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ABSTRACT

Electroencephalography (EEG) is an electrical signal recorded from a person’s
scalp, and is used to monitor the neurological state of the patient. This thesis proposes
a quantified continuity feature to aid preterm neonatal EEG analysis. The continuity
of EEG signals for preterm infants refers to the variation of the EEG amplitude, and
is affected by the conceptional age of the infants. Currently, the continuity of the
signal is determined largely by visual examination of the raw EEG signal, or by using
general guidelines on amplitude-integrated EEG (aEEG), which is a compressed plot

of the estimated signal envelope.

The proposed parametric feature embodies the statistical distribution parame-
ters of the signal amplitudes. The signal is first segmented into pseudo-stationary
segments using Generalized Likelihood Ratio (GLR). These segments are used to
construct a vector of amplitude, the distribution of which can be modelled using a
log-normal distribution. The mean and standard deviation of the log-normal distri-
bution are used as the continuity feature. This feature is less prone to the effects of

local transient activities than the aEEG.

This investigation has demonstrated that the degree of continuity corresponds to
the major axis of the feature distribution in the feature space, and the minor axis
roughly corresponds to the age of the infants in healthy files. Principal component
analysis was performed on the feature, with the first coefficient used as a continuity
index and the second coefficient as a maturation index. In this research, classifiers
were developed to use the continuity feature to produce a qualitative continuity label.
It was found that using a linear discriminant analysis based classifier, labelled data
can be used as training data to produce labels consistent across all recordings. It was
also found that unsupervised classifiers can assist in identifying the intrinsic clusters

occurring in the recordings.

It was concluded that the proposed continuity feature can be used to aid further
research in neonatal EEG analysis. Further work should focus on using the continuity

information to provide a context for further feature extraction and analysis.
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See Discontinuous Signal

Tracé Discontinu
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White Matter

Solid components of the brain, located under the brain surface, used for con-
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signals that connect neurons.



