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Abstract

This survey covers state-of-the-art Bayesian techniques for the estimation of mixtures. It comple-
ments the earlier Marin et al. (2005) by studying new types of distributions, the multinomial, latent
class and t distributions. It also exhibits closed form solutions for Bayesian inference in some discrete
setups. Lastly, it sheds a new light on the computation of Bayes factors via the approximation of
Chib (1995).

1 Introduction

Mixture models are fascinating objects in that, while based on elementary distributions, they offer a
much wider range of modeling possibilities than their components. They also face both highly complex
computational challenges and delicate inferential derivations. Many statistical advances have stemmed
from their study, the most spectacular example being the EM algorithm. In this short review, we choose
to focus solely on the Bayesian approach to those models (Robert and Casella 2004). Frühwirth-Schnatter
(2006) provides a book-long and in-depth coverage of the Bayesian processing of mixtures, to which we
refer the reader whose interest is woken by this short review, while MacLachlan and Peel (2000) give a
broader perspective.

Without opening a new debate about the relevance of the Bayesian approach in general, we note that
the Bayesian paradigm (see, e.g., Robert 2001) allows for probability statements to be made directly
about the unknown parameters of a mixture model, and for prior or expert opinion to be included in
the analysis. In addition, the latent structure that facilitates the description of a mixture model can be
naturally aggregated with the unknown parameters (even though latent variables are not parameters)
and a global posterior distribution can be used to draw inference about both aspects at once.

This survey thus aims to introduce the reader to the construction, prior modelling, estimation and
evaluation of mixture distributions within a Bayesian paradigm. Focus is on both Bayesian inference
and computational techniques, with light shed on the implementation of the most common samplers.
We also show that exact inference (with no Monte Carlo approximation) is achievable in some particular
settings and this leads to an interesting benchmark for testing computational methods.

∗Kate Lee is a PhD candidate at the Queensland University of Technology, Jean-Michel Marin is a researcher at INRIA,
Université Paris Sud, and adjunct professor at École Polytechnique, Kerrie Mengersen is professor at the Queensland
University of Technology, and Christian P. Robert is professor in Université Paris Dauphine and head of the Statistics
Laboratory of CREST.
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In Section 2, we introduce mixture models, including the missing data structure that originally
appeared as an essential component of a Bayesian analysis, along with the precise derivation of the
exact posterior distribution in the case of a mixture of Multinomial distributions. Section 3 points out
the fundamental difficulty in conducting Bayesian inference with such objects, along with a discussion
about prior modelling. Section 4 describes the appropriate MCMC algorithms that can be used for
the approximation to the posterior distribution on mixture parameters, followed by an extension of this
analysis in Section 5 to the case in which the number of components is unknown and may be derived
from approximations to Bayes factors, including the technique of Chib (1995) and the robustification of
Berkhof et al. (2003).

2 Finite mixtures

2.1 Definition

A mixture of distributions is defined as a convex combination

J∑
j=1

pjfj(x) ,
J∑
j=1

pj = 1 , pj > 0 , J > 1 ,

of standard distributions fj . The pj ’s are called weights and are most often unknown. In most cases, the
interest is in having the fj ’s parameterised, each with an unknown parameter θj , leading to the generic
parametric mixture model

J∑
j=1

pjf(x|θj) . (1)

The dominating measure for (1) is arbitrary and therefore the nature of the mixture observations
widely varies. For instance, if the dominating measure is the counting measure on the simplex of Rm

Sm,` =

{
(x1, . . . , xm);

m∑
i=1

xi = `

}
,

the fj ’s may be the product of ` independent Multinomial distributions, denoted “Mm(`; qj1, ..., qjm) =
⊗`i=1Mm(1; qj1, ..., qjm)”, with m modalities, and the resulting mixture

J∑
j=1

pjMm(`; qj1, . . . , qjm) (2)

is then a possible model for repeated observations taking place in Sm,`. Practical occurrences of such
models are repeated observations of contingency tables. In situations when contingency tables tend
to vary more than expected, a mixture of Multinomial distributions should be more appropriate than
a single Multinomial distribution and it may also contribute to separation of the observed tables in
homogeneous classes In the following, we note qj· = (qj1, . . . , qjm).

Example 1. For J = 2, m = 4, p1 = p2 = .5, q1· = (.2, .5, .2, .1), q2· = (.3, .3, .1, .3) and ` = 20, we
simulate n = 50 independent realisations from model (2). That corresponds to simiulate some 2 × 2
contingency tables whose total sum is equal to 20. Figure 1 gives the histograms for the four entries of
the contingency tables. J

Another case where mixtures of Multinomial distributions occur is the latent class model where d
discrete variables are observed on each of n individuals (Magidson and Vermunt 2000). The observations
(1 ≤ i ≤ n) are xi = (xi1, . . . , xid), with xiv taking values within the mv modalities of the v-th variable.
The distribution of xi is then

J∑
j=1

pj

d∏
i=1

Mmi

(
1; qij1 , . . . , q

ij
mi

)
,
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Figure 1: For J = 2, p1 = p2 = .5, q1· = (.2, .5, .2, .1), q2· = (.3, .3, .1, .3), ` = 20 and n = 50 independent
simulations: histograms of the m = 4 entries.

so, strictly speaking, this is a mixture of products of Multinomials. The applications of this peculiar
modelling are numerous: in medical studies, it can be used to associate several symptoms or pathologies;
in genetics, it may indicate that the genes corresponding to the variables are not sufficient to explain the
outcome under study and that an additional (unobserved) gene may be influential. Lastly, in marketing,
variables may correspond to categories of products, modalities to brands, and components of the mixture
to different consumer behaviours: identifying to which group a customer belongs may help in suggesting
sales, as on Web-sale sites.

Similarly, if the dominating measure is the counting measure on the set of the integers N, the fj ’s
may be Poisson distributions P(λj) (λj > 0). We aim then to make inference about the parameters
(pj , λj) from a sequence (xi)i=1,...,n of integers.

The dominating measure may as well be the Lebesgue measure on R, in which case the f(x|θ)’s may
all be normal distributions or Student’s t distributions (or even a mix of both), with θ representing the
unknown mean and variance, or the unknown mean and variance and degrees of freedom, respectively.
Such a model is appropriate for datasets presenting multimodal or asymmetric features, like the aerosol
dataset from Nilsson and Kulmala (2006) presented below.

Example 2. The estimation of particle size distribution is important in understanding the aerosol
dynamics that govern aerosol formation, which is of interest in environmental and health modelling.
One of the most important physical properties of aerosol particles is their size; the concentration of
aerosol particles in terms of their size is referred to as the particle size distribution.

The data studied by Nilsson and Kulmala (2006) and represented in Figure 2 is from Hyytiälä, a
measurement station in Southern Finland. It corresponds to a full day of measurement, taken at ten
minute intervals. J

While the definition (1) of a mixture model is elementary, its simplicity does not extend to the
derivation of either the maximum likelihood estimator (when it exists) or of Bayes estimators. In fact,
if we take n iid observations x = (x1, . . . , xn) from (1), with parameters

p = (p1 . . . , pJ) and θ = (θ1, . . . , θJ) ,

the full computation of the posterior distribution and in particular the explicit representation of the
corresponding posterior expectation involves the expansion of the likelihood

L(θ,p|x) =
n∏
i=1

J∑
j=1

pjf (xi|θj) (3)

3
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Figure 2: Histogram of the aerosol diameter dataset, along with a normal (red) and a t (blue) modelling.

into a sum of Jn terms. with some exceptions (see, for example Section 3). This is thus computationally
too expensive to be used for more than a few observations. This fundamental computational difficulty
in dealing with the models (1) explains why those models have often been at the forefront for applying
new technologies (such as MCMC algorithms, see Section 4).

2.2 Missing data

Mixtures of distributions are typical examples of latent variable (or missing data) models in that a sample
x1, . . . , xn from (1) can be seen as a collection of subsamples originating from each of the f (xi|θj)’s,
when both the size and the origin of each subsample may be unknown. Thus, each of the xi’s in the
sample is a priori distributed from any of the fj ’s with probabilities pj . Depending on the setting,
the inferential goal behind this modeling may be to reconstitute the original homogeneous subsamples,
sometimes called clusters, or to provide estimates of the parameters of the different components, or even
to estimate the number of components.

The missing data representation of a mixture distribution can be exploited as a technical device to
facilitate (numerical) estimation. By a demarginalisation argument, it is always possible to associate to
a random variable xi from a mixture (1) a second (finite) random variable zi such that

xi|zi = z ∼ f(x|θz) , P (zi = j) = pj . (4)

This auxiliary variable zi identifies to which component the observation xi belongs. Depending on the
focus of inference, the zi’s may [or may not] be part of the quantities to be estimated. In any case, keeping
in mind the availability of such variables helps into drawing inference about the “true” parameters. This
is the technique behind the EM algorithm of Dempster et al. (1977) as well as the “data augmentation”
algorithm of Tanner and Wong (1987) that started MCMC algorithms.

2.3 The necessary but costly expansion of the likelihood

As noted above, the likelihood function (3) involves Jn terms when the n inner sums are expanded, that
is, when all the possible values of the missing variables zi are taken into account. While the likelihood
at a given value (θ,p) can be computed in O(nJ) operations, the computational difficulty in using
the expanded version of (3) precludes analytic solutions via maximum likelihood or Bayesian inference.
Considering n iid observations from model (1), if π (θ,p) denotes the prior distribution on (θ,p), the
posterior distribution is naturally given by

π (θ,p|x) ∝

 n∏
i=1

J∑
j=1

pjf (xi|θj)

π (θ,p) .

4



It can therefore be computed in O(nJ) operations up to the normalising [marginal] constant, but, similar
to the likelihood, it does not provide an intuitive distribution unless expanded.

Relying on the auxiliary variables z = (z1, . . . , zn) defined in (4), we take Z to be the set of all Jn

allocation vectors z. For a given vector (n1, . . . , nJ) of the simplex {n1 + . . .+ nJ = n}, we define a
subset of Z,

Zj =

{
z :

n∑
i=1

Izi=1 = n1, . . . ,

n∑
i=1

Izi=J = nJ

}
,

that consists of all allocations z with the given allocation sizes (n1, . . . , nJ), relabelled by j ∈ N when
using for instance the lexicographical ordering on (n1, . . . , nJ). The number of nonnegative integer
solutions to the decomposition of n into k parts such that n1 + . . .+ nJ = n is equal to (Feller 1970)

r =
(
n+ J − 1

n

)
.

Thus, we have the partition Z = ∪rj=1Zj . Although the total number of elements of Z is the typically
unmanageable Jn, the number of partition sets is much more manageable since it is of order nJ−1/(J−1)!.
It is thus possible to envisage an exhaustive exploration of the Zj ’s. (Casella et al. 2004 did take
advantage of this decomposition to propose a more efficient important sampling approximation to the
posterior distribution.)

The posterior distribution can then be written as

π (θ,p|x) =
r∑
i=1

∑
z∈Zi

ω (z)π (θ,p|x, z) , (5)

where ω (z) represents the posterior probability of the given allocation z. (See Section 2.4 for a derivation
of ω (z).) Note that with this representation, a Bayes estimator of (θ,p) can be written as

r∑
i=1

∑
z∈Zi

ω (z) Eπ [θ,p|x, z] . (6)

This decomposition makes a lot of sense from an inferential point of view: the Bayes posterior distribution
simply considers each possible allocation z of the dataset, allocates a posterior probability ω (z) to this
allocation, and then constructs a posterior distribution π (θ,p|x, z) for the parameters conditional on
this allocation. Unfortunately, the computational burden is of order O(Jn). This is even more frustrating
when considering that the overwhelming majority of the posterior probabilities ω (z) will be close to zero
for any sample.

2.4 Exact posterior computation

In a somewhat paradoxical twist, we now proceed to show that, in some very special cases, there exist
exact derivations for the posterior distribution! This surprising phenomenon only takes place for discrete
distributions under a particular choice of the component densities f(x|θi). In essence, the f(x|θi)’s must
belong to the natural exponential families, i.e.

f(x|θi) = h(x) exp {θi ·R(x)−Ψ(θi)} ,

to allow for sufficient statistics to be used. In this case, there exists a conjugate prior (Robert 2001)
associated with each θ in f(x|θ) as well as for the weights of the mixture. Let us consider the complete
likelihood

Lc(θ,p|x, z) =
n∏
i=1

pzi
exp {θzi

·R(xi)−Ψ(θzi
)}

=
J∏
j=1

p
nj

j exp

θj ·∑
zi=j

R(xi)− njΨ(θj)


=

J∏
j=1

p
nj

j exp {θj · Sj − njΨ(θj)} ,

5



where Sj =
∑
zi=j

R(xi). It is easily seen that we remain in an exponential family since there exist
sufficient statistics with fixed dimension, (n1, . . . , nJ , S1, . . . , SJ). Using a Dirichlet prior

π(p1, . . . , pJ) =
Γ(α1 + . . .+ αJ)
Γ(α1) · · ·Γ(αJ)

pα1−1
1 · · · pαJ−1

J

on the vector of the weights (p1, . . . , pJ) defined on the simplex of RJ and (independent) conjugate priors
on the θj ’s,

π(θj) ∝ exp {θj · τj − δjΨ(θj)} ,

the posterior associated with the complete likelihood Lc(θ,p|x, z) is then of the same family as the prior:

π(θ,p|x, z) ∝ π(θ,p)× Lc(θ,p|x, z)

∝
J∏
j=1

p
αj−1
j exp {θj · τj − δjΨ(θj)}

× pnj

j exp {θj · Sj − njΨ(θj)}

=
J∏
j=1

p
αj+nj−1
j exp {θj · (τj + Sj)− (δj + nj)Ψ(θj)} ;

the parameters of the prior get transformed from αj to αj +nj , from τj to τj +Sj and from δj to δj +nj .
If we now consider the observed likelihood (instead of the complete likelihood), it is the sum of the

complete likelihoods over all possible configurations of the partition space of allocations, that is, a sum
over Jn terms, ∑

z

J∏
j=1

p
nj

j exp {θj · Sj − njΨ(θj)} .

The associated posterior is then, up to a constant,

∑
z

J∏
j=1

p
nj+αj−1
j exp {θj · (τj + Sj)− (nj + δj)Ψ(θj)}

=
∑
z

ω(z)π(θ,p|x, z) ,

where ω(z) is the normalising constant that is missing in

J∏
j=1

p
nj+αj−1
j exp {θj · (τj + Sj)− (nj + δj)Ψ(θj)} .

The weight ω(z) is therefore

ω(z) ∝
∏J
j=1 Γ(nj + αj)

Γ(
∑J
j=1{nj + αj})

×
J∏
j=1

K(τj + Sj , nj + δj) ,

if K(τ, δ) is the normalising constant of exp {θj · τ − δΨ(θj)}, i.e.

K(τ, δ) =
∫

exp {θj · τ − δΨ(θj)} dθj .

Unfortunately, except for very few cases, like Poisson and Multinomial mixtures, this sum does not
simplify into a smaller number of terms because there exist no summary statistics. From a Bayesian
point of view, the complexity of the model is therefore truly of magnitude O(Jn).

We process here the cases of both the Poisson and Multinomial mixtures, noting that the former case
was previously exhibited by Fearnhead (2005).
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Example 3. Consider the case of a two component Poisson mixture,

x1, . . . , xn
iid∼ pP(λ1) + (1− p)P(λ2) ,

with a uniform prior on p and exponential priors Exp(τ1) and Exp(τ2) on λ1 and λ2, respectively. For
such a model, Sj =

∑
zi=j

xi and the normalising constant is then equal to

K(τ, δ) =
∫ ∞
−∞

exp {λjτ − δ log(λj)} dλj

=
∫ ∞

0

λτ−1
j exp{−δλj}dλj = δ−τ Γ(τ) .

The corresponding posterior is (up to the overall normalisation of the weights)

∑
z

2∏
j=1

Γ(nj + 1)Γ(1 + Sj)
/

(τj + nj)Sj+1

Γ(2 +
∑2
j=1 nj)

π(θ,p|x, z)

=
∑
z

2∏
j=1

nj !Sj !
/

(τj + nj)Sj+1

(n+ 1)!
π(θ,p|x, z)

∝
∑
z

2∏
j=1

nj !Sj !
(τj + nj)Sj+1

π(θ,p|x, z) .

π(θ,p|x, z) corresponds to a B(1 + nj , 1 + n− nj) (Beta distribution) on pj and to a G(Sj + 1, τj + nj)
(Gamma distribution) on δj , (j = 1, 2).
An important feature of this example is that the above sum does not involve all of the 2n terms, simply
because the individual terms factorise in (n1, n2, S1, S2) that act like local sufficient statistics. Since n2 =
n−n1 and S2 =

∑
xi−S1, the posterior only requires as many distinct terms as there are distinct values

of the pair (n1, S1) in the completed sample. For instance, if the sample is (0, 0, 0, 1, 2, 2, 4), the distinct
values of the pair (n1, S1) are (0, 0), (1, 0), (1, 1), (1, 2), (1, 4), (2, 0), (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6),
. . . , (6, 5), (6, 7), (6, 8), (7, 9). Hence there are 41 distinct terms in the posterior, rather than 28 = 256.J

Let n = (n1, . . . , nJ) and S = (S1, . . . , SJ). The problem of computing the number (or cardinal)
µn(n,S) of terms in the sum with an identical statistic (n,S) has been tackled by Fearnhead (2005), who
proposes a recurrent formula to compute µn(n,S) in an efficient book-keeping technique, as expressed
below for a k component mixture:

If ej denotes the vector of length J made of zeros everywhere except at component j where it is equal
to one, if

n = (n1, . . . , nJ) , and n− ej = (n1, . . . , nj − 1, . . . , nJ) ,

then

µ1(ej , R (x1) ej) = 1 , ∀j ∈ {1, . . . , J} , and µn(n,S) =
J∑
j=1

µn−1(n− ej ,S−R (xn) ej) .

Example 4. Once the µn(n,S)’s are all recursively computed, the posterior can be written as

∑
(n,S)

µn(n,S)
2∏
j=1

nj !Sj !
/

(τj + nj)Sj+1 π(θ,p|x,n,S) ,

up to a constant, and the sum only depends on the possible values of the “sufficient” statistic (n,S).
This closed form expression allows for a straightforward representation of the marginals. For instance,

7



(n, λ) J = 2 J = 3 J = 4
(10, .1) 11 66 286
(10, 1) 52 885 8160
(10, 10) 166 7077 120,908
(20, .1) 57 231 1771
(20, 1) 260 20,607 566,512
(20, 10) 565 100,713 —
(30, .1) 87 4060 81,000
(30, 1) 520 82,758 —
(30, 10) 1413 637,020 —

Table 1: Number of pairs (n,S) for simulated datasets from a Poisson P(λ) and different numbers of
components. (Missing terms are due to excessive computational or storage requirements.)

up to a constant, the marginal in λ1 is given by

∑
z

2∏
j=1

nj !Sj !
/

(τj + nj)Sj+1 (n1 + 1)S1+1λS1 exp{−(n1 + 1)λ1}/n1!

=
∑
(n,S)

µn(n,S)
2∏
j=1

nj !Sj !
/

(τj + nj)Sj+1

× (n1 + τ1)S1+1λS1
1 exp{−(n1 + τ1)λ1}/n1! .

The marginal in λ2 is

∑
(n,S)

µn(n,S)
2∏
j=1

nj !Sj !
/

(τj + nj)Sj+1

(n2 + τ2)S2+1λS2
2 exp{−(n2 + τ2)λ2}/n2! ,

again up to a constant.
Another interesting outcome of this closed form representation is that marginal densities can also be

computed in closed form. The marginal distribution of x is directly related to the unnormalised weights
in that

m(x) =
∑
z

ω(z) =
∑
(n,S)

µn(n,S)

∏2
j=1 nj !Sj !

/
(τj + nj)Sj+1

(n+ 1)!

up to the product of factorials 1/x1! · · ·xn! (but this product is irrelevant in the computation of the
Bayes factor). J

Now, even with this considerable reduction in the complexity of the posterior distribution, the number
of terms in the posterior still explodes fast both with n and with the number of components J , as shown
through a few simulated examples in Table 1. The computational pressure also increases with the range
of the data, that is, for a given value of (J, n), the number of values of the sufficient statistics is much
larger when the observations are larger, as shown for instance in the first three rows of Table 1: a
simulated Poisson P(λ) sample of size 10 is mostly made of 0’s when λ = .1 but mostly takes different
values when λ = 10. The impact on the number of sufficient statistics can be easily assessed when J = 4.
(Note that the simulated dataset corresponding to (n, λ) = (10, .1) in Table 1 happens to correspond
to a simulated sample made only of 0’s, which explains the n + 1 = 11 values of the sufficient statistic
(n1, S1) = (n1, 0) when J = 2.)

Example 5. If we have n observations ni = (ni1, . . . , nim) from the Multinomial mixture

ni ∼ pMm(di; q11, . . . , q1m) + (1− p)Mm(di; q21, . . . , q2m)

8



where ni1 + · · ·+ nim = di and q11 + · · ·+ q1m = q21 + · · ·+ q2m = 1, the conjugate priors on the qjv’s
are Dirichlet distributions, (j = 1, 2)

(qj1, . . . , qjm) ∼ D(αj1, . . . , αjm) ,

and we use once again the uniform prior on p. (A default choice for the αjv’s is αjv = 1/2.) Note that the
dj ’s may differ from observation to observation, since they are irrelevant for the posterior distribution:
given a partition z of the sample, the complete posterior is indeed

pn1(1− p)n2

2∏
j=1

∏
zi=j

qni1
j1 · · · q

nim
jm ×

2∏
j=1

m∏
v=1

q
−1/2
jv ,

(where nj is the number of observations allocated to component j) up to a normalising constant that
does not depend on z. J

More generally, considering a Multinomial mixture with m components,

ni ∼
J∑
j=1

pjMm(di; qj1, . . . , qjm) ,

the complete posterior is also directly available, as

J∏
j=1

p
nj

j ×
J∏
j=1

∏
zi=j

qni1
j1 · · · q

nim
jm ×

J∏
j=1

m∏
v=1

q
−1/2
jv ,

once more up to a normalising constant.
Since the corresponding normalising constant of the Dirichlet distribution is∏m

v=1 Γ(αjv)
Γ(αj1 + · · ·+ αjm)

,

the overall weight of a given partition z is

n1!n2!
∏m
v=1 Γ(α1v + S1v)

Γ(α11 + · · ·+ α1m + S1·)
×

∏m
v=1 Γ(α2v + S2v)

Γ(α21 + · · ·+ α2m + S2·)
(7)

where Sji is the sum of the nji’s for the observations i allocated to component j and

Sji =
∑
zi=j

nji and Sj· =
∑
i

Sji .

Given that the posterior distribution only depends on those “sufficient” statistics Sij and ni, the same
factorisation as in the Poisson case applies, namely we simply need to count the number of occurrences
of a particular local sufficient statistic (n1, S11, . . . , SJm) and then sum over all values of this sufficient
statistic. The book-keeping algorithm of Fearnhead (2005) applies. Note however that the number of
different terms in the closed form expression is growing extremely fast with the number of observations,
with the number of components and with the number k of modalities.

Example 6. In the case of the latent class model, consider the simplest case of two variables with two
modalities each, so observations are products of Bernoulli’s,

x ∼ pB(q11)B(q12) + (1− p)B(q21)B(q22) .

We note that the corresponding statistical model is not identifiable beyond the usual label switching issue
detailled in Section 3.1. Indeed, there are only two dichotomous variables, four possible realizations for
the x’s, and five unknown parameters. We however take advantage of this artificial model to highlight
the implementation of the above exact algorithm, which can then easily uncover the unidentifiability
features of the posterior distribution.

9



The complete posterior distribution is the sum over all partitions of the terms

pn1(1− p)n2

2∏
j=1

2∏
v=1

q
sjv

jv (1− qjv)nj−sjv ×
2∏
j=1

2∏
v=1

q
−1/2
jv

where sjv =
∑
zi=j

xiv, the sufficient statistic is thus (n1, s11, s12, s21, s22), of order O(n5). Using the
benchmark data of Stouffer and Toby (1951), made of 216 sample points involving four binary variables
related with a sociological questionnaire, we restricted ourselves to both first variables and 50 observations
picked at random. A recursive algorithm that eliminated replicates gives the results that (a) there are
5, 928 different values for the sufficient statistic and (b) the most common occurrence is the middle
partition (26, 6, 11, 5, 10), with 7.16 × 1012 replicas (out of 1.12 × 1015 total partitions). The posterior
weight of a given partition is

Γ(n1 + 1)Γ(n− n1 + 1)
Γ(n+ 2)

2∏
j=1

2∏
v=1

Γ(sjv + 1/2)Γ(nj − sjv + 1/2)
Γ(nj + 1)

=
2∏
j=1

2∏
v=1

Γ(sjv + 1/2)Γ(nj − sjv + 1/2)
/
n1! (n− n1)! (n+ 1)! ,

multiplied by the number of occurrences. In this case, it is therefore possible to find exactly the most
likely partitions, namely the one with n1 = 11 and n2 = 39, s11 = 11, s12 = 8, s21 = 0, s22 = 17, and
the symmetric one, which both only occur once and which have a joint posterior probability of 0.018. It
is also possible to eliminate all the partitions with very low probabilities in this example. J

3 Mixture inference

Once again, the apparent simplicity of the mixture density should not be taken at face value for inferential
purposes; since, for a sample of arbitrary size n from a mixture distribution (1), there always is a non-zero
probability (1 − pj)n that the jth subsample is empty, the likelihood includes terms that do not bring
any information about the parameters of the i-th component.

3.1 Nonidentifiability, hence label switching

A mixture model (1) is senso stricto never identifiable since it is invariant under permutations of the
indices of the components. Indeed, unless we introduce some restriction on the range of the θi’s, we
cannot distinguish component number 1 (i.e., θ1) from component number 2 (i.e., θ2) in the likelihood,
because they are exchangeable. This apparently benign feature has consequences on both Bayesian
inference and computational implementation. First, exchangeability implies that in a J component
mixture, the number of modes is of order O(J !). The highly multimodal posterior surface is therefore
difficult to explore via standard Markov chain Monte Carlo techniques. Second, if an exchangeable prior
is used on θ = (θ1, . . . , θJ), all the marginals of the θj ’s are identical. Other and more severe sources of
unidentifiability could occur as in Example 6.

Example 7. (Example 6 continued) If we continue our assessment of the latent class model, with two
variables with two modalities each, based on subset of data extracted from Stouffer and Toby (1951),
under a Beta, B(a, b), prior distribution on p the posterior distribution is the weighted sum of Beta
B(n1 + a, n− n1 + b) distributions, with weights

µn(n, s)
2∏
j=1

2∏
v=1

Γ(sjv + 1/2)Γ(nj − sjv + 1/2)
/
n1! (n− n1)! (n+ 1)! ,

where µn(n, s) denotes the number of occurrences of the sufficient statistic. Figure 3 provides the
posterior distribution for a subsample of the dataset of Stouffer and Toby (1951) and a = b = 1. Since
p is not identifiable, the impact of the prior distribution is stronger than in an identifying setting: using
a Beta B(a, b) prior on p thus produces a posterior [distribution] that reflects as much the influence of

10



0.0 0.2 0.4 0.6 0.8 1.0

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

Figure 3: Exact posterior distribution of p for a sample of 50 observations from the dataset of Stouffer
and Toby (1951) and a = b = 1.

(a, b) as the information contained in the data. While a B(1, 1) prior, as in Figure 3, leads to a perfectly
symmetric posterior with three modes, using an assymetric prior with a� b strongly modifies the range
of the posterior, as illustrated by Figure 4. J

Identifiability problems resulting from the exchangeability issue are called “label switching” in that the
output of a properly converging MCMC algorithm should produce no information about the component
labels (a feature which, incidentally, provides a fast assessment of the performance of MCMC solutions,
as proposed in Celeux et al. 2000). A näıve answer to the problem proposed in the early literature
is to impose an identifiability constraint on the parameters, for instance by ordering the means (or the
variances or the weights) in a normal mixture. From a Bayesian point of view, this amounts to truncating
the original prior distribution, going from π (θ,p) to

π (θ,p) Iµ1≤...≤µJ
.

While this device may seem innocuous (because indeed the sampling distribution is the same with or
without this constraint on the parameter space), it is not without consequences on the resulting inference.
This can be seen directly on the posterior surface: if the parameter space is reduced to its constrained
part, there is no agreement between the above notation and the topology of this surface. Therefore,
rather than selecting a single posterior mode and its neighbourhood, the constrained parameter space
will most likely include parts of several modal regions. Thus, the resulting posterior mean may well end
up in a very low probability region and be unrepresentative of the estimated distribution.

Note that, once an MCMC sample has been simulated from an unconstrained posterior distribution,
any ordering constraint can be imposed on this sample, that is, after the simulations have been completed,
for estimation purposes as stressed by Stephens (1997). Therefore, the simulation (if not the estimation)
hindrance created by the constraint can be completely bypassed.

Once an MCMC sample has been simulated from an unconstrained posterior distribution, a natural
solution is to identify one of the J ! modal regions of the posterior distribution and to operate the
relabelling in terms of proximity to this region, as in Marin et al. (2005). Similar approaches based on
clustering algorithms for the parameter sample are proposed in Stephens (1997) and Celeux et al. (2000),
and they achieve some measure of success on the examples for which they have been tested.

3.2 Restrictions on priors

From a Bayesian point of view, the fact that few or no observation in the sample is (may be) generated
from a given component has a direct and important drawback: this prohibits the use of independent
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Figure 4: Exact posterior distributions of p for a sample of 50 observations from the dataset of Stouffer
and Toby (1951) under Beta B(a, b) priors when a = .01, .05, .1, .05, 1 and b = 100, 50, 20, 10, 5, 1.

improper priors,

π (θ) =
J∏
j=1

π(θj) ,

since, if ∫
π(θj)dθj =∞

then for any sample size n and any sample x,∫
π(θ,p|x)dθdp =∞ .

The ban on using improper priors can be considered by some as being of little importance, since
proper priors with large variances could be used instead. However, since mixtures are ill-posed problems,
this difficulty with improper priors is more of an issue, given that the influence of a particular proper
prior, no matter how large its variance, cannot be truly assessed.

There exists, nonetheless, a possibility of using improper priors in this setting, as demonstrated for
instance by Mengersen and Robert (1996), by adding some degree of dependence between the component
parameters. In fact, a Bayesian perspective makes it quite easy to argue against independence in mixture
models, since the components are only properly defined in terms of one another. For the very reason
that exchangeable priors lead to identical marginal posteriors on all components, the relevant priors
must contain some degree of information that components are different and those priors must be explicit
about this difference.

The proposal of Mengersen and Robert (1996), also described in Marin et al. (2005), is to introduce
first a common reference, namely a scale, location, or location-scale parameter (µ, τ), and then to define
the original parameters in terms of departure from those references. Under some conditions on the
reparameterisation, expressed in Robert and Titterington (1998), this representation allows for the use
of an improper prior on the reference parameter (µ, τ). See Wasserman (2000), Pérez and Berger (2002),
Moreno and Liseo (2003) for different approaches to the use of default or non-informative priors in the
setting of mixtures.

4 Inference for mixtures with a known number of components

In this section, we describe different Monte Carlo algorithms that are customarily used for the approx-
imation of posterior distributions in mixture settings when the number of components J is known. We
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start in Section 4.1 with a proposed solution to the label-switching problem and then discuss in the
following sections Gibbs sampling and Metropolis-Hastings algorithms, acknowledging that a diversity
of other algorithms exist (tempering, population Monte Carlo...), see Robert and Casella (2004).

4.1 Reordering

Section 3.1 discussed the drawbacks of imposing identifiability ordering constraints on the parameter
space for estimation performances and there are similar drawbacks on the computational side, since
those constraints decrease the explorative abilities of a sampler and, in the most extreme cases, may
even prevent the sampler from converging (see Celeux et al. 2000). We thus consider samplers that
evolve in an unconstrained parameter space, with the specific feature that the posterior surface has a
number of modes that is a multiple of J !. Assuming that this surface is properly visited by the sampler
(and this is not a trivial assumption), the derivation of point estimates of the parameters of (1) follows
from an ex-post reordering proposed by Marin et al. (2005) which we describe below.

Given a simulated sample of size M , a starting value for a point estimate is the näıve approximation
to the Maximum a Posteriori (MAP) estimator, that is the value in the sequence (θ,p)(l) that maximises
the posterior,

l∗ = arg max
l=1,...,M

π((θ,p)(l)|x)

Once an approximated MAP is computed, it is then possible to reorder all terms in the sequence (θ,p)(l)

by selecting the reordering that is the closest to the approximate MAP estimator for a specific distance in
the parameter space. This solution bypasses the identifiability problem without requiring a preliminary
and most likely unnatural ordering with respect to one of the parameters (mean, weight, variance) of
the model. Then, after the reordering step, an estimation of θj is given by

M∑
l=1

(θj)(l)
/
M .

4.2 Data augmentation and Gibbs sampling approximations

The Gibbs sampler is the most commonly used approach in Bayesian mixture estimation (Diebolt and
Robert 1990, 1994, Lavine and West 1992, Verdinelli and Wasserman 1992, Escobar and West 1995)
because it takes advantage of the missing data structure of the zi’s uncovered in Section 2.2.

The Gibbs sampler for mixture models (1) (Diebolt and Robert 1994) is based on the successive sim-
ulation of z, p and θ conditional on one another and on the data, using the full conditional distributions
derived from the conjugate structure of the complete model. (Note that p only depends on the missing
data z.)

Gibbs sampling for mixture models

0. Initialization: choose p(0) and θ(0) arbitrarily

1. Step t. For t = 1, . . .

1.1 Generate z
(t)
i (i = 1, . . . , n) from (j = 1, . . . , J)

P
(
z
(t)
i = j|p(t−1)

j , θ
(t−1)
j , xi

)
∝ p(t−1)

j f
(
xi|θ(t−1)

j

)
1.2 Generate p(t) from π(p|z(t))

1.3 Generate θ(t) from π(θ|z(t),x).

As always with mixtures, the convergence of this MCMC algorithm is not as easy to assess as it
seems at first sight. In fact, while the chain is uniformly geometrically ergodic from a theoretical point of
view, the severe augmentation in the dimension of the chain brought by the completion stage may induce
strong convergence problems. The very nature of Gibbs sampling may lead to “trapping states”, that is,
concentrated local modes that require an enormous number of iterations to escape from. For example,
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components with a small number of allocated observations and very small variance become so tightly
concentrated that there is very little probability of moving observations in or out of those components,
as shown in Marin et al. (2005). As discussed in Section 2.3, Celeux et al. (2000) show that most MCMC
samplers for mixtures, including the Gibbs sampler, fail to reproduce the permutation invariance of the
posterior distribution, that is, that they do not visit the J ! replications of a given mode.

Example 8. Consider a mixture of normal distributions with common variance σ2 and unknown means
and weights

J∑
j=1

pj N (µj , σ2) .

This model is a particular case of model (1) and is not identifiable. Using conjugate exchangeable priors

p ∼ D(1, . . . , 1) , µj ∼ N (0, 10σ2) , σ−2 ∼ Exp(1/2) ,

it is straightforward to implement the above Gibbs sampler:

• the weight vector p is simulated as the Dirichlet variable

D(1 + n1, . . . , 1 + nJ) ;

• the inverse variance as the Gamma variable

G

(n+ 2)/2, (1/2)

1 +
J∑
j=1

(
0.1nj x̄2

j

nj + 0.1
+ s2j

) ;

• and, conditionally on σ, the means µj are simulated as the Gaussian variable

N (nj x̄j/(nj + 0.1), σ2/(nj + 0.1)) ;

where nj =
∑
zi=j

, x̄j =
∑
zi=j

xi and s2j =
∑
zi=j

(xi − x̄j)2/nj .
Note that this choice of implementation allows for the block simulation of the means-variance group,
rather than the more standard simulation of the means conditional on the variance and of the variance
conditional on the means (as in Diebolt and Robert 1994). J

Consider the benchmark dataset of the galaxy radial speeds described for instance in Roeder and
Wasserman (1997). The output of the Gibbs sampler is summarised on Figure 5 in the case of J = 3
components. As is obvious from the comparison of the three first histograms (and of the three following
ones), label switching does not occur with this sampler: the three components remain isolated during
the simulation process. J

Note that Geweke (2007) (among others) dispute the relevance of asking for proper mixing over the
k! modes, arguing that on the contrary the fact that the Gibbs sampler sticks to a single mode allows for
an easier inference. We obviously disagree with this perspective: first, from an algorithmic point of view,
given the unconstrained posterior distribution as the target, a sampler that fails to explore all modes
clearly fails to converge. Second, the idea that being restricted to a single mode provides a proper repre-
sentation of the posterior is näıvely based on an intuition derived from mixtures with few components.
As the number of components increases, modes on the posterior surface get inextricably mixed and a
standard MCMC chain cannot be garanteed to remain within a single modal region. Furthermore, it is
impossible to check in practice whether not this is the case.

In his defence of “simple” MCMC strategies supplemented with postprocessing steps, Geweke (2007)
states that

[Celeux et al.’s (2000)] argument is persuasive only to the extent that there are mix-
ing problems beyond those arising from permutation invariance of the posterior distribution.
Celeux et al. (2000) does not make this argument, indeed stating “The main defect of the
Gibbs sampler from our perspective is the ultimate attraction of the local modes” (p. 959).
That article produces no evidence of additional mixing problems in its examples, and we are
not aware of such examples in the related literature. Indeed, the simplicity of the posterior
distributions conditional on state assignments in most mixture models leads one to expect no
irregularities of this kind.
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Figure 5: From the left to the right, histograms of the parameters (p1, p2, p3, µ1, µ2, µ3, σ) of a normal
mixture with k = 3 components based on 104 iterations of the Gibbs sampler and the galaxy dataset,
evolution of the σ and of the log-likelihood.

There are however clear irregularities in the convergence behaviour of Gibbs and Metropolis–Hastings
algorithms as exhibited in Marin et al. (2005) and Marin and Robert (2007) (Figure 6.4) for an identifiable
two-component normal mixture with both means unknown. In examples as such as those, there exist
secondary modes that may have much lower posterior values than the modes of interest but that are
nonetheless too attractive for the Gibbs sampler to visit other modes. In such cases, the posterior
inference derived from the MCMC output is plainly incoherent. (See also Iacobucci et al. (2008) for
another illustration of a multimodal posterior distribution in an identifiable mixture setting.)

However, as shown by the example below, for identifiable mixture models, there is no label switching
to expect and the Gibbs sampler may work quite well. While there is no foolproof approach to check
MCMC convergence (Robert and Casella 2004), we recommend using the visited likelihoods to detect
lack of mixing in the algorithms. This does not detect the label switching difficulties (but individual
histograms do) but rather the possible trapping of a secondary mode or simply the slow exploration of
the posterior surface. This is particularly helpful when implementing multiple runs in parallel.

Example 9. (Example 2 continued) Consider the case of a mixture of Student’s t distributions with
known and different numbers of degrees of freedom

J∑
j=1

pjtνj
(µj , σ2

j ) .

This mixture model is not a particular case of model (1) and is identifiable. Moreover, since the noncentral
t distribution tν(µ, σ2) can be interpreted as a continuous mixture of normal distributions with a common
mean and with variances distributed as scaled inverse χ2 random variable, a Gibbs sampler can be easily
implemented in this setting by taking advantage of the corresponding latent variables: xi ∼ tν(µ, σ2) is
the marginal of

xi|Vi, σ2 ∼ N (µ, Viσ2) , V −1
i ∼ χ2

ν .

Once these latent variables are included in the simulation, the conditional posterior distributions of all
parameters are available when using conjugate priors like

p ∼ D(1, . . . , 1) , µj ∼ N (µ0, 2σ2
0) , σ2

j ∼ IG(ασ, βσ) .
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The full conditionals for the Gibbs sampler are a Dirichlet D(1 + n1, . . . , 1 + nJ) distribution on the
weight vector, inverse Gamma

IG

ασ +
nj
2
, βσ +

∑
zi=j

(xi − µj)2

2Vi


distributions on the variances σ2

j , normal

N

(
µ0σ

2
j + 2σ2

0

∑
zi=j

xiV
−1
i

σ2
j + 2σ2

0

∑
zi=j

V −1
i

,
2σ2

0σ
2
j

σ2
j + 2σ2

0

∑
zi=j

V −1
i

)
distributions on the means µj , and inverse Gamma

IG

(
1
2

+
νj
2
,

(xi − µj)2

2σ2
j

+
νj
2

)
distributions on the Vi.

In order to illustrate the performance of the algorithm, we simulated 2, 000 observations from the
two-component t mixture with µ1 = 0, µ2 = 5, σ2

1 = σ2
2 = 1, ν1 = 5, ν2 = 11 and p1 = 0.3. The output

of the Gibbs sampler is summarized in Figure 6. The mixing behaviour of the Gibbs chains seems to be
excellent, as they explore neighbourhoods of the true values. J
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Figure 6: Histograms of the parameters, µ1, σ1, p1, µ2, σ2, and evolution of the (observed) log-likelihood
along 30, 000 iterations of the Gibbs sampler and a sample of 2, 000 observations.

The example below shows that, for specific models and a small number of components, the Gibbs
sampler may recover the symmetry of the target distribution.

Example 10. (Example 6 continued) For the latent class model, if we use all four variables with
two modalities each in Stouffer and Toby (1951), the Gibbs sampler involves two steps: the completion
of the data with the component labels, and the simulation of the probabilities p and qtj from Beta
(B)(stj + .5, nj − stj + .5) conditional distributions. For the 216 observations, the Gibbs sampler seems
to converge satisfactorily since the output in Figure 7 exhibits the perfect symmetry predicted by the
theory. We can note that, in this special case, the modes are well separated, and hence values can be
crudely estimated for q1j by a simple graphical identification of the modes. J

4.3 Metropolis–Hastings approximations

The Gibbs sampler may fail to escape the attraction of a local mode, even in a well-behaved case as in
Example 1 where the likelihood and the posterior distributions are bounded and where the parameters
are identifiable. Part of the difficulty is due to the completion scheme that increases the dimension
of the simulation space and that reduces considerably the mobility of the parameter chain. A standard
alternative that does not require completion and an increase in the dimension is the Metropolis–Hastings
algorithm. In fact, the likelihood of mixture models is available in closed form, being computable in O(Jn)
time, and the posterior distribution is thus available up to a multiplicative constant.
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Figure 7: Latent class model: histograms of p and of the qtj ’s for 104 iterations of the Gibbs sampler
and the four variables of Stouffer and Toby (1951). The first histogram corresponds to p, the next on
the right to q11, followed by q21 (identical), then q21, q22, and so on.

General Metropolis–Hastings algorithm for mixture models

0. Initialization. Choose p(0) and θ(0)

1. Step t. For t = 1, . . .

1.1 Generate (θ̃, p̃) from q
(
θ,p|θ(t−1),p(t−1)

)
,

1.2 Compute

r =
f(x|θ̃, p̃)π(θ̃, p̃)q(θ(t−1),p(t−1)|θ̃, p̃)

f(x|θ(t−1),p(t−1))π(θ(t−1),p(t−1))q(θ̃, p̃|θ(t−1),p(t−1))
,

1.3 Generate u ∼ U[0,1]

If r > u then (θ(t),p(t)) = (θ̃, p̃)
else (θ(t),p(t)) = (θ(t−1),p(t−1)).

The major difference with the Gibbs sampler is that we need to choose the proposal distribution q,
which can be a priori anything, and this is a mixed blessing! The most generic proposal is the random
walk Metropolis–Hastings algorithm where each unconstrained parameter is the mean of the proposal
distribution for the new value, that is,

θ̃j = θ
(t−1)
j + uj

where uj ∼ N (0, ζ2). However, for constrained parameters like the weights and the variances in a normal
mixture model, this proposal is not efficient.

This is indeed the case for the parameter p, due to the constraint that
∑J
j=1 pj = 1. To solve this

difficulty, Cappé et al. (2003) propose to overparameterise the model (1) as

pj = wj

/ J∑
l=1

wl , wj > 0 ,

thus removing the simulation constraint on the pj ’s. Obviously, the wj ’s are not identifiable, but this
is not a difficulty from a simulation point of view and the pj ’s remain identifiable (up to a permutation
of indices). Perhaps paradoxically, using overparameterised representations often helps with the mixing
of the corresponding MCMC algorithms since they are less constrained by the dataset or the likelihood.
The proposed move on the wj ’s is log(w̃j) = log(w(t−1)

j ) + uj where uj ∼ N (0, ζ2).
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Example 11. (Example 2 continued) We now consider the more realistic case when the degrees of
freedom of the t distributions are unknown. The Gibbs sampler cannot be implemented as such given
that the distribution of the νj ’s is far from standard. A common alternative (Robert and Casella 2004)
is to introduce a Metropolis step within the Gibbs sampler to overcome this difficulty. If we use the same
Gamma prior distribution with hyperparameters (αν , βν) for all the νjs, the full conditional density of
νj is

π(νj |V, z) ∝
(

(νj/2)νj/2

Γ(νj/2)

)nj ∏
zi=j

V
−(νj/2+1)
i

eνj/2Vi
G(αν , βν) .

Therefore, we resort to a random walk proposal on the log(νj)’s with scale ς = 5. (The hyperparameters
are αν = 5 and βν = 2.)

In order to illustrate the performances of the algorithm, two cases are considered: (i) all parameters
except variances (σ2

1 = σ2
2 = 1) are unknown and (ii) all parameters are unknown. For a simulated

dataset, the results are given on Figure 8 and Figure 9, respectively. In both cases, the posterior distri-
butions of the νj ’s exhibit very large variances, which indicates that the data is very weakly informative
about the degrees of freedom. The Gibbs sampler does not mix well-enough to recover the symmetry in
the marginal approximations. The comparison between the estimated densities for both cases with the
setting is given in Figure 10. The estimated mixture densities are indistinguishable and the fit to the
simulated dataset is quite adequate. Clearly, the corresponding Gibbs samplers have recovered correctly
one and only one of the 2 symetric modes.
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Figure 8: Histograms of the parameters µ1, ν1, p1, µ2, ν2 when the variance parameters are known, and
evolution of the log-likelihood for a simulated t mixture with 2, 000 points, based on 3 × 104 MCMC
iterations.
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Figure 9: Histograms of the parameters µ1, σ1, ν1, p1, µ2, σ2, ν2, and evolution of the log-likelihood for a
simulated t mixture with 2, 000 points, based on 3× 104 MCMC iterations.
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µ1 µ2 σ1 σ2 ν1 ν2 p1

Student 2.5624 3.9918 0.5795 0.3595 18.5736 19.3001 0.3336
Normal 2.5729 3.9680 0.6004 0.3704 - - 0.3391

Table 2: Estimates of the parameters for the aerosol dataset compared for t and normal mixtures.

We now consider the aerosol particle dataset described in Example 2. We use the same prior distri-
butions on the νj ’s as before, that is G(5, 2). Figure 11 summarises the output of the MCMC algorithm.
Since there is no label switching and only two components, we choose to estimate the parameters by
the empirical averages, as illustrated in Table 2. As shown by Figure 2, both t mixtures and normal
mixtures fit the aerosol data reasonably well. J
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Figure 11: Histograms of parameters (µ1, σ1, ν1, p1, µ1, σ2, ν2) and log-likelihood of a mixture of t distri-
butions based on 30, 000 iterations and the aerosol data.

5 Inference for mixture models with an unknown number of
components

Estimation of J , the number of components in (1), is a special type of model choice problem, for which
there is a number of possible solutions:

(i) direct computation of the Bayes factors (Kass and Raftery 1995, Chib 1995);
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(ii) evaluation of an entropy distance (Mengersen and Robert 1996, Sahu and Cheng 2003);

(iii) generation from a joint distribution across models via reversible jump MCMC (Richardson and
Green 1997) or via birth-and-death processes (Stephens 2000) ;

depending on whether the perspective is on testing or estimation. We refer to Marin et al. (2005) for
a short description of the reversible jump MCMC solution, a longer survey being available in Robert
and Casella (2004) and a specific description for mixtures–including an R package—being provided in
Marin and Robert (2007). The alternative birth-and-death processes proposed in Stephens (2000) has
not generated as much follow-up, except for Cappé et al. (2003) who showed that the essential mechanism
in this approach was the same as with reversible jump MCMC algorithms.

We focus here on the first two approaches, because, first, the description of reversible jump MCMC
algorithms require much care and therefore more space than we can allow to this paper and, second, this
description exemplifies recent advances in the derivation of Bayes factors. These solutions pertain more
strongly to the testing perspective, the entropy distance approach being based on the Kullback–Leibler
divergence between a J component mixture and its projection on the set of J − 1 mixtures, in the same
spirit as in Dupuis and Robert (2003). Given that the calibration of the Kullback divergence is open to
various interpretations (Mengersen and Robert 1996, Goutis and Robert 1998, Dupuis and Robert 2003),
we will only cover here some proposals regarding approximations of the Bayes factor oriented towards
the direct exploitation of outputs from single model MCMC runs.

In fact, the major difference between approximations of Bayes factors based on those outputs and
approximations based on the output from the reversible jump chains is that the latter requires a suf-
ficiently efficient choice of proposals to move around models, which can be difficult despite significant
recent advances (Brooks et al. 2003). If we can instead concentrate the simulation effort on single models,
the complexity of the algorithm decreases (a lot) and there exist ways to evaluate the performance of the
corresponding MCMC samples. In addition, it is often the case that few models are in competition when
estimating J and it is therefore possible to visit the whole range of potentials models in an exhaustive
manner.

We have

fJ(x|λJ) =
n∏
i=1

J∑
j=1

pjf(xi|θj)

where λJ = (θ,p) = (θ1, . . . , θJ , p1, . . . , pJ). Most solutions (see, e.g. Frühwirth-Schnatter 2006, Section
5.4) revolve around an importance sampling approximation to the marginal likelihood integral

mJ(x) =
∫
fJ(x|λJ)πJ(λJ) dλJ

where J denotes the model index (that is the number of components in the present case). For instance,
Liang and Wong (2001) use bridge sampling with simulated annealing scenarios to overcome the label
switching problem. Steele et al. (2006) rely on defensive sampling and the use of conjugate priors
to reduce the integration to the space of latent variables (as in Casella et al. 2004) with an iterative
construction of the importance function. Frühwirth-Schnatter (2004) also centers her approximation of
the marginal likelihood on a bridge sampling strategy, with particular attention paid to identifiability
constraints. A different possibility is to use Gelfand and Dey (1994) representation: starting from an
arbitrary density gJ , the equality

1 =
∫
gJ(λJ) dλJ =

∫
gJ(λJ)

fJ(x|λJ)πJ(λJ)
fJ(x|λJ)πJ(λJ) dλJ

= mJ(x)
∫

gJ(λJ)
fJ(x|λJ)πJ(λJ)

πJ(λJ |x) dλJ

implies that a potential estimate of mJ(x) is

m̂J(x) = 1
/

1
T

T∑
t=1

gJ(λ(t)
J )

fJ(x|λ(t)
J )πJ(λ(t)

J )
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when the λ(t)
J ’s are produced by a Monte Carlo or an MCMC sampler targeted at πJ(λJ |x). While this

solution can be easily implemented in low dimensional settings (Chopin and Robert 2007), calibrating
the auxiliary density gk is always an issue. The auxiliary density could be selected as a non-parametric
estimate of πk(λJ |x) based on the sample itself but this is very costly. Another difficulty is that the
estimate may have an infinite variance and thus be too variable to be trustworthy, as experimented by
Frühwirth-Schnatter (2004).

Yet another approximation to the integral mJ(x) is to consider it as the expectation of fJ(x|λJ), when
λJ is distributed from the prior. While a brute force approach simulating λJ from the prior distribution
is requiring a huge number of simulations (Neal 1999), a Riemann based alternative is proposed by
Skilling (2006) under the denomination of nested sampling; however, Chopin and Robert (2007) have
shown in the case of mixtures that this technique could lead to uncertainties about the quality of the
approximation.

We consider here a further solution, first proposed by Chib (1995), that is straightforward to imple-
ment in the setting of mixtures (see Chib and Jeliazkov 2001 for extensions). Although it came under
criticism by Neal (1999) (see also Frühwirth-Schnatter 2004), we show below how the drawback pointed
by the latter can easily be removed. Chib’s (1995) method is directly based on the expression of the
marginal distribution (loosely called marginal likelihood in this section) in Bayes’ theorem:

mJ(x) =
fJ(x|λJ)πJ(λJ)

πJ(λJ |x)

and on the property that the rhs of this equation is constant in λJ . Therefore, if an arbitrary value of
λJ , λ∗J say, is selected and if a good approximation to πJ(λJ |x) can be constructed, π̂J(λJ |x), Chib’s
(1995) approximation to the marginal likelihood is

m̂J(x) =
fJ(x|λ∗J)πJ(λ∗J)

π̂J(λ∗J |x)
. (8)

In the case of mixtures, a natural approximation to πJ(λJ |x) is the Rao-Blackwell estimate

π̂J(λ∗J |x) =
1
T

T∑
t=1

πJ(λ∗J |x, z(t)) ,

where the z(t)’s are the latent variables simulated by the MCMC sampler. To be efficient, this method
requires

(a) a good choice of λ∗J but, since in the case of mixtures, the likelihood is computable, λ∗J can be
chosen as the MCMC approximation to the MAP estimator and,

(b) a good approximation to πJ(λJ |x).

This later requirement is the core of Neal’s (1999) criticism: while, at a formal level, π̂J(λ∗J |x) is a
converging (parametric) approximation to πJ(λJ |x) by virtue of the ergodic theorem, this obviously re-
quires the chain (z(t)) to converge to its stationarity distribution. Unfortunately, as discussed previously,
in the case of mixtures, the Gibbs sampler rarely converges because of the label switching phenomenon
described in Section 3.1, so the approximation π̂J(λ∗J |x) is untrustworthy. Neal (1999) demonstrated via
a numerical experiment that (8) is significantly different from the true value mJ(x) when label switching
does not occur. There is, however, a fix to this problem, also explored by Berkhof et al. (2003), which is
to recover the label switching symmetry a posteriori, replacing π̂J(λ∗J |x) in (8) above with

π̂J(λ∗J |x) =
1

T J !

∑
σ∈SJ

T∑
t=1

πJ(σ(λ∗J)|x, z(t)) ,

where SJ denotes the set of all permutations of {1, . . . , J} and σ(λ∗J) denotes the transform of λ∗J
where components are switched according to the permutation σ. Note that the permutation can equally
be applied to λ∗J or to the z(t)’s but that the former is usually more efficient from a computational
point of view given that the sufficient statistics only have to be computed once. The justification for
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J 2 3 4 5 6 7 8
ρ̂J(x) -115.68 -103.35 -102.66 -101.93 -102.88 -105.48 -108.44

Table 3: Estimations of the marginal likelihoods by the symmetrised Chib’s approximation (based on
105 Gibbs iterations and, for J > 5, 100 permutations selected at random in SJ).

this modification either stems from a Rao-Blackwellisation argument, namely that the permutations are
ancillary for the problem and should be integrated out, or follows from the general framework of Kong
et al. (2003) where symmetries in the dominating measure should be exploited towards the improvement
of the variance of Monte Carlo estimators.

Example 12. (Example 8 continued) In the case of the normal mixture case and the galaxy dataset,
using Gibbs sampling, label switching does not occur. If we compute log m̂J(x) using only the original
estimate of Chib (1995) (8), the [logarithm of the] estimated marginal likelihood is ρ̂J(x) = −105.1396
for J = 3 (based on 103 simulations), while introducing the permutations leads to ρ̂J(x) = −103.3479.
As already noted by Neal (1999), the difference between the original Chib’s (1995) approximation and the
true marginal likelihood is close to log(J !) (only) when the Gibbs sampler remains concentrated around
a single mode of the posterior distribution. In the current case, we have that −116.3747 + log(2!) =
−115.6816 exactly! (We also checked this numerical value against a brute-force estimate obtained by
simulating from the prior and averaging the likelihood, up to fourth digit agreement.) A similar result
holds for J = 3, with −105.1396 + log(3!) = −103.3479. Both Neal (1999) and Frühwirth-Schnatter
(2004) also pointed out that the log(J !) difference was unlikely to hold for larger values of J as the
modes became less separated on the posterior surface and thus the Gibbs sampler was more likely to
explore incompletely several modes. For J = 4, we get for instance that the original Chib’s (1995)
approximation is −104.1936, while the average over permutations gives −102.6642. Similarly, for J = 5,
the difference between −103.91 and −101.93 is less than log(5!). The log(J !) difference cannot therefore
be used as a direct correction for Chib’s (1995) approximation because of this difficulty in controlling
the amount of overlap. However, it is unnecessary since using the permutation average resolves the
difficulty. Table 3 shows that the prefered value of J for the galaxy dataset and the current choice of
prior distribution is J = 5. J

When the number of components J grows too large for all permutations in SJ to be considered in
the average, a (random) subsample of permutations can be simulated to keep the computing time to a
reasonable level when keeping the identity as one of the permutations, as in Table 3 for J = 6, 7. (See
Berkhof et al. 2003 for another solution.) Note also that the discrepancy between the original Chib’s
(1995) approximation and the average over permutations is a good indicator of the mixing properties of
the Markov chain, if a further convergence indicator is requested.

Example 13. (Example 6 continued) For instance, in the setting of Example 6 with a = b = 1, both
the approximation of Chib (1995) and the symmetrized one are identical. When comparing a single class
model with a two class model, the corresponding (log-)marginals are

ρ̂1(x) =
4∏
i=1

Γ(1)
Γ(1/2)2

Γ(ni + 1/2)Γ(n− ni + 1/2)
Γ(n+ 1)

= −552.0402

and ρ̂2(x) ≈ −523.2978, giving a clear preference to the two class model. J
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