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Abstract

[Abstract]Diagnosis and prognosis of cancer is informed by the architecture inherent in
cancer patient tissue sections. This architecture is typically identified by pathologists, yet ad-
vances in computational image analysis facilitate quantitative assessment of this structure. In
this article we develop a spatial point process approach in order to describe patterns in cell
distribution within tissue samples taken from colorectal cancer (CRC) patients. In particular,
our approach is centered on the Palm intensity function. This leads to taking an approximate-
likelihood technique in fitting point processes models. We consider two Neyman-Scott point
processes and a void process, fitting these point process models to the CRC patient data. We
find that the parameter estimates of these models may be used to quantify the spatial arrange-
ment of cells. Importantly, we observe characteristic differences in the spatial arrangement of
cells between patients who died from CRC and those alive at follow-up.
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Identifying prognostic structural features in tissue

sections of colon cancer patients using point pattern

analysis

[

1 Introduction

A fundamental aspect of cancer patient diagnosis and prognosis concerns the assessment by
pathologists of histopathological architectural and morphological properties within patient tis-
sue sections. These sections typically comprise both cancerous (tumour), and non-cancerous
(e.g., stroma) tissue structures, with regions of each intermixed in space.[1] Pathologists cate-
gorise tumours into stages that are associated with the progression of the cancer and patient
outcome. Cancer staging is good at predicting population survival statistics but not as accu-
rate at predicting an individual patient’s prognosis.[2] This is due, in part, to complex tumour
heterogeneity and a lack of histopathological features within the tissue which can be reliably
identified and reproducibly quantified by eye. The pattern of invasive growth in colorectal can-
cer (CRC) has been previously linked to the level of aggressiveness of the disease and patient
prognosis.[3, 4, 5] The phenomenon of tumour budding, where small distinct islands of tumour
cells are widely dispersed within the stroma at the invasive front of CRC, has been shown to
be prognostically significant.[6, 7]

Advances in computational image analysis provide an opportunity for quantitative and
objective assessment of tissue morphology. In previous work,[8] the focus of investigation was
on the morphological pattern of the tumour and no consideration was given to the spatial
arrangement of cells. In particular, image analysis methodology was found to standardise the
quantification of histopathological features (e.g., tumour budding, lymphatic vessel density,
and lymphatic vessel invasion) within the invasive front of the tissue section.

The importance of the tissue architecture for tumour grading is recognised where in previous
work the spatial patterning of cells was characterised and used as an indicator of patient
outcome.[1] This was achieved through considering the locations of cells as a point pattern—a
realisation of a spatial point process. In particular, this work compared a first-order statistic,
the estimated point process intensity, and two second-order statistics, the pair correlation
function and Ripley’s K-function, between two patient groups: patients whose cancer had and
had not metastasised, a major indicator of patient survival. Results, however, showed no
differences between patient groups with respect to first- or second-order spatial statistics and
the authors recognised that standard statistical spatial point process methods do not adequately
capture the spatial architecture of cancerous tissue.

In reality, cancerous tissue is a result of many complex processes resulting in obscure spatial
structures capturing the intermixing of cancerous and non-cancerous cells. The morphology
of the tissues reflects some of this complexity and as such we propose that these particular

0Abbreviations: CRC, colon rectal cancer; NSPP, Neyman-Scott point process
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methods were perhaps too simplistic and relied on assumptions (e.g., homogeneity) that do not
hold and therefore failed to appropriately capture the spatial structure of the tissue sections.
Characterising the spatial structure of cells is nontrivial and requires the use of more complex,
non-standard, spatial point process methodology. In the following sections we develop spa-
tial point process methodology that characterises the spatial arrangement of tissue using the
interpoint distances between cells to inform consideration of the spatial morphology of CRC
tissue.

1.1 Characterising the structure of parent-daughter point pro-
cesses

In order to present the spatial point process methodology and, in particular, the point process
models developed herein we consider two types of points, parent and daughter points. Note
that these do not refer to the distinction between tumour and stroma cells; rather parent and
daughter points are abstract constructs. A classic example of a parent-daughter process is
the Neyman-Scott point process (NSPP), which is a cluster process. Here, the parent points,
themselves generated by a homogeneous Poisson process, randomly generate daughters centered
at their unobserved locations.[9] We propose an additional process that relies on unobserved
parents, which we call a void process. In a void process, observed points are a realisation of
a homogeneous point process, but those within some fixed distance of an unobserved parent
are deleted. To define a void process, we consider two homogeneous Poisson processes X and
P. The realisation of P is a pattern that forms the centroid locations, p ∈ P, of circular voids
of radius R > 0. Through superimposing P on X then any x ∈ X that fall with the voids
are deleted. The resulting pattern is the observed void point pattern, a realisation of the void
process (see Appendix A.1 for further details).

Figure 1 plot i) shows a realisation of a void process and plots ii) and iii) show two
realisations of NSPPs—a Thomas and a Matérn process, respectively. The difference between
a Thomas and a Matérn process is the dispersion of daughter points around their parents. In
the case of a Thomas process the spatial locations of daughters around their parents follows a
bivariate normal distribution and in the case of a Matérn process the daughters are uniformally
distributed in a circle around their parents.

In all the processes discussed above the parent points are a realisation of a homogeneous
Poisson point process with intensity D. Each process is characterised by two further parameters
that relate to the daughter points. In the case of the void process we define these as λ, the
intensity of daughters prior to deletion, and R, the radius of the voids. Hence, the parameter
vector of a void process is given by θ = (D,R, λ).

In the case of the Neyman-Scott point process we define the parameter vector as θ =
(D,φ, γ). The number of daughters sired by a parent is assumed to be Poisson with expectation
φ. In addition, conditional on their parent’s locations, the daughters are scattered in space
according to some distribution with parameter γ. In the case of a Thomas process the variance-
covariance matrix of the bivariate Gaussian distribution of daughters around their parents is
given by γ2I2. In the case of a Matérn process, γ is the radius of the circle, centered at the
location of a parent point, within which daughters are uniformally scattered.

Figure 1 illustrates how the point density in a circle of radius r centered at an arbitrary
observed point, b(x, r) (dashed circles), changes as the distance r increases. When r is small
the point density in b(x, r) is high because the existence of one point suggests others are likely
to be nearby. Considering a NSPP, when r is large the density falls because the influence of
the local cluster is diminished at larger distances. This also holds for void processes, as the
existence of one point suggests that there is not a nearby parent and so other points are likely
to be nearby as they are safe from deletion. As r increases, the fraction of the circle b(x, r)
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that intersects with a void is likely to increase, thus decreasing point density within it. For
further details see Appendix A.

In the following sections we describe parameter estimation for void, Thomas, and Matérn
processes. Thomas processes have previously been fitted via maximisation of the Palm likeli-
hood functions[10, 11] and we extend this approach to void and Matérn processes. In Section
3 we present the results of the application of our approach to a CRC patient data set.[2, 8]

Figure 1: i) A simulated void processes in the unit square. Daughter points are generated by a
homogeneous Poisson process and are deleted if they fall within circular voids, of radius R = 0.075,
centered at parent points (red crosses, unobserved in practice). In areas outwith the voids the
daughters (black dots) have intensity given by λ = 300. The number of parents simulated follow
a Poisson distribution with expectation D = 10. The dotted circles indicate the simulated voids.
Considering an arbitrarily chosen daughter (encircled diamond) then there are more likely to be
nearby daughters as that chosen daughter is not within a void. The dashed circles show how the
intensity of observed daughters changes for different distances r, radius of the circle, away from an
arbitrary point (i.e., the density of daughters is higher nearer the chosen point, but further away
a void is more likely to be encountered and therefore the density decays). Plots ii), Thomas, and
iii), Matérn, show two simulated Neyman-Scott point processes in the unit square with unobserved
parent points (red crosses) siring the observed daughters (black dots). In each case parents are
generated by a homogeneous Poisson process with intensity D = 7. The number of daughters sired
by each parent are IID Poisson with expectation φ = 8. In each case γ = 0.05. In ii) daughters
are dispersed around their parents due to a bivariate normal distribution, N2(0, γ2I2); in iii) the
daughters are uniformally distributed around their parents in a circle with radius γ. Here, again,
the dashed circles show how the intensity of observed daughters changes for different distances r,
radius of the circle, away from an arbitrary point (encircled diamond); the density of daughters is
higher nearer the chosen point, but further away points in the sibling cluster are less likely to be
encountered and therefore the density decays.

4



2 A Palm likelihood approach for parameter estima-
tion

In the following sections we detail fitting clustered and void point process models to nuclei
locations to model the spatial morphology of CRC tissue sections. To achieve this we consider
the Palm intensity of the point patterns formed by the locations of cell nuclei in the CRC
tissue sections. The Palm intensity is a function of distance r, characterised by the parameter
vector θ, and is denoted λ(r; θ). The Palm intensity gives the expected intensity of a spatial
point process at a distance r from an arbitrarily chosen point.[11, 12, 13] Estimation of θ for
both the void and the cluster processes is nontrivial. We follow estimation methodology based
on the Palm intensity function,[11] to fit a Thomas cluster process and extend this approach
to allow parameter estimation for both Matérn cluster processes and void processes. These
extensions to standard spatial point process methodology, we believe, are far better equipped
than standard techniques to capture the complexities inherent in CRC data.

The following subsections derive the Palm intensity for two-dimensional void processes
(Section 2.1), detail the derivation of the Palm intensity for the Thomas process,[11] and
generalise this to the Matérn Palm intensity (Section 2.2). The full derivation of these Palm
intensities in general d dimensions is given in Appendix A.

2.1 Void point process Palm intensity

The Palm intensity of a void process may be formulated as the product of the global point
density of the pattern prior to deletion, λ, and ps(r), the probability that a potential point
at distance r is not within a distance R of an unobserved parent and is therefore safe from
deletion.

This probability is related to the geometry of the intersection between two circles of common
radius R centered at an observed daughter and a potential daughter point. This is illustrated
in more detail in Figure A.1 in the Appendix. The intersection, I(r), between two circles
centered at an observed daughter and a potential daughter respectively is the only region we
know a parent cannot exist within R of the potential daughter. The remaining area, A(r), of
the circle centered at the potential point is the only region which may contain a parent whose
void would delete that potential daughter. The potential daughter is safe from deletion if there
are no parents in the region A(r). Parents are generated by a homogeneous Poisson point
process with intensity D therefore because the number of parents within A(r) is Poisson with
expectation DA(r) this occurs with probability

ps(r) = exp(−DA(r)).

In 2 dimensions A(r) = πR2−I(r). This area can be determined through the use of elementary
geometry, detailed in Appendix A.1.[14]

The area of intersection, I(r), between two circles with a common radius R is given by,

I(r) = π R2 I
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where g(r) = 1−
(
r

2R

)2
, and Fg(r)(·, ·) is the CDF of the Beta distribution. Note when r = 0

⇒ g(r) = 1 ⇒ F1(·, ·) = 1 ⇒ λ(0; θ) = λ, the intensity of daughters prior to deletion. In
addition, when r = 2R ⇒ g(r) = 0 ⇒ F0(·, ·) = 0 ⇒ λ(0; θ) = λ exp(−DπR2), due to the
properties of the CDF. For the full derivation of the Palm intensity (2) see Appendix A.1.

Figure 2, plot i), shows both the empirical Palm intensity function (solid line),[15] and
the fitted Palm intensity (dashed line) for the simulated void process shown in Figure 1. The
Palm intensity is a piece-wise continuous function with two sub-domains (0, 2R], [2R,∞). The
horizontal asymptote to which the Palm intensity decays is the baseline intensity.

2.2 Neyman-Scott point process Palm intensity

The Palm intensity function of a Neyman-Scott point process (in 2 dimensions) is given by[10]

λ(r;θ) = Dφ+
φ fy(r; γ)

2π r
, (3)

where the parameter D is the intensity of parents. Letting Y denote the distance between two
randomly selected sisters (i.e., daughters sired by the same parent) then fy(r; γ) is the PDF of
Y and is characterised by the parameter γ pertaining to the form of distribution of daughters
around their parents.

The Palm intensity of a modified Thomas process is a special case of Equation (3) where
(i) parent locations are realisations of a homogeneous Poisson process, and (ii) daughters are
dispersed due to a bivariate normal distribution .[11] The Palm intensity for a modified Thomas
process is given by

λ(r;θ) = Dφ+
φ

4πγ2
exp

(
−r2

4γ2

)
. (4)

Thus, λ(r;θ) is the sum of the intensity of non-sister points, Dφ, and a Gaussian function
describing the intensity due to sister points. For a Thomas process, the PDF of Y is the
distance between two normally distributed sisters. For example, in Equation 4,

fy(r; γ) =
r exp(−r2/(4γ2))

2 γ2
, (5)

where γ, is the parameter describing the Gaussian dispersion of daughters around their parents.
For the Matérn process, fy(r; γ) is now the PDF of the distance between two sisters gener-

ated from a uniform distribution within a circle of radius γ. This PDF[16] is given by
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(6)

Here B(·, ·) denotes the beta function, and 2F1(·, ·, ·, ·) is the hyper-geometric function. For
derivation of this see Appendix A.2.[16]

The empirical and fitted Palm intensities for the simulated Neyman-Scott point processes
in Figure 1 are depicted in Figure 2. Both simulated processes in Figure 1, plots ii) and iii),
were generated with parameter values θ = (D,φ, γ) = (7, 8, 0.05). The Palm intensities in each
case decay to the same asymptote, the baseline intensity Dφ.

6



Figure 2: Both the empirical[15] (solid lines) and fitted (dashed lines) Palm intensities for the simu-
lated patterns shown in Figure 1. The fitted intensities were estimated using the methods discussed
herein. The Palm intensity for the void process, parametrised as θ = (D,R, λ) = (10, 0.075, 300),
is shown in plot i). This is a piece-wise continuous function with two sub-domains (0, 2R], [2R,∞).
The Palm intensities for both the simulated Neyman-Scott point processes, parametrised as
θ = (D,φ, γ) = (10, 8, 0, 05), are shown in plot ii). Here, the Matérn cluster process decays at
a much steeper rate due again to it being a piece-wise continuous function with two sub-domains
(0, 2γ], [2γ,∞). The vertical dotted lines in each plot indicate where r = 2R for the void process
and r = 2γ for the Matérn process.
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2.3 The Palm likelihood for point process models

Before defining the Palm likelihood, the complication posed by edge effects should be noted.
Edge effects occur because here we do not observe points patterns on R2, but rather a subset
of R2, and this is not accounted for in the above derivation of the Palm intensity. For example,
the distance between a point and its nearest neighbour within some region may in fact be
greater than the distance between it and its “true” nearest neighbour that just happened to
fall outside the study region. In the context of the CRC data discussed here a single image only
manages to display a section of tissue, however, the pattern, and hence spatial structure of the
cell nuclei, does not simply terminate at the image’s edge. This is an issue that arises in the
modelling of any spatial point pattern and there are a number of approaches to address it.[12]
Our approach calculates distances between points subject to periodic boundary conditions and
as such we are required to set a truncation distance, t.[11, 10] This is set to a distance that is
larger than any plausible distance between two sisters, or between parents in the void process
case.

Taking an approximate-likelihood approach, the estimator for the parameter vector θ is
given by

θ̂ = arg maxθ L(θ; r),

where L(θ; r) is the Palm likelihood.[11] Through the numerical maximisation of log(L(θ; r)),
with respect to θ, θ̂ is evaluated. The Palm likelihood, L(θ; r), is given by

L(θ; r) =

 ∏
{i,j:||xi−xj ||<t,i6=j}

nλ(r;θ)

 exp

(
−n
∫ t

0

λ(r;θ) 2π r dr

)
. (7)

Here the product is that taken over all n distinct observed pairs of points, xi, xj (i 6= j),
where the distance between them, ||xi−xj ||, is less than the truncation distance t.[10, 11] The
integral term may be simplified for each process discussed herein; this results in an objective
function that is very computationally efficient to compute. Simplifications of this integral are
given for each process below.

• Void process. The integral for the void process is derived as,∫ t

0

λ(r;θ) 2π r dr = λ 2π exp
(
−Dπ r2 ) ∫ t

0

exp

(
Dπ r2 Fg(r)

(
1,

1

2

))
r dr.

This is intractable as it contains the CDF of a Beta distribution, Fg(r)(·, ·), where g(r) =

1−
(
r

2R

)2
, but algorithms exist for efficient computation.[17]

• Neyman-Scott point processes. The integral given in likelihood (7) simplifies to,∫ t

0

λ(r;θ) 2π r dr = Dφ+ φ Fy(t; γ),

where Fy(t; γ) =
∫ t

0
fy(r; γ) is the CDF of the distance between two randomly selected

sisters. Below we give Fy(t; γ) for each case of the Neyman-Scott point process.

– Matérn cluster process
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where Bα(·, ·) and B(·, ·) are the incomplete beta function and the beta function
respectively. That is, B(α; a, b) =

∫ α
0
u(a−1)(1−u)(b−1)du and for α = 1 B(α; a, b) =

B(a, b). The derivation of these equations is detailed in Appendix A.2.
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– Thomas cluster process
Again let Y be the Euclidean distance between two randomly selected daughters (the
locations of whom are independent given the the parent locations). The CDF of Y
has been previously derived,[10] and for two-dimensional processes is given by

Fy(t; γ) = P
(

1, t2

4γ2

)
,

where P (·, ·) is the regularised gamma function.

3 Spatial point process models for CRC data

The data analysed in this article refer to forty-two patients drawn from a wider data set of a
pan-Scotland cohort, diagnosed with CRC.[8] At follow up, nineteen of the forty-two patients
had died of CRC and the remaining twenty-three were alive. Follow up was a maximum of
fourteen and a quarter years post-surgery, see Appendix C Table C2 for further details. In
addition, the severity of the cancerous tissue was graded by a pathologist as either Dukes A
(least severe), Dukes B, or Dukes C (most severe). All patients graded Dukes A were alive at
follow up and those graded Dukes C were all dead at follow up; the patients graded Dukes B
consisted of a mixture (approximately 50%) of patients who died from CRC and were alive at
follow up.

Each patient had up to fifteen fields of view captured from the invasive front of the tissue
section using a x20 objective. Automated immunofluorescence was performed using a DAKO
link 48 platform, which labels patient tissue sections with panCytokeratin (tumour cells) and
DAPI (all nuclei). Images of the tissue sections were captured using a HistoRx PM-2000 imag-
ing platform (HistoRx Ltd., Branford, CT, USA). Set exposure times and imaging profiles
were utilised to capture each fluorophore during image capture. These images were then pro-
cessed by an automated imaging algorithm implemented in Definiens Developer XDTM that
segmented the cancer from stroma and segmented each individual nucleus across an image. A
panCytokeratin antibody, whose antigen is expressed in CRC cells, was used to visualise each
cancer cell. This fluorescence visualisation was input to train a machine-learning algorithm
within the Definiens software to automatically detect all cancer cells and segment them from
the stromal cells. Post tumour to stroma segmentation the DAPI fluorescence was utilised to
segment each nucleus in the image. Definiens’ hierarchical image analysis approach allowed
the classification of each nucleus to be only assigned to either a cancer cell or a stromal cell.
Finally, the spatial coordinates from the centre of each classified nucleus was exported from
Definiens and was used as input for the point process models.

Plot iii) in Figure 3 illustrates, for one patient, the observed point pattern of cells within a
tissue section obtained from the digital image shown in plot i). The procedure for going from
plot i) to plot iii) in Figure 3 for each slide required the use of an automatic imaging algorithm,
detailed above.[2] In summary, distinct regions in the digitised tissue section were first divided
into four types through machine learning: (i) tumour, (ii) stroma, (iii) necrosis/lumen and
(iv) no tissue. Plot iii) of Figure 3 shows the point pattern formed by the tumour and stroma
cell nuclei, black and grey, respectively, of the same tissue section. From this we see that the
morphological patterns within tissue sections, at the very least, (i) are non-homogeneous, and
(ii) exhibit complex spatial morphology.

Standard point pattern statistics are unable to capture the complex structures inherent in
the tissue structure, such as the intermixing of tumour and stroma cells or features that are a
result of non-homogeneity due to spatial clustering of cells, spatial intermixing of tumour and
stroma, or necrosis. We therefore take a non-standard spatial point process approach using
the Palm intensity function to characterise the structure of the tissue sections. We consider
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Figure 3: Illustration of one image of a patient’s slide which enables the pinpointing of nuclei. Plot
i) is a composite immunofluorescence digital image (red fluorescence highlights tumour cells and
blue fluorescence highlights all nuclei in the image). Plot ii) is an image analysis mask overlay
from automatic machine learnt segmentation of the digital image: tumour (purple), and stroma
(turquoise). Plot iii) is the point pattern formed by the nuclei of the tumour (black) and stroma
(grey) cells shown in the previous two images.

maximum Palm likelihood estimation for three point processes: a void process, a Thomas
process, and a Matérn process. The parameters of these processes are then considered to
represent characteristics of the tissue structure, and are estimated via maximisation of the
Palm likelihood, see Section 2.3.

We implemented the methods described in Section 2 in the R package palm,[18] which is
available on CRAN. Appendix B gives and example of its use in the context of the CRC data.
In addition, online supplementary material illustrating the fitting of the model discussed in
this article may be found at https://github.com/cmjt/examples/blob/master/CRC_point_

process.md.

3.1 Results

Each of the point processes discussed give rise to different structures in point pattern data.
The parameters in each process therefore reflect different aspects of the morphology of the
tissue sections. Having fitted the models discussed above to the CRC data in this section
we investigate whether the estimated point process parameters aid in discriminating between
patient mortality outcomes (i.e., dead from disease or alive at follow up). We also determine
whether patient staging (i.e., Dukes A, Dukes B and Dukes C) falls in line with the structure
inferred by the parameter estimates.

We estimate parameters at the patient level for each tumour and stroma pattern by taking
the product of the likelihood in Equation (7) over the multiple patterns (images) for each
patient. These parameters are summarised for each i) Dukes staging and ii) patient outcome
group by the mean and associated 95% confidence interval, which are calculated using one
thousand bootstrap resamples.

We wish to compare parameter estimates between patients who were alive at follow-up
and those who were not. This allows us to identify parameters that might enable us to de-
termine patient mortality at follow up. For each parameter of each process, we conducted a
permutation test—a nonparametric alternative to a t-test—to determine whether or not there
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was a statistically significant difference between the two outcome groups. We computed the
difference between the mean values of the parameter in each group and used this as our test
statistic. We then enumerated 9999 random allocations of outcome groups to observations,
and computed a p-value from the proportion of allocations that resulted in a test statistic with
a magnitude at least as large as that we observed. We correct for multiple tests using two
correction methods: ? Bonferroni correction and � a false discovery rate correction.[19] The
Bonferroni method is notoriously conservative controlling the family-wise error rate (i.e., the
overall chance of rejecting the null hypothesis when it is true). The false discovery rate method
we use holds for independent p-values with non-negative association controlling the expected
proportion of false discoveries amongst the rejected hypotheses.

In addition, we use survival analysis to take into account patient follow up time, fitting
Cox proportional hazard models[20] using each estimated parameter as a predictor. Table 4 in
Appendix C gives the full results of these models.

Finally, we use our fitted models to explore the suitability of the NSPP and void point
processes for capturing the underlying complexities of the cell distributions. We do this by
using the empty space function, a functional summary characteristic of point patterns, to
compare the fitted models to both the theoretical Poisson process and data simulated with the
fitted parameter values.

3.1.1 Estimated parameters of the void process

In the context of spatial point patterns, a void is a region that contains no points where points
may be expected, given the general structure of the data. This section assumes that each of the
separate point patterns formed by tumour and stroma nuclei are realisations of void processes.
Therefore, the void process describing the tumour cell point pattern reflects the patterning of
stroma cells and vice versa; note the void processes also reflect the less frequently occurring
regions of necrosis/lumen and no tissue.

Table 1 summarises the bootstrap resamples of the fitted void process parameters: parent
density, D, child density, λ, and void radii, R. Table 1 show the averages and the associated
95% confidence interval for each Dukes stage and patient mortality group at follow up. The
quoted p-values refer to the permutation test introduced above, after correcting for multiple
tests.

The permutation tests (using the false discovery rate correction) determined that:

(i) There is strong evidence (p-value 0.007) to suggest that stroma daughter density, λ, in
patients that died was lower than in those that were alive at follow up. In addition, there
is weak evidence (p-value 0.086) to suggest that stroma parent density, D, in patients
that died was lower than in those that were alive at follow up. This is also indicated by
the results of the Cox proportional hazard models where the hazard ratios were estimated
respectively as ĤR = 0.477, CI (0.277, 0.820), and HR = 0.797, CI (0.630, 1.008) for the
scaled daughter and parent densities. Under the null hypothesis of no difference between
outcome groups, the hazard ratio is equal to 1.

(ii) There is weak evidence (p-value 0.086) to suggest that tumour daughter density, λ, in
patients that died was higher than in those that were alive at follow up. Using Cox
proportional hazard the results also indicate that patients with higher (scaled) daughter
density are more likely to die, ĤR = 1.352, CI (1.086, 1.685).

These results also align with the patients’ Dukes grading. This would be as we would
expect due to all patients graded C dying from CRC and all patients graded A being alive at
follow up. For example, stroma nuclei patterns of patients graded Dukes C had a lower parent
and daughter density on average than those graded Dukes A. The difference is less clear when
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considering patients graded Dukes B; this we might expect as Grade B patients were a mixture
(approximately 50%) of patients who died from CRC and those still alive at follow up.

Table 1: Summaries of the bootstrap resamples for parameters of the void process. These are
summarised by the mean value and 95% confidence intervals for both tumour and stroma patterns
at each Dukes grade, A, B, and C, and patient mortality at follow up, Alive or Died. The p-values
relate to a permutation test as follows: H0 : |µDied − µAlive| = 0 vs H1 : |µDied − µAlive| 6= 0. To
adjust for multiple comparisons we use both the Bonferroni correction method and a false discovery
rate correction. These are denoted by the superscripts ? and � respectively.

Tumour Stroma Tumour Stroma
A B C A B C∗ Alive Died p-value Alive Died∗ p-value

D̂ 12.03 11.17 9.03 6.79 3.88 3.19 10.28 11.85

1
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8
6� 5.42 3.41

0
.5

7
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0
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6�

2.5% 5.68 8.25 4.78 4.59 3.14 2.35 6.65 8.41 4.07 2.75
97.5% 20.46 14.28 15.3 9.49 4.54 4.86 14.4 15.67 7.08 4.24

λ̂ 3739.47 3930.64 6856.21 7876.23 3241.88 3421.34 3875.66 5118.35

0.
60

1?

0.
08

6� 5632.16 3089.52

0
.0

07
?

0
.0

07
�

2.5% 3423.6 3525.96 4989.92 6913.74 2935.34 3010.97 3476.16 4158 4653.86 2832.47
97.5% 4199.15 4470.04 8575.72 8925.9 3531.47 3884.2 4383.93 6173.21 6687.72 3346.47

R̂ 0.20 0.23 0.30 0.22 0.25 0.22 0.23 0.25

1.
0
00
?

0.
4
54
� 0.25 0.22

1
.0

00
?

0
.4

54
�

2.5% 0.16 0.21 0.22 0.18 0.21 0.21 0.19 0.22 0.21 0.20
97.5% 0.25 0.26 0.39 0.28 0.29 0.23 0.26 0.30 0.29 0.25

∗ The void process did not converge for one patient’s stroma pattern; therefore, these results are
based on forty-one out of forty-two patients.

3.1.2 Estimated parameters of both Neyman-Scott point processes

In the context of histopathology a Neyman-Scott point process can be thought of as a process
giving rise to the clustering of cells within the tissue. Therefore, the assumption here is that
the distribution of cells within both the tumour and the stroma are each realisations of a
Neyman-Scott point process of two different formulations (i.e., A Thomas process and a Matérn
process). Observed cells are daughters and we seek to infer the unobserved parents. Parents
thus represent some abstracted developmental process that led to the observed arrangement of
daughter cells within the tissue.

Thomas process Table 2 summarises the bootstrap resamples of the fitted Thomas process
parameters parent density, D̂, number of daughters per parent, φ̂, and dispersion parameter,
γ̂. These are summarised by the averages and the associated 95% confidence intervals for each
Dukes stage and patient mortality group at follow up.

The permutation tests (using the false discovery rate correction) determined that:

(i) There is strong evidence (p-value 0.007) to suggest that stroma nuclei patterns of patients
who died from CRC have on average a lower number of daughters per parent, φ. This
is also indicated by the results of the Cox proportional hazards model where the hazard
ratio was estimated as ĤR = 0.242, CI (0.080, 0.732).

(ii) There is evidence (p-value 0.049) to suggest that tumour parent density, D, is lower in
patient’s who died from CRC. Using Cox proportional hazard the results also indicate
that patients with lower (scaled) parent density are less likely to die, ĤR = 0.381, CI
(0.155, 0.940).

These results again align with the patients’ Dukes grading. For example, stroma nuclei
patterns of patients graded Dukes C had on average a lower number of daughters per parent
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than those graded Dukes A. The difference is less clear when considering patients graded Dukes
B; this we might expect as Grade B patients were a mixture (approximately 50%) of patients
who died from CRC and those still alive at follow up.

Table 2: Summaries of the bootstrapped resamples for parameters of the Thomas process: sum-
marised by the mean value and 95% confidence intervals for both tumour and stroma patterns at
each Dukes grade, A, B, and C, and patient mortality at follow up, Alive or Died. The p-values
relate to a permutation test as follows: H0 : |µDied − µAlive| = 0 vs H1 : |µDied − µAlive| 6= 0. To
adjust for multiple comparisons we use both the Bonferroni correction method and a false discovery
rate correction.[19] These are denoted by the superscripts ? and � respectively.

Tumour Stroma Tumour Stroma
A B C A B C Alive Died p-value Alive Died p-value

D̂ 27.95 10.26 8.52 28.97 35.38 30.53 19.23 8.91

0.
1
98
?

0.
0
49
� 27.06 39.70

1.
0
0
0
?

0.
3
6
0
�

2.5% 16.34 8.68 5.23 17.97 21.32 22.37 13.14 6.90 17.63 25.6
97.5% 45.67 11.92 12.05 41.73 52.14 39.27 27.8 10.92 37.47 56.57

φ̂ 78.89 102.12 233.25 179.68 87.35 76.96 98.43 148.36

1.
00

0
?

0.
15

1
� 144.43 67.33

0.
0
1
4
?

0.
0
0
7
�

2.5% 55.95 83.36 149.76 126.49 67.32 61.53 79.59 101.62 110.29 54.88
97.5% 103.11 125.02 312.39 232.7 109.06 95.44 119.03 200.82 177.1 79.79
γ̂ 0.08 0.09 0.09 0.08 0.09 0.09 0.09 0.08

1.
00

0
?

0.
79

2
� 0.09 0.09

1.
0
0
0
?

0
.7

4
2�

2.5% 0.06 0.08 0.08 0.07 0.09 0.08 0.08 0.08 0.08 0.08
97.5% 0.09 0.09 0.11 0.10 0.10 0.11 0.10 0.10 0.10 0.10

Matérn process The bootstrap resamples of the estimated Matérn process parameters for
the tumour and stroma patterns are summarised in Table 3. The differences are similar to
those noted above when assuming a Thomas cluster process. This is to be expected as both
are cluster processes but differ only in their structure of a cluster.

The permutation tests (using the false discovery rate correction) determined that:

(i) There is strong evidence (p-value 0.01) to suggest that stroma nuclei patterns of patients
who died from CRC have on average a lower number of daughters per parent, φ. This
is also indicated by the results of the Cox proportional hazards model where the hazard
ratio was estimated as ĤR = 0.198, CI (0.053, 0.740).

(ii) There is evidence (p-value 0.055) to suggest that tumour parent density, D, is lower in
patient’s who died from CRC. Using Cox proportional hazard the results also indicate
that patients with lower (scaled) parent density are less likely to die, ĤR = 0.388, CI
(0.156, 0.965).

These results again align with the patients’ Dukes grading. For example, stroma nuclei
patterns of patients graded Dukes C had on average a lower number of daughters per parent
than those graded Dukes A. The difference is less clear when considering patients graded Dukes
B; this we might expect as Grade B patients were a mixture (approximately 50%) of patients
who died from CRC and those still alive at follow up.

3.2 Assessing model fit using the empty space function

Above we discuss a novel application of spatial point processes in capturing the spatial arrange-
ment of cells. Doing so illustrates the value of analytic methods to aid in the understanding
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Table 3: Summaries of the bootstrapped resamples for the Matérn process parameters: summarised
by the mean value and 95% confidence intervals for both tumour and stroma patterns at each Dukes
grade, A, B, and C, and patient mortality at follow up, Alive or Died. The p-values relate to a
permutation test as follows: H0 : |µDied − µAlive| = 0 vs H1 : |µDied − µAlive| 6= 0. To adjust
for multiple comparisons we use both the Bonferroni correction method and a false discovery rate
correction.[19] These are denoted by the superscripts ? and � respectively.

Tumour Stroma Tumour Stroma
A B C A B C Alive Died p-value Alive Died p-value

D̂ 28.22 10.71 8.86 39.27 34.38 31.34 19.56 9.37

0.
27

7
?

0.
05

5
� 30.22 40.96

1
.0

0
0
?

0
.4

2
2
�

2.5% 16.17 9.13 5.69 22.58 22.2 24.23 13.1 7.26 20.27 28.39
97.5% 44.64 12.51 12.36 60.77 48.47 38.01 28.67 11.56 41.62 59.04

φ̂ 77.53 97.62 221.04 149.12 81.87 72.89 95.33 140.73

1.
00

0
?

0.
15

1
� 126.43 63.08

0
.0

2
9
?

0
.0

1
0
�

2.5% 56.18 80.2 136.32 103.63 64.5 60.71 76.7 96.25 99.2 51.32
97.5% 99.38 116.58 295.43 193.5 101.41 88.78 113.57 187.87 154.42 73.91
γ̂ 0.15 0.16 0.18 0.14 0.18 0.18 0.16 0.16

1.
00

0
?

0.
68

6
� 0.16 0.18

1
.0

0
0
?

0
.4

2
2
�

2.5% 0.12 0.15 0.15 0.11 0.17 0.17 0.15 0.14 0.14 0.16
97.5% 0.18 0.18 0.2 0.17 0.19 0.2 0.18 0.18 0.18 0.19

of cancerous tissue structure. We note above that the morphology of cancerous tissue struc-
ture is complex; therefore, no single model would be perfectly adequate to describe all the
structural features in the data. However, we believe that our proposed methodology is a step
towards taking into account the spatial morphology of the nuclei, which has not previously
been considered.

In order to informally assess the fit of the models to the CRC data we compare the spatial
patterning of the observed data and the data simulated from the fitted model through using
the estimated empty space function, H(r).[12] In two-dimensions, this describes the probability
that the disc b(x, r) of radius r centered at x is not empty. In the stationary case assumed here
(i.e., shifting the pattern by a vector does not affect the distribution of points) the disc may
be centered at the origin (i.e., b(o, r)).

Figure 4 shows the empty space functions for each considered point process for the image
shown in Figure 3. Solid lines represent the estimated empty space function for the fitted
model. The grey dotted lines are the estimated empty space functions from patterns simulated
with the parameter estimates from the fitted model (i.e., the estimated parameters for the set
of images to which Figure 3 belongs). The empty space function is estimated using the Chiu-
Stoyan estimator employed in the R package spatstat.[21] The dashed lines are the theoretical
empty space function for a homogeneous Poisson process, H(r) = 1 − exp(−λπr2) where λ is
point density and r is the interpoint distance.[12]

We assess the model’s fit in Figure 4 by looking for overlap between the envelope of the
empty space functions for the simulated data, shown by the grey lines, and the empirical empty
space function for the fitted model, shown by the solid line. Comparison of the solid line and
the dashed line compares the fitted CRC model to a homogeneous Poisson process where the
probability of points in a sphere of radius r is proportional to the area of that sphere.

The overlap of the envelope of the empty space functions for the simulated data and the
empirical empty space function for the fitted model shown in the left hand plots of Figure
4 indicate that the Thomas, Matérn, and void process all appear to fit the data well. The
right hand top and middle rows of Figure 4 indicate that the pattern formed by stroma cells is
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slightly less likely to have nearby points at the same distances as a NSPP (either a Thomas or
Matérn process).

From Figure 4 we see that the stroma cell pattern more quickly approaches that of a
homogeneous Poisson process; this is the case at a distance of 3% of the width and height of
the image (r = 0.03). This seems reasonable from the pattern of stroma cells shown in Figure
3 and is also reflected by the estimated lower void density for stroma cells (Table 1), which
would lead to a pattern with fewer gaps.

A comparison of the empty space function for both the tumour and stroma cell patterns to
that of the homogeneous Poisson process (dashed lines) reveals that at short distances the cells
exhibit some regularity, whereas only at longer distances does the pattern exhibit clustering.
This is expected as in both cases the points represent cell nuclei, and due to the size of the
cells at short distances no other cells (points) can exist.

4 Discussion

This article presents a novel application of spatial point process statistics to capture the struc-
ture inherent in the spatial arrangement of cells through both void and cluster point processes.
We characterise the spatial arrangement of cells within CRC tissue sections by treating their
nuclei locus as a spatial point pattern and consider three spatial point processes (void, Thomas,
Matérn), taking a Palm likelihood approach for parameter estimation in each case. This estima-
tion is nontrivial and is achieved through extending existing work[10] which uses the interpoint
distances between points (cells) to inform consideration of the spatial morphology of the tissue
structure.

We illustrate that by using estimated parameters of the Palm intensity function as classifiers
of the spatial morphology of cancerous tissue sections that the patterns formed by cells may be
informative as to CRC patient survival. Although no one model would perfectly encapsulate
the intricacies in the spatial structure of this tissue, we believe our methods open the door to
taking a more analytical approach to describe these types of data. Although beyond the scope
of this work, other point process models could be used in this setting. For example, the pattern
of all nuclei (tumour and stroma) could be considered to be a realisation of a marked point
process with cell type as a mark (i.e., characteristic of the point). This approach would consider
all cell nuclei to be realisations from the same spatial point process where characteristics of
the points (marks i.e., cell type) were realisations of another process, which would encompass
the inter- and intra-mark interactions. However, such an approach would presume that the
mark process followed some defined formulation. Furthermore, using latent structures in a
marked log-Gaussian Cox process, for example, might enable the mark-point dependence to
be inferred. Yet, in this case, a dependence between cell types and their location is not likely
and not of particular interest. In our work we fit models to each pattern (tumour and stroma)
independently to capture the spatial spatial features exhibited in both patterns.

The modelling framework detailed herein provides a standardised methodology that de-
scribes and reports the spatial distribution of cells in cancerous tissue sections in a way that
avoids observer variability. That is, we do not rely human classifications of tissue morphology
but use the pattern formed by the cells themselves to infer patterning in tissue structure. Us-
ing this methodology we rely on the ability of the imaging software to, with negligible error,
pinpoint locations of the cell nuclei and to correctly identify the type of cell (i.e., tumour or
stroma). Our proposed framework indicates that certain parameters of the processes we dis-
cuss are useful indicators of patient mortality. These parameters also align with the different
Dukes staging the tissue samples were classified as by pathologists. This is not surprising as
the grades were given by experts in the field and can be thought to roughly reflect the severity
of the tumour; hence, they are a good indicator of patient outcome.
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The literature reports morphological features such as tumour budding to be significantly
associated with disease survival. However, the lack of consensus on quantification methods
and observer variability has led to their exclusion from clinical guidelines.[22] In brief, high
tumour budding is found in patients with an infiltrative growth pattern: finger-like protrusions
invading widely across the stroma and thus forming large gaps between the cancer protrusions.
Both tumour budding and infiltrative growth pattern would be reflective of the tumour cell
void patterning described herein. In contrast, low tumour budding, or a pushing border growth
pattern, described as a solid tumour mass with little stroma existing between cells, has been
correlated with good outcome.[23] However cancerous tissue sections typically lack histopatho-
logical features that can be reliably identified and reproducibly quantified by eye. Our work
uses an analytical framework to identify potential indicators of patient survival without the
need to rely human observation and risk potential bias.

More broadly, this work reflects a growing interest in the use of analytical techniques in
recognition of the importance of both spatial structure and spatial variations within cellular
data. For example, in some cases it was observed that both the abundance of immune cells
and their spatial variation within the tumour are important factors in patient outcome.[24]
In addition, a recent review of spatial heterogeneity in cancers outlined the importance and
relevance of spatial statistics in describing cellular patters.[25] Here, we demonstrate that an-
alytical methods perhaps more commonly used in ecological contexts[10, 15] may be used and
built upon to aid understanding of the spatial structure of CRC tissue sections.

The methodology we describe above may be used to describe subjectively reported histopatho-
logical features such as infiltrative invasion pattern and tumour budding throughout the stroma.
This is a known, and common, phenomenon that has been previously highly subjective and not
reproducible through manual observation.[3, 22] We believe that the methods detailed herein
are better equipped to capture the complexities and spatial heterogeneity inherent within the
CRC microenvironment than the currently employed methods. We propose that this analy-
sis enables future work centered on refining the treatment of individual cells, by stratifying
individual cells further by biological and/or physical measurements in order to explore more
complex questions that point at specific mechanisms of disease progression.
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Figure 4: This figure illustrates for one image of one patient’s slide, that shown in Figure 3, how
the empty space function, H(r), can be used to informally asses the model fit in each instance
of the Thomas, Matérn, and void process. The dashed black line in each panel shows H(r) for a
homogeneous Poisson process (i.e., a constant intensity of points within some given region). We
would expect H(r) for our point pattern of cells to deviate from this. This is indeed the case in
each panel. The empty space function, H(r), for the tissue pattern is shown by the solid black line,
which does deviate from the homogeneous Poisson line. The bottom right plot shows an overlap
between the simulated pattern’s empty space function and that of the homogeneous Poisson process
for the stroma nuclei. Looking again at Figure 3 this seems somewhat plausible as the stroma cells
do seem to “blanket” the image. In each plot the distance r represent the percentage of the image’s
width and height scaled to be ∈ [0, 1]. However, to asses model suitability it is not this we are
interested in but the overlap between the fitted H(r) for the pattern and the envelope of empty
space functions for simulated data shown by the grey dotted lines.
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A The Palm intensity function

This appendix derives the d-dimensional Palm intensity functions for both the void and Matérn
processes, Section 2. The application, Section 3, considers only the 2-dimensional case; there-
fore, above, we only provide the details of the Palm intensities and likelihoods in 2-dimensions.
In this appendix we generalise this to consider d-dimensions. Due to this we now consider, for
example, the volume of hyperspheres, and not the area of circles.

A.1 A d-dimensional void point process

We define a d-dimensional void process as follows. Let X̄ and P be independent homogeneous
Poisson processes on Rd. Then the void process is given by X = X̄\(

⋃
p∈P b(p,R)), where

b(v,R) = {u ∈ Rd : ||u− p|| ≤ R} is the ball centered at v with radius R > 0.
The probability of a potential point, x ∈ X̄, being outside the area of influence of a parent

point, p ∈ P , is related to the geometry of the intersection between hyperspheres of common
radius R centered at an observed daughter and a potential daughter. This concept is illustrated
in Figure 5 where plot i) shows the intersection, I(r) = b(do, R) ∪ p(dp, R), of two circles of
radius R centered at do and dp where r < R. The filled black circle represents an observed
daughter,do, and the open circle represents a possible daughter point, dp. We know that there
cannot exist a parent within distance R of the observed daughter; therefore, given the location
of the observed daughter the intersection, I(r), cannot contain a parent point. The grey circles
represent voids, of radius R, centered at potential parent points. The only area a parent
might exist that would delete the potential daughter is in the region A(r) = b(pp, R)\I(r),
see the potential void centered at the grey cross. Any void centered a distance greater than
R from the potential daughter will not delete it, see the potential void centered at the grey
circled cross. This figure illustrates the geometry in two-dimensions, but this section considers
the void process in d-dimensions and in order to calculate the intersection, I(r) between two
hyperspheres of common radius R the radius of the hyper-spherical caps, R sin(θ), and the
height of the hyper-spherical caps R cos(θ) is required, where θ is the colatitude angle. Thus,
the volume of intersection only depends on the radii of the hyperspheres as well as the distance
between their centers r, see Equation 8. In plot ii), Figure 5 , I(r) = 0 and the location of the
observed daughter gives no information about potential parent locations that would affect the
potential daughter. Hence, as the distance between daughters increases—from r plot i) to r in
plot ii)—then the Palm intensity decays to to the baseline intensity.
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Figure 5: Plot i) illustrates the geometry of the intersection, I(r) = b(do, R)∩p(dp, R), of two circles of radius R centered
at do and dp where r < R. The filled black circle represents an observed daughter,do, and the open circle represents
a possible daughter point, dp. Plot ii) illustrates that when r > R the observed point offers no information as to the
probability of a parent affecting the potential daughter, because no single void can exist that would delete both points.
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To calculate I(r), in Figure 5, the integrand of the volume of a d − 1 sphere of radius
R sin(θ) with height R cos(θ) is required. As the hyperspheres are of common radius (R being
the radius of a void) I(r) is simply just twice this volume.[14] This is given by,

Id(r) = 2×
∫ φ

0

vd−1(Rsinθ) dRcosθ,

= 2×
∫ φ

0

vd−1(Rsinθ)Rsinθ dθ,

= 2× π
d−1
2

Γ( d−1
2

+ 1)
Rd

∫ φ

o

sindθ dθ,

= 2× π
d−1
2

Γ( d−1
2

+ 1)
Rd Jd(φ),

=
π
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2
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Rd B
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2
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1

2

)
I

(
sin2φ;
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2
,
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2

)
,
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1

2

)
,

= vd(R) I

(
1−
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,

1
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)
,

(8)

noting that B(a, b) = Γ(a) Γ(b)
Γ(a+b)

, Γ
(

1
2

)
=
√
π, and that (R cosθ)2 + (R sinθ)2 = R2 → (sinθ)2 =

1−(cosθ)2 and using the cosine rule leads to cosθ = r2+R2−R2

2 r R
= r

2R
. Here I(z; a, b) = B(z;a,b)

B(a,b)

is the regularised Beta function.
Recall that the Palm intensity of the void process can be written as λ0(r) = λ ps(r) where

ps(r) = exp(−DA(r)) is the probability that an arbitrary point has no parent within a some
distance R. Here A(r) = vd(R)−I(r) where vd(R) is the d-dimensional volume of a hypershpere
of radius R. Then the Palm intensity is given by

λ0(r) = λ exp

(
−Dvd(R)

[
1− I

(
1−

( r

2R

)2

;
d + 1

2
,

1

2

)])
,

= λ exp

(
−Dvd(R)

[
1− Fg(r)

(
d + 1

2
,

1

2

)])
,

(9)

where g(r) = 1−
(
r

2R

)2
, and Fg(r)(·, ·) is the CDF of the Beta distribution. Thus, when r = 0

⇒ g(r) = 1 ⇒ F1(·, ·) = 1 ⇒ λ0(0) = λ. In addition, when r = 2R ⇒ g(r) = 0 ⇒ F0(·, ·) = 0
⇒ λ0(0) = λ exp(−Dvd(R)), due to the properties of the CDF. The functional form of this
Palm intensity is shown in Figure 6. Letting d = 2 in Equation (9) would lead to the Palm
intensity given in Equation (2).

A.2 A d-dimensional Matérn point process

Daughters of a Matérn process are uniformally distributed around their parents. The parameter
γ in Equation 3 refers to the radius of the sphere centered at a selected parent outwith which
we do not observe sired daughters. Figure 1 illustrates the two types of Neyman-Scott point
processes simulated with the same value of γ; for the same value of γ the Palm intensity
function for the Matérn process is initially much higher, and decays at a much faster rate to
the horizontal asymptote, Dν. As illustrated in Figure 7 λ(r;θ) is a continuous piece-wise
monotonic function of two sub-domains, [0, 2γ] and [2γ,∞). The common endpoint of the sub-
domains, 2γ, relates to the structure of the Matérn process; that is, the distance between two
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Figure 6: The functional form of the Palm intensity for the void process in 2 dimensions. The horizontal asymptote is

given by λ exp(−DπR2), which is the value that λ0(r) decays to for values of r ≥ 2R. The Palm intensity at r = 0 is simply
λ, as for r = 0 g(r) = 1 in Equation 2, thus the exponential becomes 1. At the value r = 2R the volume of intersection
between the spheres encircling an observed daughter and a potential point of radius R is zero, thus the contribution from
the CDF of the Beta distribution to λ(r; θ) is zero.

sibling daughters cannot be more than the diameter, 2γ, of a sphere centered at an unobserved
parent away from one another. Thus, the probability of observing a sister at a distance r from
an arbitrarily chosen daughter pertains to the intersection of the hyperspheres centered at these
points, b(x, γ) ∩ b(y, γ), x 6= y ∈ N , where N is the point pattern. When the distance between
these points, r ≥ 2γ then b(x, γ) ∩ b(y, γ) = 0.

The d-dimensional version of Equation 6 is given by,

fd
y (r; γ) =

2 d

B( d
2

+ 1
2
, 1

2
)

rd−1
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[
2F1

(
1

2
,

1

2
− d

2
,

3

2
, 1

)
γ − 2F1

(
1

2
,

1

2
− d

2
,

3

2
,
r2

4 γ2

)
r

2

]
,

=
2 d rd−1

∫ γ
r
2

(γ2 − x2)
d−1
2 dx

B( d
2

+ 1
2
, 1

2
) γ2 d

.

(10)

Here B(·, ·) denotes the beta function, and 2F1(·, ·, ·, ·) the hyper-geometric function.
Below we show how this PDF reduces in d = 2 and d = 3 to forms equivalent to the PDFs

of the distances between two randomly selected sisters in the respective dimensions.[12, p.376]
• for d = 2 It should be noted that,∫ γ

r
2

(γ2 − x2)
d−1
2 dx =

∫ γ

r
2

(γ2 − x2)
1
2 dx

=
1

8

(
4 γ2 sec−1

(
2 γ

r

)
− r

√
4 γ2 − r2

)
.
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therefore,
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noting that Γ( 5
2
) = 3

4

√
π, Γ( 1

2
) =
√
π, and Γ(2) = 1.

Upon substitution of the PDF (Equation 10) into the Palm intensity function (Equation 3)
simplifications occur—this is also the case for the modified Thomas process, Section 2.3.[10]
These simplifications circumvent the numerical instability in λ(r;θ) at r = 0 as both the
numerator and denominator in the second term contain the term rd−1. Thus,

24



λ(r;θ) = DEc(φ) +
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noting that B(x, y) = Γ(x) Γ(y)
Γ(x+y)

, and Γ( 1
2
) =
√
π.

Figure 7: The functional form of the Palm intensity for both the Matérn (solid curve) and Thomas (dotted curve)
variants of the Neyman-Scott point process in 2 dimensions. The horizontal asymptote is given by Dν for both processes.
The difference between the horizontal asymptote and the y − intercept is given by ν/(4π σ2) for the Thomas process, and
2 ν F (·)/(π B(·) γ2) for the Matérn process. Here F (·) = 2F1

(
1
2 ,

1
2 −

d
2 ,

3
2 , 1
)

denotes the hyper-geometric function, and

B(·) = B( 3
2 ,

1
2 ) denotes the beta function. The point of inflection of the Gaussian term for the Thomas process is given by

σ
√

(2), for the Matérn process 2 γ is the point at which the Palm intensity decays to the horizontal asymptote.

B Software implementation

All of the spatial point process models mentioned in this article can be fitted using the R

package palm,[18] which is on CRAN. The two fitting functions used are fit.ns(), to fit either
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a Thomas or a Matérn cluster process, and fit.void(), to fit a void process model. Below, we
outline fitting the models to the CRC data however a more comprehensive tutorial is available
online at https://github.com/cmjt/examples/blob/master/CRC_point_process.md.

Let the R object points be a list of length N where each element is a 2 x n matrix of
the nuclei locations (either stroma or tumour) for one image of one of the patient’s N images.
Furthermore, let R in each case be the truncation distance as mentioned in Section 3, lims be
a list of length N where each element is a matrix of the rectangular image (for the matching
element in points) boundary where columns give the lower and upper bounds respectively, and
c(lower, upper) be parameter bounds for the parameter D of the void process. Then to fit
a Thomas, Matèrn, and void process respectively to the point pattern points one would run
the following R code,

l i b r a r y ( palm )
## the package palm can be i n s t a l l e d from CRAN by running i n s t a l l . packages (” palm ”)
f i t . thomas <− f i t . ns ( po in t s = points , l ims = lims ,R = R)
f i t . matern <− f i t . ns ( po in t s = points , l ims = lims ,R = R, d i sp = ” uniform ”)
f i t . void <− f i t . void ( po in t s = points , l ims = lims ,R = R,

bounds = l i s t (Dc = c ( lower , upper ) ) )

It is also worth noting that the argument points may also be a single matrix of point
locations. In this case the lims argument must also be a singular matrix giving the bounds of
points.

C Follow up of CRC patients

Using the R package survival[26] we fitted Cox proportional hazards models[20] using each
estimated parameter as a predictor. The results of these models are shown in Table 4. In line
with the results discussed in Section 3.1 an higher number of daughters per parent in both the
Thomas ans Matérn process, φ, for Stroma patterns were linked with patients not dying from
CRC.

Table 5 gives the Dukes staging and site of the tumour along with the number of months
post surgery follow up was. Due to the sensitive nature of the data we cannot give more
information than provided here.
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Table 4: Results of the Cox proportional hazards models fitted using each estimated parameter from
the point processes discussed herein as predictors. The estimated coefficients of the predictors are
given in the first column, along with their standard errors a a p-value associated with the probability
that that parameter is zero (second and third column respectively). The predictors (parameters
from the point process models discussed in this article) were scaled so that the estimated coefficient

of the Cox proportional hazard regression were more readable: void λ̂/1000, Thomas D̂/10, Thomas

φ̂/100, Thomas γ̂ × 10, Matérn D̂/10, Matérn φ̂/100, and Matérn γ̂ × 10. The hazard ratio, HR
column, relates to risk of dying given a one unit increase in the associated (scaled) parameter.
For example, assuming a Thomas process then for every unit increase in the expected number of
daughters per parent/100 in the Stroma pattern then the a patient is less likely to die. The 95%
confidence interval (CI) bounds of the hazard ratio are given in the last two columns.

HR CI bounds
Estimate se p-value HR 2.5% 97.5%

void

Tumour D̂ 0.018 0.022 0.424 1.018 0.975 1.063

Tumour λ̂ 0.302 0.112 0.007 1.352 1.086 1.685

Tumour R̂ -0.127 2.477 0.959 0.881 0.007 113.063

Stroma D̂ -0.227 0.120 0.059 0.797 0.630 1.008

Stroma λ̂ -0.741 0.277 0.007 0.477 0.277 0.820

Stroma R̂ -2.324 3.314 0.483 0.098 0.000 64.852

Thomas

Tumour D̂ -0.964 0.460 0.036 0.381 0.155 0.940

Tumour φ̂ 0.286 0.256 0.263 1.332 0.806 2.199
Tumour γ̂ -0.843 0.981 0.391 0.431 0.063 2.947

Stroma D̂ 0.077 0.063 0.218 1.080 0.955 1.222

Stroma φ̂ -1.418 0.565 0.012 0.242 0.080 0.732
Stroma γ̂ 0.800 1.251 0.522 2.226 0.192 25.839

Matérn

Tumour D̂ -0.947 0.465 0.042 0.388 0.156 0.965

Tumour φ̂ 0.368 0.285 0.197 1.445 0.826 2.528
Tumour γ̂ -0.495 0.528 0.349 0.610 0.217 1.717

Stroma D̂ 0.065 0.064 0.306 1.068 0.942 1.210

Stroma φ̂ -1.617 0.672 0.016 0.198 0.053 0.740
Stroma γ̂ 0.797 0.693 0.250 2.220 0.571 8.632
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Table 5: A summary of the forty-two CRC patients discussed above including the site of the tumour
and the number of months post surgery follow up occurred. All patients will a follow up of fewer
than nine years died during the follow up period. All patients graded as Dukes C died from CRC
whereas all patients graded Dukes A were alive at follow up; twelve of the patients graded Dukes
B were alive at follow up, eleven had died.

Dukes stage Tumour site Sex Follow up (months)
A Sigmoid colon M 144.90
A Sigmoid colon M 138.90
A Ascending colon/hepatic flexure F 145.40
A Caecum F 140.60
A Ascending colon/hepatic flexure M 126.20
A Rectum M 125.40
A Sigmoid colon F 125.80
A Rectum M 122.40
A Sigmoid colon M 128.30
A Sigmoid colon F 120.80
A Sigmoid colon M 124.40
B Sigmoid colon F 46.70
B Ascending colon/hepatic flexure F 37.00
B Sigmoid colon F 66.80
B Rectum F 32.60
B Splenic flexure M 137.80
B Descending colon M 26.50
B Sigmoid colon F 11.60
B Ascending colon/hepatic flexure M 10.20
B Rectum M 131.80
B Sigmoid colon M 135.40
B Ascending colon/hepatic flexure M 108.30
B Caecum M 127.70
B Rectum M 37.90
B Rectosigmoid M 127.60
B Caecum F 118.60
B Descending colon F 117.20
B Caecum F 123.10
B Rectum F 118.20
B Transverse colon F 112.30
B Ascending colon/hepatic flexure F 112.40
B Rectum M 111.80
B Transverse colon F 109.50
B Rectum F 47.30
C Sigmoid colon F 20.20
C Rectosigmoid F 171.90
C Rectosigmoid F 37.60
C Caecum F 25.30
C Rectum F 10.43
C Caecum F 22.73
C Caecum M 171.63
C Caecum M 23.5628
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