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Rolling and slipping of droplets on superhydrophobic surfaces
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The leaves of many plants are superhydrophobic, a property that may have evolved to clean the leaves by
encouraging water droplets to bead up and roll off. Superhydrophobic surfaces can also exhibit reduced friction,
and liquids flowing over such surfaces have been found to slip in apparent violations of the classical no-slip
boundary condition. Here we introduce slip into a model for rolling droplets on superhydrophobic surfaces
and investigate under what conditions slip might be important for the steady-state motion. In particular, we
examine three limiting cases in which dissipation in the rolling droplet is dominated by viscous dissipation,
surface friction, or contact-line dissipation. We find that in molecular-dynamics simulations of droplets on ideal
superhydrophobic surfaces with large effective slip lengths, contact-line dissipation dominates droplet motion.
However, on real leaves, droplet motion is likely to be dominated by viscous shear, and slip, for the most part,

can be neglected.
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I. INTRODUCTION

Superhydrophobic surfaces that exhibit the Lotus effect [1]
are of interest both for their role in biology [2] and for their
potential technological applications [3]. Superhydrophobic
surfaces, including the surfaces of many plant leaves [4],
combine nano- and microscale roughness with a hydrophobic
surface coating to achieve contact angles of up to 160°. The
Lotus effect is thought to benefit plants by helping to keep
leaves clean; droplets of moisture bead up and eventually roll
down leaves, entraining dirt and contaminants as they go [5].
Indeed, experiments have found that the fact that droplets roll
rather than slide down superhydrophobic surfaces [6] makes
them more likely to remove contamination along the way.

More recently, however, flows over superhydrophobic sur-
faces have been studied because they effectively violate the
classical no-slip boundary condition [7]. When in the Cassie
state, droplets or larger-scale flows are lubricated by an en-
trapped layer of air, leading to large effective slip lengths with
drag only occurring at the few points of the surface where
the flow makes contact with the substrate [8]. On such super-
hydrophobic surfaces, effective slip lengths of tenths to tens
of microns have been observed [9,10], scaling proportionally
to the typical microstructural length scale [10,11]. In some
experiments, on highly ideal superhydrophobic surfaces, slip
lengths of hundreds of microns have been measured [12].

The canonical model for the steady-state motion of small
spherical droplets on superhydrophobic surfaces was pro-
posed by Mahadevan and Pomeau [13]. This model assumes a
rolling motion without slip that reaches a steady state when
viscous dissipation due to shear in the vicinity of the area
of contact between the droplet and the surface balances the
change in gravitational potential energy. In sufficiently small
droplets, however, shear stress at the surface of contact may
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also generate significant slip. In this paper, we investigate
the conditions under which droplets may slip as they move
on superhydrophobic surfaces, whether leaves or engineered
surfaces.

Mahadevan and Pomeau’s model considers nearly spher-
ical droplets supported on a superhydrophobic surface (see
Fig. 1). This approximation will only be reasonable if the
droplet radius is smaller than the capillary length, x~! =
(y/pg)'/* (for water ~2 mm), where y is the droplet surface
tension, p is the fluid density, and g is the acceleration due to
gravity. The radius of the contact zone ¢ is determined by a
balance between the loss of gravitational potential energy that
results from the lowering of the droplet center of mass with
the corresponding creation of extra surface area. In this case,
the contact zone radius £ can be shown to be ~ R?/k ! [13].

The droplets are considered to be moving on a surface tilted
at an angle o to the horizontal. The center-of-mass velocity
U of the droplet is equal to its rolling velocity U, (Fig. 2),
with a no-slip condition resulting in zero slip at the surface
(Us = 0). The shear-free rotational flow is disturbed near the
contact plane, resulting in a velocity gradient |Vu| ~ U/R
and viscous dissipation over a region of size £ around the
contact zone [13]. The rate of dissipation due to this viscous
shear near the contact zone will then be given by

U\? 2uu?
P, = Vu)*dv = — ) dv ~ , A
/VM( u) M/V<R> D (D

where the integral has been taken over the volume (V ~ )
about the contact zone, and p is the shear viscosity.

In the steady state, the rate of viscous dissipation must
balance the rate of loss of gravitational potential energy,
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FIG. 1. A droplet in the Cassie state on a superhydrophobic
surface. Although the droplet radius is below the capillary length
R « k7!, the droplet is depressed by a distance § by gravity (as
gravitational potential energy is converted to surface energy) to form
a contact zone with the surface of radius £.

giving

suu?
FERE )

,ogR3U sin (o) ~

Solving for U yields the steady-state center-of-mass velocity:

—1
U~YEY sin@), 3)
u R

which shows that U scales in inverse proportion to the droplet
radius R. This model should be valid for contact angles close
to 180° provided the droplet radius is well below the capillary
length. For droplets with a size that approaches or exceeds
the capillary length or for droplets that wet the substrate, the

FIG. 2. A droplet rolling down a superhydrophobic surface tilted
at an angle « to the horizontal with respect to the direction of the
body force mg. The center-of-mass velocity of the droplet, U, is
assumed to be equal to the sum of rolling velocity U, and any slip
velocity Us.

shear induced will extend beyond the contact zone, ultimately
leading to different scaling predictions [14].

For small droplets on superhydrophobic surfaces, the no-
slip boundary condition (Us; = 0) may also be a poor ap-
proximation. Indeed, some experiments have found that on
highly engineered superhydrophobic surfaces, rolling can
be entirely suppressed [15,16]. Other works have focused
on the opposing limit, where droplet motion is constrained
by pinning-depinning events or contact-line friction as the
droplet progresses across the surface. These approaches vary
from analysis with molecular kinetic theory [17-19] to phe-
nomenological models (where, for example, the effect of
pinning-depinning events is captured by a “sliding resistance,”
tied to the droplet’s dynamic receding contact angle [20]) to
consideration of the energy losses involved in the rupturing
of capillary bridges found at the receding edge of the droplet
[21]. Droplet motion in the presence of slip has been studied
previously by simulation, but these studies have generally
either not explicitly considered superhydrophobic structures
[22,23], or they were restricted to two dimensions [24-26],
which affects both droplet dynamics and the spectrum of
available surface geometries. A recent study [27] in three
dimensions simulated droplet motion using a continuum ap-
proach, but applied an effective slip boundary condition that
only indirectly includes the effects of surface microstructure.

In this paper, we report on three-dimensional molecular-
dynamics simulations of the motion of droplets on su-
perhydrophobic surfaces and extensions of Mahadevan and
Pomeau’s model to include slip, while considering the role
of surface friction and contact-line dissipation. In particu-
lar, we have conducted molecular-dynamics simulations of
droplets moving in steady state on a superhydrophobic surface
in response to a gravitational force. The simulations allow
us to identify a regime where the speed of the droplets is
proportional to droplet size, rather than the inverse of the
droplet size as given by Eq. (3). We extend this model [13] to
incorporate an effective Navier slip boundary condition [28].
We also consider scenarios in which the steady-state motion
of the droplet is either dominated by friction at the solid-liquid
interface or by dissipation at the contact line. We show that it
is most likely the latter mechanism that limits the steady-state
motion of the simulated droplets.

II. MOLECULAR-DYNAMICS SIMULATIONS

Molecular-dynamics simulations of simple liquid droplets
on superhydrophobic surfaces were carried out using LAMMPS
[29]. The liquid and surface were modeled using the Lennard-
Jones 6-12 potential:

A T

In what follows, we work in Lennard-Jones units, where € is
setto 1 (i.e., e.. = €). We also used Lennard-Jones potentials
to model droplet-substrate interactions with 0.05¢ < egp, <
0.14€. Altering egp. affects the observed contact angle and
would be expected to alter the effective slip length of the sur-
face. We find static contact angles between ~ 140° for e, =
0.14€ and ~160° for eg;, = 0.05¢, consistent with previous
results [30]. Droplet motion is driven by a small body force,
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FIG. 3. The height #, width w, and period L of the surface
features for the ridged (a) and pillared (b) surfaces are presented
above, with all values given in terms of the lattice spacing o. The
particle diameter is shown as 1o, matching the lattice spacing. Part
(c) shows a snapshot of a simulated droplet (R = 100) rolling in
the Cassie state on a ridged superhydrophobic surface. Although the
droplet radius is below the capillary length R < «~!, the droplet is
compressed a distance § by gravity (gravitational potential energy is
converted to surface energy) to form a contact zone with the surface
of radius ¢, spanning multiple surface features. The image is rotated
so that the applied body force is directed vertically down.

between 5.7 x 102072 and 4.6 x 10735 t~2. This force is
applied at an angle of o = 10° from the vertical to mimic
the effects of tilting the surface relative to the gravitational
direction. This range of parameters ensures that Weber and
Capillary numbers are less than unity in the simulations, so we
expect the droplets to remain quasispherical. Visual inspection
of the droplets confirms this.

We used both ridged and pillared surfaces in our simula-
tions (see Fig. 3). The ridged surface consisted of straight,
raised ridges with period L arranged perpendicular to the sur-
face normal and the direction of the body force. The pillared
surface consisted of raised posts, arranged in a square lattice
with period L. The atoms comprising the posts themselves
were arranged in four layers of two particles, with the atoms
occupying opposing corners of a cube with side length \/Li
in a tetrahedral fashion. The exact dimensions are detailed in
Table I and shown in panels (a) and (b) of Fig. 3.

The temperature was controlled by a Langevin thermostat
[31] applied to all fluid particles in the direction perpendicular
to the surface normal and the direction of the body force with a
set temperature of 0.63 ekgl. This temperature was chosen to
ensure that the droplet was liquid for the range of droplet sizes

TABLE I. The dimensions of the ridged and pillared surfaces
used (see Fig. 3), approximating the effective surface particle diam-
eter as 1o. The period L of the pattern was 3o for the ridged surface
and 4o for the pillars.

Height, 1 Width, w Period, L Area fraction, ¢
Ridges 20 lo 30 0.33
Pillars 3.3280 1.7070 4o 0.18

investigated, which was checked by reference to the radial
distribution functions for particles in the droplet. Vapor was
present in equilibrium with the rolling droplets.

The surface tension was estimated as ~ 0.34 eo~2 by
examining the relationship between drop size to its internal
energy [32] at a temperature of T = 0.63 ekgl. Again, our
estimates are of the same order as those reported elsewhere
[33]. The particle density p within the droplet was found to be
around 1.10 =3 for the droplet sizes examined here.

There are several ways one can calculate the shear viscosity
in bulk fluids using molecular dynamics [34]. However, the
droplets in our simulations are undercooled relative to the
bulk freezing temperature. This made it difficult to calculate
the viscosity in a comparable bulk liquid using a Green-
Kubo approach [35,36], as even with a rapid quench, freezing
would occur before the calculation converged. Indeed, this
temperature and pressure fall outside of the range where vis-
cosities have previously been calculated for the bulk Lennard-
Jones liquid [37]. However, by observing the exponential
decay of the Green-Kubo time correlation function in a
quenched bulk liquid (at 7 = 0.63 ek;l and particle density
p ~ 1.09 o3) prior to freezing, we estimate a viscosity of
15+ 8 eo~31. One could measure self-diffusion within the
droplets themselves and then estimate the viscosity using the
Stokes-Einstein relation [38], but particles in the droplet are
exchanged with the vapor sufficiently rapidly to bias the cor-
responding mean-square displacements (particles that move
further are more likely to be ejected), resulting in estimates of
the viscosity that are too large. Nonetheless, the atomic mean-
square displacement within the bulk liquid prior to freezing
gave an estimate of the viscosity of 8 + 4 eo 1.

Droplets were equilibrated by monitoring temperature and
mass prior to the application of the body force. For production
runs, with the body force on, we monitored the center-of-
mass velocities and droplet masses to ensure the flow reached
steady state. Position and velocity data for particles were col-
lected over 10° time steps once droplets reached steady-state
motion. Steady-state motion was generally reached between
10* and 10° time steps for the smallest and largest droplets,
respectively, for the range of body forces g used in this work.
The droplets were determined to be in the Cassie-Baxter
state by computing the vapor density in regions between the
pattern features below the droplet. The particles in the droplet
(as opposed to those in the vapor, as illustrated in Fig. 3)
were identified in postprocessing using a distance-threshold
approach, with all droplet mass, density, radius, and motion
statistics being calculated from the distribution of positions
and velocities belonging to the associated particles.

Velocity profiles describing the average velocity of the
droplet as a function of height were constructed by time-
averaging the velocity in the x direction u,(z) within hori-
zontal x-y sections, sliced at 1o intervals along the z axis, for
each droplet. As discussed in the previous section, the model
assumes that the internal motion of the droplet resembles a
pure rotation plus some shear near the contact zone. Indeed,
as shown in Fig. 4, apart from the presence of slip, this
model seems to provide a very good description of the motion:
relative to the center-of-mass velocity, the residual velocity
profile varies linearly with height indicating a rolling motion,
with a deviation from this near the substrate where shear is
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FIG. 4. The time-averaged velocity field (relative to the center-
of-mass velocity) and average velocity profile for a droplet (R =
160) in steady-state motion on a ridged surface with g =5.7 x
100772 and €5 = 0.07¢. A straight line has been fitted to the
top half of the profile to calculate the rolling velocity U, (projected
toward the surface for reference). A nonzero slip velocity U, is
evident at the pattern surface (indicated by the solid line at z = 20).

evident. As such, a linear fit was made to the top half of each
velocity profile (computed from the average velocity of atoms
within a 1o-thick slice as a function of height z above the base
of a ridged substrate) to calculate the rolling velocity U,. The
slip velocity was then calculated as U; = U — U,, where U is
the center-of-mass velocity of the droplet.

In the graphs that follow, standard errors are calculated for
the droplet velocity data. While the time-averaged droplet ve-
locity remains relatively consistent between simulation runs,
within a simulation distinct periods of rolling-dominated and
slip-dominated motion can be observed, as is evident in Fig. 5.
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FIG. 5. The evolution of U, U,, and U; over the course of a single
simulation run for a 160 droplet on a ridged surface is shown. Each
point was calculated using averages of 100 consecutive frames of
data, with frames generated every 200 time steps. While U remains
reasonably consistent, varying by up to 5% relative to the mean, U,
(and by extension U, ) varies by as much as 30%.
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FIG. 6. The velocity profiles of droplets with initial radii of 11o
(blue circles), 160 (green triangles), and 200 (orange squares) in
steady-state motion on a ridged surface with g = 5.7 x 107*o 772
and esp. = 0.07¢. Straight lines have been fitted to the velocities as
in Fig. 4, illustrating deviations from a purely rolling motion. The
resulting shear becomes more apparent as the droplet size increases.

As such, there is an additional source of temporal variability
in U, and U; that has not been captured in the errors presented
here.

II1. RESULTS

The steady-state velocity profiles for three drops with
differing radii (R = 1lo, 160, and 200) simulated with
es. = 0.07¢ (unless otherwise stated, this value of €g;, is used
throughout) on a ridged substrate tilted at an angle o = 10°
with g =5.7 x 107*o 7% are shown in Fig. 6. The larger
drops have a higher steady-state velocity than the smaller
drops, with U; (the velocity at the top of the patterned surface)
increasing as the droplet size increases, while U, (which
is proportional to the slope of the linear profile) remains
relatively constant with size. Similar results are obtained on
surfaces with pillars.

Figure 7 shows steady-state center-of-mass velocities U,
now decomposed into U and U,, for a wider size range of
droplets on ridged surfaces (R = 90-310) with the same g.
We note a steady increase in U with droplet size up to about
R ~ 200. Above this radius, the velocity plateaus as the
droplet radius approaches the capillary length. At this point,
the droplet starts to deviate from its spherical shape (here both
Re and We approach unity). Up to this point, the increase in
velocity with droplet size is very different from the behavior
predicted by Eq. (3). We also note that it is largely the slip
velocity Uj that increases with droplet size.

Switching to a pillared surface, Fig. 8 shows U for a 160
radius droplet as the magnitude of body force g is changed.
For small g (< 1.14 x 10730 t72) we find that the simulated
velocity scales close to /g (fitting with a power-law fit yields
an exponent 0.59). Above this threshold, the dependence on
g is much weaker. We note that the magnitude of g affects
the capillary length, and given the droplet radius of R = 160,
we expect the droplet to lose its spherical shape for values
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FIG. 7. Plot of time-averaged droplet center-of-mass velocities
U vs the various droplet radii on a ridged surface with g = 5.7 x
10~*077% and €. = 0.07 €. Droplets larger than the radius indicated
by the right-hand vertical line are larger than the capillary length « !
and so they can be expected to deform and depart from spherical
shape assumed by the model. Error bars are determined by the stan-
dard error associated with the U values taken from 4000 simulation
frames, and U, and U, as constructed from 40 100-frame bins.

of g exceeding % = 1.14 x 10730t ~2. This transition is
reflected in the loss of linearity for the two highest values of g
that were simulated: 2.3 and 4.6 x 1030772,

Figure 9 illustrates similar scaling behavior for droplets on
the ridged surface for a range of droplet sizes. In this figure,
we have plotted U/ R versus g on log-log axes to demonstrate
that the U ~ R/k~! scaling holds for droplets with radius
R = 10 — 180 (albeit noting the one outlier for the R = 100
droplet under very weak body force, where we observed that
the droplet has a tendency to bounce). We note that this scaling
is the inverse of the scaling behavior predicted by Eq. (3).
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FIG. 8. A log-log plot of the steady-state center-of-mass veloc-
ities for droplets with radii fixed at 160 and esp = 0.07¢€, as g
is increased from 5.7 x 1075 to 5.7 x 10735t ~2. The simulations
were performed on the pillared surface. The apparent linear region
between ~ 2.3 x 10™*o7t~2 and 1.14 x 1073072 corresponds to
a power law U o gf with an exponent B ~ 0.59. Error bars are
calculated as in Fig. 7.
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FIG. 9. The steady-state center-of-mass droplet velocities scaled
by radius for radii between 100 and 18¢ on a ridged surface with
est. = 0.07¢, as g is increased from 1.14 x 107 t0 5.7 x 10~*o 772
The log-log plot confirms the R/x~! scaling of the center-of-mass
velocity for droplets smaller than the capillary length. The standard
errors, calculated as in Fig. 7, are too small to be visible.

For the majority of results presented above, we used a
value of esp. = 0.07¢, but Fig. 10 shows how U varies as
€s is varied between 0.05¢ and 0.14¢ for the ridged surface.
We also note a steady decrease in U and U, while U,
remains approximately constant. Simulations on the equiv-
alent pillared surfaces show similar behavior. Equation (3)
does not make predictions about how U should change with
solid-liquid interaction strength, but as egy, increases, some of
the approximations that lead to this equation and to aspects
of the theory developed below (such as the spherical cap
approximation) would be expected to lose validity.

Simulations performed on the ridged and pillared surfaces
exhibit similar linear scaling with R, although the center-of-
mass velocities for droplets on pillared surfaces are larger,
all else being equal. This is expected, given that our pillared
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FIG. 10. U and U; are found to decrease as the strength of the
liquid interaction with the ridged surface, characterized by €y , grows
larger. Here, g is 5.7 x 1070772 and R is 160. Error bars are
calculated as in Fig. 7.
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surfaces have a lower area fraction ¢ relative to the ridged
surfaces, as shown in Table I. Droplets on the pillared and
ridged surfaces exhibited similar behavior with respect to the
body force until the capillary length approaches the radius
of the droplet. This limit is outside the scope of the models
developed here, but it may be due to the anisotropy of the
ridged surface becoming more important as the droplet begins
to puddle.

IV. EXTENDED MODELS

The molecular-dynamics simulations in the previous sec-
tion show that the droplet is slipping in the contact region,
something that is not taken into account in Eq. (3). To incorpo-
rate slip into our theoretical treatment, we return to the model
of Mahadevan and Pomeau [13], and we introduce an effective
Navier slip boundary condition. This condition relates the slip
velocity U, at the surface to the velocity gradient near the
contact zone: U; = b|Vu|, so that Uy = U,b/R and U ~
U,(14+b/R). The condition is assumed to hold over the
surface of the contact region. If R > b, then U,/ U, — 0 and
we recover the model of Mahadevan and Pomeau.

Here the slip length b should be considered an effective
slip length [11,28], i.e., the slip length of some homogeneous
surface that would result in the same frictional shear as
the inhomogeneous superhydrophobic surface when averaged
over a sufficiently large area. For our purposes, the use of
an effective slip length is justified provided the size of the
contact region, ¢, is much larger than the structuring of the
superhydrophobic surface. For a surface composed of arrays
of posts, with post spacing L, the effective slip length b is
expected to scale as L /¢'/%, where ¢ is the area fraction of the
surface covered by the pillars [11]. In this case, we are justified
in using an effective slip length provided £ > L ~ ¢'/?b.

We begin by writing the center-of-mass velocity U as
the sum of the rolling velocity and the slip velocity:
U = U, + U,. As with Eq. (1), the viscous dissipation is given
by

U 2
P, = f w(Vu)’dv ~z3u<—’) : (5)
v R

which is balanced by the rate of loss of gravitational potential
energy in the steady state:

an@Ur ~P(112) T @
in (o T~ — -] .

rg R2 R

This leads to the following expression for the steady-state
velocity U:

~1
U~YE (1 4b/RPsin(a). 7
n R

Note that the droplet velocity is inversely proportional to the
droplet radius R [as in Eq. (3)], with a correction due to slip
that scales as b/ R to leading order. In the limit of small slip,
b < R, the expression for the velocity U reduces to that of
Mahadevan and Pomeau [13] plus corrections of order b/R:

—1
U~2% Gin@)+ ow/R). (8)
n R

In the large slip limit, b >> R, the expression suggests that

U ~ I%";fz sin (o). It will be shown later that in the large
slip limit, viscous dissipation will not be the dominant mech-
anism. Regardless, neither of these expressions describes the
increase in steady-state velocity with R and g that was seen
in the simulations from the previous section (Fig. 9). We now
consider two other potential sources of dissipation: interfacial
friction, associated with fluid sliding over the surface, and
contact-line friction, due to contact-line pinning-depinning
at surface features. The rate of dissipation due to interfacial
friction over the contact zone surface can be expressed as

Py = / 0, Uy dA, ©)
A

where o, is the shear stress at the contact zone surface,
and the integral is taken over this surface. The shear stress
at the contact surface is given by the Navier slip-boundary
condition: oy = w|Vu| = (u/b)U,. Thus we estimate

Py = %/AdeA ~ 52%113. (10)

Along the contact line, the dissipation can be written as [39]
Pc=f<;U3dl~£w3, (11)

where ¢ is an effective contact-line friction coefficient, and
the integral is taken over the contact line perimeter.

It is worth emphasizing that each of these dissipative mech-
anisms scales differently with the size of the contact zone £.
The rate of energy dissipation associated with the contact line
is proportional to £, while dissipation due to interfacial friction
is proportional to £ and viscous dissipation is proportional to
£3. As £ is related to the size of the droplet (£ ~ R?/k~!), we
might expect different mechanisms to dominate at different
droplet sizes. For example, the ratio of the rate of interfacial
frictional dissipation to the rate of viscous dissipation is given
by

-1
Pr é ~ bK_ (12)
P, ¢ R?

so when £ > b, the frictional term will become unimportant.

Thus viscous dissipation will dominate only when b < £ or

b« t~R*k'«<R

Similarly, the ratio of the rate of contact line dissipation to
that due to interfacial friction is given by

P. ¢b bkt
Pr npntl p R*

13)

Thus, the importance of contact line dissipation depends on
the ratio of ¢/u, in addition to the droplet size R and slip
length b. We would expect contact line dissipation to dominate
whenboth b > £ and ¢/ 2 1.

We now examine two limiting cases for steady-state droplet
motion, where either interfacial friction or contact-line dis-
sipation dominates the balance with gravitational potential
energy loss. In the first case, which would require ©/¢ >
b/€ > 1, dissipation due to interfacial friction will dominate,
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leading to the following balance:

R -2
pg sin (o) UR? ~ 62%U2<1 + Z) . (14)
This gives
Y R 2
U~2LZ14b/R) sin (@) (15)
nb

Here we see that the velocity is proportional to the droplet
radius for small slip b < R but inversely proportional to
the radius for large slip b > R. (We note that use of an
effective slip length in this large slip limit is justified for
a surface with posts provided b ~ L/¢'/? > ¢ > L.) Inter-
estingly, the steady-state velocity is independent of the capil-
lary length, so it does not scale with g. This independence is
somewhat counterintuitive (and it is not consistent with what
is observed in the simulations, as is evident from Fig. 9), but
it arises because the frictional losses scale with g in the same
way as the loss of gravitational potential energy.

The remaining limit is one in which contact-line dissipa-
tion dominates the balance (e.g., when b > £ and ¢ 2 u):

R -2
pgsin (@) UR> ~ E§U2<1 + Z) (16)
resulting in
R3
U~ %m(l + b/R)?sin (). (17)

In this case, the steady-state velocity is inversely proportional
to the capillary length, so it scales as U ~ /g, which is
consistent with the behavior observed in Fig. 8. In the low
slip limit (b < R) the velocity is proportional to the droplet
volume, while in the high slip limit (b >> R) it is proportional
to the droplet radius (as seen in Fig. 7 for droplets with radii
below the capillary length).

Ideally, one would compute the viscosity and slip length b
in independent simulations to determine the appropriate flow
regime and check consistency with the scaling arguments.
However, as discussed above, the small size of the droplets
makes it difficult to compute the viscosity directly. More
importantly, the undercooling of the droplets relative to the
bulk means we are not able to independently calculate slip
lengths in a Couette or Poiseuille-type flow. Instead, our
strongest test for the theory is the observation of how the
simulated center-of-mass velocities scale with the droplet size
and gravitational force.

Indeed, it is evident that the scaling of the simulated U
is best explained by contact-line dissipation in the high slip
limit. In this limit, we expect U ~ %K% sin (@) + O(R/D).
Of the dissipation mechanisms explored above, only this
expression is consistent with both an increase in droplet speed
with radius and an increase in speed with the strength of the
gravitational body force that was observed in the simulations.
This is also consistent with the decrease in U observed as
€, increases (Fig. 10), as increasing the strength of the solid-
liquid interaction will also cause ¢ to increase.

We can also check post hoc that the observed scaling of U
is consistent with estimates of the magnitude of the slip length
from the simulations themselves. Calculating the slip length

AN
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W (e W [w)
o
(-]
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—_
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FIG. 11. The estimated effective slip length b ~ RUlf" increasing
with increasing droplet radius calculated for the U, and U, data
shown in Fig. 7 (on a ridged surface, with g = 5.7 x 10~*o 72 and
est, = 0.07¢). We interpret the increase in effective slip length with €
as a decreasing contribution of the contact-line friction as the droplet
size increases.

here is not straightforward (while U; is accessible, reliably
estimating the shear at the surface is difficult), but we note
that we can estimate b from the approximation Uy = b|Vu| ~
b(U,/R), i.e., b ~ RU;/U,. This suggests that b ~ 20 —
400 2 R, as shown in Fig. 11, indicating that the droplets are
experiencing high slip. These effective slip lengths are con-
sistent with the range of values reported by Cottin-Bizonne
et al. [40]. A striking feature of Fig. 11 is the increase in
effective slip length b with droplet size. We attribute this
increase to the increasing importance of contact-line friction
as droplets get smaller, which is not explicitly captured in
the Navier slip boundary condition but will likely enter as
an effective contribution to the interfacial friction that scales
as the ratio of contact zone perimeter to contact zone area.
Using these estimates of the slip length, and the computed
velocities, we can use Eq. (17) to estimate a lower bound for
¢~ 0()eo3.

V. DISCUSSION

It is interesting to consider the experimental application of
the models developed in the previous section. Using molecular
kinetic theory to describe the contact-line dynamics [17,19],
an indicative value of the contact-line friction parameter ¢ for
water on polyethylene terephthalate (contact angle 82°) is 0.01
Pas[19], giving ¢ /u ~ O(10). However, in molecular kinetic
theory, ¢ depends strongly on the contact angle 6, [18]:

2
y A= Ccos (96))’ (18)

kgT
where ¢ is the value of the friction coefficient at 90°, and A
is a molecular “hopping” distance. Taking ¢, = 0.01 Pas and
A = 0.3 nm, we estimate ¢ /i ~ O(1) for water with a contact
angle of 180° at room temperature.

Furthermore, ¢ has generally been found to scale propor-
tionally with p for different fluids [18], so a situation in which
¢ < u seems unlikely. Thus we conclude that droplet motion

¢ =§0€XP<
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is unlikely to be dominated by interfacial friction even in
the limit of large slip (as noted earlier, effective slip lengths
on highly engineered superhydrophobic surfaces have been
measured to be as large as 200 um [12]). For water on a
superhydrophobic surface, the steady-state motion will either
be dominated by viscous shear (when b <« £) or by contact
line dissipation (when b > £), or all three forms of dissipation
will be important (when b ~ ¢). It is possible that on close
to ideal superhydrophobic surfaces, such as SLIPS surfaces
[41], interfacial friction may become more important than
contact-line dissipation.

VI. CONCLUSION

In conclusion, we have extended a prior theoretical treat-
ment of steady-state droplet motion on tilted superhydropho-
bic surfaces [13] to account for interfacial and contact-line
friction. We have investigated limiting cases in which droplet
motion is dominated by viscous dissipation, interfacial fric-
tion, or contact-line dissipation in turn. In contrast to the pre-
dictions of prior models that neglect slip, molecular-dynamics
simulations of droplets on tilted superhydrophobic surfaces

reveal a mixture of slipping and rolling motion. The scaling
behavior of the simulated droplets with radii less than the
capillary length suggests that the steady-state motion is domi-
nated by contact-line dissipation. On leaves, droplet motion
is likely to be dominated by viscous dissipation, and slip
can likely be neglected. Contact-line dissipation, however, is
likely to be important for highly engineered surfaces with
high slip lengths, while interfacial friction may be important
on close to ideal surfaces that lack features for contact-line
pinning to occur.
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