Median filtering with very large windows:
SKA algorithms for FPGAs

Tyrone Sherwin*, Kevin I-Kai Wang*, Prabu Thiagaraj’, and Oliver Sinnen*
*Department of Electrical and Computer Engineering, University of Auckland
tshe835 @aucklanduni.ac.nz, k.wang@auckland.ac.nz, o.sinnen @auckland.ac.nz

TUniversity of Manchester; Raman Research Institute, Bangalore
prabuthiagaraj @ gmail.com

Abstract—Large scale median filtering algorithms are investi-
gated in the context of the Square Kilometre Array (SKA) pulsar
search; a signal processing pipeline estimated to require more
than 10POps on 60PB of search data collected per day. Real
time performance is needed for rectangular median windows of
63 frequency channels across 1023 time steps, requiring at least
64 million values to be calculated and output per second. This
paper proposes an algorithmic approach for large scale median
filtering based on existing techniques, providing improvements
for the heterogeneous system used and utilising a high-end FPGA
accelerator. Taking advantage of OpenCL for rapid parameter
sweeping, the design space was explored to find the best algorith-
mic approach. The evaluation results are promising and show
output of up to 99.3 million values per second on an Arria-10
FPGA, coming close to the limits set by resources and bandwidth.
These results are set into relation with GPU and CPU implemen-
tations for the same algorithm, taking advantage of the OpenCL
portability, achieving up to 16.8 and 9.1Mvalue/s respectively.

I. INTRODUCTION

Radio Frequency Interference (RFI) mitigation is an extremely
important part of using telescopes in radio astronomy [11].
The need for real time RFI mitigation has grown in response to
increasing data volume, sensitivity requirements, and RFI contam-
ination. The SumThreshold algorithm, proposed in [11] is able
to estimate the underlying, true signal by flagging contaminated
data through an iterative thresholding process. [17] implements
this algorithm on a GPU cluster for the LOw Frequency ARray
(LOFAR), one of the Square Kilometre Array (SKA) pathfinders.

We look at the median filter in the context of RFI mitigation
using SumThreshold. An FPGA implementation to be included in
the SKA Pulsar Search Engine is designed through collaboration
with the Time Domain Team (TDT). Algorithmic optimisations
are implemented and tested on a real FPGA-host system to oper-
ate on very large window sizes of 63 frequency channels across
1023 time steps. Development was carried out in OpenCL, a paral-
lel programming standard for heterogeneous computing systems.
This allowed for rapid development and evaluation of different
algorithms. The main contributions of this paper are as follows:
1) Proposal of first approach to computing very large, rectangular

window medians on an FPGA with configurable parallelism.
2) Demonstrating the suitability of OpenCL to design and
implement such a median filter on FPGAs, utilising analytical
upper bounds to argue about theoretical peak performance.
3) Experimental evaluation of the proposed approaches on a
real, high-end FPGA accelerator, comparing performance
with CPU and GPU implementations.

Section II introduces the median filtering algorithm and the
relevant state-of-the-art. An FPGA architecture and algorithmic

approach is proposed in Section III. Modelling of theoretical
upper bounds is shown in Section IV before the evaluation
is described in Section V. Finally, conclusions are drawn and
opportunities for future work are discussed in Section VI.

II. MEDIAN FILTERING

Median filters are used where it is desirable to remove extreme
values whilst retaining the overall structure of the data such as
edges; this is in contrast to filters such as the Gaussian filter which
creates new values and blurs the input data together [7]. This
is accomplished by replacing each value with the median of the
adjacent input values. A number of techniques and optimisations
have been developed over time to improve performance, but in
its simplest form the median filter is a problem of sorting.

1 for col=1 to X do
for row=1t Y do
for z=col— 251 to0 col+25* do

2
3 2

4 for y=row—"51 10 row+251 do
5
6
7

‘ load input[z,y] into array A;
sort A;

output A[
Algorithm 1: Basic median filtering for n xm window

N—l].
9

An example algorithm is provided as pseudocode in Algorithm
1; iterating through a 2D array with X columns and Y rows,
loading all values in the window to a new array, sorting that
array, and selecting the middle value for output; assuming the
usual odd number of values. In general, best case performance
for sorting requires O(NlogN) complexity [4], where N is the
total number of values. As shown in [8], this can be reduced
to O(logn) through the reuse of data between adjacent nxm
windows. Due to the computational complexity inherent in
sorting, a number of other techniques have been developed in
order to reduce complexity and improve performance. Many
of these techniques are based on assumptions about the input;
limiting the number of possible values which the input may
take in order to reduce the search space [12].

A. Related work

Median filtering is used in many signal processing applications
such as 2D image processing [9], 1D speech processing [14],
3D medical imaging [3], and the 1D trace transform [7]. Many
of these applications operate with very small window sizes.
Square windows are common, ranging from 3x3 up to 7x7
[13]. In higher dimensional applications, sizes tend to be
similar, such as 3 x 3 x 3 [3]. Single dimension filters have
a much larger range of size, ranging from 3-1023 points [7],

[14]. Applications utilising very large windows, such as those
required here, are not very common. [19] and [12] are able to
reduce the complexity so as to support such windows, providing
results for square windows of radii up to 127, i.e. 255 x 255.
Huang et al. first introduced two widely used techniques in [9];
a sliding window technique for utilising data overlap, and a his-
togram based approach for storing values and calculating medians.
Similar to stencil computations, each output value is determined
by a window of input values. This also results in overlapping of
input data for calculating adjacent outputs. As window sizes get
larger this overlap increases. Taking a sliding approach, whereby
at each iteration the values from the previous window would be
used, allows for a significant degree of data reuse. A histogram
of values in each window is able to reduce the median calculation
to a linear complexity, independent of the window size. These
techniques are explored further in Sections III-C and III-D.

III. PROPOSED ARCHITECTURE

This work aims to design a median filtering approach capable
of processing data in real time for RFI mitigation in the SKA.
Input data is represented by 8bit integers arranged in two dimen-
sions, one being frequency channels and the other being time sam-
ples. For SKA1-Mid there are 4096 frequency channels, while the
total number of time steps is dependent on the observation. This
is further explored in Section III-E as the results can be buffered
and broken into chunks. A window size of 63 frequency channels
across 1023 time steps was chosen by the Pulsar Search team.

Achieving a high throughput is very important in the context
of data processing in the SKA due to the real time requirements;
processing must be at least as fast as the rate at which data
is collected due to the continuous nature of the input data. As
the input data consists of measurements across a number of
frequency channels through time, the required throughput of
the filter is determined by the time resolution of the data:

o dn

tT'CS

ey

Where T is the throughput, f,, is the No. frequency channels,
and t,.s is the time resolution. For SKA1-Mid, using 4096 fre-
quency channels, the required time resolution is ~64us [10]. This
equates to 64 million values calculated and output per second.

Many of the software implementations capable of operating
with very large windows exhibited properties that made
them undesirable for an FPGA architecutre. Existing FPGA
implementations generally had high complexity making them
undesirable for the large window sizes required. These factors
led to the need for a new approach to be taken.

A. OpenCL and AOCL

OpenCL is a programming standard designed around the
acceleration of parallel computing, targeting a wide variety of
platforms [16]. AOCL is an OpenCL compilation framework
developed by Intel FPGAcapable of describing high-performance
computing applications on FPGAs [5]. The OpenCL computing
paradigm describes applications as a host and some non zero
number of kernels. Each kernel represents a computation to
be performed by an accelerator controlled by the host. The
use of AOCL automatically provides pipeline parallelism, and
gives constructs for defining operation parallelism through the

Frequency Channel
oO 63 4096

—|
[anunss snmEmEn:

Time 1023

8

Fig. 1: The sliding window used, showing the 63 frequency channels
and 1023 time steps. Sliding occurs through time, while P parallel
values are calculated across multiple frequency channels.

OpenCL framework. More information about AOCL and its
implementation of the OpenCL framework can be found in [5].
In the context of the SKA, [18] recommends High Level
Synthesis (HLS), and shows that AOCL can provide performance
approaching theoretical maxima. As many details are still to
be confirmed during this prototyping stage [6], it is important
to retain flexibility in hardware configuration. Using high
level approaches accommodates the failure and replacement
of components over the duration of the project’s 50 year life
span. It is also likely that new hardware will be added during
the second phase of the project; SKA2 [15]. HLS allows for
existing algorithms to be ported to new platforms and hardware
configurations, and incorporation of new developments and
improvements in algorithms; even by non-hardware experts.

B. Algorithmic approach

The algorithm is developed around three sections; loading,
calculation, and output; where the output section is trivial in
comparison to the other two. In conjunction with the high level
approach, this allows for rapid development and evaluation of
different combinations of techniques and optimisations across
both the loading and calculation sections. Due to the large
window sizes, an emphasis was placed on reducing the time
spent loading data and minimising the complexity of calculation.

C. Sliding windows

A sliding approach for reducing loading requirements utilised
by much of the other work in the area has been used here as well.
[9] showed that in the case of a rectangular window the direction
of sliding relative to the orientation of the window can make a
significant difference. Moving orthogonal to the short edge of the
rectangle, as shown in Fig. 1, allows for fewer values to be loaded
at each iteration. Inspiration was drawn from [19] and many
of the techniques investigated utilise a P parameter, indicating
the number of parallel values being calculated. These values are

7

0:1—2
v) l 1:1—2

4) 2:2—1 6:1—1
1 3:1—-0 7:1—0

Fig. 2: 3x 3 window, showing histogram approach with sliding update.

4:2—3
5:0—0

AOKFRL|W
(@] [eRFE § &

orthogonal to the direction of movement, or in the same axis as
the short edge of the rectangle and is also shown in Fig. 1. The

direction of movement here is the same as the direction of time.

Other techniques to further reduce loading were also
investigated. Each row had to be loaded twice, reloading the
oldest value from row — ”;1 and loading a new value from
row + "5, These two values are then used before moving
on to the next column. Once all columns in the window have
been updated, the median can be found and work can begin on
the next row. An alternative method utilises a buffered updated
stage to first load values that need to be removed, and then
to load all values that need to be added.

D. Histogram method

Given the very large sizes being implemented it is not
practical to store all the values from a window, therefore some
way to reduce the storage requirements is vital. First introduced
by [9], the use of histograms decouples the calculation from
the size of the input; instead being a function of the bit depth
of the output value, with each bin storing the count of values
for that bin. Fig. 2 shows a combination of this histogram
technique with the sliding update as it is performed in [9]. The
number of bins, B, is equal to 2°, where b is the bit depth of
the output value. For 8bit outputs, B =256 bins. This technique
is quite similar to radix sorting, or bin sorting [4]. Algorithm 2
shows the changes made to Algorithm 1 in order to incorporate
the sliding histogram approach, wherein the previous histogram
is reused in the next iteration; replacing old values with new.

1 for col=1 to X do
initialise histogram[1 to B] with padding values;
for row=11t0 Y do
for z=col— 251 to col+25* do
decrement histogram[input[z,row — m; L_1]1;
increment histogram[input[z,row+ %]];
sum=0;
for bin=1 to B do
add histogram[bin] to sum;
if sum> % then
median =bin;
output median;
break;
Algorithm 2: Approach taken

o L N A R W

—
N =D

-
w

The histogram method has a calculation complexity of only
O(B), and also significantly reduces the amount of storage
necessary. Each bin in the histogram need only be capable of
storing at most the count of values in a window. For a 63 x 1023
window this requires 16bits per bin. For 8bit outputs, as is the
case here each histogram requires 256 bins, giving an estimated
size of 512Bytes per histogram. For contrast, approximately

64kByte is required to store all of the values in the window. Each
of the P parallel calculations introduced earlier has an associated
histogram, linearly increasing the memory requirements as
the parallelism increases. To avoid double buffering of values
to allow for simultaneous calculation and loading of adjacent
windows, a so called ’little histogram’ was introduced.

1) The little histogram: Given the sliding technique requires
updating of the previous window, a loop carried dependency
occurs in the loading section. When the AOCL compiler detects
such a dependency the Initiation Interval (II) is extended in
order to avoid potential memory conflicts. To allow for more
effective utilisation of the generated pipelines, an intermediate
variable can be introduced This intermediate variable stores
only the changes in bin counts during sliding. Updating of a
full histogram is then performed during the calculation, as the
data is used, and is simply a case of adding the little histogram.

The little histogram only needs to store count values up to the
number of values being added and subtracted at each step; being
463 in 7bits per bin for the window size used here. Due to the
version of AOCL,8bit values are used for each little histogram.

2) Output precision: It is also possible to reduce the
computational complexity by reducing the output bit depth, b.
As mentioned earlier, a lower number of bins, B, reducesboth
the number of iterations for calculation and the memory
requirements for storing histograms. Input values are matched to
bins based on their b most significant bits. Values are less precise
since fewer bits are used, with padding of the least significant
bits being added. This tradeoff may be acceptable for some
applications, and can be used alongside more complex changes.

E. Other considerations

To operate on continuous input data, there are two options
available. The first is to operate on chunks of size X x Y,
re-initialising at each launch and incurring a penalty. The other
option is to buffer input values, continuing to run the kernel
as long as there continues to be new data to process. Due to the
overlapping nature of the processing, this would require at least
triple buffering of data, and storing of histograms between input
chunks. In theory this can be extended, keeping as few as m+1
rows in global memory and replacing the oldest row at each
time step. However without sufficient local memory to maintain
all of the histograms this would requre significant overheads.

In addition the two different types of OpenCL kernel are
investigated in AOCL, i.e. NDRange and single work item
kernels [16]. In the NDRange case the input was broken into
a series of work independent work groups. Each work group
comprises a number of work items, each representing a column
of the input, which are then able to share input data as in the
P parallelism. A single work item kernel is then one where
the number of work groups and work items are both set to 1.

Multiple variations on the median filter are evaluated in
Section V. These variations are listed in Table I with their
differences highlighted.

TABLE I: Design variations shown in evaluation

[Design [Type | Details]
MEDIAN FPGA Basic median filtering
LTL FPGA Implementation of little histogram
-BUFF Modifier Uses buffered input values
-ND Modifier Uses an NDRange kernel

1.0E+9

1280E46 | _e==semToTCTSTToSSS
VN [eeesteeiedrdetadeees S TR T TP
} -
8 16086 - e
= L MAX_CALC
> 2.0E+6 ceeREQ
=

250.0E+3

1 8 64 512 4096

P, Parallel Size

Fig. 3: Performance modelling of a 63 x 1023 window with calculation
and read limitations for varying P shown with the required throughput.

I'V. PERFORMANCE MODEL

Models were developed to determine the theoretical
performance of our median filter, and are shown in Fig. 3.
Equations (2) and (3) describe the relationship between the rate
of output and the rate of input, while (4) and (5) describe the
relationship between the rate of calculation and the rate of input.

TREAD:(%*P)*JC 2

L=(n+P—-1)*2 (3)
where Tigpap 1S the throughput in values per second with read
limitations, f is the estimated operating frequency (here assumed
to be 300MHz), L is the number of load operations required to
calculate P parallel values, and [is the load utilisation measuring
the average number of loads performed in each cycle.

Tene= (é*P)*f)

C=B=2" (5)
where T¢ac is the throughput with calculation limitations, ¢
is the calculation utilisation measuring the average number of
calculations performed per P in each cycle, C' is the number
of calculation operations required per output value, B is the
number of bins in each histogram, and b is the bit depth.

In the case of the MAX_READ model Trgap is used with [set
to 2. This reflects loading 1 new value and reloading 1 old value
at the same time. In the MAX_CALC model, T c is used with
c set to 1, this represents the sequential nature of the median
finding process being limited to 1 calculation step per cycle.
As can be seen from Fig. 3, the constant C' causes T, ¢ to
increase linearly with P. Since L is dependent on P, increasing
P for the same [results in a drop off in throughput for Tigap.

This lead to another model, MAX_ABS, giving the lower of the
two, with the turning point at !/, =¢/c. For the values of [and
c chosen, this is equivalent to P < B—n-+1 using Tcarc, and
those above using Tigap. For n =63 this point is at P =194,
as can be seen in Fig. 3. It can also be seen that P > 64 is
required for the desired throughput of 64Mvalue/s. Each of
these models are listed in Table II for reference in Section V.

V. EVALUATION
A. Hardware/Software setup

For the purposes of this prototype development, the Nallatech
385A FPGA PCle accelerator card was used in conjunction with
an Intel Core 17-6700K CPU@4.0GHz, and 64GB of RAM. This
is a high-end, modern platform representative of the level of tech-
nology anticipated to be used in the SKA [6]. Exploration of the
design space was done to identify possible regions of adjustment

128.0E+6 -

16.0E+6
= = MAX_ABS
cen REQ
MEDIAN
—-o-LTL
MEDIAN-SW_C

T, values/s

250.0E+3
1 4 16 64
P, Parallel Size

256

Fig. 4: Throughput comparisons for generated hardware of selected
methods. Included is the MAX_ABS performance model.

based on the specific hardware used. Evaluation was carried out
under CentOS version 7.3.1611, using AOCL version 16.0.2.

1) Functional correctness: To ensure functional correctness, a
software reference (written in C++) was developed in tandem with
the OpenCL kernel. In both cases, this initial implementation was
largely derived from [9], utilising only the sliding window and
histogram techniques. Both versions were implemented with a
configurable P term to represent the degree of parallelism. In the
OpenCL kernel this manifested as parallel pipelines, while in the
software each P was calculated sequentially while still allowing
for an overall reduction in loading, similar to tiling as in [2].

2) Evaluation metrics: The main metric examined was the
overall throughput of the median filter, measured as output values
per second or value/s. As mentioned in Section III-B the data
throughput rate is quite important in the SKA context. Resources
used were a secondary metric such that fewer resources allowed
more duplication and higher performance, but generally were
not examined on their own. The use of throughput as a measure
of performance also allowed for an examination of the effects
of varying X and Y, representing the total number of processed
frequency channels and time steps respectively. For the purposes
of this investigation, the focus was on determining viability of an
FPGA accelerator; the methods of communication have yet to be
decided and so this overhead has been ignored, however at present
the AOCL runtime handles batched transfer of data over PCle.

B. Initial Evaluation

Throughput comparisons were made between the initial
implementation derived from [9] for both software (C++) and
hardware (AOCL) versions, shown in Fig. 4 as MEDIAN-SW_C
and MEDIAN respectively. The initial focus was on the effects
of varying P and confirming the hardware was synthesised as
expected. It was anticipated that the degree of P parallelism
would be limited by the resources available in the form of logic
elements (LEs), memory bits, and on chip RAM blocks, all
of which are estimated by the AOCL compiler and reported

TABLE 1I: Model variations shown in evaluation

Design Type Details
REQ Model | Required performance of 64Mvalue/s
MAX_READ | Model Model with input rate limitation
MAX_CALC | Model | Model with calculation rate limitation
MAX_ABS Model | Lower performance of above models

TABLE III: Throughput (value/s) for different versions of MEDIAN. Unless otherwise mentioned all results use parameter (b=28). Tests where

compilation was not possible are shown with a dash, while empty cells were not tested.

Design Parameter varied
P=1 2 4 8 16 32 64 128 256
MAX_READ 4.7M 3.9M 16.7M | 30.5M | 52.9M 85M 122.8M | 157.7M 183M
MAX_CALC 1.2M 2.3M 4.4M 8.4M 16.3M | 31.5M 60.9M 117.7M | 227.4M
MAX_ABS 1.2M 2.3M 4.4M 8.4M 16.3M | 31.5M 60.9M 117.™M 183M
MEDIAN 0.8M 1.6M 3M 4.8M 11.3M | 20.7M 37.2M 48.1M -
LTL 1.1IM 1.9M 3.8M 7.8M 15.0M | 26.3M 54.5M 99.3M -
LTL-BUFF 1.1IM 1.9M 3.9M 7.9M 15.6M | 28.2M 37.TM 86.6M -
LTL(b=T7) 2.03M 7.86M 55.7M | 90.7M 97.3M 121M
w=lI 2 4 8 16 32 64
LTL-ND(P=1) 0.78M | 0.67M | 0.66M | 0.82M | 0.86M | 0.88M | 0.88M
=1 2 4 8 14 16 24 28 32
LTL(P =128) 7.73M | 7.10M | 21.2M | 40.1IM | 974M | 91.0M | 70.0M 92.5M 87.4M
b=8 7 6 5 4 3 2 1
MAX_ABS(P=1) 1.I7M | 2.34M | 4.69M | 4.69M | 4.69M | 4.69M 4.69M 4.69M
LTL(P=1) 0.94M | 2.03M | 2.43M | 298M | 3.69M | 4.29M 4.35M 4.32M

prior to synthesis. During evaluation it was discovered that the
limiting factor was often routing, which was not reported.
Initial results for the hardware MEDIAN were on the
expected order of magnitude, with loop carried dependencies
causing inefficient generation of hardware. This resulted in the
development of the little histogram adaptation, LTL, providing
throughput which closely follows the performace model up to
P =128, shown in 4. A throughput of 99.3Mvalue/s is achieved,
surpassing the required 64Mvalue/s for the pulsar search pipeline.
As the system must fully process input data, the latency is
dependent on the total input size, X X Y. For 16,384 time steps
of SKA1-Mid data, approximately 1s buffer time, LTL(P =128)
takes 0.70s to process. Further design space exploration was
performed for the FPGA platform which will now be discussed.

C. Design space exploration

Where possible, the AOCL compiler would attempt to replicate
memory in order to better utilise generated pipelines. Results for
LTL(P =128) with a varying number of full column iterations, 7,
are given in Table III. Compilation logs indicate that an initiation
interval of 14 is used when loading values, and the memory is
replicated 16 times to compensate. It can be seen that when the
number of iterations is less than 14 the performance is reduced.
There is also a drop in performance between 14 and 28 iterations.
Despite the number of iterations being known at compile time, the
compiler would only reduce replication when there was a single it-
eration. For P > 256, this initiation interval may result in reduced
performance, further compounding diminishing returns, however
no tests were able to achieve such a degree of parallelism.

Locally storing all necessary values in the two rows being
added and removed, rather than accessing the input array directly
was evaluated and shown in Table III as LTL-BUFF. As can be seen
from the table, this provides improved performance over LTL only
in some cases, believed to be a result of the randomness of heuris-
tics used in synthesis rather than indicative of better performance.

For an NDRange kernel, it is possible to vary the number of
work items assigned to each work group, this value is provided
as W. Overlapping data is shared across W parallel work items
in a similar way as P. This can be seen from the throughput of
LTL-ND(P =1) in Table III, where the value/s increases as W
increases. Based on the obtained performance, it is believed that
each work item is pipelined sequentially rather than performed
in parallel as with P, giving the same amount of logic usage
with an increase in memory usage and associated overhead.

Reducing B, the number of bins, is another method for
reducing C', albeit with diminishing returns as P increases owing
to the dropoff in Tygap. Table IIT shows the effect of the bit
depth, b, where P =1, improving performance by up to a factor
of 4. It can be seen that the synthesised performance achieves
this speedup at a much slow rate than the model suggests;
achieving a two fold increase from the first bit reduction, but not
achieving the full speed increase for another five bit reductions.
In addition, the significant reduction in memory requirements
for b<8 meant that LTL(P =256) was able to be compiled.

Based on the results found here, it is likely that the throughput
of the kernel will be higher than the rate at which data is input.
This allows a multiple launch kernel to be used, allowing for
lower complexity despite the additional overhead of relaunching.
Preliminary testing for a single launch kernel also indicated
a reduction in performance, further supporting this approach.

D. Comparison with GPU and CPU

A comparison was made with a GPU by taking the NDRange
kernel developed for FPGA and compiling with another OpenCL
compiler targeting AMD graphics cards. This involved making
some modifications in order to allow compilation, and some steps
were taken towards optimising for the resources available. Unlike
the FPGA where each work item is pipelined, on a GPU each
work item is treated as a separate thread and can be run in parallel.
The OpenCL compiler used was also able to execute using the
host processor to run the kernel directly, whereas AOCL sequen-
tially emulates kernel execution on an FPGA by using the CPU.

Testing of the GPU was performed on another system
consisting of an Intel® Xeon™ E5320 CPU@1.86GHz, 4GB
memory, and AMD Radeon R7 370 GPU with 4GB RAM.
Results can be seen in Fig. 5, for the two new series, Parallel
Size refers to W, while for the other cases it refers to the P as
before. To faciliate comparison between the platforms, this final
FPGA implementation of LTL(P =128) requires 89,587 logic
elements, 25MB of on chip memory, and 1,446 RAM blocks.
This represents 21%, 47%, and 53% of the available resources
respectively, while operating at a frequency of 209MHz. It
should be noted that the results shown were provided using two
different host PCs, as described here. For the MEDIAN-GPU and
LTL comparison, this host PC is not relevant to performance
as the entire algorithm described here is run on the accelerator.

In contrast to the previous work with an NDRange kernel,
GPU performance improves as the parallelism increases. In the

256.0E+6

n
2 320646
I ~ = MAX_ABS
= +++REQ
© —o-LTL
= MEDIAN-GPU
4.0E+6 MEDIAN-SW_C
~a—MEDIAN-SW_CL
500.0E+3

256 1024

16 64
Parallel Size
Fig. 5: Throughput comparisons for multiple platforms. LTL, MEDIAN-

GPU, MEDIAN-SW_C, and MEDIAN-SW_CL correspond to the FPGA,
GPU, CPU (C++) and CPU (OpenCL) implementations respectively.

case of the OpenCL execution on the CPU, there is negligible
performance improvements, similar to the FPGA results for
NDRange. Neither platform is able to compile for W > 32 due to
resource constraints. In the case of the GPU, documentation lists
availability of 16 compute units [1], agreeing with performance
degradation for W > 16. It is unclear why performance drops off
so rapidly before reaching 16. In both cases initial performance
for low levels of parallelism is much higher than the FPGA imple-
mentation, likely a result of the significant difference in execution
frequency, however scalability quickly becomes a problem.

It is believed that further optimisations to the GPU code could
allow for increased performance, however it appears unlikely
that significant improvements in scalability are possible for the
algorithm described here. It is expected that a higher end GPU
would be required in order to meet the throughput requirements
set forth by the SKA and compete with the higher degree of
parallelism available from the FPGA. An alternative algorithm
may also be able to provide the required throughput by taking
advantage of the GPU architecture, but no such approach is
currently known for the very large windows required here.

VI. CONCLUSION

We investigated the design and performance of a large scale
median filter on an FPGA for inclusion in the SKA Pulsar
Search Engine, subject to real time constraints of 64 million
values output per second with window sizes of 63 x 1023.
These constraints were able to be met with the Arria-10 FPGA
achieving up to 99.3Mvalue/s. The algorithm was developed using
OpenCL which has been demonstrated to approach peak limits of
performance of the hardware used. Increased parallelism may be
possible, however theoretical models indicate diminishing returns.

The algorithm is highly flexible, operating on arbitrarily sized
two dimensional windows and data, with variable degrees of par-
allelism; all supported by the OpenCL implementation. Algorithm
performance is based on n, the number of columns in the window;
b, the bit depth of output data; and P, the degree of parallelism.
Total window size, IV, affects the size of histogram bins and
thus the degree of resource usage, but otherwise does not affect
performance. Infinite amounts of data can be processed in chunks,
where the chunk size determines the latency of the system.

In the future, we plan to better match the requirements set
forth by the SumThreshold algorithm. This includes statically

non deterministic numbers of values to support previously
flagged data, and variable window sizes at run time. Other areas
of improvement include the usage of arbitrary precision data,
removing additional unneeded bits and reducing the amount of
memory required. An improved loading step may also allow for
fewer iterations and higher utilisation of the memory bandwidth
available. While designed for the SKA Pulsar Search Engine,
the algorithm developed here may find practical uses in other
applications where a very large window is required and FPGA
accelerators are available.

ACKNOWLEDGMENT

We gratefully acknowledge that this research was financially
supported by the SKA funding of the New Zealand government
through the Ministry of Business, Innovation and Employment
(MBIE). T.S. thanks their colleagues, Leighton Hancock and
Haomiao Wang, for their assistance. The authors would also
like to thank Ben Stappers, Jayanta Roy, and the rest of the
SKA-TDT for their input and work on the pulsar search pipeline.

REFERENCES

[1] Inc Advanced Micro Devices. Amd radeon r7 series graphic cards

designed for online gaming, 2015.

S. Carr and K. Kennedy. Compiler blockability of numerical algorithms.

In Proceedings of the 1992 ACM/IEEE Conference on Supercomputing,

Supercomputing ’92, pages 114-124, Los Alamitos, CA, USA, 1992.

IEEE Computer Society Press.

Daniel Castano-Diez, Dominik Moser, Andreas Schoenegger, Sabine

Pruggnaller, and Achilleas S. Frangakis. Performance evaluation of

image processing algorithms on the gpu. Journal of Structural Biology,

164(1):153 - 160, 2008.

[4] Thomas H Cormen. Introduction to algorithms. 2009.

[5] T. S. Czajkowski, U. Aydonat, D. Denisenko, J. Freeman, M. Kinsner,

D. Neto, J. Wong, P. Yiannacouras, and D. P. Singh. From opencl to high-

performance hardware on fpgas. In 22nd International Conference on Field

Programmable Logic and Applications (FPL), pages 531-534, Aug 2012.

Peter Dewdney. Skal system baseline design. Technical report, SKA

Office, 2013.

Suhaib A Fahmy, Peter YK Cheung, and Wayne Luk. High-throughput

one-dimensional median and weighted median filters on fpga. IET

computers & digital techniques, 3(4):384-394, 2009.

J. Gil and M. Werman. Computing 2-d min, median, and max filters. /[EEE

Transactions on Pattern Analysis and Machine Intelligence, 15(5):504-507,

May 1993.

T. Huang, G. Yang, and G. Tang. A fast two-dimensional median

filtering algorithm. [EEE Transactions on Acoustics, Speech, and Signal

Processing, 27(1):13-18, Feb 1979.

L Levin, W Armour, C Baffa, E Barr, S Cooper, R Eatough, A Ensor,

E Giani, A Karastergiou, R Karuppusamy, et al. Pulsar searches with

the ska. arXiv preprint arXiv:1712.01008, 2017.

A. R. Offringa, A. G. de Bruyn, M. Biehl, S. Zaroubi, G. Bernardi, and V. N.

Pandey. Post-correlation radio frequency interference classification methods.

Monthly Notices of the Royal Astronomical Society, 405(1):155-167, 2010.

S. Perreault and P. Hebert. Median filtering in constant time. [EEE

Transactions on Image Processing, 16(9):2389-2394, Sept 2007.

Gilles Perrot, Stéphane Domas, and Raphaél Couturier. Fine-tuned

high-speed implementation of a gpu-based median filter. Journal of Signal

Processing Systems, 75(3):185-190, Jun 2014.

L. Rabiner, M. Sambur, and C. Schmidt. Applications of a nonlinear

smoothing algorithm to speech processing. [EEE Transactions on

Acoustics, Speech, and Signal Processing, 23(6):552-557, Dec 1975.

SKA. Frequently asked questions about the ska, 2017.

J. E. Stone, D. Gohara, and G. Shi. Opencl: A parallel programming

standard for heterogeneous computing systems. Computing in Science

Engineering, 12(3):66-73, May 2010.

[17] R. V. van Nieuwpoort. Towards exascale real-time rfi mitigation. In 2016
Radio Frequency Interference (RFI), pages 69-74, Oct 2016.

[2

—

3

—

[6

=

[7

—

[8

[

[9

—

[10]

[11]

[12]

[13]

[14]

[15]
[16]

[18]

[19]

H. Wang, J. Gante, M. Zhang, G. FalcAfo, L. Sousa, and O. Sinnen.
High-level designs of complex fir filters on fpgas for the ska. In 2016
IEEE 18th International Conference on High Performance Computing
and Communications; IEEE 14th International Conference on Smart
City; IEEE 2nd International Conference on Data Science and Systems
(HPCC/SmartCity/DSS), pages 797-804, Dec 2016.

Ben Weiss. Fast median and bilateral filtering. In ACM SIGGRAPH 2006
Papers, SIGGRAPH ’06, pages 519-526, New York, NY, USA, 2006. ACM.

