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Type 1 diabetes (T1D) is a chronic metabolic disorder characterized by the autoimmune
destruction of insulin-producing pancreatic islet beta cells in genetically predisposed
individuals. Genome-wide association studies (GWAS) have identified over 60 risk
regions across the human genome, marked by single nucleotide polymorphisms
(SNPs), which confer genetic predisposition to T1D. There is increasing evidence
that disease-associated SNPs can alter gene expression through spatial interactions
that involve distal loci, in a tissue- and development-specific manner. Here, we used
three-dimensional (3D) genome organization data to identify genes that physically
co-localized with DNA regions that contained T1D-associated SNPs in the nucleus.
Analysis of these SNP-gene pairs using the Genotype-Tissue Expression database
identified a subset of SNPs that significantly affected gene expression. We identified 246
spatially regulated genes including HLA-DRB1, LAT, MICA, BTN3A2, CTLA4, CD226,
NOTCH1, TRIM26, PTEN, TYK2, CTSH, and FLRT3, which exhibit tissue-specific effects
in multiple tissues. We observed that the T1D-associated variants interconnect through
networks that form part of the immune regulatory pathways, including immune-cell
activation, cytokine signaling, and programmed cell death protein-1 (PD-1). Our results
implicate T1D-associated variants in tissue and cell-type specific regulatory networks
that contribute to pancreatic beta cell inflammation and destruction, adaptive immune
signaling, and immune-cell proliferation and activation. A number of other regulatory
changes we identified are not typically considered to be central to the pathology of T1D.
Collectively, our data represent a novel resource for the hypothesis-driven development
of diagnostic, prognostic, and therapeutic interventions in T1D.

Keywords: Type 1 diabetes, genome-wide association studies (GWAS), genetic variation, genome organization,
expression quantitative trait loci (eQTL), autoimmunity

INTRODUCTION

Type 1 diabetes (T1D) is a chronic immune-mediated disease characterized by the progressive
loss of insulin-secreting pancreatic beta cells, and the incidence is slowly rising worldwide (Insel
et al., 2015). Well-powered genome-wide association studies (GWAS) have identified more than
60 susceptibility regions to T1D across the human genome, which are marked by single-nucleotide
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polymorphisms (SNPs) (Ram et al., 2016). The major heritable
risk (∼50%) for T1D is conferred by SNPs located within the
human leukocyte antigen (HLA) region (Ounissi-Benkalha and
Polychronakos, 2008). To date, however, the functional roles of
most T1D-associated genetic variants is yet to be determined.
Notably, 90 percent of these genetic variants fall outside coding
regions (Ward and Kellis, 2012), and therefore, their biological
role in the pathogenesis of diseases is not clear. However, there is
growing evidence supporting a putative role for these non-coding
variants in the regulation of gene expression, as the majority of
SNPs fall within regulatory loci such as enhancer regions (Guo
et al., 2015; Javierre et al., 2016; Ram and Morahan, 2017).

Classically, GWAS-associated SNPs which fall outside the
coding regions of genes have been assumed to affect the
most “biologically relevant” or closest genes (McGovern et al.,
2016). A fundamental problem with this assumption is that
many intergenic SNPs may influence the expression of genes
which are quite distal (Farh et al., 2014; Schoenfelder et al.,
2015). Indeed, our enhanced understanding of chromosome
architecture and nuclear organization over recent years has
shown that interactions with regulatory regions (e.g., insulators
and enhancers) regularly bypass the closest genes and are
associated with changes in gene transcript levels of genes
located large genomic distances away. These interactions may
occur within the same, or on different chromosomes (Bulger
and Groudine, 2011; Sanyal et al., 2012; Javierre et al.,
2016).

Most studies on spatial genomics ignore the impact of these
distal-regulatory chromosome interactions despite increasing
evidence that genetic polymorphisms as identified by GWAS can
alter the expression of genes through distal spatial interactions
in a tissue- and development-specific manner (Fehrmann et al.,
2011; Schierding et al., 2015; Fadason et al., 2017). For example,
Fadason et al. (2017) identified spatially regulated genes (e.g.,
IRS1, ADIPOQ, FADS2, PPA2, and WFS1) within tissues and
pathways that are recognized as important for type 2 diabetes
progression. This was achieved by integrating information on
spatial chromatin organization (Rao et al., 2014), and functional
data [i.e., expression quantitative trait loci (eQTL)] to assign
SNPs to the genes they control. This finding highlights the
importance of integrating an understanding of the spatial
genomic context into analyses to discover the fundamental
mechanisms underlying gene regulation (Ottaviani et al., 2012;
Javierre et al., 2016; Willmann et al., 2016; Won et al.,
2016).

We hypothesized that T1D-associated SNPs, and particularly
the SNPs along the immune-associated HLA locus, contribute
to disease pathogenesis by deregulating expression of genes in
a tissue-specific manner. In the present study, we used the
Contextualize Developmental SNPs in 3D (CoDeS3D) algorithm
to perform a combined spatial and functional eQTL analysis to
assign T1D-associated genetic variants to the genes they regulate.
We identified interconnected regulatory networks of spatially
associated T1D eQTLs that affect immune pathways (adaptive
immune signaling and immune-cell proliferation and activation).
We demonstrate that T1D-associated SNPs have effects in tissues
that are not classically associated with T1D, such as liver, brain

hypothalamus, and adrenal. These findings provide a novel
platform for the development of novel diagnostic and therapeutic
interventions.

MATERIALS AND METHODS

Identification of T1D Associated SNPs
Single nucleotide polymorphisms associated with T1D
(p ≤ 9.0 × 10−6) were selected from the manually curated
Catalog of Published Genome-Wide Association Studies
(MacArthur et al., 2017)1 (November 3, 2017) (Supplementary
File 1). These SNPs (11 HLA and 169 non-HLA risk SNPs)
represent the ∼60 susceptibility regions that are typically
associated with T1D. Equally sized sets of control SNPs
were randomly selected from the SNP database (dbSNP
database, Build 151; November 10, 2017) using a Python
script.

Regulatory SNP–Gene Interactions and
eQTLs Analyses
We identified genes whose transcript levels depend on the
identity of the T1D-associated SNP using the CoDeS3D
algorithm (GitHub2) (Fadason et al., 2017). Initially, the
modular python scripts that comprise CoDeS3D use
1 kb resolution Hi-C contacts from non-synchronized
immortalized human cell lines [i.e., IMR90 (CCL-186),
HMEC (CC-2551), NHEK (192627), KBM7, HUVEC] (Rao
et al., 2014) to identify spatial co-localization of two DNA
regions, one of which is marked by a SNP. These spatially
associating genomic regions are not limited to adjacent
regions within the linear DNA sequence (Fadason et al.,
2017).

Next, data from the Genotype-Tissue Expression (GTEx)
database (version 73; retrieved on November 19, 2017)
(Fadason et al., 2017) is incorporated to address whether
spatially associated T1D-SNPs are associated with changes
in the transcript levels (eQTLs) of the spatially associated
genes. The gene list and DNA locations are based on the
hg19/GRCh37 human genome reference. The CoDeS3D
analysis identifies: (a) SNP-gene pairs that spatially co-localize
within the nucleus; (b) SNP-gene pairs that are expression
QTLs; and (c) the tissues in which the eQTL is significant,
using the Benjamini–Hochberg correction for multiple testing
(FDR, q < 0.05) (Benjamini and Hochberg, 1995). Although
the multiple testing burden of eQTL mapping can bias or
misinterpret results, our FDR threshold (q < 0.05) has been
demonstrated to identify biologically significant associations
consistently (e.g., Schierding et al., 2015; Fadason et al., 2017).
Cis-expression QTL SNPs were defined as occurring within
loci <1 Mb. By contrast, trans-expression QTL SNPs were
defined as occurring between loci >1 Mb apart, or on different
chromosomes.

1www.ebi.ac.uk/gwas/
2https://github.com/alcamerone/codes3d
3https://www.gtexportal.org/
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Gene Ontology (GO), Pathway Analysis,
and Functional Prediction
We used web-based applications of Gene Ontology (GO4;
accessed April 3, 2018) and the Reactome Pathway Database
(version 645; accessed April 3, 2018) to annotate significant
eGenes (genes regulated by loci marked by the eQTL SNPs)
for biological and functional enrichment (Ashburner et al.,
2000; Croft et al., 2014; Carbon et al., 2017; Fabregat et al.,
2018). The enrichment analysis were performed by standard
methods (detailed in Ashburner et al., 2000; Fabregat et al.,
2018) using a background set of human proteins to reveal
significant enrichments adjusted for multiple comparisons at an
FDR threshold q < 0.05.

Testing for potential functional regulatory SNPs within the list
of T1D-associated SNPs was performed using the sequence-based
deep learning-based sequence analyzer-DeepSEA (Zhou and
Troyanskaya, 2015). The algorithm integrates a training set
of genome-wide chromatin profiles based on the Roadmap
Epigenomics and ENCODE datasets (Dunham et al., 2012;
Kundaje et al., 2015). Potential regulatory sites are predicted
based on over-lap with histone-mark profiles, transcription factor
binding, and DNase I sensitivity sites.

All statistical analyses were performed using R software
(version v3.4.2) (R Core Team, 2014).

RESULTS

T1D-Associated Variants Form a Gene
Regulatory Network
We identified 232 cis- and 66 trans-eQTLs, at an FDR of q < 0.05
for SNPs associated with T1D (Supplementary Table 1). The
functional physical interactions between T1D-associated SNPs
and eGenes (i.e., the genes whose transcript levels are associated
with the identity of the nucleotide at the SNP position) were
represented in a circos plot (Figure 1). We observed a series
of trans-eQTLs that connect into and out of the HLA locus
(Figure 1B). The observed cis- and trans-eQTL network for
T1D associated SNPs is consistent with a functional role for
SNPs in modulating gene expression profiles, rather than protein
sequences, that predispose an individual to the development
of T1D (Størling and Pociot, 2017). The identification of 66
trans-eQTLs, which by definition interact with regions >1 Mb
apart or on different chromosomes, reinforces the importance of
not identifying eGenes on the basis of linear proximity in the
absence of observable transcriptional effects due to the cell and
tissue-specific contexts underlying gene expression.

A Monte Carlo experiment was performed to test for
eQTL enrichment using randomly selected SNPs from the
SNP database (dbSNP build 151; November 10, 2017). The
Monte Carlo permutation demonstrate that T1D-associated
SNPs have significantly (t-test p-value <0.0001) more SNP-gene
connections than equally sized sets of randomly selected dbSNPs

4http://www.geneontology.org/
5https://reactome.org/

(Supplementary Table 1). These results are consistent with
previous comparisons of randomly selected SNPs and those
specific for type-2 diabetes or obesity using CoDeS3D (Fadason
et al., 2017).

We identified 25 SNP-eQTLs (associated with transcript levels
of 46 cis- and 25 trans-eGenes) that were predicted (DeepSEA
score <0.05) to have functional regulatory roles within the
genome (Supplementary Table 3). A comparison of the ratios
of cis:trans interactions between the 25 DeepSEA predicted
regulatory SNP-eQTLs and the 88 non-regulatory SNP-eQTLs,
identified an enrichment (p-value of 0.00576; Fisher exact test)
for trans interactions involving the regulatory SNP-eQTLs.
Collectively, these results are consistent with evidence that
inter-genic SNPs associated with disease phenotypes mark gene
regulatory regions (Ernst et al., 2011).

We used Gene Ontology (GO; see text footnote 4) and the
Reactome Pathway Database to annotate T1D-eGenes (both
cis- and trans-eGenes) for biological and functional enrichment.
The T1D-eGenes were significantly enriched (FDR, q < 0.05)
for biological processes and canonical pathways associated with
antigen processing and presentation; immune-cell activation
(T lymphocytes activity); programmed death signaling; and
cytokine signaling (Table 1). Our observations are consistent with
the T1D-associated variants modifying the expression of genes
that are interconnected (directly or indirectly) through networks
that form part of immune system pathways (adaptive immune
signaling, and immune-cell proliferation and activation). This
agrees with previous observations (Newman et al., 2017; Ram
and Morahan, 2017), but does not unequivocally prove that
variations in these pathways directly contribute to the etiology
of T1D.

T1D-Associated SNPs Across the HLA
Locus Affect Transcript Levels of Genes
in cis and trans
There is a possibility that the T1D-associated SNPs located
across the HLA locus are associated with the transcript
levels of multiple genes or that they combine to regulate
the expression of a single strong risk allele. To distinguish
between these two possibilities, we analyzed the linkage
disequilibrium (LD) profile for the HLA based genetic variants
(11 SNPs) associated with T1D amongst people with Western
European ancestry (CEU). We observed maximal linkage
value of R2

≤ 0.6 (Figure 2A). An R2 > 0.8 is generally
accepted as indicating robust linkage (Smith, 2005). Therefore,
the linkage we observed between the SNPs we tested was
relatively weak (R2

≤ 0.6). The inter-eQTL LD we observed
is consistent with the majority of the T1D-associated SNPs
contributing to the development of disease independently.
However, even within the low levels of LD we observed,
it is notable that there are two predominant examples
of long-distance LD between rs1980493-rs1270942, and
rs1270942-rs2647044/rs1980493-rs2647044 (Figure 2A).
Long-distance LD has been characterized across the human
genome and previously hypothesized to be associated with gene
regulation (Koch et al., 2013).
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FIGURE 1 | T1D associated SNPs form an integrated gene regulatory network. (A) Circos plot showing eQTL associations between T1D SNPs and eGenes that
overlap with Hi-C data. Data tracks: chromosome labels (outer-most ring); and a scatter plot of relative SNP positions. Link lines represent significant SNP-gene
interactions at FDR q < 0.05 (Supplementary Table 2). The inset illustrates a cis- and trans-eQTL. The gray ellipsoid represents the unknown factors that are
responsible for mediating the physical interaction. (B) T1D associated genetic variants are involved in cis- and trans-eQTLs that enter and emerge from the HLA
locus. Significant cis- and trans-eQTLs are annotated by lines with arrows, green arrows heads denoted direction of the regulatory effect. Genes within the HLA
locus are annotated as arrows, which indicate transcriptional direction. SNP positions are marked as lines (black – lines indicate significant SNPs, FDR < 0.05).
eGenes affected by trans-eQTLs are colored according to chromosome number as in (A).

The role of genome structure in gene regulation is widely
considered to be represented in the local chromosome structure
observed within topologically associating domains (TADs),
chromosomal regions which physically interact frequently more

than their genomic neighbors (Schmitt et al., 2016). Therefore,
we determined how the HLA eQTLs were positioned with
respect to TADs and local chromatin structure within the
human lymphoblastoid cell line GM12878, at 10 kb resolution
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TABLE 1 | Gene ontologies and pathways enrichment for T1D-eGenes.

∗Gene Ontologies (biological
process enrichment)

Genes FDR

Antigen processing and presentation
(GO:0019882)

18 8.86E-07

Regulation of immune response
(GO:0050776)

35 2.14E-05

Antigen processing and presentation of
exogenous antigen (GO:0019884)

14 5.55E-05

Regulation of T cell activation
(GO:0050863)

18 6.38E-05

Positive regulation of leukocyte cell-cell
adhesion (GO:1903039)

15 6.51E-05

Cell surface receptor signaling pathway
(GO:0007166)

52 2.31E-04

Regulation of lymphocyte activation
(GO:0051249)

19 1.05E-03

Response to stimulus (GO:0050896) 122 2.19E-03

Interferon-gamma-mediated signaling
pathway (GO:0060333)

7 8.37E-03

Regulation of mononuclear cell
proliferation (GO:0032944)

10 2.63E-02

∗∗Reactome pathways enrichment Entities
found¶

FDR

Translocation of ZAP-70 to
immunological synapse
(R-HSA-202430)

18 2.43E-14

Phosphorylation of CD3 and TCR zeta
chains (R-HSA-202427)

18 2.43E-14

Generation of second messenger
molecules (R-HSA-202433)

19 2.43E-14

PD-1 signaling (R-HSA-389948) 18 2.43E-14

Co-stimulation by the CD28 family
(R-HSA-388841)

20 1.04E-11

MHC class II antigen presentation
(R-HSA-2132295)

23 3.16E-11

Downstream TCR signaling
(R-HSA-202424)

21 7.08E-11

TCR signaling (R-HSA-202403) 22 1.65E-10

Interferon gamma signaling
(R-HSA-877300)

27 8.26E-10

Interferon signaling (R-HSA-913531) 29 5.58E-07

∗Significant gene ontologies (biological process) and ∗∗Reactome pathways for
T1D-eGenes were derived from http://www.geneontology.org/ and Reactome
Pathway Database (version 64, https://reactome.org/), respectively, (FDR ≤ 0.05)
(Ashburner et al., 2000; Croft et al., 2014; Carbon et al., 2017; Fabregat et al.,
2018). ¶The number of mapped identifiers corresponding to the pathway for
the selected molecular type. PD-1, programmed cell death protein-1; TCR,
T-cell receptor; ZAP-70, Zeta-chain-associated protein kinase 70; MHC, major
histocompatibility complex. A complete summary of gene ontologies and pathway
enrichments is presented in Supplementary File 1.

(Figure 2B). The GM12878 lymphoblastoid cell line was
used to examine the 3D genome architecture since it has
the densest contact map, containing approximately 4.9 billion
Hi-C captured contacts (Rao et al., 2014). Significant eQTLs
involving rs2523989, rs886424, rs2251396, rs2857595, rs1980493,
rs1015166, rs1270942, and rs9268645 occurred within TADs
that were located across the HLA class I, II, and III regions
(Figure 2B).

Genetic variant rs1270942 was located at, or in close proximity
to, the TAD boundary (Figure 2B) and was observed to spatially
regulate the expression of genes in both the HLA class I and II
regions. Interestingly, rs1270942 was predicted to be regulatory
(DeepSEA) (Supplementary Table 3). SNP rs9268645 was not
predicted to be a regulatory SNP by DeepSEA (Supplementary
Table 3). Yet, rs9268645 falls in a boundary region and is
an eQTL for HLA-DRB1, whose expression was reported to
involve regulation by CCCTC-binding factor (CTCF) through
long-distance chromatin looping (Majumder et al., 2008). The
observed regulatory activity of rs9268645 is consistent with
observations that TAD boundary sites contain elevated levels of
the transcription factor CTCF.

Three SNPs within the HLA region (rs2524054, rs9272346,
and rs2647044) were not found to be involved in eQTLs in our
analysis (Figure 2B). None of these SNPs (rs2524054, rs9272346,
and rs2647044) were predicted to have regulatory functional
roles using DeepSEA algorithm (Supplementary File 1). Notably,
rs9272346 and rs2524054 fall within coding regions, while
rs2647044 is intergenic. This indicates that there are other
mechanisms through which these genetic variants contribute to
T1D disease development. Collectively, our results are consistent
with: (a) T1D-associated variants within proximal and distal
regulatory regions directly affecting expression (i.e., transcript
levels) within and outside of the HLA locus; and (b) interactions
between functional polymorphisms and gene regulatory elements
being associated with inheritance (i.e., long-distance LD).

Expression QTLs Contribute to
Tissue-Specific Effects in
Autoimmune T1D
We hypothesized that disease-relevant biological processes are
fundamentally dependent on mRNA levels, with the cross-tissue
variability of gene expression providing an important avenue
for understanding disease etiologies. Therefore, we analyzed the
tissue-specific contributions of T1D-associated eQTLs to tissues.
Consistent with our hypothesis, eQTL effects were distributed
differently across human tissues (Figure 3A). Tibial artery and
lower leg skin tissues have been linked to peripheral arterial
disease in diabetic patients (American Diabetes Association,
2003; Thiruvoipati, 2015). Both tibial artery and lower leg skin
were observed to have the highest proportion; while brain
substantia nigra tissue displayed the lowest proportion of eQTLs
(Supplementary Figure 1).

We compared the proportions of HLA and non-HLA
associated eQTLs across different tissues and identified two tissue
groups (group 1 and 2) that were located one SD from the
mean (HLA: total eQTL percentage of 28.16± 8.79) (Figure 3B).
Analysis of the eGenes within these groups, using Reactome
pathways database, identified biological enrichment within
antigen presentation, programmed cell death signaling, T-cell
receptor signaling, and interferon gamma signaling) for both
groups of tissues (FDR ≤ 0.05; Figure 3C). The identification
of changes in transcript levels involved in immune activation,
signaling, and response pathways in tissues that are not
traditionally associated with T1D pathology is notable. This may
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FIGURE 2 | T1D-associated variants along the HLA locus affect gene expression within and outside of the locus. (A) Linkage disequilibrium (LD) plots of
T1D-associated SNPs along the HLA locus amongst people with Western European ancestry (CEU). The squares within the heat map represent the LD (R2) value
between every two variants. The weak LD (R2

≤ 0.6) indicates that SNPs are infrequently co-inherited and contribute to disease development independently.
SNPs with significant eQTLs are represented by black marks (FDR≤ 0.05). (B) An interaction frequency heat map of intra-chromosomal contacts across the HLA locus

(Continued)
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FIGURE 2 | Continued
(∼4 Mb) captured in the human lymphoblastoid cell line GM12878 at 10 kb resolution (Rao et al., 2014). The heat map color represent the levels of normalized
interaction frequencies and triangles illustrate topological association domains (TADs). SNPs that show significant and non-significant eQTLs are denoted by black
and red marks, respectively (FDR ≤ 0.05). Loops (lines with arrows) represent interactions between SNPs and genes that are associated with differential expression.
Green arrows heads denoted direction of the regulatory effect. The illustrated gene map is as in Figure 1 (B). [The heat map matrix of pairwise LD was plotted at
https://ldlink.nci.nih.gov/. Hi-C interaction frequency heat maps were plotted at http://kobic.kr/3div/ (Yang et al., 2018)].

FIGURE 3 | T1D-associated eQTL effects are tissue-specific. (A) T1D-associated eQTLs are differentially distributed across human tissues. The differential
distribution is epitomized by the relative proportions of HLA and non-HLA associated eQTLs in different tissues. A complete summary of all GTEx tissues with
significant eQTLs (FDR ≤ 0.05) is presented in Supplementary Figure 1. (B) The relative contributions of HLA associated T1D eQTLs to tissue specific effects.
Relative contribution was calculated (HLA: total eQTLs for a tissue expressed as a percentage). The mean HLA contribution was 28.16 ± 8.79%. (C) eGenes within
tissues with high or low HLA contributions (i.e., ±1 SD from the mean) were enriched for biological pathways associated with immune pathways. Biological pathway
enrichment was performed using the Reactome pathways database (Fabregat et al., 2018), with significant (FDR ≤ 0.05) for immune response pathways.

indicate that dysregulation of the immune-associated signals
within these tissues contributes to the onset or development
of T1D. Collectively, we observed cross-tissue concordance
for T1D-associated eQTL effects (either HLA or non-HLA
associated; Figure 3B), which is consistent with multiple tissues
and specific biological pathways impacting on T1D progression
(Mei et al., 2017).

DISCUSSION

The etiology of T1D is hypothesized to involve T cell-mediated
destruction of the insulin-producing pancreatic islet beta
cells, leading to complete insulin loss (Insel et al., 2015). We
have integrated genetic variation, 3D genome organization
and functional analyses (eQTLs) to better understand the
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downstream effects of SNPs associated with T1D. Our findings
identify overlapping regulatory networks that contribute to
adaptive immune signaling, immune-cell proliferation and
activation in a tissue-specific manner. We contend that the
integration of mixed “omics” datasets into the functional
interpretation of T1D-associated SNPs has identified novel
pathways and tissue-specific functional genetic loads that
represent high priority targets for clinical investigation
into the developmental windows and effects that contribute
to T1D.

Our analyses identify associative functional effects of
T1D GWAS-associated SNPs in regulating the tissue-
specific expression of target genes either through cis- or
trans-interactions. Importantly, Hi-C interaction patterns
captured from cells demonstrate permissible contacts that can
occur at a detectable frequency across populations of cells in
human tissues (Nagano et al., 2013). Moreover, it is widely
recognized that topologically associated domains captured
in cell lines and lineages are highly conserved (Dixon et al.,
2015). We therefore assert that the high-resolution Hi-C
data from the immortalized human cell lines [i.e., derived
from Rao et al. (2014)] represents interactions that can form
within the human genome in different tissues. However, a
potential limitation of our study is that it is not possible to
identify all potential chromatin interactions across different
cell types, thus there is a possibility that several tissue-specific
chromatin interactions may be missing. As such, future work
should integrate tissue and developmental stage specific
chromatin architecture into analyses to identify all possible
interactions.

Contextualize Developmental SNPs in 3D does not take
into account the linkage disequilibrium of genetic variants,
rather the resolution is based on the interactions that the
restriction fragments were captured in the Hi-C experiments
that determine genome organization. Analysis by CoDeS3D does
not designate the tested SNPs as being causal, as other SNPs
located within the same restriction fragment that are in strong
linkage are not separable using the algorithm (Fadason et al.,
2017). However, if strongly linked SNPs are located on different
restriction fragments then their effects are separable as the
characterization of the eQTLs is dependent upon the genes that
the restriction enzymes were captured interacting with in the
nucleus.

Not all of the eQTL SNPs that we identified were identified
as being regulatory by the DeepSEA machine learning algorithm.
We contend that the 25 “functional” SNPs predicted by DeepSEA
overlap putative gene regulatory regions (i.e., enhancer and
transcription binding sites), while the 88 “non-functional” SNPs
are in LD with a regulatory locus within a genomic restriction
fragment. Additionally, the 17 SNPs that DeepSEA predicted
to be “functional” from within the set of 70 non-significant
SNP-eQTLs indicates that: (a) not all tissue and cell-specific
chromatin states are represented in the CoDeS3D analysis;
and/or (b) the eQTLs within GTEx do not represent all of the
developmental stages that are relevant to T1D.

Allelic variations in the antigen presentation mediated by
the HLA locus under-pin autoimmune disease (Raj et al., 2016).

The low levels of LD observed for the eQTLs within the
HLA region indicates that these T1D-associated SNPs
contribute to the development of disease independently
as they are rarely co-inherited. This is consistent with
Barcellos et al. (2009) who identified the existence of
multiple, independent disease susceptibility regions within
the HLA locus (Barcellos et al., 2009). However, there are
notable examples of multiple susceptibility loci within HLA
haplotypes combining to influence T1D risk through co-
regulation (Figure 2B). It remains to be determined if the
T1D-associated genetic variants within the HLA locus disrupt
the coordinated chromatin configuration (Raj et al., 2016).
However, long-distance regulation involving regulatory loci
at TAD boundaries in the HLA locus has been observed
previously (Majumder et al., 2008; Majumder and Boss,
2010). Future work should use CRISPR-Cas or Degron based
strategies (Sander and Joung, 2014; Guharoy et al., 2016) to
empirically confirm the mechanisms by which genetic variations
at these loci results in transcriptional changes in order to
enable the development of targeted therapeutic or prognostic
approaches.

Studies have identified the HLA class II region as a
recombination hotspot, resulting in a disrupted LD pattern for
a region that is known to exhibit robust linkage (Crawford
et al., 2004; Miretti et al., 2005). Population history (i.e.,
genetic drift), chromosomal recombination activity, and selective
pressure could potentially explain the observed long-range LD we
observed across the class III – class II HLA regions (Miretti et al.,
2005). We contend that understanding the co-inheritance of the
eQTL SNP-egene pairs will provide fundamental insights into
the associated protection and susceptibility for particular HLA
haplotypes in T1D development across different populations
(Cucca et al., 2001). This will be particular relevant in populations
that are undergoing relatively rapid and high levels of genetic
admixture.

Type 1 diabetes-associated eQTL mapping studies have
focused on cell-specific effects in immune cell types (e.g., Kasela
et al., 2017; Ram and Morahan, 2017). This approach is based
on the assumption that these tissues are critical to understanding
the development and pathology of T1D. Onengut-Gumuscu et al.
(2015) demonstrated that genetic variants associated with T1D
are enriched within enhancer sequences of active CD34+ stem
cells, T and B lymphocytes, and the thymus gland. Notably, the
integration of Hi-C data (enhancer-promoter interactions) with
T1D-associated SNPs across GTEx tissues in our study implicates
dysregulated immune signaling and responses in tissues that are
not traditionally considered central to the molecular etiology
of T1D. Thus, it remains possible that the functional load
that is associated with HLA-associated eQTLs as observed in
the uterine tissues reflects the unique immune status of this
tissue, and contributes to the development of gestational diabetes
mellitus in individuals (Binder et al., 2015). Similarly, adipose
tissue has recently been hypothesized to play a role in antigen
presentation and modulation of T cells (Huh et al., 2014).
Therefore, identifying the developmental windows and how
the functional genetic loads within these non-traditional tissues
contribute to dysregulated immune activity in T1D will be
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important in uncovering the trigger(s) for and developmental
program of T1D.

The enrichment of T1D-associated cis- and trans-eGenes
within immune response pathways that include: antigen
presentation; T lymphocytes and B cell activity; receptor signaling
complex; and scaffold activity may explain a component of
their contribution to the pathogenesis of T1D. For example,
the BTN3A2 gene product plays an important role in T-cell
responses in the adaptive immune response by inhibiting
the release of interferon gamma (IFN-γ) from activated
T-cells (Messal et al., 2011). Aberrant expression of IFN-γ
is associated with a pathogenic role in T1D (Bazzaz et al.,
2014). Therefore, it was significant that we observed that
BTN3A2 transcript levels were linked to rs886424, by a spatial
trans-eQTL, in 32 tissues. The associative role of eQTL-SNPs
in the trans- (i.e., NUP93[rs12708716], HLA-E[rs614226],
HLA-DPA1[rs924043], and HLA-DQB2[rs2251396]) and
cis-regulation (i.e., TRIM26[rs2523989] and TYK2[rs2304256])
of genes within the interferon signaling pathways raises the
possibility that changes in the distal regulation of genes
within pathways contributes to disease pathogenesis. The
observed associative trans-regulation of the ARHGAP42
gene (a member of the Rho GTPase activating proteins) by
rs3184504 in EBV-transformed lymphocytes demonstrates that
trans-interactions can contribute to a cell-type specific regulatory
mechanism. Interestingly, Fairfax et al. (2012) demonstrated a
monocyte-specific trans-association of ARHGAP24 gene with
the DRB1∗04, ∗07, and ∗09 alleles. Notably, these DRB1 alleles
are associated with expression of HLA-DRB4, which encodes the
DR53 super-antigen in autoimmune disease progression (Heldt
et al., 2003).

The SORBS1 gene (a trans-eGene for rs1326934) was observed
to be differentially up-regulated in the oesophageal mucosa tissue.
The SORBS1 gene product, sorbin, is involved in insulin function
(i.e., signaling and stimulation) and has been implicated in
insulin resistance and the pathogenesis of diabetic nephropathy
(Lin et al., 2001; Germain et al., 2015). The association between
rs3825932 and the upregulation of CTSH (a lysosomal cathepsin
protease) transcript levels in the pancreas and liver tissues
complements a known regulatory role for the protease in beta cell
function (Floyel et al., 2014). Specifically, the overexpression of
CTSH in an insulin secreting beta cell derived cell line (INS-1) has
been shown to be anti-apoptotic through a reduction in p38 and
JNK activity; and downregulation of the pro-apoptotic factors
Bim, DP5, and c-Myc (Floyel et al., 2014). CTSH is also involved
in the positive regulation of insulin transcription, and is a key
regulator of beta cell function during the progression of disease
in children with recent-onset T1D (Floyel et al., 2014).

We observed a trans-association between rs602662 and the
downregulation of CAMTA1 only within the pancreas. The
CAMTA1 gene product has been demonstrated to play an
integral role in the regulation of microRNA profiles (i.e.,
miR-212/miR-132) and beta cell function, with the differential
expression of transcript levels implicated in the pathogenesis
of diabetes (Mollet et al., 2016). Collectively our results are
consistent with trans- and cis-regulatory elements, located at or

surrounding T1D eQTL-SNPs, acting to control a previously
unrecognized network of genes that: (a) modulate the immune
response; and (b) affect pancreatic beta cell function and
survival. We contend that these spatial-regulatory networks are
fundamental to understanding the mechanisms and therapeutic
approaches to T1D.

We hypothesize that immune-regulatory mechanisms operate
within tolerance ranges, and if not properly regulated they
can promote autoimmune reactions. It is therefore intriguing
that T1D-associated genetic variants spatially contribute to
distinct overlapping regulatory networks that have the potential
to modify the development of the autoimmune phenotype.
Notably, the direct and indirect interconnectivity of the
T1D-associated eQTLs means that they are capable of influencing
immune-response genes expression in a tissue and cell-type
specific manner. Untangling these effects requires empirical
studies that incorporate expression QTL analyses within
precision approaches that illuminate the genetic basis of
individual immunological responses. These studies should
also refine the mapping strategy for the identification of
the regulatory connections by extending the Hi-C data to
include additional tissue and developmental stage relevant
maps of genomic organization. Integration of these data into
clinical studies of T1D will enable individualized mechanistic
understanding of treatment response, prognosis and disease
development.
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