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Abstract 

One of the central goals of the field of microbial biogeography is to better understand spatial 

patterns of microbial community diversity and how communities respond to gradients in 

environmental conditions, be they natural or anthropogenic in origin. The main aim of this 

thesis was to investigate how gradients in environmental conditions (i.e., across a mountain 

elevational gradient and across different land-use types) affect soil microbial community 

structure, diversity and functional traits, and to assess how these communities respond to 

differing environmental variables, using next-generation sequencing technologies.  

  

Elevation gradients are commonly used to explore impact climate impacts on biological 

communities since declines in temperature with increased elevation can generate substantial 

climate gradients over small spatial scales. However, inconsistent spatial patterns in soil 

bacterial community structure observed across elevation gradients imply that communities are 

affected by a variety of factors at different spatial scales. Here, I investigated the biogeography 

of soil bacteria across broad (i.e., a ~ 1500 m mountain elevation gradient) and fine sampling 

scales (i.e., both aspects of a mountain ridge) using 16S rRNA gene sequencing. Across 

equivalent distances, variation in bacterial community composition changed more with 

variation in site aspect than elevation. Bacterial community composition and richness were 

most strongly associated with soil pH, despite the large variability in multiple soil climate 

variables across the site. These findings highlight the need to incorporate knowledge of 

multiple factors, including site aspect and soil pH for the appropriate use of elevation gradients 

as a proxy to explore the impacts of climate change on microbial community composition. 

 

Similar to bacterial communities, inconsistent elevational patterns in soil fungal community 

diversity suggest that these communities are driven by a complex underlying mechanism. Thus, 

to enhance understanding of whether distinct biogeographic patterns can be distinguished 

between different microorganisms and how such gradients influence the potential interactions 

among individual taxa, I assessed variation in the co-occurrence of different fungal taxa at 

different elevations along the aforementioned mountain ridge, using fungal internal transcribed 

spacer (ITS1) DNA sequencing. Fungal community composition changed significantly along 

the gradient, and their co-occurrences were less frequent with increasing elevation. Such 

changes with elevation were associated with soil nutrient concentrations, likely driven by the 

relative ability of different taxa to compete for nutrients at different environmental 

concentrations. Evidence of nutrient-driven shifts in fungal community diversity and function 

in soil will enhance our understanding of underground nutrient cycling and the likely impacts 

of climate change and agricultural disturbance on soil microbial communities.  
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To further explore gradients in the functional potential of soil bacterial communities along an 

elevation gradient, I devised a method to ‘infer’ metagenomics data from bacterial 16S rRNA 

gene sequences. I evaluated the applicability of my ‘inferred metagenomics’ approach, by 

comparing bacterial community composition derived from the original bacterial data to 

communities derived only from the 400 taxa for which genomic information is available. The 

results generated from these two datasets were highly similar, suggesting that the subset of 

‘inferred’ community was largely reflective of that of the wider environmental community. 

Further analysis indicates that bacteria with larger genome size appear to prevail across the 

elevation gradient, suggesting that microorganisms might successfully cope with harsh or 

various environmental conditions by retaining a larger burden of potential genes and related 

functions. These findings highlight the potential for using inferred genomic information, based 

on bacterial 16S rRNA gene data, to generate a general functional trait-based picture of 

microbial biogeographical patterns.  

 

Apart from studies on elevational patterns of soil microbial communities, many other 

environmental gradients impact distributions of bacterial communities, including gradients of 

anthropogenic disturbance. Therefore, I studied how pastoral land management practices affect 

soil bacteria, both in agricultural soils and adjacent forest fragments along 21 transects 

bisecting pasture-forest boundaries. Decreased compositional dispersion of bacterial 

communities in the grazed pasture soils resulting in a net loss of diversity caused by community 

homogenisation after forest-to-pasture conversion. Additionally, a greater richness of pasture-

only taxa for sites with a fence on the boundary between the two land uses revealed that 

boundary fences play an important role in protecting the integrity of soil bacterial communities 

in forests surrounded by agricultural land via restricting livestock invasion. The observed 

variation in bacterial community richness and composition was most related to changes in soil 

physicochemical variables commonly associated with agricultural fertilisation. Overall, my 

findings demonstrate clear, and potentially detrimental, effects of agricultural disturbance on 

bacterial communities in forest soils adjacent to pastoral land.  

 

This thesis reports the findings of a comprehensive evaluation of the impact of different 

environmental gradients on soil microbial community composition and functional potential, 

encompassing sample data collected across different spatial scales and land use types, as well 

as between different microbial phylogenetic groups. These results confirm that spatial patterns 

in both bacterial and fungal community structure are driven by various interacting 

environmental variables related with natural gradients or agricultural disturbances.  
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1.1 Microbial life on Earth 

Enormous numbers of taxonomically, phylogenetically, and functionally diverse 

microorganisms exist in the soil. For example, a teaspoon of soil may contain 

approximately 1 × 109 bacteria and 1 × 106 fungi (Ingham, 2011). Microorganisms, 

including bacteria, fungi, archaea, viruses and protists, have a direct influence on a wide 

range of ecosystem processes, such as nitrogen fixation, carbon and nutrient cycling, 

decomposition and other processes (Fierer and Jackson, 2006; Prosser et al., 2007; 

Fuhrman, 2009; Bardgett and van der Putten, 2014). Indeed, due in part to their high 

diversity, the structure of microbial communities is important for the way in which 

ecosystems function. To better understand soil microbial processes and perhaps to 

predict Earth’s response to future global change, such as climate change and ocean 

acidification, scientists need to have a better knowledge of the strength and forms of 

relationships between bacterial communities and the environments that they inhabit 

(Fuhrman, 2009). 

 

The discipline of biogeography explores the distribution of organisms across space and 

time (Lomolino et al., 2010; Hanson et al., 2012). One of the central goals in this field 

is to understand spatial patterns of biological diversity and what these biogeographic 

patterns reveal about the processes that drive microbial community diversity and 

functioning (Lavorel and Garnier, 2002). Since at least the eighteenth century, 

biogeographers have investigated the distributions of macroorganisms, i.e., plants and 

animals (Linnaeus, 1781; Green et al., 2008). More recently, microbiologists have 

partially overcome the geographic distributions of microorganisms, including bacteria, 

fungi, archaea, viruses and other microbial eukaryotes (Martiny et al., 2006; Fierer, 

2008). In recent decades, the development of genetic methodologies has alleviated 

some of the problems associated with historical culture and microscopy-based biases, 

which are well understood to miss a majority of bacterial diversity (Ward et al., 1990; 

Amann et al., 1995; Ferrari et al., 2005; Fuhrman, 2009). Advances in molecular 

methods allow a more comprehensive view of microbial diversity than could have been 

achieved just a few decades ago (Schloss and Handelsman, 2004; Venter et al., 2004; 

Pedros-Alio, 2006). Microbial geography stands to benefit tremendously from multiple 

advances in molecular tools, confirming that microorganisms display biogeographic 
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patterns, some of which are similar to those of macroorganisms (Green and Bohannan, 

2006; Ramette and Tiedje, 2007; Lindström and Langenheder, 2012), while differing 

in other regards (Fierer and Jackson, 2006; Fierer et al., 2010; Meier et al., 2010; Meng 

et al., 2013). 

 

1.2 Do microorganisms exhibit biogeography?  

A long-held concept in microbial ecology “everything is everywhere, [but] the 

environment selects”, often referred to as the Baas-Becking hypothesis (Baas Becking, 

1934), prompted the formulation of later theories in microbial biogeography, such as 

exploration of the relative roles of species sorting for microbial community 

composition (Leibold et al., 2004; Holyoak et al., 2005). The early work by Baas 

Becking (1934) prompted an increase in the frequency of studies on microbial 

biogeographic patterns that continues to this day, and is still often used as the question-

raising starting point of studies (Garcia-Pichel et al., 1996; Zwart et al., 1998; Staley 

and Gosink, 1999; Cho and Tiedje, 2000; Fenchel, 2003; Richards et al., 2005; Telford 

et al., 2006; Chu et al., 2010; Wilkinson et al., 2012; Fondi et al., 2016). The rapid and 

ongoing development of high-throughput technologies has greatly facilitated microbial 

community research (Riesenfeld et al., 2004; Eisen, 2007; Wooley et al., 2010; Bailey 

et al., 2013; Bergkemper et al., 2016; Yang et al., 2017). As the traditional culture-

based methods of bacteria in soil only can recover about 1% of the bacterial species 

present (Amann et al., 1995; Ferrari et al., 2005), the emergence of high-throughput 

technologies in biology have overcome historical culture-based biases in microbiology. 

With the development of these technologies, microbiologists now are able to survey a 

large portion of the microbial diversity on Earth and to quantify the microbial 

biogeographic patterns in a variety of environments. While Baas-Becking proposed that 

the remarkable dispersal potential of microbes leads to community distributions 

commonly shaped by environmental conditions rather than geographical distance, using 

modern molecular approaches, scientists can study microbial gene distributions at a 

broad scale, therefore extending the Bass-Becking hypothesis from the single organism 

to microbial genes. For example, using metagenomics sequencing data, Fondi et al. 

(2016) found that overlapping microbial gene pools were likely to be found in 

geographically disparate environments and these gene pools were affected by their 



4 

 

ecological niche. Likewise, microbial mercury methylation genes can be detected 

across a broad range of environments, encompassing thawing permafrost soils, coastal 

soils, sediments and extreme environments (Podar et al., 2015). Such findings confirm 

the global dispersal potential of microbes and their respective genetic functional traits 

into disparate habitats and environments.   

 

Although there was some debate about the existence of biogeographic patterns in 

microbial data, as can be found in earlier research (Fenchel et al., 1997; Staley, 1997; 

Finlay, 2002), a growing body of current microbial biogeography research provides 

overwhelming evidence that spatial patterns exist in soil microorganisms (Green et al., 

2004; Horner-Devine et al., 2004; Green and Bohannan, 2006; Martiny et al., 2006; 

King et al., 2010; Lindström and Langenheder, 2012), aided by the aforementioned 

advances in DNA sequence analysis. The simplest evidence for microbial biogeography 

is that microbial community attributes across a landscape are non-random. Many 

studies have found spatial patterns in microbial community composition or richness 

across environmental or geographic gradients. Crucially, these patterns have been 

correlated with environmental parameters such as soil pH (Fierer and Jackson, 2006; 

Lauber et al., 2009; King et al., 2010; Shen et al., 2013; Hermans et al., 2017), salinity 

(Casamayor et al., 2002; Crump et al., 2004; Herlemann et al., 2011; Fortunato et al., 

2012; Campbell and Kirchman, 2013), or with broad spatial attributes such as latitude 

as a proxy for climate/temperature change (Staddon et al., 1998; Schwalbach and 

Fuhrman, 2005; Pommier et al., 2007; Yergeau et al., 2007; Fuhrman et al., 2008; Lear 

et al., 2017b). More specifically, there are two dominant types of evidence that 

microorganisms display spatial patterns in their distribution. The first evidence is the 

existence of endemic microbial species, restricted to a particular location, region or 

habitat type (Hanson et al., 2012). As endemism is not evenly distributed on the Earth, 

the existence of free-living endemic species is perhaps the clearest demonstration of 

microbial biogeography. For example, some taxa are endemic to specific habitat types, 

such as those in habiting geothermal soils or hot springs (Whitaker et al., 2003; Stott et 

al., 2008; Takacs-Vesbach et al., 2008; Hug et al., 2014; Sharp et al., 2014). Another 

type of evidence is the exploration of patterns in microbial community similarity with 

geographic distance. Recent studies have found reductions in bacterial community 

similarity with increasing geographic distance (i.e., distance-decay relationships), 
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suggesting not only that the composition of microbial communities is different among 

locations, but that this variation is correlated with spatial distance (Green et al., 2004; 

Horner-Devine et al., 2004; Soininen et al., 2007). The distance-decay relationship has 

been widely observed for microorganisms in a wide range of habitats, and at a variety 

of taxonomic resolutions (Cho and Tiedje, 2000; Hewson et al., 2006; Casteleyn et al., 

2010; Soininen et al., 2011).  

 

Distance-decay relationships are further evidence for microbial biogeography, which 

reflects that the taxonomic composition of communities is often observed as becoming 

less similar with increasing geographic distances (Nekola and White, 1999; Green and 

Bohannan, 2006). This relationship received the early interest of Whittaker (1972) and 

Preston (1962) in their studies of plants, and became increasingly popular after Nekola 

and White (1999) formalised it. Distance-decay relations are mainly assumed to result 

from environmental changes occurring across distances as well as due to population 

dynamics (e.g., spatial variation in colonisation, extinction or speciation) (Hubbell, 

2001; Zinger et al., 2014). Such relationships have been detected repeatedly across a 

wide range of macroorganisms, geographic gradients and environments (Condit et al., 

2002; Tuomisto et al., 2003; Novotny et al., 2007; Qian and Ricklefs, 2007; Soininen 

et al., 2007). Now, microbiologists have reported similar patterns for microbial 

communities across both terrestrial and aquatic environments (Hillebrand et al., 2001; 

Reche et al., 2005; Bell, 2010; Astorga et al., 2012). Further, scientists also observed a 

significant decrease in bacterial compositional similarity with elevational distance, 

implying bacterial communities are spatially structured by elevation, rather than a 

random distribution (Bryant et al., 2008).  

 

1.3 Ecological theories and microbial biogeography 

1.3.1 Gradients with latitude and elevation 

Ecological theories regarding the biogeography of macroorganisms have allowed 

generalized conclusions to be drawn from specific observations of organisms for 

decades, even centuries (Linnaeus, 1781; Merriam, 1890; Whittaker and Niering, 1965). 
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For example, one of the most fundamental and the oldest observed patterns in the 

biogeography of macroorganisms is the latitude gradient of diversity, whereby diversity 

increases at warmer, more equatorial latitudes (Pianka, 1966; Rosenzweig, 1995; 

Hillebrand, 2004).  

 

A variety of plant and animal communities exhibit increases in diversity from the poles 

to the equator. Many competing hypotheses have been proposed to explain the pattern 

(Willig et al., 2003; Hillebrand, 2004; Lomolino et al., 2006). One of the most common 

hypotheses for explaining this broad-scale diversity gradient is the ‘water-energy 

dynamics hypothesis’, focusing on the direct or indirect (through influences on net 

primary productivity) constraints of water availability, solar energy, or water-energy 

balance for the maintenance of biodiversity (Hawkins et al., 2003; Kreft and Jetz, 2007). 

In other words, species richness at higher latitudes are limited by the availability of 

solar energy, and, in thermally suitable environments (i.e., at lower latitudes), by water 

availability (Wright, 1983; Stephenson, 1990; Allen et al., 2002). The theory of 

‘biological relativity to water-energy dynamics’ proposed by O'Brien (2006) has been 

corroborated with numerous studies on the distributions of different macroorganisms, 

such as plants (Field et al., 2005; Vetaas and Ferrer-Castán, 2008), mammals (Diniz 

Filho et al., 2008; Hortal et al., 2008; Aragón et al., 2010) and birds (Hawkins et al., 

2003; Li et al., 2013). 

 

Alternative theories for latitudinal diversity gradients include Rapoport’s Rule, in 

which diversity gradients are proposed to be driven by latitudinal gradients in 

environmental variation, and particularly temperature variation, associated with 

correlated gradients in geographical range size (Rapoport, 1982; Stevens, 1989; Smith 

and Gaines, 2003). Stevens (1989) associated Rapoport’s Rule (Rapoport, 1975) with 

the observed pattern of decreasing species ranges closer to the equator. According to 

Steven’s hypothesis, the latitudinal diversity gradient is caused by the principle of 

changing environmental tolerance of species with latitude, and consequently the 

latitudinal trend of individual’s and species’ potential to survive at various latitudes 

(Šizling et al., 2009).  
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Alternatively or additionally, Blackburn et al. (1999) identified Bergmann’s rule as an 

explanation for large-scale latitudinal gradients in diversity. This rule describes the 

tendency for a positive relationship to exist between the body mass of species belonging 

to a monophyletic higher taxon and the latitude inhabited by these species. Scientists 

have demonstrated results consistent with Bergmann’s rule for macroorganisms 

including birds and mammals (Rosenzweig, 1968; Zink and Remsen Jr, 1986; 

Blackburn et al., 1999; Ashton et al., 2000; Blackburn and Hawkins, 2004; Ramirez et 

al., 2008).   

 

As climatic conditions, such as temperature, change with elevation as they do with 

latitude (Sunday et al., 2014), it is not surprising that elevational patterns in biodiversity 

can, to some extent, mirror latitudinal patterns (MacArthur, 1984; Brown, 2001), and 

consequently the aforementioned theories for latitudinal diversity gradients can be 

potentially adopted to elevational patterns. For example, scientists have applied 

Rapoport’s rule to elevational patterns observed for distributions of macroorganisms, 

including, bats (Patterson et al., 1996), fishes (Bhatt et al., 2012), moths (Brehm et al., 

2007), flies (Kubota et al., 2007; Rohner et al., 2015), ants (Sanders et al., 2003), spiders 

(Chatzaki et al., 2005) and butterflies (Sanchez-Rodriguez and Baz, 1995; Fleishman 

et al., 1998); coincident with the decline in species richness with increasing elevation 

is an increase in the latitudinal range of species (Stevens, 1992). Rapoport’s Rule 

postulates that climates at higher elevations are more variable, so species at higher 

elevations can tolerate more variability and therefore have larger elevational ranges. 

Meanwhile, the ‘low elevation’ species cannot persist at higher elevations. As a result, 

species richness typically decreases monotonically with elevation (Sanders, 2002).  

 

1.3.2 Taxa-area relationships          

Another of the cornerstones in the field of modern biogeography is the equilibrium 

theory of island biogeography developed by MacArthur and Wilson (1967). The taxa-

area relationship describes how the number of taxa tend to increase with increasing 

sample area (Martiny et al., 2006; Fuhrman, 2009). MacArthur and Wilson’s theory 

provides a conceptual explanation for the species-area relationship, one of the most-



8 

 

studied and best-documented patterns in plants and animal biogeography (Rosenzweig, 

1995). This relationship is generally expressed with the equation: 

S = cAz 

Where S is the richness of observed taxa; c is a fitted constant; A is the sampled area 

and z is the slope of the taxa-area relationship. Values of z are determined empirically, 

and for plant and animal taxa, z values generally range from 0.1 – 0.2 in contiguous 

habitats and 0.25 – 0.35 across discrete island habitats (Rosenzweig, 1995; Horner-

Devine et al., 2004). Apart from sampling effects, the taxa-area relationship is mainly 

presumed to be caused by (1) the accumulation of habitats and taxa, when increasing 

the area considered, and (2) population dynamics, where higher probabilities of 

colonisation and speciation, but lower extinction rate, occur in larger areas (Connor and 

McCoy, 1979; Hubbell, 2001). Since current ecological studies increasingly address 

issues associated with habitat fragmentation, global environmental change and loss of 

biodiversity (Drakare et al., 2006), the taxa-area relationship remains a central theory 

for the prediction of species loss in response to global environmental change (Thomas 

et al., 2004), regional habitat loss (Ney-Nifle and Mangel, 2000) and the risk of future 

diversity loss because of reduced speciation (Rosenzweig, 2001).  

 

An increasing number of studies have shown that microbes demonstrate a positive taxa-

area relationship, with taxonomic richness increasing with the sample area (Green et 

al., 2004; Horner-Devine et al., 2004; Bell et al., 2005; Green and Bohannan, 2006; 

Peay et al., 2007; Prosser et al., 2007; Barreto et al., 2014; Terrat et al., 2015). This 

predictive pattern can also be applied to better understand variance in spatial microbial 

diversity along elevation gradients, as land area increases at lower elevation, and hence 

lower elevation sites consequently can harbour greater taxon richness. 

 

1.3.3 Applying ecological theories to better understand patterns of 

microbial biogeography 

To deepen our understanding of the ecology of microbes and also their role in 

ecosystem functioning, it makes sense to first explore if traditional ecological ideas and 
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theories derived from studies on plants and animals can be applied to microorganisms 

(Prosser et al., 2007; Ramette and Tiedje, 2007; Falkowski et al., 2008; Costello et al., 

2012; Carbonero et al., 2014). However, to a certain extent, the application of 

traditional ecological theory is not driven by the assumption that microorganisms would 

simply follow the same patterns as observed for macroorganisms, but perhaps more 

simply by the fact that the biogeography of macroorganisms is fairly well-studied and 

scientists have adopted similar approaches for the investigation of microbial data 

(Martiny et al., 2006). We might lose sight of the fact that the biology of plants and 

animals are different from that of microorganisms, if microbiologists directly adopt 

traditional ecological theory without any adaptation (van der Gast, 2015). Indeed, there 

has been a growing number of studies investigating the biogeography of 

microorganisms in light of traditional ecological theory. For example, Carbonero et al. 

(2014), explored traditional ecological concepts of specialist and generalist species for 

microbial community data, but challenged their results by demonstrating that metabolic 

flexibility can be a major predictor of spatial distribution in microbial communities. On 

the other hand, Zinger et al. (2014) reported taxa-area relationships, one of the few 

universal principles in the ecology (an increase in species richness with increasing size 

of sampled area) (Rosenzweig, 1995; Lawton, 1999), for bacterial communities at 

magnitudes consistent with those observed for macroorganisms, while distance-decay 

relationships derived from the same dataset were much smaller than those derived from 

macroorganisms. Such studies, which provide contrasting results for microbial data, 

indicate that a major challenge in microbial biogeography is to determine the extent to 

which microorganisms show unique features or have patterns in common with 

macroorganisms (i.e., plants and animals).  

 

1.4 Mountain elevation gradients and microbes 

To explain large-scale patterns of species richness and composition and the mechanisms 

underlying these patterns are longstanding goals in ecology, as scientists used 

latitudinal and/or elevational gradients as proxies of climate change, particularly 

changes in temperature. Compared with studies conducted across latitudinal gradients, 

studies of patterns across elevational gradients provide a powerful ecological method 

for studying community richness and composition along a steep environmental 
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gradients but across relatively small spatial scales (Wang et al., 2012a). For example, a 

rapid decrease in temperature is commonly observed with increasing elevation (~6 °C 

per 1000 m), in contrast to a similar temperature decrease occurring over ~ 1000 km of 

latitude (i.e., 6.9 °C) (Colwell et al., 2008; Jump et al., 2009). More than two centuries 

ago, Linnaeus (1743) documented a compressed and very orderly succession of climate, 

vegetative zones and animal communities across an elevational gradient. Later, 

Willdenow (1811) made the key observation that variation in plant diversity 

corresponded with variation in climate along elevational gradients. Since then, 

elevation gradients have continued to serve as a heuristic tool and natural laboratory for 

generations of scientists: from Von Humboldt (1849) in the Ecuadorian Andes, Darwin 

(1859) in the Chilean Andes, Merriam (1890) in the North American Rockies, to the 

study of Whittaker and Niering (1965) in North America, and the survey of Brehm et 

al. (2003) in southern Ecuador in the current century. Elevational gradients have shown 

their distinguished historical position in the testing and development of biogeography 

and ecological theory.   

 

Community attributes and distributions are constrained by environmental factors which 

may form natural gradients that are inherently complex, combining variation in climate, 

soil resource factors and disturbance (Dubuis et al., 2013). Elevation gradients are 

frequently used as a proxy for identifying particularly climate-related factors that drive 

patterns of communities in the environment. Along a mountain ridge line, slopes 

encompass variation in climatic conditions over relatively short distances as well as 

variation in other soil physicochemical attributes and biology. Variation in climate 

attributes across mountain slopes are commonly used to explore their impacts on 

species distributions over short spatial distances. As a result of such studies, scientists 

have found that climatic conditions have emerged as a particularly important driver of 

species distribution through space (Hillebrand et al., 2010; Pellissier et al., 2013) with 

species’ geographical ranges being driven by their climatic tolerance (Kerr et al., 2015).  

 

While there is certainly evidence that climatic conditions, such as temperature alone 

can influence species diversity and turnover (Currie, 1991; Kluge et al., 2006; Zhou et 

al., 2016; Lewthwaite et al., 2017), other environmental factors likely play important 
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roles in controlling community diversity (Peay et al., 2017). For example, Fu et al. 

(2004) found that soil organic matter, positively related with elevation, had a close 

relationship with shrub richness and diversity, suggesting that elevation might exert 

indirect influences on species diversity via gradients in soil physicochemistry. Such 

observations might be caused by declines in nutrient availability, especially N and P, 

with increasing elevation, mediated by an increase in precipitation (Grubb, 1977). 

Slower rates of decomposition with increasing elevation might also cause an increase 

in soil C:N and declining pH (Bellingham and Sparrow, 2009).  

 

1.4.1 Elevational patterns in macroorganism distributions 

Studies of how individual macroorganisms and their community composition respond 

to elevation has led to a search for generalised elevational patterns of biodiversity 

(Brown, 2001; Lomolino, 2001; McCain, 2005). Studies have documented elevational 

patterns of biodiversity for a wide range of macroorganisms, including trees (Carpenter, 

2005; Behera and Kushwaha, 2006; Acharya et al., 2011), mammals (Heaney, 2001; 

Rickart, 2001; SÁnchez-Cordero, 2001), birds (Goodman and Rasolonandrasana, 2001; 

Kessler et al., 2001; Sekercioglu et al., 2008), reptiles (Rodríguez et al., 2005; Chettri 

et al., 2010), insects (Romero-Alcaraz and Ávila, 2000; Axmacher et al., 2004; 

Descombes et al., 2017) and amphibians (Stuart et al., 2004; Grenyer et al., 2006). 

Together, these results indicate that macroorganisms generally display either 

monotonic decreases or hump-shaped richness patterns (i.e., maximum richness at 

some intermediate point of the gradient) with elevation (Stevens, 1992; Rahbek, 2005). 

However, many elevational patterns are not sampled down to the lowest possible 

elevation, perhaps missing the detection of diversity ‘humps’ at lower elevations 

(Lomolino, 2001; Rahbek, 2005).  

 

Changes in species richness along elevation gradients have been instrumental in 

developing a variety of theories about the general drivers of biodiversity. For example, 

one of the best known theories relate to the ‘species-area relationship’ (Rosenzweig, 

1995), which assumes there is more chance for the maintenance of richness and 

speciation in larger areas. Therefore, an increase in the number of species is likely 
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observed at low elevation due to increasing patch size and a decreasing degree of 

isolation. Another explanation for the patterns observed relates to the ‘temperature 

hypothesis’, which correlates species richness with differing biochemical kinetics along 

these gradients, particularly the availability of thermodynamic energy (Stephenson, 

1990; Rohde, 1992; Allen et al., 2002; Mittelbach et al., 2007). The ‘water availability 

hypothesis’ provides a similar explanation for elevational patterns of species richness, 

as at the highest elevations water availability decreases as precipitation decreases and 

evapotranspiration increases above the cloud layer; additionally, greater runoff may 

occur on the steeper slopes typically found at higher elevations sites and water resources 

water may be less accessible where stored as seasonal snow and ice (McCain, 2006). 

Therefore, this hypothesis mainly focuses on the direct or indirect constraints of water 

for the maintenance of biodiversity (Hawkins et al., 2003; Kreft and Jetz, 2007). 

Identifying theories that might drive large-scale patterns of biotic interaction is 

fundamental for understanding how communities respond to changing environmental 

conditions. 

 

1.4.2 Elevational patterns in soil bacterial communities 

As elevational patterns in macroorganism diversity along mountain gradients have been 

widely acknowledged, a growing number of microbiologists have started to study 

whether microorganisms show similar features or have patterns in common with 

macroorganisms along elevation gradients. In fact, it was as late as 2008 that the first 

high-profile study on the elevational pattern in bacterial diversity was published 

(Bryant et al., 2008). Bryant and colleagues (2008) found a monotonic decline in 

Acidobacteria richness with elevation. After this study, research on elevational patterns 

in bacterial community attributes began to attract more attention in the field (Fierer et 

al., 2010; Wang et al., 2011; Singh et al., 2012; Shen et al., 2013). For example, Fierer 

et al. (2010) observed no gradient in soil bacterial community diversity along 

elevational gradients, while, conversely, communities of macroorganisms, such as birds, 

bats and trees, collected at the same study site showed a clear decrease in richness with 

elevation. In the study of Wang et al. (2011), an increase in the richness of bacterial 

communities with increased elevation was observed, related to an increase in either 

carbon supply or temperature variability at high elevation. Further, Singh et al. (2012) 
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found a unimodal pattern in bacterial richness with elevation, which was not parallel to 

the diversity of plant communities. Other studies that have examined bacterial diversity 

along elevational gradients have shown variable results (Corneo et al., 2013; Looby et 

al., 2016; Hendershot et al., 2017; Wu et al., 2017). Together, all these findings indicate 

that elevational patterns in bacterial community attributes do not follow a universal rule, 

and fundamentally differ from the corresponding findings for macroorganisms. In 

addition, some scientists suggest that as elevation offers a strong gradient in climatic 

conditions (e.g., temperature), elevational gradients are a highly suitable proxy for the 

studies of microbial biogeography (Cordier et al., 2012; Soininen, 2012; Yang et al., 

2014; Wu et al., 2017).  

 

The inconsistency observed among spatial patterns in microbial communities with 

elevation is likely due to the different elevational ranges where samples were collected 

in different studies. For example, the topographic and climatic features are clearly 

distinct along a mountain incline on Changbai Mountain in China, encompassing a 

typical temperate forest below 1100 m, an evergreen coniferous forest from 1100 to 

1700 m, a subalpine forest from 1700 to 2000 m, and a unique alpine tundra above 2000 

m (He et al., 2005). Therefore, not surprisingly, researchers found distinct spatial 

patterns in bacterial community diversity across different elevational bands, including 

a linear decrease in taxon richness along 2000-2500 m elevations (Shen et al., 2015) as 

well as a lack of patterns from 500 m to 2200 m (Shen et al., 2013; Shen et al., 2014). 

 

Climate conditions likely play a crucial role in generating and shifting bacterial 

diversity along elevation gradients, as bacterial taxa vary in their response to the 

gradient they inhabit (Vellend, 2010; Hanson et al., 2012; Whittaker and Rynearson, 

2017). For example, climatic conditions (e.g., temperature and precipitation), which are 

highly correlated across elevation gradients (Rahbek, 1995; Gaston, 2000; Fierer et al., 

2010), might significantly affect bacterial community structure and process, including 

respiration and enzyme activity (Fierer et al., 2003; Rinnan et al., 2009; Zeglin et al., 

2013). Climatic conditions might further shape the functional abilities of bacterial 

communities (Strickland et al., 2015) although with adaptation taxa may begin to 

function outside of their normal ‘climatic window’ (Keiser and Bradford, 2017). For 
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example, environments with warm and moist conditions typically select for fast-

growing competitive organisms. These conditions may therefore select for communities 

that generate higher rates of ecosystem processes than would be achieved by a stress-

adapted communities (e.g., at low temperature and moisture content), when placed 

under similarly favourable environmental conditions (Vries et al., 2012; Crowther and 

Bradford, 2013). Climatic conditions might also impact soil bacterial community 

functional attributes through substrate-specific enzyme production whereby cold- or 

warm-adapted enzyme production is dependent on their habitat (Wallenstein et al., 

2010). Therefore, the effect of climate gradients might be composed of the direct 

influence of temperature and moisture on the biotic activity of bacterial communities, 

reaction rates and substrate availability, and indirect effects mediated via the changing 

structure of these communities (Averill et al., 2016; Keiser and Bradford, 2017).  

 

While there is certainly evidence that climate alone can influence bacterial diversity, 

the inconsistent responses to elevation in the microbial literature (Bryant et al., 2008; 

Peay et al., 2017) suggests that other environmental factors (e.g., soil pH) likely also 

play important roles in controlling the diversity of soil microbial communities. For 

example, Peay et al. (2017) found that although bacterial community richness strongly 

correlated with elevation, it was also correlated with other soil physicochemical factors 

across the study site (e.g., soil pH). Likewise, Bryant and colleagues (2008) found a 

strong influence of soil pH on bacterial community composition across elevation 

gradients; pH has previously been demonstrated as a dominant determinant or correlate 

of bacterial community composition (Fierer and Jackson, 2006; Lauber et al., 2009; 

Griffiths et al., 2011; Shen et al., 2013; Hermans et al., 2017). The strong correlation 

between soil pH and bacterial community structure could result from pH being an 

integral measure of a variety of soil physicochemical attributes (Fierer and Jackson, 

2006). For example, elevational gradients in soil pH are commonly attributed to an 

increase in rates of mechanical weathering that emerges up to elevations of ~2000 m 

(Hales and Roering, 2005). An increase in weathering causes soil acidification, as soil 

pH and concentrations of exchangeable cations (e.g., calcium, sodium, phosphate and 

magnesium) are closely correlated (Berthrong et al., 2009). Therefore, besides the direct 

influence of climatic conditions, soil physicochemistry, such as pH, possibly affected 
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by different rates of weathering across the gradient, could be a correlate of elevational 

gradients in bacterial diversity and composition.   

 

1.4.3 Elevational patterns in soil fungal communities 

While the term ‘microorganism’ encompasses a broad range of taxa (i.e., bacteria, fungi, 

archaea, viruses, and protists) that are phylogenetically, morphologically, and 

physiologically distinct, whether distinct biogeographic patterns can be distinguished 

between the different microorganisms has received little attention (Logue et al., 2015). 

Do fungi, for example, respond similarly to environmental variables as bacteria? It is 

perhaps unlikely that these taxonomic groups share similar patterns, as the intrinsic 

properties and functional attributes of fungal communities are different from those of 

bacterial communities. Current studies focusing on bacteria and fungi show differences 

in their sensitivity to drought (Berlemont et al., 2014), fertilisation (Koyama et al., 2014; 

Liang et al., 2015), and warming (DeAngelis et al., 2015; Liang et al., 2015), which in 

turn impact measured functional processes or traits (Berlemont et al., 2014; Liang et al., 

2015). As fungi are widely distributed in all terrestrial ecosystems, often governing soil 

carbon cycling, plant nutrition, and pathology (Tedersoo et al., 2014), it is important to 

investigate their distribution (Fierer et al., 2009; Serna-Chavez et al., 2013; Xu et al., 

2013).  

 

Similar to the inconsistent elevational patterns in bacterial community attributes as 

already mentioned, mixed results have been found for fungal communities, with 

evidence for decreased richness at lower elevation (Pellissier et al., 2014) or increased 

richness at lower elevation (Logue et al., 2015), greatest richness at mid-elevations due 

to range overlap (Bahram et al., 2012; Coince et al., 2014; Miyamoto et al., 2014), or a 

lack of pattern with elevation (Zimmerman and Vitousek, 2012; Jarvis et al., 2015). 

These inconsistent elevational patterns imply that soil fungal community richness and 

diversity attributes might not be simply driven by a single rule, but instead by more 

complex ecological mechanisms. Previous studies have investigated how fungal 

distribution and diversity differ when assessed at the level of fungal biomass (Zhang et 

al., 2013), at functional group levels (Bahram et al., 2012), and at different taxonomic 
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levels such as by phylum (Looby et al., 2016) across elevational gradients. These 

variations become more apparent as lower taxonomic levels and/or ecological trait 

differences are considered.  

 

1.4.4 The impact of mountain aspect and microclimate on spatial 

patterns in soil microbial communities 

Apart from variation in climatic conditions along elevation gradients, mountain aspect, 

slope, shading and related microclimate factors are also relevant to climatic variation 

across mountain environments (Titshall et al., 2000). It is indeed a well-established fact 

that the microclimate of a site is largely determined by its geographical orientation (Xu 

et al., 2002), which causes sites separated by distances of only a few meters to 

experience very different microclimate conditions. Slope aspect is an important 

topographic factor affecting microclimate, mainly because it determines the amount of 

solar radiation received, that in turn influences soil temperature (Weiss and Weiss, 1998; 

Thomas et al., 2001; Davies et al., 2006), soil moisture (Carter and Ciolkosz, 1991; 

Schaetzl and Anderson, 2005), evaporative demand (Bennie et al., 2008) and biological 

activity (Nielsen et al., 2001; Selvakumar et al., 2009). To summarise, the aspect of a 

mountain which receives greater solar radiation, is typically hotter, dryer and subject to 

more rapid seasonal and diurnal changes in microclimate (Sariyildiz et al., 2005; 

Carletti et al., 2009). Particularly, at higher altitudes, soil microclimate varies 

remarkably, largely due to difference in the number of daily insolation hours received 

at different locations (Zumsteg et al., 2013). Although research on the relationships 

between microclimate or aspect differences and soil microbial communities remain low, 

there have been a few studies which demonstrate the impact of mountain aspect or 

microclimate on changes in microbial community attributes. For example, some 

microbial taxa, such as Pseudomonas, were more abundant on the cooler aspect of a 

mountain (Sikorski et al., 2008; Selvakumar et al., 2009), suggesting that aspect 

induced microclimatic conditions selecting particular microbial genotypes that are 

highly adapted to the prevailing cooler conditions. The relevance of aspect induced 

microclimate differences is also confirmed by Zumsteg et al. (2013), showing that the 

microbial activities were higher on the colder and moister side of a mountain, likely 

due to greater substrate availability at lower temperatures and higher moisture levels. 
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Moreover, Wu et al. (2017) found that variation in bacterial community composition 

was more closely associated with the aspect of the study site than its elevation. Overall, 

it is important to note that variations in microbial community attributes are influenced 

not only by the whole elevation gradient at a large-scale, but also by microclimate 

features occurring at fine-scales. Therefore, more studies on spatial patterns in soil 

microbial community attributes along a mountain incline encompassing both broad as 

well as fine-scale variation are desirable, especially when little work has currently been 

done regarding the impact of microclimate or mountain aspect on soil microbes. 

 

1.5 The impact of different land use on soil microbial 

communities 

Soils are typically physically, chemically, and biologically heterogeneous in nature, 

thereby providing a wide range of gradients in soil characteristics to explore the 

distributional patterns in microbial communities and the factors driving these patterns. 

There is no shortage of evidence that soil heterogeneity can, to some extent, directly 

affect spatial distributions of microbial communities. For example, across a 180-m 

distance of the Hoosfield acid strip (that is, a pH gradient ranging from 4.0 to 8.3 within 

200 m that resulted from a one-time uneven application of chalk in the mid 19th century), 

Rousk et al. (2010) found that the relative abundance and diversity of bacterial 

communities were positively associated with soil pH from pH 4 to 8. This finding has 

confirmed observations from other studies conducted from continental (Fierer and 

Jackson, 2006; Lauber et al., 2009) to submeter scales (Baker et al., 2009), showing 

that the influences of soil properties on soil microbial communities are robust across 

different spatial scales. 

 

The effects of changes in land use on the physical and chemical properties of soils in 

agricultural land and even adjacent natural habitats have been well studied (Post and 

Mann, 1990; Murty et al., 2002; Kuramae et al., 2012; Didham et al., 2015), while a 

growing body of evidence documents how changes in land use also alters soil microbial 

community attributes and the biogeochemical processes they carry out (Jangid et al., 

2008; Wu et al., 2008; Ramirez et al., 2010; Rodrigues et al., 2013; Paula et al., 2014). 
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For example, both Rodrigues et al. (2013) and Gossner et al. (2016) similarly report 

increases in taxon richness and decreases in compositional dispersion of soil microbial 

communities after forest to pasture conversion. Additionally, fertiliser application 

frequently causes a decrease in soil pH (Fox and Hoffman, 1981; Liu et al., 2012), 

consequently reducing nutrient availability and microbial biomass in agricultural soils 

(Bardgett, 2005). The influences of land-use change on microbial community attributes 

arise from diverse management practices across different land-use types, for example 

fertilisation effects on soil (Garbeva et al., 2004; Wakelin et al., 2008), including soil 

pH (Fierer and Jackson, 2006; Griffiths et al., 2011; Wu et al., 2017), nitrogen (Di et 

al., 2009; Campbell et al., 2010; Fierer et al., 2012a) and phosphorus concentrations 

(Griffiths et al., 2011; Hermans et al., 2017). Interestingly, some scientists found that 

differences in microbial communities were not necessarily related to distinct land-use 

types, but rather to be directly associated with the impacts of that land-use change on 

underlying soil properties (Lauber et al., 2008; Kuramae et al., 2012).  

 

Numerous studies have demonstrated that changes in land use have a considerable 

influence on both bacterial and fungal communities (Bossio et al., 1998; Steenwerth et 

al., 2002; Johnson et al., 2003; Rodrigues et al., 2013; Gossner et al., 2016). Such 

influences on microbial community structure are caused by the variability in specific 

soil characteristics associated with different land use types, rather than land use itself 

(Lauber et al., 2008). Additionally, although hydraulic activity and livestock invasion 

have been previously reported to transport microorganisms and agricultural nutrients 

further into the forests surrounded by agricultural land (Lim and Flint, 1989; 

Champagne et al., 2000; Maule, 2000; Wolf et al., 2010), we have a poor understanding 

of the spatial extent of the impact of different land uses on soil microbial community 

structure in natural forest fragments affected by their proximity to adjacent agricultural 

land.  
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1.6 Approaches for studying the structural and functional 

traits of microbial communities 

1.6.1 Next-generation DNA sequencing technologies 

Environmental samples collected from nature typically harbour complex microbial 

communities, which are highly diverse in both the composition and abundance  

(Degnan and Ochman, 2012). Advances in molecular biological technologies have 

revolutionised our ability to fully describe soil microbial communities with regard to 

their diversity, composition and biogeography (Pedros-Alio, 2006). Since 2005, the 

development of “next-generation” (or “high-throughput”) sequencing technologies has 

greatly facilitated bacterial community research (Sogin et al., 2006; Eisen, 2007; Bailey 

et al., 2013; Bergkemper et al., 2016; Yang et al., 2017). Such technologies have helped 

overcome historical culture-based biases, which often underestimated microbial 

community diversity and only provided limited information related to the taxonomic 

identity (Amann et al., 1995; Ferrari et al., 2005). Next-generation sequencing 

platforms, such as Roche 454 pyrosequencing (Margulies et al., 2005), Ion Torrent 

PGM (Rothberg et al., 2011) or Illumina (Gloor et al., 2010), can yield great numbers 

of sequencing reads at low cost, enabling high-through microbial analysis to explore 

microbial biogeography. Although some technical issues of next-generation sequencing 

exist, for example PCR primer biases (Caporaso et al., 2012), surveys of microbial 

communities from environmental samples across continental-or even global-scales 

have become the norm nowadays (Fierer and Jackson, 2006; Lauber et al., 2009; 

Tedersoo et al., 2014; Ma et al., 2016; Zhou et al., 2016). By studying these patterns, 

scientists may be able to develop or examine fundamental biogeographical theories and 

hypotheses that might be common to all of life, beyond merely documenting the 

existence of patterns. Using next-generation sequencing technologies, microbiologists 

can reveal microbial community responses to diverse environmental gradients and 

changes for archaea, bacteria, and fungi, as well as a vast range of habitats, and varying 

spatial and temporal scales. Therefore, we can widely investigate if microbial 

biodiversity is fundamentally different from that of macroorganisms and which 

underlying attributes and processes contribute to these differences, which would greatly 

further our understanding of the process regulating the diversity and distribution of life 

on Earth.  
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1.6.2 The distribution of microbial functional traits 

A key research topic in ecology is how community composition impacts ecosystem 

functioning (Loreau et al., 2002). For microorganisms, there is a growing body of 

interest in the biogeography of functional traits that are linked with its fitness or 

performance (McGill et al., 2006). The observed elevational patterns in the distribution 

of functional traits can deepen our understanding of the complex mechanisms 

determining why organisms live where they do, how many taxa can co-exist in a habitat, 

and how they will respond to environmental fluctuation. However, compared with our 

understanding for plants and animals, we know little whether changes in microbial 

community composition lead to shifts in metabolic functions or whether shifts in these 

functions require associated changes in taxonomic composition (Green et al., 2008; 

Logue et al., 2015). Previous studies have indicated the potential of exploring functional 

traits to deepen our understanding of microbial biogeography (Martiny et al., 2015; 

Ruiz-González et al., 2015), and that the distribution of specific functional traits may 

govern the type of microbial response to environmental change (Shade and Handelsman, 

2012). Yang et al. (2014) found greater abundances of bacterial cold shock genes 

encoding for adaptation to cold conditions at higher elevation. Their results also 

indicated that the abundance of gene gdh, converting ammonium into urea, and gene 

ureC, converting urea into ammonium contents, was consistent with soil ammonium 

contents. In addition, changes have been reported at the cellular level, whereby 

heterotrophic bacteria featuring a range of homeostatic regulation mechanisms from 

strong homeostasis to highly flexible biomass stoichiometry were able to accommodate 

changes in carbon and phosphorus concentrations (Godwin and Cotner, 2015). Overall, 

studying variation in microbial community functional traits is becoming particularly 

valuable to microbiologists, as new patterns of variation in functional traits can be 

discovered across environmental gradients, even within taxonomic groups once thought 

to be relatively homogeneous (Green et al., 2008). As such patterns in the distribution 

of microbial functional traits could be applied to understand complex phenomena, 

current advances in environmental molecular biology, such as metagenomics, co-

occurrence network analysis and other trait-based approaches, would recast the 

argument of functional redundancy among taxa (Achtman and Wagner, 2008) to better 
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understand the importance of specific groups of microbial functional traits in the 

environment. 

 

1.6.3 Metagenomics 

Microbial communities, as part of natural ecosystems, are inherently complex. One of 

the biggest challenges facing microbiologists interested in functional traits is how to 

identify them. The traditional tools of microbiology, such as the analysis of pure 

cultures, only provide a reductionist view, studying each organism in isolation 

(Fuhrman, 2009). One approach to studying microbial functional traits without relying 

on culture is to use the DNA sequences from environmental genomics studies, which 

can provides a comprehensive and integrated approach to decipher microbial function 

and physiology. The emergence of metagenomics-based approaches in microbiology 

have helped overcome historical culture-based biases, which previously limited our 

ability to address the functional attributes of microorganisms and mechanisms 

underlying their interactions (Ferrari et al., 2005; Thomas et al., 2012). This approach 

can be used to annotate the sequences into open reading frames and then predict the 

encoded proteins and infer putative functions using annotation databases, such as the 

Kyoto Encyclopedia of Genes and Genomes, Clusters of Orthologous Groups, 

Functional Ontology Assignments for Metagenomes and SEED subsystems (Kanehisa 

and Goto, 2000; Koonin, 2002; Overbeek et al., 2004; Prestat et al., 2014). The rapid 

development and extraordinary cost reductions of next-generation sequencing 

technologies has greatly increased the number of available metagenomics datasets, and, 

consequently, our knowledge of the functioning of complex microbial communities 

(van Nimwegen et al., 2016). We are now capable of predicting the growth 

requirements (Pope et al., 2011; Walker et al., 2014) and stress tolerances (Mongodin 

et al., 2006; Yuan et al., 2012; Stuart et al., 2013; Trivedi et al., 2013) even of 

microorganisms that have never been grown in a laboratory environment. These 

advances are deepening our understanding of how soil bacterial diversity varies across 

natural environmental gradients and in response to treatment applications. The new era 

of high throughput metagenomics methods now provides microbial researchers the 

ability to catalogue distributions of multiple genes relevant to metabolic pathways, 
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energetics and regulatory circuits to directly address changing microbial functional 

potential, across time and space (Yang et al., 2014). 

 

1.6.4 Ecological co-occurrence networks 

Topology-based analysis of co-occurrence networks measure correlations between 

taxon abundances to reveal how taxa sometimes or never co-occur together in niches 

and how these relationships change under different environmental conditions (Gotelli 

and Graves, 1996; Gotelli and McCabe, 2002). A reductionist approach, such as a 

culture-based approach or a genetic study, is not well suited for learning about 

interactions and emergent properties of communities. In contrast, a more holistic 

approach, such as co-occurrence network analysis, can yield complementary data 

directly derived from natural habitats to help deduce the interactions among 

microorganisms and their variation with changes in environmental conditions (Ruan et 

al., 2006; Fuhrman and Steele, 2008; Fuhrman, 2009; Chaffron et al., 2010). These 

patterns reveal how communities are structured by co-association, and how particular 

community ‘structures’ and can be represented as mathematical interaction diagrams or 

networks.  

 

Co-occurrence network analysis identifies the mathematical, statistical and structural 

properties of a set of items (nodes) and the connections between them (edge) within a 

specific community (Newman, 2003). Network analysis has been commonly used by 

biologists to explore feeding interactions between species in a food web (Krause et al., 

2003). This analysis has been also used to describe host-parasitoid systems, focusing 

on distinct guilds of terrestrial hosts and tracing the links from host to the parasitoids, 

and mutualistic webs (e.g., pollination or frugivore networks) (Ings et al., 2009). 

Descriptions of different co-occurrence patterns help to describe the underlying 

structure of ecological communities, deepening our understanding of the relationship 

between community complexity and ecological stability (Melián and Bascompte, 2002; 

Ives and Cardinale, 2004; Bascompte and Jordano, 2007).  
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Co-occurrence network analysis offers new insight into the structure of complex 

microbial communities, insight that complements and expands on the information 

provided by the standard suite of analytical approaches, such as community richness 

and composition. Using culture-independent technologies (e.g., the 16S rRNA gene and 

shotgun metagenomics), large microbial datasets can be generated that take full 

advantage of network analyses, applying the method to explore co-occurrence patterns 

in complex ecosystems, such as in soils (Caporaso et al., 2011; Barberán et al., 2012; 

Shokralla et al., 2012). Current studies of microbial networks show co-occurrence 

network construction using correlation coefficients or other association metrics, 

although these networks do not reflect direct evidence of interaction between taxa 

(Ruan et al., 2006; Barberán et al., 2012; Eiler et al., 2012; Schwab et al., 2014). For 

example, in the study of Barberán et al. (2012), the diversity of network structures 

among habitats (e.g., aquatic vs soil) was observed, which may reflect different 

ecological rules guiding microbial community composition in different environments. 

Eiler and colleagues (2012) also found complex interdependencies within microbial 

communities and contrasting links to environmental conditions. Although co-

occurrence network analysis is increasingly used to infer microbial interactions in soils 

(Barberán et al., 2012), oceans (Steele et al., 2011), lakes (Eiler et al., 2012) and even 

in genomic surveys at a global scale (Freilich et al., 2010; Fondi et al., 2016), the 

elevational patterns in microbial interactions have remained poorly studied until 

recently. For example, Mandakovic et al. (2018) found that, apart from large variation 

in environmental conditions with elevation, a proportion of co-occurrence patterns 

identified in the bacterial networks were resilient, likely due to the existence of 

persistent OTUs with similar association patterns across the gradient. In contrast,  

network analysis showed that soil bacterial networks were less resistant to 

environmental change at lower elevation than that at higher elevation (Siles and 

Margesin, 2017). These conflicting findings suggest the need for further studies 

regarding elevational patterns in microbial co-occurrences. Overall, co-occurrence 

network analysis represents an approach for identifying patterns in large and complex 

datasets, which may be more difficult to detect using the standard approaches widely 

used in microbial biogeography (Proulx et al., 2005).  
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1.7 Thesis objectives 

Using a mountain elevation gradient as a proxy for climate change and using land use 

changes as shifts in soil properties, the main aim of my research was to determine the 

influence of environmental gradients on belowground bacterial and fungal community 

structure and their functional attributes across local (i.e., along a c.1500 m elevation 

gradient) and micro-scales (e.g., among samples located just a few meters apart) as well 

as across different land use types (i.e., along a transect line from the interior of forest 

fragments into adjacent grazed pasture, < 100 m). My PhD thesis has four main 

objectives: 

1. To evaluate the relative influences of non-resource (e.g., soil temperature, 

moisture and pH) and resource conditions (e.g., soil carbon, nitrogen and 

phosphorus) on the biogeography of soil bacterial communities across 

broad (i.e., across a whole elevational gradient) and fine sampling scales 

(i.e., across two aspects of a mountain ridge) along a ~1,500 m mountain 

elevation gradient.  

Variation in soil bacterial community composition was analysed using 16S 

rRNA gene data with the aim of examining the influence of environmental 

variables at different spatial scales. First, I hypothesise that variation in bacterial 

community composition would correlate with elevation and that bacterial 

taxonomic richness would decline with increased elevation, since such changes 

are generally observed for macroorganisms (Rahbek, 2004; Aubry et al., 2005; 

Carneiro et al., 2013). Then, as environmental conditions, such as temperature 

and soil moisture are strongly affected by elevation as well as aspect differences, 

I hypothesise significant differences in bacterial community composition, and a 

decline in bacterial taxonomic richness, on shadier compared to sunnier aspects 

of a mountain ridge. Finally, I hypothesise that non-resource environmental 

conditions, such as soil temperature and moisture, would be a more important 

determinant of bacterial community attributes than environmental resource 

factors, such as concentrations of soil C, N and P. Evidence of a significant and 

dominant impact of climatic conditions on shaping bacterial community 

structure would provide evidence that the biogeographic pattern in microbial 

communities is fundamentally similar to that in macroorganisms.  
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2. To move beyond simple explorations of richness and composition patterns 

across a mountain elevation gradient to assess microbial co-occurrence 

patterns.  

As fungi are widely distributed in soils and govern soil carbon cycling, plant 

nutrition, and pathology, it is important to know whether fungal communities 

respond in the same way to the environmental variables as bacterial 

communities along the same elevational gradient. The richness and composition 

of soil fungal communities collected across the same mountain gradient as in 

Chapter 2 is analysed to detect their elevation patterns using fungal ITS1 region 

sequencing. Likewise, I first hypothesise that fungal community richness would 

decline with increasing elevation. Thereby, using analysis of co-occurrence 

networks, I further hypothesise that the number of overall interspecific co-

occurrences within fungal communities would increase with decreasing 

elevation, as environmental conditions, such as temperature, might be 

considered to be more optimal for life at lower elevation due to increased 

energy-nutrient availability (Hawkins et al., 2003). Finally, I predict that soil 

physicochemical variables, e.g., soil nitrogen and ammonium would be stronger 

correlates of fungal community network associations than climatic variables, 

i.e., temperature and soil moisture, since fungi are recognised as major 

contributors and mediators of soil nutrient cycles. 

 

3. To determine microbial functional biogeography across a mountain 

elevation gradient using an ‘inferred metagenomics’ approach 

Although metagenomics can be used to produce a large amount of data and these 

sequences can be used to assign functional traits of microbial communities 

across space, such methods are rarely used to study microbial biogeography, 

due to the high cost of DNA sequencing and the large number of samples 

typically required for analysis. Here, I explore the potential for using ‘inferred 

metagenomics methods’ based on the analysis of bacterial 16S rRNA gene 

sequence data (collected as described in Chapter 2), to assess the reliability of 

this ‘inferred metagenomics’ and to investigate patterns in the presumed 
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abundance of genomes and functional traits across a mountain elevation 

gradient. I hypothesise that: (1) bacteria with larger genome size would be 

prevalent across the elevation gradient, as in prior studies, bacterial 

communities requiring resilience to more fluctuating environmental conditions 

are found to have larger average genome sizes (Matz and Jürgens, 2005; 

Bentkowski et al., 2015; Cobo-Simon and Tamames, 2017); (2) the numbers of 

genes encoding for ‘cellular responses to stress’ would increase at higher 

elevation, as decreasing temperatures and increasing soil acidity with elevation 

across the study site might increase the environmental stress experienced by the 

bacterial communities.   

 

4. To determine the variation in soil bacterial community richness and 

composition in forest fragments associated with land use conversion of 

adjacent land to grazed pasture 

Apart from elevational patterns in the microbial community structure and their 

functional attributes across a mountain ridgeline observed in previous chapters, 

in this chapter I mainly focus on how pastoral land-use practices affected the 

spatial patterns in richness and composition of bacterial communities in 

adjacent forest soils. First, I hypothesise that the richness of bacterial 

communities would be lower in individual samples collected from within grazed 

pasture, relative to those in adjacent forest soils, as a decrease in plant and 

animal diversity is repeatedly reported after forest conversion to agricultural 

land (Bierregaard, 2001; Soares et al., 2006). Secondly, I investigate if the 

absence of a fence between pasture and forest systems increases the extent of 

biotic homogenisation between these land uses. This might occur directly 

because soil and microorganisms were transported across the study sites by 

stock animals, but also due to the indirect effects of the stock animals on the 

forest soil (e.g., soil compaction and nutrient additions). Thus, I hypothesise that 

the presence of a fence would increase the proportion of taxa occurring uniquely 

in the pasture of fenced farms, showing that fencing prevents migration of some 

pasture-associated taxa from grazed grasslands into adjacent forest soils. Finally, 

as how microbial communities in the adjacent forest soils respond to different 
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pastoral land use intensities remains poorly studied, I hypothesise that the 

richness of bacterial communities in a forest would be lower and their 

community dissimilarities would increase (compared to communities in the 

pasture soil) in response to existing gradients in adjacent agricultural land use 

intensity. 

 

In general, my thesis seeks to explore the factors driving variation in diversity, structure 

and functional roles of soil bacterial and fungal communities across both large-and fine-

scales in response to gradients in natural environmental conditions and anthropogenic 

activities. By providing an insight into how gradients in environmental factors affect 

soil microorganisms, my study improves our understanding of the likely responses of 

microbial communities to natural environmental gradients, as well as to climate change 

and anthropogenic disturbance.  
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Chapter 2 

Aspect has a greater impact on alpine soil 

bacterial community structure than 

elevation 

 

 

 

 

 

 

 

 

This chapter is a modified version of: Wu, J., Anderson, B.J., Buckley, H.L., Lewis, G., and Lear, G. 

(2017). Aspect has a greater impact on alpine soil bacterial community structure than elevation. FEMS 

Microbiology Ecology 93(3). doi: 10.1093/femsec/fiw253. 
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2.1 Introduction  

Variation in climatic factors, such as temperature and precipitation, impacts the 

composition and diversity of a wide variety of natural biological communities, often in 

predict able ways (Bertrand et al. 2011; Knapp et al. 2002). Climatic gradients in 

conditions that occur along mountain inclines are commonly used to explore the impact 

of climate on community attributes, since substantial variation can occur across short 

geographic distances. Temperature declines by approximately 0.6 oC for each 100 m 

increase in elevation (McCain and Grytnes 2010); precipitation and related ecological 

variables, such as soil moisture, can also vary considerably over similar spatial scales 

(Brown et al. 2012). To date, biogeographic studies along elevation gradients have 

concentrated almost exclusively on the community response of macroorganisms, in part 

because of the relative ease that larger taxa can be visually identified.  These studies 

frequently report significant elevational gradients in community composition and 

richness that are suggested to be directly driven by climatic variables and particularly 

by the availability of thermodynamic energy, water, or combined energy-water balance 

(Allen et al. 2002; Stephenson 1990). Alternative explanations for observed diversity 

patterns also include the impact of deceasing land area proportional to elevation 

increases (Rahbek 1997) and decreased range sizes of taxa at lower elevation, according 

to Rapoport’s Rule (Stevens 1992). Although microorganisms may be considered to be 

the ‘unseen majority’ in soil ecosystems, where they dominate numerically and 

comprise a large portion of the genetic diversity, the relationship between microbial 

communities and fine-scale variability in abiotic conditions remains poorly resolved 

(Grundmann 2004; Morris 1999; Vos et al. 2013). A better understanding of the impacts 

of abiotic conditions on microbial communities is necessary since they provide vital 

ecosystem services, including soil formation, carbon and nutrient cycling and 

acquisition, and are a major determinant of plant productivity and diversity (van der 

Heijden et al. 2008). Here, we explore the relationship between abiotic micro-habitat 

conditions and the biogeography of soil bacterial communities across a single alpine 

elevation gradient. Improved knowledge of micro-habitat variability in soil bacterial 

community composition and diversity across elevation gradients will aid in developing 

and testing hypotheses regarding the response of these vital communities to global 

climate change.  
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If the factors driving the biogeographic distribution of microbial taxa along mountain 

elevation gradients are fundamentally similar to those affecting communities of 

macroorganisms, then equivalent patterns should be observed, such as declines in 

species richness at increased elevation. However, the inconsistent nature of the patterns 

so far observed across mountain elevation gradients for microbial taxa, imply that 

related variation in bacterial communities can be complex and follow no single rule; 

authors describe decreases in diversity/richness (Bryant et al. 2008), no trend (Fierer et 

al. 2010), or unimodal patterns (Singh et al. 2012) in bacterial community composition 

with increased elevation. Similarly, if elevational gradients in community diversity and 

richness are universal, then we would expect the same environmental drivers (i.e., 

temperature and availability of water) to be key predictors of these fundamental 

bacterial community attributes.  

 

Temperature and precipitation significantly affect bacterial community structure and 

processes, including respiration and enzyme activity (Fierer et al. 2003; Rinnan et al. 

2009; Zeglin et al. 2013). Therefore, where patterns in soil bacterial community 

attributes are not tightly related to gradients in climatic conditions across elevation 

gradients, we expect that alternative factors such as variation in soil type and 

management are likely to be the key drivers of community assembly (Fierer and 

Jackson 2006). However, the relative impact of edaphic factors on alpine bacterial 

communities remains poorly understood, particularly within single mountain elevation 

gradients where we would expect the uniform geology and land use attributes to allow 

variation in natural climatic and environmental factors, rather than anthropogenic 

factors, to be a stronger determinant of microbial community composition (Singh et al. 

2014). It is important to note that even where land management and edaphic variables 

are controlled or otherwise accounted for, additional site attributes can contribute to 

observed environmental patterns in bacterial community composition and diversity. For 

example, climatic variation across mountain environments is related not only to site 

elevation, but also to aspect, slope and shading (Titshall et al. 2000), which can vary 

considerably over distances of only a few metres. Many studies have noted the effect 

of slope and aspect in determining soil temperature (Davies et al. 2006; Thomas et al. 
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2001; Weiss and Weiss 1998), evaporative demand (Bennie et al. 2008), soil moisture 

(Carter and Ciolkosz 1991; Schaetzl and Anderson 2005), soil chemistry (Hunckler and 

Schaetzl 1997; Miller et al. 2004; Thompson and Kolka 2005) and nutrient cycling 

(Gilliam et al. 2015; Sariyildiz et al. 2005; Sidari et al. 2008) principally via modifying 

the amount of solar radiation received. Although the relationships between fine-scale 

variation in site slope and aspect have been poorly investigated for microbial 

communities, Sidari et al. (2008) observed significant correlations between soil 

microbiological activity and aspect-induced microclimatic differences in the content 

and composition of soil organic matter. For these reasons, we chose to quantify 

variation in soil bacterial community attributes along a c.1500 m mountain incline 

encompassing a broad microhabitat gradient, as well as examining local-scale variation 

related to site aspect. 

 

The availability of growth-limiting resources, especially nitrogen and carbon (Mason 

et al. 2014; Zinger et al. 2009) impact the abundance, diversity and composition of 

many communities, including plants (Edgar 2013; Kalra and Maynard 1991; Rahbek 

2004), bacteria (Calleja-Cervantes et al. 2015; Zhang et al. 2015) and fungi (Lauber et 

al. 2008). For example, Shen et al. (2015) observed a significant relationship between 

soil carbon, nitrogen, and variation in bacterial community composition across a 

climatic gradient in alpine tundra. Variation in carbon and nitrogen concentrations and 

fluxes are frequently correlated with variability in temperature and precipitation 

(Altschul et al. 1990; Huber et al. 2007; Knapp et al. 2002; Weltzin et al. 2003) and 

related to both increasing microbial metabolism and decreasing energy use efficiency 

in warmer conditions, providing water availability is not limiting. Hence, while climatic 

factors such as temperature are predicted to be strong independent determinants of 

bacterial community composition and metabolism (Fierer et al. 2003; Kessler 2000), 

resource availability is expected to have additive and interacting impacts on bacterial 

communities across broad altitudinal ranges. For instance, Wang et al. (2011) observed 

decreasing bacterial community richness with increasing elevation, which they 

correlated with an increase in carbon availability at higher altitudes. Here, we quantify 

how fine- and coarse-scale gradients in resource and non-resource factors (e.g., 

temperature, soil pH) are related to soil bacterial community composition and richness 

across a range of sample site elevations and aspects across a single mountain ridge.  
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We sought to test three hypotheses. First, we hypothesised that variation in bacterial 

community composition would correlate with elevation and that bacterial taxonomic 

richness would decline with increased elevation (Elevation H1), as is frequently 

reported for macroorganisms (Aubry et al. 2005; Carneiro et al. 2013; Rahbek 2004). 

Second, since environmental conditions, particularly temperature, are strongly 

impacted by aspect, we hypothesised significant differences in bacterial community 

composition, and a decline in bacterial taxonomic richness, on shadier compared to 

sunnier aspects of the mountain ridge (Aspect H2). Finally, we hypothesised 

(Environment H3) that non-resource environmental conditions, such as soil temperature 

and moisture, would be a more important determinant of bacterial community attributes 

than environmental resource factors, such as concentrations of soil C, N and P. 

Evidence of a significant role for non-resource, and particularly climatic factors, in 

determining bacterial community composition and richness would imply that the 

biogeography of bacterial communities is fundamentally similar to that of 

macroorganisms. 

 

2.2 Materials and methods  

We conducted a survey of soil bacterial 16S rRNA gene data collected across a 

continuous ridge leading to the peak of Mount Cardrona, New Zealand. We compared 

communities across both sunny and shady sides of the mountain ridge and ridgeline, at 

100 m elevation intervals across an elevation gradient of almost 1,500 m to test the 

influence of aspect relative to elevation on bacterial community richness and 

composition (i.e., Elevation H1 & Aspect H2). Our final hypothesis (Environment H3) 

was tested in combination with the collection of both soil resource (e.g., concentrations 

of soil C, N, P, and the average biomass of aboveground plants) and non-resource 

environmental data (e.g., soil pH, temperature and moisture).  
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2.2.1 Site description and sample collection 

To assess the impact of microclimate variability on soil bacterial community attributes, 

we collected a total of 405 soil samples from a continuous ridge on the north-eastern 

side of Mt. Cardrona, New Zealand (44.85° S, 168.95° E; Figure 2.1). We identified 15 

elevation bands (Ebands) located at 100 m elevation intervals from 500 m to 1900 m 

along the ridge. Since the slope of the ridge at 1300 m is very shallow, this Eband was 

separated into two (i.e. one at the upper edge of the ridge called E1301 and another at 

the lower edge called E1300). Hence, samples were collected from a total of 16 Eband 

locations. 

 

In addition to elevation, microclimate conditions are impacted by variability in site 

aspect. For this reason, each Eband encompassed five clusters of soil samples. One of 

the five clusters (R0) at each Eband was located on the centre of the leading ridge line, 

two (SU1, SU2) to the north (warmer/sunnier side), and two (SH1, SH2) to the south 

(cooler/shadier side). All of these clusters were geographically equidistant (i.e., 

collected at 25 m intervals). A single sample cluster was collected at the summit of the 

mountain at 1936 m. Within each sampling cluster, five individual soil samples were 

collected across a 1.5 m transect using a soil corer to 10 cm depth allowing us to also 

quantify the fine-scale variability in bacterial community composition and relative 

richness at each sample location. Hence, there are 405 samples in total (16 Ebands x 5 

sample clusters x 5 site samples + 5 summit samples = 405). All soil samples were 

contained in labelled ziplock bags to avoid contamination, and stored at -20 oC within 

24 h of collection.  
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Figure 2.1. Sample locations on Mt Cardrona. (a) Mt. Cardrona is located in Otago 

(44.85° S, 168.95° E), New Zealand; (b) at each elevation, samples were collected on 

both sides, and on the main ridge of mountain at intervals of 25 m (geographic distance); 

(c) mountain profile showing the distance from the summit of each sampling location 

along the elevation gradient; (d) samples were collected at elevation intervals of 100 m 

along either side of the main ridge on north-eastern side of Mt Cardrona. 

Mt. Cardrona 

(a) (b) 

(c) 

(d) 
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2.2.2 Environmental conditions  

We used ibutton temperature loggers (Maxim Profile, USA) to collect real-time 

temperature data (below ground temperature at 10 cm depth) from each sampling 

cluster (n=81) at Mt. Cardrona in the summer (from February to March in 2014). Soil 

moisture was measured gravimetrically (i.e., soil samples were weighed before and 

after being placed in an oven at 105 oC for 96 hours.) (Rayment and Lyons 2011). Soil 

pH was measured by the Landcare Research Environmental Chemistry Laboratory 

using method 106i. Briefly, a 1:2.5 suspension of soil:water was stirred vigorously then 

left to stand overnight before measurement with a pH electrode. Full descriptions of 

each method are available from 

http://www.landcareresearch.co.nz/resources/laboratories/environmental-chemistry-

laboratory. 

 

2.2.3 Resource availability 

Soil physiochemical properties from each sample were also analysed by Landcare 

Research Environmental Chemistry Laboratory using standard procedures to determine 

concentrations of organic C and total N (method 114), and Olsen P (method 124). 

Ammonium and nitrate were extracted using a modified version of method 118. Briefly, 

2M KCl was used in a 1:10 soil: extractant ratio and the resulting slurry turned end-

over-end for one hour, followed by filtration of the sample prior to analysis. 

Aboveground plant biomass from each sampling location, was also removed from a 20 

× 20 cm grid centred on the soil core. Plant matter was dried at 60 oC and weighed 

(Rayment and Lyons 2011).  

 

2.2.4 DNA sequence analyses 

DNA was extracted from individual samples using MOBIO PowerSoil-htp 96 well Soil 

DNA Isolation Kits (MOBIO Laboratories Inc., USA) according to the manufacturer’s 

protocol, but using a TissueLyser II disruption system (QIAGEN, Germany) to agitate 

sample solutions (30 revolutions per second, 2 minutes, twice).  

http://www.landcareresearch.co.nz/resources/laboratories/environmental-chemistry-laboratory
http://www.landcareresearch.co.nz/resources/laboratories/environmental-chemistry-laboratory
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To characterise bacterial community composition, the DNA from each soil sample was 

amplified and sequenced on an Illumina MiSeq sequencer (Illumina Inc., USA) 

following a standard protocol (Illumina 2013). Briefly, DNA fragments were amplified 

using modifications of the primers 341F (5’-

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWG

CAG-3’) and 785R (5’-

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTAT

CTAATCC-3’). These primers target the V3 and V4 region of bacterial 16S rRNA 

genes to provide a good combination of domain and phylum coverage (Klindworth et 

al. 2013) but are modified to also include Illumina adapter overhang nucleotide 

sequences (bold) required for downstream DNA sequencing. DNA was amplified using 

the standard protocol, which follows the thermocycling procedure: (1) 95 oC for 3 min; 

(2) 25 cycles of 98 oC for 30 s, 55 oC for 30 s, 72 oC for 30 S; (3) 72 oC for 5 min. To 

ensure the accuracy of our sequencing approach to identify the correct taxa within 

samples, we also amplified the DNA of a 20-species ‘Microbial Mock Community’ 

(Community ‘B’ from BEI Resources, catalogue No. HM-782D, USA). Following 

amplification, PCR products were individually purified using AMPure XP reagents 

(Beckman Coulter, USA) and a Biomek 4000 liquid handling workstation (Beckman 

Coulter Inc., USA), according to the manufacturer’s instructions. The concentration of 

purified amplicons was finally measured and recorded using a Qubit® dsDNA HS 

Assay Kit (Life technologies, USA) before submission to New Zealand Genomics Ltd. 

for sequencing. Briefly, the procedure followed by the sequencing facility, prior to 

DNA sequencing, was to attach a combination of Nextera XT A and B barcode dual 

indices (Illumina Inc., USA) to the DNA from each sample. This approach ensured that 

the DNA from each sample could be identified by its unique DNA barcode. After the 

DNA from up to 192 samples was pooled for DNA sequence analysis, sequence data 

were demultiplexed (i.e. assigned to the samples from which they originated) by the 

DNA sequencing facility. Our sequence analysis of the mock community DNA data 

(not shown) detected only DNA from the 20 species in the original mock community, 

suggesting that the barcoding and sequencing results of the Illumina Miseq platform 

were reliable. All of raw sequences have been uploaded onto the SRA-NCBI database 

(BioProject ID: PRJNA338717). 
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2.2.5 Bioinformatic analyses 

Paired end read DNA sequence data were merged and quality filtered using the 

USEARCH sequence analysis tool (Edgar 2013). After quality filtering, dereplication 

was performed so that only one copy of each sequence is reported; ‘singleton’ 

sequences represented by only one DNA sequence in the database were removed. 

Sequence data were then checked for chimera sequences and clustered into groups of 

operational taxonomic units based on a sequence identity threshold equal to or greater 

than 97% (hereafter referred to as 97% OTUs) using the clustering pipeline UPARSE 

(Edgar 2013) as described in Ramirez et al. (2014). Next, prokaryote phylotypes were 

classified to corresponding taxonomy by implementing the RDP classifier routine 

(Wang et al. 2007) with an 80% confidence cutoff in QIIME v. 1.6.0 (Caporaso et al. 

2010) to interrogate the Greengenes13_8 database (McDonald et al. 2012); all 

sequences of chloroplast and mitochondrial DNA were removed. Finally, the DNA 

sequence data were rarefied to 5,500 randomly selected reads per sample and three 

samples per site.  

 

To confirm the similarity of key bacterial taxa identified in the present study to those 

found at other study sites, we used the Nucleotide database from NCBI to search for 

closely related DNA sequences for inclusion in our phylogenetic analysis, which was 

completed using Geneious software (version 7.1.6; Biomatters Ltd, New Zealand). 

Briefly, we aligned all sequence data using the Geneious alignment tool, estimated 

evolutionary distances with a Jukes-Cantor Distance Model and constructed unrooted 

consensus phylogenetic trees from these distances using neighbour-joining. Bootstrap 

confidence levels were estimated from 10,000 replicated alignments of the data. 

 

2.2.6 Quantitative data analyses 

To assess the variation in bacterial community richness and composition, our analyses 

used either bacterial taxon richness (the relative number of different 97% OTUs at each 

site) or mean compositional similarity (calculated by constructing a Bray-Curtis 

distance matrix from the relative bacterial abundance data). Spatial patterns in bacterial 
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taxon richness and composition were plotted using the heatmap function within the R 

package ‘gplots’. Multivariate sample data were related to explanatory matrices of 

spatial and environmental data using distance-based redundancy analysis (db-RDA) 

and a forward selection procedure with the ‘capscale’ and ‘ordistep’ functions in the 

‘vegan’ package in R (Oksanen et al. 2015). Variance partitioning procedures using db-

RDA outlined in Borcard et al. (2011) were performed to indicate how much total 

variation in the bacterial community data be explained by groups of either (i) soil 

‘resource’ variables, for example, concentrations of soil C, N and P, and above-ground 

plant biomass, which can both remove and input nutrients into the soil (ii) ‘non-resource 

environmental’ variables, that is soil temperature, moisture content, and pH, (iii) a 

combination of resource and non-resource environmental variables, and (iv) 

unexplained variance. The variance partitioning procedure computes canonical R2 

values analogous to the adjusted R2 values produced in multiple regression (Peres-Neto 

et al. 2006).  The components of variation associated with bacterial community 

variability at sample elevations and aspects were quantified and visualised using 

distance-decay curves within the R package ‘vegan’ (Oksanen et al. 2015). We plotted 

multivariate regression trees using the ‘randomForest’ package in R (Liaw and Wiener, 

2002), to identify which individual resource and non-resource environmental soil 

attributes correlate most closely with the observed variation in bacterial community 

composition and richness across the study site. Finally, a correlation ‘heatmap’ was 

used to visualise the strength of correlation between each environmental factor using 

the R package ‘corrplot’. 

 

Environmental variables were analysed individually using univariate analysis of 

variance (ANOVA), with P-values obtained by permutation. For these data, there were 

only two relevant factors: Aspect and elevation. Where appropriate, we also used paired 

or unpaired t-tests to detect differences in environmental variables between groups of 

samples collected at different elevations and aspects. The pairwise Bray-Curtis distance 

matrix calculated from the bacterial community data was analysed using permutational 

multivariate analysis of variance (PERMANOVA; Anderson 2001; McArdle and 

Anderson 2001). Significant differences in bacterial community composition identified 

by the PERMANOVA procedure may be caused by average differences in 

compositional similarity among groups, or alternatively, by differences in the within-
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group multivariate dispersion among groups. To quantify variation in bacterial 

community data within groups of study sites (e.g., to compare average community 

similarity of sample data collected within each elevation band), we used multivariate 

dispersion (MVDISP) index values, which calculate average Bray-Curtis distances 

among sample data. Permutational analysis of multivariate data dispersion 

(PERMDISP) routines were then used to confirm if within-group differences in 

multivariate dispersion varied significantly across elevation and aspect. MVDISP, 

PERMANOVA and PERMDISP routines were performed in PERMANOVA+, an add-

on of the PRIMER6 package (Plymouth Marine Laboratory, UK).  The PERMANOVA 

routine (i.e. permutational ANOVA) was similarly used for the statistical analysis of 

univariate data (e.g., taxonomic richness or soil carbon concentrations). We repeated 

our analyses for subsets of the bacterial community data to study variation in the 

relative abundance of the ten most abundant bacterial families, since dominant taxa 

typically have a larger influence on bacterial community composition. 

 

Samples located on the sunnier aspect of the mountain ridge at an elevation of 900 m 

were heavily impacted by localised grazing and also by elevated concentrations of soil 

nitrogen. Thus, not surprisingly, the composition of bacterial communities in these 

samples differed markedly from that found at other sites across the elevation gradient 

(Appendix A Figure A1). For this reason, data from these two sample sites were not 

used in further analyses. 

 

2.3 Results  

We identified approximately 17,000 distinct bacterial operational taxonomic units (or 

OTUs of 97% DNA sequence similarity) from 2.2 million rarefied 16S rRNA gene 

sequences, representing 487 bacterial families across the study site.  
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2.3.1 Elevation and aspect patterns 

Multivariate analysis of the bacterial community data (Appendix A Figure A1) revealed 

that across the entire study site, the gradient in elevation had a greater impact on both 

bacterial community composition and taxon richness than aspect (as assessed by the 

square root of the component of variation attributable to these factors in the 

PERMANOVA model; Appendix A Table A1, all P < 0.001). All interactions analysed 

in the model were statistically significant (P < 0.001). To further explore the hypotheses 

that bacterial community composition correlated with gradients in elevation (H1) and 

aspect (H2) we used spatial heatmaps to visualise the nature and extent of variability in 

community composition and richness (Figure 2.2). Bacterial community composition 

changed markedly across the elevation gradient (Figure 2.3; y = 0.0003x + 0.30, R² = 

0.99). Bacterial community composition changed less in response to differences in 

aspect than to differences in elevation across the study site. The average difference in 

bacterial community composition comparing samples collected from sunnier (SU2) 

versus shadier aspects of the mountain ridge (SH2) that were separated by a fixed 

distance of 100 m, was 0.56 Bray-Curtis units. The same average difference in bacterial 

community composition (i.e., ~0.55 Bray-Curtis units) was only observed when 

comparing samples differing in elevation by 900 m or greater along the mountain ridge 

(Figure 2.1c). This difference in elevation corresponded to a flat surface distance of 4 

km. This suggests that, comparing sample sites separated by fixed distances across the 

study site (e.g., ~100 m), variation in bacterial community composition changed more 

rapidly with variation in site aspect than site elevation. No clear pattern in bacterial 

community richness was observable across the whole elevation gradient. However, at 

higher elevations (i.e., above approximately 900 m), bacterial taxon richness was 

greater on the sunnier side of the mountain (i.e., 1263, 97% OTUs were detected per 

sample, on average), compared to on shadier aspects of the mountain ridge (mean 97% 

OTU richness = 1174; t-test p-value = 0.005).  
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Figure 2.2. Variation in relative bacterial (a) taxon richness or (b) composition across 

the study site. Different rows represent data collected from different elevation bands; 

different columns represent data from different aspects. Sample data are assigned 

colours (a) across a gradient from red (highest average 97%OTU richness) to yellow 

(lowest average 97%OTU richness) or (b) across a gradient from red (highest 1D 

configuration score) to yellow (lowest 1D configuration score) after data reduction by 

non-metric multidimensional scaling of Bray-Curtis distance data. Sites at the top of 

the mountain where communities were not sampled are indicated by hatched lines. 
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Figure 2.3. Scatterplot showing average Bray-Curtis dissimilarity (from Figure 2.2b) 

comparing sample data separated by different elevational distances. In the scatterplot, 

the linear trendline for the data is y = 0.0003x + 0.30 (R² = 0.99) using the first 11 data 

points (represented as diamonds). The hollow triangle shows the average distance 

among all samples collected from different aspects of the mountain, calculated by their 

mean Bray-Curtis dissimilarity. 

 

We wished to confirm whether observed differences in bacterial community 

composition were caused by true variation in average bacterial community composition 

(i.e., the location of bacterial community data in multivariate space), or differences in 

community dispersion (i.e., differences in community variation comparing samples 

within the same site). Average MVDISP index values revealed an increase in the 

compositional variability of bacterial communities across sample aspects with 

increasing elevation (Figure 2.4; Regression p-value = 0.042). Variability in bacterial 

community composition among sample clusters was lowest for samples collected at 

700 m (MVDISP = 0.095) and highest at an elevation of 1700 m (MVDISP = 1.50) 

(Figure 2.4; PERMDISP p-value = 0.002). Almost all of the data from higher elevation 

sites (> 900 m, except 1500 m, MVDISP = 0.53) were more variable (MVDISP > 0.80) 

than those from lower elevation sites (t-test p-value = 0.025). 
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Figure 2.4. Scatterplot showing the relationship between sample elevation (m) and 

variability in bacterial community composition among samples collected at different 

clusters. Variability in bacterial community composition was quantified at each sample 

elevation using multivariate dispersion (MVDISP) index values, which describe the 

dispersion of sample data in multivariate space using a Bray Curtis distance (as in 

Appendix A Figure A1). Linear trend line for the data is y =  0.0005x + 0.35 (R2 = 0.26).  

 

The ten most dominant families represented 53% of the overall bacterial community 

and thus are expected to be important drivers of the overall changes in bacterial 

community composition observed across the site. The family Chthoniobacteraceae was 

most dominant across the study site (representing 13% of all taxa detected), followed 

by the family Thermogemmatisporaceae (10%) belonging to the phylum Chloroflexi. 

Sequences related to the Thermogemmatisporaceae were most abundant at higher 

altitude, representing 14% of DNA sequence reads over 900 m but just 2% of sequence 

reads below 900 m (t-test p-value < 0.001; see Appendix A Figure A2). The family 

Koribacteraceae (eighth most dominant overall) and Ellin6513 (10th most dominant 

overall) also were more abundant at high elevation representing 4.5% and 4.5% of DNA 

sequence reads detected over 900 m, respectively, but just 1.8% and 0.8% of sequence 

reads below 900 m (t-test p-values < 0.001). In contrast, members of the family 

Gaiellaceae (ninth most dominant) were more abundant at lower elevations; their 

average abundance was 1.9% and 6.4% at elevations above and below 900 m, 

respectively; t-test p-value < 0.001). At high elevation sites (i.e., above 900 m), 
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members of the family Ellin6513 were more abundant on shadier aspects of the 

mountain (mean abundance = 5.3%) than on the ridge or sunnier side at high elevation 

(mean abundance = 3.3%; t-test p-value < 0.001). 

 

The family Thermogemmatisporaceae includes bacteria assumed to be adapted for 

growth at high temperature (King and King 2014; Yabe et al. 2011) and the ability to 

use substrates such as carbon monoxide as an energy source (King and King 2014). 

Since our study revealed a greater abundance of presumed thermotolerant 

Thermogemmatisporaceae at higher, cooler elevations, we explored the similarity of 

DNA sequences collected in the present study to known thermophile members of this 

family. Representative Thermogemmatispora OTU sequences were compared to a 

variety of published gene sequences and their similarity plotted using a phylogenetic 

tree (Appendix A Figure A3). The OTUs found in the present study belonged to two 

distinct subdivisions. The majority were affiliated (≥ 97% sequence similarity) with 

established clades of the Chloroflexi previously detected in alpine environments 

(Costello and Schmidt 2006; Zinger et al. 2009).  

 

2.3.2 Relative importance of resource versus non-resource 

environmental factors as determinants of bacterial community 

richness and composition  

We used variance partitioning procedures to confirm that the group of explanatory 

variables categorised as ‘non-resource environmental variables’ (that is, soil pH, 

temperature, and moisture) independently explained the greatest amount of observed 

heterogeneity in bacterial community richness (Figure 2.5; 21%). ‘Resource variables’ 

(organic C, total N, NO3-N, NH4-N, Olsen P, and aboveground plant biomass) did not 

independently explain any variation in bacterial community richness. In contrast, 

variability in ‘non-resource environmental variables’ independently explained just 6% 

of the observed variation in bacterial community composition, assessed from Bray-

Curtis measures of community similarity, compared to 11% explained by ‘resource 

variables’; the shared variance explained by both groups of factors accounted for the 

greatest component of the observed variation (36%). 
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Figure 2.5. Venn diagrams providing a graphical representation of the variance 

partitioning of bacterial community (a) richness and (b) composition (community Bray-

Curtis similarity) between resource and non-resource environmental factors.  
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To identify individual resource and non-resource factors that contribute or relate most 

to the variation observed in bacterial community richness and composition across our 

study sites we used random forest analysis (Figure 2.6). The only variable to be 

consistently related to variability in microbial richness was pH. Indeed, the sample site 

with the greatest richness (SU1, 1300 m, richness = 1644) had a soil pH of 5.9, one of 

the highest pH values detected among our study sites. On the other hand, the sample 

with the lowest pH (SH2, 1200 m), of 4.7, had a richness of just 1019, the second lowest 

value across the study area. Overall, soil pH was more strongly correlated to changes 

in elevation (as assessed by the square root of the component of variation attributable 

to these factors in a permutational ANOVA model); a significant statistical interaction 

was also present between site aspect and elevation (Appendix A Table A2, all P < 

0.001). Overall, pH was observed to be lower (i.e., closer to neutral) at lower elevation 

sites located on warmer aspects of the slope (Appendix A Figure A4). The results of 

random forest analysis confirmed interactions between the effects of resource and non-

resource environmental factors in that pH had the strongest effect on the composition 

of bacterial communities, but in the sites with high pH (> 5.5), concentrations of total 

carbon were also a significant correlate of bacterial community composition. Besides 

the impact on whole bacterial communities, we confirmed significant correlations 

between soil pH and the relative abundances of dominant family members across the 

study site. The relative abundance of Thermogemmatisporaceae (the second most 

abundant family detected, 10%), Koribacteraceae (3.7%), Ellin6513 (3.4%) and 

Gaiellaceae (3.3%) were each correlated with soil pH (correlation coefficient 

(Spearman’s Rho) = 0.47, 0.60, 0.68 and 0.52, respectively; p-values all < 0.001).  
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Figure 2.6. Multivariate regression tree of bacterial community (a) richness and (c) 

community composition associated with sampling location. The decision tree identifies 

variance in bacterial richness or compositional similarity caused by threshold values of 

elevation, resource or non-resource environmental factors. The values attached to each 

branch mark the criteria used by the regression tree to group samples based on 

differences in bacterial richness or composition. Corresponding box and whisker plots 

show richness of bacterial OTUs, or average composition (1D configuration score of 

non-metric multidimensional scaling plot) associated with each node of the data. (b, d) 

Graphical representation showing the spatial location of samples associated with each 

terminal node of the decision tree for bacterial richness and composition data, 

respectively. Bacterial richness refers to the number of distinct 97% OTUs identified 

within sample cluster, from the analysis of 27,500 DNA sequences. Sites where sample 

data were not collected or analysed are indicated by hatched lines. 
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2.4 Discussion   

Across equivalent distances, variation in bacterial community composition across 

different aspects of a single mountain ridge was far greater than variation detected 

comparing samples collected at different elevations. Significant variation in the factors 

which are frequently suggested to be a primary determinant of the biogeography of 

macroorganisms (Gillman and Wright 2014), i.e., soil temperature and moisture 

availability, were observed across elevation and aspect gradients. However, variation 

in bacterial community composition and richness across the mountain microclimate 

gradient were more closely correlated with soil pH. Together, these findings highlight 

the complexity of microclimate impacts on soil bacterial communities, and the need to 

incorporate multiple factors, including site aspect and soil chemical attributes, into 

assessments of microbial community composition across elevation gradients.   

 

Consistent with several other studies (Fierer et al. 2010; Shen et al. 2013), and in 

contradiction of our Elevation Hypothesis (Elevation H1), we detected no significant 

decline in bacterial taxon richness with altitude. These findings contribute to a wealth 

of evidence indicating that bacterial communities exhibit fundamentally different 

responses to elevation than macroorganisms (Fierer and Jackson 2006; Lauber et al. 

2009); gradients in the richness of both plant and animal communities are frequently 

observed with elevation (Aubry et al. 2005; Carneiro et al. 2013). Critically, and in 

support of our Aspect Hypothesis (Aspect H2), we confirmed that, when comparing 

samples across equivalent distances, bacterial community attributes were more 

impacted by variation in sampling site aspect than elevation. That is to say that bacterial 

communities at the same elevation but separated by distances of just 100 m across 

aspects, were far more divergent, on average, than communities separated by 

elevational distances of up to 900 m. The cause behind the relatively strong impact of 

aspect compared to elevation is unclear. Although significant differences of over 2 °C 

were detected among adjacent slopes, equivalent to a ~300 m increase in altitude 

(Rorison et al. 1986), soil bacterial community composition and richness was 

nevertheless more tightly correlated with soil pH, leading to our third hypothesis 

(Environment H3) being accepted. 
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Ours is not the first study to reveal the strong influence of soil pH on bacterial 

community composition (Fierer and Jackson 2006; Griffiths et al. 2011; Lauber et al. 

2009), including across elevation gradients (Bryant et al. 2008). Soil pH has been 

identified as being a key predictive variable of bacterial composition in both soil (Fierer 

and Jackson 2006; Griffiths et al. 2011) and aquatic environments (Fierer et al. 2007). 

Changes in bacterial community composition may also be driven by additional soil 

factors that are, all-be-it indirectly, linked to soil pH. For example, pH can mediate the 

activity of extracellular enzymes involved in litter decomposition (Griffith et al. 1995), 

thereby impacting soil carbon storage and transformation rates (Kemmitt et al. 2006). 

Soil pH is also a strong mediator of nitrogen mineralisation, which can occur across a 

wide pH range (Fu et al. 1987), but decreases under more acidic conditions. Elevational 

gradients in soil pH are commonly reported and are frequently attributed to increased 

rates of mechanical weathering that occurs up to elevations of ~2,000 m in the Southern 

Alps, beyond which persistent permafrost obviates the freeze-thaw cracking process 

(Hales and Roering 2016). Increased weathering causes soil acidification as base 

cations such as calcium, sodium, phosphate and magnesium are leached from the soil. 

Although significant gradients in soil temperature, moisture and resource availability 

were noted across our study site, our results contribute to a growing body of evidence 

that pH, possibly affected by different rates of weathering across the study site, is a 

dominant driver of bacterial diversity (Lear et al. 2009; Shen et al. 2013; Zhang et al. 

2013).  

 

A hypothesis commonly used by microbiologists is that ‘everything is everywhere – 

the environment selects’ (Baas-Becking 1934). However, the relative importance of 

environmental conditions, such as pH, for microbial community composition is scale-

dependent. Many authors suggest that non-symbiotic populations of bacteria exhibit 

global distributions (Barberan et al. 2015; Brown et al. 2012). Nevertheless, any 

limitation to their movement will give rise to distance decay patterns in bacterial 

community composition. Therefore, even if bacteria are universally distributed, spatial 

variability in their community composition will reflect spatial patterns of their key 

environmental drivers. Where β-diversity patterns in microbial communities observed 

across space are not found to be related to variation on environmental attributes, they 

are hypothesised to result from dispersal limitation (Martiny et al. 2011). The decrease 
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in similarity of bacterial communities with elevation observed in this study is likely to 

result from a combination of stochasticity in bacterial dispersal and increasing 

environmental differences among samples at increasing distances; further experimental 

work is required to tease apart the relative importance of these effects.   

 

It is noteworthy that members of the family Thermogemmatisporaceae were dominant 

in the community across our alpine study site. These spore-forming bacteria have been 

recovered from geothermal soils and biofilms (King and King 2014; Yabe et al. 2011) 

and also from soils surrounding natural gas vents (de Miera et al. 2014). Strains cultured 

from these environments are thermophilic, exhibiting growth optima > 50 oC (Yabe et 

al. 2011). Why do members of this apparently thermophilic family dominate the 

composition of communities across this alpine elevation gradient? Strong, negative 

correlation of their abundance with soil pH suggests that mechanisms of environmental 

selection operate among these communities. Interestingly, the abundance of 

Thermogemmatisporaceae was greatest in soils of lower pH, closer to the pH optima 

reported for members of this family (Yabe et al. 2011). However, direct evidence of 

cellular metabolic activity (e.g., using stable isotope probing or transcriptome-based 

methodologies) would be required to determine if these bacteria are indeed active 

within the soil of the study site. Another explanation is that not all organisms related to 

Thermogemmatisporaceae are thermophilic. Indeed, DNA sequences identified in the 

present study were similar to those found in other cool environments, including acidic 

alpine tundra soils of the Northern Hemisphere (Costello and Schmidt 2006; Zinger et 

al. 2009), indicating the widespread distribution of these taxa in alpine zones. However, 

microorganisms capable of forming resistant endospores are frequently found in 

environments that do not appear to support their metabolic activity. It is therefore 

conceivable that thermotolerant bacteria, such as members of the family 

Thermogemmatisporaceae, may be more resistant to long-range atmospheric transport 

and the extreme UV, low moisture and low nutrient conditions it provides. This notion 

is supported by studies that have identified resistant, but viable, spores from 

thermophilic organisms, particularly members of the Geobacteraceae, in samples from 

the upper troposphere (deLeon-Rodriguez et al. 2013) as well as within cold oceanic 

currents (Hubert et al. 2009; Muller et al. 2014). It is possible that these bacteria adhere 

to the ‘Geobacillus paradox’ which, owing to resistant properties and longevity, enable 
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quiescent cells to achieve surprisingly high population densities in environments that 

appear to be poorly suited for their survival (Zeigler 2014), such as soils at high 

elevation. However, the phylogenetic position of other thermophilic isolates or strains 

of the class Ktedonobacteria, such as Thermosporothrix (Yabe et al., 2010) and  

Ktedonobacter (Chang et al., 2011), need to be also carefully considered in further 

studies to validate the taxonomic identification of the OTUs belonging to the family 

Thermogemmatisporaceae observed in the current study.   

 

2.5 Conclusion  

We found greater differences in both the richness and composition of bacterial 

communities between samples taken on different mountain aspects, than between 

samples taken at equivalent distances at different mountain elevations. The findings of 

the present study lead us to conclude that to appropriately use elevation and aspect 

gradients as a natural laboratory for assessing the likely impacts of climate change on 

bacterial communities, we must account for local variation in abiotic conditions 

because, at least in this case, bacterial composition and richness were more closely 

related to local abiotic factors (soil pH) than to variation in temperature or resource 

factors. Further work is needed to better understand the mechanisms underlying 

microbial diversity patterns and the relative importance of both evolutionary and 

ecological processes as determinants of bacterial community structure and composition. 

In particular, the effect on bacterial communities of elevational gradients in pH and 

other soil factors must be quantified using gradients in elevation and aspect as proxies 

for climatic variability when predicting community responses to climate change. 
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Chapter 3 

Soil fungal communities form closer 

network associations at lower elevation 
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3.1 Introduction 

Mountain gradients are commonly used to study the impact of environmental variables 

on community attributes including taxonomic richness (Gaston, 2000), because such 

gradients are characterised by dramatic changes in climatic (e.g., temperature (Korner, 

2000)) as well as soil conditions (e.g., soil nutrient concentration (Guo et al., 2015)) 

across relatively short geographic distances.  Numerous studies have reported 

elevational patterns from the analysis of a wide variety of plant (Smith, 1988; Vetaas 

and Grytnes, 2002; Lenoir et al., 2008; Randin et al., 2009; Asner and Martin, 2015) 

and animal (Willms, 1971; Kessler et al., 2001; Lee et al., 2004; Sekercioglu et al., 

2008; Pellissier et al., 2012) community data. Most data from macroorganism 

communities are observed to follow one of two elevational patterns: richness/diversity 

decreases monotonically with increasing elevation (Gaston, 2000; Hillebrand, 2004), 

or peaks at intermediate elevations (McCain, 2004; Rahbek, 2005) as predicted by the 

mid-domain effect (Currie and Kerr, 2008). However, studies exploring elevation 

gradients in microbial community richness indicate that they respond to diversity 

drivers that are fundamentally different from those observed for plants and animals 

(Bryant et al., 2008; Fierer et al., 2010). Indeed, studies report inconsistent patterns in 

soil fungal community richness along elevation gradients, for example, a lack of pattern 

(Meier et al., 2010; Meng et al., 2013), unimodal pattern (Coince et al., 2014; Miyamoto 

et al., 2014), or a decrease  in richness with increasing elevation (Lugo et al., 2008; 

Bahram et al., 2012; Liu et al., 2015). These inconsistent biogeographic patterns imply 

that soil fungal community richness and diversity attributes might not be driven by a 

single rule, but instead by a more complex set of ecological mechanisms. 

 

Climatic variables, including temperature and precipitation are expected to be 

important determinants of fungal community patterns, because they influence not only 

fungal activity and dispersal, but also interspecific interactions, interactions with hosts, 

and trophic interactions (Gange et al., 2013; Andrew et al., 2016).  However, climatic 

variables alone are rarely able to explain observed patterns of fungal community 

richness and diversity along elevation and latitudinal gradients (Meier et al., 2010; 

Bahram et al., 2012; Tedersoo et al., 2012; Tedersoo et al., 2014). More commonly, 

studies have reported that fungal community richness or composition is instead more 
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closely related to soil physicochemical attributes (e.g., total carbon, soil C/N, pH) 

(Tedersoo et al., 2012; Meng et al., 2013; Lanzen et al., 2016; Siles and Margesin, 2016), 

or an interaction of these with climatic factors (Coince et al., 2014; Miyamoto et al., 

2014). Soil physicochemical variables might drive fungal populations based on 

variation in the nutrient preferences and acquisition strategies of different species 

(Goldfarb et al., 2011). For these reasons, we chose to study the influence of edaphic 

nutrient variables on soil fungal community composition and richness across a 

mountain elevation gradient to assess the relative importance of differing climatic, 

edaphic and biotic factors.  

 

Fungal species are not found in isolation within complex environments and multi-

species associations may be used to reveal functionally-distinct niche spaces shared by 

community members (Steele et al., 2011; Faust and Raes, 2012; Schimel and Schaeffer, 

2012; Kara et al., 2013). Recent studies demonstrate that soil fungal communities and 

their functional role in soil carbon and nitrogen cycles (e.g., polycyclic aromatic 

hydrocarbon (PAH) biodegradation) are strongly structured by interspecific 

interactions, such as competition (Freilich et al., 2010; Pickles et al., 2012) and co-

metabolism (Cerniglia, 1997; Peng et al., 2008; Thion et al., 2012), which ultimately 

may impact the functioning of entire ecosystems (Fuhrman, 2009) making co-

occurrence patterns in microbial ecosystems of particular interest to study. Putative 

fungal-fungal interactions, as detected by co-occurrence networks,  may be critical 

determinants or correlates of community attributes, such as diversity and ecosystem 

functioning (Deng et al., 2012) and to date have been largely ignored in most studies of 

microbial biogeography. As network co-occurrence analyses can reveal how particular 

fungi occur together and how these associations vary with different environmental 

conditions, such patterns the analyses of such patterns can be used to avoid the more 

reductionist view deduced from analyses of community richness, where each taxon is 

considered in isolation. 

 

Analysis of co-occurrence network topologies can be used to reveal how taxa co-occur 

in niches and how these relationships change under different environmental conditions 

(Fuhrman, 2009).  We sampled fungal communities every 100 m across an elevation 
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gradient of almost 1,500 m to address the following three hypotheses. First, we 

hypothesised that fungal community richness would decline with increasing elevation 

(Elevation H1), since environmental conditions, such as temperature, may be 

considered to be more optimal for life at lower elevation due to increased energy-

nutrient availability (Hawkins et al., 2003). Thereby, we further hypothesised that the 

number of overall interspecific co-occurrences within fungal communities would 

increase with decreasing elevation (co-occurrence H2). Finally, based on the knowledge 

that fungi are major contributors of soil nutrient cycles and mediate the transfer of 

limiting nutrients to plant hosts, we predicted that soil physicochemical variables, e.g., 

soil nitrogen and ammonium would, in fact, be stronger correlates of fungal community 

network associations than climatic variables, i.e., temperature and soil moisture (soil 

physicochemistry H3).   

 

3.2 Materials and methods 

3.2.1 Sample collection 

We collected 405 soil samples from a continuous ridge on the north-eastern side of Mt. 

Cardrona, New Zealand (44.85° S, 168.95 E; see Figure 2.1 in Chapter 2). At 100 m 

elevation intervals from 500 m to 1900 m along the ridge we sampled soil at 15 

elevations. Because the slope of this ridge is very shallow at 1300 m, we chose to 

sample two locations at 1300 m, a location at the upper edge of the ridge hereafter 

termed 1301 m and another at the lower edge hereafter termed 1300 m.   

 

As climatic and environmental variables were expected to vary locally along the 

elevation gradient, we collected five soil replicate samples from each of five different 

locations at each elevation, one of the five locations (R0) at each elevation was located 

on the mountain ridge line, two (SU1, SU2) from the sunnier side of the ridge to the 

north, and another two from the shadier side of the ridge (SH1, SH2) to the south. All 

of these sample clusters were collected at 25 m intervals. We also collected a single 

cluster of samples at the summit of the mountain at 1936 m. Within each cluster, the 

five, 10 cm deep samples were collected along a 1.5 m transect using a soil corer.  Thus, 
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a total of 405 samples were collected (16 elevations × 5 sample clusters × 5 site samples 

+ 5 summit samples = 405) along a 1,400 m elevation gradient. 

 

3.2.2 Analysis of soil physicochemical variables  

During the summer (from February to March in 2014), we collected real-time 

temperature data at a depth of 10 cm below ground using ibutton temperature loggers 

located within each sample cluster (i.e., n = 81). To study soil physicochemical 

parameters (i.e., the concentrations of organic carbon, total nitrogen, NO3-N, NH4-N, 

Olsen phosphorus and soil pH), soil samples were analysed by the Landcare Research 

Environmental Chemistry Laboratory (Palmerston North, New Zealand) using standard 

procedures (Blakemore, 1987; Lachat Instruments, 1998b; a; Leco, 2003). We 

measured soil moisture gravimetrically by weighing samples before and after drying in 

an oven at 105 °C for 96 hours (Rayment and Lyons, 2011).  

 

3.2.3 DNA sequence analysis 

We used MOBIO PowerSoil-htp 96 well Soil DNA Isolation Kits (MOBIO 

Laboratories Inc., USA) to extract DNA from individual samples across the study site. 

We followed the manufacturer’s protocol except we chose to use a TissueLyser II 

disruption system (QIAGEN, Germany) to agitate the sample solutions (30 revolutions 

per second, 2 minutes, twice). We characterised the fungal community composition of 

each sample by amplifying and sequencing the ITS1 (internal transcribed spacer) region 

of fungal nuclear DNA. Briefly, we followed the standard Illumina protocol (Illumina, 

2013) but incorporated the primers of Bellemain et al. (2010). Hence, DNA fragments 

were amplified using the primers ITS1-F (5′-

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCTTGGTCATTTAGAGGA

AGTAA-3′) and ITS2 (5′-

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGCTGCGTTCTTCATCG

ATGC-3′), which were modified to include Illumina adapter overhang nucleotide 

sequences (underlined) required for downstream DNA sequencing. PCR reactions each 

contained 13 µL water, 10 µL 5× GoTaq Green Reaction Buffer (Promega, USA), 0.5 
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µL each of the forward and reverse primers (10 µM concentration) and 1 µL DNA 

template. Reactions were held at 94 °C for 3 min, before 35 cycles at 94 °C for 45 s, 

50 °C for 1 min and 72 °C for 1.5 min, and finally extension at 72 °C for 10 mins. All 

PCR products were visualized on agarose gels and individually purified using AMPure 

XP reagents (Beckman Coulter, USA) and a Biomek 4000 liquid handling workstation 

(Beckman Coulter Inc., USA), according to the manufacturer’s instructions. 

Concentrations of amplified product were quantified using a Qubit® dsDNA HS Assay 

Kit (Life technologies, USA) before submission to New Zealand Genomics Ltd. for 

sequencing. Briefly, the procedure followed by the sequencing facility, prior to DNA 

sequencing, was to attach a combination of Nextera XT A and B barcode dual indices 

(Illumina Inc., USA) to the DNA from each sample. This approach ensured that the 

DNA from each sample could be identified by its unique DNA barcode. Amplicons 

from all samples were composited together in equimolar concentrations and sequenced 

using an Illumina MiSeq instrument and 2 × 250 bp paired-end sequencing chemistry. 

Once sequenced, data were demultiplexed (i.e., assigned to the samples from which 

they originated) by the DNA sequencing facility. 

 

3.2.4 Sequence processing and bioinformatics 

We processed all raw DNA sequence reads using the USEARCH sequence analysis 

tool (Edgar, 2013). Briefly, demultipexed sequences were merged and filtered for 

quality using default parameters. After the removal of replicate and singleton sequences, 

we checked for chimeric sequences and clustered DNA sequence reads into operational 

taxonomic units (OTUs) of 97% similarity using the clustering pipeline UPARSE. 

Based on the lowest number of sequences, we rarefied our data to 5,100 sequences per 

sample. One sample was discarded from the dataset as it comprised a lower number of 

reads. Each OTU was then identified to the lowest taxonomic level possible using the 

UNITE ITS database (Abarenkov et al., 2010).  
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3.2.5 Statistical analyses 

We counted the number of different fungal OTUs at each site as fungal taxon richness. 

To visualise the overall change in fungal community richness along the elevation 

gradient, we averaged the data of fungal richness and plotted it with standard error bars 

at each elevation using the‘ggplot2’ package in R (Wickham, 2009). Variation in fungal 

community composition was calculated by constructing Bray-Curtis distance matrices 

from the fungal data sampled from each location at each elevation.  To visualise 

variation in the composition of fungal communities in our study, we used non-metric 

multidimensional scaling (NMDS) to plot the data using PRIMER 6 software 

(Plymouth Marine Laboratory, UK). Additionally, we quantified and visualised 

variation in fungal community composition, based on Bray-Curtis dissimilarity scores 

comparing communities sampled at different elevation, using distance decay curves 

constructed with the ‘vegdist’ function within the R package ‘vegan’ (Oksanen et al., 

2015) including confidence intervals for the sample data using the ‘plotCI’ function 

within the package ‘plotrix’ (Lemon, 2006).  

 

For environmental variables, samples were grouped by the factors ‘location’ and 

‘elevation’. We evaluated the effects of individual climatic (temperature, and soil 

moisture) and soil chemical attributes (pH, C, N, C/N ratio, nitrate, ammonium and P), 

as well as spatial differences on the distribution of fungal community richness and 

composition at each sample location using the ‘lm’ function in R (Chambers, 1992). To 

explore which environmental variables have the strongest impact on the fungal 

community attributes, we selected the best-fitting model using Akaike’s Information 

Criterion (Akaike, 1974) adjusted for small sample sizes (AICc) to compare among a 

set of candidates (Burnham and Anderson, 2003). Such an approach is an acceptable 

method to study data when relatively little is known of the system (Symonds and 

Moussalli, 2011). To select the best fitted model, we ranked alternative candidate 

models based on ΔAICc. Akaike weights (wi), also termed ‘model probabilities’ 

(Burnham and Anderson, 2003; Anderson, 2007), can be interpreted as the probability 

of the given model being the best approximation among the candidate model set. All 

AIC analyses were done using the ‘AICcmodavg’ package in R (Mazerolle, 2013).  
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To detect meaningful and robust microbial associations, it is essential to have detailed 

taxa data collected across a sufficiently large sample set, as without large numbers of 

samples it is difficult to determine whether differences in observed co-occurrence 

patterns are statistically significant (Barberán et al., 2012). Therefore, based on the 

observed elevational pattern of fungal community composition (the result of an NMDS 

plot; as later described in Figure 3.1b), we separated fungal data into three groups based 

on elevation (namely samples from ‘high-elevation’, 1936 m to 1500 m; ‘medium-

elevation’, 1400 m to 1000 m; and ‘low-elevation’, 900 m to 500 m).  

 

Identifying core taxa (or OTUs) is useful for unravelling the ecology of microbial 

assemblages, because these commonly occurring microorganisms are likely vital to 

community functioning (Shade and Handelsman, 2012). We used these core taxa/OTUs 

to produce networks (workflow in Appendix B Figure B1), thereby ensuring that 

differences in fungal co-associations observed at different elevations were not biased 

by differences in taxa richness or taxa only being present at high-, medium-, or low 

elevation, since taxa must be present at all three elevations to be included in the network 

association model. Briefly, core taxa were identified as the common and abundant taxa 

from bacterial assemblages for each of these three elevation groups. For each elevation 

group, we only retained data for OTUs found to be present in at least 50% of the samples, 

using the ‘compute_core_microbiome’ function within QIIME to avoid model biases 

that might be caused by rare taxa or those with patchy presence. Finally, we constructed 

a list of core taxa obtained from all three elevation groups, and used these taxa to 

construct co-occurrence network models. 

 

To ensure that the fungal network patterns we observed across the mountain gradient 

were not simply caused by our of three elevation groups, we also subdivided the fungal 

community data into five groups based on elevation (i.e., rather than three: namely 

samples from ‘higher-elevation’, 1936 m to 1700 m; ‘high-elevation’, 1600 m to 1400 

m; ‘medium-elevation’, 1301 m to 1200 m; ‘low-elevation’, 1100 m to 900 m; ‘lower-

elevation’, 800 m to 500 m). We then used the same process to identify the core taxa 

present in samples representing these five elevation subdivisions, and to generate 

additional networks to study elevational variations in fungal co-occurrence. 
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3.2.6 Network analysis 

To explore possible ecological interactions among members of the core fungal taxa 

present at different elevations, we followed the approach of Williams et al. (2014) to 

test for differences in the co-occurrence patterns of core OTUs across our study site. 

We generated a dissimilarity matrix consisting of Spearman’s correlation coefficients 

representing the strength of co-occurrences between each pair of OTUs using pairwise 

comparisons across the entire dataset. As this Spearman’s matrix represents the strength 

of correlation among fungal pairs, we only considered co-occurrence to be robust if the 

Spearman’s correlation coefficient (ρ) was greater than 0.5 and also statistically 

significant (p-value ≤ 0.05). The nodes (i.e., the connection points) in the constructed 

networks represent core OTUs, while the edges (i.e., linkages between individual nodes) 

correspond to a strong and significant correlation between nodes. We also calculated 

and compared one thousand random networks of equal size (i.e., same number of nodes 

and edges) generated by the Erdös–Rényi model for each network obtained by this 

study (Lupatini et al., 2014). This approach was used to determine the likelihood that 

our networks represent actual fungal co-occurrences, rather than random network 

patterns. We explored and visualized networks with the interactive platform Gephi 

(Bastian et al., 2009) using the Fruchterman-Reingold layout.  

 

OTUs present in all three networks were identified as ‘generalist OTUs’ and 

highlighted in red text on our networks. For these generalist OTUs, if no taxon name 

could be assigned using the UNITE database, we ran manual BLASTn searches against 

the GenBank non-redundant nucleotide database (nt). Best-matching sequences were 

then used to identify closely related taxa. We relied on the similarity of identified 

sequences (> 90%) in GenBank as the criterion for assigning OTU names. We also 

tested the reliability of fungal name assignments using the e-values of BLASTn results 

and discarded taxa assignments < e−50. To determine the influence of environmental 

variables on fungal trophic diversity, we also assigned these fungal taxa to the trophic 

status used by Tedersoo et al. (2014). 
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3.2.7 Statistical analyses of network parameters 

To describe the topology of the resulting networks, a set of measures (i.e., the total 

number of links, total number of nodes, average degree, average clustering coefficient 

and the number of the shortest paths) were calculated using network analysis tools 

within Gephi (Bastian et al., 2009). To determine whether network complexity 

decreases with increasing elevation, we calculated the total numbers of links and nodes, 

reflecting the total number of the co-occurrences and OTUs present in the networks, 

respectively. The other measures, including average degree, average clustering 

coefficient and the number of the shortest paths, were calculated to explore the 

robustness and efficiency of the obtained network systems. Average degree, one of the 

most commonly used network parameters, was calculated by summing the strengths of 

the links of each node (or OTU) with all of the other connected nodes in the network, 

and represents how strongly an OTU is connected to others (Zhou et al., 2010). The 

average clustering coefficient describes how well OTUs are connected with their 

neighbours on average (Watts and Strogatz, 1998; Ravasz et al., 2002). Average path 

length was calculated as the average number of steps in the shortest paths between each 

node to one of another node in the network (Faust and Raes, 2012). Shorter paths may 

increase the speed of the network’s response to perturbations as suggested by Zhou et 

al. (2010) and Faust and Raes (2012). Together, the higher clustering coefficients and 

the shorter path lengths are key network properties in terms of system efficiency and 

robustness (Zhou et al., 2010).  

 

To determine whether soil physicochemical variables would be more strongly 

correlated with fungal co-occurrences, a correlation matrix comparing the strength of 

relationship between network parameters and the data of soil physicochemistry, and 

climatic variables was calculated and plotted using the correlation heatmap package 

‘corrplot’ (Wei and Simko, 2013).  Finally, we estimated the difference in fungal co-

occurrence across the elevation groups (i.e., ‘high-elevation’ from 1936 m to 1500 m, 

‘medium-elevation’ from 1400 m to 1000 m, and ‘low-elevation’ from 900 m to 500 m) 

using Tukey’s Honestly Significant Differences (HSD) tests. Unless otherwise stated, 

all analyses were performed in R v. 3.4.3 (R Core Team, 2015). 
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3.3 Results 

3.3.1 Variation in fungal community composition and richness 

We recovered approximately 2 million fungal ITS1 gene sequences after quality-

filtering and rarefaction. These sequences represented 12,105 distinct fungal 

operational taxonomic units (or OTUs of 97% DNA sequence similarity) across the 

study site.   

 

In contrast with our hypothesis (Elevation H1), fungal community richness did not vary 

significantly with elevation based on the result of linear regression (p-value = 0.26，

multiple R-squared = 0.09; Figure 3.1a). However, fungal community composition 

varied significantly among the three elevational groups, namely, ‘high-elevation’ from 

1936 m to 1500 m, ‘medium-elevation’ from 1400 m to 1000 m, and ‘low-elevation’ 

from 900 m to 500 m, (Tukey’s HSD, p-value < 0.01; Figure 3.1b). Fungal community 

composition also changed markedly with increasing elevational distance (Figure 3.1c; 

y = 0.0003x + 0.47, R² = 0.92). Additionally, significant differences in the fungal 

compositional data among the five elevational groups (i.e., samples from ‘higher-

elevation’, 1936 m to 1700 m; ‘high-elevation’, 1600 m to 1400 m; ‘medium-elevation’, 

1301 m to 1200 m; ‘low-elevation’, 1100 m to 900 m; ‘lower-elevation’, 800 m to 500 

m) were observed (data not shown). These divisions were therefore used in later 

network analyses to test whether the fungal interspecific co-occurrences changed with 

elevation.  
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Figure 3.1. Variation in (a) average fungal taxon richness at each elevation, (b) 

community composition across the study site, and (c) average community similarity 

comparing samples separated by different elevational distances. The scatter plot (a) 

shows the average fungal richness at each elevation across our study site. Relative taxon 

richness was calculated from the rarefied fungal OTU table with 5,100 DNA sequences 

per sample. Because the slope of this ridge is very shallow at 1300 m, we sampled two 

locations at 1300 m. Plot (b) is constructed from non-metric multidimensional scaling 

of OTU data using a Bray-Curtis measure. Sample data closer to each other are expected 

to contain more similar fungal communities. Sample data are assigned numbers across 

a gradient from 500 to 1936 representing different elevations in metres (2D stress = 

0.13). The high- (from 1936 m to 1500 m), medium- (from 1400 m to 1000 m) and low-

elevation (from 900 m to 500 m) groups are respectively highlighted by the green, 

orange and red ellipses. (c) Scatter plot showing the average Bray-Curtis (dis)similarity 

comparing sample data separated by different elevational distance. Error bars indicate 

the standard deviation of the data. The linear trend line for the data is y = 0.0003x + 

0.47 (R² = 0.92). 

(c) 
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3.3.2 Elevational pattern in fungal co-occurrences 

A core community was identified, consisting of 272 OTUs that occurred in more than 

50% of the samples obtained from all three elevational groups. Comparison of the high, 

medium and low elevation divisions showed clear evidence of decreasing numbers of 

nodes, links and average degree with increasing elevation, which implies network 

complexity decreased with increasing elevation (Figure 3.2; total nodes: y = 36.5x + 45, 

R2 = 0.89, total links: y = 395x – 281.33, R2 = 0.94, average degree: y = 4.0005x – 

0.2177, R2 = 0.99). Likewise, the average clustering coefficient, showing how well 

OTUs were connected with their neighbours, was lower for the high and medium 

groups (average clustering coefficient: high group = 0.48; medium group = 0.49) than 

the low group (average clustering coefficient = 0.59), while the number of shortest paths 

increases with decreasing elevation (y = 10763x – 7811, R2 = 0.94). Collectively, these 

patterns indicate that fungal taxa at lower elevation interacted more closely and with 

more complexity, supporting our hypothesis (co-occurrence H2). These same broad 

patterns were observed when we subdivided our sample data into smaller intervals of 

elevation gradient (Appendix B Figure B2). 
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Figure 3.2. Network interactions of core soil fungal OTUs found in (a) high-elevation 

(from 1936 m to 1500 m), (b) medium-elevation (from 1400 m to 1000 m), and (c) low-

elevation (from 900 m to 500 m) sites based on correlation analysis, and (d) bar charts 

comparing network parameters derived from (a), (b) and (c). A connection indicates a 

relatively strong (ρ >0.5) and significant (p-value ≤ 0.05) Pearson’s correlation. Each 

node (i.e., circle) represents a core fungal OTU. The size of each node is proportional 

to the value of betweenness centrality. These nodes are assigned colours across a 

gradient from purple (the largest number of connections, or ‘degrees’) to light blue (the 

smallest number of connections). Lines connecting two nodes are coloured 

proportionally in relation to the Pearson’s correlation between OTUs from yellow 

(weakest) to green (strongest). OTUs identified in red font are present in all three 

networks. The bar charts in (d) summarise key network parameters (the total number of 

links and nodes, average degree, average clustering coefficient, and average path length) 

associated with each of the three networks.  

  

(d) Bar charts comparing network parameters 
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A total of 27 core OTUs occurred in all of three co-occurrence networks derived from 

the three elevational divisions (that is, high-, medium-, and low-elevation) and in each 

network were significantly correlated with other OTU nodes. The proportion of these 

‘generalist OTUs’ (assigned red identities in Figure 3.2) was 30.3% of the OTUs 

detected in the co-occurrence pattern at high-elevation (from 1936 m to 1500 m), 

followed by 26.2% and 16.7% at medium- and low-elevation, respectively. To measure 

the relative importance of these generalist OTUs within each network, we calculated 

the ‘degree’ of each OTU, that is, the number of links with other nodes (OTUs) 

(Gonzalez et al., 2010; Vick-Majors et al., 2014). The average degree of these generalist 

OTUs was lower at higher elevation (Figure 3.3a). For example, these generalist OTUs 

at low elevation have more interactions (i.e., higher number of links per OTU) on 

average (Tukey’s HSD of degree, p < 0.001).  

 

We sought to identify the trophic status of fungal generalist OTUs with interspecific 

co-occurrences in the networks. Almost 70.4% of the generalist taxa were identified as 

saprotrophs, while only one OTU was identified as a potential plant pathogen, 

Neonectria (Appendix B Table B1). The average degree of saprotroph OTUs (i.e. 

degree) decreased with increasing elevation, consistent with the pattern for the total 

community of generalists, as did the range of data variation (Figure 3.3b).  
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Figure 3.3. Boxplots of degree (that is, the number of links with other OTUs) by (a) all 

shared generalist OTUs and (b) generalist OTUs of saprotrophs.  The horizontal line 

within the box corresponds to the median value, and the red dashed line indicates the 

mean value, with 25th – 75th percentiles as the box limits. The whiskers extend to the 

minimum and maximum data point and no more than 1.5-fold interquartile range. 

Statistical differences in OTU data between each elevational group were analysed by 

one-way ANOVA (P < 0.05) followed by Tukey's post-hoc tests (P < 0.05). Within 

each graph, clusters that do not share the same letter have significantly different means. 
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3.3.3 Environmental correlates of fungal community attributes 

The results of comparison of AIC values indicated that the best fitting multi linear 

regression model was the one only composed of soil physicochemical variables, 

suggesting that these variables had the stronger influence on the fungal community 

richness, compared with climatic variables and site differences (Appendix B Table B2). 

This best model was well supported among the overall candidate models (wi = 1), 

showing a significant relationship between fungal community richness and soil 

physicochemical variables (p < 0.001), with an R2 of 0.44. The effect of soil pH on 

fungal richness was significant (p < 0.001), as well as the effect of ammonium (p < 

0.001). Likewise, comparison of AIC model results indicated that variation in fungal 

community composition was also significantly related with soil variables (Appendix B 

Table B3; wi = 0.99, R2 = 0.30, p < 0.001), specifically, demonstrating a relationship 

between changes in community composition and ammonium (p < 0.001). Neither site 

differences (i.e., elevation and aspect differences), or climatic variables (i.e., 

temperature and soil moisture) were significantly related to the observed variation in 

either fungal community richness or composition. Overall, these results are consistent 

with our original hypothesis (soil physicochemistry H3) that soil conditions would 

contribute most to differences in fungal community attributes. 

 

A correlation heatmap comparing the strength of relationship among soil fungal 

network parameters and soil physicochemical parameters revealed similar spatial 

patterns between soil chemistry (i.e., nitrate, ammonium and phosphorus) and network 

complexity, i.e., the total number of edges/links and nodes/OTUs, average clustering 

coefficient and the number of shortest paths (Figure 3.4). This correlation heatmap 

indicates that fungal co-occurrences within communities are correlated more with 

changes in soil chemistry, rather than climatic conditions, based on their Pearson’s 

correlation values.   
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Figure 3.4. Correlation matrix heatmap showing the extent of correlation between 

network parameters and both climatic and soil physicochemistry data. The colour 

gradient from red to blue represents a proportional gradient from negative to positive 

correlation. Stronger colour intensities on the left side of this heat map illustrates that 

soil chemistry, namely nitrate, ammonium and phosphorous concentrations are more 

closely related to the network structure than climate factors.  

 

3.4 Discussion 

The nature of co-occurrences within soil fungal communities changed along this ~1,500 

m alpine mountain elevation gradient, with a concurrent change in community 

composition, despite a lack of clear elevational pattern in richness. Variations in fungal 

community attributes and their co-occurrences along the gradient studied here were 

most closely related to soil physicochemical variables, including ammonium and pH, 

rather than climatic variables.  

 

3.4.1 No elevational pattern observed in fungal community richness  

In contrast to fungal composition and interspecific co-occurrences, we observed no 

significant change in the richness of soil fungal communities along the elevational 
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gradient, causing us to reject our first hypothesis (Elevation H1). This observation is 

consistent with observations from prior studies (Meier et al., 2010; Meng et al., 2013; 

Coince et al., 2014) suggesting that fungal community structure may respond 

differently to macroorganisms across elevation gradients (Fierer and Jackson, 2006). 

This pattern implies that climatic factors, such as temperature, are more likely to play 

a secondary role in structuring the richness of soil fungal communities. Our results 

demonstrated that soil pH and ammonium were in fact, the two most important 

variables correlating with the observed changes in fungal richness. Other studies of 

fungal community richness over elevation/latitude gradients have found different 

results. For example, Tedersoo et al. (2012) indicates temperature and precipitation play 

substantial roles in shaping fungal richness on a global scale. Likewise, Pellissier et al. 

(2014) found an increase in fungal community richness related to lower temperature 

and higher soil moisture across a 2800 m elevation gradient at a regional scale. The 

inconsistency of our results compared to other studies is likely because we observed 

relatively little variation in temperature, as compared studies that have sampled more 

extreme latitude/elevation gradients.  

 

3.4.2 Soil nutrient concentrations impact fungal interaction patterns 

Changes in microbial community attributes could be driven by their nutrient-preference 

and strategies of nutrient-acquisition (Goldfarb et al., 2011), and therefore, some 

microorganisms are able to gain more advantage from having a higher nutrient 

acquisition ability as compared to the whole community. Based on nutrient-preference, 

these microorganisms may arrange in trophic groups and functionally distinct niches 

(Schimel and Schaeffer, 2012). Thus, investigating the co-associations of community 

members across environmental gradients can reveal important information on the 

underlying mechanisms of elevational patterns in microbial community composition 

(Barberán et al., 2012; Gilbert et al., 2012) and community interactions with 

environmental variables (Fuhrman, 2009). In the current study, an increase in the 

complexity and number of fungal co-occurrences with decreasing elevation was 

observed, supporting our co-occurrence network hypothesis (co-occurrence H2). In 

addition, the observed fungal co-occurrence patterns were more strongly related to soil 

physicochemical variables (e.g., ammonium), rather than to climatic variables 
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(temperature and soil moisture). Considering the significant variability in fungal 

community composition and soil-nutrient resource (e.g., the concentration of 

ammonium) across our study site, the aforementioned increase in fungal co-occurrences 

is likely due to increasing competitive exclusion (Rajaniemi, 2003) or top-down 

predatory interactions (Worm et al., 2002). A recent study demonstrated that soil 

microbial community attributes vary in concert with their functioning, being related to, 

and with consequences for, variability in soil resource availability (Mau et al., 2015). 

This finding is consistent with our results, suggesting that an increase in the complexity 

of fungal networks is likely driven by variation in soil physicochemical attributes (e.g., 

concentrations of nitrate, ammonium and phosphorous), based on species nutrient 

preferences. 

 

Current research indicates that soil abiotic variables, such as ammonium, impact fungal 

interactions within communities (Hiscox et al., 2016), as ammonium is utilized by most 

fungi (Rastin et al., 1990). More importantly, it is the major form of nitrogen for 

saprotrophs (Liaho, 1970; Lundeberg, 1970; Keller, 1996), which comprise the 

majority of our generalist taxa. Thus, when the limiting resource, such as the 

concentration of ammonium, increases, more species meet their minimum resource 

requirements (Rajaniemi, 2003) and species diversity typically decreases (Bakelaar and 

Odum, 1978; Clark and Tilman, 2008), as increasingly competitive organisms dominate. 

This hypothesis provides a mechanistic explanation for how fungal community richness 

and interactions change across elevation gradients. Our findings correspond to those of 

Baar and Stanton (2000), determining that variation in ammonium concentration leads 

to changes in the type and strength of fungal interactions. Interestingly, fungi generally 

prefer ammonium as an N source, rather than nitrate in pure culture (Rangel-Castro et 

al., 2002; Guidot et al., 2005), as well as field studies (Grenon et al., 2005; Clemmensen 

et al., 2008). This is likely because of its lower energy cost for assimilation, compared 

to the reduction of nitrate (NO3
−) to ammonium (NH4

+) (Chalot and Plassard, 2011). 

This is reflected in our results, observing that ammonium was significantly related to 

differences in both composition and richness of fungal communities. While little is 

known about the importance of fungal nutritional groups (Banerjee et al., 2016), our 

study highlights that non-random associations between fungi are likely mediated by soil 

resources in microbial ecosystems.   
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3.4.3 Soil nutrient concentrations impact elevational gradients in 

fungal community composition 

In this study, a clear elevational pattern in fungal community composition was observed 

across our study site. Similar patterns have been observed in some previous studies, 

such as in tropical forest soils of the Peruvian Andes (Meier et al., 2010), Mediterranean 

grassland soil (Maggi et al., 2005), and Scots pine soil, Scotland (Jarvis et al., 2015). 

Consistent with our Soil Physicochemistry Hypothesis (Soil physicochemistry H3), the 

composition of fungal communities was more closely correlated with variation in soil 

chemistry (the concentrations of ammonium) than climatic variables (i.e., temperature 

and soil moisture). Indeed, fungal community structure is typically strongly related to 

soil chemistry (Bossuyt et al., 2001; Frey et al., 2004; Toljander et al., 2006; Allison et 

al., 2007), even among samples collected across diverse land uses (Lauber et al., 2008). 

This is probably because soil chemistry, such as concentrations of ammonium, can 

affect fungal community composition (Waldrop et al., 2006; Dennis et al., 2012; 

Kranabetter et al., 2015) and fungal biomass production (Jongbloed and Borstpauwels, 

1990; Kranabetter et al., 2007; Rothstein, 2009). An increase in ammonium 

concentration could cause increasing in fungal growth and activity (Boberg et al., 2008). 

The change in ammonium concentration might also alter fungal community 

composition by affecting their trophic groups. For example, scientists found that a high 

ammonium concentration has negative influences on fungal decomposer communities 

via decreasing their biomass (Baldy et al., 2007; Duarte et al., 2009). In this case, a 

significant difference in concentrations of ammonium across the present study site was 

related to significant variability in fungal community composition, as the overall 

concentration of ammonium at medium elevation increased by ~40%, compared with 

concentrations at high elevation (Tukey test, p = 0.007; Appendix B Figure B3). Our 

results provide evidence of the association between soil nutrients and biogeographic 

patterns in soil fungal community composition, implying that fungal growth and 

activity are soil-nutrient altered.   
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3.4.4 Generalist taxa identified across the co-occurrence networks 

 We determined 27 generalist taxa present in three association networks; most of which 

were saprotrophs (Appendix B Table B1). Saprotrophic fungi are key determinants of 

decomposition (Schneider et al., 2012), carbon sequestration and nutrient cycling 

(Boddy and Watkinson, 1995; Hättenschwiler et al., 2005; Baldrian and Lindahl, 2011; 

Litchman et al., 2015). They are abundant particularly grassland in soils, in contrast to 

the abundances of ectomycorrhizal fungi and plant pathogens (Tedersoo et al., 2014). 

However, it is important to note that the sampling method we used here might detect 

less of the mycorrhizal species in soil. We only collected the top layer of soil and did 

not specifically collect soil adhering to the roots. Mycorrhizal species are commonly 

observed in the infected plant roots (Taylor and Bruns, 1999; Daniell et al., 2001; 

Vandenkoornhuyse et al., 2002), while saprotrophic species dominate in the litter layer 

(O'Brien et al., 2005). Together, this may cause the majority of the generalist OTUs in 

the present study to be deemed as saprotrophs.  

 

3.5 Conclusion  

We found significant differences in soil fungal community composition and taxon co-

occurrences along an alpine elevation gradient. Change in community composition and 

an increased taxon co-occurrence at lower elevation were more closely related to soil 

nutrient conditions i.e., the concentration of ammonium, than to variation in climatic 

(i.e., temperature and soil moisture) variables. This is despite there being a dramatic 

decrease (that is, 7 °C) in the average below-ground temperature comparing data from 

the highest and lowest elevation sites. Thus, our results indicate that even substantial 

variation in climate may have a smaller impact on vital soil fungal community attributes 

and their interactions than the changing in soil conditions, be these natural or 

anthropogenic, for example greater soil fertilisation at lower altitude. Overall, these 

findings shed light on the contribution of soil physicochemical attributes to variation in 

fungal community structure and interactions.  Exploring nutrient-driven shifts in fungal 

community diversity and function in soil will further enhance understanding of 

underground nutrient cycling and the likely impacts of climatic and environmental 

variables on soil microbial communities. 
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Chapter 4 

Use of ‘inferred metagenomics’ confirms 

soil bacterial communities exhibit 

functional biogeography across a mountain 

elevation gradient 
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4.1 Introduction 

Soil microorganisms play critical roles in the functioning of entire ecosystems by 

regulating the cycling of carbon, nitrogen and the availability of other important soil 

nutrients and gases (Singh et al., 2010). To unravel the likely response of soil microbial 

communities to gradients in environmental and particularly climate conditions (Siles 

and Margesin, 2016; Wu et al., 2017), mountain elevation gradients are frequently used 

as ‘a natural climate laboratory’, as samples exposed to very different climate 

conditions can be collected in relatively close proximity. However, in numerous 

previous studies, inconsistent patterns in bacterial community composition and richness 

have been observed across elevation gradients (Bryant et al., 2008; Fierer et al., 2010; 

King et al., 2010; Singh et al., 2012; Shen et al., 2013; Zhang et al., 2013). These 

findings imply that variation in bacterial community structure might be more 

complicated than first thought, or perhaps more likely for communities of prokaryotes, 

that sufficient functional redundancy exists in these communities (Nannipieri et al., 

2003; Sunagawa et al., 2015; Yan et al., 2017) that their responses to gradients in 

environmental condition are not easily explained using only phylogenetic and/or 

taxonomic information.  

 

The rapid and ongoing development of high-throughput technologies has greatly 

facilitated bacterial community research (Riesenfeld et al., 2004; Eisen, 2007; Wooley 

et al., 2010; Bailey et al., 2013; Bergkemper et al., 2016; Yang et al., 2017). Critically, 

the emergence of metagenomics-based approaches in microbiology have helped 

overcome historical culture-based biases, which previously allowed the recovery of 

only a minority of the bacterial species present in soil (Amann et al., 1995; Ferrari et 

al., 2005). We are now capable of predicting the growth requirements (Pope et al., 2011; 

Walker et al., 2014) and stress tolerances (Mongodin et al., 2006; Yuan et al., 2012; 

Stuart et al., 2013; Trivedi et al., 2013) even of microorganisms that have never been 

grown in a laboratory environment. These advances are deepening our understanding 

of how soil bacterial diversity varies across natural environmental gradients and in 

response to treatment applications. For example, soil pH is widely observed to influence 

bacterial community composition and diversity (Fierer and Jackson, 2006; Bryant et al., 

2008; Wang et al., 2012b; Shen et al., 2013; Hermans et al., 2017) even when 
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comparing communities across very different habitats (Fierer et al., 2012b). However, 

differences in the presence and abundance of specific functional genes were directly 

related to a broader variety of environmental variables rather than just pH, suggesting 

bacterial community functional and taxonomic attributes respond to environmental 

factors differently. This may occur as distinct taxa can share similar functional 

attributes, whereas highly related taxa may also have distinct environmental tolerances 

(Philippot et al., 2010). Nevertheless, functional trait-based approaches, which have 

been used by ecologists to study communities of macroorganisms for decades (McGill 

et al., 2006), remain less frequently applied to microbial communities to predict their 

distribution. The new era of high throughput metagenomics methods now provides 

microbial resarchers the ability to catalogue distributions of multiple genes relevant to 

metabolic pathways, energetics and regulatory circuits to directly address changing 

microbial functional potential, across time and space (Yang et al., 2014). 

 

Shotgun metagenomics is increasingly used to investigate the functional potential of 

complex environmental microbial communities (Tringe et al., 2005; Raes et al., 2011; 

Delmont et al., 2012; Wilkins et al., 2013; Leff et al., 2015). Still, it remains hard to 

effectively study the biogeography of microbial functional traits across large-or even 

local-scales, as cost limitations typically dictate the number of samples analysed (e.g.,  

Fierer et al. (2012b), n = 16; Raes et al. (2011), n = 25; Leff et al. (2015), n = 25). This 

might lead to an incomplete understanding of microbial functional biogeography and 

impact predictions of how functional genes shape or respond to changes in community 

composition across environmental gradients.  

 

Here, we investigate how genomic information, inferred from 16S rRNA gene sequence 

data, can be used to predict variation in bacterial community functional attributes 

derived from comparatively large sample numbers (n = 81). To achieve this, we chose 

to explore the genomic attributes of microbial communities across a mountain elevation 

gradient where significant differences in bacterial community composition were 

previously reported (Wu et al., 2017). We hypothesised that: (1) bacteria with larger 

genome size would be prevalent across the elevation gradient, as prior studies found 

that bacterial communities requiring resilience to more fluctuating environmental 
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conditions have larger average genome sizes (Matz and Jürgens, 2005; Bentkowski et 

al., 2015; Cobo-Simon and Tamames, 2017; Lear et al., 2017b); (2) the numbers of 

genes encoding for ‘cellular responses to stress’ would increase at higher elevation, as 

decreasing temperatures and increasing soil acidity with elevation across the study site 

might increase the environmental stress experienced by the bacterial communities.  

 

4.2 Materials and methods  

4.2.1 Sample collection and processing for 16S rRNA gene sequence 

analysis 

Details of sample collection and the processing of soil for physicochemical and DNA 

sequence analysis is provided in Chapter 2. Briefly, we collected 405 soil samples from 

81 locations along the north-eastern ridge of Mt. Cardrona, New Zealand (44.85° S, 

168.95° E; see Figure 2.1 in Chapter 2). Because the slope of this ridge is very shallow 

at 1300 m, we chose to separate this elevation into two (one at the upper edge of the 

ridge hereafter termed 1301 m and another at the lower edge hereafter termed 1300 m). 

We collected samples from five different locations at each of 16 elevations from 500 m 

to 1900 m, with 100 m elevation intervals, as well as one single location at the summit 

of the mountain at 1936 m (16 elevations x 5 locations + one summit location = 81 

locations). One of the five locations at each elevation was located on the mountain ridge 

line (R0), two to the north (SU1, SU2) on the sunnier side of the ridge, and another two 

to the south (SH1, SH2) on the shadier side of the ridge; samples identified by the 

number two (e.g., SH2) were those collected furthest from the ridge. The five samples 

collected at each elevation were separated by 25 m geographic intervals to identify the 

effect of fine-scale climatic and environmental variables on soil bacterial communities 

(i.e. related to slope aspect). Real-time temperature data was collected at a depth of 10 

cm below ground at each location (i.e., n = 81) during the summer from February to 

March in 2014. At each of the 81 sampling locations, five soil samples (10 cm depth) 

were collected as replicates.  
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Soil physicochemical parameters, specifically concentrations of organic carbon, total 

nitrogen, NO3-N, NH4-N, Olsen phosphorus and soil pH, were analysed by the 

Landcare Research Environmental Chemistry Laboratory (Palmerston North, New 

Zealand) using standard procedures (Blakemore, 1987; Lachat Instruments, 1998b; a; 

Leco, 2003). We measured soil moisture gravimetrically based on the difference in the 

weight of each soil sample before and after drying in an oven at 105oC for 96 hours 

(Rayment and Lyons, 2011).  

 

Soil DNA was extracted using PowerSoil-htp 96 well Soil DNA Isolation Kits (MOBIO 

Laboratories Inc., USA) as recommended in Lear et al. (2017a), with the DNA sampled 

from each site amplified and sequenced on an Illumina MiSeq following the standard 

protocol (Illumina, 2013). The V3-V4 region of the 16S rRNA gene was amplified 

using the 341F and 785R primer pair as described in Chapter 2. All of raw sequences 

were uploaded onto the SRA-NCBI database (BioProject ID: PRJNA338717). 

 

Raw sequence data were processed using the USEARCH pipeline (Edgar, 2013). 

Briefly, paired-end sequences were merged and quality filtered using default 

parameters. After the removal of replicate and singleton sequences, non-chimeric 

sequences were clustered into operational taxonomic units (OTUs) using ≥ 97% 16S 

rRNA gene sequence identity as a consensus threshold. As raw reads can vary by orders 

of magnitude even for samples from the same sequencing run, the number of sequences 

was rarefied to 5,500 per sample and yielded a total of ~17,000 distinct 16S rRNA gene 

OTUs identified across our study site. 

 

4.2.2 Matching 16S rRNA genes to sequenced genomes 

To identify those OTUs for which genomic information is already available to study 

their genomic traits, we adapted the method of Barberan et al. (2014). Namely, we 

extracted 16S rRNA gene sequences from the complete genomes derived from the June 

2015 version of the NCBI genome database (NCBI Resource Coordinators, 2017) 

obtaining ~5,200 complete 16S rRNA genes as reference sequences. Then, we matched 
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the 16S rRNA gene representative sequences sampled from Mt. Cardrona against this 

subset of 16S rRNA gene reference sequences using USEARCH (Edgar, 2013) at ≥ 97% 

identity to produce a database of ‘inferred genomes’ containing 16S rRNA gene 

sequences that matched sequences detected across the elevation gradient. The 

abundance of 16S rRNA gene OTUs related to the same genome was reported to yield 

the relative abundance of each ‘inferred’ genome in each sample.  

 

Variations in community composition were compared using Bray-Curtis distance 

matrices using either all the 16S rRNA gene OTU data or the subset of OTUs for which 

genomic information was available. This was done using the ‘vegdist’ function within 

the R package ‘vegan’ (Oksanen et al., 2015). To determine whether biases introduced 

by our approach may influence determinations of bacterial community structure, we 

compared the similarity between Bray-Curtis matrices derived from these two datasets, 

using RELATE analysis to perform Spearman’s rank correlations in PRIMER 6 

(Plymouth Marine Laboratory, UK). To visualise variation in the composition of 

bacterial communities derived from these two datasets, we used non-metric 

multidimensional scaling (nMDS) to plot the data using the R package ‘ggplot2’ 

(Wickham, 2009). Variation in bacterial community composition at different sample 

elevations was quantified and visualised using distance decay curves constructed using 

the ‘vegan’ R package (Oksanen et al., 2015). 

 

Permutational multivariate analysis of variance (PERMANOVA) was conducted in 

PRIMER 6 software (Plymouth Marine Laboratory, UK) to test the effects of elevation 

and aspect differences (i.e., sunny versus shady aspect) on the genomic (i.e., genome 

size) and functional traits of the communities. Significance statistics (p-values) were 

generated using 9999 permutations of the data, and the proportion of variation 

explained by each explanatory variable noted as R2 values. 
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4.2.3 Genome size 

For the genomes extracted from 16S rRNA gene representative sequences, we 

calculated the sequence length of the whole genome in nucleotide base pairs and used 

it as the genome size of each taxon. Next, the genome size of the representative taxa 

identified in each site was weighted by the abundance of each taxon at each site to 

produce overall community genome size across our study site. To study which 

environmental variables were most strongly related to variation in overall community 

genome size, a correlation matrix comparing the strength of relationship between 

overall genome size and the environmental variables measured was calculated and 

plotted using the Spearman’s correlation heatmap R package ‘corrplot’. To explore 

whether bacteria with larger genome size were present across a wider range of 

elevations and greater number of different aspects than those with smaller genome sizes, 

we used Akaike’s information criterion corrected for small sample sizes (AICc) to 

select the model with best-fitting from a set of candidates (Anderson et al., 1998). Three 

candidate models were conducted based on the variables, including the elevation range 

where OTU was present, the number of different aspects the OTU could be found, and 

the presence of OTUs at each combination of elevations and aspects. As OTUs are 

phylogenetically independent, we considered the genus information of each OTU as a 

random effect in the mixed effect model. The best-fitting model was selected on the 

basis of ΔAICc, R2, and AICc weight (Anderson et al., 1998), using the ‘AICcmodavg’ 

package in R (Mazerolle, 2013). Venn diagrams were further generated to represent 

differences in the number of unique/shared genomes across the aspect differences using 

the R package ‘venn’ (Mamakani et al., 2011).   

 

4.2.4 Functional analyses 

To determine the abundance of different functional annotations, we used HMMER v3.0 

(Finn et al., 2015) to search the functional gene database FOAM (Functional Ontology 

Assignments for Metagenomes) for sequence homologs (Prestat et al., 2014). HMMER 

is a biosequence analysis software tool that uses Hidden Markov Models (HMMs) to 

detect remote protein homology (Eddy et al., 2015). Scripts and the workflow provided 

by FOAM were used to identify best hits in the database. For each genome, the best 
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KO (KEGG Orthology) hits were added to a count matrix of functional annotation 

counts as a single column. There are 19 major functional categories (e.g., identifying 

genes as encoding for fermentation, transporters, etc.), the highest level of functional 

categorization, which is primarily considered, although further hierarchy can be 

described when relevant. Then, the KO column was aggregated based on those 19 major 

categories to produce a count matrix with major FOAM categories for each genome. 

To compare variation in the functional traits of communities across the study site, the 

relative abundance of major functional categories at each site was used to generate a 

count matrix, weighted by the relative abundance of each genome.  

 

Patterns in the relative abundance of functional traits at each elevation were plotted 

using the heatmap function within the R package ‘gplots’. As the samples on the summit 

were only collected at one location, these samples were removed to avoid the bias 

caused by the smaller sample size as compared with other elevations. To reduce the 

impact of extreme values while assigning the range of colours in the heatmap, the data 

obtained within each functional category was scaled to have mean zero and standard 

deviation using the ‘scale’ argument within the heatmap function. A dendrogram was 

also computed and ordered based on the means of taxon relative abundances at each 

elevation. To visualize the spread of functional trait data across two-dimensional space, 

a non-metric dimensional scaling (nMDS) plot was generated from a Bray-Curtis 

distance matrix of the data using ggplot2 and vegan packages in R. To detect whether 

there are relationships between elevation and the relative abundance of functional genes, 

linear regression analysis was performed for each of the 19 major functional categories 

using the ‘lm’ function within the R stats package. Dot plots were then used to represent 

proportional differences in the relative abundance of specific functional genes sampled 

at each elevation using the ‘ggplots2’ package in R. To study which environmental 

variables correlated most strongly with variation in the functional attributes of the soil 

bacterial communities, we used the ‘envfit’ function from the vegan package in R 

before fitting these onto an nMDS ordination plot.  
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4.3 Results  

4.3.1 Inferred metagenomics analysis 

From our analysis of bacterial 16S rRNA genes identified across the site we identified 

400 OTUs for which complete genomic information were available, based on 97% 

DNA sequence similarity of their 16S rRNA genes to those in the genome database. 

 

To explore whether bacterial community composition obtained from our ‘inferred 

metagenomics method’ reflects the composition of the broader bacterial 16S rRNA 

gene data, we used nMDS plots to visualise the community composition of both (Figure 

4.1 and Appendix C Figure C1). The composition of the subset of the bacterial 

community for which genome data were available changed markedly across the 

elevation gradient (Appendix C Figure C2; y = 0.0002x + 0.1657, R² = 0.96); a similar 

pattern was evident comparing the composition of the total 16S rRNA gene data across 

the gradient (see Figure 2.3 in Chapter 2). We confirmed that data obtained from the 

two methods generated nearly identical patterns of bacterial community composition, 

comparing the Bray-Curtis similarity matrices for each dataset using a RELATE routine 

(Spearman’s rho = 0.94, p-value < 0.001).  

 

4.3.2 Variation in genome size across an elevation gradient 

To examine if the bacteria with larger genome size would present at a wider elevation 

ranges and or greater number of different aspects, we used mixed effect model to detect 

the relationship between genome size and its prevalence across the elevation gradient 

and different aspects (Appendix C Table C1). The results showed a stronger positive 

correlation between bacterial genome size and its prevalence across the elevation 

gradient, suggesting that the bacteria with larger genome size appear to prevail across 

the elevation gradient. We found evidence of a significant negative relationship 

between the overall genome size of each bacterial community and elevation, but the 

model fit was very poor (Figure 4.2, p-value < 0.001, R2 = 0.04).  It is noteworthy that 

both of two most dominant OTUs, which were most closely related to the genome of 
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the species Bradyrhizobium sp. S23321 (12.9%) and Candidatus Solibacter usitatus 

Ellin6076 (8.5%), have large genome sizes (7.2 Mb and 10.0 Mb, respectively). These 

two species appeared to be ubiquitous across our study site. Species with small genome 

sizes were more commonly found at low elevation, such as Candidatus Tremblaya 

princeps (with the smallest genome size, 0.1 Mb) and Microbacterium testaceum 

StLB037 (4.0 Mb) (Appendix C Table C2).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1. Variation in bacterial community composition across a mountain elevation 

and aspect gradient based on the analysis of the relevant 16S rRNA gene data subset 

obtained from ‘inferred metagenomic method’ across the study site. The non-metric 

multidimensional scaling (nMDS) plot was derived from a Bray-Curtis matrix of the 

data. The size of points increases with elevation. The colour of points are assigned 

based on the aspect difference at each elevation. The community composition obtained 

from this 16S rRNA gene data subset is highly similar with the one obtained from 

original, total bacterial 16S rRNA gene data (Appendix C Figure C1, Rho=0.94, p-

value < 0.001).  
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Figure 4.2. Boxplot showing overall community genome sizes obtained across the 

elevation gradient. Points represent overall community genome sizes collected from 

each sample site. Sample data are assigned colours based on their aspect at each 

elevation (R is ridge; SU are samples from the sunny aspect of the slope; SH are samples 

from the shady aspect of the slope). The horizontal line within the box indicates the 

median, boundaries of the box indicate the 25th- and 75th -percentile, and the whiskers 

extends from the hinge to the largest/smallest value no further than 1.5 * IQR (the 

interquartile range) from the hinge. Linear regression analysis shows a significant 

relationship between elevation and overall community genome size, but with poor 

model fit (p-value < 0.001, R2 = 0.04).   
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The largest proportion of variance in predicted bacterial overall community genome 

size was attributed to differences in elevation (PERMANOVA R2 = 0.39, p-value < 

0.001), followed by differences in the interaction of elevation and aspect 

(PERMANOVA R2 = 0.23, p-value < 0.001) (Appendix C Table C3). The 

environmental factors most strongly correlated with the predicted variation in overall 

genome size were phosphorus (Rho = 0.49, p-value < 0.05) and nitrate (Rho = 0.41, p-

value < 0.05), followed by temperature (Rho = 0.31, p-value < 0.05) and soil moisture 

(Rho = -0.29, p-value < 0.05) (Appendix C Figure C3). Additionally, we studied the 

extent to which different genomes are unique to elevations and specific aspects or are 

shared between aspects. Most of the genomes obtained from the study site were 

identified across different slope aspects (Appendix C Figure C4; 272 shared genomes) 

and elevations (Appendix C Table C4). Counts of unique genomes derived from 

different aspects were markedly low (number of unique genomes: SU1 = 11, SU2 = 5, 

SH1 = 5, SU2 = 7, and R0 = 7). We detected < 7 unique genomes at most elevations 

(besides 900 m, which harboured 13 unique bacterial genomes). 

 

4.3.3 Variation in functional traits across an elevation gradient 

The Bray-Curtis distance matrices calculated from both the original 16S rRNA gene 

data and the genome representative subset of 16S rRNA gene data were both weakly 

but significantly correlated with the Bray-Curtis matrices calculated from the relative 

abundance of 19 major functional gene categories (genomic data: Rho = 0.488, p-value 

< 0.001; 16S rRNA gene data: Rho = 0.435, p-value < 0.001). The relative abundance 

of different categories of functional gene obtained from low elevation versus high 

elevation sites (e.g., comparing data from sites above and below 900 m) varies as can 

be visualised using a heatmap of the data (Figure 4.3). Indeed, for 13 out of 19 major 

categories of functional genes, the results of linear regression analysis show a 

significant association between elevation and the relative abundance of each functional 

category (Appendix C Figure C5; p-value < 0.001, and R2 > 0.2 in all cases). On average 

across the study site, the greatest relative abundance of functional genes belonged to 

the category ‘transporters’ (21%), followed by ‘amino acid utilisation biosynthesis 

metabolism’ (20%) and ‘cellular response to stress’ (19%). The relative abundance of 

these three functional traits differentiated data from sites at low elevation to those from 
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sites at higher elevation (e.g., comparing data collected above and below 900 m, t-tests 

p-value < 0.001 in all cases; transporters: average relative abundance ≤ 900 m = 20.3%, > 

900 m = 20.0%; amino acid utilisation: ≤ 900 m = 22.1%, > 900 m = 20.5%; cellular 

response to stress: ≤ 900 m = 17.9%, > 900 m = 18.9%). Meanwhile, the patterns 

observed from subsets of specific gene categories within these major functional traits 

were inconsistent (Appendix C Figure C6). For example, the relative abundance of 

functional genes within the major functional category ‘cellular response to stress’ 

differed across the elevation gradient. More specifically, genes responsible for 

‘trehalose metabolism in response to cold stress’ were present in significantly lower 

abundance at higher elevation (> 900 m), as opposed to what was observed for the 

functional genes responsible for ‘response to oxidative stress’ (Appendix C Figure C6).  

 

Spatial variation in bacterial functional traits were most closely related to elevation 

(PERMANOVA R2 = 0.41, p-value = 0.0001) followed by differences in the 

combination of elevation and aspect (PERMANOVA R2 = 0.25, p-value = 0.0001; 

Appendix C Table C5), although patterns related to the linear elevation gradient were 

not clearly discernible from an nMDS plot of the data (Figure 4.4). Nevertheless, fitting 

of environmental parameters to the resulting nMDS indicated that elevation correlated 

with the bacterial community functional traits. Although a few environmental variables 

(for example, soil pH, moisture, temperature and nitrate, etc.) showed strong correlation 

with functional nMDS coordinates as well, vectors related to those environmental 

variables lay across a similar trajectory with the one related to elevation. This indicates 

that variation in functional community composition was best explained by a 

combination of environmental variables along the elevation gradient rather than by any 

one explanatory variable alone. 
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Figure 4.3. Variation in the average weighted relative abundance of 19 main functional 

categories obtained from genome data across the study site. Different rows represent 

data collected from different elevations; different columns represent data from different 

major functional categories. The data in the heatmap were assigned colours across a 

gradient from red (relative lowest abundance) to yellow red (relative highest abundance) 

based on their scaled relative abundance. The dendrogram was computed and reordered 

based on the mean of relative abundance at each elevation.  
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Figure 4.4. Variation in bacterial community functional composition based on Bray-

Curtis dissimilarities of weighted relative abundances of major functional gene 

categories. The size of points increases with an increase in elevation. Vectors in the plot 

indicate fitted environmental parameters significantly correlated to nMDS coordinates.  
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4.4 Discussion  

Bacterial community composition changed markedly across the elevation gradient. We 

identified a similar elevational pattern in bacterial community composition from the 

subset of our community for which genome data were available, as compared to the 

pattern obtained using the entire 16S rRNA gene dataset, suggesting that the subset of 

the community associated with our ‘inferred metagenomic method’ was largely 

reflective of that of the wider community. 

  

Understanding how functional genes shape bacterial community structure across 

environmental gradients may help clarify their ecosystem contributions. For this reason 

we chose to examine the genome size and functional traits of soil bacterial communities 

already observed to exhibit compositional patterns across a ~1,500 m elevation gradient 

(Wu et al., 2017). Specifically, we expected to witness (1) widely prevalent bacteria 

with larger genome size across the elevation gradient; (2) increased numbers of genes 

encoding for cellular responses to stress at higher elevations and increased numbers of 

genes encoding for processes such as nitrogen fixation, correlated with observed 

elevational decreases in soil temperature and pH as well as an increase in C/N ratios.  

 

4.4.1 Elevational patterns in genome size 

We chose to investigate patterns in genome size across our study site, because previous 

studies have revealed a relationship between genome size and environmental 

parameters, including climate attributes (Litchman, 2010; Leff et al., 2015; Cobo-

Simon and Tamames, 2017; Lear et al., 2017b). For example, a significant latitudinal 

gradient in bacterial genome size was observed by Lear et al. (2017b) with average 

genome size decreasing from samples collected from warmer to cooler latitude sites 

across New Zealand. These data were used to suggest that bacteria with larger genomes 

might be more successfully adapted to life in more variable climates as seasonal 

temperature variation increases towards cooler latitudes.  Likewise, it is confirmed by 

our findings, showing that bacteria with larger genome size appear to prevail at a wider 

range of elevations. In previous studies, scientists have linked increases in bacterial 
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genome size to increased bacterial distributions and adaptability to changing 

environmental conditions (Konstantinidis and Tiedje, 2004; Barberan et al., 2014; 

Cobo-Simon and Tamames, 2017). However, most observations to date have been 

based on observations of the genome size of individual microorganisms rather than 

calculated for entire communities. Cobo-Simon and Tamames (2017) found 

significantly lower 16S rRNA gene copy numbers for bacteria inhabiting resource-poor 

environments, and with large genome sizes, indicating that those bacteria might 

successfully cope with harsh environmental conditions by both adopting strategically 

low growth rates and retaining a larger number of potential genes and related functions. 

It is evident that free-living bacteria inhabiting more variable and heterogeneous 

environments are often slow growing, oligotrophic α-Proteobacteria (Mitsui et al., 

1997; Saito et al., 1998; Klappenbach et al., 2000). Our survey of soil microbial 

diversity found Bradyrhizobium sp. S23321, with a genome size of 7.2 Mb (Appendix 

C Table C2), to be both dominant and ubiquitous across our study site.  The 

predominance of such organisms in high altitude soils support a hypothesis described 

in other studies suggesting that larger genomes are an adaptation to life in more 

heterogeneous or stressful environments (Konstantinidis and Tiedje, 2004; Guieysse 

and Wuertz, 2012; Barberan et al., 2014).  

 

The biogeographic pattern in the overall community genome size observed in this study 

might also be explained by differences in the mean attributes of environmental factors, 

rather than their variation. Although soil pH and temperature were previously described 

to be key drivers in structuring bacterial communities along elevation gradients (Fierer 

and Jackson, 2006; Lauber et al., 2009; Wang et al., 2012b; Shen et al., 2013), it is not 

the case in regard to the spatial patterns we observed in bacterial community overall 

genome size. Soil conditions from 900 m to 500 m in the current study were also 

impacted by gradients in disturbance from livestock grazing (Wu et al., 2017) and it is 

noteworthy that highly elevated concentrations of total carbon, total nitrogen, 

phosphorous and nitrate were detected on the northern aspect (SU1 and SU2) of the 

mountain ridge at 900 m, while the soil pH was observed to be closer to neutral at lower 

elevation (Appendix A Figure A4 in Chapter 2). We identified a strong positive 

correlation between overall community genome size and both phosphorus and nitrate 

concentrations, implying overall genome size may increase in communities within 
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greater resourced environments. A reduction in the abundances of free-living bacteria 

with large genome size (Bradyrhizobium sp. S23321 and Candidatus Solibacter 

usitatus Ellin6076) at 900 m with elevated nitrogen and phosphorous was observed, in 

concert with an increase in the abundances of species with small genome size (for 

example, Candidatus Tremblaya princeps and Microbacterium testaceum StLB037; 

Appendix C Table C2). Previous studies indicated that both Bradyrhizobium sp. 

S23321 and Candidatus Solibacter usitatus Ellin6076 might be best suited to low-

nutrient conditions (Ward et al., 2009; Lopez-Madrigal et al., 2011). Our results imply 

that free-living bacteria inhabiting more variable and heterogeneous environments 

might not be competitive in nutrient-rich habitats. As opposed to large genome species, 

an increase in the abundances of Candidatus Tremblaya princeps and Microbacterium 

testaceum StLB037 was obtained at 900 m and below (Appendix C Table C2). Many 

taxa with small genome size are symbiont bacteria, such as Candidatus Tremblaya 

princeps and Microbacterium testaceum StLB037, residing within mealybugs and plant 

leaves respectively (Lopez-Madrigal et al., 2011; Morohoshi et al., 2011). Nutrient 

enrichment and warmer environments might contribute to the increasing abundance of 

these taxa, by influencing their abundance of hosts.    

 

Further, it also needs to be noted that there might be multiple matches between one 

genome of a particular bacterial specie and different OTUs observed in the study, due 

to the limited number of known genomes in the database and the length of 16S rRNA 

gene sequences. Here, we only assign the OTU with the name of the best matched 

species, but further investigation, such as shotgun metagenomics, needs to be done to 

further validate their taxonomic identification. 

 

4.4.2 Elevational pattern in the relative abundance of functional traits 

The correlation observed between the composition of the entire 16S rRNA gene OTU 

data, the subset of the 16S rRNA gene data for which whole genome data were available 

and variation in the composition of bacterial functional gene data provides evidence of 

a consistent relationship between bacterial taxonomic and functional composition. 

Similar findings have been reported by others across a variety of habitats such as coast, 
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ocean, forest, desert and grassland (Gilbert et al., 2010; Raes et al., 2011; Fierer et al., 

2012b). Although shifts of individual functional gene structure may not necessarily be 

associated with variations in bacterial community structure, the overall potential 

functional attributes of communities appear to be predictable across elevational 

gradients, as inferred from their community taxonomic or phylogenetic attributes.    

 

For most functional traits, a clear distinction in their relative abundances can be 

observed comparing sample site data collected above and below an elevation of 900 m, 

implying that particular bacterial functional traits may be controlled by, or at least 

related to, the environmental elevation gradient. For example, the relative abundance 

of functional genes encoding for ‘cellular responses to stress’, such as ‘responses to 

oxidative stress’, ‘responses to osmotic stress’ and ‘regulation of stress activated 

protein’, increased significantly with elevation, compared with those sampled at low 

elevation (Appendix C Figure C5s and Figure C6). This indicates that variations in 

bacterial composition and function might be impacted by, or at least associated with, 

environmental factors such as low temperatures, low soil pH, high UV irradiation and 

the availability of oxygen in soil. These findings are also verified by Yang et al. (2014) 

who found greater abundances of stress response genes encoding for adaptation to cold 

conditions at higher elevation. Rousk et al. (2009) revealed a dramatic decrease in 

bacterial growth with decreasing soil pH. In addition, for many environmental 

microorganisms, their minimum temperature of growth may be raised, when exposed 

to pH conditions lower than their optimal pH (Beales, 2004). Together, the combination 

of low temperature and low pH may combine to contribute to a higher level of stress to 

which bacterial communities at higher elevation are exposed.  

 

Recent works have demonstrated how changes in functional traits can be used to explain 

why microbial communities vary across environmental gradients (Zhou et al., 2008; 

Edwards et al., 2013). Our nMDS plot illustrates that soil pH, moisture, nitrate and 

temperature were key correlates with the changing functional composition of these 

microbial communities, while C/N ratio, ammonium and total nitrogen were also 

influential in shaping community functional structure (Figure 4.4). The relative 

abundance of specific functional genes varied across the study site. For example, genes 
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responsible for components of the ‘nitrogen cycle’ were more abundant at higher 

elevation than those at low elevation (Appendix C Figure C5i). In particular, the 

abundances of genes encoding for ‘nitrification’ and ‘nitrogen fixation’ increased with 

elevation (Appendix C Figure C6); also correlated with an increase in soil C/N ratio 

observed with elevation (data not shown). Moreover, in addition to the importance of 

soil pH and temperature in structuring microbial community composition, as exhibited 

in previous studies (Lauber et al., 2009; Shen et al., 2013; Stark et al., 2014), significant 

shifts in community composition can also be caused by soil nutrient availability 

(Lozupone and Knight, 2007; Jesus et al., 2009). These previous studies determined 

that the taxonomic compositions of bacterial communities were significantly impacted 

by those environmental variables (namely, soil pH, temperature and nutrient inputs), 

whereas our study provides further details regarding how the composition of bacterial 

functional genes may similarly be impacted. Interestingly, correlations in the 

abundances of genes encoding different functional traits were evident in the present 

study. For example, the abundances of genes responsible for ‘saccharide and derivated 

synthesis’ had a significant linear association with elevation, corresponding with an 

increase in abundances of functional genes relevant to ‘carbohydrate active enzyme’ 

across the gradient (Appendix C Figure C5). A previous study indicates that a variety 

of carbohydrate active enzymes (CAZy) are widely involved in the building and 

breakdown of glycoconjugates, oligo- and polysaccharides (Cantarel et al., 2009); our 

results provide evidence of cooperation, or at least co-occurrence, between genes 

encoding for ‘carbohydrate active enzyme’ and ‘saccharide and derivated synthesis’.        

 

While not all of functional traits or individual functional genes varied consistently 

across the environmental gradient (Appendix C Figure C5), the overall functional 

attributes of soil bacterial communities exhibited biogeographic patterns which could 

be interpreted across the environmental gradient. 

 

4.4.3 Study limitations and future opportunities 

There are a few technical limitations which must be considered carefully in the current 

study. First, with only 400 genomes relevant to our original 16S rRNA gene sequence 
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data, we are not able to capture the full extent of the genomic diversity of these 

microbial communities. However, by comparing the similarity between the Bray-Curtis 

distances calculated from the data of both all the 16S rRNA gene OTUs and the subset 

for which genomic information was available, our ‘inferred metagenomic method’ can 

be considered as a test case to generate a broad picture of the overall functional potential 

of microbial communities. Only ten years ago just 300 bacterial genomes had been 

sequenced (Binnewies et al., 2006). The number of bacterial genomes has since 

increased at least 100-fold (Land et al., 2015) and includes over 17,000 reference 

genomes now available from the NCBI genome database 

(ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/bacteria/). The increased availability of 

bacterial genome data will no doubt provide substantial additional opportunities for the 

exploration of microbial functional biogeography. Of particular interest, additional 

genome data will inevitably shed more light on the plasticity of bacterial genomes to 

discover the extent to which functional genetic attributes are correlated to taxonomy. 

At the present time, further analysis, such as quantitative PCR might be necessary to 

confirm the extent to which predicted patterns in the abundances of genes of interest 

reflect the true functional potential of bacterial communities. 

 

4.5 Conclusion 

Although investigations of the potential functioning of environmental microbial 

communities using DNA sequence data is increasingly common (Raes et al., 2011; 

Delmont et al., 2012; Wilkins et al., 2013; Cobo-Simon and Tamames, 2017), limited 

sample sizes, due to the high cost of metagenomic sequencing, might cause an 

incomplete understanding of the functional biogeography of communities across 

natural or applied environmental gradients. Across a mountain elevational gradient 

from 1936 m to 500 m, we assessed the reliability of the genomic information obtained 

using our own inferred metagenomic method.  Our results show that free-living bacteria 

with large genome sizes appear to prevail in across the study site, which may reflect a 

community adaption to adverse and fluctuating environments. Furthermore, significant 

relationships between environmental variables and the spatial distribution of dominant 

functional traits were evident, suggesting environmental gradients in functional 

potential can be predicted using our methods. Our work highlights the potential for 

ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/bacteria/)
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using inferred genomic information, based on 16S rRNA gene data, to generate a 

general functional trait-based picture of microbial biogeographical pattern. 
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Chapter 5 

Livestock exclusion reduces the spillover 

effects of pastoral agriculture on soil 

microbial communities in adjacent forest 

fragments 
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5.1 Introduction 

Land-use conversion, particularly from forest to pasture, is a leading cause of plant and 

animal biodiversity losses globally, with negative consequences for terrestrial 

ecosystems and their functioning (Doran and Zeiss, 2000; Sala et al., 2000; Navarrete 

et al., 2010; Rodrigues et al., 2013). A growing body of evidence now documents how 

changes in land use also alters soil bacterial community attributes and the 

biogeochemical processes they carry out (Jangid et al., 2008; Wu et al., 2008; Ramirez 

et al., 2010; Rodrigues et al., 2013; Paula et al., 2014). Despite these knowledge 

advances, and the critical role of microbial life in regulating ecosystem function and 

soil biogeochemistry (Madsen, 2011), we have a poor understanding of the spatial 

impact of land use conversion. Previous studies reveal small organisms, such as insects, 

can penetrate long distances (> 1 km) into the adjacent habitats from  agricultural lands, 

suggesting that the ecological effect of land use conversion might be more pervasive 

than has been generally appreciated (Blitzer et al., 2012). Since free-living bacteria are 

considered capable of widespread dispersal, we chose to explore to extent to which their 

community structure in natural forest fragments is affected by their proximity to 

adjacent pastoral land. 

 

The homogenisation of communities and their respective functional diversity (Paula et 

al., 2014) has been reported following forest to pasture conversion (Rodrigues et al., 

2013). This may be caused by the physical redistribution of soil, and associated 

microbial communities (e.g., via soil tillage (Anderson et al., 2017)), or via changes in 

above-ground diversity, since plant and soil microbial community members are known 

to affect one another (Prober et al., 2014). Further, changes in bacterial community 

composition associated with land-use conversion are frequently related to variation in 

soil physical and chemical properties, which, in turn have been related to fertilisation 

effects on soil (Garbeva et al., 2004; Wakelin et al., 2008) including soil pH (Fierer and 

Jackson, 2006; Griffiths et al., 2011; Wu et al., 2017), nitrogen (Di et al., 2009; 

Campbell et al., 2010; Fierer et al., 2012a) and phosphorus concentrations (Griffiths et 

al., 2011; Hermans et al., 2017). While the consequences of nutrients on receiving 

waterways have been well studied (Edwards et al., 2000), the effects of agriculture on 

adjacent terrestrial ecosystems remains largely unexplored.  
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Livestock grazing is a major biotic factor following forest-to-pasture conversion 

(Bokdam and Gleichman, 2000). Livestock excrete large numbers of enteric 

microorganisms into the environment, including pathogens (Hutchison et al., 2004), 

which can spread into adjacent forests either by the movement of livestock or by 

microbial transport processes including overland flow (Tyrell and Quinton, 2003). 

Manure and urine deposition provide significant sources of available carbon and 

nitrogen that may also be transported into adjacent ecosystems (Li et al., 2016).  These 

inputs affect the diversity and functioning of bacterial communities in receiving 

environments (Cho and Kim, 2000), for example by accelerating nitrogen cycling 

(Kohler et al., 2005; Ma et al., 2006). Livestock also compact soil by trampling, which 

decreases air permeability and hydraulic conductivity (Yang et al., 2013). Therefore, it 

is crucial to evaluate the effect of livestock grazing on soil bacterial community 

attributes, within both grazed pastures and their adjacent ecosystems, to develop a better 

understanding of the implications of agriculture at a landscape-scale. 

 

In this study, we investigate how pastoral land-use practices affect the richness and 

composition of bacterial communities in adjacent forest soils. First, we hypothesised 

that the richness of bacterial communities would be lower in individual samples 

collected from within grazed pasture, relative to those in adjacent forest soils (Richness 

H1). We predicted this because plant and animal diversity is frequently reported to 

decline after forest conversion to agricultural land (Bierregaard, 2001; Soares et al., 

2006) and the diversity of plants, animals and microbial life are intricately linked (Ter 

Steege et al., 2003; Zilber-Rosenberg and Rosenberg, 2008). Second, we investigated 

if the absence of a fence between pasture and forest systems increases the extent of 

biotic homogenisation between these land uses. This might occur directly because soil 

and microorganisms are transported across the study sites by stock animals, but also 

due to the indirect effects of the stock animals on the forest soil (e.g., soil compaction 

and nutrient additions). We hypothesised that the presence of a fence would increase 

the proportion of taxa occurring uniquely in the pasture of fenced farms, showing that 

fencing prevents migration of some pasture-associated taxa from grazed grasslands into 

adjacent forest soils (Fence H2). Finally, apart from the effect of land use conversion, 
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how microbial communities in the adjacent forest soils respond to different pastoral 

land use intensities remains poorly studied. Hence, we hypothesised that bacterial 

community similarity would decrease along sampling transects (i.e. comparing 

communities in the forest versus pasture soil) in response to existing gradients in 

adjacent agricultural land use intensity (Land-use intensity H3).  

 

5.2 Materials and methods  

5.2.1 Study area, soil collection and biogeochemical analysis 

Details of the study area and procedures for sample collection and processing for 

biogeochemistry analysis are provided in Didham et al. (2015). Briefly, we collected a 

total of 531 soil samples during the Austral summer from December 2009 to March 

2010 in the Waipa Region (37o49’S, 175o36’E) of the North Island, New Zealand 

(Appendix D Figure D1a). Samples were collected along transect lines from the interior 

of forest fragments into adjacent pasture for 11 fenced, and 10 unfenced, pastoral farms. 

Each farm was provided a number ranking corresponding to the intensity of pastoral 

agricultural practices as detailed by Didham et al. (2015), which we hereafter refer to 

as the ‘land-use index’; the letters ‘F’ or ‘U’ preceding these numbers identify transects 

as bisecting fenced or unfenced forest fragments, respectively. Triplicate straight-line 

transects were demarcated 10 m apart running perpendicular to the pasture/forest 

boundary. Across each transect line, 10 cm deep soil samples were collected using a 

soil corer (2 cm in diameter) at seven distances of 46.5 m, 27 m, 9 m, 3 m, 0 m, -3 m, 

and -46.5 m (Appendix D Figure D1b; 7 distances × 3 repetitions × 21 farms = 441 

samples). Negative values denote distances into the pasture, and positive values denote 

distance into the forest. The edge (0 m) was defined as the edge of the forest leaf-litter 

accumulation zone. In addition, three large natural forest reserves in the same region 

were selected as reference sites. These reference reserves were broadly similar in soil 

and vegetation type as the study sites but were not considered to be impacted by 

agricultural disturbances in the forest areas we sampled. Soil was collected in the 

natural reserves along triplicate straight line transects at distances of -46.5 m, -3 m, 0 

m, 3 m, 9 m, 27 m, 46.5 m, 81 m, 243 m, and 420 m. The extension of the sampling 

lines along these reserve transects was intended to better describe spatial variation in 
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the composition of soil bacterial communities within the natural forest. A total of 90 

soil samples were collected from three natural forest reserves (10 distances × 3 

repetitions × 3 reserves = 90 samples). In total, there are 531 samples (441 samples 

collected from the study site + 90 samples collected from the reference site = 531 

samples).  

 

Soil biogeochemical attributes, specifically bulk density, soil moisture, pH, and 

concentrations of total C, total N, delta 15N, total P, Olsen P, total Cd, total U, and C:N 

ratio were analysed as reported in Didham et al. (2015). Various farmer input measures 

(i.e., recent N input, recent P input, lime, and stocking rate) were also recorded, to 

account for the cumulative impacts of land-use practices occurring within circa five 

years prior to sample collection, by interviewing the landowners.  

 

5.2.2 Bacterial 16S rRNA gene analysis  

Soil DNA was extracted from individual samples across the study site using MOBIO 

PowerSoil®DNA Isolation Kits (MOBIO Laboratories Inc., USA) according to the 

manufacturer’s protocol and as recommended in Lear et al. (2017a). We then 

characterised the bacterial community composition of each sample by amplifying and 

sequencing the V3-V4 region of bacterial 16S rRNA genes using the 341F and 785R 

primer pair as described in Wu et al. (2017). These amplicons were sequenced on an 

Illumina MiSeq platform following the standard protocol (Illumina, 2013).  

 

All raw sequence processing was done using the USEARCH analysis tool (Edgar, 2013) 

and bioinformatics platform QIIME (Caporaso et al., 2010). Briefly, after merging the 

paired-end sequences and quality filtering by the default parameters, replicate and 

singleton sequences were removed. Non-chimeric sequences were clustered into groups 

of operational taxonomic units (OTUs) at 97% 16S rRNA gene sequence similarity. 

Then, OTUs were assigned to taxonomic groups by implementing the RDP classifier 

routine (Wang et al., 2007) to interrogate the Greengenes 13-8 database (McDonald et 
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al., 2012). Finally, each sample was rarefied to 5100 sequences, as unequal numbers of 

DNA sequences were returned among soil samples. 

 

5.2.3 Bacterial community richness and composition 

We counted the number of different 97% bacterial OTUs at each site as relative 

bacterial taxon richness. As species number (i.e., taxon richness) is scale-dependent 

(Harrison and Cornell, 2008; Giladi et al., 2011), we used three different scales to 

explore spatial patterns in relative taxon richness across the study site: (1) average 

sample-level richness, which is the OTU richness, on average, obtained from the 

individual soil cores; (2) overall site-level richness, which is the overall richness 

obtained from each habitat (i.e., pasture or forest) along transects passing through 

different farms or natural reserve sites; and (3) overall richness at the land-use level, 

which was calculated from the subset of data collected from different land use types. 

To visualise variation in bacterial richness, we plotted boxplots or bar charts of the data 

using the ‘ggplot2’ package in R (Wickham, 2009). Spatial patterns in the relative taxon 

richness of bacterial communities along sampling transects were plotted using the 

heatmap function in the ‘gplots’ package (Warnes et al., 2009). Changes in bacterial 

community richness among different land use types were examined using one-way 

analyses of variance (ANOVA) performed with the ‘aov’ function in R. T-tests were 

performed using the function ‘stat_compare_means’ within the R package ‘ggpubr’ 

(Kassambara, 2017). 

 

Variation in bacterial community composition among samples was calculated by 

computing Bray-Curtis distance matrices from the OTU tables. Non-metric 

multidimensional scaling was then used to visualise variation in the composition of 

bacterial communities using the R package ‘ggplot2’. Stepwise regression analyses 

were used to identify environmental factors that could effectively explain changes in 

the composition of bacterial communities related to both the soil biogeochemical 

variables and the farmer input measures before the ‘envfit’ function in R was used to 

overlay significant environmental vectors on nMDS ordinations (Dixon, 2003). 

Variation in bacterial community composition along individual sampling lines was 
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quantified and visualised using distance decay curves constructed using the ‘vegan’ 

package in R (Oksanen et al., 2015). 

To explore how environmental factors affect bacterial community richness and 

composition in the pasture and adjacent forest soils, Akaike’s information criterion 

corrected for small sample sizes (AICc) was used to select the best-fitting model from 

a set of candidates (Anderson et al., 1998). Candidate models were based on four 

explanatory variables: soil physicochemical variables (i.e., bulk density, soil moisture, 

pH, total C, total N, C:N ratio, C:P ratio, N:P ratio, delta 15N, total P, Olsen P, total Cd, 

and total U), the presence of a boundary fence (i.e., fenced vs unfenced), the farming 

input (i.e., recent N input, recent P input, lime, and stocking rate), and land-use intensity 

(i.e., ‘land-use index’). The best-fitting model was selected on the basis of ΔAICc, R2 

and AICc weight (Anderson et al., 1998), using the ‘AICcmodavg’ package (Mazerolle, 

2013). 

 

5.2.4 Quantifying the impact of a boundary fence on bacterial 

communities in forest soils adjoining pastoral land 

To visualise and assess variation in the composition of bacterial communities derived 

from the interior of grazed pastures (-46.5 m) and the interior of adjacent forest (46.5 

m), these data were first plotted using an nMDS plot constructed using the R package 

‘ggplot2’ and significant differences among data groups quantified using permutational 

analyses of variance (PERMANOVA). Permutational analysis of multivariate data 

dispersion (PERMDISP) routines were then used to confirm if bacterial community 

composition varied significantly among samples collected across different farms, with 

or without the presence of a boundary fence.  

 

We used a regression modelling approach to assess the accuracy with which we can 

predict if a forest fragment is fenced, or not, based solely on analysis of the soil bacterial 

community composition. We employed a partial least squared regression (PLSR) 

algorithm (Wehrens and Mevik, 2007) to associate bacterial community profiles to the 

fence categories (i.e., fenced or unfenced). PLSR is a multiple linear regression method 

to summarise datasets with multiple, possibly correlated, variables into a set of linearly 
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uncorrelated principal components that describe the main variation observed in the 

dataset (Lau et al., 2015). The optimal number of principal components for the model 

was determined using bacterial community profiles from 203 randomly selected forest 

sites (the training dataset) across both 10 unfenced farms and 11 fenced farms. The 

bacterial taxonomic data, comprised of ~13,600 OTUs, was used to derive a regression 

model with ten predictor variables. To assess how well the model predicted the presence 

of a fence from the bacterial community data, an error matrix was constructed for the 

remaining 100 forest sites (the test dataset). 

 

Apart from studying the effect of a boundary fence on overall bacterial community 

composition in the forest soils, we explored how the relative abundance of the top ten 

most abundant phyla varied across transects by plotting stacked bar charts using the 

‘ggplot2’ package in R. We used distance-based redundancy analysis (db-RDA) 

(Legendre and Anderson, 1999) to visualise the extent to which variation in the 

abundance of dominant phyla explained variation in total bacterial community 

composition across the sample transects. Multivariate multiple regression, using a 

distance-based linear model of 9999 permutations of the data (Anderson, 2004), 

examined the significance of relationship between changes in bacterial community 

composition and the abundance of the dominant phyla, based on Bray-Curtis 

dissimilarities. All multivariate procedures were carried out using the PRIMER v6 

(Clarke and Gorley, 2005) and PERMANOVA + statistical packages (Anderson et al., 

2008). To investigate the extent to which taxa normally restricted to the grazed pasture 

were present in the adjacent forest soils, and how this was impacted by the presence of 

a boundary fence, we developed a linear regression model to predict how far into the 

forest we could observe the expected abundance of specific taxa (typically detected in 

natural forest reserve without agricultural disturbance) using the function ‘lm’ within 

the R stats package.  

 

5.3 Results 

We identified ~ 13,600 distinct bacterial OTUs of 97% DNA sequence similarity from 

2.6 million rarefied 16S rRNA gene sequences across our study sites.  



108 

 

5.3.1 Changes in bacterial community richness and composition 

derived from soil under grazed pasture and adjacent forest 

Contradicting our first hypothesis (Richness H1), we found bacterial richness was 

higher, on average, in individual soil samples collected from the pasture than those from 

adjacent forest, but the difference was only significant for the fenced farms (Appendix 

D Figure D2; t-test, p-value = 0.008 in fenced farms, p-value = 0.49 in unfenced farms). 

There was no significant difference in the richness of bacterial communities from 

natural forest reserves, compared to communities in forests adjacent to either the fenced 

farms or the unfenced farms (Tukey’s test, p-values > 0.05). In contrast, and consistent 

with the hypothesis (Richness H1), when bacterial taxon richness was assessed at a 

larger spatial scale (i.e., the bacterial richness of individual sites, or land use type, 

Figure 5.1), significantly higher richness was obtained for the forest associated 

communities compared with the ones obtained from beneath pasture (t-tests, p-values 

< 0.001 for both the fenced and unfenced farms). Overall site-level richness was highest 

in natural forest reserves, while the overall richness of bacterial communities at the land 

use level was highest in forests surrounded by agricultural land.  The results of linear 

regression show that bacterial richness per sample declined with distance along the 

fenced farm transects, by approximately 2 units ± 0.4 (standard error) per meter into 

the forest (Appendix D Table D1, p-value < 0.001), although significant differences in 

bacterial richness were detected among different farms, regardless of the presence or 

absence of a fence separating land uses (all of ANOVA, p-value < 0.001). No 

significant distance gradient in per sample richness was observed for the unfenced 

farms (Appendix D Table D1, ANOVA, p-value = 0.232).  
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Figure 5.1. (a) Boxplot showing variation in bacterial overall site-level richness derived 

from different land types (i.e., pasture, forest and native forest reserve) and different 

fence categories (i.e., fenced versus unfenced) based on the richness of OTUs, rarefied 

to 5100 sequences per sample. The horizontal line within the box corresponds to the 

median value with 25th – 75th percentiles as the box limits. The whiskers extend to the 

minimum and maximum data point, but to no more than 1.5-fold interquartile range. 

Statistical differences in the data between pasture and forest were analysed by Student’s 

t-test (in both case, p < 0.001; in fenced farms, average richness in forest = 4111.8 ± 

188.3 (mean ± standard error), in pasture = 2983.5 ± 108.8; in unfenced farms, average 

richness in forest = 4191.5 ± 180.6, in pasture = 2812.2 ± 124.1; and average richness 

in reserve = 5674.7 ± 400.9). (b) Bar chart showing variation in taxon richness at the 

land-use level, derived from different land types (i.e., pasture, forest and native forest 

reserve) and different fence categories (i.e., fenced versus unfenced). We also mapped 

richness data along each transect line to visualise changes in the richness of bacterial 

communities transecting across pasture and forest as shown in Appendix D Figure D3.   

 

 

(b) 
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Soil bacterial community composition among samples was affected by land use (i.e., 

pasture, forest and natural reserve, Appendix D Figure D4), as confirmed by the results 

of a PERMANOVA (R2 = 0.05, p < 0.001). In addition, significant differences in 

bacterial community dispersion (i.e., variation in community composition comparing 

samples within the same site) were detected among these land uses (Appendix D Table 

D3, PERMDISP, p < 0.001). Variability in bacterial community composition among 

samples was lowest for samples collected from natural reserve. The highest variability 

in community composition was observed among samples derived from the fenced forest 

adjacent to grazed land, followed by those samples derived from the unfenced forest. 

Distance decay rates in bacterial community similarity (also referred to as turnover rates, 

which were measured by the slope of the linear regression) obtained from fenced sites 

were higher than those obtained from unfenced farms indicating a greater difference in 

community composition along transects passing through the fenced sites (Appendix D 

Figure D5). These results suggest that the bacterial population structure became more 

distinct with increased distance into the forest, when the forest was fenced off to keep 

livestock out. The environmental attributes that best explained the observed variation 

in bacterial community composition across the study site included multiple attributes 

that may be related to fertiliser inputs, such as concentrations of Olsen P, total P, delta 

15N and the ratio of C:P (Appendix D Figure D4). 

 

5.3.2 The presence of a fence on the land use boundary affected the 

composition of bacterial communities in forest soils adjacent to 

pasture  

Bacterial communities in different sites derived from the interior of forest soils (46.5 

m) among all of 21 transects were more variable in their composition, compared with 

those sampled from the interior of the adjacent grazed pastures (-46.5 m; Figure 5.2). 

In particular, we observed greater differences among bacterial communities comparing 

data from the interior of grazed pastures (-46.5 m) and the interior of adjacent forest 

(46.5 m) if the farm was fenced compared to when the farm was unfenced (PERMDISP, 

p-value < 0.001); multivariate dispersion index values were 43.6 ± 1 [mean ± SE] for 

the fenced farms and 39.9 ± 0.4 for the unfenced farms.  
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Figure 5.2. Non-metric multidimensional scaling (nMDS) plot representing variation in 

the composition of bacterial data comparing samples collected from the extreme ends 

of transects (-46.5 m and 46.5 m). The nMDS plot was derived from a Bray-Curtis 

similarity matrix of comparisons of 97% 16S rRNA gene data among sites. The colours 

of points are assigned based on the land use. The shapes of points indicate the fencing 

category (i.e., fenced versus unfenced) between the farm and the forest. The ellipses 

show the assumed multivariate t-distribution at the centre of each group of each land 

type at a 95% confidence level. The samples obtained from the same farm are linked 

by lines; the line types show the presence of a fence (i.e., solid line: fenced farms; dotted 

line: unfenced farms).  
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Since significant variation was detected between communities in the soil of fenced 

versus unfenced forest fragments. We used a predictive regression modelling approach 

(partial least squared regression) to assess the accuracy with which we are able to 

predict if a forest fragment is fenced, or not, based solely on analysis of the soil bacterial 

community composition. On average, the ten-component model explained ~93% of the 

variance in the bacterial community distribution and correctly predicted the presence 

or absence of a boundary fence with 88% accuracy (Appendix D Table D4). 

Furthermore, the sensitivity (true positive rate) of the model was ~89% (n = 49), while 

the specificity (true negative rate) of the model was ~87% (n = 39). The results show 

that the variance in soil bacterial community structure in the forest could be used to 

predict the presence of a fence on the land use boundary in a majority of cases, 

indicating that the presence of a fence on the boundaries to reduce the invasion of 

livestock does indeed have an important impact on the overall community structure of 

bacteria in the forest soil. 

 

To further examine the influence of livestock movements on the occurrence of taxa 

normally restricted to the grazed pasture into adjacent forest, we first compared the 

number of the unique and shared OTUs between the land uses. A significant increase 

in the number of unique OTUs in the pasture emerged comparing samples collected 

from fenced farms compared to those collected from unfenced farms (Appendix D 

Figure D6, t-test, p-value = 0.04). To study how the composition of bacterial taxa 

change from grazed pasture into the interior of the forest, we also mapped the relative 

abundance of the ten most abundant phyla along transects passing through fenced, 

unfenced or natural forest reserve sites (Appendix D Figure D7).  These results show a 

decline in the relative abundance of Firmicutes and Nitrospirae from the pasture (-46.5 

m) into the interior of the forest (46.5 m) (t-test, Firmicutes, p-value < 0.01; Nitrospirae, 

p-value < 0.01), while an increase in the abundance of Proteobacteria and 

Actinobacteria (only in the unfenced farms) was also observed (t-test, Proteobacteria, 

p-value = 0.03; Actinobacteria, p-value  0.05). Upon further investigation, we found 

that the relative abundance of the 20 most dominant phyla differed between fenced and 

unfenced farms (Appendix D Figure D8). The results show that samples collected from 

fenced farms were clustered based on their land use type (i.e., pasture or forest). 

Additionally, samples collected close to the boundary in unfenced farms clustered 
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together and were more similar to those collected in the interior of the grazed pasture 

(Appendix D Figure D8). The results of a distance-based linear model (DistLM) show 

that the phyla Firmicutes, Nitrospirae, Proteobacteria and Actinobacteria contributed 

most to the variation in the bacterial community attributes along the sampling line from 

the pasture into the forest (Figure 5.3).  

 

To quantify the extent of the fence effect on the soil bacterial communities in the 

adjacent forest, we developed a linear regression model to predict how far into the forest 

we could observe the expected abundance of taxa strongly associated with land uses 

(that is, Firmicutes, Nitrospirae, Proteobacteria and Alphaproteobacteria (Class), as 

identified from previous analyses) (Table 5.1). Overall, based on the average taxon 

abundance obtained from natural forest as a proxy for its expected abundance, the 

results of the model show that without a boundary fence between different land uses, 

samples must be collected further into the forest to observe the expected abundance of 

pasture-associated taxa (Firmicutes, Nitrospirae, Proteobacteria and 

Alphaproteobacteria (Class)). This distance differed when the same approach was used 

for the fenced farms. For example, the expected abundance of the phylum Firmicutes 

in the fenced farms is expected to be observed at 27.5 m into the forest from the land-

used boundary, while the distance in the unfenced farms is ~49 m into the forest. 

Likewise, the predicted distance into the fenced forest associated with Nitrospirae is 13 

m, while it is about 39 m in the unfenced forest.  

  



115 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3. Distance-based redundancy analysis (dbRDA) ordination of the 

composition of soil bacterial communities along the transect line. Relative position of 

soil samples in the bioplot is based on Bray Curtis similarities of relative abundances 

at the phylum level. The dbRDA axes describe the percentage of the fitted or total 

variation explained by each axis while being constrained to account for the differences 

in land use types and fence categories. Sample colours were assigned by their land type 

and fence category. Sample labels indicate the distance along the sampling line. Vectors 

indicate the weight and direction of those phyla that were best predictors of community 

composition based on the results of the distance-based linear model (distLM), shown 

in the table along with the plot.  
 

 

Results of Distance-based linear model (DistLM) 
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Table 5.1. Results of a linear regression model and distance prediction for the expected abundance of dominant bacterial phyla (i.e., Proteobacteria, 

Firmicutes, and Nitrospirae) and the class Alphaproteobacteria. We chose to study these three phyla in particular† according to the results of the 

distance-based linear model (distLM), shown in Figure 5.3. Using the linear model, we predicted the distance needed to be travelled into the forest 

adjacent to fenced and unfenced farms for the abundance of these taxa to be similar as that observed in the soils of natural forest reserves. We used 

the average relative abundance of special taxa among the reserve sites as the expected abundance of these special taxa in the natural environment 

without human disturbance in the prediction model. To validate the prediction, we compared the predicted value in the table to the observed relative 

abundance of these taxa at the nearest site derived from the data. 

Phylum/Class Model 

Linear regression model Distance prediction 

R2 P 

Coefficient  

(± Standard 

Error) 

P 

Mean relative 

abundance of 

the phylum in 

reserve 

samples 

Distance in 

fenced farm (m) 

[mean relative 

abundance at 

the nearest site] 

Distance in 

unfenced farm (m) 

[mean relative 

abundance at the 

nearest site] 

Firmicutes 
Distance ~ Farm + Relative 

abundance 
0.50 0.021   

5.14 
27.49 

[3 at 27 m] 

49.32  

[4.78 at 46.5 m] 
 FarmUnfenced   21.83 (13.08) 0.123 

 Relative abundance   -8.77 (2.63) 0.007* 

 Intercept   50.26 (15.72) 0.008* 

Nitrospirae 
Distance ~ Farm + Relative 

abundance 
0.61 0.006   

0.57 
12.96  

[0.62 at 9 m] 

39.10  

[0.41 at 46.5 m] 
 FarmUnfenced   26.13 (11.85) 0.049* 

 Relative abundance   141.24 (34.07) 0.002* 

 Intercept   -67.74 (18.96) 0.004* 

Proteobacteria 
Distance ~ Farm + Relative 

abundance 
0.46 0.033   

13.63 
-12.79  

[13 at -3 m] 

4.86  

[13.3 at 3m] 
 FarmUnfenced   17.65 (13.10) 0.205 

 Relative abundance   5.12 (1.66) 0.011* 

 Intercept   -82.56 (29.70) 0.018* 
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Alphaproteo-

bacteria 

(Class) 

Distance ~ Farm + Relative 

abundance 
0.49 0.026   

10.90 
-4.98  

[ 9.03 at -3 m] 

10.68 

[10.32 at 9m] 
FarmUnfenced   15.66 (12.51) 0.237 

 Relative abundance   11.02 (3.42) 0.008* 

 Intercept   -125.07 (41.27) 0.011* 

Asterisks (*): The p-value is significant (p-value ≤ 0.05). 

Dagger (†): The linear regression model of Actinobacteria was not statistically meaningful (p > 0.05).  
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5.3.3 Soil nutrient concentrations impact bacterial communities in the 

forest soil 

To determine if agricultural land use intensity has an impact on soil bacterial 

communities in adjacent forests, we used AIC comparisons to select the best model 

among different candidate models constructed with either bacterial richness or 

composition data, compared to a variety of environmental variables (Appendix D Table 

D5 & D6). No significant impact of land use intensity was found for the richness or 

composition of forest soil bacterial communities. However, our results suggest that the 

richness of bacterial communities in the forest increased with increasing concentrations 

of total Cd or soil pH (Appendix D Table D5). Meanwhile, community composition 

was most closely correlated with total P and total U (Appendix D Table D6). We also 

found that the bacterial richness and composition in the farming pasture were driven by 

soil variables related with fertiliser, (e.g., N, Olsen P, etc.) (Appendix D Table D7). 

 

5.4 Discussion  

Soil bacterial community richness and composition changed markedly along transects 

from the grazed pasture into the interior of adjacent forest fragments. Notably, the 

richness of bacterial communities was scale-dependent. Communities were more 

homogeneous within the pastoral land, as compared to within the forest soil, with the 

result that overall, bacterial community diversity was lower in the pastoral land. 

Meanwhile, bacterial community composition was more variable among samples 

derived from within fenced forest, compared with these derived from within unfenced 

forest fragments. When the forest fragments were not protected by a boundary fence, 

soil samples needed to be collected up to 50 m further into the forest to observe the 

expected abundance of pasture soil-associated phyla (i.e., Firmicutes, Nitrospirae, 

Proteobacteria and Actinobacteria). Variation in soil bacterial community composition 

was most affected by variables commonly associated with soil fertilisation practices 

(e.g., total Cd, total P, total U and soil pH). Together, these findings highlight the 

complex effects of agricultural land use on soil bacterial communities in the forests 

adjacent to pastoral land, and the need to incorporate understanding of multiple factors, 
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including fertilisation practices and livestock grazing, into assessments of the effect of 

land-use conversion on broad-scale variation in soil microbial diversity. 

 

5.4.1 Land-use conversion results in a net diversity loss in pasture soils 

Consistent with our first hypothesis (Richness H1), the overall bacterial richness 

representing each farm site or land use type was higher in the forest, as compared to in 

the pasture soils, likely due to greater spatial/environmental heterogeneity in the forest 

soils. Our findings suggest that soil bacterial communities in the grazed pastures are 

more homogeneous than those in forest soils, reducing overall bacterial diversity in the 

pastoral land. The greater bacterial taxon richness observed within individual soil 

samples from the grazed pasture may result from microbial diversity being stimulated 

by live-stock associated factors, including diversification via organism and substrate 

introductions from faeces and urine, promotion of rhizosphere activity as a result of 

grazing, and also the mixing and dispersal of microbial communities through trampling 

(Kohler et al., 2005; Patra et al., 2005; Sørensen et al., 2009). Our study found 

increasing taxon richness (i.e., alpha diversity) within individual samples and 

decreasing dispersion in community composition among samples (i.e., beta diversity) 

in the grazed pastures, implying an uncoupling of alpha and beta diversity after land-

use conversion. Both Rodrigues et al. (2013) and Gossner et al. (2016) similarly report 

increases in alpha diversity and decreases in beta diversity of soil microbial 

communities after forest to pasture conversion, indicating increased biotic 

homogenisation (Olden et al., 2004). These results imply a loss of locally rare taxa, 

which are thought to contribute a greater amount towards microbial community 

dynamics and stability than is apparent from their low proportional abundances (Shade 

et al., 2014). Furthermore, with increasing sampling effort, we found that the taxon 

richness obtained in the forest eventually surpasses that obtained in the pasture, 

indicating that demonstrated increased biotic homogenisation in the pasture soils 

further contributed to a net loss of local microbial diversity, which could leave the 

system more vulnerable (i.e. less able to respond) to future disturbance events (Olden 

et al., 2004).  
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5.4.2 A boundary fence protects the integrity of soil bacterial 

communities in forest fragments adjacent to pastoral land  

Livestock exclusion is a common management tool for the conservation and restoration 

of remnant native reserves (Spooner et al., 2002; Lindsay and Cunningham, 2009). 

Mitigating the effects of grazing animals is important because their presence affects 

soil ecosystems by decreasing plant litter, soil aeration, increased nutrient inputs 

through urine and manure deposition (Yamulki et al., 1998; Ma et al., 2006; Radl et al., 

2007; Wolf et al., 2010), and increasing the transfer of soil and gut-associated 

microorganisms (Cho and Kim, 2000; Hutchison et al., 2004; Wellington et al., 2013). 

We provide evidence that livestock exclusion plays an important role in protecting the 

integrity of bacterial communities in forest soils because the observed biotic 

homogenisation supported our second hypothesis (Fence H2), evidenced by lower 

turnover rates of bacterial community similarity with distance, and more pasture-

associated taxa in the adjacent unfenced forest soils. Our regression modelling approach 

was able to predict the presence of a boundary fence with near 90% accuracy, and we 

further confirmed that forest sites located near to the boundary of grazed pastures were 

more colonized by microbes related to livestock movement. Together, these results 

indicate that variation in microbial community structure in forests without a boundary 

fence, is caused by the presence of livestock, particularly at sites closest to the grazed 

pastures. Overall, our findings suggest that restricting livestock movements into forest, 

could have positive influences for maintaining the integrity of forest soil bacterial 

communities. 

 

Livestock invasion appears to be correlated with abundances of some key phyla.  We 

witnessed a decreasing relative abundance of pasture-associated taxa (i.e., Firmicutes, 

and Nitrospirae,) with distance from the interior of grazed pasture into the adjacent 

forest. Our observations were confirmed by a previous study, demonstrating an increase 

in the abundance of Firmicutes and a decrease in the abundance of Proteobacteria (e.g., 

β-, Δ-, γ-Proteobacteria) in grazed pasture soils as compared to forest soils (Jangid et 

al., 2008), whereas Yang et al. (2013) report an increase in the abundance of virulence, 

stress and antibiotics resistance genes derived from a wide range of bacterial phyla (e.g., 

Firmicutes, Proteobacteria and Actinobacteria) consequent of grazing. Livestock 
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faeces comprise bacteria representing multiple families in the Firmicutes, 

Actinobacteria and Proteobacteria (Lu et al., 2003; Mao et al., 2015; Tanca et al., 2017). 

Therefore, that the relative abundance of these organisms increased even in the forest 

soils adjacent to fenced pasture, indicates that hydraulic activity is capable of 

transporting livestock-related microorganisms and agricultural nutrients further into the 

forests (Lim and Flint, 1989; Champagne et al., 2000; Maule, 2000). Overall, our study 

has shown clear evidence of the migration and dispersal potential of livestock-

associated taxa from grazed pastures into adjacent forest fragments, and the effect of 

livestock exclusion on protecting the integrity of soil bacterial community structure in 

the forests surrounded by agricultural lands. The positive effect of livestock restriction 

has been previously confirmed, showing that the occurrence of pathogens, such as 

Campylobacter spp. belonging to phylum Proteobacteria, decreased significantly in 

watersheds with restricted livestock movements (Sunohara et al., 2012). In our study 

there was no occurrence of any known pathogen in high abundance (< 15 reads per 

sample in all cases) either in the grazed pasture or adjacent forest soil.  

 

5.4.3 Soil bacterial community structure is influenced by fertilisation 

practices  

We were not able identify significant relationships between land-use index values and 

the richness or composition of soil bacterial communities in either the grazed pastures 

or adjacent forests. Nevertheless, we observed that the richness and composition of 

forest soil bacterial communities were most closely associated with soil variables 

related to fertilisation practices. 

 

Concentrations of total Cd and soil pH were positively related to variability in microbial 

richness. Soil pH is well recognised as a key determinant, or correlate of bacterial 

community attributes (Fierer and Jackson, 2006; Griffiths et al., 2011; Hermans et al., 

2017; Wu et al., 2017), including in agricultural systems (Jangid et al., 2008; Shange et 

al., 2012). Decreases in soil pH are commonly reported following fertiliser application 

(Fox and Hoffman, 1981; Liu et al., 2012), also reducing nutrient availability and 

microbial biomass in agricultural soils (Bardgett, 2005). The composition of bacterial 
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communities in the present study was correlated with concentrations of total P and total 

U. Prior studies have found total fertiliser P inputs into agricultural soil to be linearly 

associated with concentrations of soil Cd and U, both of which are frequently elevated 

in farmland soils, so they could be used as sensitive cumulative markers of soil 

phosphorus dynamics (Schipper et al., 2011; McDowell, 2012; McDowell et al., 2013). 

The impact of accumulated soil Cd and U has been observed to extend into adjacent 

forest fragments (Stevenson, 2004). The toxic impacts of heavy metals, such as Cd and 

U, on soil microorganisms have been reported in several studies (Renella et al., 2005; 

Cardenas et al., 2008; Xu et al., 2010). Similarly, owing to their integral role in 

mediating the availability of P in the soil, microbial community composition is 

commonly observed to be related to P fertilisation practices (Wakelin et al., 2009; 

Mander et al., 2012), for example as Pseudomonadaceae, Enterobacteriaceae and 

the Actinobacteria play roles in soil P-solubilisation (Hamdali et al., 2008; Oliveira et 

al., 2009; Hui et al., 2011; Richardson and Simpson, 2011). At our study site, Didham 

et al. (2015) provide evidence of the transfer of phosphorous from grazed pastures into 

adjacent forest fragments, increasing concentrations of total P, U and Cd in the forest 

soil. Shifts in soil properties induced by fertilisation practices likely drive the observed 

response of microbial communities, including in forest soils surrounded by agricultural 

land. Overall, our study shows that fertiliser disturbance in grazed pasture and its 

transfer into the adjacent forest, likely shapes bacterial community structure in forest 

soils after the conversion of adjacent land to pasture.    

 

5.5 Conclusion 

Biodiversity losses caused by forest-to-pasture land use conversions are a global issue. 

Here, we confirm significant impacts of land changes on soil microbial community 

composition that are not restricted to the underlying soil, but also affect the composition 

of communities up to 50 m away under adjacent land uses. We observed a net loss of 

bacterial diversity caused by the biotic homogenisation of microbial communities after 

forest-to-pasture conversion. We also demonstrated that boundary fences used to 

restrict livestock movement are useful for protecting the integrity of soil bacterial 

communities in forests surrounded by the grazed pastures. The changes in bacterial 

community attributes we observed in the forest soils were most closely correlated with 
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variation in soil attributes frequently associated with fertilisation practices (e.g., total 

Cd, total P, total U and soil pH) and the invasion of livestock. Overall, our study 

suggests that agricultural practices associated with grazing and fertiliser use can have a 

sphere of influence that extends well beyond the management unit of individual farms 

to impact the composition and therefore presumably the functioning of microbial 

communities in adjacent forest ecosystems. 
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Chapter 6 

General Discussion 
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Advances in molecular biology, such as next-generation sequencing technologies, 

allow us to survey uncultivated microorganisms in the environment, revolutionising our 

ability to describe microbial communities with regard to their presence, abundance, 

distribution and the functional roles they perform. In this thesis, I used next-generation 

sequencing to explore how both bacterial and fungal communities vary along 

environmental gradients, including across a mountain elevation gradient and across 

different land use types. Firstly, using DNA gene sequencing of bacterial and fungal 

genes, I investigated the biogeography of soil microbial communities across broad (i.e., 

along a ~1,500 m mountain elevation gradient) and fine sampling scales (i.e., across 

sunny and shady aspects of a mountain ridge), to simultaneously examine whether 

bacteria and fungi respond similarly to gradients in environmental conditions. Then, to 

deepen our understanding of the impact of environmental variables on the functioning 

of microbial communities beyond simple biogeographic patterns of microbial 

community richness and composition, network analyses and an ‘inferred metagenomics’ 

method were used to respectively study community co-occurrence patterns and their 

potential functional traits. To address variation in a wider range of environmental 

conditions, I finally shed light on how land-use conversion influences the diversity and 

composition of bacterial communities in agricultural pastoral soils and the soils of 

adjacent forest fragments.  

 

6.1 Elevational patterns in bacterial and fungal communities 

Mountain elevation gradients have served as a heuristic tool and ‘natural laboratory’ 

for the field of microbial biogeography for decades (Bryant et al., 2008; Fierer et al., 

2011; Singh et al., 2012; Liu et al., 2015; Collins et al., 2018). The environmental 

variables driving the biogeographic distribution of microbial taxa along mountain 

elevation gradients can be complex (Wu et al., 2017).  It is of importance to investigate 

whether distinct biogeographic patterns can be distinguished between bacteria and 

fungi across the same environmental gradient, as the intrinsic properties and functional 

attributes of fungal communities are different from those of bacterial communities. It 

is perhaps unlikely bacteria and fungi share similar patterns, because previous studies 

have shown differences in their sensitivity and responses to changes in the 

environmental conditions for these two taxonomic groups (Berlemont et al., 2014; 
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Koyama et al., 2014; Liang et al., 2015). Interestingly, no clear elevational patterns 

were observed for either bacterial (Chapter 2) or fungal (Chapter 3) taxon richness 

along a continuous mountain ridge along an elevation gradient of ~1,500 m in this thesis. 

These observations were consistent with observations from previous reports, revealing 

no significant decline in the taxon richness of bacterial (Fierer et al., 2010; Shen et al., 

2013) and fungal (Meier et al., 2010; Meng et al., 2013; Coince et al., 2014) 

communities with altitude. Likewise, bacterial community composition varied 

significantly with elevation, with a concurrent change in fungal compositional data. 

However, numerous previous studies have described inconsistent elevational patterns 

observed for both bacteria and fungi, for example decreases in diversity/richness 

(Bryant et al., 2008; Lugo et al., 2008; Bahram et al., 2012; Liu et al., 2015), no trend 

(Fierer et al., 2010; Meier et al., 2010; Meng et al., 2013), or unimodal patterns (Singh 

et al., 2012; Coince et al., 2014; Miyamoto et al., 2014) in both bacterial and fungal 

community composition with increasing elevation. These findings suggest that the 

richness and diversity attributes of microbial taxa along the elevation gradient might be 

driven by complicated ecological mechanisms, rather than a single rule. Together, these 

results contribute to a wealth of evidence illustrating that microbial communities 

exhibit fundamentally different responses to elevation than macroorganisms (Fierer and 

Jackson, 2006; Lauber et al., 2009), as gradients in the richness of macroorganisms, 

such as plant and animal communities, are commonly found with elevation (Smith, 

1988; Lee et al., 2004; Aubry et al., 2005; Randin et al., 2009; Carneiro et al., 2013; 

Asner and Martin, 2015). Additionally, I found that when comparing samples across 

equivalent distances, bacterial community composition was more affected by variation 

in sampling site aspect than elevation. Even though the cause behind this observation 

is unclear, these findings highlight the need to incorporate knowledge of multiple 

spatial factors, such as site aspect differences, for the appropriate use of elevation 

gradients as a proxy to study the influence of spatial and environmental gradients on 

microbial community attributes. 

 

Although broadly similar elevational patterns in both bacterial and fungal community 

richness and composition were observed, further analyses showed that these 

communities responded differently to spatial variation in environmental variables. Soil 

pH was most strongly correlated with changes in bacterial community composition and 
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richness; soil pH is widely reported as being a major influence on bacterial community 

attributes (Fierer and Jackson, 2006; Lauber et al., 2009; Griffiths et al., 2011; Hermans 

et al., 2017). However, apart from pH, concentrations of ammonium played more 

substantial roles in shaping fungal community richness and composition. This result is 

consistent with other studies, indicating that fungi generally tolerate wider pH ranges 

for growth, and therefore their community attributes are more strongly affected by soil 

nutrient attributes (Rousk et al., 2010; Zinger et al., 2011). Together, my findings 

suggest that soil physicochemical variables, rather than climatic variables, have a 

crucial influence on shaping microbial community structure and diversity, even across 

a ~1,500 m elevation gradient, corresponding to a temperature gradient of ~9 oC 

(McCain and Grytnes, 2010). The divergent environmental drivers simultaneously 

detected as being of importance for bacteria and fungi indicate that the distributions and 

diversity of different taxonomic groups might not be simply driven by one simple rule, 

but instead by the different underlying ecological mechanisms.  

 

Overall, my results suggest that responses of bacteria and fungi to elevation are 

fundamentally different to those of macroorganisms and the biogeography of bacterial 

and fungal communities were controlled by differing environmental variables. These 

findings contribute towards a deeper understanding of how microbial communities 

respond to variation in environmental conditions, such as climate change, and shed light 

on the need for further studies exploring related shifts in the functional and trophic traits 

of these communities. 

 

6.2 Beyond simple biogeographic patterns in richness and 

composition: functional traits and co-occurrence patterns 

If sufficient functional redundancy exists in microbial communities, their responses to 

gradients in environmental conditions might not be easily explained by only 

phylogenetic and/or taxonomic information (Nannipieri et al., 2003; Sunagawa et al., 

2015). The emergence of metagenomics-based approaches in microbiology provides a 

powerful tool to investigate the functional potential of complex environmental 

microbial communities (Ferrari et al., 2005; Raes et al., 2011; Delmont et al., 2012; 
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Leff et al., 2015). Indeed, increasing usage of shotgun metagenomics currently provides 

microbiologists the capability to detect distributions of functional genes relevant to 

metabolic pathways, energetics and regulatory circuits to directly address changing 

microbial functional potential in complex natural environments (Yang et al., 2014). 

However, the prohibitive cost of this approach has hindered its widespread use, 

particularly in the study of biogeography of microbial communities across large- or 

even local-scales. Consequently, this might cause an incomplete understanding of 

microbial functional biogeography. To fill this knowledge gap, I have verified that 

‘inferred metagenomics’ approaches, using bacterial 16S rRNA gene sequencing data, 

can provide a general functional trait-based picture of bacterial biogeographic pattern, 

in Chapter 4. The results of my inferred metagenomics analysis revealed that bacteria 

with larger genome size appear to prevail at a wider range of elevations across my study 

site, which is consistent with previous studies, showing an increase in bacterial genome 

size correlates with increased bacterial distributions and adaptability to environmental 

fluctuations (Konstantinidis and Tiedje, 2004; Barberan et al., 2014; Cobo-Simon and 

Tamames, 2017). Additionally, analyses of putative functional traits provide evidence 

that some critical environmental variables (e.g., soil pH, temperature and C/N ratio) 

contribute to the prevalence of community functional traits, including genes encoding 

for ‘cellular responses to stress’, ‘nitrogen fixation’ and ‘nitrification’. For example, 

consistent with the findings of Yang et al. (2014), I determined a greater abundance of 

functional genes encoding for ‘cellular responses to stress’, which may provide 

adaptation to low temperature, low pH and high UV irradiation at high elevation. 

Overall, in Chapter 4, I demonstrate how ‘inferred metagenomics’ approaches can be 

used as a test case to provide a broad overview of spatial variation in the functional 

potential of soil bacterial communities, based on bacterial 16S rRNA gene data, before 

investing a large amount of money to fund shotgun metagenomics surveys. 

 

It is evident that microbial species are not found in isolation within complex 

environments, and their interspecific interactions might be critical determinants or 

correlates of community attributes, such as diversity and ecosystem functioning (Steele 

et al., 2011; Deng et al., 2012; Faust and Raes, 2012; Kara et al., 2013). In particular, 

functionally-distinct niche spaces shared by microbial community members could be 

distinguished by their interspecific interactions, as detected by co-occurrence networks 
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(Steele et al., 2011; Faust and Raes, 2012). Hence, apart from investigating bacterial 

functional traits, putative fungal-fungal interactions, as detected by network co-

occurrence analysis, were also used to study how fungal co-occurrence patterns change 

across an elevation gradient. These co-occurrences could provide important 

information on the underlying mechanisms that determine elevational patterns in 

community attributes (Barberán et al., 2012; Gilbert et al., 2012). Given that the 

significant variability in fungal community composition and soil-nutrient resources 

(e.g., decreasing concentrations of ammonium at greater elevation) occurred across my 

study site, the observed increase in the complexity of fungal networks with decreasing 

elevation were likely due to increasing competitive exclusion (Rajaniemi, 2003) or top-

down predatory interactions (Worm et al., 2002). My results suggest that interspecific 

co-occurrences may be mediated by variation in soil nutrient concentrations, based on 

different nutrient-preferences among taxa. Soil nutrients such as ammonium, are widely 

utilised by most fungi (Rastin et al., 1990), and are often resource limiting. As resources 

increase, more species meet their minimum resource requirements (Rajaniemi, 2003) 

and species diversity typically decreases (Bakelaar and Odum, 1978; Clark and Tilman, 

2008), because increasingly competitive organisms dominate. My findings correspond 

with the observations of Baar and Stanton (2000), revealing that variation in ammonium 

concentrations correlate with changes in both the type and strength of fungal 

interactions. Overall, based on the evidence supporting nutrient-driven shifts in fungal 

community diversity and function, my research provides a mechanistic explanation for 

how the richness and composition of fungal communities, and their interactions, change 

across elevation gradients.  

 

In general, these findings highlight the potential for using ‘inferred metagenomics’ 

methods and network co-occurrence analyses to conduct a general picture of functional 

microbial biogeographic patterns and trophic traits. I show how such methods can 

enhance our understanding of microbial processes, including ecosystem nutrient 

cycling processes which cannot be understood from tradiational assessments of 

biogeographic patterns in microbial richness and composition. Collectively, it is of 

particular importance to study the functional traits and co-occurrence patterns in 

microbial ecosystems to aid in developing and testing hypotheses regarding how 
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functional traits shape or respond to changes in microbial community structure across 

environmental gradients. 

 

6.3 Spatial patterns in the bacterial community structure of 

forest soils are impacted by agricultural disturbances in 

adjacent land uses 

Previous studies confirm that small organisms can disperse long distances (> 1 km) into 

adjacent habitats (Blitzer et al., 2012), suggesting that the spatial impacts land use 

conversion can be extensive. Considering the capability of microorganisms for 

widespread dispersal and their critical role in regulating ecosystem function and soil 

biogeochemistry (Madsen, 2011), the extent to which soil bacterial community 

structure is affected by their proximity to adjacent agricultural land remains unclear. In 

the final chapter of my thesis, I chose to study how pastoral land management practices 

affect soil bacteria, not only in underlying agricultural soils but in adjacent forest 

fragments. We characterized soil bacterial community composition along transects 

spanning the pasture-forest boundary of 21 farms, to generate novel insights into the 

broader impact of agricultural disturbances on soil microbial community attributes 

within the soils of adjacent forest. 

 

The key effects of agricultural land use on soil bacterial communities in pastoral land 

and adjacent forest fragments are expected to be diverse, including fertilisation and 

livestock-associated factors. An increase in bacterial taxon richness in grazed pastures 

was observed, likely driven by the impacts of livestock grazing causing bacteria and 

substrate introductions from their feaces and urine and also the mixing and dispersal of 

microbial communities through trampling (Kohler et al., 2005; Patra et al., 2005; 

Sørensen et al., 2009). Reduced spatial variation in community composition (i.e., beta 

diversity) and increases in bacterial taxon richness (i.e., alpha diversity) within the 

grazed pastures suggests increased biotic homogenisation (Olden et al., 2004), 

supporting the outcomes of prior studies by Rodrigues et al. (2013) and Gossner et al. 

(2016). Such increased biotic homogenisation in the pasture soils after land-use 
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conversion was found to further contribute to a net loss of local (i.e. per sample) 

microbial diversity, which could leave the system more vulnerable (i.e. less able to 

respond) to future disturbance events (Olden et al., 2004).  

 

In the forest adjacent to pastoral land, I found that boundary fences used to restrict 

livestock movement are useful for protecting the integrity of bacterial communities in 

forest soils (Chapter 5). It is evident that more pasture-associated taxa, for example 

Firmicutes which are associated with livestock faeces (Mao et al., 2015; Tanca et al., 

2017), were present in forest soils that were not fenced off from the adjacent pasture. 

These taxa were observed up to 50 m into the soils of adjacent forests, but only 27 m 

into the soils of fenced forest fragments. These results suggest that livestock invasion 

and/or hydraulic activity is capable of transporting livestock-related microorganisms 

and agricultural nutrients into the forests (Lim and Flint, 1989; Champagne et al., 2000; 

Maule, 2000). The observed response of bacterial community composition was likely 

driven by shifts in soil properties induced by P fertilisation practices. Such findings are 

consistent with observations from a prior examination of the same sample sites that 

reported the transfer of phosphorous from grazed pastures into adjacent forest 

fragments, increasing concentrations of total P, U and Cd in the forest soil (Didham et 

al., 2015). 

 

In summary, in Chapter 5, my study suggests that agricultural practices associated with 

grazing and fertiliser use can have a sphere of influence that extends well beyond the 

management unit of individual farms, impacting the composition and therefore 

presumably the functioning of microbial communities in adjacent forest ecosystems. 
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6.4 Future research priorities 

6.4.1 Are biogeographic patterns in microbial communities at local-, 

regional- and even continental-scale impacted by the same 

environmental mechanisms?   

In Chapter 2 and 3, similar elevational patterns in the richness and composition of both 

bacterial and fungal communities along a mountain ridgeline were evident, being most 

strongly correlated with soil physicochemical variables, rather than climatic conditions. 

In particular, soil bacterial community attributes were largely driven by changes in pH, 

while fungal community attributes were most strongly related to changes in soil nutrient 

availability. Hence, these findings lead us to conclude that to appropriately use 

elevation and aspect gradients as a natural laboratory for examining the likely 

influences of climate change on microbial communities, microbiologists need to also 

account for more local-scale variation in soil conditions. Further work is needed to 

better understand the mechanisms underlying microbial diversity patterns and the 

relative importance of both evolutionary and ecological processes as determinants of 

microbial community structure and composition. For example, microcosm experiments 

would be a powerful research tool to explore the likely responses of soil microbial 

communities to dramatic further environmental changes, such as climate change. 

Microcosms could be placed at each elevation along a mountain ridgeline using 

consistent undisturbed soils. Therefore, scientists could study the influence of climatic 

conditions on soil microbial community attributes better by simplifying the 

complexities of changes in soil properties across geographic scales. Additionally, in 

prior studies, it has been documented that the biogeographical patterns observed in 

microbial community structure were not random at the regional or continental scale in 

different habitats, such as in soils (Fierer and Jackson, 2006; Tedersoo et al., 2014; Ma 

et al., 2016) and streams (Fierer et al., 2007; Lear et al., 2013; Lear et al., 2017b). 

Collectively, there is a clear need for further studies to test whether there are differences 

in microbial assembly mechanisms for different taxonomic or functional groups at 

different spatial scales. A thorough integration of microbial biogeography across 

different spatial scales is likely to provide a more comprehensive understanding of how 

communities respond to gradients in environmental variables.  



133 

 

 

6.4.2 Advancing understanding of microbial distributions via in depth 

assessments of functional biogeography 

In Chapter 3, I highlighted the existence of significant differences in fungal community 

composition and taxon co-occurrences along an elevation gradient, mainly driven by 

soil nutrient conditions, implying nutrient-driven shifts in fungal community diversity 

and function in soil. However, the technical limitations of network co-occurrence 

analysis must be carefully considered, as the putative co-occurrence patterns observed 

only represent statistical correlations among taxa, instead of a direct actual microbial 

interaction in the ecosystem (Ma et al., 2016). Therefore, future investigations of 

microbial interactions are needed, validated by literature or experiments, for example 

using microscopy to confirm symbiotic relationships (Lima-Mendez et al., 2015). 

Furthermore, it is also essential to study the implications of variations in microbial co-

occurrence patterns for changes in microbial composition and also functional potential 

to further enhance our understanding of how microbes interact with each other within 

community and their functioning in the ecosystem. An example of such a study is 

provided by Li et al. (2015), who demonstrated that a combination of metagenomic 

approaches and network analysis tools can provide novel visualisation and analytical 

strategies for comparative metagenomics to profile microbial community functioning.  

Network-based comparisions of metagenomics data can be used to examine, as well as 

to generate hypotheses, for ecological investigations of microbial functioning. 

 

Using an inferred metagenomic method (in Chapter 4), I demonstrated significant 

relationships between environmental variables and the spatial distribution of bacterial 

functional traits as well as the community adaption to adverse environments, evidenced 

by the greater prevalence of free-living bacteria with large genome sizes. My research 

provides relevant insights into the potential for using inferred genomic information, 

based on 16S rRNA gene data, to generate a general functional trait-based picture of 

microbial biogeographical patterns. However, one must be cautious when inferring the 

functional potentials from this method, as it is unable to capture the full extent of the 

genomic diversity of these microbial communities. Using further analysis, such as 
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quantitative PCR or a microarray-based metagenomics tool such as GeoChip (He et al., 

2007; Tu et al., 2014; Yang et al., 2014), would be beneficial to confirm the extent to 

which predicted patterns in the abundances of genes of interest reflect the true 

functional potential of bacterial communities. Now, the increasing usage of 

metagenomics is providing an unprecedentied wealth of functional genes directly from 

nature (Hugenholtz and Tyson, 2008). With continuous declines in sequencing costs, 

the emergence of functional biogeography, the study of the spatial distribution of 

functional diversity, can bridge species-based biogeography and ecological science. 

This emerging field may shed new light as to the drivers of multifaceted diversity, 

including species, functional and phylogenetic diversities, and even ecosystem 

functioning (Violle et al., 2014). Studies integrating trait-based approaches to microbial 

ecology would enhance our ability to associate microbial diversity with ecosystem 

processes, which would provide a deeper mechanistic understanding of the functional 

role of microbial biodiversity in maintaining multiple ecosystem preocesses and 

services (Krause et al., 2014).  

 

6.5 Concluding remarks 

The spatial distributions of species and their function traits to cope with different 

environmental conditions across both space and time are fundamental ecological 

attributes (Barberan et al., 2014). Using next-generation sequencing technologies, I 

examined a number of biogeographic patterns in both bacterial and fungal community 

richness, composition and functional attributes across distinct environmental 

gradients, including along gradients in elevation and land use. My research confirms 

that using gradients in elevation and land-use types as proxies for variability in 

climatic and soil physicochemical conditions is a useful tool for the analysis of 

environmental drivers and correlates of microbial biodiversity encompassing multiple 

taxonomic groups, including both bacteria and fungi. Additionally, I have highlighted 

that inferred metagenomic methods and network co-occurrence analyses have much 

potential to enable comprehensive and efficient trait-based analyses, to gain a better 

understanding of the structure and dynamics of microbial communities. Although 

these approaches have limitations, there is still great scope and many potential 

applications to provide a complementary view-point to microbial biogeography and 
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ecosystem functioning. The potential applications of shotgun metagenomic methods 

will enable much improved understanding of the spatial and temporal biogeography 

of soil microbial communities and the vital functioning roles that they perform.  
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APPENDIX A 

Aspect has a greater impact on alpine soil bacterial 

community structure than elevation 
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Figure A1. Similarity in the composition of bacterial sequence data obtained across all 

sample elevations and aspects. The plot is constructed from non-metric 

multidimensional scaling of OTU data using a Bray-Curtis measure. Sample data closer 

to each other are expected to contain more similar bacterial communities. Sample data 

are assigned colours across a gradient from red (samples from sunny side) to yellow 

(samples on the ridge) through to blue (samples from shady side) and the size of sample 

markers increases with elevation (there are three example markers shown in the figure 

legend for samples collected at 500 m, 1000 m and 1500 m elevation). Highlighted on 

the plot (contained by an ellipse in the top right corner) are sample data obtained from 

sites impacted by a localised high abundance of sheep (sites SU1 and SU2 at 900 m 

elevation). 2D stress = 0.11. 
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Figure A2. Variation in relative abundance of the family (a) Thermogemmatisporaceae, 

(b) Koribacteraceae, (c) Ellin6513, (d) Gaiellaceae across the site. Sample data are 

assigned colours across a gradient from red (highest relative abundance) to white 

(lowest relative abundance). Different rows represent data collected from different 

elevation bands; different columns represent data from different aspects. Sites at the top 

of the mountain where no sample data were collected are shown in black. 
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Figure A3. Unrooted Jukes-Cantor neighbour-joining consensus phylogenetic tree 

showing the position of some representative OTUs belonging to the family 

Thermogemmatisporaceae and environmental 16S rRNA gene clones from Genbank 

(Herein, saturated alpine tundra soil clones are Chloroflexi-related sequences). 

Bootstrap support values (10,000 resamples) are represented by the following symbols: 

● ≥ 90%; ○ ≥ 80% at each internal branch. The scale bar represents 0.1 change per 

nucleotide position. Accession numbers are given in parentheses.    
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Figure A4. Variation in relative abundance of (a) total carbon (%), (b) total nitrogen 

(%), (c) phosphorus (mg/kg), (d) soil moisture (%), (e) soil pH, and (f) plant biomass 

(gram) across the site. Sample data are assigned colours across a gradient from red 

(highest relative abundance) to white (lowest relative abundance). Different rows 

represent data collected from different elevation bands; different columns represent 

data from different aspects. Sites at the top of the mountain where no sample data were 

collected are shown in black. 
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Table A1. Results of permutational ANOVAS for (a) richness, and (b) composition of 

bacterial communities in response to elevation, aspect and the interaction between these 

two factors. Df = the degrees of freedom; SS = sum of squares; MS = mean sum of 

squares; Sq.root = square root; Pseudo-F = F value by permutation. Bold face indicates 

statistical significance (P < 0.05); P-values are based on 9999 permutations (i.e. the 

lowest possible P-value is 0.0001) 

Source of variation Df SS MS Sq.root Pseudo-F P (perm) 

(a) Richness of bacterial communities 

Elevation 16 1184.4 74.025 1.695 11.209 0.0001 

Aspect 4 234.57 58.642 0.812 8.879 0.0001 

Elevation x Aspect 60 1441 24.017 1.876 3.637 0.0001 

Residual 320 2113.4 6.604 2.570   

Total 400 4946.2     

 

(b) Composition of bacterial communities 

Elevation 16 2.418 x 105 15113 24.626 17.173 0.0001 

Aspect 4 31647 7911.8 9.433 8.99 0.0001 

Elevation x Aspect 60 1.804 x 105 3007.1 20.735 3.417 0.0001 

Residual 320 2.816 x 105 880.07 29.666   

Total 400 7.368 x 105     
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Table A2. Results of permutational ANOVAS for soil pH in response to elevation, 

aspect and the interaction between these two factors. Df = the degrees of freedom; SS 

= sum of squares; MS = mean sum of squares; Sq.root = square root; Pseudo-F = F 

value by permutation. Bold face indicates statistical significance (P < 0.05); P-values 

are based on 9999 permutations (i.e. the lowest possible P-value is 0.0001) 

Source of variation Df SS MS Sq.root Pseudo-F P(perm) 

Elevation 16 572.06 35.754 1.227 81.525 0.0001 

Aspect 4 233.17 58.292 0.856 132.92 0.0001 

Elevation x Aspect 60 262.15 4.3692 0.891 9.963 0.0001 

Residual 320 140.34 0.4386 0.662   

Total 400 1212     
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APPENDIX B 

Soil fungal communities form closer network 

associations at lower elevation 
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Figure B1. Methods used to characterise fungal community interactions across an 

elevation gradient. Fungal community data (i.e., 97% fungal ITS1 OTUs) were 

separated into three elevational groups/datasets (i.e., high-, medium-, and low- 

elevation). The OTUs present in > 50% of all samples within each dataset were 

identified to be core communities present at high medium or low elevation. Fungal 

OTUs present in any of the three core communities were then used to construct the 

network diagrams, calculated using all possible Spearman’s correlations between each 

pair of OTUs. After filtering fungal OTUs without robust correlation (ρ > 0.5, p-value 

≤ 0.05), we visualised co-occurrence in network diagrams and calculated networks 

statistics. 
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Figure B2. Network interactions of core soil fungal OTUs found in (a) higher-elevation 

(from 1936 m to 1700 m), (b) high-elevation (from 1600 m to 1400 m), (c) medium-

elevation (from 1301 m to 1200 m), (d) low-elevation (from 1100 m to 900 m) and (e) 

lower-elevation (from 800 m to 500 m) sites based on correlation analysis, and (f) bar 

charts comparing network parameters derived from (a), (b), (c), (d) and (e). The core 

soil fungal OTUs were identified by the similar method of core community collection 

with one described in Appendix B Figure B1, expect we chose to use five elevational 

groups with elevation intervals mentioned above (namely samples from ‘higher-

elevation’,1936 m to 1700 m; ‘high-elevation’,1600 m to 1400 m; ‘medium-

elevation’,1301 m to 1200 m; ‘low-elevation’, 1100 m to 900 m; and ‘lower-elevation’, 

800 m to 500 m). A connection indicates a relatively strong (ρ >0.5) and significant (p-

value ≤ 0.05) Pearson’s correlation. Each node (i.e., circle) represents a core fungal 

OTU. The size of each node is proportional to the value of betweenness centrality. 

These nodes are assigned colours across a gradient from purple (the largest number of 

connections, or ‘degrees’) to light blue (the smallest number of connections). Lines 

connecting two nodes are coloured proportionally in relation to the Pearson’s 

correlation between OTUS from yellow (weakest) to green (strongest). The bar charts 

(f) summarise key network parameters (the total number of links and nodes, average 

degree, average clustering coefficient, and average path length of links) associated with 

each of the five networks.  

 

  

(a) Higher elevation 



149 

 

 

  

(b) High elevation 

(c) Medium elevation 
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(d) Low elevation 

(e) Lower elevation 
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(f) Bar charts comparing parameters of networks 
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Figure B3. Boxplots of the concentration of ammonium by three elevation groups.  The 

horizontal line within the box corresponds to the median value, with 25th – 75th 

percentiles as the box limits. The whiskers extend to the minimum and maximum data 

point no more than 1.5-fold interquartile range. Statistical differences in the 

concentration of ammonium between each elevational group were analysed by one-way 

ANOVA (P < 0.05) followed by Tukey's post-hoc tests (P < 0.05). Within the graph, 

clusters that do not share the same letter and colour have significantly different means. 
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Table B1. Shared generalist OTUs present in all three networks across the whole elevation gradient. 

OTU ID Taxonomy 
Trophic 

states 

OTU_99 Basidiomycota; Agaricomycetes; Agaricales; Clavariaceae; Clavaria; Clavaria sp. Saprotroph 

OTU_190 Basidiomycetes; Agaricomycetes; Cantharellales; Clavulinaceae; Clavulina Saprotroph 

OTU_277 
Ascomycota; Eurotiomycetes; Chaetothyriales; Herpotrichiellaceae; Cladophialophora; Cladophialophora 

haetospira 
Saprotroph 

OTU_50 Ascomycota; Eurotiomycetes; Chaetothyriales; Herpotrichiellaceae; Exophiala Saprotroph 

OTU_98 Ascomycota; Eurotiomycetes; Eurotiales; Thermoascaceae; Paecilomyces Saprotroph 

OTU_148 Ascomycota; Incertae sedis; Incertae sedis; Incertae sedis; Collembolispora; Collembolispora barbata  

OTU_191 Ascomycota; Incertae sedis; Incertae sedis; Incertae sedis; Collembolispora; Collembolispora barbata  

OTU_206 Zygomycota; Incertae sedis; Mortierellales; unidentified; unidentified; Mortierellales sp. Saprotroph 

OTU_7 Zygomycota; Incertae sedis; Mortierellales; unidentified; unidentified; Mortierellales sp. Saprotroph 

OTU_86 Zygomycota; Incertae sedis; Mortierellales; Mortierellaceae; Mortierella; Mortierella amoeboidea Saprotroph 

OTU_507 Ascomycota; Leotiomycetes; Helotiales; Incertae sedis; Tetracladium; Tetracladium sp. Saprotroph 

OTU_64 Ascomycota; Leotiomycetes; Helotiales Saprotroph 

OTU_6475 Ascomycota; Leotiomycetes; Thelebolales Saprotroph 

OTU_749 Ascomycota; Leotiomycetes; Helotiales Saprotroph 

OTU_382 Ascomycota; Orbiliomycetes; Orbiliales; unidentified; unidentified; Orbiliales sp. Saprotroph 

OTU_102 Ascomycota; Sordariomycetes; Coniochaetales; Coniochaetaceae Saprotroph 

OTU_309 Ascomycota; Sordariomycetes; Coniochaetales; Coniochaetaceae; Lecythophora; Lecythophora sp. Saprotroph 

OTU_128 Ascomycota; Sordariomycetes; Hypocreales; Nectriaceae; Neonectria Biotroph 

OTU_1 Basidiomycota; Tremellomycetes; Filobasidiales; Filobasidiaceae; Cryptococcus; Cryptococcus terricola Saprotroph 

OTU_32 Basidiomycota; Tremellomycetes; Filobasidiales; Filobasidiaceae; Cryptococcus; Cryptococcus terreus Saprotroph 

OTU_119 Basidiomycota; Tremellomycetes; Filobasidiales; Filobasidiaceae; Cryptococcus Saprotroph 

OTU_10894 Ascomycota; Pezizomycotina  
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OTU_9146 Ascomycota; Pezizomycotina  

OTU_9983 Ascomycota; Pezizomycotina  

OTU_16 Ascomycota; Pezizomycotina  

OTU_359 Fungi incertae sedis; Mortierellomycotina; Mortierellales; Mortierellaceae; Mortierella globulifera Saprotroph 

OTU_832 Ascomycota  
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Table B2. The AIC analysis and multi linear regression analysis for all candidate models for the data of fungal community richness. The models 

were ordered by their ΔAICc values. 

Model Parameters 

AIC analysis Multi linear regression analysis 

K AICc ΔAICc wi R2 P 
Coefficient (± 

Standard Error) 

Soil  

(Best model) 
pH + C + N + C/N ratio + Nitrate + Ammonium + P 9 779.01 0 1 0.44 < 0.001  

 

pH      < 0.001 63.52±17.81 

C      0.51 -24.78±37.62 

N      0.61 267.60±515.31 

C/N ratio      0.43 6.70±8.46 

Nitrate      0.47 1.71±2.37 

Ammonium      < 0.001 3.81±0.97 

P      0.48 -0.17±0.24 

Intercept      0.26 -181.90±160.75 

Full 

Elevation*Location + pH + Temperature + Soil 

Moisture + C + N + C/N ratio + Nitrate + 

Ammonium + P + Above ground biomass 

21 785.83 6.82 0 0.47 < 0.001  

 Elevation      0.97 -0.00092±0.027 

 Location      0.54 -5.86±9.59 

 pH      0.049 42.04±21.0 

 Temperature      0.75 0.47±1.45 

 Soil moisture      0.24 -1.13±0.96 

 C      0.75 -13.39±41.61 

 N      0.70 211.9±541.6 

 C/N ratio      0.48 6.20±5.76 

 Nitrate      0.24 3.08±2.65 
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 Ammonium      0.0012 3.64±1.07 

 P      0.41 -0.25±0.30 

 Above ground biomass      0.50 0.087±0.13 

 Elevation*Location      0.72 0.003±0.008 

 Intercept      0.77 -56.61±193.2 

Climate Temperature + Soil Moisture 4 793.66 14.65 0 0.21 < 0.001  

 Temperature      0.68 0.56±1.37 

 Soil moisture      0.002 -1.36±0.43 

 Intercept      < 0.001 300.40±27.90 

Site Elevation*Location 11 798.43 19.42 0 0.17 0.004  

 Elevation      0.40 -0.021±0.025 

 Location      0.85 1.79±9.45 

 Elevation*Location      0.48 -0.005±0.007 

 Intercept      < 0.001 313.65±31.51 

Null Intercept 2 807.51 28.49 0  < 0.001  
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Table B3. AIC analysis and multi linear regression analysis for all candidate models for the data of Bray-Curtis dissimilarity of fungal communities. 

The models were ordered by their ΔAICc values. 

Model Parameters 

AIC analysis Multi linear regression analysis 

K AICc ΔAICc wi R2 P 
Coefficient  

(± Standard Error) 

Soil  

(Best model) 

pH + C + N + C/N ratio + Nitrate + 

Ammonium + P 
9 -325.12 0 0.99 0.30 < 0.001  

 

pH      0.52 -0.010±0.015 

C      0.29 0.034±0.032 

N      0.27 -0.48±0.43 

C/N ratio      0.14 -0.011±0.0071 

Nitrate      0.87 0.0003±0.002 

Ammonium      < 0.001 -0.004±0.008 

P      0.34 0.0002±0.0002 

Intercept      < 0.001 1.08±0.14 

Null Intercept 2 -313.62 11.50 0  < 0.001 0.84±0.004 

Full 

Elevation*Location + pH + Temperature + 

Soil Moisture + C + N + C/N ratio + Nitrate 

+ Ammonium + P + Above ground biomass 

15 -311.27 13.86 0 0.33 0.01  

 Elevation      0.77 0.000007±0.00002 

 Location      0.61 0.004±0.008 

 pH      0.92 0.002±0.018 

 Temperature      0.68 0.0005±0.001 

 Soil moisture      0.88 0.0001±0.0008 

 C      0.37 0.03±0.04 

 N      0.33 -0.45±0.46 



158 

 

 C/N ratio      0.17 0.01±0.007 

 Nitrate      0.76 -0.0007±0.002 

 Ammonium      < 0.001 -0.004±0.0009 

 P      0.49 0.0002±0.0003 

 Above ground biomass      0.89 0.00002±0.0001 

 Elevation*Location      0.97 -0.0000003±0.000006 

 Intercept      < 0.001 0.99±0.17 

Climate Temperature + Soil Moisture 4 -309.45 15.67 0 0.003 0.9  

 Temperature      0.75 -0.0004±0.001 

 Soil moisture      0.65 -0.0002±0.0004 

 Intercept      < 0.001 0.85±0.024 

Site Elevation*Location 5 -308.53 16.59 0 0.02 0.68  

 Elevation      0.83 -0.000004±0.00002 

 Location      0.58 -0.004±0.008 

 Elevation*Location      0.49 0.000004±0.000006 

 Intercept      < 0.001 0.85±0.026 
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APPENDIX C 

Use of ‘inferred metagenomics’ confirms soil 

bacterial communities exhibit functional 

biogeography across a mountain elevation gradient 
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Figure C1.  Variation in bacterial community composition across a mountain elevation 

and aspect gradient based on the analysis of the total soil 16S rRNA gene data. The 

non-metric multidimensional scaling (nMDS) plot was derived from a Bray-Curtis 

matrix of the data. The size of points increases with elevation (legend shows elevation 

above sea level in metres). The colours of points are assigned based on the aspect 

difference at each elevation (legend indicates points collected from the ridge (R), sunny 

(SU) and shady (SH) aspects of the mountain ridge).  
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Figure C2. Scatter plot showing the average Bray-Curtis (dis)similarity comparing 

sample data, for which whole genome sequence is available, separated by different 

elevational distance. The linear trendline for the data is y = 0.0002x + 0.1657 (R² = 

0.96).  
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Figure C3. Spearman’s correlation heatmap showing the extent of correlation among 

overall community genome size, elevation gradient and the data of both climatic factors 

and soil chemistry. The colour gradient from red to blue represents proportionally 

negative to positive correlation. The Spearman’s correlations with non-significant p-

value (p-value <0.05) have been left blank in the heatmap.  
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Figure C4. Venn diagram showing the number of inferred genomes shared among 

different aspects across the whole study site. The ovals with the prefix SU represent 

sample data from the sunny aspect, with the prefix SH from the shady aspect and with 

the prefix R, from the ridge. No genome was shared only between aspects R0 and SH2, 

or between R0 and SH1.  
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Figure C5. Scatter plots illustrating the relationships between elevation and the relative 

abundance of functional genes relevant to (a) fermentation, (b) homoacetogenesis, (c) 

fatty acid oxidation, (d) amino acid utilisation biosynthesis metabolism, (e) nucleic acid 

metabolism, (f) hydrocarbon degradation, (g) carbohydrate active enzyme, (h) TCA 

cycle, (i) nitrogen cycle, (j) transporters, (k) hydrogen metabolism, (l) methanogenesis, 

(m) methylotrophy, (n) Embden Meyerhof-Parnas (EMP), (o) gluconeogenesis, (p) 

sulfur compounds metabolism, (q) saccharide and derivated synthesis, (r) hydrolysis of 

polymers, and (s) cellular response to stress. Significant regressions with p-value < 

0.001 and adjusted R2 > 0.2 are drawn with a blue line showing the best-fit linear 

regression. The linear trendlines for specific functional genes are as follows: (c) fatty 

acid oxidation: y = -0.0001x + 1.23, R2 = 0.51, (d) amino acid utilisation biosynthesis 

metabolism: y = -0.0003x + 20.43, R2 = 0.31, (e) nucleic acid metabolism: y = 0.0004x 

+ 8.93, R2 = 0.45, (f) hydrocarbon degradation: y = -0.0002x + 4.47, R2 = 0.37, (g) 

carbohydrate active enzyme: y = 0.0001x + 2.86, R2 = 0.22, (h) TCA cycle: y = 0.0001x 

+ 1.23, R2 = 0.46, (i) nitrogen cycle: y = 0.0002x + 1.94, R2 = 0.43, (j) transporters: y 

= -0.0016x + 22.98, R2 = 0.43, (l) methanogenesis: y = 0.00008x + 1.31, R2 = 0.22, (m) 

methylotrophy: y = 0.00008x + 1.3, R2 = 0.22, (p) sulfur compounds metabolism: y = 

0.00006x + 1.36, R2 = 0.22, (q) saccharide and derivated synthesis: y = 0.0003x + 5.03, 

R2 = 0.38, and (s) cellular response to stress:  y = 0.0009x + 1.74, R2 = 0.42. 

 

  
(a) (b) 

(c) (d) 
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Figure C6. Relative abundances of specific groups of genes categories from three 

functional categories, ‘nitrogen cycle’, ‘cellular response to stress’ and ‘transporters’, 

that are more or less abundant in soils collected at low elevation (from 900 m to 500 m) 

than in soils from higher elevation (> 900 m). Only those gene categories that are 

significantly different between the two elevational divisions of samples (Bonferroni 

corrected p-value < 0.05) are shown here. The x axis shows the relative percentage 

difference in the abundance compared with the samples collected at low elevation (≤ 

900 m). The elevation gradient was assigned a range of colours from light blue (1000 

m) to violet (1936 m).  
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Table C1. AIC and mixed effect model analyses for all candidate models for genome size data observed from 400 taxa for which whole genomic 

information was available. One variable, the genus information of each OTU, was identified as a random effect in the model. The models were 

ordered by their ΔAICc values.  

 

Model Parameters 

AIC analysis Mixed effect model analysis 

K AICc ΔAICc wi 
Log-

likelihood 

Coefficient  

(± Standard Error) 
P χ2 

Elevation 

(Best-fitting 

model) 

Elevation 4 12623.18 0 0.73 -6307.54    

Elevation      61650 (12659.3) < 0.001 23.84 

Intercept      3981341 (192676.9) < 0.001  

Both elevation 

and aspect 

Elevation + Aspect 5 12625.22 2.05 0.26 -6307.54    

Elevation      62938 (21665.4) < 0.001 8.5 

 Aspect      -7511 (102507.4) < 0.001 0.005 

 Intercept      3752921 (390969.1) < 0.001  

Aspect Aspect 4 12631.59 8.41 0.01 -6311.74    

 Aspect      233923 (60517.4) < 0.001 15.02 

 Intercept      3696939 (284609.1) < 0.001  
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Table C2. Table comparing the number of OTUs and relative abundance of the two 

most abundant species (Bradyrhizobium sp. S23321 and Candidatus Solibacter usitatus 

Ellin6076) and two species with small genome size (Candidatus Tremblaya princeps 

and Microbacterium testaceum StLB037) across the whole elevation gradient from 

1936 m 500 m. 

 

  

Elevation 

(m) 

Bradyrhizobium sp. 

S23321  

(7.2 Mb) 

Candidatus 

Solibacter usitatus 

Ellin6076  

(10.0 Mb) 

Candidatus 

Tremblaya princeps 

(0.1 Mb) 

Microbacterium 

testaceum StLB037  

(4.0 Mb) 

Number 

of 

OTUs 

% 

abundance 

of OTUs 

Number 

of 

OTUs 

% 

abundance 

of OTUs 

Number 

of 

OTUs 

% 

abundance 

of OTUs 

Number 

of 

OTUs 

% 

abundance 

of OTUs 

1936 641 5.6 1583 14.1 0 0 4 0.04 

1900 5806 10.0 6374 10.9 0 0 33 0.05 

1800 6874 11.3 6086 9.9 0 0 11 0.02 

1700 6384 11.2 5609 9.8 0 0 17 0.03 

1600 6658 11.6 5955 10.5 0 0 3 0.005 

1500 6838 13.5 5534 10.9 0 0 1 0.002 

1400 7247 13.7 5430 10.3 0 0 10 0.02 

1301 6859 12.6 5676 10.4 0 0 9 0.02 

1300 7504 13.1 5936 10.4 0 0 17 0.03 

1200 8662 16.5 6097 11.4 0 0 15 0.03 

1100 9290 16.2 4829 8.5 1 0.002 49 0.08 

1000 8429 15.8 4436 8.4 0 0 19 0.03 

900 6851 11.1 3371 5.3 6 0.006 271 0.3 

800 8352 15.6 2533 4.6 1 0.002 74 0.1 

700 9554 18.0 1995 3.8 1 0.002 117 0.2 

600 7891 11.5 4295 6.1 1 0.002 52 0.07 

500 7762 12.2 4045 6.4 65 0.1 150 0.2 
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Table C3. PERMANOVA comparison of the average genome size of subsets of 

bacterial communities derived from 16S rRNA gene data for which genomic 

information is available, comparing data collected at different elevations and aspects. 

There were 16 elevational sampling locations along the mountain, and five aspects at 

each elevation (SU1, SU2, SH1, SH2, and R0). 

 

  

Source of variation df MS Psuedo-F R2 P (perm) 

Elevation 16 5083 24 0.39 < 0.01 

Aspect 4 2893 14 0.06 < 0.01 

Elevation x Aspect 60 795 4 0.23 < 0.01 

Residual 320 211    
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Table C4. Number of total genomes and unique genomes obtained from each elevation 

(from 1936 m to 500 m).  

 

Elevation (m) Number of total genomes Number of unique genomes 

1936 218 0 

1900 266 6 

1800 280 2 

1700 280 0 

1600 258 1 

1500 235 1 

1400 244 1 

1301 252 0 

1300 281 0 

1200 259 2 

1100 257 0 

1000 252 0 

900 318 13 

800 284 1 

700 267 1 

600 261 1 

500 298 4 
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Table C5. PERMANOVA results comparing the relative abundance of 19 major 

functional categories between samples at different elevations and aspects. There were 

16 elevational sampling locations along the mountain, and five aspects sampled at each 

elevation (SU1, SU2, SH1, SH2, and R0). 

Source of variation df MS Psuedo-F R2 P (perm) 

Elevation 16 171 27 0.41 < 0.01 

Aspect 4 64 10 0.04 < 0.01 

Elevation x Aspect 60 27 4 0.25 < 0.01 

Residual 320 6    
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APPENDIX D 

Livestock exclusion reduces the spillover effects of 

pastoral agriculture on soil microbial communities in 

adjacent forest fragments 

  



174 

 

Figure D1. (a) Locations of the study farms and natural reserves. Sampling sites located 

in the Waikato region, New Zealand. Reprinted from “Agricultural Intensification 

Exacerbates Spillover Effects on Soil Biogeochemistry in Adjacent Forest Remnants”, 

by Didham RK, Barker GM, Bartlam S, Deakin EL, Denmead LH, et al. (2015). PLOS 

ONE 10(1): e0116474. https://doi.org/10.1371/journal.pone.0116474. (b) Samples 

were collected along a transect line from the interior of grazed pasture (-46.5 m) to the 

interior of forest (46.5 m) in each farm with or without a fence on the boundary between 

different land use types. 

 

  

Grazed pasture Forest 

Boundary 

-46.5 m 46.5 m -3 m 3 m 9 m 27 m 

(a) 

(b) 

https://doi.org/10.1371/journal.pone.0116474
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Figure D2. Boxplot showing variation in average sample-level richness derived from 

different land types (i.e., pasture, forest and native forest reserve) and different fence 

categories (i.e., fenced versus unfenced) based on the richness of OTUs, rarefied to 

5100 sequences per sample. The horizontal line within the box corresponds to the 

median value with 25th – 75th percentiles as the box limits. The whiskers extend to the 

minimum and maximum data point, but to no more than 1.5-fold interquartile range. 

Statistical differences in the data between pasture and forest were analysed by Student’s 

t-test (fenced farms, p = 0.008, average richness in forest = 1053.5 ± 31.9 (mean ± 

standard error), in pasture = 1178.3 ± 32.1; unfenced farms, p = 0.49, average richness 

in forest = 1118.3 ± 25, in pasture = 1145.9 ± 30.3; and average richness in reserve = 

1072.2 ± 29.2). 
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Figure D3. Heatmap showing variation in relative bacterial taxon richness per sample 

across farm transects based on the richness of OTUs. Different columns represent data 

collected from different farms; different rows represent data from different sites along 

the transect line. Sample data are assigned colours across a gradient from red (highest 

average richness) to blue (lowest average richness). The sites with no data are shown 

in grey. The black dashed line represents where the fence is along the transect line. The 

colour bar at the top of the heatmap shows the land type, that is, fenced farm (black), 

unfenced farm (red) and forest reserve (green). The farms within each fence category 

(i.e., fenced or unfenced) are ordered (left to right) by increasing mean richness across 

the study site.  
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Figure D4. Variation in the composition of bacterial sequence data and their correlation 

with various environmental factors (represented by continuous arrows). Plot is a metric 

multidimensional scaling (nMDS) plot constructed a using Bray-Curtis dissimilarity 

matrix derived from 16S rRNA gene data grouped into operational taxonomic groups 

at 97% DNA sequence similarity. The colour of points is assigned based on their land 

types (i.e., forest, pasture or natural forest reserve). The shape of points represents the 

presence of a fence (i.e., (●) fenced farm, (◼) unfenced farm or (▲) forest reserve). 

Only significant environmental factors were overlaid onto nMDS coordinates.  

Significant environmental factors were selected using a stepwise stepwise model with 

AIC criterion (for results see Appendix D Table D2, in all cases, p-value < 0.05). We 

eliminated four data outliers from the MDS plot. These were samples collected at 46.5 

m from the fenced farm F6 (n = 3) and F7 (n = 1) using the farm ID codes from Didham 

et al. (2015). 
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Figure D5. Scatter plots showing the average decline in bacterial community similarity, 

measured from Bray-Curtis dissimilarity scores for sample data collected from (a) 

fenced sites, (b) unfenced sites and (d) natural reserves. Error bars for each point 

indicate standard deviations in Bray-Curtis dissimilarity across different distances. 

Linear trend lines for the data are (a) fenced farm:  y = 0.001x + 0.583 (R² = 0.79), (b) 

unfenced farm: y = 0.00038x + 0.573 (R² = 0.70), and (c) natural reserve: y = 0.00032x 

+ 0.491 (R² = 0.81).  

 

 

   

(a) 

(b) 
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  (c) 
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Figure D6. Boxplot showing the number of unique or shared OTUs obtained from 

different land uses (i.e., pasture and forest) across the sampling line within each 

individual farm bounded to the adjacent forest with or without a fence. The data were 

rarefied to 5100 sequences per sample based on OTUs. The horizontal line within the 

box corresponds to the median value, with 25th – 75th percentiles as the box limits. The 

whiskers extend to the minimum and maximum data point no more than 1.5-fold 

interquartile range. The colour of the boxes is assigned based on the presence of a fence 

on the land use boundary of each farm. Statistical differences in the data between 

pasture and forest were analysed by Student’s t-test (p < 0.05). Data groups with the 

significantly different p-values (p < 0.05) have significantly different means. 
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Figure D7. Stacked bar chart showing the average relative abundance (%) of the top 

20 dominant phyla in samples along the transect line (from -46.5 m to 46.5 m) 

obtained from three different land types (i.e., unfenced farm, fenced farm, and natural 

forest reserve). Other phyla or DNA sequences from unidentified taxa are annotated 

‘other’. Daggers (†) indicate phyla which were best predictors of soil bacterial 

composition as suggested by the results of a distance-based linear model (distLM) in 

Figure 5.3.  
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Figure D8. Variation in the average relative abundance of the top 20 phyla obtained 

across sampling transects from (a) fenced farms, (b) unfenced farms, and (c) natural 

reserves. Different columns represent data collected from different distances from land 

use boundary (0 m); different rows represent data from different phyla. To reduce the 

impact of extreme values, the data was scaled to have mean zero and standard deviation, 

while assigning the range of colours in the heatmap. Therefore, the data were assigned 

colours across a gradient from yellow (relative lowest abundance) to red (relative 

highest abundance) based on their scaled relative abundance. The dendrogram was 

computed and reordered based on the mean of relative abundance at each distance.  

 

(a) 
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(b) 
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(c) 
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Table D1. Results of (a) linear regression and (b) ANOVA to examine changes in 

bacterial community richness along sampling lines in different farms, transecting across 

pasture and into adjacent forest land uses and with land use boundaries either separated 

with or without a fence. The coefficient for distance indicates that for every additional 

meter into forest, we could expect the OTU richness to decrease by an average of 2 

units. 

(a) Linear regression 

• Asterisks (*): The p-value is significant (p-value < 0.05). 

• Dagger (†): The numeric identifier for each farm (e.g. FarmF7) was taken 

from Didham et al (2015)  

 

 

 

 

 

 

Data Parameters 

Linear model analysis 

R2 P 
Coefficient  

(± Standard Error) 
P 

Richness 

(Fenced farm) 

~ Distance + Farm 0.536 < 0.001*   

Intercept   976.72 (37.48) < 0.001* 

Distance   -2.04 (0.43) < 0.001* 

FarmF1†   8.81 (52.92) 0.868 

FarmF3   106.91 (52.92) 0.045* 

 FarmF4   395.48 (52.92) < 0.001* 

 FarmF5   154.05 (52.92) 0.004* 

 FarmF6   -109.05 (52.92) 0.041* 

 FarmF7   -164.74 (54.34) 0.003* 

 FarmF8   166.78 (53.57) 0.002* 

 FarmF9   135.76 (52.92) 0.044* 

 FarmF10   252.29 (52.92) < 0.001* 

 FarmF11   371.24 (52.92) < 0.001* 
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(b) ANOVA 

 

 

 

 

 

Data Parameter Df Sum Sq Mean Sq F P 

Richness 

(Fenced 

farm) 

~ Distance + Farm      

Distance 1 784653 784653 26.69 < 0.001* 

 
Farm 10 6561274 656127 22.32 < 0.001* 

Residuals 216 6350462 29400   

Richness 

(Unfenced 

farm) 

~ Distance + Farm      

Distance 1 32792 32792 1.44 0.232 

 
Farm 9 2195447 243939 10.69 < 0.001* 

Residuals 183 4176934 22825   

Richness 

(Overall 

dataset) 

~ Distance + Fence / Farm    
 

 

Distance 1 596626 596626 22.29 < 0.001* 

 Fence 1 60152 60152 2.25 0.13 

 Fence:Farm 19 8802198 463274 17.31 < 0.001* 

 Residuals 400 10705905 26765   
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Table D2. Results of stepwise regression and mixed effect model analyses assessing relationships between bacterial community composition and 

various soil chemical parameters.  Two variables, the distance along the transect line (i.e., the distance from the farm fence) and triplicates collected 

at each site, were identified as the random effects in the model. As AIC comparison analysis indicate no improvement on null model from all of 

our candidate models, the stepwise stepwise regression was used to select a subset of environmental variables to comprise mixed effect model.   

Asterisks (*): The p-value is significant (p-value < 0.05). 

Data Parameters 

Mixed effect model analysis 

AIC 
Log-

likelihood 

Coefficient  

(± Standard Error) 
P χ2 

Composition 

Fence + N input + Lime input + Nitro

gen + Olsen P + Total P + Total U + 

Delta 15N + C/P ratio 

-1647.549 836.7745    

 

Fence   0.023 (0.008) 0.003* 8.79 

N input   -0.0002 (0.00009) 0.020* 5.44 

Lime input   -0.019 (0.007) 0.003* 8.77 

Nitrogen   -0.06 (0.023) 0.010* 6.68 

Olsen P   0.0004 (0.0002) 0.023* 5.19 

Total P   0.00006 (0.00002) 0.003* 8.62 

Total U   -0.029 (0.011) 0.008* 6.96 

Delta 15N   0.007 (0.004) 0.049* 3.70 

C/P ratio   0.0003 (0.0001) 0.002* 9.36 

 Intercept   0.58 (0.026) < 0.001*  
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Table D3. Results of PERMDISP analysis examining differences in data dispersion 

based on Bray-Curtis dissimilarities using the overall dataset of bacterial communities 

grouped according to different land types (i.e., pasture, forest and natural reserve), and 

the presence or absence of a fence on the land use boundaries (i.e., fenced versus 

unfenced). A p-value (F = 5.86, p-value < 0.001) was obtained using 9999 permutations 

of the data.  

Parameters n Average SE 

Reserve 86 38.189 0.603 

Forest + Fenced 164 41.552 0.572 

Forest + Unfenced 139 40.248 0.407 

Pasture + Fenced 64 39.231 0.551 

Pasture + Unfenced 55 38.965 0.569 
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Table D4. Error matrix in the comparison of predicted fence categories (i.e., fenced or 

unfenced) and actual fence categories for 100 test sites collected from 21 forest soils 

bounded with or without a fence between land uses (10 unfenced farms and 11 fenced 

farms). 

 

 

 

 

 Number of actual sites  

 Actual fenced Actual unfenced  

Number of 

predicted sites 
   

Predicted 

fenced 
49 6  

Predicted 

unfenced 
6 39 

 

 
Sensitivity 

(True positive rate) 

Specificity 

(True negative rate) 
Accuracy 

 89.09% 86.67% 88.0% 

 (n = 49) (n = 39) (n = 88) 



190 

 

Table D5. AIC and mixed effects analysis for all candidate models for a subset of bacterial richness data observed from adjacent forests.  Random 

intercepts were specified for the distance along the transect line (i.e., the distance from the farm fence) and triplicates collected at each site. The 

models were ordered by their ΔAICc values. We only show the results of mixed effect model analysis derived from the best-fitting candidate 

model. 

Model Parameters 

AIC analysis Mixed effect model analysis 

K AICc ΔAICc wi Log-likelihood 

Coefficient  

(± Standard 

Error) 

P χ2 

Soil  

(Best-fitting 

model) 

Bulk density + Carbon + Nitrogen + Olse

n P + Total P + Total Cd + Total U + pH 

+ Soil moisture + C/N ratio + Delta 15N + 

CP + NP 

17 4987.58 0 0.96 -2472.86    

 

Bulk density      87.15 (74.53) 0.233 1.42 

Carbon      -2.61 (29.24) 0.927 0.008 

Nitrogen      -86.15 (331.41) 0.791 0.07 

Olsen P      -0.21 (0.88) 0.806 0.06 

Total P      -0.05 (0.10) 0.616 0.25 

Total Cd      281.72 (118.30) 0.015* 5.90 

Total U      -86.40 (52.12) 0.091 2.86 

pH      133.42 (30.10) < 0.001* 20.43 

 Soil moisture      -275.60 (577.45) 0.626 0.24 

 C/N ratio      -3919.80 (2283.80) 0.080 3.06 

 Delta 15N      -23.31 (15.67) 0.129 2.30 

 CP      -0.36 (1.42) 0.798 0.07 

 NP      -6.96 (17.65) 0.688 0.16 

 Intercept      686.52 (321.69) 0.034*  
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Asterisks (*): The p-value is significant (p-value < 0.05). 

Dagger (†): The land use intensity of each farm was identified from Didham et al. (2015). 

 

  

Full 

Bulk density + Carbon + Nitrogen + 

Olsen P + Total P + Total Cd + Total U + 

pH + Soil moisture + C/N ratio + Delta 
15N + CP + NP + Fencing category 

(fenced or unfenced) + N input + P input 

+ lime input + stocking rate + Land use 

intensity + Patch area 

24 4993.91 6.33 0.04 -2470.16    

Null Intercept 4 5024.20 36.62 0 -2508.05    

Land use 

intensity†  
Land use intensity 5 5024.23 36.66 0 -2507.04    

Fence effect Fencing category (fenced or unfenced) 5 5025.62 38.04 0 -2507.73    

Farming input 
N input + P input + Lime input + 

Stocking rate + Patch area 
9 5028.40 40.82 0 -2504.96    
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Table D6. AIC and mixed effect model analyses for all candidate models for a subset of bacterial composition data observed from adjacent forests.  

Two variables, the distance along the transect line (i.e., the distance from the farm fence) and triplicates collected at each site, were identified as 

the random effects in the model. The models were ordered by their ΔAICc values. We only show the results of mixed effect model analysis derived 

from the best-fitting candidate model. 

Model Parameters 

AIC analysis Mixed effect model analysis 

K AICc ΔAICc wi Log-likelihood 

Coefficient  

(± Standard 

Error) 

P χ2 

Soil  

(Best-fitting 

model) 

Bulk density + Carbon + Nitrogen + Olse

n P + Total P + Total Cd + Total U + pH 

+ Soil moisture + C/N ratio + Delta 15N + 

CP + NP 

17 -1237.73 0 0.89 637.79    

 

Bulk density      -0.01 (0.02) 0.658 0.20 

Carbon      0.001 (0.01) 0.895 0.02 

Nitrogen      -0.11 (0.11) 0.313 1.02 

Olsen P      0.0004 (0.0003) 0.208 1.59 

Total P      0.00007 (0.00003) 0.041* 4.18 

Total Cd      -0.024 (0.039) 0.539 0.38 

Total U      -0.024 (0.039) 0.031* 4.67 

pH      0.003 (0.01) 0.730 0.12 

 Soil moisture      0.10 (0.19) 0.583 0.30 

 C/N ratio      0.44 (0.78) 0.563 0.34 

 Delta 15N      0.003 (0.005) 0.593 0.29 

 CP      0.0004 (0.0005) 0.372 0.80 

 NP      -0.0009 (0.006) 0.873 0.03 

 Intercept      0.63 (0.11) < 0.001*  
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Full 

Bulk density + Carbon + Nitrogen + 

Olsen P + Total P + Total Cd + Total U + 

pH + Soil moisture + C/N ratio + Delta 
15N + CP + NP + Fencing category 

(fenced or unfenced) + N input + P input 

+ Lime input + stocking rate + Land use 

intensity + Patch area 

24 -1233.55 4.18 0.11 643.57    

Null Intercept 4 -1225.44 12.29 0 616.77    

Farming input 
N input + P input + Lime input + 

Stocking rate + Patch area 
9 -1224.09 13.65 0 621.28    

Fence effect Fencing category (fenced or unfenced) 5 -1224.06 13.67 0 617.11    

Land use 

intensity†  
Land use intensity 5 -1223.40 14.34 0 616.78    

Asterisks (*): The p-value is significant (p-value < 0.05). 

Dagger (†): The land use intensity of each farm was identified from Didham et al. (2015).   
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Table D7. The results of stepwise regression analysis and mixed effect model analysis for the data of bacterial richness and composition collected 

from farm pastures.  Random intercepts were specified for the distance along the transect line (i.e., the distance from the farm fence) and triplicates 

collected at each site. As AIC comparison analysis indicate no improvement on null model from all of our candidate models, the stepwise stepwise 

regression was used to select a subset of environmental variables to comprise mixed effect model.   

Asterisks (*): The p-value is significant (p-value < 0.05). 

Data Parameters 

Mixed effect model analysis 

AIC Log-likelihood 
Coefficient  

(± Standard Error) 
P χ2 

Richness 
Carbon + Nitrogen + Olsen P + Total P + 

pH + Soil moisture + C/N ratio + NP 
1537.61 -756.81    

 

Carbon   182.92 (74.99) 0.011* 6.44 

Nitrogen   -2161.62 (780.47) 0.004* 8.30 

Olsen P   -5.66 (2.01) 0.003* 8.58 

Total P   0.36 (0.11) < 0.001* 12.79 

pH   69.16 (56.80) 0.205 1.60 

Soil moisture   -2115.99 (1393.21) 0.114 2.50 

C/N ratio   -90.92 (61.52 0.124 2.36 

NP   29.15 (12.53) 0.016* 5.86 

 Intercept   1665.67 (689.04) 0.018*  

Composition Nitrogen + Olsen P + Soil moisture  -398.53 206.26    

 Nitrogen   0.064 (0.033) 0.046* 3.98 

 Olsen P   0.0008 (0.0003) 0.008* 7.11 

 Soil moisture   -0.96 (0.34) 0.004* 8.33 

 Intercept   0.63 (0.021) < 0.001*  
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