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ABSTRACT

Electroencephalography (EEG) is an electrical signal recorded from a person’s

scalp, and is used to monitor the neurological state of the patient. This thesis proposes

a quantified continuity feature to aid preterm neonatal EEG analysis. The continuity

of EEG signals for preterm infants refers to the variation of the EEG amplitude, and

is affected by the conceptional age of the infants. Currently, the continuity of the

signal is determined largely by visual examination of the raw EEG signal, or by using

general guidelines on amplitude-integrated EEG (aEEG), which is a compressed plot

of the estimated signal envelope.

The proposed parametric feature embodies the statistical distribution parame-

ters of the signal amplitudes. The signal is first segmented into pseudo-stationary

segments using Generalized Likelihood Ratio (GLR). These segments are used to

construct a vector of amplitude, the distribution of which can be modelled using a

log-normal distribution. The mean and standard deviation of the log-normal distri-

bution are used as the continuity feature. This feature is less prone to the effects of

local transient activities than the aEEG.

This investigation has demonstrated that the degree of continuity corresponds to

the major axis of the feature distribution in the feature space, and the minor axis

roughly corresponds to the age of the infants in healthy files. Principal component

analysis was performed on the feature, with the first coefficient used as a continuity

index and the second coefficient as a maturation index. In this research, classifiers

were developed to use the continuity feature to produce a qualitative continuity label.

It was found that using a linear discriminant analysis based classifier, labelled data

can be used as training data to produce labels consistent across all recordings. It was

also found that unsupervised classifiers can assist in identifying the intrinsic clusters

occurring in the recordings.

It was concluded that the proposed continuity feature can be used to aid further

research in neonatal EEG analysis. Further work should focus on using the continuity

information to provide a context for further feature extraction and analysis.
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CHAPTER 6. QUANTIFYING CONTINUITY
6.5. Quantifying Continuity Using Principal Component Analysis

the feature into another domain. PCA is used to determine a new coordinate sys-

tem which will result in components with the highest variance as the first domain,

and subsequent components as orthogonal domains in order of the variance in data.

Looking at Figure 6.6, the major axis of the data distribution is also the orientation

best representing the continuity of the data. This means that after using PCA on

the feature, the first component will be a good indicator of continuity. The problem

with this approach is that, while the first principal component does indeed give a

good representation of continuity, it is record specific. It also assumes the dataset

being transformed provides various different continuity background states. Should a

recording only contain data in one particular state, the principal component may not

reflect the continuity of the data. Another problem is that this continuity measure

is only relative to the data used to generate the PCA transform. This means that,

should the continuity of two different recordings be analysed separately, the principal

components cannot be compared between the recordings, since there is no guarantee

that the PCA transformation is the same for the two datasets.
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Figure 6.9: The continuity feature in a 2 hour recording.
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Figure 6.10: Scatter plot showing changes in continuity feature for one healthy
infant during CA 30 to 34 weeks.

One way to overcome this problem is to use features from recordings of a number

of infants to come up with a transformation that will be used for every file. With a

standardised transform, the continuity index (in this case, the first principal compo-

nent) can be compared across different recordings. With this in mind, the dataset

used in Section 6.3.3 was used to form the basis of the PCA transformation used for

continuity quantification. The dataset contains data from infants with CA from 25

to 35 weeks, which is approximately the range of CA available in the database of

preterm EEG used in the study. From each recording, 10 minute segments of con-

tinuous, discontinuous and burst suppression patterns (where available) were used.

The continuity feature as described in Section 6.3.3 was calculated for each segment,

and PCA was performed on the set of features from all of the segments. The train-

ing dataset was normalised to ensure that both dimensions of the feature (µ̂ and σ̂)

have a mean of 0 and standard deviation of 1. Figure 6.11 shows the resulting new

coordinate system that forms the PCA transformation of the dataset.
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Figure 6.11: Principal components of the training dataset.

The principal component calculated from this dataset represents the orientation

that gives the largest variance. This also coincides with the direction that indicates

continuity. Using the transformation, the feature extracted from a recording can be

transformed to give a quantified measurement that indicates continuity. This gives

continuity information in a more localised fashion, as opposed to the global mea-

surement used for maturation studies discussed in the medical literature review in

Chapter 3. Figure 6.12 shows a recording of an infant at 34 weeks CA and the prin-

cipal component against the aEEG and the continuity grading from Navakatikyan’s

classification algorithm of the same recording. The PCA transformation of the con-

tinuity feature, as discussed in Section 6.3.3, is normalised using the same mean and

standard deviation as the training dataset. Both the principal and minor component

are displayed for discussion purposes.

Lacking a reference for a quantified continuity measure, visual scanning of aEEG

remained the best way to analyse the continuity of the signal. The Navakatikyan

rEEG related grading was designed and trained using term infant EEG recordings.
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Figure 6.12: Principal component transformation of the continuity feature compared
with aEEG and rEEG classification

While not a perfect representation of the background states for preterm infants, it

provides a comparison of how the quantified continuity measure relates to a current

automatic labelling method. As shown in Figure 6.12, the rEEG method demonstrates

some uncertainty around regions where the EEG is in transition from one state to

another. The continuity measure, however, gives a smoother transition, and provides

a better indication as to the rate at which the states are changing, which is not

shown in a qualitative approach. The continuity measurement is higher in value

in continuous areas and lower in value in discontinuous areas. Figure 6.13 shows a

comparison between the rEEG state labelling and the continuity index as described.

Ten files from infants with healthy clinical follow-ups, aged between 32 to 38 weeks

CA were compared, with recordings lasting approximately 180 minutes. As shown

in the plot, although there are some overlaps between the state labels as assigned

by the rEEG algorithm, the continuous states have generally higher values in the

continuity index then the discontinuous states. Recall from Figure 6.12, where a
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plot showing the state assignment is displayed, the rEEG labels are very sensitive to

local variation and when performed on preterm infants the algorithm can mislabel

the signal. Because the standard deviation is used in the continuity index, instead

of the maximum and minimum values of the EEG signal, the effect of outliers and

local transients is minimised and the transition between states is shown as a smoother

transition with less fluctuation. This may explain the overlaps in the continuity index

in the states assigned by the rEEG method.
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Continuity Index Range

rEEG State Detection Results Displayed as Continuity Index

Figure 6.13: Plot showing the continuity index range for each background state
assigned by Navakatikyan’s classification algorithm. Solid lines represent discontinu-
ous states and dashed lines represent continuous states. The minimum, average and
maximum values are shown as plotted values on the lines. Two pairs of lines are
plotted for each file. Each pair (solid and dashed) represent one channel of the EEG
(left or right hemisphere).

The minor component does not reflect any continuity information, since the minor

component is orthogonal to the principal component, which corresponds to the degree

of continuity. The variation of the minor component during the recording is less than

that of the principal component, which is expected since the principal component is
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the projection of the feature along the major axis. As discussed briefly in Section

6.3.3, the minor component is related to maturation, therefore the minor component

should not be changing dramatically during the recording. The relationship between

the minor component and maturation is further discussed in Chapter 7.

6.6 Summary

Continuity is an inverse measure of amplitude variance within a recording. Currently,

it is a largely qualitative measurement, and the only quantitative measurements avail-

able are simple measurements obtained by using a few conventional threshold levels to

represent the proportion of the signal that lies beneath each threshold. This chapter

proposed a quantified continuity measure using statistical distribution parameters of

the amplitude as the continuity feature. An amplitude vector is defined by segment-

ing the signal into psuedo-stationary segments, and the mean absolute value of each

segment is used as a representation of the amplitude of the segment. This amplitude

vector is modelled using the log-normal distribution, and the estimated parameters,

namely the mean and standard deviation of the logarithm of the amplitude vector,

are used as the continuity feature. A 10-minute sliding window at a 1-minute rate is

used to ensure enough information is available for modelling. Segments with known

qualitative continuity states are modelled and their continuity features plotted in a

scatter plot in order to establish the relationship between the feature and the conti-

nuity of the segment. It is observed that continuous segments have relatively higher

means and lower standard deviations, and that the continuity of the segment can be

modelled by the first principal component of the feature dataset. The raw feature and

the principal component can be used to represent continuity and can be displayed in

different ways to help clinicians analyse EEG signals.
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Chapter 7

The Continuity Feature and Maturation

As discussed in the literature review, continuity is one of the

markers for maturation in preterm EEG recordings. With

the continuity features extracted from the EEG, the continu-

ity of the signal can be quantified and correlated with the age of

the infants. The principal component from the features pro-

vides a way to quantify continuity relative to the recording,

but stripped of age information. This age related informa-

tion, however, can be retrieved from the minor component, as

shown in the initial investigation of the previous chapter. In

this chapter, the second PCA coefficient is used as a matura-

tion indicator, and the correlation between this coefficient and

maturation is examined. The effect of brain injuries such as

white matter injury on maturation is also explored by exam-

ining how this maturation index changes for infants affected

by such injuries.

7.1 Maturation and Continuity

Continuity is one of the major markers of maturation in neonatal EEG. As described

in Chapter 2, by looking at the continuity of the EEG signal, a human expert can
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estimate the CA of the infant, and thus determine whether the infant is developing

neurologically at a normal rate. EEGs of very preterm infants are highly discon-

tinuous, and gradually become more continuous as the infants grow towards term.

Sleep-wake cycles, which consist of alternating periods of continuous and discontin-

uous EEG, also start appearing around 30 weeks CA. The presence of sleep-wake

cycles is also important when determining the maturation of the EEG signal.

Although there are clinical guidelines for EEG interpretation, these guidelines are

largely qualitative, and require years of experience in EEG interpretation to accurately

determine the CA of the infants. A lot of the interpretation is subjective and relies on,

to a certain degree, intuition on the clinician’s part. Human brains are very good at

pattern recognition and therefore experts can be trained to recognise certain patterns

relating to the maturation process during different stages.

Using the feature described in Chapter 6, a parallel can be drawn between the way

clinical experts view EEG, and the mathematical attempt to define how maturation

affects the continuity of the EEG signal.

7.2 Changes in the Continuity Feature Through-

out Maturation

In order to define how maturation can affect the continuity of the EEG, one needs

to ensure that the changes detected are those resulting from normal maturation.

This is difficult in preterm research because preterm infants were born before the

normal gestational age (GA) is reached, and thus by definition are not normal in

the clinical sense. The goal is, therefore, to determine which infants have no brain

injury and show no adverse effects in a two-year neurological followup. The data

used in this study was collected by A/Prof Terrie Inder for the Victorian Infant Brain

Study (VIBeS) in Melbourne, Australia. Infants enrolled in the study had four EEG

recordings taken within about a month of birth, and MRI scanning at term (40 weeks

CA). Clinical follow-ups were conducted at two years to measure their motor and

speech development. A list of the recordings in the database, along with the clinical

outcomes of the infants, is available in Appendix A.

The infants used in this section include infants with no abnormalities during the

MRI scanning at term, and demonstrating healthy motor and speech development
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at the two year follow-up. The time between EEG recordings and birth varies with

the infants. The infant CAs are recorded in the graphs shown in this chapter for

comparative purposes.

Figure 6.10 from Chapter 6 shows the progression of the continuity feature as an

infant matures. The graph shows that, in general, the standard deviation of the am-

plitude distribution decreases as the infant grows towards term. This reflects known

medical guidelines for EEG interpretation. As preterm infants grow towards term,

their very discontinuous signal generally becomes more continuous. This includes

an increase in amplitude in the low amplitude periods of the signal, as well as a

decrease in amplitude in the high amplitude periods (or the “bursts”). In the conti-

nuity feature domain, this corresponds to a decrease in the standard deviation. The

mean parameter increases at the continuous end of the spectrum, and decreases at

the discontinuous end. Although both continuous and discontinuous signals mature

in similar ways as described earlier, because of the different proportions of high and

low amplitude segments present, maturation affects the mean parameters differently.

Continuous periods have a more even distribution of relatively high and low ampli-

tude segments, and the difference between the amplitude values in these segments is

a lot smaller than for discontinuous periods. Discontinuous segments, on the other

hand, consist of more low amplitude segments than high amplitude ones. Because

the feature used is the distribution of the log of the amplitude, an increase in the

amplitude of the lower amplitude segments will result in a bigger difference in the

log-normal distribution mean than the difference made by a decrease of the same

amount in the higher amplitude segments. The change due to maturation in the

amplitude of the high amplitude segments, especially in the burst segments in burst

suppression (tracé discontinu), is more dramatic than the change occuring in the low

amplitude segments [10]. Using the log-normal distribution mean, the bias towards

the difference in high amplitude segments is minimised, and a change in amplitude

in the interburst period will affect the continuity feature.

In Chapter 6, the idea of using PCA to extract continuity information was exam-

ined. The minor component from the PCA transformation appears to coincide with

the way maturation affects the continuity feature. To test this theory, the mean value

of second PCA coefficients for the continuity feature was calculated for each record-

ing, and plotted against the CA of the infant at the time of recording. Recordings

with obvious artifacts or excessively high impedence values were excluded from this

graph.
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Figure 7.1: Scatter plot of minor component in PCA (maturation index) vs CA of
infant at time of recording

From Figure 7.1, the correlation between CA and the mean value is used since the

second PCA coefficient is othorgonal to the principal component, which is related to

the continuity of the signal, and therefore remains relatively stable during the course

of the recording. Further research can be applied to enhancing the maturation index

with specific continuity states, to further correlate the maturation index with the age

of the infant.

7.3 Effects of Brain Injury on Maturation

Figure 7.1 shows the maturation progress in infants with no known brain injury and

a healthy two year clinical outcome. Although this study targets the maturation of

healthy infants, it is worth looking at how infants with brain injury differ from infants

with a healthy clinical follow-up. Figure 7.2 shows a scatter plot of an infant with

grade 3 white matter injury (grade 1 being no injury and grade 4 being most severe).
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Figure 7.2: The continuity feature of recordings from an infant with grade 3 white
matter injury

Compared with Figure 6.10, which depicts the continuity feature from an infant

with no brain injury, the features shown in Figure 7.2 lack the progression which is

shown in the feature as a decrease in both µ̂ and σ̂. It is important to note that some

infants with brain injury demonstrate a similar pattern to infants with healthy brain

scan results, instead of the pattern exhibited in Figure 7.2. The investigation of pos-

sible causes of these outlying results would require additional medical investigation,

and is outside the scope of this engineering research.

When the mean of the maturation index is plotted for recordings of infants with

brain injury, the data points remain within the range of the healthy infants. However,

if the progressive recordings of the infants are plotted and joined, the rate of increase

shows a small but noticeable difference. Figure 7.3 shows the maturation index av-

erages in sucessive recordings for both infants with a healthy two year follow-up and

infants with grade 3 or 4 white matter injury with mental retardation at the two year

follow-up. Only recordings with an impedence less than 10 kΩ were used, and only in-

fants with two or more recordings are displayed. Infants with a healthy follow-up are
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those who show average or better neurological test results in both motor and language

skill tests at the two year follow-up, with no signs of white matter injury in the MRI

scan undertaken at term. Infants with white matter injury were chosen for abnormal

scores in both motor and language skill tests at the two year follow-up, with white

matter injury scores of 3 (major) or 4 (severe) for the MRI performed at term. While

the blue lines, representing the infants with a healthy two year follow-up, generally

increase at roughly the same gradient, with a few infants being the exceptions, the

infants with white matter injury, represented by the red lines, show either a slower

rate of increase, or, in some cases, a decreasing maturation index. Figure 7.4 shows a

box and whisker plot, displaying the gradients of the lines of best fit in Figure 7.3 for

each of the infants. The plot shows that, in general, sick infants have a lower gradient

of maturation changes. Some healthy infants also exhibit a low gradient, and further

research can help to identify other features that can differentiate the two groups of

infants further.
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Figure 7.3: Maturation progress for infants with a healthy follow-up and infants
with white matter injury. Red lines represent infants with white matter injury and
blue lines represent infants with a healthy clinical follow-up. Each line represents the
progress of one brain hemisphere of one infant.
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Figure 7.4: Box and whiskers plot of the estimated gradient of the maturation index
vs. age of infants. The graph is plotted using the boxplot function in MATLAB, and
boxes with notched areas that do not overlap indicate a difference in median value at
the 5% significance level.

7.4 Discussion

These differences in the rate of change of the maturation index suggest that the

maturation rate of the EEG signal, judged by the the continuity alone, can be used

to identify infants with white matter injury. However, at this stage it is still only a

rough estimate, and the index can benefit from other information from the EEG, such

as symmetry and synchrony (see Chapter 2). At present, the maturation measure is

still prone to interference from artifact such as that caused by movement. While a

basic noise rejection algorithm, such as rejecting recordings with high impedence, can

be used to attempt to exclude EEG recordings containing some form of noise, some

files used may still be corrupted by noise such as muscle artifact. Manual artifact

detection is very time consuming, and is based on experience. Without a reliable

noise rejection algorithm, it is difficult to determine whether an unexpected change

105



CHAPTER 7. THE CONTINUITY FEATURE AND MATURATION
7.5. Summary

in the maturation index for one infant is caused by a neurological problem or is due

to noise in one of the recordings. At this stage, the maturation index can be used

as an experimental measurement for the EEG recording. Performed on recordings

with very little or no noise, it can help to track the maturation of the infant, and

provide another quantitative measurement enabling clinicians to correlate the EEG

signal with the clinical outcome of the infant.

7.5 Summary

EEG changes in behaviour as preterm infants grow towards term. In terms of continu-

ity, EEG signals start exhibiting burst suppression patterns for very young preterm

infants, and become more continuous as the infants grow. This chapter presented

a way to quantify the maturation of EEG according to the quantitative continuity

feature. As shown in Chapter 6, the continuity feature changes in the direction cor-

responding to the minor component of the PCA transformation. The mean of the

minor components in the recording is used as the maturation index for the recording.

A scatter plot of this maturation index against the conceptional age of healthy infants

at the time of recording shows a linear correlation between the age of the infant and

the maturation index. Furthermore, a plot of the changes in the maturation index

throughout several recordings shows that this index changes at a faster rate in healthy

infants than in infants with severe white matter injury. However, this index is still

prone to artifact interference, which affects the correlation between the age of the

infant and the index. Also, continuity is only one aspect of maturation, and other

elements of the EEG signal should be taken into account for a more comprehensive

description of maturation. The maturation index at this stage serves as an experi-

mental value that helps track the way continuity changes as infants mature, and the

progress of these changes through time.
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Chapter 8

Background State Classification

Besides a quantified continuity measurement, the continuity

feature described in previous chapters can also be used as input

for a classification system resulting in labels familiar to clin-

icians. Having the qualitative labels can also assist in tasks

like sleep-wake cycle detection which require recognition of a

series of changing continuities. This chapter will discuss a

few different approaches to the task of classification, and how

they compare with one another.

8.1 Overview of Continuity Classification

Although a quantified continuity measurement addresses the lack of a continuity index

correlating age and clinicial outcomes, there are certain tasks where a qualitative label

is preferred. Tasks where the background state is used as the context of the analysis,

such as burst detection during burst suppression, require the algorithm to detect the

background states of the signal in a qualitative manner. Therefore, a classifier for

continuity is still important in EEG analysis.

There are different approaches to this classification problem. The two main cat-

egories are unsupervised classification and supervised classification. In unsupervised

classification, the learning data are not labelled, and the number of classes is either
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determined by an optimisation algorithm or set to a predetermined number. In su-

pervised classification, the learning data are labelled, and the resulting classifier will

assign as output the labels present in the learning dataset.

The advantage of the unsupervised classifier is that the resulting labels will not be

limited to the labels currently used by clinicians. Since the number of classes can be

determined by an optimisation algorithm, the classes determined by a unsupervised

classifier may be more suited for the dataset than the conventional labels given by

clinicians in terms of reflecting any intrinsic clusters present in the dataset. However,

an unsupervised classifier does not guarantee that labels generated reflect the continu-

ity states, should any unrelated pattern affect the feature. Also, if no obvious clusters

are present in the dataset, the classes determined by an unsupervised classifier may

not be meaningful at all.

Supervised learning requires labelled data, which are not always available. How-

ever, if the dataset contains a good representation of the classes desired for the classi-

fication system, supervised learning can be an effective method to classify the desired

output classes. In the application of continuity classification, since current continuity

determination is a subjective exercise on raw EEG or aEEG signal, the labels used

for learning data are manually assigned by a visual assessment of the EEG and aEEG

recording.

8.2 Evaluation of Classification Systems

The evaluation of the continuity classifiers poses an interesting problem. Since con-

tinuity is a qualitative feature, and one that is evaluated with subjective bias, the

statistical significance of the classifiers cannot be evaluated in the traditional sense.

In this research, the classifiers will be compared with a qualitative classifier previ-

ously shown to classify term infant EEG data [38]. Readers are reminded that term

and preterm infant data have different EEG continuity distributions, and what is

considered discontinuous for a normal term infant may be considered continuous in a

preterm infant, as preterm infant data has generally fewer continuous EEG patterns.

The aEEG recording is also shown as a visual guide to show examples of classifi-

cation results. aEEG interpretation is explained in section 6.2. The classification

results were also compared with the continuity index described in Chapter 6. Given

that this continuity index reflects the degree of continuity in an EEG signal, this can
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also provide a good comparative measure of how good a classification system is.

8.3 Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) is a supervised classifier. LDA looks at the data

in the different classes to determine a linear mapping that increases the between-

class variance and minimises the within-class variance [58]. The within-class variance

matrix is defined as:

Sw =
C
∑

j=1

pj × (covj) (8.1)

where C is the number of classes, covj is the covariance matrix of class j, and pj is

the priori probability of class j. The within-class matrix, Sw, is therefore a n × n

matrix, where n is the number of dimension of the data to be classified. The n × n

between-class variance matrix is defined as:

Sb =

C
∑

j=1

(µj − µ) × (µj − µ)T (8.2)

where µ is the global mean and µj is mean of the class j. The projection matrix is

defined as the eigenvectors of S−1
w × Sb. The transformation is optimised to ensure

the ratio det|Sb|/det|Sw| is maximised. The transformed data are then used for

classification purposes, using the Euclidean distance between the testing point and

the centre of the data in each class of the testing dataset.

Both crisp and soft classifications were performed for comparative purposes. Crisp

classification refers to classification systems where a class label is assigned to each

data point to be classified, so each data point is said to be belong to one and only one

class. Soft classification, on the other hand, gives the probabilities of the data point

belonging to each of the classes. Soft classification is particularly useful for the grey

area between discontinuous and burst suppression data. The implementation of the

LDA classifier is from an open source MATLAB toolbox called PRTools, available

at [59]. The LDA classifier from the toolbox does not take into account the prior

probabilities of the classes. This does not affect the problem at hand, as the prior

probabilities of the classes are considered equiprobable. The linear discriminant is

estimated by minimising the error in the least square sense.

From a database of preterm EEG recordings, 10-minute segments of EEG were
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selected as the training set after examining the aEEG and raw EEG data to ensure

the segments were good representations of continuous or discontinuous signals. The

continuity feature was extracted from the training set as described in Chapter 6, and

an LDA classifier as described previously was trained using this set of data. Figure

8.1 shows the distribution of the feature in the training set.
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Figure 8.1: Distribution of the µ̂ and σ̂ in the training set.

From the same database, 60 recordings, approximately 2 hours in length each,

were selected as a testing dataset. Selections were based on the quality of the record-

ing, and signals without seizures or significant mechanical artifacts were selected as

testing signals. The EEG recordings from the testing dataset were processed using

the algorithm described in Chapter 6, and the results were visually compared with

the aEEG and an existing algorithm for term infant background detection. The first

and last 5 minutes of each 2-hour recording were not classified. No attempt was

made to reject artifacts of any nature. Both the crisp and soft classifications were

graphed against the background state detected using the algorithm described in [38]

and the aEEG signal, the latter being an established way for clinicians to determine

the background continuity.
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8.3.1 Results and Discussion

Figure 8.2 shows an example of classification results from the proposed method and

the rEEG [38]. Note that the rEEG method is designed for full term infants (with

a CA of 40 weeks), while the EEG recording used for Figure 8.2 is from an infant

with a CA of 34 weeks. The distribution of the feature for the same example is

shown in Figure 8.3, plotted with the decision boundaries of the LDA classifier. From

the Figure, the aEEG shows the signal is generally continuous, with a period of

discontinuous signal between 40 to 60 minutes. The rEEG classification results, as

well as the crisp and soft labelling results from the LDA classification system described

in Section 8.3, are shown.
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Figure 8.2: Classification results as compared with rEEG based algorithm for an
EEG recording of a healthy 34 week CA infant.
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In the absence of an existing automatic system to classify preterm continuity,

a system designed for term infants was used as well as aEEG as visual references.

The 10-minute window used for the feature extraction stage ensures that the features

extracted from the window (i.e. µ̂ and σ̂) take into account a long enough period of the

EEG to determine the background state. This means that the resulting classification

system provides states that are more stable and less prone to noise interference and

less sensitive to local variation of the signal, as shown in Figure 8.2. The fact that

the proposed classifier was trained using preterm data also increases the accuracy to

make it better suited to preterm infants. From the example shown in Figure 8.2, the

term infant algorithm identifies some of the continuous regions of the EEG. However,

since the continuity threshold is different from that of a preterm infant, even though

the aEEG shows a change in states around 45 to 60 minutes into the recording, the

term infant algorithm has identified a larger area as being discontinuous. It is also

worth noting that, beside more accurately describing the state changes thoughout

the widest band of the aEEG, the proposed system also accurately identified the brief

period of burst suppression (characterised by a very low value for the lower edge and a

“spikey” appearance in the aEEG) around the 50 minute mark in the recording. The

mislabelling of the term infant algorithm is more obvious for younger infants. Figure

8.4 shows the EEG continuity classification results of a recording from an infant with

a CA of 31 weeks. Compared with the file from an infant of 34 weeks CA (Figure
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Figure 8.3: Distribution of continuity feature from the example shown in Figure 8.2
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8.2), the rEEG algorithm, designed for term infants, identified several short segments

as continuous, and others are labelled as discontinuous. The LDA identified a certain

period of the signal as discontinuous, which corresponded to the change in behaviour

in the aEEG of the signal (a subtle drop in the lower band and a drop in the upper

band, with a spikey appearance).
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Figure 8.4: Classification results from an EEG recording of a 31 weeks CA infant.

One problem with the background state detection is the fact that the changes

between one state and another do not occur instantly but rather, from the aEEG

graph, gradually change from one state to another. Using the soft classification, each

window is classified with a probability of belonging to the three classes, instead of

being assigned a label as in a crisp classifier. The soft label can be easily converted

to crisp labelling, while providing more information about the background state of

the EEG. It can also assist future work in EEG analysis by defining the area of the

signal where no state changes occur. Looking at the training data distribution in
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Figure 8.1, data points in the discontinuous and burst suppression classes overlap

in the feature space. Compared with the boundary between the continuous and

discontinuous classes, where the data points do not overlap and have an obvious gap

between the two classes, the boundary between discontinuous and burst suppression

presents a larger degree of uncertainty. A better defined training set can help reduce

the uncertainty between the two classes.

8.4 Self Organising Map

Self Organising Map (SOM) is an artificial neural network normally used for unsu-

pervised clustering. A two-dimensional network of neurons is used to represent a

mapping of the features used for clustering. Each neuron is represented as a feature

vector with the same length as each of the feature vectors used for training and clus-

tering, known as the “weight” of the neuron. In the training phase, the neuron most

similar to the training feature vectors (defined as the neuron with the least Euclidean

distance from the training vector) is identified, and known as the best matched unit

(BMU). Its neighbouring neurons are subsequently updated. The updating function

is:

Wi(t + 1) = Wi(t) + Θ(i, v, t)α(t)(D(t) − Wi(t)) (8.3)

Where Wi(t) is the weight of the neuron i, Θ(i, v, t) is the neighbourhood function

given v, the BMU for the input, D(t). The neighbourhood function can be as sim-

ple as 1 for immediate neighbours and 0 otherwise, or graduated in various degrees

depending on the distance on the SOM between the neuron i and the BMU v. The

learning parameter, α(t), is usually time dependent so the initial learning phase will

alter the weights more dramatically than the later fine-tuning phase. The result from

this training phase is a mapping representing the training data, where neurons with

similar weights are close together and neurons with dissimilar weights are further

away from each other. Any cluster boundary intrinsic to the dataset will also appear

as a large Euclidean distance between neighbouring neurons.

Figure 8.5 shows a graphic example of an SOM mapping along with the cluster-

ing results. Figure 8.5(a) shows the U-matrix of the resultant SOM. The U-matrix

is a way to show the Euclidean distances for the normalised feature vector between
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neighbouring neurons. For each neuron in the SOM, the Euclidean distances between

its weight and each of its immediate neighbours’ weights are calculated. These differ-

ences are shown in the U-matrix by an additional cell (not represented in the SOM

map) between the two cells. A high value in the U-matrix represents a possible clus-

ter boundary in the dataset. Figures 8.5(b) and 8.5(c) show the values of µ̂ and σ̂,

respectively, for each neuron, represented as hexagons, in the SOM mapping. Figure

8.5(d) shows the k-mean clustering results, such that each colour represent one of

the two classes. Comparing Figure 8.5(a) and 8.5(d), the boundary between the two

clusters corresponds to high values in the U-matrix. Once clustering is performed on

the SOM, data can be classified by finding the BMU, and identifying the cluster the

BMU belongs to.

The K-means clustering described above uses the weights of the neurons as the

dataset. The cluster centres were first initialised with random value. Each neurons is

associated with the cluster with the closet cluster centre. Each cluster be assigned a

new centre equals to the mean of its members. The dataset is re-clustered using the

new centres, and new centres are found using the new clusters. This process continues

until the classification label of the data does not change for two iterations.

Using unsupervised clustering in this application has an advantage, because of the

loose definition of the different continuity labels and the lack of a definitive continuity

classification protocol. An unsupervised clustering method can pick up any intrinsic

clusters in the dataset. A heuristic formula can be used to determine the optimal

number of clusters in the dataset. The disadvantage of an unsupervised method is

that the clusters found may not reflect the classification desired. Also, if no obvious

clusters are present in the dataset, the clusters determined by the algorithm may have

no physical meaning at all. Because the feature used is related to continuity, as shown

in Chapter 6, finding clusters not reflecting the desired class definitions is not likely

be become an issue. However, should the dataset include continuity information of

areas of the signal that are heavily affected by noise (e.g. movement artifact), clusters

with continuity information may not be as distinguishable as clusters showing areas

with and without noise. This may be useful in a noise detection application, but since

the primary concern in this project is to investigate continuity, areas heavily affected

by artifact will be excluded.

There are different approaches to using SOM for the task of continuity classifi-

cation. The continuity feature of a pool of segments with different continuity back-

115



CHAPTER 8. BACKGROUND STATE CLASSIFICATION
8.4. Self Organising Map

U−matrix

 

 
µ

 

 

σ

 

 

0.2

0.4

0.6

−2

−1.5

−1

−0.5

0

0.5

−0.5

0

0.5

1

1.5

Clustering Results

(a) (b)

(c) (d)

Figure 8.5: Example of a 16-by-3 SOM mapping. (a) U-matrix showing the Eu-
clidean distances between each neuron. (b) and (c) Resultant mapping for the di-
mensions µ̂ and σ̂, respectively. (d) The clustering results from k-mean clustering.

ground states, as determined by human experts, can be used as training data to come

up with a definitive mapping for all EEG recordings. This approach could produce a

classifier that will assign labels that are related to known continuity states, and the

classification would be consistent across all recordings. In contrast, each recording

can be used as a training set to come up with an SOM unique to the recording. This

approach would focus on identifying hidden patterns, and divide the segments into

states that are native to the recording. Since each file seems have to stable states that

are different from each other, this approach can help identify stable states unique to

each file.

The SOM implementation used here is an open-source MATLAB toolbox called

SOM Toolbox [60]. A built in function allows k-mean clustering to be performed on
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a trained SOM. Since the trained SOM is a mapping of the training set where the

weight vectors of the neurons are prototypes of the training data, a k-mean clustering

performed on the trained map would be similar to using k-means clustering on the

training set itself. The number of clusters is set at two since the EEG feature patterns

show that, in 2-hour recordings with more than one state, the signal appears to

oscillate between two states.

8.4.1 Results and Discussion

SOM provides a way to organise and display a set of multidimensional data. The

advantage of using SOM over other clustering methods is the fact that a mapping is

produced on completion to represent the training data, and it depicts the multidi-

mensional data as a two-dimensional map that can be easily visualised to show the

relationships between the different feature dimensions. In this case, however, since

there are only two dimensions in the data to be classified, the advantage of SOM is

not very obvious, since two-dimensional data can be easily plotted in a scatter plot

to show any correlation. Figure 8.6 shows an example of the classification resulting

from the SOM.

The results are very similar to those of the LDA based classifier, which can be

shown by Figure 8.7, where the LDA boundaries are depicted with the feature in the

same plot. The SOM classification results cluster the data points into two groups,

where one group corresponds to the continuous state of the EEG signal, and another

group corresponds to the discontinuous and burst suppression states. One drawback

of claffication using SOM is the fact that no soft labels can be assigned, since the

features are classified by comparison with the mapping, which consists of prototypes

with labels assigned using k-mean clustering. Apart from the lack of soft labelling,

the performance of SOM is good: the algorithm correctly located the change of states

and marked the portion of the signal that was discontinuous in Figure 8.6. The cen-

tres of k-mean clustering were examined to determine the state each of the clusters

represented, on the assumption that one cluster represents discontinuous activities

and one represents continuous activities. Because only two clusters are found, if the

recording include both discontinuous and burst suppression EEG, as well as contin-

uous EEG, the algorithm will only produce two labels, and therefore one will not

be able to differentiate between discontinuous and burst suppression EEG. In most

cases, EEG signals that contains more than one background continuity states can be
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Figure 8.6: Classification results of SOM classification compared with aEEG

described as having one continuous state (e.g. awake) and one discontinuous state

(e.g. asleep), which can be either discontinuous or burst suppression, depending on

the age of the infant. This means that a two state classifier should be sufficient to

differentiate the two main states. Further work on the optimal number of clusters

can be further investigated.

8.5 Gaussian Mixture Model

Gaussian Mixture Model (GMM) is a way to model a set of unlabelled data. GMM is

based on the assumption that each data point is a member of a number of Gaussian

distributions. In this application, each Gaussian distribution represents a state. Using

the continuity feature of the recording, the most likely Gaussian distributions that

represent the underlying state are calculated. The algorithm used is as implemented

in the open source MATLAB toolbox called PRTools, available at [59]. The algorithm
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Figure 8.7: Continuity feature clusters in the signal shown in Figure 8.6 with LDA
decision boundaries

uses the K-centres algorithm to cluster the the data. Using the K-centres algorithm,

a predefined number of centres are determined, such that the maximum distance

between a centre and any data point is minimised. The K-centres algorithm is similar

to the K-means algorithm described in section 8.4, but instead of using the mean of

the cluster member as the new centres in the next interation, K-centres uses the

cluster member with the minimal distance from other members as the new centre for

the clusters. These centres will be used as the centres of the Gaussian distributions.

Each data point is assigned to the closest cluster centre. The covariance matrices

of the clusters are calculated using the data in the cluster. Each feature vector (the

µ̂ and σ̂ pair) is analysed and the probablity of the data point belonging to each

cluster is calculated according to the mean and covariance matrix of the clusters.

The probability of a feature vector x belonging to a cluster with centre at µ and the

covariance matrix Σ is defined as:
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P(x) =
1

(2π)(N/2)
√

|Σ|
exp

(

−1

2
(x − µ)TΣ−1(x − µ)

)

(8.4)

where |Σ| is the determinant of the covariance matrix, Σ.

Gaussian mixture model assumes each data point is a member of a number of

Gaussian distributions with different probabilities of membership. In this instance,

the probability of the feature vector belonging to each of the Gaussian distributed

clusters is normalised so the sum of the probabilities is 1. It is assumed that no

major movement artifact is present in the recording, and two clusters are present in

each recording. The reason only two clusters are used rather than three is because,

judging from the scatter plots of the feature in recordings which consist of more than

one state, the EEG appears to change between two states: one towards the continuous

end and one at the burst suppression end of the feature distribution. The centres of

the clusters are used to determine the state of each cluster: with the highest µ̂ being

the continuous state, and the lowest value representing the discontinuous or burst

suppression state.

8.5.1 Results and Discussion

Figure 8.8 shows an example of the classification results compared with aEEG. The

classification results are similar to those resulting from the LDA and SOM. The main

difference is in the way the class labels are determined: in the LDA method, labelled

data were used to train the classifier and the mapping was identical for all recordings,

where in the GMM method, the labels were assigned according to the clusters found

in the data itself. Figure 8.9 shows the feature extracted from the signal used in

Figure 8.8, along with the decision boundaries for the LDA classifier for comparative

purposes. As shown in the plot, the LDA decision boundaries divide the plot without

regard for the distribution of the feature within the signal. In contrast, the GMM

method located the two intrinsic clusters: one for the continuous state and another

state at the discontinuous end of the spectrum, which reflects the two intrinsic states

of the EEG recording more accurately.
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Figure 8.8: Classification results of GMM classification compared with aEEG

8.6 Comparison of Algorithm Performance

Both supervised and unsupervised classification systems were used to compare these

two common types of classification method. Figure 8.10 shows the classification re-

sults from the three classification methods. As shown in the graph, the performance

of the three algorithms is very similar. The LDA algorithm uses three states, where

the two unsupervised methods (SOM and GMM) tried to identify two clusters in the

recording: one for the continuous state and another for the discontinuous state. The

discontinuous state regions identified by the unsupervised methods are represented

in the LDA classifier as “discontinuous” or “burst suppression”, depending on the

degree of continuity of the signal. The continuity index of the signal (the principal

component of the continuity feature, as stated in Chapter 6) is also plotted in the Fig-

ure, for comparative purposes. Table 8.1 shows the continuity index statistics of the

different states for the three algorithms used in 10 EEG recordings of healthy infants.
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Given that the “burst suppression” and “discontinuous” labels used in the supervised

algorithm correspond to the “discontinuous” label in the unsupervised algorithms,

the maximum continuity values of the “discontinuous” label and the minimum conti-

nuity values of the “continuous” label can be compared across the three algorithms.

These values give an indication of where the decision boundary is for the two main

continuity states of the EEG signal. It is interesting to note that, for the supervised

algorithm (i.e. LDA), the maximum continuity value for the “discontinuous” label

ranged from -0.52 to +0.10, while the unsupervised algorithms showed a larger range

(-1.23 to +0.26 for SOM and -1.23 to +0.20 for LDA). Since the LDA algorithm uses

the same mapping for all recordings, the classification is more consistent. With the

unsupervised methods, the classification takes into account the distribution of the

continuity feature within the recording, and therefore is different from recording to

recording.

Although classifications can be obtained from EEG by using human experts to

label data, as mentioned by Navakatikyan et al in [38], the subjectiveness of the
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Figure 8.10: Comparison of the three classification methods and the continuity
index

current continuity guidelines makes it difficult for human observers to agree on labels

at times. The supervised method, namely the LDA based classifier, performs well in

the task of determining the continuity of the signal based solely on the value of the

continuity feature. No consideration was given to the distribution of the feature, or

to any intrinsic clustering that may have been present in the signal. However, it does

have the advantage of being consistent across all recordings, and, since the training

data was collected across infants of different ages, the classifier can be used in a range

of infants with different ages to assign objective labels according to the values of the

continuity feature. This method is ideal for situations such as in a bedside monitoring

system display, as a guide to aid clinicians. For example, one can determine the sleep

state of the infant by looking at the background continuity of the EEG.

The two unsupervised classifiers, SOM and GMM based classification, behave

similarily. One of the most important differences between the two classifiers is the
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CA LDA results
(weeks) Burst Sup. Discont. Cont.

max. mean min. max. mean min. max. mean min.

30.3 -1.70 -1.99 -2.22 0.10 -1.01 -1.80 0.53 0.34 0.21
31.2 -1.44 -2.10 -2.92 -0.10 -0.80 -1.44 0.98 0.47 -0.05
31.2 -1.71 -2.02 -2.42 -0.17 -1.11 -1.63 1.58 0.93 0.06
31.2 -1.77 -2.64 -3.25 0.03 -0.48 -1.81 1.82 0.89 -0.01
32.2 -1.61 -1.96 -2.20 -0.24 -0.95 -1.53 1.49 0.84 -0.16
32.2 N/A N/A N/A -0.21 -0.65 -1.26 1.55 0.73 -0.19
32.2 N/A N/A N/A -0.15 -0.99 -1.40 1.91 0.93 -0.21
33.8 -1.32 -1.65 -2.05 -0.52 -1.03 -1.32 1.57 0.85 -0.34
34.2 -1.62 -2.79 -3.57 -0.21 -0.79 -1.23 1.44 0.89 -0.20
34.2 -1.38 -2.72 -3.47 -0.34 -0.67 -1.23 1.17 0.55 -0.22

CA SOM results
(weeks) Discont. Cont.

max. mean min. max. mean min.

30.3 -0.67 -1.51 -2.22 0.53 -0.36 -1.02
31.2 -1.00 -1.94 -2.92 0.98 0.09 -0.94
31.2 -0.65 -1.57 -2.42 1.58 0.89 -0.17
31.2 -0.88 -2.33 -3.25 1.82 0.44 -0.72
32.2 -0.53 -1.56 -2.20 1.49 0.81 -0.24
32.2 0.26 -0.36 -1.26 1.55 0.86 0.24
32.2 0.01 -0.86 -1.40 1.91 1.00 0.13
33.8 -0.08 -1.17 -2.05 1.57 1.00 -0.02
34.2 -1.00 -2.50 -3.57 1.44 0.77 -0.80
34.2 -1.23 -2.65 -3.47 1.17 0.36 -1.05

CA GMM results
(weeks) Discont. Cont.

max. mean min. max. mean min.

30.3 -0.72 -1.46 -2.22 0.53 -0.24 -0.93
31.2 -1.23 -2.02 -2.92 0.98 -0.21 -1.74
31.2 -0.65 -1.57 -2.42 1.58 0.89 -0.17
31.2 -1.36 -2.45 -3.25 1.82 0.40 -1.04
32.2 -0.24 -1.51 -2.20 1.49 0.84 -0.16
32.2 0.20 -0.45 -1.26 1.55 0.80 -0.04
32.2 -0.15 -0.96 -1.40 1.91 0.95 -0.08
33.8 0.02 -1.18 -2.05 1.57 0.98 -0.17
34.2 -1.00 -2.50 -3.57 1.44 0.77 -0.80
34.2 -0.96 -2.57 -3.47 1.17 0.37 -1.05

Table 8.1: Statistics of continuity index in continuity states determined by different
classification methods.
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clustering method. SOM uses a mapping of the feature, and it is the mapping pro-

totypes that are clustered, rather than clustering the data point directly. SOM can

be very helpful in understanding multi-dimensional datasets, since it arranges the

multi-dimensional data into a 2-dimensional map, which can be displayed and anal-

ysed further to find correlations between different dimensions. However, since the

continuity feature has only two dimensions, the advantage of SOM over conventional

clustering methods is not very significant. The advantage of an unsupervised classi-

fier is the fact that the clustering method takes into account the distribution of the

feature as well as the values of the feature. Any clusters that may be present in the

dataset are taken into account by the clustering method. This makes unsupervised

methods ideal for further experimental work in understanding the underlying states

of the EEG signal, as well as analysing the states of the recording to determine how

the EEG states change during the maturation process. Between the two methods

examined here, the GMM is recommended over the SOM method, as the results are

very similar, but GMM performs the clustering using the continuity feature directly,

compared to SOM where the prototypes, representing a number of data points, are

used for classification. Therefore, GMM is less computationally expensive, while giv-

ing similar performace. GMM also provides soft labelling, which is not available in

the SOM classifier. This makes GMM more versatile than the SOM method.

8.7 Summary

The continuity feature described in Chapter 6 can be used as the input to classifiers

which assign continuity labels to the signals. Both supervised and unsupervised clas-

sifiers were tested in this study. An LDA based supervised classifier was trained with

labelled data, and provided better labelling than the previous system based on rEEG.

An SOM based classifier and a GMM based classifier were developed to test the two

unsupervised methods. Both yielded good results and correctly identified the change

of states. The GMM classifier has an advantage over the SOM classifier since it also

provides an option of soft labelling that is unavailable in the SOM classifier. It is

recommended that both supervised and unsupervised classifiers with the continuity

feature described in Chapter 6 be used to determine the states of the EEG signal. Su-

pervised classifiers are ideal for applications where consistent classification is desired,

as the decision boundary is identical for every recording. Unsupervised classifiers are

preferred for experimental work and to aid further data analysis, since the classifier
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attempts to analyse the intrinsic clusters occurring in the recording. This can develop

understanding of the state transition by defining the continuity states of the signal

in terms of the distribution of continuity feature, rather than on the value of the

feature alone. Of the two methods studied in this work, the GMM based classifier is

recommended over the SOM based classifier for the option of soft labels, being less

computationally expensive, while providing similar performance.
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Discussion

Quantifying the EEG is advantageous, providing a measure-

ment for further correlation with both maturation and clinical

outcomes. The quantified continuity measurement can also be

used to help classification systems to provide continuity labels

familiar to clinicians. This chapter discusses the advantages

of the system, both the quantified continuity measurement and

qualitative labels as assigned by the classifiers. It also out-

lines areas where improvement is needed. Other possible ap-

plications that the continuity features can be used for are also

discussed in this chapter.

9.1 Quantitative Continuity Feature Versus Exist-

ing Continuity Measurements

As stated in the literature review, quantitative continuity related features have been

developed in medical research to correlate EEG with maturation and clinical out-

comes. However, these features often only provide information on a single aspect of

continuity, and only serve as a global measurement. For very young preterm infants,

a global measurement would not cause problems, since the sleep-wake cycle and state
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changes have not yet developed in their EEG signals. However, starting at around

33 weeks CA, differences in sleep state start emerging in the EEG signals. Using a

global measurement will either average out the continuity in these states (as in the

case of intensity values) or only reflect the continuity of one single state (as in the

case of maximum inter-burst intervals). By using a quantified feature that is related

to continuity itself rather than an aspect of continuity, the degree of continuity can

be quantified. The feature is also localised, and reflects the continuity of a relatively

short time window (10 minutes) instead of the continuity of the whole recording (as for

the global continuity measurement currently used in medical research). This means

that the changes between states can also be tracked within a recording, eliminating

the issue of global measurement for recordings that span several states with various

degrees of continuity.

One of the biggest issues with a quantitative continuity measurement is that there

is currently no continuity index that can be compared with this measurment. Other

continuity related features and labels from manual EEG or aEEG inspection could

conceivably be compared with this measurement, but would require adjustments to al-

low for the difference between global (conventional) and localised (proposed) features.

The existing state detection algorithm that automatically detects background states

was designed for term infants, and is not as accurate on preterm infants, whose EEG

continuity behaviour is different from that of term infants. Visual comparison with

aEEG appears to be a good way to verify the continuity feature, as there are stan-

dard guidelines for interpreting aEEG, which are more appropriate for long recordings

where interpreting the raw EEG may be too time consuming. Although guidelines

for aEEG interpretion are somewhat quantitative, it is still largely subjective, as the

“lower band” and “upper band” of the aEEG (the lower edge and the upper edge

of the aEEG signal as displayed on the aEEG plot) have to be estimated from the

plot, and are usually visually estimated as a smoothed envelope of the aEEG signal.

The aEEG gives a rough idea of the continuity, which is related to the “bandwidth”

(difference between the lower and upper bands) and the position of the lower and

upper bands. From the results demonstrated in Chapter 6, the aEEG bandwidth is

analogous to the estimated standard deviation of the log amplitude vector (σ̂). This

is expected as the bandwidth of the aEEG is related to the degree of variation present

in the signal envelope. The lower and upper band are analogous to the values µ̂± σ̂.

Since the bands represent the lowest and the highest points in the signal envelope,

they are related to µ̂± σ̂, which are the values one standard deviation away from the
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mean of the log amplitude vector. As the aEEG is plotted on a “semilog” scale (linear

from 0 - 10µV, log scale for values higher than 10µV), the use of the log amplitude

vector is justified. Using the standard deviation rather than the extreme values also

minimises the effect of outliers. However, for muscle artifact, the feature is affected

as it would be on aEEG, particularly for burst suppression and discontinuous signals,

where the regions with low amplitude activities have a high frequency EMG signal

superimposed on them. Since the continuity feature is derived from the logarithm

of the amplitude vector, a small addition to the envelope will affect areas with lower

amplitude more than areas with higher amplitude. This will cause the estimated

standard deviation to be lower than would have been derived from signals without

muscle artifact. Therefore, the feature extracted from signals with muscle artifact

may not accurately reflect the continuity state of the underlying EEG signal, and will

appear more continuous than the underlying EEG signal without the EMG artifact,

since the distributions of the log amplitude vector derived from continuous signals

have lower standard deviations and higher means. Since noise rejection or filtering is

beyond the scope of this project, presently signals used for verification are manually

inspected with the impedence values examined to ensure that signals are free from

muscle artifact. For a practical implementation of a monitoring system that utilises

the continuity feature, consideration is needed to ensure that the continuity feature

is not affected by muscle artifact.

9.2 Quantified Continuity Measure

In order for maturation and clinical outcomes to be correlated with continuity, conti-

nuity needs to be clearly defined into some form of quantified value. As discussed in

the literature review in Chapter 3, clinicians have been using simple measurements

such as interburst interval and burst amplitude to correlate continuity information

with either maturation or adverse clinical outcomes. This approach only offers a

global view of continuity in the recording, rather than using localised information,

and does not measure changes in continuity within the signal. Using a quantified ver-

sion of continuity measurement, the amount by which the continuity changes within

the recording can also be compared, as well as the continuity of the signal as a global

value. Using a quantified continuity measure also aids in examining the continuity

changes as a time series and analysing the changes of continuity in both a short

and long term scale. This also removes the subjectivity involved in determining the
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continuity state for infants via either the raw EEG signal or the aEEG representation.

Although there are advantages to using a quantified continuity index, it cannot

completely replace the qualitative labels. While the quantitative index can be used

for correlation with maturation and clinical outcomes, having a qualitative descrip-

tion of the continuity can be useful and essential to applications such as sleep cycle

detection. A set of threshold rules can be used to translate the quantitative feature

into qualitative labels, however a threshold approach does not take into account any

intrinsic clusters present in the feature dataset. Since the states may “stabilise” at

different places in the feature space, using a threshold that will apply to all recordings

may not reflect the clustering of the data, and may label the data differently.

9.3 Monitoring Display

One of the aims of having an automatic state detection system is to assist clinical

staff who are unfamiliar with neonatal EEG signals to gather information from the

EEG states. Current aEEG is displayed alongside the raw EEG traces in bedside

monitoring systems, as it provides an overview of the EEG signal, as well as offering

a way to use simple guidelines to determine various EEG background states. As

shown in Chapter 6 and discussed in Section 9.1, plotting the features µ̂ and µ̂ ± σ̂

provides a plot analogous to the aEEG plot, by providing a smoother line than the

aEEG lower and upper bands. Since the standard deviation of the log amplitude

vector is used instead of the maximum and minimum values (as is the case with lower

and upper bands of aEEG), the effect outlier values present in the raw EEG have

on the display is reduced. Because the line plot is analogous to the aEEG display,

existing guidelines can be easily adapted to suit the new plot, without requiring the

clinical staff to learn a set of new guidelines for plot interpretation. This eliminates

the need to estimate the values of the lower and upper bands required to interpret

the aEEG plot.

Although the new feature plot behaves in a similar manner to the well established

aEEG and gives smoother edges, the guidelines will need to be adjusted to match the

aEEG plot. The current threshold used will not translate directly to the new feature

plot, since the thresholds in the aEEG plot refer to the actual voltage rather than

the log voltage. Further study will be required to determine appropriate thresholds

to be used for the proposed plot. However, since the thresholding method does not
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take into account the intrinsic states that appear in the EEG signal, it is possibly

best to use the feature plots as a visual overview for the EEG recording, while using

a clustering method to determine the background states of the EEG signal.

9.4 Qualitative Labels

Clinicians currently classify continuity states into categories such as continuous and

tracé discontinu, and an expanse of medical literature uses these conventional labels

(e.g. [10]). Therefore, the qualitative labels have their place and should be considered

as well as the quantified values. A lot of the morphological characteristics of the

neonatal EEG maturation process are associated with different continuity states of

the EEG signal. A classifier that gives labels corresponding to the existing categories

can help automate the recognition of these landmark patterns in an EEG signal.

As discussed in the Section 9.3, a classifier for the qualitative labels should take

into account the natural clustering that may occur in the recording. Using the quan-

titative feature (µ̂ and σ̂) helps to make the label assignment less subjective, and the

resulting labels can better reflect the continuity states that are present in the record-

ing. As shown in Chapter 6, the continuity feature has a tendency to cluster around

the extreme ends of the feature distributions. This reflects the way the continuity

of the EEG signal remains relatively stable for the duration of the signal where the

continuity label remains unchanged. In a normal preterm infant, the signal either

remains in one state for the duration of the recording, or the continuity of the signal

oscillates between continuous and discontinuous (a sign of the sleep-wake cycle). As

shown in Chapter 7, as the infant grows towards term, the states stabilise at different

points in the continuity feature space. Using an unsupervised clustering method can

ensure that the resulting labels reflect the intrinsic clusters and gives a better idea

where the states stabilise in the feature space for a particular recording.

9.5 Continuity as the Context for EEG Analysis

Having a way to measure continuity helps to put the EEG recording into context.

Because the behaviour of EEG signals varies a lot within a recording, a way to pro-

vide the context of the signal is very important when comparing multiple recordings.

Features such as those relating to the time-frequency distribution of the signals can be
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extracted from EEG, but without any context the variation of these features within a

signal far exceeds the differences of the features between regions of the recordings in

similar states. With the continuity as the context, features can be compared between

recordings.

As continuity related features such as interburst interval have already been found

to correlate with the maturation and clinical outcomes of infants, the continuity index

and the qualitative labels can be used to help automatically track these features. Since

interburst period is related to certain states of EEG signal, namely burst suppression,

the continuity index or the qualitative label can be used to highlight areas of interest,

as well as being the basis of an automatic burst and suppression detection algorithm.

9.6 Maturation Index

Continuity is one aspect of EEG that clinicians monitor to determine the neural

maturation progress of preterm infants. Currently, this is done by EEG specialists

who have been trained to recognise the continuity changes in EEGs of infants as they

mature. The maturation index proposed in this research serves as a starting point to

quantify these changes. Current medical literature describes the changes in continuity

during the maturation process in preterm EEG as a shortening of interburst intervals;

the age at which continuous signals start appearing (approximately 30 weeks); and the

appearence of a sleep wake-cycle starting at approximately 34 weeks [11]. However,

the more subtle changes are harder to describe using the qualitative labels currently

assigned in medical literature. As shown in Chapter 7, the continuity feature appears

to shift in a certain direction in EEG recordings as the infant grows towards term.

This direction is the same as the minor component of a PCA transformation, and

therefore a maturation index can be calculated as a result, solving the problem of

using qualitative labels to describe changes in EEG.

Like the continuity index, the maturation index is also affected by muscle artifact,

since it is derived from the same continuity feature. The maturation index is also

only an estimate, and the relative changes in an infant’s recording with respect to

previous recordings are more representative of the maturation than the actual value

of the maturation index. However, maturation indices of normal EEGs appear to fall

within a certain range, suggesting that there may be a rate of change that is common

to all healthy preterm infants. More investigation is needed to confirm this growth
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pattern.

The continuity maturation index may be a good guide for maturation, but continu-

ity is not the only measurement of maturation in neonatal EEG. Since the maturation

index presented here is based only on the continuity of the infant, it can only be used

as a guide to determine the maturation progress of the infant, and will need other

aspects, such as synchrony and sleep-wake cycle, to comprehensively describe the

maturation of the EEG.

9.7 Summary

The quantitative feature presented in this thesis has been determined to be a good

candidate for use in continuity analysis. The two dimensions of the feature, the

estimated mean and standard deviation of the log amplitude vector, are analogous

to the current aspects of aEEG that are used to determine the continuity of the

EEG signal, namely the lower and upper bands (the minima and maxima of the

envelope of the EEG signal) and the bandwidth (the difference between the lower

and upper bands). The feature provides a way to quantify continuity during an

EEG recording, and can be used as the input in a classifier to produce qualitative

labels for the continuity states. The quantitative continuity index helps clinicians

to quantify continuity, and shows the local variations in continuity during an EEG

recording, rather than giving a global indication similar to the values currently used as

continuity related features. This continuity feature is also analogous to the aspects of

aEEG used to determine continuity. Because the standard deviation of the amplitude

distribution is used instead of the minima and maxima, as in the case of aEEG, the

results are smoother with less local variation. Therefore, the feature can be used to

produce a plot similar to the aEEG plot with smoother edges, making it easier to

read. Using a clustering algorithm with the continuity feature, qualitative labelling

helps translate the quantitative labels into labels familiar to clinicans, while labelling

the signal to reflect any intrinsic clusters that may be present. A maturation index

can also be derived from the continuity feature that increases as the infant grows

towards term, since the continuity feature shifts in one direction in the feature space.

This maturation index gives a rough idea of the maturation progress of the infant,

and further study with other relevant features can help refine it further.
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10.1 Conclusions

This thesis aimed to investigate the use of signal-processing techniques to aid and

advance research in preterm neonatal EEG signal analysis. The feature proposed

in this project is a quantitative continuity feature that can be used to produce a

quantitative continuity index, and aid in qualitative continuity classification.

A literature review of the medical research in this field has revealed that medi-

cal researchers have been correlating continuity related features, such as inter-burst

periods and burst amplitude, to maturation progress and clinical outcomes. There

are also guidelines for visually inspecting EEG signals for continuity, symmetry, syn-

chrony, and other landmark patterns to determine the maturation progress of infants.

Infants whose EEG does not reflect the expected maturation progression are said to

have dysmature EEG patterns and are considered abnormal. Continuity plays a crit-

ical role in EEG analysis not only because it is a good index of maturation, but

also because it provides a context to other criteria for maturation evaluation, such as

synchrony and symmetry. Currently, continuity is a qualitative measurement, with

some related measurements used in clinical research. With a quantitative measure-

ment, the process of evaluating the maturation of an EEG signal can be made more

objective, as well as providing a context for further numerical EEG analysis.

Continuity refers to the variations in amplitude throughout the duration of a

recording. For very young preterm infants, EEG recordings usually consist of high
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amplitude bursts, separated by periods of very low voltage inactivity. This pattern

is referred to as tracé discontinu or burst suppression in medical literature and is

considered normal in very young preterm infants. The bursts gradually become lower

in amplitude, while the inactivity between bursts becomes shorter and increases in

amplitude. Around the age of 31 weeks, continuous signals, where the amplitude

remains constant for a long period of time, start emerging. Continuity is normally

determined by visual inspection of the raw EEG signal. Another common standard

is the use of aEEG, where an estimate of the envelope of the signal is plotted on

a compressed time scale, and simple threshold guidelines are established to classify

the different patterns. In terms of normal preterm neonatal EEG, the three common

patterns are continuous, discontinuous (tracé alternant) and burst suppression (tracé

discontinu).

Initial investigation using joint time-frequency analysis has shown that different

background continuities behave differently in the time-frequency domain. However,

normal EEG does not form any recognisable pattern in the time-frequency domain.

Since EEG signals are nonstationary, the behaviour of the signal changes over time.

Therefore, without the context given by continuity, the features extracted from an

EEG recording may vary depending on the state of the signal. This state dependent

variation is likely to be larger than the variation between two recordings during similar

background states. Therefore, the continuity state of the signal is crucial to further

feature extraction and analysis.

In order to quantify continuity, the signal is first segmented, using the generalised

likelihood ratio (GLR) method, into psuedo-stationary segments. The GLR segmen-

tation method was one of three investigated in this project, and was found to offer

the best compromise between segment boundary detection and false detection rates.

The GLR segmentation method is based on the predictive error in an autoregressive

model. Windows of test signal are joined to the reference windows to produce a pooled

window, and the predictive error of the pooled window using an autoregressive model

is compared with the predictive error for the testing window and the reference win-

dow. A threshold is defined for testing signals that belong to the reference window. If

the predictive error exceeds the threshold, a segmentation boundary is defined at the

position where the difference of the predictive errors is maximum. The result is a set

of segment boundaries that divide the EEG signal into a series of psuedo-stationary

segments.
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The psuedo-stationary segments are the basis for the amplitude vector: a vector

with the same length as the signal which estimates the envelope of the signal. Each

segment is then rectified and averaged, and the mean absolute value is used as the

amplitude for the duration of the segment. Since the continuity of the signal is

essentially a description of the amplitude distribution, the statistical parameters of

the amplitude vector were used as the continuity feature. The log-normal distribution

was chosen as the distribution of the amplitude, and the estimated mean and standard

deviation of the log value of the amplitude vector were used as the continuity feature.

The features of segments with manually assigned background states were plotted

against their assigned states, and a correlation between the continuity feature and

the continuity of the signal was found. Furthermore, the continuity of the signal

was found to coincide with the major axis of the feature. A weaker correlation was

found between the minor axis and the age of the infant. The feature is analogous

to the aspects of aEEG that clinicians use to determine continuity. Instead of using

the minima and maxima of the signal envelope, the standard deviation of the log

amplitude vector is used, and hence the feature is less prone to local variation and

outliers. Plotting the feature (µ̂ and µ̂ ± σ̂) is analogous to the aEEG plot, and

provides a smoother plot than aEEG.

To quantify continuity and produce a continuity index, the continuity feature is

transformed using principal component analysis (PCA). Since the continuity of the

signal is correlated with the major axis of the feature dataset, by performing PCA on

the dataset, the principal component will indicate the continuity of the signal. This

is plotted against existing background detection methods for term infants and the

aEEG signal to verify it as an indicator of the continuity of the signal.

The minor component of the recording is averaged to come up with one maturation

index of the recording. The minor component does not change dramatically over the

course of the recording, as it corresponds to the minor axis of the dataset. The

mean of the minor component gives one value per recording to correlate with the

conceptional age (CA) of the infant. This maturation index is plotted against the CA

of preterm infants with healthy clinical outcomes. The maturation index increases

as the CA increases, though this number seems to be infant specific, and the relative

changes in the numbers during the maturation of the infant seem to be a more reliable

indication for EEG maturation than the specific values that the maturation indices

display.
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Qualitative classification was also investigated, since clinicians are already familiar

with the labels, and it provides a way to label the EEG recording into various states,

which can be used to model the signal. Linear Discriminant Anlysis (LDA), Self Or-

ganising Maps (SOM) and Gaussian Mixture Model (GMM) have been investigated

as possible classifiers. LDA is the only supervised classifier of the three methods

investigated. The advantage of a supervised system is the fact that the output labels

are controlled. Therefore, using a set of segments manually labelled with conventional

background state labels as training inputs, the result would be a classifier that pro-

duces labels for the segments that are familiar to clinicians and researchers. However,

this approach does not detect any intrinsic clusters that may occur in the recording.

This means that, while it is a good system for producing labels for further study, it

does not give any extra information about the distribution of the feature. SOM is an

unsupervised classifier that produces a mapping of the training data. The mapping

can be analysed to produce clusters that reflect any intrinsic clusters present in the

training dataset. The intrinsic clusters that appear in the data, however, may not

represent the labels currently used for continuity, especially if the recording only con-

tains one continuity state (e.g. for very young preterm infants) or when movement

artifact is present in the recording. Also, using SOM for clustering purposes makes

soft labelling difficult, as the data being clustered are prototypes of the training data,

and the classification is based on the best matched unit in the SOM rather than the

data itself. GMM is another unsupervised classification method investigated. Each

state is modelled as a Gaussian distribution in the feature space. Each data point

is considered a mixture of the models and its likelihood of belonging to each of the

states is calculated. This produces probabilities of the EEG signal belonging to each

background state for each feature vector. These probabilities can be used as soft

labels for the signal, or can be further processed as input for a “winner-takes-all”

network that gives the labels of the most probable continuity state. Like the SOM

classifier, the GMM is unsupervised and therefore suffers the same disadvantage of

mislabelling when the recording is noisy or consists of only one state. However, the

centres of the Gaussian distribution can be analysed to ensure that clusters found in

the dataset reflect the continuity states of the signal.

It is therefore concluded that the proposed feature, using the parameters of the

amplitude statistics of EEG, can be used as a quantitative description of neonatal

EEG continuity. This feature has been shown to correlate with aspects of aEEG

related to continuity. The continuity and maturation index derived from this feature
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have been shown to correlate with the continuity and maturation states of the EEG

respectively. The feature has also been shown to be a good candidate as the input to

classification systems to automate continuity labelling.

10.2 Future Works

The continuity feature described in the previous chapters serves as a starting point

for further investigation into preterm EEG maturation and abnormality detection.

This section outlines some suggestions for further investigation that take advantage

of the context provided by the continuity feature.

10.2.1 Automatic Sleep Pattern Detection

Preterm infants have very obvious sleep patterns, which are related to the continuity

of their EEG signals. Normal sleep-wake cycles appear in infants starting at around

30 weeks CA. The sleep-wake cycle usually appears in EEG as alternating discon-

tinuous and continuous periods, since EEGs during sleep periods usually appear as

discontinous, andwakeful periods continuous. Knowing this, sleep-wake cycles can

be detected by detecting fluctuations in continuity. The state of the infant can be

inferred from the continuity of the EEG. This can be implemented on bedside moni-

toring systems to help identify the state of the infants and avoid disruption of sleep

patterns for treatment and routine caring procedures.

10.2.2 Further Feature Analysis

One of the problems with EEG feature analysis is the non-stationary nature of the

signal, and the marked difference in behaviour during different sleep and wakeful

states. With the context provided by the continuity measurement, the feature ex-

tracted from the signal can be compared across different recordings. This ensures

that the differences between the recordings are not caused by different states. For ex-

ample, comparing the dominant frequency of randomly selected segments in different

recordings might result in comparing segments from different states. Manually pick-

ing the segments can overcome the problem to some extent, but the selected segments

will then be chosen subjectively. Using the continuity as a context, the distribution
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of the states can be analysed, and the segments can be selected using the continuity

measurements to ensure the selection is objective.

10.2.3 Burst Suppression Analysis

Burst suppression in preterm infants is considered a normal pattern. However, the

interburst interval and other features such as burst amplitude have been shown to

correlate with clinical outcomes. Burst suppression can be detected using the conti-

nuity feature as shown in Chapter 8. Features such as interburst interval and burst

amplitude are related to continuity. These continuity features can be used to gener-

ate a quantitative measurement of continuity (see Chapters 6 and 7), which can then

be correlated with the clinical outcomes of the infants, and the normal maturation

process. The GLR segmentation method outlined in Chapter 5 can be used as a new

way to define bursts and interburst periods of the burst suppression pattern, rather

than using simple threshold methods. Since the GLR method is modelled using au-

toregressive models, any significant spectral changes in the signal will trigger a new

segment boundary. This means the segments generated from this method are psuedo-

stationary, and using the segments and their amplitude to identify interburst periods

and bursts can give a more thorough definition than a simple threshold method.

10.2.4 Maturation Index

In the course of this investigation, the idea of using the minor component of the

continuity feature was explored. The minor component is the second component of

the continuity feature after performing PCA on the data. The mean of the minor

component in a recording appears to increase as the CA of the infant increases. This

serves as a starting point for further investigation into how continuity is affected by

the maturation process, and more research can be done to correlate the change or

lack of change in this minor component, to develop a maturation index that is based

on the continuity of the recording. Since the feature proposed by this thesis in effect

quantifies the traditionally qualitative aspect of continuity, the maturation index is

analogous to the way clinicians estimate the maturation progress of an infant by visu-

ally inspecting the EEG signal for continuity information. Further investigation can

also examine maturation during different states of infant EEG, since changes in state
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(e.g. “continuous” and “discontinuous”) may develop at different rates throughout

the maturation process.
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tion of tracé alternant during sleep in healthy full-term neonantes using discrete

wavelet transform. Clinical Neurophysiology, 112:1893 – 1900, 2001.

[37] M.A. Navakatikyan. New compressed representation of EEG for the monitoring

of brain function. Acta Pædiatrica, 96:144, 2007.

144



[38] M.A. Navakatikyan, J.D.E. Barks, G. Greisen, and M.C Mathur, A.and. Toet.

Automatic background classification of the amplitude-integrated EEG in infants.

Acta Pædiatrica, 96:144, 2007.

[39] B. Boashash, editor. Time frequency signal analysis-methods and applications.

Longman Cheshire Pty Limited, Melbourne, 1992.

[40] B. Boashash, editor. Time frequency signal analysis and processing : a compre-

hensive reference. Elsevier, Boston, 2003.

[41] L. Cohen. Time-frequency analysis. Prentice Hall PTR, Englewood Cliffs, N.J,

1995.

[42] H.I. Choi and W.J. William. Improved time-frequency representation of multi-

component signals using exponential kernels. IEEE Trans on Acoust., Speech,

Signal Processing, 37:862–871, 1989.

[43] B. Barkat and B. Boashash. A high-resolution quadratic time-frequency dis-

tribution for multicomponent signals analysis. IEEE Transactions on Signal

Processing, 49(10):2232 – 2239, 2001.

[44] Z.M. Hussain and B. Boashash. Multi-component IF estimation. In Proceedings

of the Tenth IEEE Workshop on Statistical Signal and Array Processing, 2000.,

pages 559 – 563, 2000.

[45] Y. Zhao, L.E. Atlas, and R.J. Marks. The use of cone-shaped kernels for gen-

eralized time-frequency representations of nonstationary signals. IEEE Trans.

Acoust. Speech, Signal Processing, 38:1084 – 1091, 1990.

[46] Steven R. Parker and Ashwin Natarajan. Optimal time-frequency representations

for the analysis of EEG waveforms. Technical report, Arizona State University

Ira A. Fulton School of Engineering, 2002.

[47] B. Boashash, A.M. Zoubir, and M. Roessgen. On-line detection of seizure in new-

born EEG using signal processing tools. In Digital Signal Processing Proceedings,

1997. DSP 97., 1997 13th International Conference on, volume 1, pages 79 – 82,

Santorini Greece, 1997.

[48] B. Boashash, P. Barklem, and M. Keir. Detection of seizure signals in newborns.

In Acoustics, Speech, and Signal Processing, 1999. ICASSP ’99. Proceedings.,

1999 IEEE International Conference on, volume 4, pages 2351 – 2354, 1999.

145



[49] B. Boashash, H. Carson, and M. Mesbah. Detection of seizures in newborns

using time-frequency analysis of EEG signals. In Statistical Signal and Array

Processing, 2000. Proceedings of the Tenth IEEE Workshop on, pages 564 – 568,

Pocono Manor, PA USA, 2000.

[50] B. Boashash, M. Mesbah, and P. Colditz. Newborn EEG seizure pattern charac-

terisation using time-frequency analysis. In Acoustics, Speech, and Signal Pro-

cessing, 2001. Proceedings. (ICASSP ’01). 2001 IEEE International Conference

on, volume 2, pages 1041 – 1044, 2001.

[51] G. Bodenstein and H.M. Praetorius. Feature extraction from the electroen-

cephalogram by adaptive segmentation. Proceedings of the IEEE, 55(5):642 –

652, 1977.

[52] R.M. Rangayyan. Biomedical signal analysis : a case-study approach. IEEE

Press, New York, 2002.

[53] U. Appel and A.V. Brandt. Adaptive sequential segmentation of piecewise sta-

tionary time series. Information Sciences, 29:27 – 56, 1983.

[54] L. Wong and W. Abdulla. Time-frequency evaluation of segmentation methods

for neonatal EEG signals. In Proceedings of the 28th Annual International Con-

ference of the IEEE Engineering in Medicine and Biology Society, pages 1303 –

1306, 2006.

[55] P.F. Prior and D.E. Maynard. Monitoring Cerebral Function: Long-Term Mon-

itoring of EEG and Evoked Potentials. Elsevier Science Publishers B.V., Ams-

terdam, 1986.

[56] E. Limpert and M. Stahel, W.A.and Abbt. Log-normal distributions across the

sciences: Keys and clues. BioScience, 51(5):341–352, 2001.

[57] L. Wong and W. Abdulla. Automatic detection of preterm neonatal EEG back-

ground states. In IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP 2008), pages 421 – 424, 2008.

[58] A.M. Mart́ınez and A.C. Kak. Pca versus lda. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 23:228–233, 2001.

146



[59] PRTools: The matlab toolbox for pattern recognition., 2008. [Online]

http://www.prtools.org/ [30 June 2008].

[60] SOM toolbox, 2005. [Online] http://www.cis.hut.fi/projects/somtoolbox/ [30

June 2008].

147



Appendix A

Database of Preterm Infant EEG

The following table contains a list of the infants enrolled in the VIBeS study whose EEG

recordings were made available for this research. Only infants with known GA were listed

here. Note that the neurological follow-up information is not available for every infant, and

some infants have fewer than four recordings on file. The attributes of the infants recorded

are:

• VIBeS ID: ID of the infant at the VIBeS study

• GA at Birth: Number of weeks since conception at birth

• Birth Weight: Weight of infant at birth measured in grams (g)

• WMI Index: White Matter Injury (WMI) score as determined from MRI scan at

term (1 = no WMI, 4 = Severe WMI)

• IVH Grade: Intraventricular Hemorrhage (IVH) grade as determined from MRI

scan at term (0 = no IVH, 4 = severe IVH)

• Dis. Score: Disability score as determined by neurological (MDI and PDI) tests

performed at 2 years (1 = normal in both test, 2 = abnormal in one of the tests, 3 =

abnormal in both tests)

• MDI: Mental Development Index (MDI), a measurement for language and logic skills

in children, as determined at the 2-year neurological clinical followup

• PDI: Psychomotor Development Index (PDI), a measurement for motor skill in chil-

dren, as determined at the 2-year neurological clinical followup
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• CA1, CA2, CA3, CA4: Conceptional age of the infant at the first, second, third

and fourth EEG recording, respectively.

VIBeS GA at Birth WMI IVH Dis.

ID birth Weight Index Grade Score MDI PDI CA1 CA2 CA3 CA4

40 29.2 1075 1 0 3 94 88 30.20 31.20 32.20 34.20

41 29.2 1130 1 0 3 104 100 30.34 31.20 32.20 33.77

42 29.2 1126 NA 0 3 104 96 30.20 31.20 32.20 34.20

45 28.0 1140 2 0 3 102 84 31.00 31.86 32.86 NA

47 29.1 940 1 0 2 74 65 30.10 31.10 32.10 33.10

48 24.1 684 2 0 3 86 84 31.10 32.10 32.96 34.96

49 24.1 520 2 0 2 76 84 31.10 32.81 35.81 NA

52 27.0 950 3 0 3 94 100 29.14 31.00 33.00 NA

55 26.3 739 3 0 1 52 81 26.59 27.59 28.73 30.44

56 28.0 1067 3 0 1 45 57 28.14 29.14 30.00 32.00

59 25.1 819 2 0 3 122 107 25.39 26.39 27.53 29.39

60 28.4 1091 1 0 3 100 100 28.97 29.97 30.97 32.97

61 28.4 1206 1 0 3 98 92 28.97 29.97 30.97 32.97

62 28.4 1160 NA 0 3 102 96 28.97 29.97 30.97 32.97

74 25.0 956 2 0 2 82 88 25.57 26.43 27.57 29.57

75 27.0 844 1 0 NA NA NA 27.57 28.14 29.00 31.43

76 27.0 1134 1 0 2 72 73 27.57 28.14 29.00 31.43

77 25.0 414 3 0 2 74 84 25.71 26.71 27.71 28.71

79 31.0 950 3 1 2 72 96 31.14 31.86 32.86 34.71

80 28.0 890 NA 0 2 80 80 28.43 28.86 29.86 31.71

81 22.0 620 3 0 3 94 100 23.00 24.57 25.57 26.57

82 28.0 1086 2 0 2 76 84 28.29 29.00 30.00 32.00

85 24.0 635 1 2 3 106 117 24.00 25.00 26.00 28.29

98 25.2 780 NA 0 3 94 103 26.34 27.34 28.20 30.06

99 25.0 665 NA 0 3 106 113 25.71 26.57 27.71 29.71

100 25.2 750 2 0 3 92 107 26.20 27.34 28.91 31.77

103 27.3 1220 3 0 3 106 92 30.87 31.59 32.59 34.59

107 26.6 1156 1 0 3 100 110 30.46 32.60 34.89 NA

108 26.6 1120 1 0 3 112 110 29.89 30.89 32.03 33.89

109 31.0 965 1 0 3 98 107 31.14 31.86 32.86 NA

114 27.0 1040 1 0 3 98 88 27.57 27.86 28.86 30.86

115 30.0 1120 4 2 2 NA NA 30.71 31.00 32.00 34.00

116 26.0 874 3 0 3 102 92 26.29 26.86 27.86 29.86

118 28.6 576 4 0 NA NA NA 29.74 30.46 31.17 38.60

121 26.6 806 2 0 3 96 84 27.03 27.46 28.46 30.46

122 28.5 970 1 0 3 93 94 29.64 30.21 31.07 32.50

123 27.0 1040 2 4 2 68 84 27.29 27.86 28.86 34.43
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VIBeS GA at Birth WMI IVH Dis.

ID birth Weight Index Grade Score MDI PDI CA1 CA2 CA3 CA4

124 31.0 1240 2 0 2 76 88 31.43 32.00 33.00 35.00

125 27.0 1084 2 0 3 90 103 27.43 28.00 29.00 31.00

126 27.0 1025 2 0 3 88 88 27.43 28.00 29.00 31.00

130 29.0 764 1 0 1 NA NA 29.71 30.00 31.00 33.00

131 29.0 1135 2 0 3 92 84 29.43 30.00 31.00 33.00

136 25.0 660 2 0 2 68 69 25.86 26.29 27.00 29.14

137 28.0 1044 2 0 3 100 113 28.29 28.86 29.86 31.86

138 28.0 1025 2 0 3 89 96 28.14 28.86 29.86 31.86

140 29.6 1395 2 0 3 110 84 30.31 31.03 31.60 33.46

141 29.6 1130 1 0 3 100 113 30.31 31.03 31.60 33.46

150 26.0 815 2 0 2 78 103 26.14 27.14 27.86 28.86

152 28.0 1114 2 0 2 70 84 28.29 28.86 29.86 31.86

155 32.0 1200 1 0 2 82 92 32.14 34.14 NA NA

159 24.3 600 2 0 2 80 84 24.59 25.16 26.16 28.30

160 28.0 1085 3 0 1 40 40 28.29 28.86 29.86 33.43

163 27.4 745 2 0 2 80 88 27.83 28.40 29.40 31.40

164 27.4 1096 3 4 2 76 77 27.83 28.40 29.40 31.40

173 31.0 900 2 0 2 80 84 31.71 32.29 33.00 35.00

174 31.0 1265 3 0 2 78 80 35.00 NA NA NA

175 25.1 756 2 2 2 68 96 25.39 26.10 27.10 29.10

186 24.3 NA NA NA NA NA NA 25.16 26.16 NA NA

187 29.0 NA NA NA NA NA NA 29.14 29.86 30.86 32.86

200 27.2 790 3 0 1 45 84 27.20 28.20 29.20 31.20

203 27.6 NA NA NA NA NA NA 29.89 30.31 31.60 NA

214 26.4 NA NA NA NA NA NA 26.83 27.40 28.40 30.40

221 31.6 NA NA NA NA NA NA 32.60 33.46 34.46 35.74

228 29.0 1180 2 0 3 96 100 29.43 30.14 31.14 33.00

234 30.4 NA NA NA NA NA NA 30.97 31.40 32.69 34.54

250 27.2 NA NA NA NA NA NA 27.77 28.20 29.20 NA

268 31.4 NA NA NA NA NA NA 31.97 34.11 35.26 37.26

280 25.0 NA NA NA NA NA NA 26.57 27.43 28.57 30.43

284 28.6 NA NA NA NA NA NA 28.60 29.89 30.46 32.46

285 29.0 NA NA NA NA NA NA 29.43 30.00 NA NA

286 24.0 NA NA NA NA NA NA 24.14 25.00 26.00 26.14

289 28.0 NA NA NA NA NA NA 28.71 29.00 30.00 32.00

290 28.0 NA NA NA NA NA NA 28.86 29.14 30.00 32.00

293 30.2 NA NA NA NA NA NA 30.77 31.49 32.06 34.06

296 28.3 NA NA NA NA NA NA 28.59 29.30 30.30 32.30

297 25.4 NA NA NA NA NA NA 25.83 NA NA NA
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VIBeS GA at Birth WMI IVH Dis.

ID birth Weight Index Grade Score MDI PDI CA1 CA2 CA3 CA4

300 25.5 NA NA NA NA NA NA 26.21 27.07 NA NA

304 25.6 NA NA NA NA NA NA 27.74 28.89 29.74 30.74

307 27.4 NA NA NA NA NA NA 27.97 30.69 31.54 32.11

314 25.6 NA NA NA NA NA NA 27.89 NA NA NA

326 26.5 865 3 0 2 70 84 26.64 27.21 27.21 28.21

337 26.2 635 NA 0 1 40 45 27.20 27.63 28.20 30.06

341 27.0 NA NA NA NA NA NA 27.86 28.71 29.71 30.71

348 27.0 NA NA NA NA NA NA 27.71 28.57 NA NA

351 28.0 NA NA NA NA NA NA 28.43 28.71 29.86 31.86

358 29.1 895 2 0 3 90 96 29.53 30.10 31.10 33.10

361 28.0 1180 NA 0 3 88 92 28.43 29.00 30.00 NA

363 30.0 830 2 0 2 84 100 30.43 31.00 NA NA

364 26.0 690 2 0 2 66 85 26.00 26.86 27.86 29.86

367 24.0 680 2 3 2 78 96 24.29 25.00 25.86 28.00

370 26.5 1060 2 0 3 86 96 26.93 27.21 28.50 30.36

371 26.5 930 2 0 3 86 84 26.93 27.21 28.50 30.36

386 29.0 NA NA NA NA NA NA 29.29 29.86 30.86 32.86

389 27.0 675 2 0 1 45 103 27.29 27.86 28.86 30.86

390 27.0 830 2 2 2 62 92 27.29 27.86 28.86 30.86

418 24.4 741 3 3 1 45 88 24.69 25.40 26.40 28.40

419 26.0 575 2 0 1 40 40 26.57 27.00 28.00 32.00

420 24.4 675 1 0 2 74 96 24.40 25.40 26.40 28.40

422 25.3 821 2 0 2 72 96 25.30 26.16 27.16 29.16

565 31.3 NA NA NA NA NA NA 31.87 32.30 33.30 35.30

566 29.4 950 2 0 2 66 45 29.40 30.26 31.26 33.26

571 28.6 1191 2 0 3 108 97 28.89 29.60 30.46 NA

772 23.5 592 2 0 3 96 98 23.79 24.21 25.50 27.36

780 28.6 NA NA NA NA NA NA 28.89 29.46 30.46 31.74

803 28.3 1157 4 0 1 40 40 29.01 29.59 NA NA

804 28.3 1036 2 0 3 100 100 29.01 29.59 NA NA

811 26.2 886 1 0 2 76 96 26.34 27.20 28.06 30.06

820 29.4 NA NA NA NA NA NA 29.83 30.69 31.26 NA

821 25.0 660 1 0 3 112 121 25.86 26.43 27.29 29.14

822 29.4 916 2 0 2 80 96 29.97 30.54 31.11 32.97

823 27.4 1100 2 1 3 86 88 27.54 28.26 29.26 31.26

835 26.2 920 2 0 2 72 96 26.49 27.20 28.20 30.06

836 26.2 875 1 0 2 60 92 26.49 27.20 28.20 30.20

853 27.6 1295 1 9 3 106 96 28.03 28.74 NA NA

854 27.6 1165 1 9 3 100 88 28.17 28.74 29.46 31.46
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VIBeS GA at Birth WMI IVH Dis.

ID birth Weight Index Grade Score MDI PDI CA1 CA2 CA3 CA4

864 25.2 820 2 0 2 70 45 25.77 26.20 27.06 29.06

865 25.2 820 1 0 2 72 88 25.91 26.34 27.20 29.20

866 28.1 915 1 0 2 76 96 28.24 29.10 29.96 31.96

867 27.0 870 2 0 2 84 108 27.71 28.14 29.00 31.00

891 26.5 625 1 0 3 88 84 26.93 27.50 28.50 NA

892 26.5 890 1 0 3 90 88 26.93 27.50 28.50 30.50

900 25.3 800 2 0 3 110 103 25.87 26.87 27.87 29.16

903 24.4 730 1 0 3 112 103 24.83 25.40 26.40 28.40
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Appendix B

Cerebral Function Monitoring and

Amplitude-Integrated EEG

The CFM, which stands for cerebral function monitor, is a hardware solution for

long-term EEG monitoring that was proposed in the late 1960s [55]. The machine

was designed to condense information on an EEG into a shorter recording, before

the time of electronic displays. In essence, it condenses the EEG data into what the

medical community refers to as aEEG - Amplitude-Integrated EEG. This is basically

the envelope of the EEG signal. The raw EEG signal is amplified, and filtered with

a bandpass filter to filter out the frequencies below 2Hz and above 15Hz. A high

frequency boost is present in the bandpass filter, as higher frequency contents have

relatively lower amplitude and this bias is added to compensate for this. The filtered

signal is then processed with a semi-log amplitude compression, which compresses

the signal logarithmically above 10µV. This is done to accommodate the wide range

of amplitudes present in the EEG signal. The compressed signal is then rectified and

smoothed to give the aEEG signal. The algorithm used is shown as a block diagram

in Figure B.1 [55].

Although the algorithm was proposed in the early 60s, it still remains one of the

main ways of displaying the EEG signal. This is due to the knowledge accumulated

over the years on how to interpret aEEG, and it remains one of the most efficient ways

to display an overview of long EEG recordings [9]. For this reason, most electronic

monitoring systems have digitally implemented the process, and provide the aEEG

signal as one of the display options.
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Figure B.1: Block diagram showing the algorithm for aEEG.
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B.1. Matlab Code for TFD Calculation: with Time-Lag Kernels

B.1 Matlab Code for TFD Calculation: with Time-

Lag Kernels

Included here is the Matlab function used for time-frequency distribution calcula-

tion. The implementation is based on the book chapter “Computation of Discrete

Quadratic TFDs” in [40].

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%function [tfd, ambi_kern, ambi_func, tf_kern] = tlkern(s, N, tr, tf,

% lf, af, ap, tf_length, lf_length, bypass)

%

%Function to calculate different TFD with kernel defined as inputs

%

%INPUTS:

%s : signal vector

%N : assumed period.

%tr: time resolution

%tf: time factor (i.e.: g1[n], options are ’delta’ (delta function),

’1’ (unity function), and options from the MATLAB function ’window’)

%lf: lag factor (i.e.: g2[m], options are ’delta’ (delta function),

’1’ (unity function), and options from the MATLAB function ’window’)

%af: auxiliary factor (i.e.: g3[n,m], options are ’mb’ (Modified-B), ’

cw’ (Choi-William), ’rihaczek’ (Rihaczek), ’zam’ (ZAM), ’1’ (unity),

’delta’ (delta function at (0, 0)) and ’delta_n’ (delta function in

time direction, equivalent to Wigner-Ville))

%ap: auxiliary parameter (e.g.: in MBD case: beta)

%tf_length: length of time factor window

%lf_length: length of lag factor window

%bypass: variable to bypass the conversion into analytic signal

% (1 = bypass conversion) defualt = 0

%

%OUTPUT:

%tfd(1:Mpad+1, 1:Nsel): the TFD

%ambi_kern: the ambiguity kernel

%ambi_func: the ambiguity function of s
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%tf_kern: time-frequency kernel

%

%Algorithm as included in Time Frequency Signal Analysis and

%Processing: A Comprehensive Reference (B. Boashash ed.), 2003

%Elsevier, Ch. 6.5

%

%Adapted by Lisa Wong (Jan 2005)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [tfd, ambi_kern, ambi_func, tf_kern] = tlkern(s, N, tr, ...

tf, lf, af, ap, tf_length, lf_length, bypass)

if N ==0

N = 2*length(s); %to avoid wrap-around effect for non-periodic

%signals

else

N = length(s); %Assume period = length of signal (for analytic

%signals)

end

M = N; %default support length of kernel.

%begin algo init

Mpad = 2^ceil(log(M)/log(2));

Ncut = min(N, length(s)); % duration of TF plot

Nsel = ceil(Ncut/tr); % no. traces in TF plot

Moff = fix(M/2);

%limit frequency resolution (for speed)

if Mpad > 1024

Mpad = 1024;

Moff = fix(Mpad/2);

end

if nargin <10

bypass = 0;

156



APPENDIX B. CEREBRAL FUNCTION MONITORING AND
AMPLITUDE-INTEGRATED EEG

B.1. Matlab Code for TFD Calculation: with Time-Lag Kernels

end

Noff = fix(N/2);

if ~bypass

%make analytic signal for calculation

z = fft(real(s), N); % s truncated or padded

z(2:N-Noff, :) = 2*z(2:N-Noff, :); % positive frequencies

z(Noff+2:N, :) = 0; % negative frequencies

z = ifft(z); % analytic function

else

z = s;

end

%time dependent kernel

g1(1:N) = 0;

if strcmpi(tf,’delta’) %delta function

g1(1) = 1;

elseif strcmpi(tf,’1’)

g1(1:N) = 1;

else

if nargin > 7

glength = odd(tf_length);

else

glength = odd(N/10);

end

gtemp = window(glength,tf);

Lg = floor(length(gtemp)/2);

gindex = -Lg:Lg;

g1(1+rem(N+gindex, N)) = gtemp;

clear gtemp;

end

%lag dependent kernel
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g2(1:Mpad) = 0;

if strcmpi(lf, ’delta’)

g2(1) = 1;

elseif strcmpi(lf, ’1’)

g2(1:Mpad) = 1;

else

if nargin > 8

hlength= odd(lf_length);

else

hlength= odd(N/4);

end

htemp = window(hlength, lf);

Lh = floor(length(htemp)/2);

hindex = -Lh : Lh;

g2( 1 + rem(Mpad+hindex, Mpad)) = htemp;

clear htemp;

end

%auxiliary factor in kernel

g3(1:N,1:Mpad) = 0;

if strcmpi(af, ’mb’) %modified b-distribution

temp(1:N) = 0;

for n_vec = -Noff:Noff

temp(1+rem(N+n_vec,N)) = (cosh(n_vec))^(-2*ap);

end

temp = temp/sum(temp); %normalise

for m_vec = -Moff:Moff

g3(:,1+rem(Mpad+m_vec, Mpad)) = temp.’;

end

elseif strcmpi(af, ’cw’) %choi-william

pi_sigma = pi * ap;

ntemp = -Noff:Noff;

n_vec = [ntemp(Noff+1:end), ntemp(2:Noff)];

for m_vec = -Moff:Moff
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if m_vec == 0

g3(1,1+rem(Mpad+m_vec, Mpad)) = 1;

else

m_term = 4 * m_vec ^ 2;

g3(:,1+rem(Mpad+m_vec, Mpad)) = sqrt(pi_sigma/ ...

(m_term + pi_sigma)) .* exp((-pi * pi_sigma * n_vec.^2) ...

/(m_term + pi_sigma))’;

end

end

elseif strcmpi(af, ’rihaczek’)

g3 = eye(size(g3));

elseif strcmpi(af, ’bd’)

ntemp = -Noff:Noff;

n_vec = [ntemp(Noff+1:end), ntemp(2:Noff)];

for m_vec = -Moff:Moff

g3(:, 1+rem(Mpad+m_vec, Mpad)) = ((abs(m_vec)./ ...

((cosh(n_vec)).^2)).^ap)’;

end

elseif strcmpi(af, ’zam’)

ntemp = -Noff:Noff;

n_vec = [ntemp(Noff+1:end), ntemp(2:Noff)]’;

for m_vec = -Moff:Moff

win = abs(ap*n_vec) <= abs(2*m_vec);

g3(:, 1+rem(Mpad+m_vec, Mpad)) = win .* ...

g2(1+rem(Mpad+m_vec, Mpad));

end

g2(1:Mpad) = 1;
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elseif strcmpi(af, ’1’)

g3(1:N,1:Mpad) = 1;

elseif strcmpi(af,’delta’)

g3(1,1) = 1;

elseif strcmpi(af,’delta_n’)

g3(1,:) = 1;

end

%Calculating IAF K(1:N, 1:Mpad)

for n_vec = 1:N

taumax = min([N-n_vec, n_vec-1, round(Mpad/2)-1]);

m_vec = -taumax:taumax;

if size(z, 2) == 1

K(n_vec,1+rem(Mpad+m_vec, Mpad)) = (z(n_vec-m_vec).* ...

conj(z(n_vec+m_vec)))’;

else

K(n_vec,1+rem(Mpad+m_vec, Mpad)) = (z(n_vec-m_vec, 1).* ...

conj(z(n_vec+m_vec, 2)))’;

end

tau = round(Mpad/2);

if (n_vec<= N-tau) & (n_vec >=tau+1)

if size(z, 2) == 1

K(n_vec, tau+1) = 0.5 * (z(n_vec + tau)*conj(z(n_vec-tau))...

+ z(n_vec - tau)*conj(z(n_vec+tau)));

else

K(n_vec, tau+1) = 0.5 * (z(n_vec + tau, 1)* ...

conj(z(n_vec-tau, 2)) + z(n_vec - tau, 1)*conj(z(n_vec+tau, 2)));

end

end

end

160



APPENDIX B. CEREBRAL FUNCTION MONITORING AND
AMPLITUDE-INTEGRATED EEG

B.1. Matlab Code for TFD Calculation: with Time-Lag Kernels

if nargout >2 %find ambiguity function

ambi_func = ifft(K);

ambi_func = [ambi_func(Noff+2:N, :) ; ambi_func(1:N-Noff, :)];

ambi_func = [ambi_func(:, Moff+2:Mpad) ambi_func(:, 1:Mpad-Moff)];

ambi_func = fliplr(ambi_func);

end

%Convolution in time: R[n,m] = K[n,m]*_n G[n,m]

%use FFT instead to make things quicker (duality)

for m_vec = -Moff:Moff

mcorr = 1+rem(Mpad+m_vec, Mpad);

K(:,mcorr) = ifft(fft(K(:,mcorr)).*fft(g3(:,mcorr)).*...

fft(g1.’*g2(mcorr)));

temp_kern(:,mcorr) = ifft(fft(g3(:,mcorr)).*fft(g1.’*g2(mcorr)));

end

%find kernels

if nargout >1

temp_akern = ifft(temp_kern);

ambi_kern = [temp_akern(Noff+2:N, :) ; temp_akern(1:N-Noff, :)];

ambi_kern = [ambi_kern(:, Moff+2:Mpad) ambi_kern(:, 1:Mpad-Moff)]’;

if nargout >3

temp_tfkern = (fft(temp_kern’))’;

tf_kern = [temp_tfkern(Noff+2:N, :) ; temp_tfkern(1:N-Noff, :)];

tf_kern = [tf_kern(:, Moff+2:Mpad) tf_kern(:, 1:Mpad-Moff)]’;

end

end

%apply time resolution

for nsel = 1:Nsel

n_vec = 1+tr*(nsel-1);
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r(:,nsel) = K(n_vec,:).’;

end

r = fft(r);

%final normalisation

tfd = [real(r);real(r(1,:))].*(Ncut/Nsel/Mpad);
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