protection infrastruc-
ture to improve MPSoC security, even where components are heterogeneous
or not security-aware. As part of this, we also describe a service-level abstrac-
tion to deal with complex IPs, to re-frame security as protection of services,

and protection from service providers.

1.5 Publications and Manuscripts

This thesis features manuscripts that have been published:

« Benjamin Tan, Morteza Biglari-Abhari, and Zoran Salcic, “A system-level se-
curity approach for heterogeneous MPSoCs,” 2016 Conference on Design and
Architectures for Signal and Image Processing (DASIP), Rennes, 2016, pp. 74-
81. doi: 10.1109/DASIP.2016.7853800

— Material from this paper can be found in Chapter 3 & 4
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« Benjamin Tan, Morteza Biglari-Abhari, and Zoran Salcic, “Towards decen-
tralized system-level security for MPSoC-based embedded applications”, In
Journal of Systems Architecture, Volume 80, 2017, Pages 41-55, ISSN 1383-
7621 doi: 10.1016/j.sysarc.2017.09.001.

— Material from this paper can be found in Chapter 2, 3 & 4

« Benjamin Tan, Morteza Biglari-Abhari, and Zoran Salcic. 2017. “An Auto-
mated Security-Aware Approach for Design of Embedded Systems on MP-
SoC”. ACM Trans. Embed. Comput. Syst. 16, 5s, Article 143 (September 2017),
20 pages. doi: 10.1145/3126553

— Material from this paper can be found in Chapter 5
as well as manuscripts that are under preparation/under review:

 Benjamin Tan, Morteza Biglari-Abhari, and Zoran Salcic, “Towards Context-

Aware Service Protection for NoC-based Heterogeneous MPSoCs”

— Material from this paper can be found in Chapter 6

1.6 Thesis structure

The remainder of this thesis is as follows. In Chapter 2 we provide a critical discus-
sion of the state-of-the-art for embedded systems security, with a particular focus
on mechanisms and frameworks for MPSoC design. In Chapter 3 we explore a vari-
ety of security models, examining the utility of each in the context of MPSoC design.
We present a threat model that underpins and motivates our research contributions,
and propose a design abstraction for security analysis. In Chapter 4 we apply our
MPSoC security model, and discuss various mechanisms needed to provide a more
secure foundation. This leads us to the development of the Isolation Unit. In Chapter
5 we propose a systematic and automated approach for designing embedded sys-
tems on MPSoCs, where Isolation Units are customised and inserted into the plat-
form to address designer-specified security rules. In Chapter 6 we present a novel
service-oriented approach to MPSoC design, and move Isolation Unit functionality
into network interfaces, while also providing transparent permission management
as part of a service consumption paradigm. Finally, in Chapter 7 we make some

concluding remarks, and contemplate potential future directions for this research.



CHAPTER

Background and Existing

Approaches for Improving Security

Researchers have tried to consider and manage security issues for a long time. In this
chapter we discuss some background concepts on security issues, such as examples of
mechanisms used in attacks, and then critically examine various techniques for improving
SoC security, with particular interest at the implications when we consider the multipro-
cessor context. In looking at different types of attacks, and different types of defences,
we present a view of the state-of-the-art for computer security, examining both more
established techniques for computers generally, followed by some emerging approaches
for MPSoCs. We identify common themes and opportunities within existing literature for
improving computer system security, and this provides the context for the research contri-
butions presented in this thesis. Our story begins by looking at attacks in a general sense
(§2.1), before moving into a discussion of defences (§2.2 and §2.3).

2.1 Background on Security Attacks

Security is about protection of assets which are specific to an application. Consider
Figure 2.1, which represents an MPSoC as logically partitioned in two: hardware/-
software components related to implementation of the application’s functionality,
and the hardware/software components that form the underlying platform. The
application level contains the “logic” that designers implement, such as control
algorithms, user interface behaviours, and data processing operations. The plat-
form consists of components that we can consider to be the infrastructure, such as
processing elements and memories that application software executes on, as well

as other hardware, such as I/O interfaces, accelerators, peripherals, and on-chip
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Figure 2.1: Threats and Defences for a MPSoC

buses/networks. In addition, we consider system software, like operating systems,
shared libraries, and drivers as part of the platform, as they support the applica-
tion’s execution. Security exploits occur as attackers attempt to take advantage of
inadvertent (or deliberate) flaws, or vulnerabilities, within the application or plat-
form. Various attack strategies might target the application (exploiting issues in ap-
plication logic, or implementation), target the hardware/software in the platform,
or employ a combination of attack vectors in the mission to compromise an asset.
In 1994, Landwehr et al. formulated and presented a useful taxonomy for cat-
egorising computer security program flaws [69]. Their taxonomy provides three
dimensions of classification regarding how a flaw is introduced, when the flaw is
introduced, and where in a system it appears, referred to as genesis, time of intro-
duction, and location respectively. Several key points are raised in their discussion,
reflecting issues in the design practices of the day, and their view of the “terrain of

computer program security flaws”:

« flaws can be introduced intentionally, where malicious parties directly add
malicious code to systems, or where flaws are introduced by functionalities
that are added non-maliciously by legitimate designers that can later be ex-
ploited (for example, debugging interfaces for making the design process eas-

ier)

« flaws can also be introduced inadvertently, especially as a result of designs

that are “composed of many modules, and involving many programmers”, as
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issues such as under-resourcing might result in insufficient oversight (lead-
ing to bugs which are missed in reviews), or inadequate documentation (lead-

ing to implementation mistakes)

« the system life-cycle can be abstracted to three phases of development, mainte-
nance, and operation—flaws introduced during development may appear dur-

ing requirement/specification design, in source code, or object code

« security issues are likely to arise due to “competition between security re-
quirements and other functional requirements”, or where solutions are “not

deemed to be cost effective’—which implies design trade-off

« risk from flaws introduced by hardware, while not prevalent at the time, still
warranted a discussion, with the view that there will be an increasing need

to consider the impacts of hardware-based exploits

Since [69] was published, the nature of fundamental flaws used in security at-
tacks have persisted; the same grievances regarding validation errors, privilege es-
calation, and exploitation of poorly documented (or undocumented) “features” are
present in recently disclosed vulnerabilities. Despite decades of work in computer
security, our current state of affairs is still hamstrung by the prevalence of appli-
cations that are fraught with vulnerabilities resulting from poor implementation.
In short, poor software. In an analysis of vulnerability trends from 2008-2016 [64],
Kuhn et al. discovered that simple coding errors continue to be widespread. Such
errors, like omitting a bounds check (resulting in buffer overflows) are trivial, yet
continue to have drastic impacts on overall security. It should be unsurprising then,
that the literature often features technical mechanisms and strategies to bolster se-
curity at the platform level, accepting that applications are likely to be vulnerable,
or already compromised.

Research in improving security is typically contextualised as a response to secu-
rity attacks. To better understand the trends and opportunities in security research,
we will now look at some exemplary attack types, particularly as we shift focus

from single to multiprocessor systems.

An example attack vector: Buffer Overflows

A common aim for attackers is to seize control of a computer by controlling a pro-
cessor’s execution. One example of a common attack vector is the targeting of soft-

ware flaws that deal with memory buffers. Useful programs usually receive data
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Figure 2.2: An example of the quintessential overflow

from the external world, and this data needs to be stored in memory. When using
lower level programming languages, such as C [54], care must be taken to manage
memory appropriately; after all, a processor will blindly execute whatever instruc-
tions it is given. Consider Figure 2.2, which illustrates a stack, the memory structure
used as temporary storage in a program’s execution. The stack holds data for the
currently executing function, as well as other critical data such as the return ad-
dress. Space on the stack is allocated for a buffer, buff, into which user input is
stored. However, the C standard library function gets () does not perform any
input validation or checks, simply copying the input data into memory—input data
that exceeds the allocated size simply overflows, over-writing whatever was in the
memory. This means that attackers can cause program crashes (by causing the func-
tion return to redirect to some random address), or hijack the program (and then
perform some nefarious actions by injecting their own code). In fact, the memory
compromise might only be the starting point of a multi-vector attack, where other
flaws may be exploited to circumvent security mechanisms. The specific case illus-
trated here is trivial, but many variations of this sort of attack mechanism continue
to exist “in the wild” [122].

Where do we start if we want to improve security? It might be useful to think
in terms of the taxonomy discussed earlier: how is the flaw introduced, when is
it introduced, and where is it located? Memory overflow flaws are inadvertent,
stemming from an omission of boundary condition checking. It is a flaw that is
introduced during software development, and might be located in the application,

operating system, or other supporting utility programs. Understanding the how,
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when, where of a flaw provides a good starting point for researchers and designers
to improve security by flaw elimination or mitigation.

We might want to tackle potential overflows from the perspective of when the
flaw is introduced, for example, during development of the application. One option
is to mandate that designers use higher level languages with automatic memory
management. Alternatively, we might mandate more frequent and thorough code
reviews, or adoption of a standardised development guidelines [84]. But what if we
are still uncertain about the assurance level of the software? We can turn to techni-
cal solutions, perhaps introducing new mechanisms for run-time monitoring [92]
to instead detect if a violation occurs, and then perform some corrective action,
instead of preventing the incursion outright. Each approach for improving secu-
rity, be it in changing development principles, or deploying technical mechanisms,
carries some element of cost, and therefore trade-off.

In single processor contexts, existing approaches often focus on execution of a
single thread; in the case of overflows, we are interested to know how the control
flow can be manipulated. Often, the focus is on software issues, with execution as-
sumed to be on commodity architectures. Other issues that have been examined
include the concept of privilege, where a single processor, which has control of the
entire system (such as in a System on Chip context), might need to coordinate differ-
ent concurrent behaviours safely, usually by some means of hardware-supported
privilege level enforcement. As we will discuss in Section 2.2 of this chapter, clas-
sical exploits in the context of single processor systems, like buffer overflows, are
well-studied in the literature, with different security mechanisms aiming to im-

prove different parts of the system life-cycle.

An example emerging issue: Hardware Trojans

Research in the context of multiprocessor security is less mature, particularly as
design environments evolve and embedded systems become more complex. Single
processor embedded systems can obviously harbour the same risks and vulnerabili-
ties of well-studied flaws such as memory overflows in vulnerable software, but the
impact of a successful exploit can potentially have a greater scope once many other
processors, memories, and peripherals all come into play. Insights from research in
more traditional single processor contexts are useful, but also need to be considered
alongside additional issues that are introduced in the design and use of multipro-
cessor systems. MPSoC design brings many of its own new emerging challenges,

such as hardware Trojans, where a malicious IP block is included into a MPSoC
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design, as shown in Figure 2.3. As design processes become more distributed and
decentralised with design re-use strategies, malicious IP blocks that masquerade as
legitimate and useful can be introduced into the supply chain.

Ordinarily, IP blocks are used to accelerate parts of an application, often oper-
ating at the request of a processor (Figure 2.3(a)). During system operation, a hard-
ware Trojan can cause trouble in various ways after being activated (after some
time, or after a specific trigger); it might start misbehaving, either denying service,
or providing spurious data (Figure 2.3(b)), or surreptitiously try to retrieve or cor-
rupt data from elsewhere in the system (Figure 2.3(c)).

Using the same flaw taxonomy as before, hardware Trojans can be categorised
as an intentional, malicious flaw, introduced during development in the hardware
part of the system. In fact, the hardware aspect provides an interesting challenge
when trying to improve security, not least because of the complexity arising from
having many parallel entities operating during run time. Once again, there are
many potential avenues for designers and researchers; we might enforce security
policies that preclude the use of untrusted IPs, or build-in some sort of Trojan detec-
tion by analysing register-transfer level (RTL) models [95], with the aim to exclude
Trojans entirely. Alternatively, we might instead tolerate the potential existence of
Trojans in a design, but use techniques to minimise their impact if they manifest,
such as high level synthesis approaches to isolate potential malicious IPs [101], or
scheduling to try and prevent collaborating Trojans from triggering [77].

In the multiprocessor domain, the challenge is that we face a scenario where
any one of many concurrent behaviours is compromised or malicious. Architec-

tural features like on-chip component interconnections provide new areas of risk,

Interconnect
.g. Network on
Chip)

Interconnect
(e.g. Network on
Chip)

IP Block

(Trojan) (Trojan)

(a) (b)

Figure 2.3: Behaviour of a HW Trojan, (a) functioning as expected, (b) generating
spurious data, (c) performing unexpected actions/accesses
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especially when they enable resource sharing amongst potentially untrustworthy
components. Furthermore, whereas the “main processor” in an SoC may have been
the key target for attacks, new approaches instead target other hardware compo-
nents in a system, such as the GPU [67], which implies the need for more compre-
hensive, system-wide security. Issues that are well-studied in the single processor
domain are also exacerbated, particularly as designers consolidate multiple inde-
pendent systems into a single system. There is no panacea for security; solutions
need to target a specific security goal, be it in removing a flaw, preventing the ex-
ploitation of a flaw (while the flaw remains), or mitigating the impact of a flaw’s
exploitation. Such emerging security issues requires novel design approaches and

security mechanisms, and it is in this developing area that this thesis contributes.

Other types of attacks: Side-channels

However, before we explore some trends in security defences, side-channel attacks
should be mentioned for the sake of completeness. Side-channels are indirect chan-
nels that can (often unintentionally) communicate information, and are used mali-
ciously for extracting sensitive data from systems. Types of side-channels include
timing variations during execution [61], and power consumption changes [62].
Side-channels are highly dependent on implementation specifics, and are closely
linked to the platform architecture.

For example, consider encryption. The secrecy provided by encryption relies
on the prerequisite that encryption keys are private. However, implementations
of cryptographic algorithms are often optimised to increase performance, which
might result in timing variations when executing on a given architecture. If timing
is affected by the message that is encrypted, and the key used for encryption, a
malicious actor may be able to perform statistical analysis to infer the key used,
thus breaking security of the system, as demonstrated by Kocher in [61].

Side-channel attacks are an issue in single and multiprocessor contexts, espe-
cially in the context of secrecy/confidentiality, but we will not deal with these di-

rectly in this thesis.

2.2 Defences: Design Approaches and Software

In general, existing approaches for securing systems aim to introduce mechanisms
that tackle small parts of the security problem, addressing one or two of the key se-

curity properties (§1.2.1) to create some sort of protection boundary. Approaches
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can be classified by which part of an attack is addressed, be it in attack preven-
tion, detection, mitigation, or recovery. Broadly speaking, security-hardening tech-
niques include proposed software/programming language changes, hardware archi-
tecture modifications, custom-hardware, application of formal methods, or combi-
nations of hardware/software additions. Essentially, the security design problem
is selecting and implementing mechanisms to realise a chosen security policy’
throughout various levels in the design. Mechanisms are chosen to perform one

or more of the following:

+ Detect an attack attempt

Prevent infiltration into the system

Reduce the impact of a successful intrusion

Prevent exfiltration of assets

Allow recovery from an attack

At the application level, security issues are often focussed around protection
of data, either when it is in motion (data in transmission from one device to an-
other over a network) or at rest (data stored on a device, or some repository, like a
database hosted in the cloud). In the 1980’s, discussions of security issues were as
much about managing people within an organisation as it was about technical im-
plementation of security mechanisms, with access controls designed to reflect the
roles, responsibilities, and motivations of different people in an organisation [109].
Information flow was a key consideration, and early security models enforced con-
cepts such as a hierarchy of secrecy levels, which were adapted from military secu-
rity policies (as evidenced in the development of the Bell and LaPadula model [68]).
Later developments then accommodated commercial requirements, such as the Chi-
nese Wall model for preventing information leakage to conflicted parties [14]. A

security policy is essentially a representation of actors, objects, and processes in a

L If we want a system to be “secure” in an ideal sense, designers must derive a set of ideal se-
curity requirements that completely capture the needs/wants of all stakeholders. The ideal security
policy must then be formulated to satisfy all security requirements, and then a set of security mech-
anisms must be flawlessly implemented to realise the ideal security policy. If any of these things
are incomplete or inconsistent, successful attacks are possible, and we don’t have “perfect” security.
Trying to decide if a designer has completely captured requirements, addressed them in a policy,
and implemented the policy, is, in my opinion, a huge (and potentially impossible) undertaking of
requirements/systems engineering on top of purely technical issues with respect to security mech-
anism design and implementation. We will focus only on mechanisms here, with the fundamental
assumption that we aren’t aiming for perfect, but that there is some sense of “good enough”.
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system, and how they should (or should not) interact; designers implement security
mechanisms specifically to enforce the security policy.

As computer systems have become distributed and decentralised, the desire for
information security has required that security properties are addressed by tech-
nical innovation, such as the development and use of novel and secure commu-
nication protocols to protect data in motion. Such protocols usually involve cryp-
tography, such as use of the well-known RSA cryptosystem [104] for secure data
transmission in distributed systems. Other aspects of application level security also
involve managing human behaviours or business processes related to security, like
mandating the use of strong passwords, and ensuring frequent firmware updates
which address and patch vulnerabilities that are discovered after a device is de-
ployed [6]. Unfortunately, trying to encourage good behaviour for human elements
of a system doesn’t always work [12].

Existing work on improving security can be coarsely categorised as techniques
for improving the design process, and techniques that deploy mechanisms into the
system. Security mechanisms can be inserted to place restrictions on the interac-
tion between different parts of a system, or within each part of the system (such as
around a particular asset). Use of different mechanisms is known as the multiple in-
dependent layers of security approach [132]. This is pertinent as attacks can originate
from external sources—exploiting exposed interfaces—or internal sources, where
components in the design have been compromised during design or the manufac-
ture process [76, 101]. Isolation is a key concept in security, especially if we want
to reduce the likelihood of unwanted interference. In this section, we will discuss
some design approaches that factor-in security issues (§2.2.1), as well as explore

some software-focussed techniques for improving security (§2.2.2).

2.2.1 Improving Implementation

Application logic is typically implemented in software—after all, a computer is use-
less if it is not executing any useful instructions. There are many approaches in the
literature to enhance security at the application level, where the aim is to avoid
issues that manifest from designers dealing directly with low level aspects of the
design.

In the design process, there are several industrial standards that guide the devel-
opment of secure software. In [59], the practice of embedded software development
is discussed, highlighting concepts such as the principle of least privilege (software

components should only be given access to resources that are necessary for their
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functionality, nothing more), as well as various attempts at standardisation, such
as Motor Industry Software Reliability Association (MISRA) coding guidelines [84].
Additionally, there exists an international standard for evaluating security of IT
systems known as Common Criteria (ISO/IEC 15408), which defines different assur-
ance levels and the use of protection profiles for evaluation [54]. In the Common
Criteria framework there is a mix of peer-review practices for code verification in
industry, as well as requirements for static and dynamic code checking at higher
assurance levels. Threat modelling as part of the design process has also been pre-
sented, often drawing from insights in human psychology [114].

Another design process improvement is the increased use of formal methods
with concepts like model driven design gaining some traction. Some examples of
the use of formal methods include [79] where an attempt is made to bring security
design requirements out of documentation and into the design flow, with proposals
for things like security annotations that can be checked throughout the design pro-
cess. Formal methods can also be used for specifying requirements and checking
their consistency/correctness [87], particularly with complex distributed systems.
Model checking is used in [29] together with dataflow analysis to identify potential
sources for malicious input, labelling “tainted” sources and their eventual “sinks”,
thus providing useful feedback for fixing flaws in a system. Formal methods offer
the promise of guaranteeing certain security properties such as isolation guaran-
tees, and this has been used in the development of secure operating systems such
as seL4 [60], which can be used to increase the assurance of the platform. However,
formal methods are not without limitations. In particular, the cost (in terms of time,
expertise required, and ultimately, financial investment) has been identified as pro-
hibitive in many cases, as discussed in a recent National Institute of Standards and
Technology (US) round-table [55].

2.2.2 Supporting Security with Software

As a complimentary approach to improving design processes before a system is
deployed, run-time mechanisms seek to improve security while a system is oper-
ating. Instead of assuming that all flaws are eliminated during the design process,
research into run-time mechanisms usually assumes that security exploits are pos-
sible, and hence focuses on detection of attacks. Once an attack is detected the
system can then try to prevent damage, recover from the attack, or log the attack

for later analysis.
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One strategy for improving security is the enhancement of programming lan-
guages (and their run-time behaviour). Different programming languages have
been designed to provide different features, with the aim to reduce the design effort
required from programmers. Features include automatic memory management, ex-
ecution platform portability, and higher levels of design abstraction (such as Object-
oriented programming, concurrency models etc.); the idea is to reduce programmer-
introduced flaws by “taking care” of finicky details. Languages like Java [34] and
Go [32] purport to make programming easier, with low level details managed by
interpreters, virtual machines, or compilers, such as built-in bounds checking, or
discouraging direct manipulation with pointers. Even so, a lot of embedded system
software remains written in lower level languages like C, where problems with
buffer overflows, code corruption, control flow hijacking, and information leaks
present a large potential for exploitation [122]. In fact, even in higher-level lan-
guages like Java, underlying run-time environments (e.g. Java virtual machine im-
plementations) are typically written in lower level languages, which presents con-
siderable risks owing to design complexity [33].

With this in mind, there have been some efforts in trying to improve the secu-
rity of low level languages like C, such as the extension CCured [86], one of several
modifications to the language. In this work, the primary aim was to enhance the
security of legacy software by recompiling source to produce “safer” programs. The
main addition is around the pointer—essentially, pointers are enhanced with more
information, such as permissible bounds (this is also known as the concept of fat
pointers), or surrounded with run-time checks, in order to reduce the risk of mem-
ory exploitation. This is also complemented with enhanced static checks for type
safety. Run-time checks of enhanced pointers added 3-87% overhead in execution
time, and also introduced compatibility issues with external C libraries. Further-
more, because of the software-based nature of this mechanism, multi-threaded con-
texts require that locks are acquired to ensure consistent states for the enhanced
pointers.

Instead of directly changing programming languages, other run-time monitor-
ing techniques operate alongside application software, acting like an overseer. In-
trusion detection systems (IDS) [85] aim to identify that an attack has been at-
tempted successfully. For example, we can attempt to detect malicious software
(malware) directly by recognising known signatures. This checking of software sam-
ples against a database of known threats forms the basis of antivirus software (AV)
approaches [125], with coverage that varies depending on the vendor [1, 74]. How-

ever, because of the reliance on a database of known threats, so-called zero-day
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vulnerabilities are often undetected [125]. Furthermore, AV software typically re-
quires a high level of privilege in a computer system, particularly as it requires the
ability to inspect data for many parts of the system. Because use of AV software
is part of a “common sense” approach to desktop security, AV software provides a
lucrative target, whereby an attacker can abuse a highly trusted part of a system;
in using software to defend software, the same risks for inadvertent software flaws
exist for exploitation [21]. Firewalls [78] are another widely deployed mechanism
(and is often bundled with AV). By means of packet inspection and filtering, fire-
walls create a boundary between networks, often providing a barrier between local
networks and the wider Internet; instead of detecting malicious software, firewalls
focus on communication, or network traffic.

Alternatively, we can instead monitor legitimate applications to identify where
attacks occur. For example, the approach in [92] proposes decomposing programs
into “basic blocks” in a control-flow graph and using these blocks to generate infor-
mation about what software does, and how long it should take to undertake each
operation. Code injections are detected by recognising failures in meeting expected
checkpoints that are instrumented into the binaries.

An alternative approach uses performance counters provided in hardware to
analyse software behaviour, with machine learning models trained to detect varia-
tions in “program phases” [24]. This work is based on the underlying assumption
that most legitimate software behaviour is cyclic with regards to the resources that
are used, and the time it takes, hence recognisable in performance data. Malicious
programs also have signatures, for example, a program designed to steal location
data from a GPS will exhibit certain behaviours like turning on the GPS unit even
if its code has been mutated to avert traditional anti-virus detection mechanisms.
Using machine-learning, a monitor was trained to identify malware based on per-
formance counter information provided by processors, with some success.

Another run-time monitoring strategy is the use of a technique called Dy-
namic Information Flow Tracking (DIFT), also known as taint tracking in the lit-
erature. The main idea in this technique is that most security exploits arise from
misused data. For example, in the case of code injection, untrusted data from ex-
ternal sources is used as program instructions or branch targets. With regards to
information leaks, sensitive information is used or handled in an improper way,
such as when secure data is prepared for transmission outside the system. By tag-
ging, tainting, or marking information and tracking it throughout the system, we

can add safeguards to program execution. Similar to enhanced pointers, we add
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metadata to the system so we can make judgements as to the legitimacy of the op-
erations in our program. A typical use case involves detection of a stack overflow
attack—when a stack is overflowed from an external source (like while reading a
file through a vulnerable function) and the return address is corrupted, attempts to
jump to the overridden address will trigger an exception as the address will have
been tagged as “dirty” or some other identifier.

DIFT has appeared in various forms over the years. Initially, DIFT techniques
were implemented in software, typically introducing fairly high overhead (slowing
down application performance 24-37x in [88]) with subsequent developments typ-
ically targeting performance improvement. Strategies for implementation include
techniques like use of dynamic binary translation [100] to provide transparent secu-
rity without modifying pre-existing binaries, but again with fairly high worst-case

overhead (12.0-46.5x without optimisations).

2.3 Defences: Hardware Support

Looking at security from a hardware perspective is an emerging trend, especially
as software-only techniques for security continue to be thwarted or circumvented
[121], and hardware-based threats increase [66, 72]. As with software-based tech-
niques, different hardware approaches serve different purposes; some techniques
act transparently to applications, usually in some sort of monitoring capacity that
is not easily disrupted by flaws in software. Other hardware additions implement
mechanisms that are used alongside software to realise security policies, with the
belief that hardware-based implementations are less susceptible to attack, or that
important primitive operations, like key generation or cryptographic verification,
are better insulated when they essentially exist at a different “level” to at-risk soft-
ware. Hardware implementations of security mechanisms can also provide valu-
able performance improvements by reducing the overhead associated with execut-
ing protections as software (such as from context switching by OSes). Furthermore,
hardware, being the platform that sits “under” software, seems to be a natural place
to create a foundation that is more resilient to predominantly software-focussed ex-
ploits. With the rise of custom MPSoC design there is also greater opportunity for
customising a platform with hardware-based mechanisms, which was not previ-
ously possible with commodity mass-market platforms.

In this section we first begin by looking at the processor, being the focal point

of a computer (§2.3.1). We then move outside the processor, examining support
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hardware and the move towards multiprocessor system security (§2.3.2).

2.3.1 Processor-centric Protections
Commodity Processor Evolution

Two of the main reasons for implementing security mechanisms in hardware are to
improve performance, and to hide things from software. In making certain informa-
tion inaccessible to user software (such as status flags or identification registers), or
handling certain checks without software intervention (such as permission check-
ing), security mechanisms can be hardened against software-based attacks.

One of the most influential ideas in processor-supported security is the notion
of protection rings, the idea that different software should execute with different
levels of privilege. The Multics operating system featured one of the earliest reali-
sations of these hierarchical protection domains [112], where each higher privilege
level provides a superset of the access rights of the lower levels—software in ring
0 can access all parts of the system, while ring 1 upwards can access less and less.
The key insight was that, over the course of an application’s execution, different
external functions and libraries require different access rights, and so by support-
ing easy reduction of privilege, and carefully regulating increasing privilege as well
defined “gates”, a program could change protection domains to more closely match
the application’s needs. Furthermore, different levels provide isolation—while mis-
behaving or faulty programs in ring 0 could result in a system crash, the impact of
user program failures in higher rings would be less catastrophic to the system as a
whole.

Initially implemented in software, a request for changes in access controls were
trapped and then executed by the OS. Hardware support for protection rings was
subsequently introduced, for performance improvement (or increasing “economy”,
as discussed in [112]) and easier use by software designers. Hardware was added to
track the current protection ring (new register flags), as well as to perform access
control checks as part of virtual memory management, where current privilege
level can be checked against segment descriptors of smaller areas of memory. New
machine instructions for changing privilege level (and essentially, the “mode” of
the processor) were introduced, which was then used by software developers to
implement their protection domains.

This notion of different privilege levels proliferated to other processor architec-

tures (such as x86, since the 80286 [49]) allowing the separation of software into at
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least two levels, nominally the privileged supervisor (for the OS kernel) and non-
privileged user (for all application programs).

Virtualisation was the next evolution, where an even higher privileged, so-
called ring -1 was added into processors to allow an underlying virtual machine
monitor (VMM) or hypervisor to manage multiple guests co-existing on a single
host machine. The hypervisor is endowed with the ability to set-up and coordi-
nate several virtual machines (VM), where software running on each VM can “see”
an entire (abstract) computer system, but not necessarily other VMs executing on
the same hardware, thus isolating different applications. This approach introduces
some overhead however, as the hypervisor is required to perform some translation
or trapping every time the guest OS wants to do anything like access peripherals
[59]. Hardware support like Intel VT-x [50] improved virtualisation performance by
adding new instructions for guests to enter and exit virtual machine modes while
maintaining the protection of the host. Virtualisation is used extensively in large
cloud-based services, and there is a recent trend of using virtualisation in the con-
text of embedded systems [43], although problems like guest-to-host escape (where
privilege levels are violated) are possible [16, 81]. Subsequent attempts to improve
security have tried to add functionality into hypervisors, such as the Memory Intro-
spection Engine (MIE) presented in [81], which analyses OS kernel code for mali-
cious modification. The hypervisor is able to run independently to vulnerable code
because of hardware-based mechanisms.

In a related approach, but orthogonal to hierarchical rings, ARM’s TrustZone
[75] adds a secure mode to the processor, thus creating, in essence, two logical
processors on one physical processor. TrustZone enforces the notion of separating
processes—in this case, along the lines of secure and insecure (or normal) processes,
where the two operating modes, normal and secure, have address space separation
enforced in hardware. An important feature of the TrustZone architecture is the
extension of the secure/normal distinction beyond the processor into the rest of
the SoC; on-chip peripherals are set as secure or normal. Software in the secure
world have full access to the address space, while normal world processors cannot
access secure world memory, and this extends into peripherals, where secure pe-
ripherals can only be accessed by a processor in secure mode. This allows two oper-
ating systems, one secure, the other not, to share the processor. Sensitive data and
functionality, such as biometric data, or cryptographic operations, can be placed
in the secure world. Normal world software is completely oblivious to the secure
world memory (and cannot physically access it), and can only request secure world

functionality through well defined hardware implemented interfaces (such as the
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secure monitor call instruction). Privileged entities (such as an OS), can add further
protections by configuring components such as a Memory Protection Unit (MPU)
[4] which can perform access control checks on regions of memory, within the
context of the given world. Such techniques have only recently started appearing
in embedded systems contexts, such as in ARM-V8 based Cortex M series, (in the
Cortex-M23 which appeared in 2016 [80]).

In contrast to TrustZone’s secure/normal delineation, Intel’s Software Guard
Extensions (SGX) [83] provide hardware-based isolation for multiple smaller pro-
tected areas. Hardware support is added for enclaves that are protected even from
higher privileged programs; in enclave mode additional address checks are per-
formed to ensure that only enclave code executes on enclave data irrespective of
privilege. Additional facilities are added to allow selected data to be encrypted upon
exit of the processor (such as during a cache eviction), as well as cryptographic mea-

surement to check for integrity of the enclave.

Security-focussed Processor Architectures

In parallel to developments introduced in commodity architectures, where secu-
rity features have been added, there also exists some architectures where support
for security was a first-class consideration. One of the major works often cited
in the realm of secure processor architectures is the XOM (pronounced “zom”) or
eXecute-Only Memory machine, presented in [126]. This work was largely moti-
vated by anti-piracy efforts. Execution of pirated software is prevented by provid-
ing secure execution environments, described in this work as compartments, and
heavy reliance on encryption and cryptography for isolating program code and
data of concurrently executing applications. Each compartment has a unique ses-
sion key, except for the null compartment (where insecure software can execute).
The session key is used to decrypt all machine instructions, as well as determin-
ing if data reads are allowed. Intercommunication between compartments is per-
formed using machine instructions that allow moving to and from the null com-
partment. As all data is tagged, each application can only interact with the data it
creates itself, or explicitly takes from the non-secure part of memory. Untrusted
external memory is accommodated by encryption, as well as hashing, to verify
the integrity of anything sent off-chip (violation of code integrity should result in
non-matching hashes). Context switching for interrupt handling is also allowed,
with special instructions to encapsulate secure machine state for moving, as well

as hashing for verifying integrity. As may be expected, this architecture has not
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been widely adopted, largely due to significant overheads in terms of performance
(cryptographic functions), and resources needed (extra bits for tagging, dedicated
cryptographic functions).

The more recent AEGIS processor design [121] attempts to secure execution by
providing an execution platform with different operational modes, cryptography,
and ultimately, better performance than an architecture like XOM. AEGIS features
four execution modes, STD (Standard), TE (Tamper Evident), PTR (Private Tamper-
Resistant), and SSP (Suspended Secure Processing), each with a different level of
security. STD is essentially a normal execution mode; TE involves checking hashes
to verify information from off-chip memory; PTR adds encryption in stores to off-
chip memory; and SSP allows an application in PTR or TE modes to perform inse-
cure operations (such as accessing functions from a shared library) with reduced
overhead. The idea behind these modes is that a more flexible approach to secu-
rity can be taken; in architectures like XOM, the entire application is considered
secured, and so must operate with the overheads inherent to the security approach.
In AEGIS the central tenet is that only parts of an application need to be secure,
that only a subset of the application requires encryption or hashing.

Memory in this architecture is partitioned according to the level of security
(whether it needs encryption, or hashing, or nothing at all), and the proposed
programming model has procedures and data structures identified as unprotected,
verified, or private in program code, being placed in the appropriate region by a
compiler. Another interesting thing that underpins AEGIS is the use of Physical
Uncloneable Functions (PUF) for generation of processor secrets. PUFs provide an
alternative to storage of digital keys in non-volatile memory; using physical prop-
erties such as timing delays (which differ from device to device due to variations
resulting from manufacturing processes), secret keys can be generated for each
processor. The implementation used in [121] uses a race among multiple-bit inputs,
and BCH code (a type of error correction code) to make generated keys reliably
consistent. Multitasking applications are managed by the use of a secure kernel.

CHERI [135, 136] takes a different approach to secure design; instead of cryp-
tography, CHERI provides hardware support for capabilities [25] by means of an
extended 64-bit MIPS ISA. The concept of capabilities is intuitive to grasp; memory
accesses are only possible via capabilities which define the actions that a certain
process may perform on a certain part of memory (for example, managing per-
missions for reading, writing, and execution). Memory is protected by mandating
that all accesses have to be made through these unforgeable safe pointers. Capabil-

ities also facilitate application sandboxing. Woodruff et al. suggest that the use of
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capabilities provides greater protection as the granularity is much finer than that
of traditional page-based mechanisms (conventional virtual memory). Low level
languages like C can have pointers implemented instead as capabilities, adding
bounds checking as well as permissible action enforcement. To demonstrate their
work, CHERI has been implemented as an FPGA prototype (by extending BERI—the
Bluespec Extensible RISC Implementation from the University of Cambridge [19]),
adding a new coprocessor, a modification of LLVM for capabilities, and a modi-
fication of FreeBSD. Additionally, the authors highlight that their work supports
incremental adoptability—legacy programs can run without modification, minor
modifications can add some additional security, and new programs can be created
from scratch.

Other recent work in protecting memory involves the creation of secure sec-
tions of memory, and the use of cryptography for attestation (proving code in-
tegrity). Iso-X [28] introduces modifications to both processor architecture and in-
struction set to provide support for secure compartments. A virtual-memory-like
system is implemented, which performs permission checks on memory accesses.
The OS creates compartments; once control has been transferred to a secure com-
partment, the processor remains in that compartment until relinquishes control.

Processor modifications to address the performance shortcomings of software-
based implementations can also be found in the literature. In fact, returning to
DIFT (§2.2.2), initial work involved making extensions to the processor datapath,
extending the width of registers, ALUs, and other components [23]. The FlexiTaint
approach [129] added an additional pipeline stage to the processor after the commit
stage to perform the required taint propagation operations, adding a new taint reg-
ister file and cache structure. By moving taint management to hardware, the added
overhead was within 1-8.4%, as opposed to the higher overheads of software-only
approaches. Another recent work [26] introduced a cache-like structure to support

multiple metadata security policies.

2.3.2 Moving Beyond the Processor to the Platform

Aside from enhancements and modifications to the internal processor architecture,
other works have looked at improving security by changing facilities outside the
processor. This is particularly pertinent as the embedded system design paradigm
shifts towards heterogeneous multiprocessor systems, which encourages the exe-

cution of multiple parallel applications on different types of cores. Security is im-
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proved by adding cores/accelerators dedicated to security functions, or by manag-
ing how on-chip resources are used or partitioned.

In industry, there is a widely adopted standard known as Trusted Platform Mod-
ule (TPM), standardised as ISO/IEC 11889 and maintained by the Trusted Comput-
ing Group [127]. The TPM is a security-hardened microprocessor that is specifically
dedicated for improving security. As a trusted module, the TPM can perform crypto-
graphic and authentication functions, and is used to check the integrity of various
parts of an execution platform, such as the BIOS, to establish a trusted comput-
ing base (TCB). This is illustrated by Intel’s Trusted Execution Technology (TXT)
[39], where a “chain of trust” can be established at boot-time. The code of each soft-
ware module involved in the boot process is checked against a hash of a previously
known “good” version; if the module passes, it is trusted, and can then be used for
loading the next module—which is also checked—thus setting up each link in the
chain of trust. This technology is useful for establishing a known, trusted initial
state.

As we move towards multiprocessor contexts, additional hardware blocks ded-
icated to security can be added to implement strategies like run-time monitoring.
For example, SHIELD [91] adds a separate processor dedicated to security, which is
then connected with the multiple application processors via FIFOs. At run-time, in-
strumented applications communicate with the security processor, which checks
that instructions are executing in the expected order and with expected timing.
In many ways, work in this domain is similar to work in reliability, with SHIELD
also able to detect the effects of bitwise faults. Such techniques often have software-
based analogues (c.f. §2.2.2), but offering improved performance, reduced overhead,
or isolation from direct malicious manipulation. For example, DIFT techniques have
been implemented as hardware accelerators, which offload some of the computa-
tion and memory access overhead for dealing with metadata [18, 57]. In [98], tag
management is considered at the Network on Chip (NoC) level, where network
interfaces provide support for proper retrieval and storage of tags.

Another security issue that emerged as research began considering the wider
computer system (as in SoCs and MPSoCs) is communication, both on- and off-
chip. As described earlier in §2.3.1, encryption has often featured as a means of
protecting memory, particularly when considering off-chip (external) memory as
untrustworthy. The survey presented in [44] discusses memory encryption, and its
use in securing systems, where there is a large emphasis on the concept of confiden-

tiality. One key observation of this survey was that encryption typically incurred
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large performance overhead; where overheads impact on response time, adoption
of a security strategy is less likely.

Hence, work such as SecBus [15] aims to address performance issues, while
supporting increased security. Instead of changing the processor, SecBus adds an
additional module between the SoC and off-chip memory for cryptography, with
security policies defined and managed in software. These security policies are used
in a virtual memory type mechanism where each security policy has page-level
granularity. Each policy specifies the cryptographic keys needed, read/write per-
missions, integrity mode, and whether or not the policy is valid. A cache structure
is implemented for these data structures to improve performance. The hardware
additions are then combined with a software flow to allow for trusted secure boot-
ing.

Another approach, presented in [45], similarly attempted to address perfor-
mance cost due to memory encryption. DynaPoMP looks at memory protection
for scratchpad memory (SPM), small memories that often have software controlled
allocation, unlike caches. The main idea of this scheme is the use of SPM as the main
work memory for sensitive data; only once sensitive data is finalised it is “evicted”
from the SPM to insecure RAM, where it is encrypted en-route. To improve perfor-
mance, the policy-driven memory allocation methodology attempts to minimise
data transfer costs from SPM to RAM, factoring in encryption/decryption costs for
sensitive data, as well as the balance between allocating space for sensitive and non-
sensitive data. The two main policies are SensitivityFirst (keeping sensitive data in
SPM as long as possible) and AccessFirst (keeping frequently accessed data in SPM
as long as possible). The SPM is divided into two regions S1 and S2, where each
of these policies govern allocation (SensitivityFirst and AccessFirst respectively).
New data is attempted to be allocated into S1, if this succeeds and if there is victim
data, this victim data is moved to S2, and any victims in S2 are then evicted to the
RAM. Benchmarks are then used to trade-off the sizes of the two regions to try and
reduce latency.

Aside from encryption, multiprocessor system security has also been addressed
by means of platform customisation and policy generation, where the key aim is to
isolate the many different parts of the platform for a given application. In an explicit
multiprocessor context, the policy-based approach, PoliMakE [7], proposes a means
of securing software execution in a multi-processor environment, by generating a
secure-schedule, memory mappings, and a set of requirements that are enforced at

run-time. The policy engine first analyses an application that has had its sensitive
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buffers/variables identified by code annotation, determining the required buffers,
processing requirements, and communication channels required to ensure security
of the sensitive data. A task graph is generated, and this informs the mapping of
data and generation of policies. Each task in the system is essentially provided its
own sandbox. The security-scheduler then loads tasks at run time based on the gen-
erated policies. Essentially, each task is isolated, and is provided only the resources
it requires at any given time. The follow up, TrustGem [8], extends PoliMakE and
uses the notion of Embedded RAIDs-on-Chip to provide logical scratchpad mem-
ories. The enhancement here is to reduce the memory requirements of generated
policies, thus increasing overall performance.

Another prominent class of improvements in multiprocessor security has been
in the area of NoCs, particularly for ensuring that access to on-chip resources are
well regulated.

For example, [35] introduces a firewall at network interfaces to enforce
segment-level rules. The security model implemented is based on “deny rules”,
which means that unless explicitly protected, any processor has access to that mem-
ory location. The observations in [36] highlight the benefits for providing such pro-
tections, especially for reducing communication traffic during exploitation.

Another firewall is presented in [73], where entire OS instances are isolated. Dy-
namic permissions are managed by an integrity kernel, which runs on an isolated
lightweight processor. This processor is connected to all firewalls in the system,
and any entities that can influence policies (modify rules). The firewall only stores
a limited set of rules; if there is no rule for a transaction the integrity core searches
for and loads the required rule, or generates an error response. The integrity kernel
could potentially be a bottleneck, depending on the size of local firewalls and the
number of memory transactions.

Fiorin et al. [31] propose distributed Data Protection Units (DPUs), managed
by a central Network Security Manager (NSM). In order to reconfigure DPUs at
runtime, tasks that are identified as “supervisor” running on processors that are
“secure” send requests to the NSM. This relies on processors having different oper-
ating modes, as well as the need for a privileged entity in the system. In order to
provide for greater scalability (in terms of number of permissions), [97] proposes
the use of a memory hierarchy, where a Permission Lookaside Buffer is accessible
within the NoC-MPU at each processor, and permissions are stored in a table in
memory. Identification of tasks is based on information provided by the intercon-
nection protocol (in this case, OCP or VCI), which relies on trusted software for

correct identification.
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With respect to handling violations once they are detected, [20] proposes the re-
configuration of hardware firewalls to facilitate a heightened security mode where
memory accesses are severely restricted. A separate security bus is used, allowing
the firewalls to be managed by a central trusted processor. However, this means
that run-time reconfiguration of protected regions depending on the state of tasks

is not possible as there is no interaction between tasks and the security manager.

2.4 Trends and Opportunities

There has clearly been a variety of different proposed approaches for increasing
the security of computer systems, and it is generally acknowledged that security
is of increasing importance. From our exploration of some background in security,

we can observe the following trends:

There is a shift in focus towards hardware

Good software design is difficult; good software design with security seems at times
like an almost insurmountable challenge. As we have seen from the early days
of software-mechanisms in Multics, through to the addition of additional hard-
ware components like the TPM, research and development of hardware-based ap-
proaches is becoming more widespread, especially to provide a certain level of insu-
lation from vulnerable software. Having that said, hardware additions often do not
work alone; they simply implement mechanisms that are only fully useful if prop-
erly utilised by application software. Additionally, we are now seeing more work
that looks at the platform as a whole, where designers are also considering the po-
tential risks of the many other components in a system aside from the processor.
While we can improve security by adding dedicated security-related components in
the design, we must also be wary about attacks originating from otherwise incon-

spicuous, “normal” hardware, especially when multiple processors are involved.

The OS is all-important in many security techniques

In several of the works we have discussed, there is a prerequisite that there is some
sort of privileged entity in the system, some trustworthy authority that can config-
ure and manage security functionality. Usually, this is in the form of an OS, which
is, as part of resource management for applications, responsible for setting up iso-
lation boundaries, and ensuring that hardware mechanisms in the underlying plat-

form are properly used. As such, a tight coupling between privileged software and
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hardware mechanisms is highly critical. This proposes an interesting challenge—
can we decouple this relationship? What happens if there are bare-metal compo-
nents in the design? What happens in highly heterogeneous systems, where several
complex processing cores execute in parallel, but there is no overarching OS across
the different cores? There is a research opportunity to explore strategies that might
reduce the reliance on an OS, while supporting security across the different layers

of a system.

Heterogeneity is tough

Many embedded systems are designed for mixed-critical applications [93, 105],
where we may have varying requirements for timing, performance, or security. To
address these different constraints, we can see that multiple cores, some general,
some highly specialised, can all be incorporated into a single chip. And yet, exist-
ing research has until recently focused only on security improvements of a single
core. In many threat models, there is an assumption that all components on-chip
are trustworthy, and the security boundary is needed for when data moves off-chip.
However, as MPSoCs become more complex, and with issues like hardware Trojans,
there is a research opportunity for considering security in heterogeneous systems,
where security should be considered within the platform from the outset of the
design process. Where a lot of existing work focuses on the implementation de-
tails of specific security mechanisms, work in multiprocessor systems and network
on chip architectures is less mature. Raising the abstraction level to a system-level
helps designers manage heterogeneity; instead of a low-level focus on individual
components, designers can reason about application tasks and their interactions.
In fact, a system-level security approach would be useful, particularly as different
subsystems might have different requirements, and so a mix of security customi-
sations might be necessary. This is especially important when trade-offs inevitably
occur—in deciding how best to improve security in a design, we need to understand
the costs involved, be it in resource overhead, reduction in throughput, or effects in
other design factors. With many different low level mechanisms possible, MPSoC
design needs to focus more on how and where to improve security, be it manually,
or through an automated process. By having a system-level view of security, de-
signers might be better equipped to make decisions about how to add security into

a design, and for which parts of the system.
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2.5 Summary

In this chapter we presented some background on security, looking at the evolving
nature of attacks, the different angles at which security improvements have been
attempted, and the rise of hardware-based approaches to security, particularly in
the shift from processor-centric enhancements, to security in the wider platform
architecture. While this review has not been exhaustive, we highlight some inter-
esting areas in the literature, noting the need for research in more heterogeneous
contexts, as well as opportunities in finding security approaches that will work
without reliance on operating systems. In the next chapter, we turn our focus to
MPSoCs, examining some of the security issues, and potential models for providing

a foundation to improve security.



CHAPTER

Foundations for a Security
Approach for MPSoCs

In this chapter we lay foundations for improving security in an MPSoC, and work towards
a conceptual model for thinking about heterogeneous components and their roles in an
MPSoC-based platform. Using a motivating example application we begin to identify gen-
eral security properties which are useful for future embedded systems, and this allows us
fo identify security mechanisms that can be implemented in the execution platform. We
also examine different access control models, and consider their applicability to our moti-
vating example. Finally, we propose a high level abstraction for quantifying the potential
impact of a security exploit, which is useful as a starting point for comparing different

architectures in later chapters of this thesis.

3.1 Motivating Scenario

3.1.1 Concurrent, Consolidated, and Complex

Having shed some light on some background in security, we now turn our atten-
tion to the specific challenges of embedded systems and MPSoCs. As a means of
establishing the context of our research, and as a means to explore the nature of
complex embedded systems applications, let us discuss a motivating scenario, in-
spired by the domain of Internet of Things (IoT) enabled smart homes [5, 71]. We
draw from this example to discuss the security requirements and potential threats
to complex embedded systems, and work towards mechanisms that would be useful

for a security approach for MPSoCs.
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Task Group (processor) Tasks Functional Description “Criticality” Remarks
EQ Light Controls the lights Physical control with human impact
Environmental Control El AC Controls the heating for each room Physical control with human impact
(Pvo) E2 Sensor Receives and processes sensor data Physical sensing, real-time requirements
E3 Environment Uses sensor data to manage environment Physical control, real-time requirements
. SO Security camera Controls security cameras, processes footage Sensitive information, real-time requirements
Home Security - —
(Pv2) S1 U.ooﬁ access Controls @ooq _oﬂ.u_Am _u:<m_o.m_ oo::o.__ sensitive _
S2 Biometric access Manage fingerprint entry system Real-time requirements, sensitive data
Fire Detection (IP core) FO Fire manager Detects fires, raises alarm, and extinguishes Real-time requirements, must always be active
NO Speaker Controls multi-room speaker system Physical control, less-critical
Entertainment (Pxo) N1 Media decoder Manages media files, and processes audio Potentially vulnerable, non-sensitive data
N2 Local interface Manages local control panel for UHAH User interface, potentially vulnerable

Remote management
(Px1)

Remote interface

Web interface for remote management

User interface, potentially vulnerable, exposed

Update

Manages remote update of controller software

Potentially accesses critical data

Authentication

Authenticates remote users (checks passwords)

Accesses sensitive data

40

Table 3.1: Task groups (subsystems) of the Integrated Home Automation Hub
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Figure 3.1: The Integrated Home Automation Hub

Consider the Integrated Home Automation Hub application (henceforth re-
ferred to simply as, the Hub), shown conceptually in Figure 3.1. This system in-
tegrates different functions in a home: environmental control, home security, fire
detection, and entertainment. Each of the different functions in the Hub are parti-
tioned into several tasks within task groups (or subsystems), shown in Table 3.1.
Each task contains its own program code, and can execute concurrently with other
tasks. These tasks interact with one another, both within their own group, and with
tasks from other groups. For example, an owner might wish to program her Hub to
turn on lights and music automatically when she unlocks her front door with her
fingerprint—this is an interaction between Home Security, Environmental Control,
and Entertainment task groups.

Whereas traditional design approaches might implement the application across
several individual devices, we instead envision the scenario were a designer choose
to consolidate the various subsystems and execute the Hub on a single heteroge-
neous MPSoC, such as one shown in Figure 3.2. In this general heterogeneous
architecture, we have several different types of processing elements with several
different types of resources. Initially, this platform has no security additions and

the on-chip interconnect carries memory transactions initiated by processors and
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Figure 3.2: A typical MPSoC for the Integrated Home Automation Hub

DMA-capable IP blocks, as well as the responses from resources that are accessed.
In general, the interconnect allows all-to-all communication.

Let us assume that we have two different types of processors (PX, PY), together
with several different types of shared resources (memories, I/O, and hardware IP
blocks). The processor variants provide a different trade-off between complexity
and capability: PX is used for the Entertainment and Remote management task
groups, which might make use of an OS (which provides multimedia functional-
ity and external connectivity); PY is a simpler processor that is used primarily with
bare-metal programs that can be statically scheduled. We also implement the Fire
Detection functionality as a dedicated hardware block for reliability. This block can
directly access memory. Other IP blocks with DMA capabilities could include hard-
ware accelerators, such as a vector unit for signal processing, or a graphics con-
troller for managing a HMI panel. The configuration registers for these IPs, as well
as I/Os, and memories are mapped into a globally shared address space. Over the
course of the Hub’s lifetime, the various task groups all operate in parallel, sharing

the different on-chip resources by making memory reads and writes.

3.1.2 Characteristics of MPSoCs

From this description we can make some informal generalisations about character-

istics of embedded systems implemented as MPSoCs:

« there are numerous concurrent behaviours implemented as numerous tasks,

with different relationships between different task groups
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« the platform features many different components from different sources (het-

erogeneous)
« components can be shared by different task groups at different times
« the platform is customised to the application
« different parts of an application have different criticality requirements

« there is a common communication backbone that integrates all the various

parts of the platform (and allows memory transactions between components)

These characteristics need to be accommodated as we consider how best to

improve security.

3.1.3 Threat/Attack Model

As we have seen in previous chapters, security attacks can take many forms, tar-
geting many parts of the system. Unfortunately, it is infeasible for designers to
concretely identify and address all potential threats to a system. Hence, to con-
strain the design problem, we have to decide on a threat model [114] which gives
us a (non-exhaustive) view of the issues we may need to address in our security
policy. While this makes the design process more manageable, our choice of threat
model carries the obvious caveat that security issues may still be present and sim-
ply undiscovered due to limitations on the expressiveness of a given model. As
such, we assume that we are dealing with highly motivated attackers who have a
thorough understanding of the system design.

In this motivating scenario, let us focus on two key aspects of the general MP-
SoC architecture: the existence of shared resources and the all-to-all communica-
tion capability provided by the interconnection infrastructure. Taking a less opti-
mistic stance, our threat model assumes that a task in the system has been com-
promised in its entirety, either through remote exploitation of flaws, or due to its
untrustworthiness (i.e. a Trojan task was introduced by a malicious designer during
design).

From the vantage point of a compromised task, and in the absence of security
mechanisms, we give the attacker full capabilities to arbitrarily access parts of the
address space. In addition to this, we also consider the threat that one of the DMA-
capable IP blocks has been compromised instead of task; in much the same way, the

IP block can issue arbitrary memory transactions. We assume that our interconnect
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behaves correctly as expected, and that any security components we chose to add
are trustworthy. As all the resources on our platform are mapped into a global
address space and can be accessed through the shared interconnect, an attacker

could perform the following attacks:

A1l If the compromised task is running bare-metal it can generate a memory
access transaction to any part of the platform. This can result in disruption

of other tasks or access of sensitive data

A2 If the compromised task can configure an IP with direct memory access ca-
pabilities, it can configure the peripheral to access a part of memory on its
behalf.

In addition to this, we consider additional threats where an OS is used to imple-
ment memory protection (such as through configuration of MPUs [4], or enforcing
access control in software), by acknowledging that privilege escalation is possible,

thus introducing the following possible threats:

A3 Any MPU is disabled, thus enabling unprotected access to the rest of the
platform.

A4 The MPU is reconfigured to disrupt the operation of other tasks located on
that processor, i.e. by restricting memory accesses such that the other tasks

cannot perform their intended functionality.

In these discussions, we are not concerned with how an attacker initially com-
promises the system; instead, we focus on limiting the impact of a successful initial
attack, although mechanisms like buffer overflows described in §2.1 provide a good
starting point.

As an example, one possible attack vector could be code injection via a buffer
overflow in the Remote Interface. Without any security additions, the task R0 can
then be used to access parts of the platform that it would not ordinarily access.
The attacker can perform some malicious activities, such as disabling the Fire De-
tection. Alternatively, a potential A2-type attack could involve the Local Interface
being compromised such that it re-programs the graphics controller to stealthily
eavesdrop on sensitive data from the memory of other tasks, such as the case pre-
sented in [67].
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Figure 3.3: Exploiting the capabilities of the platform

The key problem that we face is that the underlying platform typically provides
more capabilities than is explicitly needed by an application; this is especially per-
tinent in general-purpose platforms where we over-provision resources to provide
maximum flexibility. Consider Figure 3.3, which represents what a component can
do. The aim for attackers is to acquire enough capabilities to perform malicious
actions; for example, an attacker can compromise one of the tasks in a system.
From that entry point, the task can be used to abuse the actions that it can do, but

wouldn’t do under normal circumstances.

3.1.4 Security aims and requirements

With the threat model in mind, we now consider the security aims and require-
ments of our system.

Intuitively, the different task groups in the Hub example (Figure 3.1) have differ-
ent levels of importance and risk. For instance, Fire Detection has strong real-time
requirements, whereas Entertainment provides convenience functionality only. De-
ciding what we want to protect is largely a question of values; we may wish to
ensure safety, which means we need to protect the Fire Detection system. Alterna-
tively, we might highly value privacy, in which case, data logs about comings and
goings in the Home Security subsystem may need to be protected. These systems
can be considered as “security critical”, in that we require some means of protec-
tion.

There are also several other ways in which we might wish to classify criticality—

a task might have stricter real-time requirements, or perform physical control, or
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deal with sensitive/private data, and these could be taken into account when form-
ing security requirements. It is also worth noting that security is a precondition for
safety and timing criticality, which might encourage the designer to guarantee the
security of those parts of the system.

From a different security perspective, a task might even be thought of as “more-
critical” if it is likely to be exposed to malicious entities. Such exposure might be
due to its use in interfacing with wider networks, or if it was developed by a 3rd
party. Combining the different criteria results in a complex classification, particu-
larly when we also consider the capabilities added by DMA-capable IP blocks that
are used by various tasks. We might opt to draw boundaries between critical/non-
critical tasks so that a hijacked task will be isolated from other parts of the sys-
tem, thus limiting the impact of an attack. However, deriving a binary “critical/less-
critical” classification for the purposes of deciding whether things should be made
“secure/non-secure” is challenging, and may not provide sufficient expressiveness
to capture the design requirements. Still, the aim to isolate the various systems is
clearly necessary, which leads us to the idea that we should isolate at the level of
task group, where all groups are protected from the undue influence of one another.

While it would be desirable to completely isolate task groups from one another,
particularly when different functions have different tolerance and susceptibility
to attack, we need a means to ensure safe, fine-grained resource sharing where
required, thus, we need the ability to modify access permissions. For example, con-
sider the situation where a remote user wishes to examine an Environmental Data
log. The Remote Interface should not necessarily have permanent access to the en-
vironmental data; the more prudent design would involve RO only accessing the
resource when it is required, i.e. when a user has properly authenticated and re-
quested that specific function. In the case that R0 is compromised, as per the threat
model, temporary access in this way would complicate getting access to the desired
data.

Stepping back to the bigger picture, in our embedded system design we need a
security model, and a means of enforcing such a model, that can be used across all
entities in the heterogeneous MPSoC platform. The designer can then trade-off the
potential costs of introducing isolation and protection enforcement, granularity of
the protection, and their evaluations of the potential risk and impact of any given
attacks. In the next section, we explore various access control policies as the basis

of a potential security model.
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3.2 The Need for a Security Model

In order to improve the security of a system, we need to have a clear understand-
ing of what a system should be doing when it behaves correctly. We also need to
understand what our security requirements are (as part of the security policy), so
we can consider the “important aspects of security and their relationship to system
behaviour” [133]. A security model allows us to represent (informally or otherwise)
the various entities in a system, and how security mechanisms affect their interac-
tions. Furthermore, they allow us to make originally vague security objectives more
concrete (for example, “this device should not be hackable” can be revised into a re-
quirement about protecting a specific area of memory from spurious modification).
Security models also allow designers to check the implementation throughout the

design process against the intended, ideal model.

3.2.1 Access Control Policies

To develop an appropriate security model, we first consider access control policies
in the context of how they might be applied in an embedded system such as the Hub.
Fundamentally, entities in our system, either software tasks or DMA-capable IPs,
need to have their (memory-access) capabilities constrained. As discussed in [111]
there are several different types of access control policy that can be implemented,

each with their own merits and drawbacks.

Mandatory Access Control (MAC) [111] policies make use of a central privi-
leged administrator, managing access permissions for all tasks. Requests for new
access need to go to the administrator, typically the OS kernel, as in SE Linux [99],
by means of performing system calls (which typically invoke high overheads from
context switching [9]). It is challenging to directly apply a MAC policy in a hetero-
geneous embedded system, particularly as tasks do not easily map to the “security
levels” as described in [111] due to the lack of a clear hierarchy in terms of data

sensitivity.

Discretionary Access Control (DAC) [111] policies provide a more flexible
way to manage access control; entities in the system grant and revoke access to
the objects of each other. This could be applied to our embedded system scenario,
as tasks intuitively “own” data, and transfer data to each other at run-time. For ex-
ample, the Sensor task collects and processes data from the environmental sensors;

the data log is then displayed by a different task.
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Role-based Access Control (RBAC) [30] policies associate permissions with
roles, as opposed to tasks; tasks might perform different roles at run-time, and thus
require different permissions. This too is useful for our embedded system scenario,
where IP blocks and shared code lends itself well to RBAC, as they can be seen to
performing different roles depending on the task it is working for; this is appro-
priate given the shared nature of on-chip components. Tasks themselves may also
have changing roles over time; for example, the Local Interface might display only
a subset of system data depending on the user that is authenticated at any given

moment.

Attribute-based Access Control (ABAC) [46] (also known as Next-
Generation Access Control) policies present a more sophisticated approach to
dealing with access controls, especially at run time. Access decisions are made
based on examining a combination of rules, the requesting entity’s attributes, the
target object’s attributes, and environment conditions (such as time of day, loca-
tion, or other contextual information). While implementation and enforcement of
these policies is complex, the nuances of ABAC would also be useful for an MPSoC,
particularly where legitimate actuation and sensing, or movement of data, can be

linked to contextual information.

3.2.2 Implications of Sharing

With these options in mind, we look now at our application to decide which policies
to adopt. In our motivating scenario, we identify three main types of sharing: shared
data, shared code, and shared IPs.

In the case of shared data, take the following example. A local user may access
the control panel with the intention to review images from the security camera
(S0). The local interface (N2) could have permanent access to the footage, and so
the local interface task itself can simply guard access to the sensitive data. However,
should task N2 become compromised, the data is unprotected. Instead, we can set
up the relationship between the SO and N2 as a case of controlled/regulated data
sharing.

Shared libraries are often employed to reduce engineering effort. Consider the
Media Decoder and Local Interface; these tasks can share a code library that assists
in displaying contents from a media file. In many ways, shared libraries have simi-
larities with IP blocks. They provide a “service” for tasks; in other words, they take

an input and produce some output on behalf of another entity. As demonstrated
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in return-oriented programming style attacks, shared code can be exploited by an
attacker to add additional capability to a compromised task.

Shared IP blocks in many ways combine the notion of shared data and shared
libraries; tasks share data (or memory regions) with IPs to make use of extra func-
tionality. For example, an accelerator for signal processing could be shared between
two tasks. However, we need to prevent data leakage; the IP should not be able to
access simultaneously the data regions belonging to multiple tasks, nor should one
task be able to configure the IP to access the data of a different task. This is akin
to changing the role of the IP block at run time, provided we use something like a
hardware mutex to support safe resource sharing.

From this discussion, it can be seen that a mixture of access control policies
would be most useful, and access controls need to be applied universally. All tasks
and IP blocks in the system need to have a set of permissions, some of which are tem-
porary. It is quite natural to express access controls as relationships between tasks

and the resources shared between them, so we therefore need two key features:

1. The ability to set up permissions for managing read/write access to regions

of the address space which can be shared between two (or more) tasks/IP
blocks

2. The ability to grant/revoke permissions at run-time

Where resources are exclusive to a task, or always shared between tasks, we
need to define fixed permissions, as in a MAC policy. For dynamic permissions, we
can distribute authority for access control among tasks to reduce the potential risks
involved with relying on a single central authority.

This brings us to our proposed security foundation for MPSoC-based embedded
systems, one based on isolation between tasks, while supporting legitimate task
interaction through shared resources. Instead of classifying parts of the design as
secure/non-secure, we instead propose multi-domain isolation between tasks or
task groups, with enforcement across the entire platform. To achieve this, we need
to abstract the heterogeneous components in the design, upon which we can apply

a universal access control policy.
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3.3 Abstracting MPSoC components

3.3.1 The Task/Resource Relationship abstraction

Historically, access control models were used to help manage the flow of informa-
tion, and developed as a means to deal with people in an organisation [111] (as
evidenced by the terminology of users and roles). To successfully apply those ideas
to our MPSoC design, we need to decide how best to abstract the various compo-
nents (tasks, IPs, resources, I/Os etc.) such that we can analyse and manage their
interactions at a higher level of abstraction to achieve our security aims.

One way to conceptualise the MPSoC is as a collection of active elements that
initiate memory transactions, and passive elements that respond to memory re-
quests. The active elements are components such as software tasks executing on
processing cores, or IP blocks that can act as bus-masters. On the other hand, the
passive elements are components like shared memories, or the IP blocks that act as

bus-slaves. Hence, we propose the following abstractions:

Task — an abstraction that represents the implementation of an algorithm
for processing or control. For example, tasks could be a software process run-
ning bare-metal on a processor, a DMA-capable IP block, a software thread
running on an Operating System, or an algorithm implemented directly as a

digital hardware component. Tasks can operate concurrently.

Resource — an abstraction that represents assets which are utilised by tasks.
Resources can include memories, peripherals, and input/output devices or

their registers (I/Os). We assume that all resources are memory-mapped.

Relationships — describe how tasks and resources are related. For example,
we can describe when a task needs to read or write to a resource, or if a task
has the capability to access a resource. As resources are memory-mapped,

relationships can be represented by memory accesses.

Using these abstractions, we can represent an MPSoC design at various levels
of detail. As an illustrative example, consider a four-core, four-resource application,
shown in Figure 3.4(a). Here we graphically represent four processing cores (P0—
P3), four memory-mapped resources (R0O-R3), and their functional relationships
as a bipartite graph, tasks on the left, and resources on the right. Edges indicate

that a task needs to read and write to the resource, unless explicitly labelled. This
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Table 3.2: Task/Resource Relationship Matrix for the four-core example

RO | R1 | R2 | R3
PO | RW | W
P1 | RW | RW W
P2 RW R
P3 RW

Task/Resource relationship graph can also be represented as a matrix, as shown in
Table 3.2.

If we had more details about the design, for example, that PO is running two
software threads, T0O and T1, and that R3 actually contains two memory-mapped
regions, R31 and R32, we can change the Task/Resource relationship graph to pro-
vide finer grained information, as shown in Figure 3.4(b).

This graphical representation allows a designer to more easily visualise depen-
dencies between resources and tasks in the application, irrespective of whether
they are implemented in hardware or software. By using different levels of abstrac-
tion we can also begin to make some informal inferences about potential security
risks; for example, PO is shown to have a read/write relationship with R0, but on
refinement, we can see that TO should only write, while T1 only needs to be able
to read from RO. If PO is not subject to any access controls, we run the risk that T0
or T1 can be coerced to do more than it should. Similarly, in the case of P1 and P2,

they may both be able to affect R31 and R32 if the processors have physical access

<

(a) Four-core app, processor-level (b) Four-core app, with some refinement

Figure 3.4: Illustrative example of different levels of abstraction in a Task/Resource
Relationship Graph
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Figure 3.5: A simplified T/R graph

to that memory block. As we will see in later chapters, this abstraction can be used
to automate the addition/removal of such capabilities in an MPSoC, particularly as
we incrementally introduce security mechanisms. This also provides us with the
opportunity to explore the design space, where we might opt for a finer or coarser
granularity for setting up protections.

For a less trivial example, let us now revisit the Hub scenario presented earlier,
and re-cast the inter-task interactions as a Task/Resource relationship graph. A
subset of the Hub is illustrated in Figure 3.5. Using different node shapes, we can
capture even more information about an MPSoC; in this case, physical resources
are represented in diamonds, and memory resources in rectangles. For discussion,
we group the Environment-related data into a super-node that represents a single

physical memory block.
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(a) All to all (physical) access (b) Extra capabilities due to privilege

Figure 3.6: llustrating the implications of certain architectures

In this example, the Environment_data_request resource exists as a sort of “crit-
icality boundary”—it is a resource that is used by two different task groups. Within
task groups the resources needed are different from task to task; we would not
expect that the Sensor task needs to check to see if there is an environmental con-
trol request. While access to any part of the environment-related memory block is
physically possible, S2 has no real need to access the environment data log, and a
more secure design would prohibit purposeless access. In fact, ensuring that tasks
can access only the nodes that are present in the Task/Resource relationship graph
would better satisfy the Principle of Least Privilege [110].

Because the task abstraction allows us to encapsulate any active component in
an MPSoC (processing cores, IP blocks, or other such transaction initiators) and
the resource abstraction represents all memory-mapped components (sensors, ac-
tuators, memory, or programmable accelerators) we can apply the security model
ideas of §3.2 universally at the task/resource level. Later chapters in this thesis
present our proposed techniques for implementing and enforcing access controls

at the system-level as a means to improve MPSoC security.

3.3.2 Gauging the Impact of an Attack

Let us consider the threat model once more (§3.1.3), where a compromised task
can issue arbitrary memory accesses. This becomes a potential problem if the task

has physical access to resources in a system. One way in which we can quantify
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the impact of a successful incursion is to look at what parts of the system each
compromised task can access. The reach of a given task is primarily a result of the
underlying platform architecture.

Returning to the four-core example, imagine that PO-P3 are connected together
using a shared bus, where each core is able to issue a memory request to any part
of the system. We can represent this as the Task/Resource graph in Figure 3.6(a)—
note how all resources can be directly accessed by all processors. There are many
more edges compared to what the application actually needs (as in Figure 3.4(a).
MPSoCs designs often feature this situation where our processors can do more
than they actually need to; after all, as designers we naturally assume that our
designs behave only as we intend, so architectural features like a shared common
on-chip interconnection is standard practice as a convenience, and for maximising
flexibility.

Another issue that our threat model features is that privileged entities, such as
OSes, should be considered as similarly at-risk (akin to the other application tasks).
For illustrative purposes, let us imagine that the tasks T0 and T1 are managed by
an OS, which executes in a privileged mode. While T0 and T1 might be able to have
their capabilities restricted by the OS (for example, by means of MPU configuration
§2.3.1), the OS has free reign over the system. Figure 3.6(b) illustrates the OS as an-
other task in the Task/Resource graph, with edges connecting it to all the resources
in the system.

Using the notion of “task reach”, we can more formally gauge the impact of an
attack in a process that we call Impact Analysis.

For each task in the system, we create a Task Attack Impact Profile (TIP), by
identifying the set of tasks and resources that represent the scope of what a com-
promised task can affect.

Initially, before we add any security mechanisms, we assume that a task is able
to write to any of the resources it has physical access to—all relationships are ini-
tially unrestricted. Starting with a task, we follow all relationships of that task to
construct the Immediate Impact List, which contains the set of resources that the
task is able to write to, either by design, or as a result of platform-added capabilities.

We then examine how the resources in the Immediate Impact List are used by
other tasks to determine which of the other tasks could be affected by a task’s
compromise. If a task has a read relationship with any of the resources in the Im-
mediate Impact List, we add it to the Secondary Impact List, based on the notion that
a compromised task can write erroneous data into any resource within its Immedi-

ate Impact List, potentially disrupting/manipulating tasks with read-dependencies.
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(a) Impact of PO’s compromise (b) Impact due to OS compromise

Figure 3.7: Illustrating the potential impact of a compromised task

It is also possible to find further impact levels by going backwards and forwards
through the relationships, particularly if the impact of a task in the secondary list
can cause errors to be propagated to other resources, thus affecting other tasks with
dependencies on those resources.

For example, let us consider the impact of P0’s compromise in the four-core
example (Figure 3.7(a)). In an ideal case, the designer has implemented only the
connections required by the application (perhaps through a custom point-to-point
on-chip network). RO and R1 are in P0’s Immediate Impact List (shown as the dark
shaded nodes). Because P1 and P2 have read dependencies on resources in the Im-
mediate Impact List, they are potentially affected by the compromise of P0; hence,
they are placed in the Secondary Impact List (shown as the light shaded nodes).

Each TIP essentially characterises the reach an attacker has if they were to
compromise the associated task, and Impact Analysis can be performed to help
designers identify potential paths from which certain assets could be attacked given
an architecture configuration. Intuitively, the more shared resources a task uses,
the greater the potential impact if compromised. The Impact Analysis algorithm is

presented in Algorithm 1, where the input is a Task/Resource Relationship Matrix.

3.3.3 Using the results of Impact Analysis

Having the TIPs for each task can be useful for a designer, especially as a baseline

for an unsecured system. It allows the designer to get a feeling for how much inter-
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Algorithm 1: Algorithm for Impact Analysis

Input: Relationship Matrix rm[][]
Output: Task Impact Profile List tipList[]
for each task (row) in the matrix do
for each resource(column) in the matrix do
if rm[task][resource] == one of (R, W, RW, RWd, a, b) then
tipList[task].addTolmmediateList(resource);
end
end
for each r (resource) in the tipList[task].immediateList do
for each t (task) in the system do
if rm[t][r] contains (“‘R”) then
tipList[task].addToSecondaryList(t);
end
end
end
end

dependency there is between tasks in the application. By combining other security
information with impact analysis (such as probabilistic risk assessment [115] of the
compromise of each task, based on factors such as its origin, or its role), the designer
could be guided towards parts of the system that require more attention. Resource
sharing could be minimised, or specific security mechanisms could be implemented
for tasks that have high risk and high impact (such as control flow checking §2.2.2),
while other, more trusted tasks, can have such mechanisms omitted to avoid the
overhead of added security.

Measuring security is difficult due to its multidimensional nature, and the chal-
lenges involved in ascertaining perfect knowledge of all parts of a system [94].
Hence, impact analysis provides another useful metric for evaluating whether or
not a solution improves security. While a platform might allow all-to-all communi-
cation, we can add access controls which essentially remove unintended Task/Re-
source relationships; in comparing the changes to TIPs, we can coarsely measure an
improvement in security. This idea, alongside checking and addressing constraints
on the contents of impact lists, is deeply explored in Chapter 5. Isolation, as our
security foundation, naturally aims to minimise (or at least constrain) the impact

of any given attack.
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3.4 Summary

Embedded systems can be quite complex, with many components operating in par-
allel, and a variety of different requirements and constrains. In this chapter, we
examined a motivating scenario to provide the context for MPSoCs that have con-
current execution, consolidate multiple functionalities, and ultimately, complex de-
signs, with heterogeneity and design re-use as a feature. We presented a threat
model that generously assumes that a compromised task can be fully hijacked by
an attacker to issue arbitrary memory accesses, and highlight the dangers that are
present with privileged entities in a design. By exploring the multi-domain nature
for security requirements in the Hub example, we examined some existing access
control policies, to come up with a potential foundation for improving MPSoC secu-
rity. As a means of visualising and handling access controls at different abstraction
levels, we presented the Task/Resource abstraction, and showed how this could be
used in Impact Analysis to measure the potential impact of the various tasks in a
given design. In the next chapter, we investigate how we might implement some
hardware-supported permissions in a heterogeneous MPSoC, as a response to the

need for permanent and temporary permissions, as identified in this chapter.






CHAPTER

HW Support for Distributing

Access Controls

Having now established an idea for how we can approach security in MPSoCs, in this
chapter we present hardware for supporting isolation in an MPSoC. First, we take a more
detailed look at the type of mechanisms that we need to implement, in light of the require-
ment for fixed and dynamic permissions that were identified in Chapter 3. Furthermore,
we propose a way to distribute access controls, in a bid to avoid a central trusted author-
ity, thus reducing dependency on an OS, better supporting heterogeneous architectures,
and facilitating multiple security domains. We present the Isolation Unit (IU), as a hard-
ware component that implements this security strategy at run time by checking memory

transactions, and allowing both local and remote reconfiguration of permissions.

4.1 Overview

Given the trend towards the integration of multiple functionalities for execution on
heterogeneous MPSoCs, we need to support designs with many co-existing parallel
behaviours. In uniprocessor platforms it is typical to employ a centralised authority
for managing security, usually an operating system (OS) [99], or hypervisor. This
central authority then manages the security features provided by the execution
platform, such as memory protection units (MPUs), or input/output memory man-
agement units (IOMMUs) [9], thus placing restrictions on the other software and
hardware elements in the design. There is an explicit privilege hierarchy, where
highly privileged entities (such as the OS) can control access to all the resources in
the system. As such, successful privilege escalation attacks can cause a significant

negative impact.

59
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For improved resilience in the face of security breaches, the central authority-
based approach should be reconsidered. In heterogeneous systems it may be chal-
lenging or inconvenient to deploy a single OS across the entire platform. Further-
more, some tasks may execute bare-metal for performance or timing reasons, and
there may be multiple IP blocks that have DMA capabilities—these system com-
ponents need to be managed properly to ensure that security restrictions that are
defined by the designer are respected. To provide a system-level approach, we pro-
pose distributing access control across tasks in an MPSoC, where each task man-
ages its own regions of the address space. This is supported by mechanisms for
sharing code/libraries, memory regions, and IP blocks with direct memory access
capabilities.

In the following sections, we will discuss the security implications and trade-
offs of implementing these mechanisms. We discuss issues that need to be con-
sidered when adding architectural support for our security approach. As a means
of investigating the feasibility of hardware-supported enforcement, we implement
the Isolation Unit (IU), which provides a simple scheme for dynamic access recon-
figuration at run-time without the need of the OS. We also present an alternate
IU variant that employs an alternate bus-based interconnection between IUs as
design option. To characterise the performance implications of adopting our secu-
rity mechanisms into a MPSoC infrastructure, we use a cycle-accurate simulation

model of representative multicore scenarios.

4.2 Proposed Mechanisms

4.2.1 Permissions

Continuing from the discussions of the previous chapter (§3.2.2), we now consider
permissions for an MPSoC context in more detail.

Our alternative to having a single centralised authority in the system is to
have multiple decentralised authorities. In other words, we explore the notion of
distributing responsibility for managing dynamic permissions in the system. This
strategy does imply greater complexity within tasks, but allows better isolation of
systems should there be a successful compromise. There is no entity that has com-
plete access to all regions as a default, and designers would need to explicitly allow
unfettered access. With parallels to capability-based security [25] we enforce the

requirement that all memory accesses are checked against permissions. Using a



Proposed Mechanisms

3

Designer/Admin

v

\ 4

Task A

Base Permission

Owner Permission

\

Task B

Base Permission

T

1

|

Parts of the Address Space
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partitioned global address space we allocate all resources and memories (as every-

thing is memory-mapped, we essentially allocate memory regions), to the tasks in

the design. We specify three types of permissions:

Base permissions are statically allocated by the designer, and cannot be trans-

ferred to anybody else. They indicate regions that are accessible to a task/IP

block.

Owner permissions are statically allocated (they can be considered an exten-

sion to base permissions), and indicate regions that a task has authority to

share. It is not necessary that a task “owns” any regions. Owner permissions

should be reserved for regions that are intended to be shared.

Shared permissions are dynamic and used to grant temporary access to re-

gions to other tasks; the owner can revoke access at any time.

As shown in Figure 4.1, the designer is the primary trusted authority and is re-

sponsible for determining, during the design phase, the regions each task/IP block

can access. This carries the caveat that the efficacy of this proposed approach re-

lies on the trustworthiness of the designer’s decisions with regards to granularity,

and proper delegation of authority. Base and Owner permissions are always ac-

tive; once the system starts executing , tasks that own regions can share subsets of

those regions with other tasks. One implication of this approach is that the entire
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address space (including memory-mapped peripherals) should be allocated in ad-
vance. Tasks are completely isolated if there is no interaction between them, i.e. if
they do not share resources.

By analysing the task-resource relationships in our system (or designing with
these in mind), we can identify the permissions, and nature of those permissions,
that align with what tasks require during execution.

For example, consider the scenario illustrated in Figure 4.2, where a user (oper-
ating a local interface) wants to get access to the Image Data of a security camera.

The process for accessing the data is as follows:

(a) The Local Interface task authenticates by placing a password in to the Pass-

word Check memory region

(b) The Authentication task checks the password; if it passes, the Authentication

task places a request in the Request resource to the Security Camera task

(c) The Security Camera task gives access to the Local Interface so it can access

Image Data

This Task/Resource relationship illustrates where we would use Base permis-
sions to allow fixed, always available inter-task communication (for the Password
Check and Request resource), Owner permissions for tasks that can share resources
(between Security Camera and Image Data), and Shared Permissions for temporary
access (between Local Interface and Image Data). An alternative scenario might in-
volve access request and permission handover directly between N2 and S0, cutting
out the Authentication task—the same fundamental permission types are still used.
It is ultimately up to designers as to how “clean” or modular their functional de-

composition of the application is.
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Figure 4.3: An example of temporary region access setup when Task B requests a
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4.2.2 Implementing sharing

To implement the data, library, and IP sharing identified in the previous chapter
(§3.2.2), we use a mixture of the three types of permissions.

Firstly, let us consider sharing IP blocks and peripherals. Usually, they contain
a set of memory-mapped registers for configuration. In this security strategy, we
group these registers into a region which is collectively referred to as a Service
Request Region (SRR). Use of shared code is similar, in the sense that the calling
task can “request” a certain function to be executed—hence, we can come up with
a generalised mechanism for these shared processing resources.

By examining the operation of each task, we can identify where a task requires
the use of a shared processing resource. Essentially, these tasks are consumers, and
we can provide a Base permission for each consumer which allows access to the SSR
of each required processing resource. Each processing resource will itself not need any
Base permissions, unless it has its own (possibly private) memory-mapped working

memory.
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Figure 4.3 indicates an example with two tasks, Task B requests a service from
another task, Task A. Task B first acquires control of that resource (such as by

acquiring a mutex lock). Then:

1. Task B sets up a region for the data the processing resource will process, as

well as a region for storing the results of that processing
2. Task B writes the request to the SRR

3. Task B also sets up a Shared permission for the resource, which grants tem-

porary access to the shared region

4. Upon completion, Task B revokes the Shared permission

A variation of this scheme can be used for simple data sharing. A task shares
data by granting another task access to a region using a Shared permission if the
shared memory region is temporary, or if the location of the region changes dur-
ing execution. To facilitate run-time requests for data sharing, tasks can have base
permissions that are allocated at design time for fixed, always-accessible commu-

nication buffers in shared memory.

4.2.3 Security Implications and Limitations

The approach we present here allows us to describe and enforce specific relation-
ships between tasks and resources. Through careful design, we can isolate systems
that do not interact. Furthermore, this strategy avoids the implications of attacks
that aim for privilege escalation; as authority for access controls is distributed
throughout the system we can limit the impact of an attack on the whole system.
However, like all approaches, this strategy has several limitations. Firstly, we
introduce additional complexity into tasks where they are expected to dynamically
share access to regions in memory. Secondly, this approach relies heavily on the
quality of the design; the designer must properly partition the design, and ascertain
the appropriate level at which to implement and enforce the necessary permissions.
It is also possible that the designer is using several off-the-shelf “black-box”
components, either software or hardware, that are not able to be tightly integrated
with the security approach. While these black-boxes might not be able to lever-

age the dynamic permission scheme directly, the designer can use this approach



Proposed Mechanisms 65

to restrict their capabilities, thus incorporating these potentially less-trusted en-
tities while still better protecting trusted tasks. In Chapter 6 we explore further
techniques to deal with security un-aware components.

Furthermore, if we can detect violations, our dynamic permissions allow us to
respond with strategies like quarantine of compromised tasks, at least in terms of
revoking shared permissions, thus allowing for continued (although possibly de-
graded) system operation. As one might expect, the efficacy of this security model
depends heavily on the underlying implementation of permission enforcement. We
discuss this and other hardware issues in the context of MPSoCs in the following

subsection.

4.2.4 Architectural Support: Issues and Trade-offs

There are several considerations that need to be taken into account when imple-
menting our security model. A software-only approach is inadequate, particularly
when the underlying hardware architecture allows violation of the task-resource
relationships that we are trying to enforce (i.e. it physically allows access). Hence,
we propose the use of hardware to guarantee that all parts of the overall system are
subject to the same security enforcement. There are three key elements that need
to be implemented, namely: permission enforcement and storage, task identifica-
tion, and permission management/reconfiguration. There is a trade-off to be made
between security and the cost of adding additional hardware into our designs.

Every memory transaction in the system needs to be checked against a list
of permissions. We need to consider two aspects: where permissions are stored,
and how we check every transaction. Firstly, we need to consider the number of
permissions in the system, and how many of these permissions are “active” at any
point in time. This is largely a function of the complexity of tasks in the system,
and how many distinct regions they need access to.

To reduce the amount of storage required at local permission checkpoints, we
could adopt a central permission repository. However, this introduces overheads
where permissions need to be “fetched” at moments like context switching. Fur-
thermore, the checking of every transaction results in additional resource usage
and performance overheads. These could be reduced however; the work in [42],
suggests that the performance cost can be reduced by checking transactions on
cache misses, if caches are available, thus reducing checking frequency. There is
however the possibility for information leakage where tasks that are co-resident

on a processor access data of other tasks that have remained resident in the cache.
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Further consideration might also be required if tasks are able to migrate across
processors, but we do not consider this case here.

There is a close coupling between task identification and permission enforce-
ment; we need to correctly and irrefutably identify the currently running task, par-
ticularly to ensure that tasks do not circumvent isolation boundaries by disguising
themselves as other tasks. Illegitimate accesses need to be blocked, and identified
for handling. Traditionally, tasks are identified by the OS, making use of task ID
registers that are available in several processor architectures. However, when soft-
ware is generally untrustworthy, we cannot always rely on software-based iden-
tification. Depending on the granularity of our permissions, it may be sufficient
simply designing and enforcing permissions at the level of processors in the MP-
SoC. This coarse-grained identification is particularly useful in the case that only a
single task is running on the processor, or where all the tasks on a processor have
identical security requirements.

However, in our heterogeneous MPSoC it may be more appropriate to identify
tasks within processors, with permissions enforced at a higher level of granularity.
Once again, there is a trade-oft between security and increasing the complexity of
hardware. One option is to adopt a hardware-based task loader/scheduler; the hard-
ware performs task switching by directly controlling processor state and internal
registers. While immune to software-based exploits, it incurs the cost of invasive
hardware modifications.

Program Counter Based Access Control (PCBAC) has recently been proposed
by several authors as a means for identifying tasks and enforcing permissions [27,
63, 120]. Task identities are linked to the addresses of the program instructions. As
the program counter is not typically directly manipulated (aside from jump and
branch instructions), we can have a fairly high level of trust in the task identifica-
tion. Should a task be compromised and attempt to use instructions from program
memory associated with another task, the task ID would also change, resulting in
a different set of permissions, thus making a successful attack more complicated.
Shared code would need to be marked as a task; our approach of setting up shared
permissions to temporarily extended access at run-time nicely complements this
approach.

Memory protection is often managed by software making use of special proces-
sor instructions, such the approach presented in [136]. If we want to integrate differ-
ent types of processing elements while allowing for dynamic permission changes

across the system on chip, a more generalised approach is required, especially if
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the processor or IP does not have built-in support for different privilege modes. If a
satisfactory mechanism for identifying tasks is employed, permission management
could be performed simply through configuration of certain “permission manage-
ment” registers, mapped into the address space of each task. While processors and
IPs may be heterogeneous, they will all be able to read and write using some sort
of memory interface. Hardware would then need to ensure that the correct permis-
sions are modified. All tasks would essentially be in “user space”, and can grant
and revoke permissions at run-time as required. This also has the added benefit
of avoiding the costly overhead that is associated with performing system calls to

request an OS handle permission changes.

4.3 The Isolation Unit

We explore our proposed security strategy by designing the Isolation Unit (IU), a
hardware block that checks permissions and allows permissions to be reconfigured
at run-time. The idea is that IUs are customised and added at the interface between
processor or IP and the interconnect, based on the needs of the given application.

Permissions are classified as either local or remote from the perspective of each
task. If a task is granting/revoking access to a region to another task on the same
processor, the task will modify a locally stored permission; if the task or IP is else-
where in the MPSoC, a remote permission is modified. Using the task-resource
relationships in the application, we can customise the capabilities of each IU. The
number and mixture of statically allocated, local, and remote permissions affect the
complexity of each IU.

We present two IU design approaches/architectures, which we call the Original
and Alternate design. Each IU is then modified to produce one of four different

variants:

1. The base variant, an IU that enforces base permissions only—for use with
processors that have no dynamic relationships between tasks. This is essen-
tially a Memory Protection Unit that has been configured at design time, and

synthesised

2. The base+local variant, an IU that enforces base permissions and can support
local reconfiguration—for use with processors that have several local tasks

that have shared permissions
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Figure 4.4: Simplified view of the original IU internal design

3. The complete variant, an IU that enforces base permissions and can support
local and remote reconfiguration—for use with processors which have sev-
eral tasks that have shared permissions, including with “remote” tasks and
IPs

4. The remote-only variant, an IU that enforces only shared permissions—for use
with IPs that receive permissions only. This variant could be used to restrict
the domain of “black-box” IPs

4.3.1 Original IU

Figure 4.4 shows a simplified view of the original IU that supports both local and
remote reconfiguration. All original [U-variants contain a register that holds the
incoming transaction from the processor/IP block, a register that holds the transac-
tion that is released to the interconnect, as well as a Permission Check Block. Reg-
isters for all permissions that apply to the tasks on the local processor are stored
in the Permission Check Block. Local shared permissions are all initially disabled.
When the IU detects an incoming transaction (typically, if a read or write signal is
asserted), the target address is checked against all permissions in parallel (simulta-

neously). If the address falls within any of the regions specified within the permis-
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Figure 4.5: Simplified view of the alternate IU internal design

sions that correspond to the current task ID from the processor, alongside appropri-
ate read or write access, the transaction is forwarded to the outgoing transaction
register in the following clock cycle. The Control Unit manages the modification
of permissions. FIFO buffers are used to store new permissions that are coming in
from remote IUs. If remote reconfiguration is not needed, the Permission FIFO is
removed. If the IU does not need to be reconfigured at all, we remove the Control
Unit completely.

The IU is memory-mapped into the address space of the local processor for
reconfiguration; when a task writes to the IU’s addresses, the New Permission Reg-

ister stores the base address, end address, and read and/or write access attributes.
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Table 4.1: Permission Format for the Original IU

Field Region Start Region End Owner PID Owner TID TaskID R W V O
No. of bits 32 32 2 2 2 1 1 1 1

Table 4.2: Permission Format for the Alternate IU (base permissions in square brack-
ets)

Field Region Start RegionEnd TaskID R W V/[O]
No. of bits 32 32 2 [4] 1 1 1

4.3.2 Alternate IU

Figure 4.5 shows an alternative design, where the Permission Check Block is split
into distinct blocks for three different types of permissions, base permissions
(which may contain the Owner attribute), locally reconfigured permissions, and
remotely reconfigured permissions, as required. Instead of register-based storage
of permissions, permissions are stored in on-chip memory. As with the original
design, the incoming transaction is registered, and the address, current task ID,
and read/write control signals are passed to the permission checkers, which will
check all permissions simultaneously. Control is divided into several parallel Con-
trol Units, one for managing the local reconfiguration process (Reconfigure Con-
troller), one for managing permissions that arrive from other IUs (Remote Permis-

sion Receiver), and one for sending permissions to other IUs (Remote Permission
Sender).

4.3.3 Permissions

The permission formats can be found in Table 4.1 for the original IU, and Table 4.2
for the alternate IU.

In the original IU, each permission consists of 74 bits: 32 bits used for the upper
and lower region boundaries, 4 bits for the owner of the region (2 bits for processor
(PID), 2 bits for the task ID (TID), 2 bits for the task ID of the task that has received
the permission, and 1 bit each for whether the permission is for read (R) and/or
write (W) access, whether the task owns (O) the region, and whether the permission
is valid (V).

The format used in the alternate IU requires fewer bits, 69 for shared permis-
sions, and 71 for base permissions. In base permissions, four separate bits are used
to identify four tasks—bit 0 represents Task 0 through to bit 3 representing Task 3

in the local processor. As all base permissions are valid throughout execution, a bit
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is used to indicate Owner status in lieu of Valid status. The Owner Processor and
Owner Task ID fields are omitted in the alternate IU in lieu of additional logic in
the Remote Permission Receiver for ensuring the correct permission is modified at

the recipient.

4.3.4 Connecting IUs

If a task remotely configures permissions for other tasks, or IP blocks, the corre-
sponding IUs need to be connected. We separate the IU interconnection from the
general system interconnect, to prevent interference with task-resource traffic. IUs
are assigned a unique ID number. The original IU is designed with point-to-point
connections between IUs, so if a task shares regions with two different remote
tasks, the local IU would have two point-to-point connections (Figure 4.6(a)). These
point-to-point connections feature a permission bus and a request signal. On the
receiving end, a FIFO buffer stores the incoming permission. The original IU con-
trol unit checks to see if a reconfiguration operation is currently underway, and if
not, loads the new permission into the Permission Check block. The IU checks a
different IU-pair buffer each cycle to ensure that all new permissions are eventually
added.

The alternate IU implementation instead uses a time-division multiplexed bus

for remote reconfigurations, which we call the inter-IU bus, as shown in Figure
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Figure 4.7: Timing Diagram for Remote Permission Reconfiguration

4.6(b). The IU reconfiguration bus contains four elements, the permission bus, a
request line, the send slot count bus, and a receiver ID bus. A Global Send Slot
counter is used to control which IU can send in any given clock cycle, ensuring
that all tasks that need to reconfigure remote permissions can eventually do so.
When a remote permission needs to be modified, the IU waits until its slot
appears on the slot count bus; it now has control of the bus, and so places the remote
permission on the permission bus, the ID of the IU to receive the new permission,
and asserts the request line. On the receiving end, the IU waits until it identifies its
ID on the receiver ID bus. When this occurs, the remote permission is sent to the
appropriate remote permission block. This sequence is represented in Figure 4.7 as

a timing diagram.

4.3.5 IU Operation

The IU has two operating modes; the Normal mode, which performs permission
checking as tasks issue memory transactions, and Reconfiguration mode, which is

used for managing permissions.

Normal mode operation In each clock cycle memory accesses from the local
processor are captured in the Incoming Transaction Register; the permission check-
ing occurs, and the transaction is released to the system interconnect if no violation
is detected. This operation adds a fixed single cycle delay to all transactions. In the
event a violation is detected (when the access is unauthorised, or the current task
is invalid) the offensive transaction is blocked. A violation interrupt signal is as-
serted, which can be used to interrupt the processor or to notify another part of

the system.
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Figure 4.8: IU reconfiguration state machine

Reconfiguration mode operation Reconfiguration mode is triggered by writ-
ing to a memory address reserved for the IU. The Control Unit/Reconfigure
controller then transitions into the first of three configuration states, as shown
in Figure 4.8. Tasks reconfigure permissions by performing a series of succes-
sive memory writes to the IU’s reserved addresses. The Control Unit/Reconfigure
Controller transitions to successive Configuration states, where it moves the
permission parameters written by the task into the appropriate reconfiguration
registers, loading the permission into the permission check block in the final state.

If any of the reconfiguration steps fail, the IU is moved into the Error state.

Reconfiguration procedure (for the Original IU):

Step 1: The task writes the base address of the shared region to the New Permission
Register; the control unit redirects the write data into the Permission Check

block to check that the task is sharing a region that it owns

Step 2: The task then writes the end address of the shared region to the second

reconfiguration register

Step 3: To complete reconfiguration the task writes a word with the target task ID

and desired permissions to the final reconfiguration address.

Step 4: The permission is then updated (if local), or placed on the correct IU-pair

connection (if remote)

Step 5: In the event that the base or end address of the shared region is not owned
by the task, or the reconfiguration is interrupted, the IU goes into an error

state, preventing all memory accesses until a reset signal is asserted.
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Table 4.3: IU Synthesis Results

Variant Supported Permission Configuration Total no. of Analysis & Synthesis Theoretical Max Freq. from

no. of tasks (L—local, R—remote) Permissions (LE use) Slow 85°C Model (MHz)
Original Alternate  Original Alternate
Base 1 4 Base Permissions 4 237 473 196 833
Base 2 8 Base Permissions 8 262 747 181 582
Base 3 12 Base Permissions 12 275 1020 159 524
Base 4 16 Base Permissions 16 295 1293 171 680
Base+local 2 6 Base, 2 Shared (L) 8 562 894 118 117
Base+local 3 6 Base, 6 Shared (L) 12 700 1185 117 110
2 Base, 2 Shared (L), 4
Complete 2 Shared (R) 8 1361 1187 106 119
Remote-only 1 4 Shared (R) 4 1280 548 134 114

Reconfiguration for the alternate architecture follows the same procedure, with

the following internal differences:

« In config0 and configl states, the Reconfigure Controller redirects the write

data into only the Base Permission Checkers

« In Step 4, if the permission update is for a remote target, the new permission
is stored in a remote reconfiguration register and an internal send signal is

asserted.

The Remote Permission Sender controller then monitors the Remote Reconfig-
uration interface for the IU’s sending slot. In both the original and alternate IU,
reconfiguration takes three cycles, with the local permission updated in the fourth
cycle. Remote permissions take longer to become updated. In the Original IU design,
a cycle is used to transfer the permission from one IU to another. The destination
IU then takes a cycle to place this new permission into its new permission register
before it becomes active. Further delays are incurred if the IU is already undergoing
reconfiguration, or when a permission from a different IU-pair is being added caus-
ing a delay until the correct buffer is accessed. Similarly, the Alternate IU design
has several cycle delays where the IU has to wait for its slot on the inter-IU bus,

but does not have delays if the receiving IU is being reconfigured locally.

4.3.6 Synthesis

We synthesised several IU variants and permission configurations for both
the Original and Alternate architecture, targeting the Altera Cyclone IV FPGA
(EP4CE115F29C7). Altera Quartus II v15.1 was used. The total logic element use
and theoretical maximum frequency (from the TimeQuest Timing Analysis tool)

are presented in Table 4.3. In general, the resource usage increases as more tasks
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and more permissions are supported; addition of the control logic for local recon-
figuration adds several hundred LEs for the same total number of permissions. In
the Original design, remote management adds a significant LE-usage cost, mainly
due to the added FIFO (36% of the resource usage comes from the addition of this
remote connection logic). The alternate design is instead significantly less costly as

it forgoes FIFOs, as can be seen in the results for the remote-only IU.

4.3.7 Design Trade-offs

The Original IU design has several limitations:

« The point-to-point interconnection scheme used to connect IUs where tasks
have remote shared permissions requires FIFO buffers, and has issues with
scalability. As more IUs are interconnected, the complexity of the intercon-

nect, and thus, the entire system, increases significantly

+ Local and remote reconfigurations are not able to happen simultaneously, as
the Control Unit can only deal with one reconfiguration process at a time, as

there is only a single permission check block

« Base permissions, which are used to represent static, always accessible
shared regions, are required for every task that shares that region; if four
tasks share a region, each of the four tasks needs to have a corresponding

base permission
The Alternate IU design addresses these limitations as follows:

+ The bus-based implementation is more scalable, especially in the case where
there is a lot of shared permissions between a group of tasks/processors. One
drawback of using a bus is that IU pairs that do not need to communicate are
still connected; to avoid errant tasks attempting to grant or modify permis-
sions to IUs that should not receive them, we add checks in the Remote Per-
mission Receiver logic so that IUs will ignore any reconfiguration requests

from senders it is not configured to receive from.

By separating out the control logic for reconfiguring remote permissions
from the local reconfiguration logic, and by splitting up the permission check
blocks, the Alternate IU can handle both local and remote reconfiguration at

the same time
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+ Base permissions are also able to be shared by multiple tasks, so redundant

base permissions are not required

However, as can be seen from the synthesis results, the Alternate IU design
carries the cost of increased resource usage in general, compared to the Original
IU, and as such, designers will need to perform a design trade-off when choosing
which IU design, variant, and permission configuration to adopt.

The Original IU, with its register-based implementation, can be further opti-
mised and customised depending on the base permissions that are defined; for ex-
ample, the comparison logic can be simplified, allowing storage of less than the
full number of bits per permission, depending on the permission. However, use of
embedded memory blocks results in the base-variant Alternate IUs having a higher
theoretical maximum frequency, which could be useful for faster designs.

Point-to-point connections between IUs are useful if there are multiple unique
task-resource pairs across the system. On the other hand, if multiple tasks share the
same IP block, or frequently temporarily share regions with each other, the inter-
IU bus approach may be more appropriate, in which case the remote-only variant
of the Alternate IU design could be quite efficient. Additionally, if there are several
distinct sub-systems, a mixture of Original and Alternate IU designs may be useful.

Ultimately, IUs should be customised for a specific application. By incorporat-
ing only the capabilities and permissions required for a specific set of task and
task-resource relationships we can introduce better security into a heterogeneous
MPSoC with relatively little additional cost.

In general terms, we can further optimise IUs and adjust the granularity of pro-
tection regions, checking only the upper bits of memory transactions to reduce the
complexity of permission checking and the size of permission lists. Furthermore,
permission checks could be pipelined to reduce the cost of comparing the incoming

transaction and the stored permissions.

4.4 Experimental Characterisation and

Discussion

To explore the performance impact of our security mechanisms in the context of
an MPSoC design, we developed cycle-accurate simulation models in SystemC for
the IU, the different IU interconnection schemes, and a NoC architecture with asso-

ciated network interfaces. To model processors/tasks, we designed a Transaction-
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Figure 4.9: Single core experiment set-up

Initiator module which issues memory read/write transactions after loading a list
of transactions from a file. Each transaction is tagged with the ID of the task that is
sending the transaction. TransactionInitiator modules perform blocking reads and
non-blocking writes, and can also issue requests for multiple data responses. We
model resources (memories, accelerators, and I/O) generally as GenericResource
modules, which consume read and write transactions. GenericResource modules
issue responses to read requests, and can also emulate DMA-capable IP blocks by
generating memory reads or writes upon receipt of a DMA request from a Trans-
actionlInitiator. We instantiate these various modules in several different configu-
rations to develop functional simulation models of an MPSoC.

For the interconnect, we model a multi-stage interconnection (MIN) network
as presented in [105]. The MIN network is comprised of simple two-port cross-bar
switches that are set in either straight or cross mode. A global controller is used
to control the mode of the switches in the network. The global controller is con-
figured to apply a time-division multiple access (TDMA) scheme in the network
by generating a repeated sequence of control values to allow all cores in the MP-
SoC to communicate to all other cores exactly once per TDMA round. We use this
TDMA-MIN interconnect architecture as the infrastructure for models of selected
representative subsets of the Hub motivating scenario, given that TDMA-MIN is
time predictable, and appropriate for mixed-critical systems (for example, the Fire
Manager task is critical).

First, we characterise the performance overhead of the fundamental operations
of our security approach: permission checking, and local IU reconfiguration. Ini-
tially, we consider a single processor connected to a single resource, without an IU
as shown in Figure 4.9(a).

In this profiling, we use a synthetic workload to represent an extreme case
where a task performs only multiple sequential memory accesses. This is because
our security approach focuses on memory protection. In more practical cases, the
relative number of memory transactions compared to computational operations

could be less. The TransactionlInitiator is configured to issue 200 memory requests,
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and the number of clock cycles taken to issue transactions and receive responses
is measured. We then add an IU, as shown in Figure 4.9(b), and measure the time
taken to complete the accesses with the added security. The IU is configured with
a base permission granting access to the GenericResource module.

We also model the scenario where 100 memory accesses are first performed
by one task, which then configures a shared permission for a shared region that
a second task uses as the target of its 100 memory accesses. The IU is configured
with an Owner permission for the first task, and no base permissions for the sec-
ond task. The results are shown in Figure 4.10, and indicate that memory checking
adds an overhead of about 20% in this case. This arises from the addition of a single
cycle delay to every memory access for permission checking. In practice, the exact
percentage overhead from memory checking will vary depending on the character-
istics of the specific application. Factors that will affect overhead include the ratio
of memory access instructions to other processor instructions, as well as character-
istics like interconnection and memory latency.

The cycle cost of modifying a shared permission adds only a further 0.625%.
To simulate an Al-type attack, where a task has been compromised, we populated
the transaction file used by the TransactionlInitiator with transactions that access
arbitrary regions of the GenericResource—as expected, the IU successfully blocks
these malicious access attempts.

We then explore a more complex setup, with two processors, one DMA-capable
IP, and a shared memory, interconnected using a TDMA-MIN configuration for 4

cores. This is a simulated subset of the Hub (as discussed in §3.1, featuring the



Experimental Characterisation and Discussion 79

| Global Controller |
1

)
Processor Processor
Y1 Y1
~———— -~
(o ) )
Processor Processor

Figure 4.11: A four-core subset of the Hub (§3.1), without IUs

Environment and Entertainment processors, as well as an accelerator, as shown in
Figure 4.11. The memory is modelled with four regions: M_0, M_1, M_2 and M_3.
M_0, M_2, and M_3 are regions owned by X0, and M_1 is owned by Y1. In this
simulation, we assume that X0 and Y1 execute only a single task. The cycle timing
for transactions sent using the TDMA-MIN NoC with and without IUs can be seen
in Figure 4.12.

To simulate the execution of the entertainment task, we load the Transaction-
Initiator that models X0 with a synthetic transaction list consisting of randomly
dispatched reads and writes to the M_0 region of the shared memory, as well as
a configuration request of the DMA IP to perform its own independent read and
write of regions M_2 and M_3 in the shared memory. We measure the clock cycles
required for X0 to complete 400 memory accesses, as well as the time required for
the DMA IP to complete its read and write operations on behalf of X0. 2184 clock
cycles are required.

We then add IUs to the processors to prevent Y1 and X0 from accessing each
other’s regions in the shared memory, as well as the configuration where we add
an additional IU to the DMA IP.

In the case with two added IUs, 2188 clock cycles are required to complete the
memory accesses, which represents an additional 0.18% overhead on the perfor-
mance without any IUs at all. However, while this configuration can prevent Al-
type attacks (i.e. we can set base permissions such that tasks running on X0 are
unable to access M_1 directly), the MPSoC is still susceptible to A2-type attacks,
where the DMA IP could be configured to access M_1. This issue is addressed by
adding a remote-only IU to the DMA IP; if X0 wants the DMA IP to read from M_2

and write to M_3, X0 must first use its IU to configure two remote permissions, one
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to allow the DMA IP to read from M_2, and one to allow the DMA IP to write to
M_3. Because of the extra reconfiguration commands, and permission checking of
the DMA IP transactions, 2232 clock cycles are required (2.2% additional overhead)
for both the point-to-point and TDM-based IU interconnect schemes. These results
are presented in Figure 4.13. With the added IU, a successful A2-type attack could
not be triggered.

These results indicate that performance penalties depend on the application and
implementation of the MPSoC architecture. In the simulation of the Hub subset,
most of the memory checking cost is absorbed by the latency of the interconnec-
tion. Similarly, in a simulation of the full Hub MPSoC (Figure 3.2), with a random
workload on each core, the addition of IUs for memory checking added only 1.2%
additional clock cycle overhead.

Finally, for comparison purposes we model a centralised approach based on a
privilege entity (e.g. an OS), by configuring our IU models to allow a compromised
task to modify/configure all the IUs in the system (to model malicious modification
of MPUs as a result of privilege escalation); as a result, task accesses are able to
be disrupted, and the compromised task has full reign over all resources. This is
in stark contrast to our proposed approach, where the capabilities of tasks can be

limited by the immutable nature of the base permissions.

4.5 Related Works

To our best knowledge this work is the first to consider a decentralised approach
to security in a heterogeneous multiprocessor system.

For single processor systems TrustLite [63] proposes the use of a Memory Pro-
tection Unit (MPU) to check all memory accesses; the MPU is extended to be
“execution-aware” by directly associating executable code regions with memory
access permissions, and identifying the currently executing “trustlet” by examin-
ing the instruction pointer provided by the CPU. We use this technique for task
identification. This approach is subsequently extended in TyTAN [13] to allow dy-
namic loading of tasks, and a special driver to manage memory protection regions.
Comparatively, these approaches provide higher protection granularity compared
to the frequently used ARM TrustZone [75], which offers hardware supported iso-
lation for two “worlds” and a reliance on software for managing access control in
each world. There is also extension of virtual memory management ideas specifi-

cally for peripherals through OS-managed use of IOMMUs [9], although these incur
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overheads for virtual-to-physical address translation, and require storage for page
tables.

An alternative approach to isolation uses cryptography; in [126], tasks are iso-
lated by encrypting tasks with different keys, and tagging memory such that a task
can only work with data it has created itself, or taken from the insecure part of
the system. As expected with cryptography-based solutions, there is a large perfor-
mance overhead. Another isolation strategy involves generation of schedules for
temporal isolation [7], where a central loader dispatches tasks depending on the
generated security policy.

In a similar bid to remove reliance on “trusted” software, the work presented in
[58] illustrates an architecture for cloud infrastructure, whereby virtual machines
are loaded and managed by hardware components. In contrast to this work we
investigate the requirements for embedded systems with heterogeneous processors,
providing isolation as well as sharing where needed.

Capability-based security has long been discussed as a means to enforce the
Principle of Least Privilege [110], [25], where access to all objects in the system
have to be performed through capabilities, unforgeable pointers that carry access
rights to specific regions in memory. The focus of the recent work in [136] is the
implementation of a hybrid capability model based on additions to the instruction
set and the addition of a capability co-processor to protect physical addresses. Our
work takes a similar approach, where our permissions are akin to their capabilities;
however, we generalise the ability to manipulate permissions using conventional
writes, and examine a multiprocessor context.

A similarly “resource-aware” approach for multiprocessors is described in [27]
where PCBAC is also used to enforce access controls. However, unlike our dis-
tributed approach, a centralised OS handles configuration of access protections.
What is interesting to note here is the use of cryptography to add additional guar-
antees for confidentiality and integrity of code and data.

There are also several NoC-based approaches (which were discussed in Chap-
ter 2). Such works propose “firewalls” at the network interface [20, 31, 35, 73, 97]
which filter transactions. However, these approaches rely on an OS or other central
authority to manage rules at run-time, such as in [73] where a dedicated processor
is used. The approach proposed in [31] only allows processors with a supervisor
mode the ability to request a permission change, which limits the type of processors
we are able to employ. With respect to handling violations once they are detected,

[20] proposes the reconfiguration of hardware firewalls to facilitate a heightened
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security mode where memory accesses are severely restricted. This work requires
a complete system reset for continued execution, whereas our approach allows iso-

lated task groups to continue running.

4.6 Summary

There are several competing concerns when it comes to the design of embedded
systems, and heterogeneous MPSoCs are used to satisfy complex design require-
ments. However, heterogeneous execution platforms provide a security challenge
as different processors, IP blocks, and resources are all integrated. In this chapter
we presented hardware support for enforcing permissions based on the specific
task/resource relationships required by an embedded system design. This stemmed
from our exploration of MPSoC security requirements in Chapter 3. As a result we
are able to introduce isolation where needed, thus reducing the potential impact of
a compromised task. To avoid the notion of a privilege hierarchy, we investigated
distributing the management of access control among tasks themselves. This was
explored through the design of Isolation Units, hardware blocks that can be used
to check memory transactions before they enter the on-chip interconnect, and can
be used to grant/revoke permissions to both local and remote tasks at run-time. As
a means of addressing some shortcomings from the original FIFO-based implemen-
tation, we also discussed an alternate IU design which is amenable for interconnec-
tion using a bus-based architecture. We then characterised the performance penalty
of our security approach by developing simulation models of Isolation Units, as well
as an overall MPSoC infrastructure. The IU implements the fundamental isolation
mechanisms that are used to improve security in the following chapters of this the-
sis. In the next chapter, we move to a higher level of the design abstraction, and
investigate how we can augment an MPSoC design flow to incorporate automated

addition of IU into the platform to achieve specific security goals.






CHAPTER

Towards Security-Aware
Enhancement of an MPSoC
Platform

The ability to consider and address potential security issues in system-level design is
of paramount importance, especially when designs consist of hardware and software
components integrated into heterogeneous multiprocessor systems on chip. In this chapfer,
we address the challenge of designing an MPSoC-based platform which satisfies designer-
defined security requirements. To better support the design process, designers need to
be able to quantify the potential impact of possible attacks, and subsequently implement
strategies to mitigate these so that the extent of damage can be limited. There is a need
for systematic and automated approaches for architectural exploration as part of the
overall design process for a specific application. Building on the idea of Impact Analysis
from Chapter 3, and using the hardware Isolation Unit presented in Chapter 4, we present
an approach for specifying security rules, augmenting the platform, exploring the design

space, and automation of the entire process to create several design options.

5.1 Overview

In MPSoCs we typically employ a regular shared interconnection architecture that
facilitates communication between all platform nodes in the absence of any security
restrictions, as in regular NoC approaches [31, 36, 106]. The underlying platform
typically provides surplus capabilities that may provide attackers with the opportu-
nity to violate the intended design. As such, isolation is a key element of a defence

strategy, especially in mixed-critical systems where we might wish to guarantee
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that certain critical parts of a system can continue correct operation despite an
attack affecting elsewhere in the design.

On one hand, we can customise a given architecture with some form of fine-
grain memory protection, and check all read and write accesses, potentially adding
overheads in both resource cost and latency. On the other hand, if we can trust (or
tolerate the compromise of) certain parts of our design, we may have opportunities
to explore the design space, to trade-off between the security of a given architecture
configuration, and the cost and overhead of the architectural additions required for
satisfying a set of security requirements.

A large part of the design problem, however, is deciding how best to integrate
different security solutions, particularly if our application has numerous security
domains. Design space exploration (DSE), seeks to better support the design pro-
cess, especially in the trade-off of design objectives. For example, in the software
design domain, the work in [56] argues for DSE to incorporate security require-
ments to better guide designers. The work presented in [118] formalises an ap-
proach for the design of distributed ECUs in automotive applications. An ILP-based
approach is used in [47] to optimise resource cost when introducing memory pro-
tection based on minimization of packet header size.

In a similar vein, we investigate, in this chapter, a more general design approach
that takes a different angle to facilitate the exploration of the trade-off between se-
curity and resource cost. We propose an automated systematic framework for the
generation and exploration of architecture configurations for an MPSoC execution
platform, and tailor the configurations for a given application-specific design and
its associated security requirements. Our intention is that this systematic approach
can be subsequently augmented with other objectives and constraints to further
explore the design space, while considering security as an integral part of the ex-
ploration.

In the following sections, we present this approach, drawing from an illustra-
tive case study to discuss the processes in detail. We propose a way to define secu-
rity rules to specify requirements for protecting parts of the design with different
criticalities. To investigate the feasibility of our approach, we discuss a prototype
implementation, and explore the implications of synthesising the generated config-

urations for an FPGA-based platform.
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5.2 Preliminaries

In addition to the Task/Resource abstraction we presented in Chapter 3 (§3.3.1) we
add the following terms in this chapter:

Platform Nodes — are hardware blocks (components) which are the nodes in-
terconnected in our MPSoC NoC-based execution platform. Platform Nodes are
classed as processing nodes (which implement tasks), or non-processing nodes

(which implement resources).

Clusters — are platform nodes of related resources that have been grouped to-

gether by our tool (as explained in §5.5.2).

We consider the embedded system application as a collection of tasks, resources,
and their relationships, where the designer has a priori knowledge of the design.

We also continue to use the threat model presented earlier in §3.1.3, and we
consider the situation where an attacker can gain full control of a task. We are not
concerned with the exploit method but are instead interested in the problem of
restricting the ability for the compromised task to affect other parts of the system.

In any given design, we assume that different parts of the system have different
levels of criticality. For example, safety-critical tasks should not be affected by the
compromise of any other task. Furthermore, the designer may have varying levels
of trust in the tasks and resources of the system. The designer’s assessment of risk
needs to be considered when deriving an architecture configuration on which to
execute the embedded application.

Our aim is thus twofold: (1) for a given application, generate potential execution
platform configurations derived from a given general MPSoC architecture, and (2)
subsequently customise the configurations to ensure that the designer’s security

requirements are satisfied.

5.3 Security-aware Design

The primary goal of our proposed approach is to generate several potential execu-
tion platform configurations that are tailored to a given application and compliant
with an associated set of security requirements.

Figure 5.1 presents a top-level view of the proposed approach, which features

two main stages: Architecture Configuration Generation, and Configuration
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Refinement. Fach of these stages has several processes, which are indicated by
the shaded boxes.

First, we take an application, represented as a Task/Resource Relationship ma-
trix (T/R matrix), where each column represents a resource, each row represents a
task, and the contents of each element in the matrix represents the relationship be-
tween task and resource (as discussed in §3.3.1). An example is shown in Table 5.1,
and represented graphically in Figure 5.2. The T/R matrix is processed by Archi-
tecture Configuration Generation, where the primary aim is to develop several
potential architecture configurations that are derived from a given general MPSoC
architecture. Although the approach is applicable to a range of architectures, we
consider a NoC-based architecture in this chapter.

The first process is Clustering, which analyzes the T/R matrix and generates
several possible cluster configurations where the resources are grouped/clustered
together into platform nodes. Initially we assume that each task is directly mapped
to its own processing node (each processing node executes a single task). During
this process, we also modify the T/R matrix to incorporate any potential risks that
may arise as a result of forming a particular cluster from a given set of resources.

The T/R matrices for each generated configuration are then modified by the Plat-
form Risk Addition process to further incorporate information about the capabilities
that are introduced by our choice of interconnection architecture (NoC intercon-
nect). This produces the architecture configurations that we subsequently analyze
and refine from a security perspective.

In the security-driven Configuration Refinement stage, we take each config-
uration in turn, and perform Impact Analysis, which generates Impact Profiles for
each task. These profiles are used to check designer-defined security constraints in
the Rule Checking process. Detected violations are used to inform the Configuration
Augmentation process, where a list of security additions is iteratively created to at-
tempt to address the rule violations. If all rules are passed, the final configuration
and solution list is optimised to reduce the total number of restrictions added (thus
reducing the cost of security additions), and the final list of security additions, the
final T/R matrix, and the final Task Impact Profiles are generated for each configu-
ration. The designer can then weigh up the different configurations in terms of the
resource cost or other design metrics. In the next section, we present a case study
scenario that is used to illustrate the application of our approach as we discuss the

details of each stage.
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Table 5.1: Initial Task/Resource Relationship Matrix for the SHCS application case
study (R = read, W = write, d = conditional)

A/B|C|D|[E|[F| G |H|I]|JIKI[L[M|[NJO[P[Q[R]S
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RWd RwWd RW

T6

RW |RW

T7

RwW RW |RW |[RW
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T9

5.4 Case Study

5.4.1 The Smart Home Control System

Consider an example embedded system application—the Smart Home Control Sys-

tem (SHCS). The SHCS combines environmental monitoring and control, multime-

dia capabilities, and provides an interface accessible over the internet. A local user

can use a control panel to set lighting and climate preferences, display images, or

play music on a sound system. Users can also monitor the status of their home

remotely. After setting their preferences, the SHCS performs some actuation, con-

trolling lights and HVAC systems. Additionally, the SHCS features a fire detection

system, which monitors a fire sensor, and can trigger an alarm. To implement this

application, the designer specifies the following tasks at the system-level:

TO:

T1:

T2:

T3:

T4:

T5:

Light sensing; reads, processes, and stores light sensor data, also performs se-

tup/configuration of sensors

Light control; reads stored light sensor data and controls lights based on stored

configuration
Temperature sensing; reads, processes, and stores temperature sensor data
Temperature control; reads stored temperature data, controls heating/cooling

Remote interface; reads stored temperature and light data, displays them over

the internet if a user is authenticated

User management; manages the local control panel interface subsystem so an

authenticated user can set their environment preferences
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Té6:

T7:

T8:

TO:
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Fire detection; implemented as a digital hardware component, monitors a fire

sensor, and controls the fire alarm

Media player; uses the control panel subsystem to display images, and manages

the configuration of the media accelerator IP

Media accelerator; a programmable hardware IP that can perform accelerated

decoding/processing of multimedia, also controls the audio subsystem

Authenticator; A task that checks the password when a user enters it locally,

or when a user requests remote access

We associate the resources in our system with additional attributes defined and

assigned by the designer; they further characterise the various components of the

design, and are referred to when defining the security constraints for our security

analysis. In this example, we define the following attributes:

« Critical, resources that have a high importance, or nodes that should be kept

secret/private (c, represented as shaded in Figure 5.2)

« Human-impact, (also considered critical) to indicate resources that have a role
in cyber-physical interactions (h, represented with double borders in Figure
5.2)

+ Physical, to indicate that a resource represents a physical component (p, rep-

resented as diamond nodes in Figure 5.2)
The following is a list of all resources, and their attributes:

light sensor - (p) Detects ambient light

light data — Memory buffer for light data

light cfg — (h) Memory buffer for light preferences
light ctrl - (ph) Controller for lights

temp sensor — (p) Temperature Sensor

temp data — Memory buffer for temperature data

temp cfg — (h) Memory buffer for temp. preferences
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H: temp ctrl - (ph) HVAC controller
I: display data — Memory for Control Panel UI
J: ethernet — (p) Ethernet block for networking

K: password - (c) Memory for password

&

control panel sub-system — (p) Block for Control Panel
fire sensor - (cph) Smoke detector

alarm — (cph) Emergency alarm

c z £

photos — Memory for photos

T

media data — Memory for multimedia playback

©Q

accelerator cfg — (p) Control registers for Media Accelerator
R: audio system — (p) Audio playback sub-system

S: request - Memory buffer for requesting authentication

The system-level T/R matrix for the SHCS is presented in Table 5.1 with its
corresponding T/R graph in Figure 5.2. The Media Accelerator is shown as both a
task (T8) and resource (Q), as it can be used by other tasks, and can itself access
other resources.

The designer can also specify some higher-level security conditions on relation-
ships, such as conditional accesses, where a relationship is only “active” if a certain
condition is met (these are shown in matrix elements with “d”). This is useful for
representing behaviors such as authentication, where T4 and T5 are only allowed

to access potentially sensitive data after a user is successfully authenticated.

5.4.2 Execution platform building-blocks

In this case study we utilise a NoC-based architecture, and aim to derive a suitable
NoC configuration with security additions for a given application and its require-
ments.

For demonstrative purposes, we explore the use of the following building-

blocks for our execution platform.
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Figure 5.3: TDMA-MIN NoC with 8 platform nodes

The basic NoC architecture

The interconnect architecture has a crucial role in any MPSoC design, and as in
Chapter 4 we adopt a multi-stage interconnection (MIN) network inspired by the
work presented in [106], which features simple two-port cross-bar switches that
can be set to either straight or cross mode. Our variation arranges the switches in
a butterfly topology. The mode of the switches is dictated by a global controller,
which sets all switches in a stage to the same mode. For example, in Figure 5.3,
an 8-node network is shown with the control value of “100” indicating that the
first stage of switches is in the cross mode, and the second and third stages are
in the straight mode. The global controller can employ a time-division multiple
access (TDMA) scheme by generating a repeated sequence of control values, so this
network ensures that all platform nodes in the network are able to communicate
with all other nodes, exactly once per TDMA round. We adopt this network for the
SHCS application because:

« This network architecture is time predictable, which is useful for the parts of
the system that have hard real-time requirements (T6, for example, has hard
real-time constraints). In addition, the TDMA scheme establishes temporal

isolation, which adds further protection where necessary.

+ The network is resistant to Denial-of-Service type flooding by an errant core,
as bandwidth between all platform node-pairs is guaranteed through the
TDMA scheme.
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« No routing information is required to be encoded in packets, as the routing

is managed by the global controller

« Network Interfaces (NIs) are not complex — packet injection for receipt at
the correct target port is based on a simple mechanism, where the destination

port in a given cycle can be determined using the simple function:

destination = (portnumber >> 1) @ current control value (5.1)

The current control value is provided by the global controller. This relationship al-
lows the NI to work out the source/destination of a packet without needing a tag
or header. It also allows us to introduce very simple packet filtering, as explained

in the following paragraphs.

Security Mechanism Additions

The NoC can then be further enhanced through the addition of security compo-
nents. In example scenario we will only consider two options.

The first option is using a coarse-grain mechanism to block specific node-pairs
from communicating. To do so, the receiving NIs can determine the source of a

given packet given the current time slot through this relationship:
source = (receiving port & current control value) << 1 (5.2)

A simple check can be added into the NI to prevent the delivery of packets from
certain forbidden ports, or to allow only the delivery of packets from specific ports.

The second option employs some form of Memory Protection for fine-grain
protection, whereby a hardware block is added to check memory accesses against
stored designer-defined permissions. This regulates whether or not transaction can
go through to the destination. For example, a permission may exist that allows one
task to read but not write to a specific region of memory, and so the hardware block
should reject any attempts by that task to write to the protected region.

This is typically achieved by using some form of Memory Protection Unit
(MPU), and the use of MPUs for protecting memory is well established. Related
approaches can be found in [36] and [31].

In this scenario, we use as our building blocks the basic MPU, which corre-
sponds to the base variant of the Isolation Unit (IU) presented in the previous chap-
ter. To support conditional accesses, we need to be able to configure permissions

at run-time, so we should also employ the more complex IU variants. Instead of
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using an OS or special instructions to configure/manage permissions, tasks, includ-
ing bare-metal programs, can use a series of memory writes to its local Task U
to form a new permission. The IU checks designer-defined Owner permissions to
ensure that the task has the right to give other tasks certain access permissions
to a given resource. Owner permissions are unforgeable; they are defined by the
designer during the design process, and enforced by IUs which are preconfigured
with these permissions at synthesis time. Tasks are therefore prevented from grant-
ing access to resources they do not own. When the permission has been properly
formed, it can be sent through the NoC and received by the appropriate resource IU,
where the permission is loaded into its Permission Checking block, thus enabling
another task’s access to (a subset of) the resource. This is particularly useful for the
implementation of password-protected accesses; in our example scenario, T4 can
only access environmental data if T9 grants access—the use of [Us can facilitate

this operation at a platform-level.

5.4.3 'The Design Problem

For brevity, we apply the following constraints to our design problem:

« We initially assume that each task is mapped to its own single processing

core which will be connected to one of the ports in the NoC

« Physical resources will also directly become platform nodes, also using a port

each

The remaining memory resources can then be grouped/clustered to determine the
remaining platform nodes in the network.

The basic NoC architecture supports 2N nodes, where N refers to the number of
stages. So, if our design requires 12 nodes, we need to use a 4-stage network (which
has a maximum capacity of 16 nodes) and the capacity of the network won’t be fully
utilised. With regards to the security additions, the coarse-grain protection of port
blocking is low cost in comparison to fully-fledged MPU-based protection.

The aim of our design exploration is therefore to determine which combination
of fine-grain and coarse-grain protections should be added into the architecture
to support the designer-specified security requirements. Our design space involves
various ways to cluster memories; if we map memory resources to separate plat-
form nodes, we might be able to use the less costly port block approach for pro-

tecting that resource, but may incur greater costs if we need a larger NoC size. We
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might be tempted to cluster nodes to reduce the network size, but possibly incur
larger costs by requiring fine-grain protections.

Other design factors, such as performance, will also be affected. For instance,
the use of our MPU introduces a clock cycle delay for each check. While these ad-
ditional factors could also be added in the design exploration, we will only explore

the security/resource dimension in the following discussions.

5.5 Configuration Generation

The Architecture Configuration Generation stage is designed to generate a number
of candidate architecture configurations for a given embedded systems application.
Configuration generation involves two main processes, Clustering, followed by Plat-
form Risk Addition.

5.5.1 Inputs
Application Description

The first input, used in Clustering, is the T/R matrix for our application. There are
several ways in which this matrix can be derived. Besides a manually specified
system-level description, as in our case study, there exist several automated ap-
proaches that can be used to automatically derive task/resource relationships.

For example, an algorithm is presented in [7] which can be used to analyze a
program to identify shared memory buffers with security requirements; this can be
extended so that we can automatically identify all memory buffers in a design, and
potentially unearth hidden dependencies between tasks.

We also assume that in the design process, designers will generally explicitly de-
fine shared memory buffers for inter-task communication, which can be modelled
in the task/resource relationship matrix.

In C-like languages we might use specific data structures to store resources
like passwords; by modifying linker scripts a designer can explicitly place these
structures in their own memory region. Deciding the granularity of representing
resources in the task/resource matrix is also a design decision—one might choose
to represent individual memory words as discrete resources, or simply say that a
certain task’s heap space is a resource. In our approach, the final physical address
map can be determined after we have decided how to group resources into platform

nodes.
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Platform Description

The second input, used in Platform Risk Addition, is a description of how the general
MPSoC interconnect architecture affects the relationships between tasks and re-
sources. For example, an architecture that allows all-to-all communication enables
all tasks access to all resources; this introduces risks that should be quantified and
potentially addressed by the designer. Conversely, a custom point-to-point archi-
tecture might enable communication only between specific tasks and resources.
Different underlying architectures affect task/resource relationships in different
ways, so we use an algorithm in Platform Risk Addition that modifies the given
T/R matrix to indicate how a given architecture affects the capabilities of platform

nodes.

5.5.2 Clustering

The Clustering process generates several options for how resources can be grouped
into platform nodes in order to reduce number of NoC ports used. Physical re-
sources are first assigned as their own platform nodes, which will be referred to as
physical resource nodes. Designers define their own approaches for determining
how resources can be clustered.

For the SHCS, we apply four different clustering methods to explore the design
space. Each method produces a different number of platform nodes, which can af-
fect the overall network size. Furthermore, these different configurations result in
different potential security risks. Figure 5.4 shows a subset of the SHCS in graphical

form, and the effect of the four clustering methods described in the next section.

Clustering Methods

The first method results in a configuration with the greatest number of platform
nodes (and by implication, potentially the largest required NoC configuration). In
this method, we simply make each resource a platform node, as illustrated in Figure
5.4(a).

The second method (Algorithm 2) is designed to reduce the number of protec-
tions we are likely to introduce. First, we sort the tasks by the number of resources
they use (from most to least), and then go through each task and place the resources
that are used by that task in a platform node (as shown in Figure 5.4(b)). The intu-
ition here is that, for example, if we wanted to prevent T9 from accessing Light

Data, Temp. Data, and Display Data which are co-located in a cluster with Access
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Figure 5.4: Cluster Methods applied to SHCS (subset). Dotted edges represent added
risks

Request, we would only need to enforce one access control such that T9 can only
access the Access Request resource on that cluster.

The third method is a variation of the second method. We first identify the re-
sources that are used exclusively by a task. Each of these exclusively used resources
is then grouped into its own cluster (for example, Password is used only by T9). The
remaining resources, which are all shared, are then clustered using the same algo-
rithm as in the second method. This is shown in Figure 5.4(c).

The final method simply involves grouping all the nodes into a single cluster
(Figure 5.4(d)), thus minimising the total number of platform nodes, and NoC ports

required.

Adding in cluster risks

When we cluster resources, we potentially introduce risks in our design, based on
the assumption that if a task uses a resource in a cluster, it will be given physical
access to that cluster, and therefore, without any security additions, that task can
access all the resources in that cluster. We represent that with the dashed edges
in Figure 5.4. This allows us to model potential issues such as overflow, either de-

liberate or accidental; when resources are clustered, we assume that they will be
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Algorithm 2: Cluster Method 2
Input: List of tasks: taskList[], Set of unclustered resources: rL{},
relationship matrix: rm[](]
Output: List of platform nodes: clusterList(]
count no. of resources used by each task by adding number of “useful”
relationships;
sort taskList by resource_count;
for task in sorted taskList do
for resource used by task do
if resource in rL then
if not yet started_a_cluster then
clusterList.add(new Cluster);
set started_a_cluster;
end

/* -1 indexes the most recently added cluster
clusterList[-1].add(resource);
rL.remove(resource);

end

*/

end
end

Table 5.2: Added relationships due to Cluster Method 2 (shaded resources are in
the same cluster). “a” elements are due to clustering, “b” elements are due to the
platform

Light Data | Temp. Data | Display Data | Access Request | Password
TO W a a a b
T4 Rd Rd RW W b
T9 a a a R R

assigned contiguous addresses in the memory map. An errant task that writes to
one of the regions in the cluster can inadvertently overwrite neighboring regions.

To capture this, we produce an intermediate task/relationship matrix for each
configuration, adding an “a” relationship between tasks and resources it does not

actually need (but that are located within clusters that the task uses, as shown in
Table 5.2).

5.5.3 Platform Risk Addition

After generating the cluster configurations and their respective T/R matrices, ad-
ditional task capabilities (and therefore, risks) that are introduced by the choice of

interconnect platform are added. In our case study, TDMA-MIN NoC allows all-



Configuration Refinement 101

to-all access between platform nodes, so we express these additional capabilities
into each T/R matrix using Algorithm 3, where the introduced relationships are
represented as “b”, as shown in Table 5.2.

We assume that, by default, NIs are preconfigured with port blocks that will
prevent processing nodes from communicating with other processing nodes, and
non-processing (resource) nodes from communicating with other non-processing
nodes. The final T/R matrix for each configuration is finally written to a file for

further processing in the second stage.

Algorithm 3: Platform Description for the case study NoC

Input: Relationship Matrix rm[][], List of platform nodes clusterList[]
Output: (modified) Relationship Matrix rm[][]
for each task (row) in the matrix do
for each cluster in clusterList do
for each resource in cluster do
if rm[task][[resource] == empty then
rm[task][resource] == “b”;
end
end
end
end

5.6 Configuration Refinement

The second stage of our approach is Configuration Refinement, where we consider
each of the previously generated configurations in turn, and determine what secu-
rity additions need to be made in order to satisfy designer-specified security con-
straints. The Configuration Refinement Stage takes in the T/R matrix for each con-
figuration, as well as information about the contents of each platform node. The
three main processes in this stage are Impact Analysis, Rule Checking, and Configu-

ration Augmentation.

5.6.1 Rules

A key input to the refinement step is a set of security constraints, which can be set

by the designer to express security requirements for the final design.



102 Towards Security-Aware Enhancement of an MPSoC Platform

Security requirements might be fairly general (e.g., reduce the impact of an
attack originating from a certain task), or more specific (e.g., prevent all human-
critical tasks from being impacted by a compromised by a certain task). These re-
quirements are motivated by the functional requirements of the design. We assume
that designers have performed some prior work to decide what risks they want to
mitigate. As such, we are primarily concerned with the ability for a compromised
task (potential threat) to affect other tasks/resources. For example, if we doubt the
complete trustworthiness of a certain task in our system, we need a way to specify
the risk posed by the task so that our tool can automatically address it.

In our T/R abstraction, security can be improved by restricting the connec-
tions between specific task/resource pairs, and at a fundamental level, security rules
could be specified in this way. To better support automated checking, it may be con-
venient to check a “group” of rules that imply restrictions between certain tasks and
resource types, or vice versa.

Hence, we propose a set of rules to help establish desired boundaries between
different parts of the system with respect to their criticality. As a starting point, we
provide five types of rules to express relationship restrictions between assets (tasks

or resources), and potential threats (tasks).

Type 1 Impact restriction: We use this to specify that a task asset is not “impacted”

by another task.

Type 2 Resource class access restriction: We use this to specify when a task should

not have access to resource assets with specific attributes.

Type 3 Specific resource restriction: This is the same as Type 2, except for a specific

resource asset.

Type 4 Untrusted task: This is used to indicate that an entire task is not trustworthy
(i.e. the task may cause a possible threat), so it must have its capabilities

limited.

Type 5 Resource exclusivity: This is the complement of Type 3, where we want to

ensure that only one task can write to a resource.

These rules are not “exhaustive” in the sense of capturing all possible security re-
quirements, and it is possible to add new rules as required (for example, adding
restrictions on things like the number of resources accessible by a task). It is as-

sumed that the original application description satisfies the rules as specified by
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the designer; if the application itself does not satisfy a rule, the automated process
for adding security additions to the architecture configuration may be insufficient
for resolving the rule violation. Having that said, the detection of rule violations
may be able to guide the designer towards refinement of application-level logic.
For the SHCS case study, we define the following optimistic rule-set with the form
{type, potential threat, asset}, except for Type 5, which does not specify a single
specific threat:

Rule 1: 1, T8, T4: Remote interface should not be affected by compromise of the

media accelerator

Rule 2: 1, all other tasks, T6: Fire detect should not be affected by compromise of
any of the other tasks (this expands out to nine separate rules, e.g. {1,T0,T6},
{1,T1,T6} etc. ...)

Rule 3: 2, T5, ph: User management should not affect resources that are physical

and have human-impact

Rule 4: 2, T4, h: Remote interface should not affect resources that have human-

impact
Rule 5: 1, T4, T1: Light control should not be affected by the Remote Interface
Rule 6: 2, T9, h: Authenticator should not affect resources with human-impact
Rule 7: 3, T3, I: Temperature control should not affect the display data resource
Rule 8: 4, T7: Media Player is untrusted
Rule 9: 5, T9, K: The password resource is accessible only by the Authenticator

For comparison, we also consider a pessimistic rule-set where the designer has de-
cided that they do not fully trust any of the tasks. In this rule-set, Type 4 rules for
all tasks are specified to restrict all task capabilities to the minimum needed (i.e.

allowing only the relationships specified in the original T/R matrix).

5.6.2 Impact Analysis

Impact Analysis (§3.3.2) forms the basis of our security-driven approach. For our
SHCS case-study however, we restrict our analysis to the Immediate and Secondary

levels only, and consider tasks to be sufficiently isolated from each other if they do
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not appear in each others’ two-level impact profiles. Each TIP essentially charac-
terises the reach an attacker has if they were to compromise the associated task,
and Impact Analysis can be performed to help designers identify potential paths
from which certain assets could be attacked given an architecture configuration.
Intuitively, the more shared resources a task uses, the greater the potential impact

if compromised.

5.6.3 Rule Checking

With the TIPs as determined by Impact Analysis, we can then proceed with rule
checking. One rule is checked at a time; if a rule passes, the next rule is checked,
if a rule is violated, we proceed to Configuration Augmentation to try and resolve
the violation. Four of the five rules are easily checked by examining the contents
of the immediate and secondary impact lists in the TIP of the potential threat task

(threat) specified in each rule.

Type 1 rules are checked simply by examining the contents of the potential threat’s
secondary impact list for the task asset. If the task asset is in the list, the

rule has been violated.

Type 2 rules are checked by examining the threat’s immediate impact list, and
checking the attributes for each resource in that list against the resource
asset attributes. If any of the resources in the list have the attributes, the

rule has been violated.

Type 3 rules are checked by examining the threat’s immediate impact list for the

specific resource asset. If it is in the list, the rule has been violated.

Type 4 rules are checked by comparing the size of the threat’s immediate impact
list against the number of resources it actually uses. If the size is greater

than the number of resources it needs, the rule has been violated.

Type 5 rules could be checked by counting the number of times a resource appears
across all immediate impact lists (it should appear at most, once, otherwise, the rule
has been violated), but this can also be achieved by counting the number of tasks
that have access to that resource in the relationship matrix. Because the proposed
rule types simply involve looking up the rows/columns of the relationship matrix,
the rule checking is easily automated. While scalability is affected by the number
of tasks/resources, it is possible to raise the level of abstraction to consider even

larger clusters of tasks/resources.
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Our approach for resolving rule violations involves incremental addition of solu-

tions to the configuration. In our case study, these are NI port blocks, and MPUs

(as described in §5.4.2).

We adopt a two-level approach. First, we attempt to add in a port block to

prevent processing node to non-processing node (task to cluster/physical resource

node) communication. If Impact Analysis and Rule Checking reveals that the rule is
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still violated, we then add a MPU-based restriction. As we add solutions to restrict
task capabilities, we delete elements in the T/R matrix, or mark where relation-
ships are restricted or enforced (by adding “e” to the element, for example, marking
a relationship as “Re” where a Read-only is enforced).

For Rule Type 1 violations, we first determine the resources that the task asset
reads from (the task asset’s needs list)—these are the resources that the threat should
not be able to impact (maliciously modify) in order for the rule to be satisfied. At
the node level, we check to see if the threat has any need to access a given non-
processing node which contains resources in the needs list. If it does not, we can
introduce a port block to prevent the threat from affecting any of the resources in
that non-processing node. In other words, if the threat has a “b” relationship to any
resource in the needs list, by implication, it does not use any of the resources in the
non-processing node that the affected resource belongs to.

If we are unable to resolve the rule violation with port blocks alone, we then
introduce MPU-based restrictions. If a resource in the needs list is not used by the
threat, we add a deny restriction to stop the task from accessing that resource. If the
threat has a read relationship with that resource, we add a deny-write restriction,
so that it cannot maliciously modify the resource.

For example, consider Figure 5.5. X and Y are tasks on their own processing
node, W0, W1, and Z are resource nodes (where W0 and W1 are clustered together
in node W), and we use the same building-blocks as in our case study. Their initial
T/R relationship is shown in Figure 5.5(a). We define a rule {1, X, Y} to ensure that
X cannot impact Y, and this rule is initially violated. In the first step (Figure 5.5(b)),
we identify that {W1, Z} are in Y’s needs list. X has a “b” relationship to Z, so we
first add a port-block to prevent interaction between X and Z. However, X can still
impact (maliciously write to) W1, so in the second step (Figure 5.5(c)), we introduce
an MPU to ensure that X cannot write to W1. The rule violation is resolved, so we
end up with the architecture configuration as in Figure 5.5(d).

For Rule Type 2 and 3 violations, we undertake a similar process, but instead
construct a forbidden list of resources that the threat should not potentially impact.
We proceed to add port blocks or MPU-based restrictions, the same way we address
Rule Type 1 violations, to protect the resources in the forbidden list. On the other
hand, for Rule Type 4 violations, we take a slightly different approach, whereby
we identify all the relationships to resources that are not needed by the threat. We
add port blocks when access to entire non-processing nodes are not required, and

MPU-based restrictions to restrict the threat task’s capabilities as much as possible.



Results and Discussion 107

Finally, for Rule Type 5 violations, we identify the tasks that should not use the
resource asset (which should be all tasks except for the task stated in the rule),
and add port blocks so that the non-processing node is not accessible to tasks that
have no need to access the non-processing node on which the exclusive resource
is found, and MPU-based restrictions to all other tasks that require access to the
non-processing node.

In the current prototype, rules are checked and addressed in the order in which
they have been specified by the designer. Each introduced solution restricts the
capability of tasks, and so, intuitively, it is possible that addressing a certain rule
violation may inadvertently address a subsequent rule violation. The dependency
between augmentations introduced and the order of rule checking may thus affect
the overall solution in several ways, such as resource cost. While considering the
implications of different rule ordering is out of the scope of this thesis, in future we
could further explore this notion, as well as ways to incorporate the choices even

when more solution options are given for addressing rule violations.

5.6.5 Optimization

In the final part of the Configuration Refinement stage, we perform a simple opti-
mization pass to reduce the number of restrictions added into the system. For each
non-processing node in the network, if the number of processing nodes (tasks) that
use it is less than the number of tasks that are denied access to it through port block-
ing, we change the port blocks to that node into port grants—i.e. we check if a task
can access that node instead of seeing which tasks cannot.

Similarly, we can also check the MPU-based restrictions added to each non-
processing node; if the number of deny rules is greater than the number of useful
relationships between tasks and resources in that node, we can replace all deny
restrictions with grant permissions instead, where needed. Finally, we also iden-
tify processing/non-processing node relationships that are not restricted by any
MPU-based restrictions; we add an MPU-bypass to the final solution list so that
read/write packets from certain tasks do not have to go through permission check-

ing.

5.7 Results and Discussion

Table 5.3 shows the total number of nodes, and the contents of each cluster, for the

four configuration options generated by the Configuration Generation Stage for
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Table 5.3: Output of Configuration Generator

Config Nodes Cluster Contents

1 29 All resources nodes are network nodes
c4: light data,temp data,display data,
request

2 23 c5: light cfg,temp cfg

c7: photos,media data
¢9: password
c4: light data,temp data,request
c5: light cfg,temp cfg
c7: media data
3 26 c9: password
ce9: password
ce4: display data
ce7: photos
4 21 Cluster (c8) with all memory resources

the SHCS case study.

For our case study, the NoC size in all cases will be the configuration for 32
nodes (with some unused ports). For resource usage comparisons, we compile our
designs using Analysis and Synthesis from Altera Quartus II 15.0 for a Cyclone IV
target (set to AUTO). Synthesis of the base 32-node NoC (for packet sizes of 66-
bits) indicates a base resource cost of 12675 logic elements. The packet payload
consists of a 32-bit address, 32-bit data, 1 bit for read, and 1 bit for write. For other
applications, it is possible that the network size required varies between each con-
figuration.

Table 5.4 contains a summary of the number of security features in the solution
list for each configuration (that satisfies the Optimistic rule-set), in terms of the to-
tal number of port checks, total number of MPU checks, and the number of MPUs
and IUs (IUs are MPUs with additional logic to support run-time conditional access
controls). This is also represented graphically in Figure 5.6, where dark ovals indi-
cate where the tool suggests adding active port protections, and dark rectangles
indicate the addition of MPUs/IUs. As expected, the more constrained Pessimistic
rule-set, where the designer identifies all tasks as potential threats, requires more
solutions, as presented in Table 5.5.

The different MPUs and IUs added into the system have different resource re-
quirements; IUs are more complex due to the additional logic required for process-

ing and loading new permissions. The size of MPUs and IUs also increase as the
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Figure 5.6: Graphical representation of Optimistic rule-set satisfying configurations
(un-used ports and processing nodes omitted)

Table 5.4: Solutions Added to Satistfy Optimistic rule-set

Total Total MPU
Config Port Checks Permissions MPUs  IUs
1 19 4 0 4
2 14 5 0 2
3 15 4 0 2
4 9 18 0 1

Table 5.5: Solutions Added to Satisfy Pessimistic rule-set

Total MPU

Config Total Port Checks . MPUs IUs
Permissions
1 28 10 2 4
2 21 14 2 2
3 23 14 1 2
4 13 18 0 1
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Table 5.6: Resource overhead from MPU/IU additions (as % of base NoC resource
usage)

Config Optimistic Rule-set Pessimistic Rule-set

1 +10.7% +15.0%
2 +7.3% +15.7%
3 +6.5% +14.1%
4 +12.2% +12.2%

number of permissions to be checked are increased. To get an idea of the resource
cost for implementing our security additions, we synthesize the various MPU/IU
configurations that appear in the solution list, where each MPU/IU checks the full
32-bit address from the incoming packet. We present the resource cost overhead
introduced by the security additions as a percentage of the base network cost in
Table 5.6. Additionally, in all configurations, the Authenticator task will have a Lo-
cal Task IU, which requires 627 logic elements (this cost is omitted from the table).

Port checks, by comparison, remain small; in fact, the addition of port checks
adds about 9% to the base cost of the receiving NI. Each receiving NI requires around
70 logic elements. As a result, we can see that Config. 3 provides the most resource
usage efficient configuration for satisfying the Optimistic rule-set, largely because
we can utilise a port check instead of an MPU permission to protect Display Data
unlike Config 2. In Config. 1, separate IUs need to be added to support the dynamic
permissions; adding a full IU is costlier than adding an additional permission to an
existing IU. This is also the reason that Configs. 2 and 3 require more resources in
order to satisfy the Pessimistic rule-set compared to Configs. 1 and 2.

Another way in which we might choose to compare solutions from a security
perspective, is to examine the final TIPs generated by the Configuration Refine-
ment stage. With these, the designer can check to see which assets remain vulner-
able to certain task compromises even after satisfying the initially specified rules,
or compare the relative security of different architecture configurations and their
resulting resource requirements. For example, after satisfying the Optimistic rule-
set, the Media Accelerator still has six tasks in its secondary impact list. With this
in mind, a designer could factor in other information (such as how “likely” the Ac-
celerator could be abused) to decide whether they should attempt to reduce the TIP
by modifying the design (i.e. by re-writing the design, or adding additional rules).
In this example, we could add a Type 5 rule to ensure that only the Media Player
can configure the Accelerator, or a Type 4 rule to restrict what the Accelerator can

ultimately access. The designer can use our tool to explore different trust scenar-
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ios by specifying different security constraints as we have done here with the two

presented rule-sets.

5.8 Summary

In this chapter we presented a systematic security-aware approach for the design
of an MPSoC-based embedded system. Our two-stage approach first generates sev-
eral potential architecture configuration options for a given application, and then
analyzes each from a security perspective to detect designer-defined security rule
violations. We then demonstrated how each configuration can be augmented with
security mechanisms in order to resolve any rule violations, to give a designer op-
tions from which to select a satisfactory design solution. Our systematic approach
is also further extensible; for example, more complex clustering approaches could
be investigated, such as the formation of clusters of tasks together with resources,
or even the clustering of tasks onto the same processing node, resulting in fur-
ther possible configurations. Alternative general architectures and other security
mechanisms could also be incorporated into our approach. In the next chapter, we
further extend our automated approach to consider an even higher level of design
abstraction as a strategy to safely incorporate IPs whose internal implementation

details are not completely known to the designer.






CHAPTER

Introducing Context-Aware
Protections to the MPSoC Platform

In the previous chapter we proposed a system-level approach for exploring potential
application-specific protection options. With impact analysis and user-defined rules, de-
signers can use IUs with different complexities. However, as embedded systems become
more complex, we also need fo support heterogeneous clusters of pre-designed HW/SW
IPs. In this chapter, we infroduce the notion of context to our proposed security protections.
This allows designers to ensure that memory accesses occur only when expected, and in
the right order. To support this, we adopt a novel service-level abstraction, framing our
security as protection of services, and protection from service-providers. While the IUs in
Chapter 4 and 5 assumed that application tasks were explicitly aware of security, and thus
able to manage dynamic permissions directly (§4.3.5), we present here a strategy where
dynamic permissions are managed by enhanced Nis directly at run-time, even when IPs
are not designed with security as a design goal. We present an extension of the IU as the

context-aware permission checking (PCheck) block.

6.1 Overview

IPs are often provided with full access to parts of the system, through a shared bus
or regular NoC architecture. This has increased the potential severity of exploits
such as the recent Broadpwn vulnerability [130], where a compromised wireless
chipset could be commandeered to affect an OS kernel despite no ordinary need
for the chip to access that memory region. IPs with direct memory access capabili-

ties (DMA) could be manipulated to circumvent traditional software-based security
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measures (as in [67]) particularly when they have access to more parts of the sys-
tem than required. Our aim is to prevent or limit a potential attack’s impact on the
design as a whole.

In this chapter, we propose an alternative, more decentralised approach for re-
ducing an attack’s impact across different parts of the system. This is especially
important when we consider future application-specific MPSoC designs, where a
general NoC architecture is customised with many concurrent behaviours and het-
erogeneous components from different sources. In the security approach we pre-
sented in Chapter 4, we assumed that applications were explicitly security-aware,
and that each task would explicitly manage the shared regions.

However, faced with the possibility that tasks are not able to make use of IUs
directly, we need to develop a suitable protection infrastructure. The infrastructure
should support components that do not have a common software base, and enforce
protection even when components are not security-enabled (i.e. without built-in
security mechanisms). Components with internal designs that are not fully acces-
sible by system designers should also be accommodated in some way. This can
be achieved with a separation-of-concerns approach, where we consider security
separately to application logic.

In other words, we need to be able to realise a security infrastructure that can
operate independently and transparently to the application logic if required. Fur-
thermore, access controls should be enhanced with a notion of context, where we
take context to be the circumstances surrounding an access (e.g. time of access,
sequence of accesses, or the reason for/role of an access). We use knowledge of
expected interactions between components in the SoC as an input in the design of
security enforcement.

Hence, in this chapter, we build upon the work presented in the previous chap-
ters. Using a design process which re-frames IP blocks as service providers, and
crafting protection around service consumption, we propose an architecture for
dynamic access controls in heterogeneous MPSoCs. Instead of hierarchical privi-
lege, we make use of the decentralised approach of Chapter 4, re-implementing the
IU as an enhancement to NIs.

First, in Section 6.2 we describe another motivating scenario, and illustrate a
variation of the threat model we presented in Chapter 3. This leads us to Section
6.3 where we present our proposed architecture and mechanisms. In Section 6.4
we describe our initial work on a design flow which incorporates our security in-

frastructure. To explore the feasibility of the approach, we perform experimental
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evaluation, discussing in Section 6.5 the implications of our proposed architecture.

In Section 6.6 we position this work in the context of other related works.

6.2 Motivation and Background

6.2.1 Smart Controller

To describe the added changes when integrating complex pre-designed IPs, let us
examine another motivating scenario. Consider a smart controller used in an In-
ternet of Industrial Things context (Figure 6.1(a)). The controller needs to bridge
various networks, and provides an interface for a user to set preferences that are
used in autonomous actuation and control of two industrial zones. The controller
also needs to independently manage a Hazard Response System (HRS), which per-
forms the critical function of hazard detection and management. The sensitive sen-
sor data from both zones is stored for archival purposes, where the control tasks

periodically make use of a DMA block to store data.
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To implement the controller, designers have several IPs at their disposal to use
as nodes in the MPSoC (Figure 6.1(b)). Designers can incorporate simple nodes, like
processing elements, shared memory blocks, or DMA-capable accelerators, as well
as more complex IPs, like a pre-designed Sensor Block (to interface Sensor A and
Sensor B networks), or an External Interface Block (EIB), which can run a local
graphical display and provide Internet connectivity. Complex IPs, like the Sensor
Block, can themselves be clusters that integrate other components, such as a wire-
less modem, DSP hardware, and a full software stack. From the designer’s perspec-
tive, IPs like the Sensor Block largely appear to be black boxes where only certain
things are visible, such as some directly addressable memory-mapped registers for
programming its operation, or accessing the data it produces.

In our design, some IPs act as masters—they are IP tasks that can issue memory
requests. Other IPs act as slaves that can only respond to memory requests; in other
words, they provide memory-mapped resources. Some IPs can act as tasks while
simultaneously providing resources, such as a programmable DMA block (where
it can issue memory transactions, after being configured through its configuration
registers).

To control and coordinate the IPs, designers implement their application logic
as concurrent software entities. We will refer to these as application tasks. IPs are
integrated into a target NoC architecture (Figure 6.1(c)), together with processing
elements which execute the application tasks. Directly addressable parts of each IP
are mapped into a global address space, and NIs manage the delivery of memory
transactions. As part of the design process, we assume that designers make explicit
decisions as to which resources are used by each application task. In Figure 6.2 we
can see the designer’s initial abstract view of the tasks and resources in the smart

controller design as a task/resource relationship graph.

6.2.2 Threat Model

We use the threat model presented in Chapter 3, and consider the threat that a task
is compromised such that it is made to issue arbitrary memory transactions (A1l
from §3.1.3). We assume the worst-case, where a task has full control of a given pro-
cessing element (akin to privilege escalation). This means that a malicious task can
directly corrupt stored data (by corrupting it through spurious writes) or attempt
to access sensitive data (and potentially leak it). This also means that a malicious
task can manipulate DMA-capable IPs in the MPSoC to perform malicious accesses
on its behalf (A2 from §3.1.3).
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However, in addition to the aforementioned threats, the presence of complex
IPs adds further potentially hidden threats. Recall, for example, the Sensor Block.
The designer makes use of the data it produces (as accessed through Sensors A Data
and Sensors B Data memory buffers), whereas the block actually contains a pro-
cessor core with a master-side interface to the NoC. It has DMA capabilities (say,
for streaming data to shared memory), and while the designer does not use this
capability in this system, it remains available for an attacker to abuse.

Initially, we assume that our MPSoC features a general NoC interconnect that
allows all-to-all communication. There are several threats that may arise due to
resource sharing. Figure 6.3 illustrates some potential attack scenarios (AS) in the

smart controller:

AS1: Control A could be compromised, and instead of using the DMA block to

archive sensor data, it abuses the DMA to disrupt the HRS operation, manip-
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=

ulate the actuators, or illicitly access the shared memory. This is a “confused
deputy” scenario [40] — * —T>

Interface Task could be compromised to change Zone B preferences, thus

causing Control B to perform actuation at an undesirable time ——>

The Sensor Block’s processing element (represented as Sensors A Task) could
be compromised, and attempt to directly manipulate Actuator A inappropri-

ately, or exfiltrate sensitive data from Zone B ~""""" P>

A compromised task might also be able to cause issues by deliberately mis-
configuring a block, such as the case where the DMA block is programmed
to do more transfers than expected, potentially causing a denial-of-service

for other tasks

Ultimately, there are two main issues that we want to reduce the severity of:

the direct impact of a compromised task, and the impact resulting from a compro-



Motivation and Background 119

mised task’s abuse of components in the MPSoC. We want to prevent these types

of attacks from being carried out successfully.

6.2.3 Security Design Challenges

By designing our system with the Principle of Least Privilege [76], we can attempt
to provide a security foundation. Potential windows for exploitation can be reduced
by ensuring that access to resources is granted only as, and when, required. Criti-
cal components can be isolated from potentially vulnerable components when re-
source sharing is properly managed. Conventionally, we can implement some sort
of access controls, prohibiting access between components that do not have any
ordinary need for interaction.

As we discussed in Chapter 2, one security approach might involve partitioning
of the system into so-called “secure” and “non-secure” parts, and enforcing isola-
tion between them. Traditionally, as in the case of TrustZone [75], this additionally
entails a privilege hierarchy, where the secure part can access (and possibly disrupt)
the non-secure part. That introduces the problem of deciding how to partition the
design appropriately. To alleviate attack AS1, we might say that the HRS and its
control software, considering its importance, should be made exclusively secure,
thus isolating it from the Zone control tasks, as well as the DMA block entirely.
However, this opens up the possibility that non-secure parts are able to affect each
other, as in the attack AS2 and AS3, or that a malicious design in the secure part
can cause havoc across the entire system.

A subtler approach involves considering each application task and its associated
resources as their own individual domains. This approach can be more resilient than
a hierarchical one, because it does not encourage overarching privilege. By restrict-
ing communication in the NoC, we can aim to isolate uncoupled domains entirely.
Yet, even if we restrict communication solely to the required links as indicated by
the task/resource relationships, the system remains vulnerable to exploits that can
cause impacts across different domains.

For example, the DMA block requires access to the memory regions which
house archival data for A and B. It needs physical access (which is provided by
the NoC), but its ability to modify Archive A or Archive B depends on context, that
is, which task the DMA block is working for. Giving the DMA block access to both
A and B opens up the risk of an exploit akin to attack AS1, where a compromised

task might try to extend its reach across domains by abusing an IP.



120 Introducing Context-Aware Protections to the MPSoC Platform

We might also have other requirements. For example, we could desire that Con-
trol B’s ability to manipulate Actuator B is conditional on contextual information
such as time, whereby actuation changes should only occur during pre-set opera-
tional hours.

Different IPs may have varying levels of “security-awareness”—if an IP can-
not be modified to deal with access control directly, an independent protection
infrastructure is necessary. Hence, we need some strategy for dynamic conditional
permissions for access to resources. The design challenge lies in how to specify
the system’s security requirements, and the implementation of a security infras-
tructure to support and manage the required dynamic controls, especially given a

situation where:

elements in the design are heterogeneous (e.g. in terms of instruction sets,

capabilities, functionality)

« some processing elements have no OS (i.e. the software runs bare-metal) and

are thus without any notion of privilege restriction

« an OS (when present) can be compromised (with successful privilege escala-
tion if possible), thus precluding a security strategy that exclusively relies on

privileged software for managing security

« hardware or software components in the design are “black-boxes”, and the

designer does not have the ability to make invasive modifications

Our underlying security approach involves identifying and managing the nec-
essary relationships between components in the design. These relationships are
used to generate and enforce access controls, as well as dynamic run-time permis-
sion enabling or disabling. As such, our proposed approach is not designed to be
an exclusive security strategy; we do not explicitly deal with side-channels or pre-
vent any initial means of incursion. Rather, we position this work as a possible
foundation in a multiple independent layers of security (MILS) approach, where
the architecture provides a fall-back that will guarantee that certain properties are
not violated.

In the following section, we describe an approach for framing security speci-
fications, mechanisms for context-aware protections, and a hardware architecture

for implementing our security infrastructure.
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6.3 Proposed Security Approach

Every memory access in an MPSoC is performed for a reason. Legitimate accesses
are well structured; for example, a processor making use of an IP block will per-
form memory accesses to a set of memory-mapped control registers in a specific
order with specific values to set up a specific action. When components in the de-
sign attempt to access memory regions that are outside where they usually operate,
when accesses are in an unusual order, or when they are performed at unexpected
times, we expect the presence of design error or malicious activity. As such, we
should check that accesses are allowed by considering some notion of context, i.e.
that memory accesses are appropriate to what a given application task is supposed
to be doing. For this purpose, we propose to re-frame accesses on chip in terms of

service consumption, and base our protection scheme around this abstraction.

6.3.1 Services in a MPSoC

The service-oriented paradigm provides a flexible abstraction for integrating
reusable modules, especially given a well-defined interface [131]. This matches well
with using heterogeneous IPs in an MPSoC, so we represent IPs that can perform
several different functions as service providers that provide multiple services. Ser-
vices are the operations performed by an IP on behalf of application tasks, ranging
from simply responding to memory requests (e.g. shared memory), to more com-
plex operations (such as a DMA block performing a sequence of memory transfers).
We classify services as active when the service provider performs memory accesses,
and passive when a provider only exposes resources.

As an example, let us return to the smart controller. We can describe access to
the directly addressable data buffer in the Sensor Block IP as use of the Read Sensors
A data service. It is passive, it does not require any resources or configuration, and
it simply provides a readable memory region. Alternatively, configuring the Sensor
Block to use its DMA capability to move data to elsewhere in the MPSoC entails

consumption of an active service.

6.3.2 Protecting Services

With this abstraction we can express security specifications as protection of ser-
vices (from misbehaving tasks), and protection from service providers (working on
behalf of misbehaving tasks), instead of designing security at a lower level of ab-

straction. Access restrictions become centred around ensuring that an IP only has
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access rights needed to provide a service for a specific task, and that the IP’s mem-
ory accesses are consistent with the service interface.

We assume that it is the responsibility of designers to conceive the security
policy for any given system design. To improve security, we thus propose a way
for designers to specify, and then enforce, certain service-level security specifica-
tions. Essentially, the aim is to regulate the capabilities of application tasks and IP
tasks in two ways: access controls for using services, and access controls for service
providers.

On the service consumer side (i.e. application tasks), we need to make sure that
access to services is only on an as-required basis. Conventionally, this is achieved by
specifying static permissions. If a task wants to use an IP, it needs to have access to
the corresponding memory-mapped registers of that IP. In this work, we propose
the optional addition of context to these permissions, specifically, making them

conditional on:

« Sequence: where access to a service depends on some pattern of service con-

sumption, or

« External status: such as time, where access to a service depends on some
global notion of time, or some other attribute, such as authentication or at-

testation status provided by components elsewhere in the system

In this way, we can reduce the risk of successful AS2-type attacks, where dam-
age is caused by accesses that violate designers’ expectations of when certain ac-
cesses should occur.

Furthermore, we also need to examine the steps leading up to service use. Take
as an example, the DMA block which transfers data from one part of shared mem-
ory to another. It has memory-mapped registers for the read and write start ad-
dresses, a register for the size to transfer, and a control register for starting the
transfer. Correct configuration of the DMA block follows a sequence akin to some-
thing like that shown in Figure 6.4. The various configuration “parameters” for the
service could be checked for validity, particularly for ensuring that something like
a DMA block is not misused. Activation of the service should be contingent on le-
gitimate set up, as a means to prevent abuse (thus reducing the risk of an AS4-type
attack).

On the service provider side, we need to make sure that the service provider

only has access to the resources required to deliver the service. In some cases, such
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Figure 6.4: Example service configuration: DMA block

as with passive services, the service provider does not need access to anything else
in the system. For example, in the smart controller, the Actuator block receives a
configuration directly from a Control task, and sends its outputs off-chip.

However, for active services, we should place restrictions on what they can do
in the system, particularly to prevent AS1-type attacks where an IP is manipulated
to breach security domains. To do so, we can specify a permission activation and/or
deactivation scheme. Security schemes manage the dynamic permissions given to
a service provider.

For activation schemes, we propose the following:
« No Check (NC)—the service provider can access all memory

« Fixed-Always Active (F-AA)—permissions are always-enabled based on the

T/R relationships associated with the service

+ Fixed-On-demand (F-OD)—permissions to fixed regions are enabled only on

service request

« Variable-On-demand (V-OD)—as above, but where the protected shared re-

gion’s location is variable and specified as part of the service request

We also propose three options for deactivation schemes for On-demand permis-

sions:

« Explicit—permissions are disabled when a service is completed (only usable

if the requesting task can “acknowledge” service completion)
+ Time-limited—permissions are disabled after some time has elapsed

+ Message-count—permissions are disabled after a certain number of messages

are sent

By specifying and enforcing a mix of security specifications, designers are able

to improve the security of the system. For example, we can specify a conditional
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Figure 6.5: Permission Checking Block (PCheck)

permission based on time to protect access to the actuators in the smart controller.
A compromised task can be stopped from creating malicious outputs at unexpected
times. The DMA block can be protected from abuse (as in attack AS1) by specifying
that its access permissions are V-OD, thus preventing unfettered access to the over-
all system. We have the added benefit of being able to detect some forms of attack,

by identifying failed permission checking due to unexpected malicious behaviour.

6.3.3 Hardware Support
6.3.3.1 Permission Checking

We turn now to enforcement. Static access controls can be implemented by incorpo-
rating a firewall or MPU at each network interface (NI), so each memory transac-
tion is checked against a list of permissions. Permissions specify read/write restric-
tions on given memory regions, and messages are prevented from release into the
NoC unless access is granted by a permission.

As an augmentation to static permissions, we propose that dynamic controls
and monitoring are also performed in hardware. Our intention is that security en-
forcement in hardware can be somewhat self-managing, thus insulating the funda-

mental access controls from rampant compromised software. Accordingly, we add
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Figure 6.6: Security Infrastructure

a Permission Checking block (PCheck) to NIs (Figure 6.5). The PCheck adds IU-like
functionality into the NL

In its most basic form, the PCheck resembles a statically configured MPU; trans-
actions from the local core are compared with static (Base) permissions, generating
a grant signal if the read/write request is bound for an accepted region. To enforce
dynamic parts of the security specification, we propose these additional PCheck

customisations (as shown in Figure 6.5):

« an additional block of conditional service permissions, where conditions can
be checked inside the PCheck, or fed in via an external interface. An optional
sequence monitor which tracks the order of service use can also be added

(long dashed components)
« a timer/counter for disabling permissions (medium dashes)

« a configuration monitor for ensuring that services are configured properly,
upon which dynamic permissions for the service provider are enabled/dis-

abled (small dashes)

« a remote permission block if dynamic permissions are enabled/disabled by
other NIs

External conditions, provided by components that mark some part of system’s
context, like a counter which records system time, can be housed in a Security Sup-
port block, as shown in Figure 6.6. The security block is connected to the NIs sepa-

rately to the regular NoC, and we assume that the components within are trusted.
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6.3.3.2 Granting Permissions to Service Providers

As opposed to a centralised or privileged entity (such as a security manager [31])
for changing permissions during run-time, we instead add support for decentralised
dynamic permission management through a protection infrastructure consisting of
interconnected NIs (illustrated in Figure 6.6). These NIs can be interconnected in
the same way we proposed in Chapter 4 (Figure 4.6). This is particularly important
in the case of active services, as we need to ensure that the service provider receives
the necessary permissions when a service is used. We also need to ensure that the
service consumer configures the service provider correctly.

In the Fixed-Always Active case, the service provider has a statically configured
MPU, which permanently provides the necessary permissions. For On-demand per-
missions, we need to implement checks on the consumer (to ensure that consumer
configuration is correct), and place dynamic controls on the provider. Our idea is to
support this directly in hardware, thus avoiding the reliance on privileged software.

On the consumer side, we can use a Configuration Monitor to ensure that ser-
vices are not abused. For each active service used, we create a finite state machine
to check each part of the IP block configuration. Take as an example, the DMA
block, which has a configuration process as illustrated in Figure 6.4. Each step in-
volves a write to a memory-mapped register, and we can check that the data for
each write conforms to what the designer expects. Enforcing correct configuration
thwarts abuse of the service providers.

For this approach to work, we adopt the notion that service providers operate
on data that logically “belongs” to the service consumer. Hence, to prevent attacks
where a compromised task tries to extend its reach, we give designers the respon-
sibility of assigning regions of the address space to each application task. These
regions are the parts of memory that an application task has authority to share
with other entities in the system, and are represented in a Base permission in the
PCheck. As the configuration process occurs, the Configuration Monitor checks
that the region(s) being sent to the service provider lie within the allowed region(s).
This stops malicious entities from successfully breaching security domains. Other
aspects of the configuration (such as transfer size in the case of the DMA block),
can also be checked by the monitor.

If the configuration is successful, the corresponding permission can be enabled
at the service provider’s NI If the application task tries to configure the IP incor-
rectly, the monitor goes to an error state, and indicates a security violation. These

operations are handled directly by the PCheck, so in this way, customised NIs can
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manage dynamic permissions even if an IP is not “security-enabled”. The complex-
ity of the monitor can be relatively low, considering that it consists mostly of com-
parators and the number of checking states is directly proportional to the number
of control registers to write (for example, a typical Scatter-Gather DMA block has
8 memory-mapped registers, a PLL block has 3, and only a subset of these registers

are used for configuring the IP’s behaviour [52]).

6.3.3.3 Task Identification and Location of Checks

Enhancing NIs with the PCheck introduces protection at node-level granularity.
For increased granularity, a Task ID can be checked if multiple tasks are resident
on the same node, although this does require the IP to be more security-aware.
Strategies such as program counter-based access control [63] may be useful for
task identification, and we assume that any adopted technique to identify tasks is
sufficiently trustworthy:.

Additionally, where traditional service-oriented approaches in the Internet fea-
ture permission checks at the service provider, our scheme involves checks at both
consumer and provider to address our threat model. This has the added benefit of
providing effective protection even when NoC protocols allow parameters such as
packet headers to be forged, or where packet origins are not easily determined. Pre-
venting the injection of packets also helps reduce the risk of spurious traffic in the

NoC, which could lead to congestion (and Denial-of-Service as a result).

6.4 Integration and Customisation

In order for our proposed security approach to be effective, the protection infras-
tructure should be closely aligned to the embedded systems application. Security
should be considered as part of the design process, so in this section we present a
top-down system design flow that integrates customisation of the protection infras-
tructure with the customisation of the execution platform for a specific application.

This design approach makes further use of our proposed service-level abstraction.

6.4.1 Approach Overview

An overview of our proposed design flow is presented in Figure 6.7, with corre-

sponding details in Figure 6.8.
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Figure 6.7: Our proposed design flow

First, designers specify the application in a high level Task/ Service (T/S) speci-
fication. The T/S specification represents all the application tasks in the system, and
the services that each task consumes. These services are drawn from a library of ser-
vices, where IP designers have specified a set of Service Interface Descriptions which
indicate the resources and tasks that are involved in the service. Corresponding Ser-
vice Provider Descriptions indicate the IP tasks and resources that each potential IP
block provides. Initially, this specification is abstract, and is independent of any
service providers.

This specification undergoes refinement to produce a lower level Task/Resource
(T/R) graph, and a Node-level graph. The T/R graph represents the read/write rela-
tionships between application tasks, IP tasks, and all the memory-mapped resources
in the system. The Node-level graph represents the required physical links between
the IPs in the design. Refinement uses the service interface descriptions for each IP,
as well as a logical description of the visible components of the IP.

To generate the protection infrastructure, designers also create a security speci-
fication at the service-level, indicating where a service use is conditional, as well as
a security scheme for enabling/disabling permissions for the IP task that provides
a given active service. The security specification is then used in conjunction with
the T/R graph and Node-level graph for NI customisation to produce the customised

protection infrastructure.
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6.4.2 Refinement

Using the T/S specification, we perform refinement to create a T/R graph, which
represents the read/write relationships between application tasks, IP tasks, and
memory-mapped resources in the system.

Refinement has two purposes: the first is to identify the different service
providers that are needed for a given design, and the second is to identify which re-
sources are accessed in the context of using/performing a certain service. To create

the T/R graph, we perform the following steps (labels correspond to Figure 6.8):

R1: Replace each service node in the T/S specification with a cluster containing

the service provider’s task and resource nodes

R2: Connect each application task with the resource nodes of the service provider,

as specified by the service interface

R3: If an active service is used, connect the IP task in the service provider to the

resources provided by the requesting task

R4: Label each edge with the nature of the relationship between task and resource

(read/write), the service name, and service user

These steps are outlined in pseudocode as Algorithm 4.

In the case where there are multiple options of service provider, designers
choose their own criteria for deciding which provider to employ (using criteria
such as resource consumption or power consumption to perform design trade-off).
The resulting T/R graph can also be analysed to see where security domains over-
lap. Designers can identify where resources are shared by performing reachability
analysis (in other words, Impact Analysis §3.3.2) between application tasks, and
if necessary, use multiple instances of a service provider to reduce sharing (and
increase isolation).

To complete the refinement process, we also perform some further housekeep-
ing. In our prototype realization of the refinement process, we add a resource node
to represent the private memory area for each application task. Application tasks
“own” this memory region, and resources provided to service providers for services
can be drawn from here. Resource nodes are also added to allow application tasks
to communicate; these buffers are then grouped into a shared memory cluster. A
node-level graph is generated by examining the connectivity between the clusters
in the T/R graph (Figure 6.8(e)).
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Algorithm 4: Refinement Algorithm
Input: List of Tasks: taskList[], Task-Service Specification: tss[][], Service
Interfaces Description: sid[], Library of Service Provider
Descriptions lib_spd[]
Output: Task-Resource Matrix trm[][]
Current Service Provider List csp[];
/* First add Service Providers to the trm */
for service in tss do
service_provider servpro = sid.findProvider(service);
/* if there are multiple options for providers, desdigners
use their own selection algorithm and procedures for

replicating providers x/
if servpro not in csp then
csp.add(servpro.name); // keep track of added providers
/* Add the service provider’s T/R nodes to the
task/resource graph */

for resource in lib_spd[servpro.name] do
trm.addColumn(resource.name);
end
if servpro is active then
for IP task in lib_spd[servpro.name] do
trm.addRow(IP_task.name);
end
end
end
end
/* Now connect consumers and providers */
for task in taskList do
for service in tss[task.name][] do
find service in sid to get service provider;
for resource in sid[service.name] do
trm.addConnection(task,resource);
end
if service is active then
trm.addConnection(IP_task, resources provided by consumer);
end
end
end
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Refinement reveals where there are IP tasks that are unused. Notice how the
Sensor Block (shaded box) in Figure 6.8(d) contains a task node and a resource node
that are disconnected. Even though these components are not used in the controller

application, they are still present when the IP is integrated in the NoC.

6.4.3 NI Customisation

The final piece in our design flow is customisation of the protection infrastructure.
First, we look at the Node-level graph (Figure 6.8(e)) to identify which IPs com-
municate, and customise each NI to prevent communication between nodes that
do not need to communicate (such as by removing routing table entries). Where
nodes have outgoing edges, we add a master-side NI (which supports transaction
initiators), and add slave-side NIs where nodes have incoming edges. This prevents
IPs that only offer passive services from initiating malicious memory accesses, as in
the AS3-type attack. Each master-side NI is then configured with a custom PCheck
based on the application’s security specification.

The labelled edges of the T/R graph form the basis for populating the permission
blocks of each PCheck. Edges to each task’s private memory area are used to create
the static base permissions, and edges that are associated with services that have no
access conditions generate static service permissions.

Then, we customise NIs to support dynamic permissions. For each edge in the
T/R graph that is labelled with a service that has access conditions, we add a permis-
sion to the conditional service permissions block, and expose an interface to receive
external conditions (such as the current time-stamp) as required. If an application
task uses an active service, we also create a Configuration Monitor to check that the

service configuration is as expected.

6.5 Experimental Evaluation and Discussion

To investigate the feasibility of our approach, we implemented prototype tools for
refinement as well as synthesisable master-side NIs for a NoC based on a multi-
stage butterfly architecture (such as that described in [107]). We described the T/S
specification of the smart controller example using the DOT language, described
IP service interfaces in JSON, and implemented automated refinement in a python
script with GraphViz [37]. Examples of how we represent these can be found in
Appendix C. The generated T/R graph was used to create the different customised
NIs, and these were synthesised with Altera Quartus 15.0 for a Cyclone IV target to
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Table 6.1: Synthesis Results for various components (NI at an application task clus-
ter (P0), and an NI at a service provider (DMA-IP) of varying complexities, and a
Nios II processor)

% overhead

NI variant Resource Use/LEs £ NoC Max. freq/MHz
NI@PO: Basic 220 13.4 328.7

NI@PO: No access condition 242 14.8 193.8

NI@Po0: F-OD 427 26.1 150.3

NI@Po0: V-OD 584 35.7 117.5
NI@DMA-IP: F-AA 216 13.2 243.7
NI@DMA-IP: F-OD 216 13.2 240.7
NI@DMA-IP: V-OD 481 294 141.3

Nios II/f 2053 (ALUTs) 125.6 150 [53]

Nios II/f with MPU 2603 (ALUTs) 159.2 150 [53]

get estimates of resource consumption and maximum frequency. Some synthesis
results are presented in Table 6.1.

To get a sense of the relative complexity of the NIs, we also present the synthesis
results of a Nios II/f processor (generation 2) from the MPU design example [51],
with a 4K instruction cache, 2K data cache, and MPU with 4 regions. We also add a
performance counter to the Nios II to measure the cycle overhead for MPU-related
operations. These synthesis results are compared against an 8-node NoC consisting
of twelve 2-port switches, which requires 1635 LEs.

To evaluate the security efficacy, we performed cycle-accurate simulation of
the RTL using Modelsim 10.4 to validate that no unexpected memory accesses were
possible despite spurious memory accesses. In a generic NoC with no security cus-
tomisations, all nodes can access all other nodes. When the F-AA scheme is used for
the NI@DMA-IP, the DMA-IP can be commandeered to manipulate all regions of
memory it has access to (AS1-type attack). The window of exploitation is reduced
by using an On-Demand scheme, thus preventing crossover of security domains
through the abused IP.

The basic NI contains a routing table and a simple controller for injecting pack-
ets into the NoC. The NI@PO0 contains nine permissions for access to various ser-
vices. The NI@DMA-IP contains four permissions in the F-AA case, and two dy-
namic permissions in the OD variants. As expected, increasing complexity results
in greater resource use, especially when a configuration monitor is introduced for

the on-demand activation scheme. As soon as permission checks are introduced for
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Table 6.2: Typical Overheads of Check/Reconfiguration Operations

, Typical Overhead
Operation 3(’810(:1( Cycles)
Software Permission Check, Nios II/f ~32 per region
MPU Enable/Disable, Nios II/f 9
Permission Reconfiguration, Nios II/f ~50-90 per region
Permission Check, Enhanced NI 1
Permission Reconfiguration, NI 1

PO, the estimated maximum frequency drops significantly due to several combina-
tional checks being added to the critical path, and 10% additional logic elements are
required. In the fixed-scheme cases for both the NI@P0 and NI@DMA-IP, statically
configured regions allow optimization for memory address boundary comparisons;
hence the V-OD scheme for the NI@DMA-IP incurs a greater relative resource cost
because comparators for an entire 32-bit address are required.

Because the various permissions are implemented directly in the PCheck hard-
ware, and all permissions are checked in parallel, permission checks incur only a
single cycle overhead, which is significantly lower than the ~32 cycles required
to implement comparable permission checks in software. When using a point-to-
point connection between NIs that provide shared permissions, only a single cycle
is required at run-time for activating the temporary permissions. This will vary de-
pending on how designers choose to interconnect the NIs. As a comparison, the
Nios I MPU requires that the MPU first be disabled, new permission regions then
loaded, before the MPU is re-enabled. This is on top of any context switching over-
head required when an OS is used. Of course, general MPUs provide a lot of flex-
ibility, as our NIs are mostly pre-configured with static permissions, but we show
that application-specific customisation is possible.

These results also indicate that greater flexibility in the NIs entails greater re-
source cost; in order to support variable memory regions, or fully dynamic per-
missions (as opposed to simply disabling/enabling statically determined ones),
PChecks need to become more complex. However, this provides opportunities for
design space exploration. In our proposed flow, all tasks and IPs are known in ad-
vance. One way in which we can “measure” security improvement is to perform
reachability analysis in the T/R graph; with our flow, tasks should only be able
to affect resources that are needed as part of the application logic. If we can com-

pletely trust different components, we may be able to relax the global policy, and



Related Works 135

have some un-regulated paths in the design to save on resource costs. This type of

design space exploration presents some potential future work.

6.6 Related Works

Security in embedded system design is a fast evolving arena, and there are numer-
ous approaches for improving the security of MPSoC designs. Access controls as
part of a security foundation have long been proposed [76], and many recent works
have looked at firewalls or memory protection units (MPU) as the main feature of
a protection infrastructure. Another related approach includes ARM’s TrustZone
[75], which provides physical isolation by coarse separation of the SoC into secure
and non-secure worlds, with limitations in protection granularity. The recently pro-
posed work in [13] provides a security architecture for embedded devices centred
around an MPU with enforcement linked to a processor’s program counter, but it
is not extended to a heterogeneous multicore context.

Permission checking at the NI has been a popular area for exploration, and
various solutions have been proposed [31, 36, 73, 97, 113]. Interestingly, several of
these approaches rely on some central entity for run-time configuration. The Data
Protection Units of [31] are managed by a central Network Security Manager IP,
where cores that wish to activate or release protection regions need to be in a privi-
leged state. A centralised integrity core stores access rules in [73], and updates local
firewalls as required, such as when an access request is initially denied. Firewalls in
[36] take a more distributed approach, where each firewall has an Operating Mode
Controller to update rules locally, based on requests from the local CPU. Several Lo-
cal Trusted Agents and a Global Trusted Agent (GTA) are used in [97] to manage
MPU configurations; these software entities are implemented by privileged soft-
ware, such as hypervisors or operating systems, with the GTA executing on its
own dedicated core in the NoC. The approach in [113] features a security manager
task running on a secure processor to compute the rules for populating the security
tables of each firewall, hence facilitating risk aware routing to avoid nodes which
may have been compromised.

A common thread in these works is the requirement that there are privileged en-
tities in the system, or that IPs are explicitly aware of security (so that they are able
to appeal to a central manager for run-time permission modifications). In contrast
to these works, we propose an approach that accommodates software and hardware

that are not necessarily security-enabled. Unlike the aforementioned works, we do
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not need a hierarchical notion of privilege, and accommodate DMA-capable IPs,
as well as decentralised run-time permission enabling/disabling. While the work
presented in [124] proposes a decentralised approach to isolate different security
domains, it relies on individual tasks to be explicitly security-aware. Our proposed
security infrastructure is able to manage the permissions in a transparent fashion.

Furthermore, these aforementioned works also present a general architecture
without much detail on how designers might align the security approach to their
specific application in terms of specifying security rules or customizing the archi-
tecture. We aim to address this gap by proposing a design flow that starts with a
high-level specification inspired by the emerging service-oriented paradigm in an
MPSoC context (recently explored in [131] as part of supporting run-time FPGA
dynamic reconfiguration). The specification is then systematically used in customi-
sation of NIs to form the protection infrastructure.

Another related work is presented in [47], where a high-level specification is
used to generate the firewalls for a specific application. The aim of this work is to
optimise resource usage by deciding which levels of firewall complexity is needed
for each link. Similarly, [123] provides an automated approach to generate poten-
tial protection options, but does not deal with permissions that can change at run-
time. A type of reachability analysis is used to compare the relative security of each
option, and this could be applied to our proposed approach. Another high-level ap-
proach is proposed in [101], which explores detection and isolation of malicious
third party IPs, as opposed to customizing access controls. Our proposed approach
also resembles control-flow checking, in that we monitor the sequence of mem-
ory accesses during service configuration. In MPSoCs, the approach proposed in
[91] adds a specialised processor, and requires instrumentation of executing code
to determine checkpoints for monitoring purposes. Our approach has considerably
lower granularity, but carries the benefit of compatibility where custom instruc-

tions cannot be added to processors, or where task program code is not easily mod-
ified.

6.7 Summary

In this chapter, we have presented an approach for customizing the protection ar-
chitecture of an MPSoC for improved security. As future embedded systems tend to-
wards integration of many different behaviours into a single NoC-based design, we

need security approaches that can be used even when cores are heterogeneous, or
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not security enabled. To improve security, we presented the notion of context into
hardware-enforced permissions, allowing designers to check that memory accesses
happen when expected. We specify security constraints as enforcing access condi-
tions for services and adding restrictions to the capabilities of service providers, and
use this specification to add customised support for dynamic permissions. With
this approach, we can reduce the risk from integrating heterogeneous IPs into a
NoC-based design. In adopting a novel service-level abstraction to capture the ca-
pabilities of IP blocks, we proposed a top-down design approach to accommodate

complex IPs.






CHAPTER

Conclusions and Future Work

7.1 Summary and Contributions

Security is a lofty, but worthy aim. In embedded systems there can be many dif-
ferent potential attack vectors, and many different security requirements. Every
application has its own set of assets, and its own threat vectors, and as such, there
is a need for strategies that can better match security mechanisms with the specific
needs of a design.

In this thesis, we have examined and proposed solutions to security issues in
heterogeneous multiprocessor systems on chip. Challenges in the ever evolving
field of MPSoC design include dealing with risks from integrating concurrent be-
haviours in a single platform, integration of security into the design flow, and attack
mitigation given different security domains. From our examination of the literature
in Chapter 2, we identified opportunities for building security into the hardware
platform. Our novel security techniques moved away from traditional hierarchical
approaches for security enforcement, and we developed a system-level view of se-
curity to better facilitate the specification of security rules, and automated security
infrastructure exploration. Over the course of this thesis, we presented the follow-

ing contributions:

A system-level security-aware approach for MPSoC design

In Chapter 3 we presented a novel security model for MPSoCs focussed on the re-
lationship between application tasks and resources in a design. After considering

several different access control models, and their relevance to complex MPSoCs,
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we identified features useful for supporting isolation of different tasks in a design.
This led us towards the need for static and dynamic permissions as expressions of
task/resource relationships. We proposed a decentralised approach for permission
management, where tasks “own” parts of the address space. Instead of a privileged
entity with access to, and control of, all resources in a system, we examined a de-
sign by considering each task and its relationships in turn. Tasks then share parts
of their own regions with one another as needed. This led us to define Impact Anal-
ysis, which gives designers a measure of attack impact. Impact Analysis was then
used in Chapter 5 as a means to evaluate whether a given design satisfies a given
set of rules. Our security approach was then applied to the higher service-level ab-
straction in Chapter 6, where we formed permissions based on the idea of using
services provided by IPs. We proposed the use of a mix of static and on-demand
schemes for managing access to services, and applied our security model to allow
safer sharing of DMA-capable IP blocks.

Hardware support for decentralised and dynamic access control

Once we presented our security approach, we set about developing the security
infrastructure. As part of our security approach, we developed mechanisms for
sharing libraries, memory regions, and shared IP blocks with direct memory ac-
cess capabilities. In Chapter 4 we described the Isolation Unit (IU) as a dedicated
memory protection block that does not require an OS for run-time customisation.
We looked at different ways of interconnecting IUs to allow dynamic access permis-
sions between different tasks. We then packaged IU functionality in a Permission
Checking (PCheck) block in Chapter 6, which can be integrated into a Network
Interface (NI). The PCheck block contained several optional hardware-based moni-
tors for checking that IPs were used correctly, and that IPs were provisioned with
the necessary shared permissions, even if the application task was not security-
aware. We characterised our hardware implementations by finding their resource
cost when synthesised for an FPGA-based execution platform, and examined, in
simulation, the possible run-time overhead when used in a TDMA-MIN NoC de-

sign.

Systematic and automated design methodologies

Using our hardware-based mechanisms as building blocks, we presented novel
system-level design flows to quantify and improve security in Chapter 5. We pro-

posed a systematic approach to generate several MPSoC architecture configura-
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tions, and then evaluate these options against designer-defined security rules. We
then adopted a service-level abstraction in Chapter 6, which allowed us to better en-
capsulate complex DMA-capable IP clusters. Using this service-level approach we
created a design flow that involves conversion of a Task/Service Specification into
a Task/Resource graph, and then enhancement of each NI as required to generate
a customised protection infrastructure.

With the conceptual work we presented in this thesis, designers are able to more
systematically design MPSoCs with security as a design goal. We demonstrated that
hardware-supported decentralised dynamic controls were possible, incurring mod-
est resource overhead, especially when customised at design-time to the specific

application.

7.2 Future Work

One exciting aspect about the research presented in this thesis are the opportuni-
ties that have been revealed for future work. Some areas for future research could

include:

+ Design exploration — Additional metrics, such as power consumption or per-
formance, could be integrated with our security-aware design approaches.
Future research would involve quantifying the trade-off between security
and other design objectives, such as examining how varying the amount
of resource duplication (to decrease Impact Profiles) affects these other ob-
jectives. Part of this future work would involve mathematical formalisation
of the design problem, and this can be built on the foundations laid by the

task/resource relationship model.

« Integration and interaction with other security approaches — An interesting
area of research is in new techniques for integrating a variety of security
mechanisms, such as how we could use our isolation approaches with other
detection and recovery strategies. This also includes management of poten-

tial side-channel issues, which were not directly addressed in this work.

« Design flows — High-level synthesis (HLS) techniques provide a pathway
from high-level application specification to hardware implementation, and
further work could involve investigating how our service-level approach
could be used to protect MPSoCs that are generated though HLS. Further-

more, integration of explicit security specifications alongside system-level
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design in a language-based approach could be explored as a means to im-

prove the overall design flow.

« Dynamic tasks — Further hardware support is needed for accommodating
dynamic tasks, and more work could be done in safely allowing service dis-

covery and sharing alongside the static tasks in a design.
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SHCS Representations

To process the Task/Resource representations of our applications, we can describe
them as a matrix or the equivalent bipartite graph. In Chapter 5 we described the
Smart Home Control System (SHCS) scenario (§5.4), and the task/resource rela-
tionship is described in a matrix (Table 5.1). The matrix is easily stored as a comma
separated values (.csv) file, shown in Figure B.1.

For processing using the GraphViz tool [37] (which is useful for things like gen-
erating diagrams), we can represent the application using the DOT language. We
wrote a python script to convert between the matrix and graph representations, and
an example of the output produced is shown in Figure B.3. This example features
the resources re-named following Cluster Method 1 (§5.5.2).

We also describe the rules used in Rule Checking (§5.6) in a .csv, and the Opti-

mistic Rule-set is shown in Figure B.2.
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1 ,,,light_sensor,light_data,light_cfg,lights,temp_sensor,
temp_data,temp_cfg,temp_ctrl,display_data,ethernet,password,
control_panel_ss,fire_sensor,alarm,photos,media_data,
accelerator_cfg,audio_system,request
2 »»5A,B,C,D,E,F,G,H,I,J,K,L,M,N,0,P,Q,R,REQ
3 ,,,Ps5h,ph,p,,h,ph,,p,c,p,cph,cph,,,p,p,

4 light_sense,TO,,RW,W,,,,,,,,,,,,,,,,,

5 light_manage,Tl,,,R,R,RW,,,,,,,,,,,,,,,

6 temp_sense,T2,,,,,,RW,W,,,,,,555555;

7 temp_manage,T3,,,,,,,R,R,RW,,,,,,,55,,

8 user_remote_status,T4,0,,Rd,,,,Rd,, ,RW,RW,,,,,,,,,W
9 user_local_manage,T5,0,,,RWd,,,,RWd,,,, ,RW,,,,,,,W
10 fire_deteCtaTGaC)),,)::)a,)yaRW:Rwa,))a

11 media_player,T?,,,,,,,,,,,,,RW,,,RW,RW,RW,,

12 media_accelerator,T8,,,,555553553555553RW,RW,RW,

13 helper,T9,,,,,,,,,,,,R,,,,,,,,R

Figure B.1: the SHCS example represented in a CSV file

WoOo~NOOULhhWNER

e
)

[ T R R S
NoubhwN

1,user_remote_status,media_accelerator
1,fire_detect,media_accelerator
1,fire_detect,light_sense
1,fire_detect,light_manage
1,fire_detect,user_remote_status
1,fire_detect,temp_sense
1,fire_detect,temp_manage
1,fire_detect,helper
1,fire_detect,user_local_manage
1,fire_detect,media_player
2,user_local_manage,ph
2,user_remote_status,h
1,light_manage,user_remote_status
2,helper,h
3,temp_manage,display_data
4,media_player,xxxx
5,password,helper

Figure B.2: Optimistic Rules represented in a CSV file



SHCS Representations

digraph SHCS {
rankdir = LR
ratio="3:4"
light_sense;
light_manage;
temp_sense;
temp_manage;
user_remote_status;
user_local_manage;
fire_detect;
media_player;
media_accelerator;
helper;
physicalNode_A[shape=box];
physicalNode_D[shape=box];
physicalNode_E[shape=box];
physicalNode_H[shape=box];
physicalNode_J[shape=box];
physicalNode_L[shape=box];
physicalNode_M[shape=box];
physicalNode_N[shape=box];
physicalNode_Q[shape=box];
physicalNode_R[shape=box];
clusteri[shape=box];
cluster2[shape=box];
cluster5[shape=box];
cluster6[shape=box];
cluster8[shape=box];
clusteri@[shape=box];
clusteril4[shape=box];
clusteri5[shape=box];
cluster18[shape=box];
light_sense -> physicalNode_A[label="RW"];
light_sense -> clusterl[label="RW"];
light_manage -> physicalNode_D[label="RW"];
light_manage -> clusterl[label="RW"];
light_manage -> cluster2[label="RW"];
temp_sense -> physicalNode_E[label="RW"];
temp_sense -> cluster5[label="RW"];
temp_manage -> physicalNode_H[label="RW"];
temp_manage -> cluster5[label="RW"];
temp_manage -> cluster6[label="RW"];

user_remote_status -> physicalNode_J[label="RW"];

user_remote_status -> clusterl[label="RW"];
user_remote_status -> cluster5[label="RW"];
user_remote_status -> cluster8[label="RW"];
user_remote_status -> cluster1l8[label="RW"];

user_local_manage -> physicalNode_L[label="RW"];
user_local_manage -> cluster2[label="RW"];
user_local_manage -> cluster6[label="RW"];
user_local_manage -> clusterl8[label="RW"];
fire_detect -> physicalNode_M[label="RW"];
fire_detect -> physicalNode_N[label="RW"];
media_player -> physicalNode_L[label="RW"];
media_player -> physicalNode_Q[label="RW"];

media_player -> clusterl4[label="RW"];

// (continued)
media_player -> clusterl5[label="RW"];
media_accelerator -> physicalNode_Q[label="RW"];
media_accelerator -> physicalNode_R[label="RW"];
media_accelerator -> clusterl5[label="RW"];
helper -> cluster1®[label="RW"];
helper -> cluster18[label="RW"];
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Allocations Generated by our tool (Option 0)

physicalNode_A, connectivity: 1, contents: @(light_sensor),

physicalNode_D, connectivity: 1, contents: 3(lights)

physicalNode_E, connectivity:

, contents: 9(ethernet),

1
1

physicalNode_H, connectivity: 1, contents: 7(temp_ctrl),
physicalNode_J, connectivity: 1
2

physicalNode_L, connectivity: 2, contents:

11(control_panel_ss),

physicalNode_M, connectivity: 1, contents: 12(fire_sensor),

physicalNode_N, connectivity: 1, contents: 13(alarm),
physicalNode_Q, connectivity: 2, contents:
16(accelerator_cfg),

physicalNode_R, connectivity: 1, contents:

17 (audio_system),
clusterl, connectivity: 3, contents: 1(light_data),
cluster2, connectivity: 2, contents: 2(light_cfg),

cluster6, connectivity:

3
2

cluster5, connectivity: 3, contents: 5(temp_data),
2, contents: 6(temp_cfg),
1

cluster8, connectivity: contents: 8(display_data),

clusterl®, connectivity: contents: 10(password),

clusterl5, connectivity:

5
1,

clusterl4, connectivity: 1, contents: 14(photos),
2, contents: 15(media_data),
3,

clusterl8, connectivity: contents: 18(request),

, contents: 4(temp_sensor),

Figure B.3: the SHCS example represented in the DOT language






APPENDIX

Example Service Descriptions

As part of our exploration into the feasibility of automating the design flow, we
came up with a means to represent the services provided by an IP block. It is our
expectation that the IP vendor would provide the necessary descriptions of the IPs
they create, although designers can create their own descriptions based on their
expectations of how to use a given IP. In Figure C.1 we show how we can represent
the sensor block’s capabilities using a JSON representation (as discussed in Chapter
6).

The Service Provider Descriptions, which are used as an input in the Refinement
step (§6.4.2), provide details about visible elements of an IP block. Such elements
include the memory-mapped regions that are accessible by application software.
Designers can add task nodes to represent DMA capabilities. An example of how
we represent this in our prototype implementation is shown in Figure C.2, where

we describe the Service Provider in the DOT language (a part of GraphViz [37]).
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[{ "serviceProvider": "sensorBlock",
"consumerResources": [""],
"type": "passive",
"name": "Service_Read_Sensor_A_data",
"providerResources": [["R","resource_sensorBlock_memoryA"]],
"configuration": ["none"
}
s
{ "serviceProvider": "sensorBlock",
"consumerResources": [""],
"type": "passive",
"name": "Service_Read_Sensor_B_data",
"providerResources": [["R","resource_sensorBlock_memoryB"]]
}
R
{ "name": "Service_Stream_Sensor_A_data",
"type": "active",
"serviceProvider": "sensorBlock",
"consumerResources": [["W","region"]],
"providerResources": [["RW","resource_sensorBlock_configRegisters"]],
"configuration": [["W","base","region.start"],["W","base+4","size"],["W", "base+8","00000001"]]
}
s
{ "serviceProvider": "sensorBlock",
"consumerResources": [["W","region"]],
"type": "active",
"name": "Service_Stream_Sensor_B_data",
"providerResources": [["RW","resource_sensorBlock_configRegisters"]]
}
R
{ "serviceProvider": "sensorBlock",
"consumerResources": [["W","region"]],
"type": "active",
"name": "Service_Stream_Sensor_A_data_processed",
"providerResources": [["RW","resource_sensorBlock_configRegisters"]]
}
s
{ "serviceProvider": "sensorBlock",
"consumerResources": [["W","region"]],
"type": "active",
"name": "Service_Stream_Sensor_B_data_processed",
"providerResources": [["RW","resource_sensorBlock_configRegisters"]]
}
]

Figure C.1: Examples of Service Interface Descriptions, in JSON

graph sensorBlock {
node [shape="hexagon"]
task_sensorBlock_Processor;

Sensor Block

R : task_sensorBlock_Processor
resource_sensorBlock_configRegisters;

resource_sensorBlock_memoryA;
resource_sensorBlock_memoryB;

resource_sensorBlock_configRegisters

resource_sensorBlock_memoryA

resource_sensorBlock_memoryB

Figure C.2: An Example Service Provider Description, in DOT (left) and graphically
(right)
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