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A fundamental challenge in mathematical modelling is to find a model that embodies the essential

underlying physics of a system, while at the same time being simple enough to allow for

mathematical analysis. Delay differential equations (DDEs) can often assist in this goal because, in

some cases, only the delayed effects of complex processes need to be described and not the

processes themselves. This is true for some climate systems, whose dynamics are driven in part by

delayed feedback loops associated with transport times of mass or energy from one location of the

globe to another. The infinite-dimensional nature of DDEs allows them to be sufficiently complex

to reproduce realistic dynamics accurately with a small number of variables and parameters. In this

paper, we review how DDEs have been used to model climate systems at a conceptual level. Most

studies of DDE climate models have focused on gaining insights into either the global energy bal-

ance or the fundamental workings of the El Ni~no Southern Oscillation (ENSO) system. For exam-

ple, studies of DDEs have led to proposed mechanisms for the interannual oscillations in sea-

surface temperature that is characteristic of ENSO, the irregular behaviour that makes ENSO diffi-

cult to forecast and the tendency of El Ni~no events to occur near Christmas. We also discuss the

tools used to analyse such DDE models. In particular, the recent development of continuation soft-

ware for DDEs makes it possible to explore large regions of parameter space in an efficient manner

in order to provide a “global picture” of the possible dynamics. We also point out some directions

for future research, including the incorporation of non-constant delays, which we believe could

improve the descriptive power of DDE climate models. Published by AIP Publishing.
https://doi.org/10.1063/1.5006923

In many climate systems, processes interact to form posi-

tive (destabilising) or negative (stabilising) feedback loops,

which play pivotal roles for the stability and sensitivity of

climate phenomena. Such feedback mechanisms are gen-

erally associated with delays due to transportation times

of mass or energy over large distances. The relevant delay

times depend on the climate system studied and may differ

vastly across a large range of time scales, depending on

intermediate processes involved in the respective feedback

loops. To derive a conceptual climate model that is amena-

ble to mathematical study, one approach has been to

incorporate delayed feedback terms explicitly and obtain

a delay differential equation (DDE). This paper offers a

brief review of how DDEs have been introduced as con-

ceptual climate models in different contexts, and what

they are able to say about the dynamics and stability of

the climate systems under consideration. The emphasis is

on more recent results that have utilised advanced numer-

ical methods for the bifurcation analysis of DDEs.

I. INTRODUCTION

Climate models can take many different forms. On the

one hand, there exist sophisticated forecasting models

derived from first principles known as General Circulation

Models (GCMs). GCMs are very complex, often with mil-

lions of variables and parameters, and require vast amounts

of time and computational resources to simulate. The use of

GCMs for making climate predictions is currently common

practice; however, they may suffer from a large number of

parameter uncertainties and can potentially contain large

errors; for example, see Ref. 9 and references therein. On the

other hand, conceptual climate models are designed to inves-

tigate the interactions of key mechanisms in a climate sys-

tem, such that their governing equations are much simpler

and can be analysed mathematically. Therefore, conceptual

climate models have proven very useful for investigating the

fundamental properties of a climate system. Generally, con-

ceptual models are developed in order to describe empirical

relationships observed in nature. In some cases, they can

also be derived from more complex models (that is, more

“realistic” models) by making suitable physical assumptions

or approximations; for example, see Refs. 25 and 51.

Conceptual climate models have even been used to make

predictions; for example, to provide an insight into sea-level

rise response to emissions81 and to predict how stable a cli-

mate system is against global climate change.113

Common components of conceptual climate models are

positive or negative feedback mechanisms, which amplify or

diminish, respectively, any changes in system variables.

Understanding how different types of feedback affects the

dynamics of a system, and how multiple feedback mecha-

nisms interact with one another, is therefore of vital impor-

tance for understanding the observed behaviour of a climate
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system. Feedback loops occur naturally in climate systems on

a variety of time scales, mainly as a result of mass or energy

transport across the globe and/or throughout the atmosphere.

Consider, for example, energy-balance models (EBMs),

which focus on the global balance between incoming and out-

going radiation on the Earth. In the palaeoclimate context of

investigating transitions between glacial and interglacial

states, the time scales of interest are 103–105 years.5 There

exists a fundamental feedback loop in EBMs because the

global temperature of the Earth depends on the albedo of the

Earth, which measures how much incoming solar radiation is

reflected back into space. In turn, the albedo is related to the

level of snow/ice cover, which depends on the global temper-

ature. Yet, it can take a long time for ice of a significant size

on the global scale to form or melt. Therefore, albedo values

do not depend on present temperatures alone, but on tempera-

tures in the past; in other words, there is a reaction delay in

the system on the order of 103–104 years.

Another important example, where feedback mecha-

nisms play a role in climate variability, is the El Ni~no

Southern Oscillation (ENSO) system, which is a coupled cli-

mate system with an oceanic component (El Ni~no) and an

atmospheric component (Southern Oscillation). Figure 1 pro-

vides evidence for this coupling. The blue curve in panel (a)

displays the average anomaly in the sea-surface temperature

(SST) in the eastern Pacific Ocean (NINO3 index) and the

red curve is the normalised surface air pressure difference

between Tahiti and Darwin, Australia (Southern Oscillation

Index; SOI), throughout the years 1964–2014. Generally, the

blue and red time series are in anti-phase synchronisation, so

that high NINO3 indices coincide with low SOI and vice-

versa. There are many extrema in both time series of Fig.

1(a) on a small, intra-seasonal time-scale. However, it is

only the larger peaks in the NINO3 index that represent the

El Ni~no events, the warm phase of ENSO, while large drops

represent the cool phase known as La Ni~na. These events

tend to occur every four to seven years with significant vari-

ability in strength. Interdecadal variability can also be seen

in panel (a). What is not so clear in the time series, yet is

commonly known, is that El Ni~no events generally occur at

the same time of the year near Christmas. This has been

attributed to seasonal locking of the time series, as illustrated

by the histogram in panel (b), which shows the monthly posi-

tions of unusually warm events (above 1 �C) from the NINO3

data shown in panel (a). Clearly, there is a tendency for El

Ni~no events to occur in boreal winter. The annual cycle there-

fore represents an intrinsic time scale of the ENSO system.

According to the so-called delayed action oscillator
(DAO) description of ENSO, which we discuss in detail in

Sec. III, certain aspects of the observed SST fluctuations can

be attributed to the movement of oceanic waves across the

Pacific Ocean. These waves form feedback loops that pro-

vide delayed effects to the SST in the eastern Pacific Ocean

on the order of months.

When deciding how to describe a given climate system,

there are several modelling approaches available, each with

their own methodological advantages and challenges.

Differences in intrinsic time scales, such as those in the above

EBM with ice-albedo feedback, can generally be approxi-

mated by ordinary differential equations (ODEs) in the form

of fast-slow systems.59 Transportation phenomena, such as the

propagation of oceanic waves in the delayed action oscillator,

can be described by partial differential equations (PDEs).

We are concerned here with another modelling approach,

which is to represent the delayed effect of feedback loops

explicitly. The mathematical model then takes the form of

delay differential equations (DDEs), where the delay is incor-

porated explicitly into the relevant feedback term of the equa-

tion. This modelling approach is discussed in more detail

below in the context of climate models. In the past, it has

been applied successfully to a wide range of physical systems;

for example, in ecology,55 control theory,73 models of genetic

regulatory systems,22,69 neural systems,11,83 epidemics,61 cou-

pled chemical oscillators7 and laser systems.56,62

The use of DDEs as equations of choice in conceptual

climate modelling has three important advantages. First, the

explicit inclusion of delayed effects can potentially lead to a

more accurate description of certain processes in the concep-

tual model. The accuracy of models is often an issue; see, for

example, the review Ref. 60 on DDEs in the context of engi-

neering applications. An example from climate science con-

cerns the EBM with ice-albedo feedback discussed above.

Earlier literature assumed an instantaneous relationship

between albedo strength and global temperatures; for exam-

ple, see Refs. 33, 63, and 84. Delays were purposely intro-

duced into existing models in an effort to make them more

realistic; for example, see Refs. 5 and 34.

Second, a representation of a system by a DDE has the

potential to describe the behaviour of interest with a much

smaller number of variables and parameters, thus, offering a

means of model reduction. In particular, the explicit details of

the transportation process itself that underlie a delayed feed-

back is no longer required as part of the model. Consider, for

example, the ENSO system already mentioned above. In

order to describe the time evolution of SST anomalies in the

eastern equatorial Pacific Ocean, it is sufficient to consider

only the effects of the delayed feedbacks in terms of their

strengths and the associated delay times. This constitutes a

FIG. 1. Panel (a) shows the monthly NINO3 index and SOI deviations from

1964 to 2014 as blue and red curves, respectively. Calendar month locations

of warm events (peaks above 1 �C) for the NINO3 index data on panel (a)

are displayed in panel (b). The NINO3 data are from NOAA and the SOI

data are from the Climatic Research Unit, University of East Anglia.
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model reduction compared to the full PDE for zonal wind sur-

face anomaly, surface pressure anomaly, momentum and ther-

mal damping coefficients, etc.

Third, DDEs can be simple enough to be amenable to

mathematical analysis, including linear stability analysis and

bifurcation analysis with advanced numerical tools. In this

context, each delay time appears as a parameter, so that its

influence can be investigated systematically.

On the other hand, issues may arise in the justification

of certain modelling assumptions. For example, in the vast

majority of published studies on DDE climate models, it is

assumed that the delays involved remain constant over time,

an assumption that is certainly open for debate.

The purpose of this paper is to report how DDEs have

been introduced as conceptual models of climate systems,

where we focus on EBMs, palaeoclimatology models and

ENSO models. We discuss some results from relevant stud-

ies, which are, as to be expected, of phenomenological and

fundamental nature. We stress that the specific models we

consider are the products of other researchers’ modelling

choices, and we do not attempt to validate them here. Rather,

our goal is to review what results can be obtained and, espe-

cially, how advanced numerical methods for DDEs can help

in this endeavour.

In our review of DDEs in climate models, we focus on

DDEs with constant delays, since this is representative of the

vast majority of existing literature. Such constant-delay

DDEs take the form:

_yðtÞ ¼ f ðyðtÞ; yðt� s1Þ; yðt� s2Þ;…; yðt� sNÞ; tÞ: (1)

Here, y 2 Rn is a state vector and there are N delay terms—

one for each feedback loop in the climate system and with a

delay si associated with its underlying physical processes;

for example, the time for ice sheets to melt.

There is a well-established theory of DDEs with a finite

number of constant delays.24,40,89,90 In contrast to ordinary

differential equations (ODEs) with n variables and phase

space Rn, the phase space of the DDE is Cð½�maxðsiÞ; 0�;
RnÞ �R, where Cð½�maxðsiÞ; 0�; RnÞ is the infinite-

dimensional space of continuous functions over the delay

interval with values in Rn and t 2 R represents time.

Therefore, an initial condition for the DDE consists of a whole

function segment over the time interval ½�maxðsiÞ þ t0; t0�,
often referred to as initial history.

The bifurcation theory for constant-delay DDEs is anal-

ogous to that for ODEs, because the solutions of constant-

delay DDEs depend smoothly on the parameters and initial

history and the linearisation of equilibria and periodic solu-

tions have at most a finite number of unstable eigendirec-

tions.28,40 Centre Manifold and normal form reductions can

be applied to a constant-delay DDE to yield an ODE that

describes the dynamics locally near a given bifurcation.

Therefore, one encounters the same type of bifurcation in

DDEs as in ODEs. For example, it is known that in the case

of negative delayed feedback, _xðtÞ ¼ �gðxðt� sÞÞ for a

large family of odd functions g, the zero solution undergoes

a Hopf bifurcation for a critical value of s; this creates a fam-

ily of periodic solutions of period 4s.15,17,68

In most cases of past literature on DDEs as conceptual

climate models, numerical simulation is employed to investi-

gate their time-dependent solutions. Generally, the existing

methods for simulating ODEs can be adapted for DDEs; for

example, popular software routines include Matlab’s dde23,86

dde_solver,95 radar5 (Ref. 39) and the solver of xppaut.30

Figure 2 shows example solutions of such a DDE, in this

case, the ENSO DDE model (4) introduced in Sec. III B these

were computed with the improved Euler method and a con-

stant initial history hðtÞ � 0 to demonstrate different types of

dynamical behaviour, which we encounter and discuss in

Secs. II–IV in more detail. The model contains two delays, sp

and sn, and is subject to periodic forcing, representing sea-

sonal effects, with time t measured in years. The solutions are

displayed (after transients have died down) as a time series, a

projection in the ðhðtÞ; hðt� spÞ; hðt� snÞÞ-space, a strobo-

scopic trace in the ðhðtÞ; hðt� spÞ; hðt� snÞÞ-space and a log-

arithmic power spectrum obtained as the Fourier transform of

the time series over 300 years. To obtain a so-called strobo-

scopic trace,10,57 the first or head point h(t) of the solution

segment is plotted when t 2N (once for each forcing period)

in projection onto the ðhðtÞ; hðt� spÞ; hðt� snÞÞ-space.

Row (a) shows a periodic solution of period one. The

time series shows periodic motion, which corresponds to a

closed curve in the phase space projection. For periodic solu-

tions, the number of points in its stroboscopic trace corre-

sponds to the period of the solution, so this solution is of

period one. Finally, the power spectrum has a single dominant

peak at one year. Note that all power spectra have a peak at

one year due to the seasonal forcing. The solution shown in

row (b) is quasiperiodic, which is an unlocked solution on a

torus. A slight modulation of local peak heights is not so obvi-

ous in the time series; nevertheless, it is clear that the projec-

tion of the solution in the ðhðtÞ; hðt� spÞ; hðt� snÞÞ-space is

not a closed loop but rather a torus, which is filled densely by

trajectories. The closed loop formed by the points of the stro-

boscopic trace is further evidence of a quasiperiodic solution.

As such, the distinct peaks in the power spectrum are incom-

mensurate with the frequency of the seasonal forcing. The

solution shown in row (c) is periodic, now with a period of

four. The solution projection in ðhðtÞ; hðt� spÞ; hðt� snÞÞ-
space is a closed curve, and there are four points in the strobo-

scopic trace. In row (d), the solution is chaotic. This is evident

from the irregular time series and the broad power spectrum,

which contains contributions from all frequencies as is typical

for a chaotic solution.

In the context of conceptual climate models, it is gener-

ally difficult to estimate or even physically interpret certain

parameters, which may realistically be subject to consider-

able fluctuations over time. Therefore, it is necessary to gain

an insight into the possible dynamics of a model across a

large range of its parameter space. However, it can be

impractical to explore large parameter ranges by numerical

integration, because one has to deal with many possible ini-

tial conditions, transients and multistabilities. These factors

can make it difficult to interpret the model dynamics cor-

rectly, understand how typical certain model behaviour is

and how certain dynamical features relate to different model

components.
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One way to overcome these challenges is to employ

continuation software, which numerically continues (or

tracks) equilibria or periodic solutions, while a parameter

is varied. Such software can also calculate the stability of

the solutions in order to identify codimension-one bifurca-

tions. These bifurcations, in turn, can be continued numeri-

cally as curves in a two-dimensional parameter plane by

fixing constraints on the stability of the solutions.

Conducting a bifurcation analysis by such means allows

one to organise the parameter space into regions of differ-

ent solution types, providing a comprehensive overview of

the dynamical behaviour the model is capable of produc-

ing. Continuation methods have been applied to conceptual

climate models, but mostly those that do not include delay

terms; for example, see Ref. 19 by Crucifix. Impressively,

such methods have even been used to analyse a coupled

ocean-atmosphere model of a considerably higher com-

plexity level compared to conceptual models; for example,

see Ref. 27 by Dijkstra and Neelin.

In this paper, we will see that most results in the existing

literature on DDE models of climate systems are obtained by a

linear stability analysis of steady-state solutions, simulation of

time-dependent solutions and often their spectral analysis.

More recent work on these DDE models has utilised state-of-

the-art continuation software. Two ready-to-use continuation

software packages for DDEs are DDE-Biftool29,87 and Knut

(formerly, PDDE-Cont);93 the numerical methods implemented

in both packages are reviewed in Ref. 77. As we will present

and review with some examples, this makes it possible to

develop a more detailed and comprehensive picture of possible

behaviour of DDE climate models in dependence on parame-

ters. Overall, we suggest that continuation methods provide an

efficient means to analyse DDE climate models across appro-

priately large parameter ranges. We also show that the common

modelling assumption that the delays are constant can be

relaxed. Indeed, the numerical continuation approach also

allows for non-constant delays in DDE climate models (in par-

ticular, distributed or state-dependent delays) to be considered.

FIG. 2. Stable solutions found by numerical integration of model (4) for j¼ 0.9 (a), j¼ 1.2 (b), j¼ 1.5 (c), and j¼ 2 (d) represented as a time series (far left

column), as a projection in the ðhðtÞ; hðt� spÞ; hðt� snÞÞ-space (middle-left column), as a stroboscopic trace in the ðhðtÞ; hðt� spÞ; hðt� snÞÞ-space (middle-

right column) and as a power spectrum on a logarithmic scale in arbitrary units [a.u.] (far-right column). Other parameters are a¼ 2.02, b¼ 3.03, c¼ 2.6377,

du¼ 2.0, dl¼�0.4, sp¼ 0.0958, and sn¼ 0.4792.
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II. ENERGY-BALANCE MODELS AND
PALAEOCLIMATOLOGY

Ghil and Bhattacharya34 were the first to incorporate a

delay term into a mathematical model of a climate system; in

this case, an energy-balance model (EBM). Therefore, we

begin our brief review of DDE climate models with the dis-

cussion of EBMs. The delay term in this setting was not

derived mathematically; rather, it was introduced following

previous studies that suggest a time lag between the Earth’s

surface temperature and the global ice volume; see Ref. 5

and references therein. The best way to model this time lag

is subject to choices and debate; we do not attempt to justify

the necessary assumptions in this section, but refer the reader

to the original papers.

The simplest type of EBM approximates the Earth as a

single point in space, and a variable T represents a globally

averaged surface temperature. Although mathematically this

is a one-dimensional model because it has one variable, in

climate science, such a model is conventionally referred to

as a zero-dimensional EBM because it has no spatial dimen-

sions. Similarly, a one-dimensional EBM has one spatial

dimension in the latitudinal (meridional) direction around

the Earth, and a two-dimensional EBM is one where the tem-

perature varies across the whole surface of the Earth.

In EBMs, the albedo of the Earth, a, parametrises how

much solar radiation is reflected back into space by the

Earth’s atmosphere and surface; thus, given a solar insolation

S, the power per unit area Sa is reflected and S(1 � a) is

absorbed by the Earth. As described in Sec. I, delayed effects

can be incorporated in EBMs by assuming that the albedo of

the Earth depends on temperatures in the past.

Some analytical results have been achieved for EBMs

with constant-delay DDEs. For example, the hysteresis of

fixed point solutions was found in a one-dimensional EBM by

Diaz et al.23 and in a two-dimensional EBM by Hetzer.41–44

Nonetheless, DDE models relevant to palaeoclimatology have

primarily been investigated by means of simulation. Various

methods of numerical integration have been used; for exam-

ple, the Euler method with constant initial histories2 or the

Crank-Nicolson finite difference method with initial histories

taken from simulated trajectories for zero delay.5 Often, how-

ever, the precise method of integration has not been stated in

past literature.

In past literature, simulations were almost always run

with the initial histories chosen to be a constant value, which,

however, constitutes only a one-dimensional subspace of

the space of continuous functions C. Note that in Ref. 1,

Andersson and Lundberg did compare the use of both con-

stant initial histories and those taken from associated zero-

delay simulations, but found that the different initial histories

had no effect on their results. However, as we will see later,

there are indeed cases where the initial histories used do

become important.

Generally, the inclusion of delay effects into EBMs was

found to induce surprisingly complicated dynamics, when the

dynamics without delay effects was known to be trivial. In

Ref. 1, Andersson and Lundberg studied a zero-dimensional

EBM of the form:

C0
_TðtÞ ¼ Q0 1� a�ðTðt� sÞÞ½ � � rgðTÞT4; (2)

where T is the temperature, C0 is the averaged global heat

capacity, Q0 is the mean solar radiative input and r is the

Stefan-Boltzmann constant. The term T4 appears according

to the Stefan-Boltzmann law for black body radiation and

the function g(T) is the parametrised effective emissivity

coefficient. The function a*(T(t – s)) describes how the over-

all albedo of the Earth depends on temperature with a delay

s, which the authors assume to be constant. They found that

for model (2) with a large enough delay, one of the steady-

state solutions loses stability, leading to self-sustaining oscil-

lations. As the delay is increased, the dynamics becomes

chaotic via a cascade of period-doubling bifurcations.

In Ref. 2, Bar-Eli and Field studied a zero-dimensional

EBM with three albedo variables instead of just one, as illus-

trated schematically in Fig. 3, with ac and as representing the

cloud and surface albedos for incoming radiation, respectively.

Infra-red radiation emitted from the surface, L, has longer

wavelengths, so the albedo of clouds for this radiation is differ-

ent and denoted acp. The authors of Ref. 2 assumed that each

albedo is affected by the same constant delay. They observed,

similar to Ref. 1, the onset of oscillations and a cascade of

period-doubling bifurcations, but also found evidence of an

alternative route to chaos that may be related to intermittency.

In a one-dimensional EBM studied by Ghil and

Bhattacharya in Ref. 34, the delay describes albedo depen-

dence on continental ice-sheet extension across the globe.

These authors demonstrated that varying parameters may lead

to the appearance of finite amplitude self-sustaining oscilla-

tions without the presence of external forcing; they suggested

that this mechanism could play a role in glaciation cycles.

In the context of palaeoclimatology, specific Earth sub-

systems have also been described by DDEs. The thermohaline

circulation in the Atlantic Ocean and its influence on glacial

cycles were studied by Ghil et al.35 and then by Wright

et al.109 in the framework of discrete space variables as a so-

called Boolean delay equation. The variable describing the

volume of ice sheets in the Northern hemisphere, for example,

takes on one of two states: low or high ice volume. This is

similar to the discrete variable used in delayed switching.88

FIG. 3. Schematic representation of the role of albedos, based on the model

studied in Ref. 2. S represents solar insolation and L is radiation emitted by

the Earth surface. The parameters ac, acp and as are the albedos of the clouds

in relation to S, the clouds in relation to L and the surface, respectively.
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Delays were included in the model of Refs. 35 and 109 due to

the gradual expansion of ice sheets and the overturning time

of the Atlantic Ocean circulation. It was found by numerical

simulation that the length of the glacial episodes depends con-

tinuously on the delay parameters and that, depending on the

initial history used, the system demonstrates multistability.

In an effort to compare model results with real-world data,

Rial and Anaclerio76 used a DDE to investigate the aspects of

the Vostok ice core data, which provide proxy temperature

data for the last 430 000 years. Their model is a logistic growth

DDE that describes the competition between a positive ice-

albedo feedback and a negative delayed precipitation-

temperature feedback with a parametrically forced delay time.

The latter feedback exists because an increase in the globally

averaged temperature induces an increase in precipitation. This

allows ice sheets to grow in length towards the equator,

increasing the global albedo and thereby decreasing the tem-

perature;50 for a summary of the feedback mechanisms at play

here, see Sec. 11.3 of Ref. 26. Similar to the ice-albedo feed-

back, the time lag is due to the different time scale at which

the ice-sheet changes. A spectral analysis of time series gener-

ated with the model for different forcing strengths of the delay

time showed similarities to the ice core data.76 A similar ver-

sion of the logistic growth DDE was coupled to a simple

energy-balance equation by Rial in Ref. 75. Time series and

power spectra from this model captured significant features

from deep-sea sediment and ice core data at Milankovitch and

millennial scales, including the characteristic saw-tooth shape

of the data time series, the mid-Pleistocene climate switch and

the Dansgaard-Oeschger oscillations. Generally speaking, the

results suggested that the Earth’s climate may be only weakly

driven by astronomical forcing with most “intriguing” dynami-

cal features being the result of internal nonlinear processes and

feedback mechanisms.

III. DELAYED ACTION OSCILLATOR MODELS OF
ENSO

Conceptual ENSO models have been developed that

focus on the interactions of key mechanisms in order to bet-

ter understand some basic dynamical features, such as those

described in Sec. I. Most of these models are based on the

so-called delayed action oscillator (DAO) paradigm, first

introduced in 1988 by Suarez and Schopf.92 In this paradigm,

ENSO dynamics are driven by feedback loops that form

through the coupling of atmospheric and oceanic processes

above and in the equatorial Pacific Ocean, as illustrated in

Fig. 4. The variable h represents deviations of the thermo-

cline depth from its long-term mean at the eastern boundary

of the equatorial Pacific Ocean. The thermocline is a rela-

tively thin layer of the ocean that separates the deeper cold

waters from the warmer well-mixed waters. Its depth can be

considered a proxy for sea-surface temperature (SST), so a

large h corresponds to the warming of the eastern equatorial

Pacific Ocean observed during El Ni~no events. A positive

perturbation in h slows down the easterly trade winds, creat-

ing westerly wind anomalies, as shown in Fig. 4. This indu-

ces a transport of warm surface water in the central part of

the Pacific Ocean, where the ocean-atmosphere coupling is

the strongest. Because of the so-called Ekman transport phe-

nomenon, the surface water moves towards the equator (that

is, perpendicular to the wind anomaly direction), as indicated

by the blue vertical arrows in Fig. 4; for details, see Chap. 3

of Ref. 100. The SST rises, creating a positive signal that is

carried back to the eastern boundary as a so-called Kelvin

wave to form a positive feedback loop. Simultaneously, a

negative signal is created off the equator, where there is a

deficit of warm surface water. This signal travels westward

as a so-called Rossby wave, which is then reflected at the

western edge of the Pacific basin before travelling back to

the eastern boundary as a Kelvin wave, thus closing the neg-

ative feedback loop represented by the bar in Fig. 4. In this

system, the delays are due to the finite speeds of the Kelvin

and Rossby waves, which typically take 1–6 months to carry

a signal across the Pacific Ocean.

As mentioned above, in the DAO models that we discuss

below, the variable h describes anomalies of the thermocline

depth, which is considered a proxy for SST, in the eastern

equatorial Pacific Ocean. A modelling assumption made in all

the DAO models is that the delay times associated with the

travelling oceanic waves are constant. The models were gen-

erally studied by simulations; for example, with a variable-

order, variable-step Adams method32,99 or a forward-stepping

algorithm (Appendix 1 of Ref. 79), but in many cases, the pre-

cise integration method was not stated. Nonetheless, the use

of constant initial histories seems to be common practice

when running simulations (except for Refs. 52–54).

In contrast to the case of EBMs and palaeoclimatology

models, the justification of describing the ENSO system with

DDEs has a strong physical background. To explain why this

is so, we briefly discuss the Zebiak-Cane model.111 It is clas-

sified as an intermediate complexity model (ICM)—a type of

model that on the scale of complexity lies in-between GCMs

and conceptual models. ICMs utilise the same physical equa-

tions as GCMs, but apply them only to a subsystem of the

global climate together with artificial boundary conditions.

The Zebiak-Cane model, for instance, combines Newton’s

laws of motion to describe fluid flow with the laws of ther-

modynamics to describe the coupled dynamics of the ocean

and atmosphere of the tropical Pacific Ocean. Specifically,

the equations represent only anomalies from a seasonally

FIG. 4. The variable h represents deviations from the mean thermocline

depth at the eastern boundary of the equatorial Pacific Ocean. A positive per-

turbation in h creates westerly wind anomalies. The coupling between the

ocean and the atmosphere allows for the creation of positive and negative

delayed feedbacks. The green arrows and bars represent processes of posi-

tive and negative reinforcement, respectively (see text for details).
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varying mean state, which is specified by observational data.

Compared to typical numerical weather-prediction models,

the Zebiak-Cane model is still considered simple. Despite its

relative simplicity, it was shown to be very good at predict-

ing the timing and magnitude of El Ni~no events.13

By following assumptions made by Jin in Ref. 46, one

can derive equations for the propagation of Kelvin and

Rossby waves from the Zebiak-Cane model. By applying

appropriate boundary conditions, one can then represent the

resulting feedback loops as described above by a DDE.

Hence, many of the assumptions required for the DDE

description of ENSO dynamics are justified, at least indi-

rectly, by the success of the Zebiak-Cane model. Details of

the DDE derivation can be found in Chap. 7.5.4 of Ref. 25.

A. Basic DAO with delay

The story of investigating ENSO by means of DDE

models begins with a DAO model introduced by Suarez and

Schopf in Ref. 92, which is given by

_hðtÞ ¼ hðtÞ � hðtÞ3 � ahðt� sÞ: (3)

The first term reflects a “local” (instantaneous) positive feed-

back, whereby a SST perturbation heats the atmosphere,

whose wind response drives ocean currents to reinforce the

original perturbation. The growth of the instability due to the

positive feedback is limited by effects such as advective pro-

cesses in the ocean and moist processes in the atmosphere,

which are represented by the second term in Eq. (3). The

third term describes the effect of delayed oceanic waves. A

linear stability analysis of this simple model was conducted

in Ref. 92 to show that the steady-state solution loses stabil-

ity for certain parameter values of a and s. The resulting

periodic solutions have periods of at least twice the length of

delay, demonstrating that this simple feedback can provide a

mechanism for ENSO’s oscillatory behaviour on an appro-

priate interannual timescale.

In Ref. 4, Battisti and Hirst showed that model (3) can

be derived from an intermediate coupled ocean-atmosphere

model3 that is very similar to the Zebiak-Cane model.

Through their derivation of the DDE, Battisti and Hirst were

able to relate the parameters to background states of the

ocean and atmosphere and the geometry of the Pacific basin.

By comparing alternative background states and geometries,

the results helped to explain why ENSO-like variability is

not observed in the tropical Indian or Atlantic Ocean.

Supporting evidence of the DAO paradigm was provided by

empirically derived time-delay models, which were shown to

produce oscillations similar to observable data by Graham

and White in Ref. 37 and to a sophisticated oceanic general

circulation model by Schneider et al. in Ref. 82.

B. Multiple feedback loops and seasonal forcing

The simple negative delayed feedback in model (3) pro-

vides a mechanism for SST oscillations. There have been

numerous extensions to this model, in an effort to make the

models more realistic by including additional time-scales.

For example, the inclusion of only one delay term is due to

the modelling assumption that only one mode of Rossby

wave is important. In fact, many modes of Rossby waves

form at different latitudes with different phase speeds. White

et al.107 showed, by simulation and spectral analysis of a

DAO model, that delay times associated with sets of Rossby

waves forming at approximately 7�N, 12�N, and 18�N result

in biennial, interannual and decadal signals similar to those

observed in data by Tourre et al.96

The positive delayed feedback formed by Kelvin waves,

as described above, and seasonal forcing were included by

Tziperman et al. in Ref. 99 in the DDE model

_hðtÞ ¼ aAðj; hðt� spÞÞ
�bAðj; hðt� snÞÞ þ c cos ð2ptÞ; (4a)

with Aðj; hÞ ¼
dutanh

j
du

h

� �
if h � 0;

dltanh
j
dl

h

� �
if h < 0:

8>>><
>>>:

(4b)

The positive and negative feedbacks are associated with

fixed delay times, sp and sn, respectively. The seasonal forc-

ing is represented by additive forcing with a period of one

year. The function A(h) is a special case of the ocean-

atmosphere coupling function justified in Ref. 65 with cou-

pling strength j and horizontal asymptotes dh> 0 and dl< 0.

The model (4) is significant because it demonstrated that

the irregularity characteristic of ENSO could be reproduced

as chaotic behaviour of this simple DDE. Note that there is a

competing theory that the irregularity is driven by noise, in

particular, by small-scale, high-frequency stochastic forcing;

for example, see Refs. 70 and 94. Specifically, Tziperman

et al. observed a transition to chaos upon increasing the

parameter j and presented the same solutions shown here in

Fig. 2. Based on these solutions, these authors suggested that

the chaotic behaviour at j¼ 2.0 was due to the coexistence

of mode-locked solutions or, in other words, overlapping res-

onances. Furthermore, they suggested that the coexistence of

different mode-locked solutions depends on the strength of

nonlinearity in the model, so that j must be sufficiently large

to observe irregular behaviour. The view that ENSO irregu-

larity is primarily due to low-order chaotic processes gained

further support from Saunders and Ghil in the study of a dif-

ferent DAO model with two fixed delay times and a seasonal

cycle.79

Ghil et al. considered a simplification of model (4) in

Ref. 36, here referred to as the Ghil-Zaliapin-Thompson

model, with a¼ 0, du¼ 1 and dl¼ –1 that focuses on the

interaction between the negative delayed feedback and the

seasonal forcing. Model (4) thus becomes:

_hðtÞ ¼ �btanhðjhðt� snÞÞ þ c cos ð2ptÞ: (5)

Despite its simplicity, the Ghil-Zaliapin-Thompson model

(5) demonstrated complicated dynamics; specifically, it

reproduced important ENSO features such as intraseasonal

oscillations, interdecadal variability, frequency locking for

varying parameters (observed as a Devil’s terrace or two-

dimensional Devil’s staircase), as well as phase locking with
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the seasonal forcing. A primary tool utilised by Ghil et al.
was the computation of the so-called maximum maps, which

plot the maxima of simulated solutions as a function of two

parameters. In order to avoid transient effects, a trajectory is

given sufficient time (thousands of years) to approach and

reach a stable attractor. To ensure accuracy, the length of

time from which the maximum was obtained needed to be

sufficiently long, because the solution may not necessarily

be periodic.

Figure 5 shows an example of a maximum map from

Ref. 36 with parameters c and sn and a single fixed initial

history of h(t) � 1. One can easily identify two regimes—

one in the upper-left and one in the lower-right side of the

parameter plane—divided by a sharp interface, which repre-

sents where there is a rapid transition in max[h(t)]. Further

sharp interfaces form elongated shapes in the upper-left side

of the parameter plane. Given that generic stable solutions to

the model depend continuously on the parameters and the

initial history, as proven in Ref. 36, the observed sharp inter-

faces imply the existence of stability loss and families of

unstable solutions.

The existence of multistabilities in model (5) was

uncovered in a follow-up paper to Ref. 36 by studying the

effect of different constant initial histories.110 Zaliapin and

Ghil also demonstrated in Ref. 110 that the phase locking

observed in Ref. 36, which is an important feature of the

model because it agrees with the tendency of El Ni~no events

to occur primarily towards the end of the calendar year, is a

robust feature of the model, except when the forcing is weak.

In Ref. 98, Tziperman et al. studied the phase locking

mechanism with the model

_hðtÞ ¼ aAðjðt� spÞ; hðt� spÞÞ
�bAðjðt� snÞ; hðt� snÞÞ � ehðtÞ;

jðtÞ ¼ k0 þ dk sin
p
6

t

� � (6)

with A(j, h) given by Eq. (4b). The last term of the DDE

reflects attenuation due to dissipation. Motivated by studies

of more complex models, the effect of the seasons was not

included as an additive term, but as parametric forcing of the

ocean-atmosphere coupling strength. The parameters k0 and

dk are the mean coupling strength and annual variation,

respectively. Time t is measured in months. Tziperman et al.
analysed a particular solution of model (6) that demonstrated

non-periodic behaviour with large extrema of varying size

occurring every three years. They showed that for this solu-

tion, the El Ni~no events can only reach their peak when the

coupling strength is at its minimum strength, which is at the

end of the calendar year, and that this mechanism is very

robust to parameter changes. This phase-locking mechanism

was later shown by Galanti and Tziperman in Ref. 32 to be

essential in a more sophisticated model, which took the form

of an ODE coupled to a delay-difference equation, derived

from the Zebiak-Cane model by following similar physical

assumptions as Jin in Refs. 45 and 46. This model retains the

use of constant delays, but incorporates damping terms and

oceanic wave reflections not only at the western, but also at

the eastern boundary of the Pacific Ocean.

C. Continuation results for model (6)

In order to gain a more comprehensive view of the pos-

sible dynamics of model (6) and confirm the observations

made in Ref. 98, Krauskopf and Sieber58 employed the con-

tinuation software DDE-Biftool to conduct a bifurcation

analysis in the (dk, k0)-plane. Figure 6 illustrates that there

are qualitative changes in solutions, which occur as parame-

ters pass through curves of torus bifurcations (TR), period-

doubling bifurcations (PD) and saddle-node bifurcations of

periodic orbits. In the autonomous case of dk¼ 0, the trivial

zero-solution loses stability at a Hopf bifurcation (H) and

FIG. 5. Maximum map of the Ghil-Zaliapin-Thompson model (5) displaying

the maximum value of h(t) according to the colour scheme in the (c, sn)-

plane. Parameters are b¼ 1 and j¼ 11, and the initial history is h(t) � 1; t 2
[–sn, 0]. Reproduced with permission from Ghil et al., Nonlinear Processes

Geophys. 15, 417–433 (2008). Copyright 2008 CC-BY licence.

FIG. 6. Bifurcation set of model (6) in the (dk, k0)-plane. Curves of torus

(TR) and period-doubling (PD) bifurcations are shown. Saddle-node bifurca-

tions of periodic orbits form the boundaries of p:q resonance tongues. The

inset is an enlargement to highlight the location of the parameters used in

Ref. 98. Other parameters are a¼ 0.2535, b¼ 0.1901, e¼ 0.1601, du¼ 3,

dl¼�1, sp¼ 1.15 and sn¼ 5.75. Reproduced with permission from B.

Krauskopf and J. Sieber, Proc. R. Soc. A 470, 348 (2014). Copyright 2014

Published by the Royal Society.
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creates a family of periodic orbits. Once the forcing is intro-

duced with dk> 0, the zero-solution becomes a trivial peri-

odic solution with an amplitude of zero and a period of one,

which remains stable for small k0 and dk. While increasing

dk, the trivial periodic solution loses stability in a period-

doubling bifurcation, creating period-2 solutions. On the

other hand, increasing the parameter k0 leads to stability loss

through torus bifurcations. Therefore, above the curve TR,

there exist invariant tori and associated p:q resonance

tongues, as labelled in Fig. 6, for all q	 11. The resonance

tongues, which are bounded by curves of saddle-node bifur-

cations of periodic orbits, contain families of stable and sad-

dle p:q periodic orbits that are frequency locked. Therefore,

within each resonance tongue, the invariant torus has a fixed

rational rotation number p/q. In-between the resonance

tongues, quasiperiodic solutions exist.

It should be noted that theory predicts the existence of

an infinite number of resonance tongues, one for every ratio-

nal rotation number of the torus, which become increasingly

narrow with increasing q. Figure 6 demonstrates that one can

obtain an effective overview of all possible dynamics of

model (6) for a relevant range of parameters. The insert in

the lower-right corner of Fig. 6 is an enlargement of the

parameter plane near the root point of the 1:3 resonance

tongue. The cross indicates the parameters used by

Tziperman et al. in Ref. 98 and reveals why the solution to

model (6) demonstrated aperiodic motion, yet closely resem-

bled a period-three periodic orbit. Krauskopf and Sieber also

plotted all stable 1:3 and 1:4 solutions (not shown) from the

parameter range considered in Fig. 6 in order to show that

the phase locking to the seasonal cycle is indeed a robust fea-

ture, in agreement with the claim made in Ref. 98.

D. Continuation results for model (5)

In Ref. 53, we used DDE-Biftool to conduct a bifurca-

tion analysis of the Ghil-Zaliapin-Thompson model (5) stud-

ied in Refs. 36 and 110. Figure 7 shows maximum maps

overlaid with a bifurcation set in the (c, sn)-plane; white,

grey and black curves represent saddle-node bifurcations of

periodic orbits, period-doubling bifurcations and torus bifur-

cations, respectively. In contrast to the maximum map shown

in Fig. 5, which was calculated for a single fixed initial his-

tory, the maximum maps in Fig. 7 are calculated such that

for each row of fixed delay sn, the parameter c is scanned up

and down (using previous solutions as initial histories), as

indicated by the arrows. This convenient and systematic

approach means that the simulated trajectory stays on the

same branch of solutions, while c is slowly varied until sta-

bility is lost. Comparing panels (a) and (b) of Fig. 7, the

maximum maps reveal regions of bistability, where the max-

ima of observed solutions depend on the direction in which

the parameter c is varied.

The bifurcation set in Fig. 7 divides the (c, sn)-plane

into regions of different solution types. Generally, the

dynamics is driven by two independent mechanisms that cre-

ate self-sustaining oscillations: the negative delayed feed-

back and the seasonal forcing. Along the line c¼ 0 in Fig. 7,

the periodic orbits depend only on the negative delayed

feedback term, creating periodic solutions for sn>p/

(2j).15,17,68 On the other hand, solutions with large c are

dominated by the seasonal forcing, so that they all have a

period of one and appear sinusoidal-like. As the parameter c
is decreased in panel (b), those solutions lose stability in

torus bifurcations at the black curve. Therefore, between line

c¼ 0 and the black curve of torus bifurcations is a region

where both oscillations interact and give rise to dynamics on

an invariant torus. The locked solutions on the torus are

organised into resonance tongues, which appear as elongated

shapes in Figs. 5 and 7.

The sharp interfaces of the maximum maps in Fig. 7 that

could not be explained by bifurcations of periodic orbits are

shown in Ref. 53 to be more complicated bifurcations

involving folding tori. These folding tori were analysed in

detail in Ref. 52, and were shown to possess a complicated

bifurcation structure that occurs as tori approach each other

and break-up. As briefly demonstrated in Ref. 52, this phe-

nomenon can be considered as a mechanism for climate tip-

ping that, in contrast to simple fold bifurcations of equilibria

or periodic orbits, has the additional bifurcation structure

FIG. 7. Maximum maps of the Ghil-Zaliapin-Thompson model (5) with

curves of saddle-node bifurcations of periodic orbits, period-doubling and

torus bifurcations; drawn in white, grey and black, respectively. Several fre-

quency ratios of resonance tongues are indicated. Other parameters are b¼ 1

and j¼ 11.
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associated with folding tori that could offer precursor infor-

mation about an approaching tipping point. This result is a

good example of how new phenomena, which are easily

overlooked in complex models, can be found and studied in

conceptual models.

E. Continuation results for model (4)

The combination of continuation software with bifurca-

tion theory was applied to model (4) in Ref. 54. Although it

was a crucial result that this simple deterministic model

could produce irregular behaviour reminiscent of real-world

data, there remained important open questions: Is this behav-

iour characteristic of the model? In other words, how robust

is this behaviour to changes in parameters? By what mecha-

nism does the solution become chaotic?

Figure 8 addresses these questions; it shows a bifurcation

set in the (c, j)-plane with curves of saddle-node bifurcations

of periodic orbits (blue), torus bifurcations (red), and period-

doubling bifurcations (black). The maximal Lyapunov expo-

nent of each solution, in cases where it is positive indicating

chaotic behaviour, is displayed by a colour scheme. The maxi-

mal Lyapunov exponents are calculated according to the algo-

rithm for DDEs described in Ref. 31. Also shown in Fig. 8 are

the parameter points of solutions (a)–(d) referred to by

Tziperman et al. in Ref. 99 and displayed in Fig. 2.

In Fig. 8, we see a (red) curve of torus bifurcations for

small values of j and resonance tongues that are rooted at the

zero-forcing line c¼ 0. For clarity, we only show 1:q reso-

nance tongues rooted at the c¼ 0 line (and not the resonance

tongues emerging from the red curve of torus bifurcations).

We found in Fig. 8 that positive maximal Lyapunov expo-

nents appear due to overlapping resonance tongues via

cascades of period-doubling bifurcations. This is also true

for regions outside of the displayed resonance tongues

because in-between those that are shown exist smaller,

higher-order resonance tongues that overlap.

The parameter point of solution (a) in Fig. 2 is located

in the parameter region of Fig. 8 that is dominated by the

seasonal forcing; hence, it is a solution of period 1. Upon

increasing j for fixed c¼ 2.6377, the solution loses its stabil-

ity at a torus bifurcation, so that quasiperiodic can also be

observed. The parameter point of solution (b) is not inside

any resonance tongue, and is therefore observed in Ref. 99 to

be quasiperiodic. On the other hand, the parameter point cor-

responding to solution (c) lies within the 1:4 resonance

tongue, in agreement with the period-4 solution seen in Ref.

99. The chaotic solution (d) in Fig. 2 is situated in a parame-

ter region of overlapping resonance tongues in Fig. 8.

Furthermore, according to the bifurcation set, the same

changes of solution type will be observed while increasing j
for any fixed 1:5�c 	 3:2 and possibly for larger c, albeit

for different values of j. Therefore, the transition to chaos

observed by Tziperman et al. and illustrated in Fig. 2 is

indeed a prominent feature of model (4) and leads to chaotic

behaviour across a substantial range of parameters.

Figure 9 shows the time series of solution (d) over a lon-

ger time window. It is a good example to demonstrate how

simple feedback mechanisms can account for the irregulari-

ties observed in both the amplitude and the frequency of El

Ni~no events.

Particular routes to chaos that account for the irregular

behaviour in ENSO models have been discussed at length;

for example, in literature reviews.74,78,102 In various ENSO

models, routes to chaos have been identified as either the

quasiperiodic route,49,97,98 period-doubling route12,16,65 or

the intermittency route.104 Interestingly, it was shown in Ref.

54 that different routes to chaos can coexist, even to the

same chaotic solution, depending only on the chosen path

through parameter space. While increasing j in model (4)

leads to chaos via the period-doubling route, an alternative

route to the same chaotic attractor is found when decreasing

j for a fixed c. In this case, chaos appears just below the

lower boundary of the 1:6 resonance tongue seen in Fig. 8.

After exiting the 1:6 resonance tongue, as j is decreased,

episodes of periodic behaviour become increasingly shorter

until they apparently disappear. This is evidence of the so-

called intermittent transition,72 which is characterised by the

sudden appearance of chaos at a saddle-node bifurcation.

FIG. 8. Bifurcation set of model (4) in the (c, j)-plane with saddle-node

bifurcations of periodic orbits (blue), torus bifurcations (red), and period-

doubling bifurcations (black). The shown p:q resonances are labelled, simi-

lar to the points (a)–(d) corresponding to solutions considered in Ref. 99 and

shown in Fig. 2. The colour scheme indicates the positive maximal

Lyapunov exponent. Other parameters are a¼ 2.02, b¼ 3.03, du¼ 2.0,

dl¼ –0.4, sp¼ 0.0958, and sn¼ 0.4792.

FIG. 9. Time series found by numerical integration of model (4) for

a¼ 2.02, b¼ 3.03, c¼ 2.6377, du¼ 2.0, dl¼ –0.4, sp¼ 0.0958, sn¼ 0.4792,

and j¼ 2.0.
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Notice that many aspects of the bifurcation set in Fig.

8 are similar to that of Fig. 6. One difference between the two

is that, while the resonance tongues in Fig. 8 overlap each

other, the resonance tongues in Fig. 6 appear to only approach

each other without overlapping. Whether this reflects a differ-

ence between additive and multiplicative forcing, or whether

the resonance tongues in Fig. 6 do overlap for larger parame-

ter values than those considered is not clear and warrants fur-

ther analysis.

F. Alternative ENSO paradigms

Apart from the DAO paradigm, other ENSO paradigms

have been considered and modelled as DDEs. The so-called

western Pacific oscillator paradigm focuses on the competi-

tion between central equatorial and western off-equatorial

Pacific thermocline and demonstrates the potential impor-

tance of western Pacific variability in relation to ENSO. It is

introduced by Weisberg and Wang in Ref. 105 and modelled

by a set of four DDEs with four variables describing anoma-

lies in: equatorial thermocline depth in the eastern Pacific

Ocean, off-equatorial thermocline depth in the western

Pacific Ocean and the zonal wind stresses above the west-

central and western Pacific Ocean. The thermocline variables

depend on delayed wind stresses, modelled with two fixed

delays. Weisberg and Wang showed that neither delays nor

nonlinear terms are necessary to produce oscillations.

Although the oscillations are periodic, Weisberg and Wang

argued that irregularities could be introduced into the

dynamics by, for example, adding nonlinearities or stochas-

tic forcing to the model. This study inspired Wang et al. to

further investigate the role of western Pacific variability in a

more complex model related to the Zebiak-Cane model in

Ref. 103, which produced co-oscillating anomaly patterns in

the western and eastern Pacific Ocean that were consistent

with observations.

In Ref. 101, Wang derived a DDE model that encapsu-

lates four different ENSO paradigms: the DAO, the western

Pacific oscillator, the recharge-discharge oscillator45,46 and

the advective-reflective oscillator.71 The model consists of

four variables describing anomalies in: the average SST in

the eastern equatorial Pacific Ocean, the off-equatorial ther-

mocline depth in the western Pacific Ocean, and the zonal

wind stresses above the central and western equatorial

Pacific Ocean. Wang suggested that naturally varying param-

eters could alter the relative role of each paradigm in differ-

ent El Ni~no and La Ni~na events. For example, the western

Pacific oscillator might play a larger role in strong El Ni~no

events, since strong equatorial wind anomalies are known to

occur in the western Pacific Ocean at times of strong El Ni~no

events.

IV. DISCUSSION AND OUTLOOK

In this paper, we reviewed how DDEs have been intro-

duced into climate models. In order to reflect the balance of

existing literature, we chose to focus on the application of

DDEs to EBMs, palaeoclimatology and ENSO models.

Upon including delayed effects into the respective phenome-

nological models, the dynamics becomes considerably more

complicated and allows for the reproduction and investiga-

tion of certain dynamical features that are observed in nature.

For example, a phase locking mechanism is identified as a

possible explanation why El Ni~no events tend to occur

around Christmas. Most of the results have been achieved by

running simulations. We, therefore, highlighted some more

recent results that were obtained by continuation methods

that are able to deal effectively with multistabilities, transi-

ents and the difficulty of choosing appropriate initial condi-

tions. These reviewed results include the identification of

folding tori, which are particularly interesting in the context

of climate tipping, as well as clarification of the precise

mechanism by which chaotic behaviour was observed in

simulations of an ENSO model.

Beyond the focus of this brief review, DDEs have been

used to describe other climate systems; these include an

interdecadal cycle in the Arctic and Greenland Sea,20 an

interdecadal cycle in the subpolar North Atlantic,108 vegeta-

tion interaction with global climate fluctuations,21 heat trans-

port between the Pacific extratropics and tropics,38 rainfall

with land-atmosphere coupling through soil moisture, vege-

tation and surface albedo6 and boundary reflections of oce-

anic waves in the Indian Ocean.106 Furthermore, we have

considered deterministic models here, yet stochastic behav-

iour is undoubtedly present in climate systems and could

have highly relevant effects, even if a system is primarily

driven by deterministic processes. For example, Stone

et al.91 added an additive Gaussian white noise term to the

DDE model (4) in order to investigate the effects of noise on

the DAO. For some values of the parameters, it was shown

that the noise affects the type of observed solution; in partic-

ular, noise can induce chaotic behaviour for parameters oth-

erwise associated with periodic or quasiperiodic behaviour.

A feature of the resulting time series is “regime like behav-

iour” with periods of both large amplitude erratic oscillations

and small amplitude annual cycles, similar to the dynamics

seen in more complex ENSO models.14 How best to repre-

sent noise in a conceptual model is not clear. Modelling

choices include whether the stochastic effects are additive or

multiplicative, and which distribution is most appropriate.

One could assume Gaussian white noise, as in Ref. 91, but

this may not be an accurate representation, since the noise

may be subject to various nonlinear processes. For further

examples of DDE climate models with noise, see Refs. 6, 38,

80, and 106.

A. Feedback loops with nonconstant delays

We now briefly discuss nonconstant delays in DDE cli-

mate models—a subject we believe has considerable poten-

tial for rendering phenomenological models more realistic

and relevant from a climate modelling point of view.

Moreover, DDEs with nonconstant delays are presently a

research area of considerable interest from a dynamical sys-

tems point of view, and climate DDEs arise as natural test-

bed models for new theory and numerical approaches.

A first class of nonconstant delays, referred to as distrib-
uted or weighted delays, describes the situation that a vari-

able might depend on a range of past times. Then, the delay
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term y(t – si) becomes an integral term
Ð smax

0
wðsÞyðt� sÞds,

where values of y are considered over a delay range of [0,

smax] and w(s) is the associated kernel or delay distribution

that says how different past times contribute to the overall

feedback. In the literature on DDE climate models, distrib-

uted delay was considered in a very early publication by

Bhattacharya et al.5 Despite this, the trend towards the use of

a constant delay term quickly set in, because it simplifies the

analysis of the DDE. In fact, the study of the constant-delay

DDE serves as a starting point for any investigation of the

role of nonconstant delays, but we believe it to be promising

and necessary that future work reconsiders the use of distrib-

uted delays in climate models. For example, in the above

mentioned DDE ENSO models, the delays are always

assumed to be constant, while oceanic wave velocities are

distributed around mean velocities.8 It would be interesting

to include into the model the associated distribution of

delays, which is influenced in no small part by the geometry

of the Pacific basin near the equator.

A second type of nonconstant delay arises when a delay

depends on the state of the system itself, which leads to a

delay term of the form si¼ si[t, y(t)]; one speaks of state-
dependent delays. For example, the delays in the DAO para-

digm of ENSO are determined in part by the position in the

Pacific Ocean where the oceanic waves form, which is influ-

enced by the position of the western Pacific warm-pool. Yet,

the position of the warm-pool itself is influenced by changes

in the thermocline depth. An implicit expression for a state-

dependent delay in this context has already been suggested

by Clarke et al. in Ref. 18.

State-dependence also arises when taking into account

subsurface ocean adjustment dynamics. In a series of

papers,47,48,66,67 Neelin and Jin studied three regimes of

ENSO dynamics: the fast-SST regime, where the SST adjust-

ment to changes in thermocline depth is instantaneous; the

fast-wave regime, where the speeds of oceanic waves are

infinite; and the mixed-mode regime, where both SST adjust-

ment and oceanic wave propagation times are essential.

They showed that the mixed-mode regime is the most realis-

tic. Although the coupling between deviations in the thermo-

cline depth and SST is considered in the DDE model

derivation for the DAO paradigm (for example, see Refs. 4

and 46), it is also interesting to consider how this relation-

ship affects the nature of the delay itself. One could incorpo-

rate the SST adjustment time by adding an additional delay

time that will depend on the position of the thermocline

itself. As a quite simple example, we consider linear state-

dependent delays, of the positive and negative feedback

loops, of the form

�sp=nðtÞ ¼ sp=n þ g hðtÞ: (7)

It represents the respective overall delay as the delay of the

oceanic wave dynamics sp=n plus the time gh(t) required for

the upwelling process to carry the signal from the thermo-

cline to the sea surface. The parameter g represents the

inverse of the speed of the upwelling process, as well as the

strength of the state-dependence of the delay. Assuming that

h is scaled, such that the distance between the mean

thermocline depth and the sea surface in the eastern equato-

rial Pacific Ocean is approximately 1, g¼ 0.04 corresponds

to a SST response time of about two weeks, as estimated in

Ref. 112.

DDEs with distributed or state-dependent delays can be

studied with the continuation software DDE-Biftool; for

example, see Refs. 10 and 64. Figure 10 shows how the 1:2

resonance tongue of Fig. 7 changes under the influence of

state-dependence as given by Eq. (7). As the value of g is

increased from g¼ 0 as in panel (a), there is a change in the

parameter region where period-2 solutions exist. More spe-

cifically, there is symmetry-breaking within the family of

period-2 solutions that results in curves SN of saddle-node

bifurcations of (originally symmetrically related) periodic

solution to no longer lie on top of each other; see panels (b)

and (c) of Fig. 10. At the same time, the root point of the res-

onance tongue on curve T grows into a region of period-

doubling. Also, notice that the overall region with locked

dynamics increases considerably with g.

FIG. 10. Bifurcation set of Ghil-Zaliapin-Thompson model (5) in the (c, sn)-

plane with a state-dependent delay given by Eq. (7) with g¼ 0 (a), g¼ 0.01

(b) and g¼ 0.04 (c). Curves of torus (T) and period-doubling (PD) bifurca-

tions are shown. Saddle-node bifurcations of periodic orbits (SN) form

boundaries of a 1:2 resonance tongue. Other parameters are b¼ 1 and

j¼ 11.
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Figure 11 shows a time series of model (4) with Eq. (7)

for g¼ 0.04 to further demonstrate the effect of state-

dependence; it was computed with the Matlab solver

ddesd.85 The time series shows irregular large temperature

events and appears to be chaotic. This type of behaviour per-

sists for about 2000 years, but then the trajectory finally set-

tles into a complicated periodic solution with a very long

period.

Equation (7) constitutes the simplest possible, yet realis-

tic way to introduce state-dependence into an ENSO model.

Despite this, and even though g is small relative to sn in

Figs. 10(c) and 11, our results show that state-dependence

has the potential to play a significant role for generating real-

istic observable model behaviour. We believe that state-

dependence in DDE climate models will emerge as an inter-

esting direction for future research. Indeed, there are already

a number of interesting questions: Is Eq. (7) an appropriate

representation of state-dependent delay in a DAO model?

Are there other important state-dependent effects and rela-

tionships? Would a distributed delay be more realistic and

accurate? Should more focus be put on the resulting transient

behaviour rather than eventual asymptotic behaviour?

ACKNOWLEDGMENTS

We are grateful to an anonymous referee for helpful

suggestions that led to an improved manuscript.

1L. S. Andersson and P. A. Lundberg, “Delayed albedo effects in a zero-

dimensional climate model,” J. Atmos. Sci. 45, 2294–2305 (1988).
2K. Bar-Eli and R. J. Field, “Earth-average temperature: A time delay

approach,” J. Geophys. Res.: Atmos. 103, 25949–25956, https://doi.org/

10.1029/98JD02273 (1998).
3D. S. Battisti, “Dynamics and thermodynamics of a warming event in a

coupled tropical atmosphere-ocean model,” J. Atmos. Sci. 45, 2889–2919

(1988).
4D. S. Battisti and A. C. Hirst, “Interannual variability in a tropical

atmosphere-ocean model: Influence of the basic state, ocean geometry

and nonlinearity,” J. Atmos. Sci. 46, 1687–1712 (1989).
5K. Bhattacharya, M. Ghil, and I. Vulis, “Internal variability of an energy-

balance model with delayed albedo effects,” J. Atmos. Sci. 39,

1747–1773 (1982).
6M. F. Bierkens and B. J. Van den Hurk, “Groundwater convergence as a

possible mechanism for multi-year persistence in rainfall,” Geophys. Res.

Lett. 34, L02402, https://doi.org/10.1029/2006GL028396 (2007).
7K. Blaha, J. Lehnert, A. Keane, T. Dahms, P. H€ovel, E. Sch€oll, and J. L.

Hudson, “Clustering in delay-coupled smooth and relaxational chemical

oscillators,” Phys. Rev. E 88, 062915 (2013).
8J.-P. Boulanger and C. Menkes, “Propagation and reflection of long equa-

torial waves in the Pacific Ocean during the 1992–1993 El Ni~no,”

J. Geophysical Res.: Oceans (1978–2012) 100, 25041–25059 (1995).

9W. Buytaert, R. C�elleri, and L. Timbe, “Predicting climate change

impacts on water resources in the tropical Andes: Effects of GCM

uncertainty,” Geophys. Res. Lett. 36, L07406, https://doi.org/10.1029/

2008GL037048 (2009).
10R. C. Calleja, A. R. Humphries, and B. Krauskopf, “Resonance phenom-

ena in a scalar delay differential equation with two state-dependent

delays,” SIAM J. Appl. Dyn. Syst. 16(3), 1474 (2017).
11S. A. Campbell, “Time delays in neural systems,” in Handbook of Brain

Connectivity (Springer, 2007), pp. 65–90.
12M. A. Cane, M. M€unnich, and S. F. Zebiak, “A study of self-excited

oscillations of the tropical ocean-atmosphere system. Part I: Linear analy-

sis,” J. Atmos. Sci. 47, 1562–1577 (1990).
13M. A. Cane, S. Zebiak, and S. Dolan, “Experimental forecasts of el nifio,”

Nature 321, 827–832 (1986).
14M. A. Cane, S. E. Zebiak, and Y. Xue, “Model studies of the long-term

behavior of ENSO,” in Natural Climate Variability on Decade-to-
Century Time Scales (The National Academies Press, Washington, DC,

1995), pp. 442–457.
15Y. Cao, “Uniqueness of periodic solution for differential delay equa-

tions,” J. Differ. Equations 128, 46–57 (1996).
16P. Chang, L. Ji, B. Wang, and T. Li, “Interactions between the seasonal

cycle and El Ni~no-Southern oscillation in an intermediate coupled ocean-

atmosphere model,” J. Atmos. Sci. 52, 2353–2372 (1995).
17S.-N. Chow and H.-O. Walther, “Characteristic multipliers and stability

of symmetric periodic solutions of _xðtÞ ¼ gðxðt� 1ÞÞ,” Trans. Am. Math.

Soc. 307, 127–142 (1988).
18A. J. Clarke, J. Wang, and S. Van Gorder, “A simple warm-pool displace-

ment ENSO model,” J. Phys. Oceanogr. 30, 1679–1691 (2000).
19M. Crucifix, “Oscillators and relaxation phenomena in Pleistocene cli-

mate theory,” Philos. Trans. R. Soc. A 370, 1140–1165 (2012).
20M. Darby and L. Mysak, “A Boolean delay equation model of an interde-

cadal Arctic climate cycle,” Clim. Dyn. 8, 241–246 (1993).
21S. De Gregorio, R. Pielke, and G. Dalu, “A delayed biophysical system

for the Earth’s climate,” J. Nonlinear Sci. 2, 293–318 (1992).
22H. De Jong, “Modeling and simulation of genetic regulatory systems: A

literature review,” J. Comput. Biol. 9, 67–103 (2002).
23J. D�ıaz, A. Hidalgo, and L. Tello, “Multiple solutions and numerical anal-

ysis to the dynamic and stationary models coupling a delayed energy bal-

ance model involving latent heat and discontinuous albedo with a deep

ocean,” Proc. R. Soc. A 470(2170), 20140376 (2014).
24O. Diekmann, S. A. Van Gils, S. M. Lunel, and H.-O. Walther, Delay

Equations: Functional-, Complex-, and Nonlinear Analysis, Vol. 110

(Springer Science & Business Media, 2012).
25H. A. Dijkstra, Nonlinear Physical Oceanography: A Dynamical Systems

Approach to the Large Scale Ocean Circulation and El Ni~no, Vol. 28

(Springer Science & Business Media, 2005).
26H. A. Dijkstra, Nonlinear Climate Dynamics (Cambridge University

Press, 2013).
27H. A. Dijkstra and J. D. Neelin, “On the attractors of an intermediate cou-

pled ocean-atmosphere model,” Dyn. Atmos. Oceans 22, 19–48 (1995).
28R. D. Driver, Ordinary and Delay Differential Equations (Springer-

Verlag/New York Inc., 1977).
29K. Engelborghs, T. Luzyanina, and D. Roose, “Numerical bifurcation

analysis of delay differential equations using DDE-BIFTOOL,” ACM

Trans. Math. Softw. 28(1), 1–21 (2002).
30B. Ermentrout, Simulating, Analyzing, and Animating Dynamical Systems:

A Guide to XPPAUT for Researchers and Students (SIAM, 2002).
31J. D. Farmer, “Chaotic attractors of an infinite-dimensional dynamical

system,” Phys. D: Nonlinear Phenom. 4, 366–393 (1982).
32E. Galanti and E. Tziperman, “ENSO’s phase locking to the seasonal

cycle in the fast-SST, fast-wave, and mixed-mode regimes,” J. Atmos.

Sci. 57, 2936–2950 (2000).
33M. Ghil, “Climate stability for a Sellers-type model,” J. Atmos. Sci. 33,

3–20 (1976).
34M. Ghil and K. Bhattacharya, “An energy-balance model of glaciation

cycles,” in Report of the JOC Study Conference on Climate Models:
Performance, Intercomparison and Sensitivity Studies, edited by W. L.

Gates (GARP Publ. Series No. 22, WMO/ICSU, Geneva, 1979), pp.

886–916.
35M. Ghil, A. Mullhaupt, and P. Pestiaux, “Deep water formation and

Quaternary glaciations,” Clim. Dyn. 2, 1–10 (1987).
36M. Ghil, I. Zaliapin, and S. Thompson, “A delay differential model of

ENSO variability: Parametric instability and the distribution of

extremes,” Nonlinear Processes Geophys. 15, 417–433 (2008).

FIG. 11. Time series of model (4) with Eq. (7) for g¼ 0.04, calculated with

Matlab’s ddesd. Other parameters are a¼ 2.02, b¼ 3.03, c¼ 2.6377,

du¼ 2.0, dl¼ –0.4, sp¼ 0.0958, sn¼ 0.4792, and j¼ 1.5.

114309-13 Keane, Krauskopf, and Postlethwaite Chaos 27, 114309 (2017)

https://doi.org/10.1175/1520-0469(1988)045<2294:DAEIAZ>2.0.CO;2
https://doi.org/10.1029/98JD02273
https://doi.org/10.1029/98JD02273
https://doi.org/10.1029/98JD02273
https://doi.org/10.1175/1520-0469(1988)045<2889:DATOAW>2.0.CO;2
https://doi.org/10.1175/1520-0469(1989)046<1687:IVIATA>2.0.CO;2
https://doi.org/10.1175/1520-0469(1982)039<1747:IVOAEB>2.0.CO;2
https://doi.org/10.1029/2006GL028396
https://doi.org/10.1029/2006GL028396
https://doi.org/10.1029/2006GL028396
https://doi.org/10.1103/PhysRevE.88.062915
https://doi.org/10.1029/95JC02956
https://doi.org/10.1029/2008GL037048
https://doi.org/10.1029/2008GL037048
https://doi.org/10.1029/2008GL037048
https://doi.org/10.1137/16M1087655
https://doi.org/10.1175/1520-0469(1990)047<1562:ASOSEO>2.0.CO;2
https://doi.org/10.1038/321827a0
https://doi.org/10.1006/jdeq.1996.0088
https://doi.org/10.1175/1520-0469(1995)052<2353:IBTSCA>2.0.CO;2
https://doi.org/10.2307/2000754
https://doi.org/10.2307/2000754
https://doi.org/10.1175/1520-0485(2000)030<1679:ASWPDE>2.0.CO;2
https://doi.org/10.1098/rsta.2011.0315
https://doi.org/10.1007/BF00198618
https://doi.org/10.1007/BF01208927
https://doi.org/10.1089/10665270252833208
https://doi.org/10.1098/rspa.2014.0376
https://doi.org/10.1016/0377-0265(94)00398-G
https://doi.org/10.1145/513001.513002
https://doi.org/10.1145/513001.513002
https://doi.org/10.1016/0167-2789(82)90042-2
https://doi.org/10.1175/1520-0469(2000)057<2936:ESPLTT>2.0.CO;2
https://doi.org/10.1175/1520-0469(2000)057<2936:ESPLTT>2.0.CO;2
https://doi.org/10.1175/1520-0469(1976)033<0003:CSFAST>2.0.CO;2
https://doi.org/10.1007/BF01088850
https://doi.org/10.5194/npg-15-417-2008


37N. E. Graham and W. B. White, “The El Ni~no cycle: A natural oscillator of

the Pacific ocean-atmosphere system,” Science 240, 1293–1302 (1988).
38D. Gu and S. G. Philander, “Interdecadal climate fluctuations that depend

on exchanges between the tropics and extratropics,” Science 275,

805–807 (1997).
39N. Guglielmi and E. Hairer, “Implementing Radau IIA methods for stiff

delay differential equations,” Computing 67, 1–12 (2001).
40J. K. Hale and S. M. V. Lunel, Introduction to Functional Differential

Equations (Springer-Verlag/New York Inc., 1993).
41G. Hetzer, “A functional reaction-diffusion equation from climate model-

ing: S-shapedness of the principal branch of fixed points of the time-1-

map,” Differ. Integr. Equations 8(5), 1047–1059 (1995); available at

https://projecteuclid.org:443/euclid.die/1369056043.
42G. Hetzer, “Global existence, uniqueness, and continuous dependence for

a reaction-diffusion equation with memory,” Electron. J. Differ.

Equations 1996, 1–16 (1996); available at http://eudml.org/doc/118886.
43G. Hetzer, “A quasilinear functional reaction-diffusion equation from climate

modeling,” Nonlinear Anal.: Theory, Methods Appl. 30, 2547–2556 (1997).
44G. Hetzer, “S-shapedness for energy balance climate models of sellers-

type,” in The Mathematics of Models for Climatology and Environment
(Springer, 1997), pp. 253–287.

45F.-F. Jin, “An equatorial ocean recharge paradigm for ENSO. Part I:

Conceptual model,” J. Atmos. Sci. 54, 811–829 (1997).
46F.-F. Jin, “An equatorial ocean recharge paradigm for ENSO. Part II: A

stripped-down coupled model,” J. Atmos. Sci. 54, 830–847 (1997).
47F.-F. Jin and J. D. Neelin, “Modes of interannual tropical ocean–atmo-

sphere interaction-a unified view. part i: Numerical results,” J. Atmos.

Sci. 50, 3477–3503 (1993).
48F.-F. Jin and J. D. Neelin, “Modes of interannual tropical ocean-

atmosphere interaction: A unified view. Part III: Analytical results in fully

coupled cases,” J. Atmos. Sci. 50, 3523–3540 (1993).
49F.-F. Jin, J. D. Neelin, and M. Ghil, “El Ni~no on the devil’s staircase:

Annual subharmonic steps to chaos,” Science 264, 70–72 (1994).
50E. K€all�en, C. Crafoord, and M. Ghil, “Free oscillations in a climate model

with ice-sheet dynamics,” J. Atmos. Sci. 36, 2292–2303 (1979).
51H. Kaper and H. Engler, Mathematics and Climate (SIAM, 2013).
52A. Keane and B. Krauskopf, “Chenciner bubbles and torus break-up in a

delay differential equation model for the El Ni~no Southern oscillation,”

preprint arXiv:1708.02334 (2017).
53A. Keane, B. Krauskopf, and C. Postlethwaite, “Delayed feedback versus

seasonal forcing: Resonance phenomena in an El Ni~no Southern oscilla-

tion model,” SIAM J. Appl. Dyn. Syst. 14, 1229–1257 (2015).
54A. Keane, B. Krauskopf, and C. Postlethwaite, “Investigating irregular

behavior in a model for the El Nin~o Southern oscillation with positive

and negative delayed feedback,” SIAM J. Appl. Dyn. Syst. 15,

1656–1689 (2016).
55Y. S. Kolesov and D. Shvitra, “Role of time-delay in mathematical mod-

els of ecology,” Lith. Math. J. 19, 81–91 (1979).
56B. Krauskopf, “Bifurcation analysis of lasers with delay,” Unlocking

Dynamical Diversity: Optical Feedback Effects Semiconductor Lasers
(John Wiley & Sons, Ltd., 2005), pp. 147–183.

57B. Krauskopf and K. Green, “Computing unstable manifolds of periodic

orbits in delay differential equations,” J. Comput. Phys. 186, 230–249

(2003).
58B. Krauskopf and J. Sieber, “Bifurcation analysis of delay-induced reso-

nances of the El-Ni~no Southern Oscillation,” Proc. R. Soc. A 470,

20140348 (2014).
59C. Kuehn, Multiple Time Scale Dynamics, Vol. 191 (Springer, 2015).
60Y. Kyrychko and S. Hogan, “On the use of delay equations in engineering

applications,” J. Vib. Control 16, 943–960 (2010).
61Y. N. Kyrychko and K. B. Blyuss, “Global properties of a delayed sir

model with temporary immunity and nonlinear incidence rate,” Nonlinear

Anal.: Real World Appl. 6, 495–507 (2005).
62D. Lenstra, M. Yousefi, B. Krauskopf, and D. Lenstra, “Theory of

delayed optical feedback in lasers,” in AIP Conference Proceedings (AIP,

2000), Vol. 548, pp. 87–111.
63M. Lian and R. Cess, “Energy balance climate models: A reappraisal of

ice-albedo feedback,” J. Atmos. Sci. 34, 1058–1062 (1977).
64T. Luzyanina and D. Roose, “Equations with distributed delays:

Bifurcation analysis using computational tools for discrete delay equa-

tions,” Funct. Differ. Equations 11, 87 (2004).
65M. M€unnich, M. A. Cane, and S. E. Zebiak, “A study of self-excited

oscillations of the tropical ocean-atmosphere system. Part II: Nonlinear

cases,” J. Atmos. Sci. 48, 1238–1248 (1991).

66J. D. Neelin, “The slow sea surface temperature mode and the fast-wave

limit: Analytic theory for tropical interannual oscillations and experi-

ments in a hybrid coupled model,” J. Atmos. Sci. 48, 584–606 (1991).
67J. D. Neelin and F.-F. Jin, “Modes of interannual tropical ocean–atmo-

sphere interaction-a unified view. part ii: Analytical results in the weak-

coupling limit,” J. Atmos. Sci. 50, 3504–3522 (1993).
68R. D. Nussbaum, “Uniqueness and nonuniqueness for periodic solutions

of x0ðtÞ ¼ �gðxðt� 1ÞÞ,” J. Differ. Equations 34, 25–54 (1979).
69K. Parmar, K. B. Blyuss, Y. N. Kyrychko, and S. J. Hogan, “Time-

delayed models of gene regulatory networks,” Comput. Math. Methods

Med. 2015, 347273 (2015).
70C. Penland and P. D. Sardeshmukh, “The optimal growth of tropical sea

surface temperature anomalies,” J. Clim. 8, 1999–2024 (1995).
71J. Picaut, F. Masia, and Y. Du Penhoat, “An advective-reflective conceptual

model for the oscillatory nature of the ENSO,” Science 277, 663–666 (1997).
72Y. Pomeau and P. Manneville, “Intermittent transition to turbulence in dissi-

pative dynamical systems,” Commun. Math. Phys. 74, 189–197 (1980).
73K. Pyragas, “Continuous control of chaos by self-controlling feedback,”

Phys. Lett. A 170, 421–428 (1992).
74D. A. Randall, General Circulation Model Development: Past, Present,

and Future, Vol. 70 (Academic Press, 2000).
75J. A. Rial, “Abrupt climate change: Chaos and order at orbital and millen-

nial scales,” Global Planet. Change 41, 95–109 (2004).
76J. A. Rial and C. Anaclerio, “Understanding nonlinear responses of the

climate system to orbital forcing,” Quat. Sci. Rev. 19, 1709–1722 (2000).
77D. Roose and R. Szalai, “Continuation and bifurcation analysis of delay

differential equations,” in Numerical Continuation Methods for
Dynamical Systems, edited by B. Krauskopf and H. M. Osinga (Springer,

2007), pp. 359–399.
78E. S. Sarachik and M. A. Cane, The El Ni~no-Southern Oscillation

Phenomenon (Cambridge University Press, 2010).
79A. Saunders and M. Ghil, “A Boolean delay equation model of ENSO

variability,” Phys. D: Nonlinear Phenom. 160, 54–78 (2001).
80J. Saynisch, J. Kurths, and D. Maraun, “A conceptual ENSO model under

realistic noise forcing,” Nonlinear Processes Geophys. 13, 275–285

(2006).
81C.-F. Schleussner, K. Frieler, M. Meinshausen, J. Yin, and A.

Levermann, “Emulating Atlantic overturning strength for low emission

scenarios: Consequences for sea-level rise along the North American east

coast,” Earth Syst. Dyn. 2, 191–200 (2011).
82E. K. Schneider, B. Huang, and J. Shukla, “Ocean wave dynamics and El

Ni~no,” J. Clim. 8, 2415–2439 (1995).
83E. Sch€oll, G. Hiller, P. H€ovel, and M. A. Dahlem, “Time-delayed feed-

back in neurosystems,” Philos. Trans. R. Soc. London A: Math. Phys.

Eng. Sci. 367, 1079–1096 (2009).
84W. D. Sellers, “A global climatic model based on the energy balance of

the earth-atmosphere system,” J. Appl. Meteorol. 8, 392–400 (1969).
85L. Shampine, “Solving ODEs and DDEs with residual control,” Appl.

Numer. Math. 52, 113–127 (2005).
86L. F. Shampine and S. Thompson, “Solving DDEs in Matlab,” Appl.

Numer. Math. 37, 441–458 (2001).
87J. Sieber, K. Engelborghs, T. Luzyanina, G. Samaey, and D. Roose,

“DDE-BIFTOOL manual—Bifurcation analysis of delay differential

equations,” preprint arXiv:1406.7144 (2014).
88J. Sieber, P. Kowalczyk, S. Hogan, and M. Di Bernardo, “Dynamics of

symmetric dynamical systems with delayed switching,” J. Vib. Control

16, 1111–1140 (2010).
89H. Smith, An Introduction to Delay Differential Equations with

Applications to the Life Sciences, Vol. 57 (Springer Science & Business

Media, 2010).
90G. St�ep�an, Retarded Dynamical Systems: Stability and Characteristic

Functions (Longman Scientific & Technical, 1989).
91L. Stone, P. I. Saparin, A. Huppert, and C. Price, “El Ni~no chaos: The

role of noise and stochastic resonance on the ENSO cycle,” Geophys.

Res. Lett. 25, 175–178, https://doi.org/10.1029/97GL53639 (1998).
92M. J. Suarez and P. S. Schopf, “A delayed action oscillator for ENSO,”

J. Atmos. Sci. 45, 3283–3287 (1988).
93R. Szalai, G. St�ep�an, and S. John Hogan, “Continuation of bifurcations in

periodic delay-differential equations using characteristic matrices,”

SIAM J. Sci. Comput. 28, 1301–1317 (2006).
94C. Thompson and D. Battisti, “A linear stochastic dynamical model of

ENSO. Part II: Analysis,” J. Clim. 14, 445–466 (2001).
95S. Thompson and L. Shampine, “A friendly Fortran DDE solver,” Appl.

Numer. Math. 56, 503–516 (2006).

114309-14 Keane, Krauskopf, and Postlethwaite Chaos 27, 114309 (2017)

https://doi.org/10.1126/science.240.4857.1293
https://doi.org/10.1126/science.275.5301.805
https://doi.org/10.1007/s006070170013
https://projecteuclid.org:443/euclid.die/1369056043
http://eudml.org/doc/118886
https://doi.org/10.1016/S0362-546X(97)00119-3
https://doi.org/10.1175/1520-0469(1997)054<0811:AEORPF>2.0.CO;2
https://doi.org/10.1175/1520-0469(1997)054<0830:AEORPF>2.0.CO;2
https://doi.org/10.1175/1520-0469(1993)050<3477:MOITOI>2.0.CO;2
https://doi.org/10.1175/1520-0469(1993)050<3477:MOITOI>2.0.CO;2
https://doi.org/10.1175/1520-0469(1993)050<3523:MOITOI>2.0.CO;2
https://doi.org/10.1126/science.264.5155.70
https://doi.org/10.1175/1520-0469(1979)036<2292:FOIACM>2.0.CO;2
http://arxiv.org/abs/1708.02334
https://doi.org/10.1137/140998676
https://doi.org/10.1137/16M1063605
https://doi.org/10.1007/BF00972005
https://doi.org/10.1016/S0021-9991(03)00050-0
https://doi.org/10.1098/rspa.2014.0348
https://doi.org/10.1177/1077546309341100
https://doi.org/10.1016/j.nonrwa.2004.10.001
https://doi.org/10.1016/j.nonrwa.2004.10.001
https://doi.org/10.1175/1520-0469(1977)034<1058:EBCMAR>2.0.CO;2
https://doi.org/10.1175/1520-0469(1991)048<1238:ASOSEO>2.0.CO;2
https://doi.org/10.1175/1520-0469(1991)048<0584:TSSSTM>2.0.CO;2
https://doi.org/10.1175/1520-0469(1993)050<3504:MOITOI>2.0.CO;2
https://doi.org/10.1016/0022-0396(79)90016-0
https://doi.org/10.1155/2015/347273
https://doi.org/10.1155/2015/347273
https://doi.org/10.1175/1520-0442(1995)008<1999:TOGOTS>2.0.CO;2
https://doi.org/10.1126/science.277.5326.663
https://doi.org/10.1007/BF01197757
https://doi.org/10.1016/0375-9601(92)90745-8
https://doi.org/10.1016/j.gloplacha.2003.10.004
https://doi.org/10.1016/S0277-3791(00)00087-1
https://doi.org/10.1016/S0167-2789(01)00331-1
https://doi.org/10.5194/npg-13-275-2006
https://doi.org/10.5194/esd-2-191-2011
https://doi.org/10.1175/1520-0442(1995)008<2415:OWDAEN>2.0.CO;2
https://doi.org/10.1098/rsta.2008.0258
https://doi.org/10.1098/rsta.2008.0258
https://doi.org/10.1175/1520-0450(1969)008<0392:AGCMBO>2.0.CO;2
https://doi.org/10.1016/j.apnum.2004.07.003
https://doi.org/10.1016/j.apnum.2004.07.003
https://doi.org/10.1016/S0168-9274(00)00055-6
https://doi.org/10.1016/S0168-9274(00)00055-6
http://arxiv.org/abs/1406.7144
https://doi.org/10.1177/1077546309341124
https://doi.org/10.1029/97GL53639
https://doi.org/10.1029/97GL53639
https://doi.org/10.1029/97GL53639
https://doi.org/10.1175/1520-0469(1988)045<3283:ADAOFE>2.0.CO;2
https://doi.org/10.1137/040618709
https://doi.org/10.1175/1520-0442(2001)014<0445:ALSDMO>2.0.CO;2
https://doi.org/10.1016/j.apnum.2005.04.027
https://doi.org/10.1016/j.apnum.2005.04.027


96Y. M. Tourre, B. Rajagopalan, Y. Kushnir, M. Barlow, and W. B. White,

“Patterns of coherent decadal and interdecadal climate signals in the

pacific basin during the 20th century,” Geophys. Res. Lett. 28,

2069–2072, https://doi.org/10.1029/2000GL012780 (2001).
97E. Tziperman, M. A. Cane, and S. E. Zebiak, “Irregularity and locking to

the seasonal cycle in an ENSO prediction model as explained by the

quasi-periodicity route to chaos,” J. Atmos. Sci. 52, 293–306 (1995).
98E. Tziperman, M. A. Cane, S. E. Zebiak, Y. Xue, and B. Blumenthal,

“Locking of El Ni~no’s peak time to the end of the calendar year in the

delayed oscillator picture of ENSO,” J. Clim. 11, 2191–2199 (1998).
99E. Tziperman, L. Stone, M. A. Cane, and H. Jarosh, “El Ni~no chaos:

Overlapping of resonances between the seasonal cycle and the Pacific

ocean-atmosphere oscillator,” Science 264, 72–73 (1994).
100G. K. Vallis, Climate and the Oceans (Princeton University Press, 2012).
101C. Wang, “A unified oscillator model for the El Ni~no-Southern oscil-

lation,” J. Clim. 14, 98–115 (2001).
102C. Wang and J. Picaut, “Understanding ENSO physics - A review,” in

Earth’s Climate: The Ocean-Atmosphere Interaction, Geophysical
Monograph Series, edited by C. Wang, S.-P. Xie, and J. A. Carton (AGU,

Washington, D.C., 2004), Vol. 147, pp. 21–48.
103C. Wang, R. H. Weisberg, and J. I. Virmani, “Western Pacific interannual var-

iability associated with the El Ni~no-Southern oscillation,” J. Geophys. Res.:

Oceans 104, 5131–5149, https://doi.org/10.1029/1998JC900090 (1999).
104C. Wang, R. H. Weisberg, and H. Yang, “Effects of the wind speed-evap-

oration-SST feedback on the El Ni~no-Southern oscillation,” J. Atmos.

Sci. 56, 1391–1403 (1999).

105R. H. Weisberg and C. Wang, “A western Pacific oscillator paradigm for

the El Ni~no-Southern oscillation,” Geophys. Res. Lett. 24, 779–782,

https://doi.org/10.1029/97GL00689 (1997).
106W. B. White and Y. M. Tourre, “A delayed action oscillator shared by

the ENSO and QDO in the Indian Ocean,” J. Oceanogr. 63, 223–241

(2007).
107W. B. White, Y. M. Tourre, M. Barlow, and M. Dettinger, “A delayed

action oscillator shared by biennial, interannual, and decadal signals in

the Pacific Basin,” J. Geophys. Res.: Oceans 108, 3070 (2003).
108T. M. Wohlleben and A. J. Weaver, “Interdecadal climate variability in

the subpolar North Atlantic,” Clim. Dyn. 11, 459–467 (1995).
109D. Wright, T. Stocker, and L. Mysak, “A note on quaternary climate

modelling using boolean delay equations,” Clim. Dyn. 4, 263–267

(1990).
110I. Zaliapin and M. Ghil, “A delay differential model of ENSO variabil-

ity—Part 2: Phase locking, multiple solutions and dynamics of extrema,”

Nonlinear Processes Geophys. 17, 123–135 (2010).
111S. E. Zebiak and M. A. Cane, “A model El Ni~n—Southern oscillation,”

Mon. Weather Rev. 115, 2262–2278 (1987).
112H. Zelle, G. Appeldoorn, G. Burgers, and G. J. van Oldenborgh, “The

relationship between sea surface temperature and thermocline depth

in the eastern equatorial Pacific,” J. Phys. Oceanogr. 34, 643–655

(2004).
113K. Zickfeld, B. Knopf, V. Petoukhov, and H. Schellnhuber, “Is the Indian

summer monsoon stable against global change?,” Geophys. Res. Lett. 32,

https://doi.org/10.1029/2005GL022771 (2005).

114309-15 Keane, Krauskopf, and Postlethwaite Chaos 27, 114309 (2017)

https://doi.org/10.1029/2000GL012780
https://doi.org/10.1029/2000GL012780
https://doi.org/10.1175/1520-0469(1995)052<0293:IALTTS>2.0.CO;2
https://doi.org/10.1175/1520-0442(1998)011<2191:LOENOS>2.0.CO;2
https://doi.org/10.1126/science.264.5155.72
https://doi.org/10.1175/1520-0442(2001)014<0098:AUOMFT>2.0.CO;2
https://doi.org/10.1029/1998JC900090
https://doi.org/10.1029/1998JC900090
https://doi.org/10.1029/1998JC900090
https://doi.org/10.1175/1520-0469(1999)056<1391:EOTWSE>2.0.CO;2
https://doi.org/10.1175/1520-0469(1999)056<1391:EOTWSE>2.0.CO;2
https://doi.org/10.1029/97GL00689
https://doi.org/10.1029/97GL00689
https://doi.org/10.1007/s10872-007-0024-7
https://doi.org/10.1029/2002JC001490
https://doi.org/10.1007/BF00207195
https://doi.org/10.1007/BF00211063
https://doi.org/10.5194/npg-17-123-2010
https://doi.org/10.1175/1520-0493(1987)115<2262:AMENO>2.0.CO;2
https://doi.org/10.1175/2523.1
https://doi.org/10.1029/2005GL022771
https://doi.org/10.1029/2005GL022771

	s1
	l
	n1
	n2
	n3
	f1
	d1
	f2
	s2
	d2
	f3
	s3
	f4
	s3A
	d3
	s3B
	d4a
	d4b
	d5
	d6
	s3C
	f5
	f6
	s3D
	f7
	s3E
	f8
	f9
	s3F
	s4
	s4A
	d7
	f10
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26
	c27
	c28
	c29
	c30
	c31
	c32
	c33
	c34
	c35
	c36
	f11
	c37
	c38
	c39
	c40
	c41
	c42
	c43
	c44
	c45
	c46
	c47
	c48
	c49
	c50
	c51
	c52
	c53
	c54
	c55
	c56
	c57
	c58
	c59
	c60
	c61
	c62
	c63
	c64
	c65
	c66
	c67
	c68
	c69
	c70
	c71
	c72
	c73
	c74
	c75
	c76
	c77
	c78
	c79
	c80
	c81
	c82
	c83
	c84
	c85
	c86
	c87
	c88
	c89
	c90
	c91
	c92
	c93
	c94
	c95
	c96
	c97
	c98
	c99
	c100
	c101
	c102
	c103
	c104
	c105
	c106
	c107
	c108
	c109
	c110
	c111
	c112
	c113



