Integrated Technology
In The Undergraduate
Mathematics Curriculum:
A Case Study of Computer Algebra Systems

Greg Oates

A thesis submitted in fulfilment of the requirements for the
degree of Doctor of Philosophy in Mathematics Education,
The University of Auckland, 2009
The effective integration of technology into the teaching and learning of mathematics remains one of the critical challenges facing tertiary mathematics, which has traditionally been slow to respond to technological innovation. This thesis reveals that the term integration is widely used in the literature with respect to technology and the curriculum, although its meaning can vary substantially, and furthermore, the term is seldom well defined. A review of the literature provides the basis for a survey of undergraduate mathematics educators, to determine their use of technology, their views of what an Integrated Technology Mathematics Curriculum (ITMC) may resemble, and how it may be achieved. Responses to this survey, and factors identified in the literature, are used to construct a taxonomy of integrated technology. The taxonomy identifies six defining characteristics of an ITMC, each with a number of associated elements. A visual model using radar diagrams is developed to compare courses against the taxonomy, and to identify aspects needing attention in individual courses.

Evidence from an observational study of initiatives to introduce Computer Algebra Systems into undergraduate mathematics courses at The University of Auckland, firstly using CAS-calculators and latterly computer software, is examined against the taxonomy. A number of critical issues influencing the integration of these technologies are identified. These include mandating technology use in official departmental policy, attention to congruency and fairness in assessment, re-evaluating the value of topics in the curriculum, re-establishing the goals of undergraduate courses, and developing the pedagogical technical knowledge of teaching staff.

The thesis concludes that effective integration of technology in undergraduate mathematics requires a recognition of, and comprehensive attention to, the interdependence of the taxonomy components. An integrated, holistic approach, which aims for curricular congruency across all elements of the taxonomy, provides the basis for a more consistent, effective and sustainable ITMC.
This thesis is dedicated to the memory, love and support of my mum and dad, Jenny and Stuart, to whom I made a promise to finish. Thanks for everything.
Any list like this inevitably proves incomplete, but I wish to acknowledge my
grateful to my many friends, colleagues and family who have contributed to my
completion of this thesis, and in particular the following people:

- My whanau in the Mathematics Education Unit and Department of Mathematics
 at The University of Auckland, especially my supervisors Mike Thomas and Bill
 Barton for their patience, wisdom, and judicious critique; Judy Paterson, Moira
 Statham and David Thomson for all their assistance, advice and support; and all
 my other colleagues who volunteered interviews, survey data and advice.
- My colleagues in the Delta undergraduate mathematics network for their help,
support and inspiration, and all those others who assisted in completing my
survey requests, without whose data this thesis would not have been possible.
- All my fellow PhD friends who have collectively supported and encouraged each
other and me, especially Shehenaz, Alan, Willy, Barbara, Judy, Barbara, Sepideh
and Jude.
- My family for their love, encouragement and support, especially Daniel.
- All my friends and colleagues at Grafton Hall, but especially the Board, Heather,
George and Vivienne for their support, encouragement and advice.
- My friends and colleagues at The Department of Science and Mathematics
 Education (DSME), The University of Melbourne, for their encouragement and
direction.
TABLE OF CONTENTS

Abstract ... ii
Dedication .. iii
Acknowledgments .. iv
Table of Contents .. v
List of Tables .. viii
List of Figures ... ix

CHAPTER ONE: BACKGROUND AND OVERVIEW
1.1 Thesis Background .. 1
1.2 A Personal Perspective ... 7
1.3 Rationale and Significance .. 9
1.4 The Research Focus: Questions and Assumptions ... 13
1.5 Chapter One Summary and Structure of the Thesis ... 15

CHAPTER TWO: THE CURRICULUM AND TECHNOLOGY
2.1 Introduction .. 18
2.2 Curriculum Theory, Design and Development ... 21
 2.2.1 A Proposed Definition of Curriculum ... 21
 2.2.2 Theoretical Issues of Curriculum Design and Development 25
 2.2.3 Curriculum Development .. 31
2.3 Curriculum, Mathematics and Pedagogy ... 37
 2.3.1 The Nature of Mathematics and Knowledge .. 38
 2.3.2 Goals ... 46
 2.3.3 Content: What Should We Teach? .. 52
 2.3.4 Pedagogy: How Should We Teach? ... 59
 Integration of Technology ... 69
2.4 Curriculum Change and Professional Development ... 74
 2.4.1 Effecting Change in the Curriculum and Teacher Practice 74
 2.4.2 Change and Professional Development in Tertiary Mathematics 77
 2.4.3 Change, Professional Development and Technology 80
2.5 Chapter Two Summary ... 83
CHAPTER THREE: THEORETICAL ISSUES IN TECHNOLOGY

3.1 Introduction ..85

3.2 Why Technology? ..86

3.2.1 Learning Theories and Technology ...88

Psychological Theories and Mathematical Cognition ...89

Sociocultural Perspectives: Technology as Mediator and Linguistic Tool92

Advanced Mathematical Thinking and Technology ..97

Instrumented Activity: Technology and Staff-Student Interactions100

Student Instrumentation ...104

Instrumentation: Teacher Perspectives ..108

3.2.2 Benefits and Disadvantages of Using Technology ...110

General Achievement, Instrumentation, and Affective Factors111

Mathematical Content, Reasoning, and Skills ...115

3.3 Which Technology? ...119

3.4 How Technology? Issues of Implementation and Integration127

Time and Planning ...132

Teachers and Students ...133

Access and Equity ..137

Assessment and Congruency ..138

Section 3.4 Summary ...141

3.5 Chapter Three Summary ...143

CHAPTER FOUR: RESEARCH DESIGN

4.1 Introduction ..144

4.2 Pilot Studies: Informing the Research ...145

4.2.1 Pilot Study One: A Survey of Students’ Use of CAS-Calculators145

4.2.2 Pilot Study Two: A Survey of Technology Use in Tertiary Institutions148

4.3 Methodological Framework ..152

4.3.1 Methodological Perspectives: Formulating A Research Strategy152

Strategies of Enquiry ...156

4.3.2 The Evidence: Data Collection Methods and Analysis158

The Third Survey ..160

The Interviews ..163

Observational Study and Document Analysis ..166

4.2.3 Criteria for Judgement: Issues of Trustworthiness ..169

4.4 Chapter Four Summary ...172
CHAPTER FIVE: A MODEL FOR INTEGRATED TECHNOLOGY

5.1 Introduction .. 173
5.2 A Preliminary Model .. 173
 5.2.1 A Definition and Taxonomy for Integrated Technology 179
 5.2.2 An Instrument for Comparison of Curricula and Technology 183
5.3 Refining the Taxonomy .. 191
 5.3.1 Responses to the Third Survey ... 191
 5.3.2 A Refined Taxonomy of Integrated Technology .. 198
5.4 An Integrated Technology Mathematics Curriculum (ITMC) 207
5.5 Chapter Five Summary .. 212

CHAPTER SIX: AN OBSERVATIONAL STUDY OF TECHNOLOGY IMPLEMENTATION

6.1 Introduction .. 213
6.2 Technology Implementation at The University of Auckland: History and Documental Evidence .. 213
6.3 The Taxonomy and Technology Implementation ... 222
 6.3.1 Assessment Issues: An Evaluation of Sample Examinations 223
 6.3.2 Consideration of the Value of a Curriculum Topic ... 232
6.4 Developing an Integrated Technology Mathematics Curriculum 238
6.5 Chapter Six Summary ... 245

CHAPTER SEVEN: REVIEW AND IMPLICATIONS

7.1 Overview ... 247
7.2 Summary .. 248
7.3 Significance and Implications for Technology Integration ... 251
7.4 Limitations and Directions for Future Research ... 254
7.5 Final Comment .. 255

REFERENCES .. 256

APPENDICES

Appendix A2: (i) Pilot Survey One: Students Use of CAS-Calculators Semester One 2001 ... 294
 (ii) Coding Schedule for Responses .. 297
Appendix A3: (i) Survey Two: Technology Use in Tertiary Institutions 302
 (ii) Coding Schedule for Responses ... 303
 (iii) Quantification of Technology Integration ... 307
Appendix A4: (i) Final Survey: Technology Use in Tertiary Institutions 309
 (ii) Catalogue of Responses .. 312
 (iii) Responses Difficult to Categorise Using the Taxonomy 314
 (iv) Coding Schedule for Part D Responses ... 322
Appendix B: Interview Protocol: Sample Questions ... 326
Appendix C: Calculus Questionnaire (Lauten, Graham & Ferrini-Mundy, 1999) 327
LIST OF TABLES

Table 2.1 Framework for Curriculum Planning Models (Zuga, 1989, p. 9)28
Table 2.2 Comparison of Selected Aspects from Ernest’s Overview of Educational Ideologies (Ernest, 1991, pp. 138-139)41
Table 2.3 Goals for a CAS-Active Mathematics Curriculum (Stacey, Asp and McCrae, 2000) ...51
Table 2.4 Sequence of Skills and Concepts in Experimental and Traditional Versions of Applied Calculus (Heid, 1988, p.7)66
Table 3.1 Factors Affecting Technology Use (Goos, 2006, p. 192)96
Table 3.2 Framework for the Effective Use of CAS (Pierce & Stacey, 2004, p. 65) ..105
Table 4.1 A Research Model (Romberg, 1992, p.51)145
Table 4.2 Positioning the Thesis within a Paradigm154
Table 4.3 An Observational Schedule for MATHS 108 (2001-2008)169
Table 5.1 Technology Use in Assessment in Tertiary Institutions180
Table 5.2 A Taxonomy for Integrated Technology182
Table 5.3 Quantification of Technology Integration185
Table 5.4 Quantification of Technology Integration, Institution X186
Table 5.5 Quantification of Technology Integration, Institution Y187
Table 5.6 Responses to Question 2, Survey Three196
Table 5.7 A Refined Taxonomy for Integrated Technology205-206
Table 6.1 Technology Statements in Course Study Guides218
Table 6.2 Comparison of Maths 108 Examination Questions from 1999 to 2007 ...229
Table 6.3 Sample Examination Questions from Maths 108 (1999 to 2007) ...230
Table 6.4 Taxonomy Elements Identified in the Observational Study240
Table 7.1 Critical Elements in Technology Integration250
Table 7.2 Implications for Technology Implementation253
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 2.1</td>
<td>The macro-level of curriculum (Valero-Duenas, 2002).</td>
<td>24</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>The intermediate level of curriculum (Valero-Duenas, 2002).</td>
<td>24</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>The micro-level of curriculum (Valero-Duenas, 2002).</td>
<td>24</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>A research model for curriculum development (Rachlin, 1989).</td>
<td>32</td>
</tr>
<tr>
<td>Figure 2.5</td>
<td>Process for designing a curriculum program (NRC, 1999).</td>
<td>33</td>
</tr>
<tr>
<td>Figure 2.6</td>
<td>An ecological model of curriculum development (Frielick, 2001).</td>
<td>35</td>
</tr>
<tr>
<td>Figure 2.7</td>
<td>Different belief structures (Torner, 2000).</td>
<td>45</td>
</tr>
<tr>
<td>Figure 2.8</td>
<td>Topics can have epistemic, pragmatic and pedagogical value</td>
<td>53</td>
</tr>
<tr>
<td>Figure 2.9</td>
<td>(Stacey, 2003).</td>
<td></td>
</tr>
<tr>
<td>Figure 2.10</td>
<td>Schooling models of the past, present, and future</td>
<td>68</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Creating a technology rich learning environment</td>
<td>72</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>(Arnold, 1998).</td>
<td></td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>Technology as a catalyst in the linking of function representations</td>
<td>95</td>
</tr>
<tr>
<td>Figure 3.4</td>
<td>(Chinnappan & Thomas, 2000, p. 173).</td>
<td></td>
</tr>
<tr>
<td>Figure 3.5</td>
<td>Development of process/concept in symbolic mathematics</td>
<td>98</td>
</tr>
<tr>
<td>Figure 3.6</td>
<td>(Tall, 1999, p. 116).</td>
<td></td>
</tr>
<tr>
<td>Figure 3.7</td>
<td>The continuum of knowledge and skills required for using CAS</td>
<td>106</td>
</tr>
<tr>
<td>Figure 3.8</td>
<td>(Pierce & Stacey, 2004, p. 62).</td>
<td></td>
</tr>
<tr>
<td>Figure 3.9</td>
<td>Factors influencing teachers’ responses to the use of computers in</td>
<td>142</td>
</tr>
<tr>
<td>Figure 4.1</td>
<td>their mathematics teaching. (Norton and Cooper, 2001b, p. 388).</td>
<td></td>
</tr>
<tr>
<td>Figure 4.2</td>
<td>Design two: Linking qualitative and quantitative data</td>
<td>159</td>
</tr>
<tr>
<td>Figure 4.3</td>
<td>(from Miles & Huberman, 1994b, p. 41).</td>
<td></td>
</tr>
<tr>
<td>Figure 4.4</td>
<td>Research strategies informing the research questions.</td>
<td>159</td>
</tr>
</tbody>
</table>
Figure 5.1: Comparison of technology integration between two first-year calculus courses (X and Y). ..188

Figure 5.2: Comparison of technology integration between two first-year calculus courses (X and Z). ..189

Figure 5.3: Comparison of technology integration between a first-year calculus course (X) and a third-year engineering course (W).189

Figure 5.4: A sample departmental response and an individual course from the third survey showing high levels of technology integration.194

Figure 5.5: Calculus course from the United States showing gap in technology integration for “Organisational Factors.”207

Figure 6.1: Timeline of changes in technology use in the Department of Mathematics, The University of Auckland (pre-2001 to 2008).215

Figure 6.2: Sample questions from Maths 108 formal assessment.225

Figure 6.3: Sample question from the 2004 Maths 108 examination.231

Figure 6.4: A comparison of technology integration in the Department of Mathematics at The University of Auckland, between the periods 2001-2005, and post 2005. ...239