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Abstract

Optical pulse compression using similariton propagation in an optical fibre

with decreasing dispersion has been demonstrated for the first time. This

compression scheme is a practical application of the sech-similariton solu-

tion to the generalized nonlinear Schrödinger equation (NLSE) with dis-

tributed coefficients recently found using the self-similarity technique. The

sech-similariton solution exhibits a characteristic positive linear frequency

chirp, which increases in slope as the pulse compresses. The solution does

not develop any side pedestals or deformation in pulse shape as it propagates,

making it a promising candidate for a new compression technique. Unlike

the adiabatic compression technique, rapid compression can be achieved in a

fibre with a specifically designed decreasing group velocity dispersion profile

since the sech-similariton is an exact solution to the NLSE. A cost-effective

and efficient method of realising decreasing dispersion in a fibre has been de-

veloped using a comb-like dispersion profiling technique and its feasibility has

been experimentally demonstrated. An optimised experimental similariton

compressor system has been built using two industry standard fibres which

compressed an 11 ps linearly chirped sech input pulse to 400 fs, yielding a

compression factor of greater than 25.
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