
Article

Trees, Stumps, and Applications

John C. Butcher

Department of Mathematics, University of Auckland, Auckland 92019, New Zealand;
butcher@math.auckland.ac.nz

Received: 23 May 2018; Accepted: 16 July 2018; Published: 1 August 2018
����������
�������

Abstract: The traditional derivation of Runge–Kutta methods is based on the use of the scalar test
problem y′(x) = f (x, y(x)). However, above order 4, this gives less restrictive order conditions
than those obtained from a vector test problem using a tree-based theory. In this paper, stumps,
or incomplete trees, are introduced to explain the discrepancy between the two alternative theories.
Atomic stumps can be combined multiplicatively to generate all trees. For the scalar test problem,
these quantities commute, and certain sets of trees form isomeric classes. There is a single order
condition for each class, whereas for the general vector-based problem, for which commutation of
atomic stumps does not occur, there is exactly one order condition for each tree. In the case of order 5,
the only nontrivial isomeric class contains two trees, and the number of order conditions reduces
from 17 to 16 for scalar problems. A method is derived that satisfies the 16 conditions for scalar
problems but not the complete set based on 17 trees. Hence, as a practical numerical method, it has
order 4 for a general initial value problem, but this increases to order 5 for a scalar problem.

Keywords: ordinary differential equations; Runge–Kutta; tree; stump; order; elementary differential

MSC: 65L05

1. Introduction

Trees have a well-established role in the analysis of numerical methods for ordinary differential
equations. In this paper, the more general concept of a stump is introduced and applied to the analysis
of B-series and the composition rule. It is also shown how stumps can be used to analyse the order of
nonautonomous scalar problems for which the order conditions for Runge–Kutta methods are slightly
different. A new explanation is given for this discrepancy.

In Section 2, a brief survey is given of the theory of Runge–Kutta methods, showing the structure of
the elementary differentials on which B-series are based and the relationship of elementary differentials
to trees. This is followed by Section 3, in which stumps are introduced. These are a generalisation of
trees, but, by restricting to “atomic stumps”, they also provide a means of generating all trees. Isomeric
classes of trees generated in this way provide a framework for the analysis of order conditions in the
scalar case, as shown in Section 4. The paper concludes with the derivation of a method of “ambiguous
order”. That is, the method has order 4 in general, but this increases to 5 for a scalar problem.

The theory of stumps, isomeric trees, and applications to scalar differential equations appear in
greater detail in [1]. The theory of trees and applications to vector-based numerical methods can be
found, for example, in [2]. The order of the method in [3] was studied in [4].

2. Trees, Elementary Differentials, and B-Series

Trees are graphs such as , , , , , , , . The “root” of a tree is the lowest point in the
diagram, and all vertices, except for the root, have a single parent. For a given tree t, the “order of t”,

Axioms 2018, 00, 0; doi:10.3390/axioms00000000 www.mdpi.com/journal/axioms

http://www.mdpi.com/journal/axioms
http://www.mdpi.com
http://www.mdpi.com/2075-1680/00/0/0?type=check_update&version=1
http://dx.doi.org/10.3390/axioms00000000
http://www.mdpi.com/journal/axioms

Axioms 2018, 00, 0 2 of 13

written as |t|, is the number of vertices in t. If a vertex v is the parent of v′, then v′ is a child of v. If there
exists a path

(v0, v1, v2, . . . , vn), where vi is a child of vi−1, i = 1, 2, . . . , n,

then vn is a “descendant” of v0. The product of the number of descendants for every vertex in a tree t
is defined to be the “factorial of t” and is written as t!.

For the first eight trees, the order and factorial are the following:

| | = 1, | | = 2, | | = 3,
∣∣ ∣∣ = 3, | | = 4,

∣∣ ∣∣ = 4,
∣∣ ∣∣ = 4,

∣∣∣ ∣∣∣ = 4;

! = 1, ! = 2, ! = 3, ! = 6, ! = 4, ! = 8, ! = 12, ! = 24.

2.1. Notation and Recursions

In this paper, τ := , and we recall two recursions to build other trees in terms of τ. There
are two convenient constructions for building complicated trees in terms of simpler trees. They are
the following:

1. Given trees t1, t2, . . . , tm, define t = [t1t2 · · · tm] from the diagram

t =

t1 t2 t3 · · · tm

The notation
[
tk1
1 tk2

2 · · · t
km
m
]

is used to show repetitions of t1, . . . Assuming the ti are distinct, then
the “symmetry” σ(t) is defined recursively by

σ(τ) = 1,

σ
([

tk1
1 tk2

2 · · · t
km
m
])

=
m

∏
i=1

ki!σ(ti)
ki .

2. Given trees t1 and t2, define t = t1 ∗ t2 from the diagram

t = t1

t2

2.2. Polish Notation Tree Construction

Polish notation or prefix (as distinct from infix or postfix) notation is credited to Lukasiewicz.
A famous reference to his work is [5]. We generalise the notation so that τm acts as a prefix operator
on m operands and thus τmt1t2 · · · tm has the same meaning as [t1t2 · · · tm]. This gives a third and
bracketless scheme for writing trees. In Table 1, the various notations are given side by side. It is noted
that the notation based on t ∗ t′ does not always give a unique factorisation.

Axioms 2018, 00, 0 3 of 13

Table 1. Tree notations.

Tree Notation 1 Notation 2 Polish Notation

τ τ τ
[τ] τ∗τ τ1τ
[τ2] (τ∗τ)∗τ τ2ττ

[[τ]] τ∗(τ∗τ) τ1τ1τ
[τ3] ((τ∗τ)∗τ)∗τ τ3τττ

[τ[τ]] (τ∗τ)∗(τ∗τ) = (τ∗(τ∗τ))∗τ τ2ττ1τ

[[τ2]] τ∗((τ∗τ)∗τ) τ1τ2ττ

[[[τ]]] τ∗(τ∗(τ∗τ)) τ1τ1τ1τ

2.3. Elementary Differentials

Given an autonomous initial value problem,

y′(x) = f (y(x)), y(x0) = y0, y : R→ RN , f : RN → RN , (1)

we write f = f (y0) and also write the sequence of Fréchet derivatives of f , evaluated at y0, as f′, f′′,
f(3), . . . It is noted that, in linear algebra terms, these are linear, bilinear, and multilinear operators. In
this paper, we always use Polish notation so that f(m) acting on the m vectors v1, v2, . . . , vm is written
as f(m)v1v2 · · · vm.

Definition 1. The elementary differential F(t) associated with the tree t is defined by

F(τ) = f,

F([t1t2 · · · tm]) = f(m)F(t1)F(t2) · · · F(tm).

It is noted that the recursion formula can also be written as

F(τmt1t2 · · · tm) = f(m)F(t1)F(t2) · · · F(tm).

This makes it possible, in the Polish form of tree notation, to perform a simple substitution. That is,
every τ is replaced by f, and every τm is replaced by f(m).

2.4. Application to B-Series

Given a function a : T → R, the corresponding B-series is a formal Taylor series:

y0 + ∑
t∈T

a(t)h|t|

σ(t)
F(t).

Two special cases are the following:

1. t 7→ 1/t!, which gives the Taylor series for the solution to Equation (1) at x = x0 + h. The series is

y0 + ∑
t∈T

h|t|

t!σ(t)
F(t). (2)

Axioms 2018, 00, 0 4 of 13

2. t 7→ Φ(t), where Φ(t) is the corresponding elementary weight for a specific Runge–Kutta method.
This gives the Taylor series for the approximation computed by this Runge–Kutta method:

y0 + ∑
t∈T

Φ(t)h(|t|)

σ(t)
F(t). (3)

By comparing Equations (2) and (3), we recover the conditions for a Runge–Kutta method to have
order p:

Φ(t) =
1
t!

, |t| ≤ p. (4)

3. Trees, Forests, and Stumps

A sequence of items built from τ, τ1, τ2, . . . , can be contracted by the rules of Polish operations
to form a sequence of trees, together with a final subsequence that might not be a tree but would
become one if further operands are appended on the right. The sequence of trees on the left is usually
referred to as a forest and can be converted into a single tree by a suitable operator to the left of this
subsequence.

Incomplete “trees” are referred to as stumps. Examples are

τ1, τ2, τ2τ1τ, τ1τ2τ, τ1τ1τ1.

The “valency” of a stump is the number of copies of τ, appended to the right, that would be
required to convert it into a tree. It is convenient to refer to a tree as a stump with zero valency.

The word “forestump” is introduced to refer to a sequence of items made up from factors τ and
τm, m = 1, 2, . . . When a particular forestump is contracted to form as many trees as possible, then
the final form will be the formal product of a forest of trees followed by a single stump (possibly the
empty stump).

3.1. Bicolour Diagrams to Represent Stumps

We now introduce a generalisation of the way trees are represented diagrammatically to include
stumps. We regard stumps as modified trees with some leaves removed but with the edges from these
missing leaves to their parents retained.

In the examples given here, a white disc represents the absence of a vertex. The number of white
discs is the valency, with the remark that trees are stumps with zero valency.

Valency 0

Valency 1

Valency 2

Right multiplication by one or more additional stumps implies grafting to open valency positions.
It is noted that the third and fourth examples of valency 2 stumps are mirror images. This is significant
in determining the precedence of the operands.

3.1.1. Products of Stumps

Given two stumps s and s′, the product ss′ has a nontrivial product if s′ is not the trivial stump
and s has valency of at least 1; that is, if s is not a tree, the product is formed by grafting the root of s′

to the rightmost open valency in s.

Axioms 2018, 00, 0 5 of 13

Two examples of grafting illustrate the significance of stump orientations:

=

=

If s is a tree or s′ is the trivial stump, no contraction takes place.

3.1.2. Atomic Stumps

An atomic stump is a graph of the following form:

It is noted that no more than two generations can be present.
If m of the children of the root are represented by black discs and n are represented by white discs,

then the atomic stump is denoted by smn. The reason for the designation “atomic” is that every tree
can be written as the product of atoms.

This is illustrated for trees of up to order 4:

= s00

= s10

= s20

= s01s10 =

= s30

= s11s10 =

= s01s20 =

= s01s01s10 =

3.1.3. Isomeric Trees

In the factorisation of trees into products of atoms, the factors are written in a specific order, with
each factor operating on later factors. However, if we interpret the atoms just as symbols that can
commute with each other, we obtain a new equivalence relation, written as ∼.

Definition 2. Two trees are isomeric if their atomic factors are the same.

Nothing interesting happens up to order 4, but for order 5, we find that

= s11s01s10 ∼ s01s11s10 =

It is a simple exercise to find all isomeric classes of any particular order, but, as far as the author knows,
this has not been done above order 6.

Axioms 2018, 00, 0 6 of 13

For orders 5 and 6, the isomers are, line by line, the following:

= s11s01s10 = s01s11s10

= s02s10s01s10 = s01s02s10s10

= s11s01s20 = s01s11s20

= s21s01s10 = s01s21s10

= s11s01s01s10 = s01s11s01s10 = s01s01s11s10

We see in Section 4 that isomeric classes for scalar differential equations have a similar role to individual
trees in the case of differential systems of arbitrarily high dimension. We let an denote the number of
trees with order n and An denote the accumulated total a1 + a2 + · · ·+ an. Similarly, we let bn denote
the number of isomeric classes with order n and Bn denote the accumulated total for this quantity.
These are shown in Table 2 up to order 6.

Table 2. Trees and isomeric classes for various orders.

n 1 2 3 4 5 6

an 1 1 2 4 9 20
An 1 2 4 8 17 37

bn 1 1 2 4 8 15
Bn 1 2 4 8 16 31

4. Scalar Differential Equations

Early studies of Runge–Kutta methods derived order conditions for the scalar initial value problem

y′(x) = f (x, y(x)), (5)

instead of using the autonomous test problem (Equation (1)).
The full set of conditions up to some specified order becomes the starting point for finding

accurate Runge–Kutta methods. The derivations of these conditions to order 5 were the pioneering
contributions of Runge, Heun, and then Kutta [6–8]. We follow their arguments for the same model
problem (Equation (5)). In this derivation, ∂x f := ∂ f /∂x and ∂y f := ∂ f /∂y, with similar notations for
higher partial derivatives. First, we find the second derivative of y by the chain rule:

y′′ = ∂x f + (∂y f) f .

Similarly, we find the third derivative:

y(3) =
(

∂
2
x f + (∂x ∂y f) f

)
+ ∂y f

(
∂x f + (∂y f) f

)
+ (∂x ∂y f) f + (∂

2
y f) f 2

= ∂
2
x f + 2(∂x ∂y f) f + (∂

2
y f) f 2 + (∂x f ∂y f) f + (∂y f)2 f

Axioms 2018, 00, 0 7 of 13

and carry on to find fourth and higher derivatives. By evaluating y(n) at x = x0, we can find the
Taylor expansions to use in Equation (5). A more complicated calculation leads to the detailed series of
Equation (8) in the case of any particular Runge–Kutta method and hence to the determination of its
order. We pursue this line of enquiry below.

The greatest achievement in this line of work was given in [3], where sixth order methods
involving eight stages were derived. In all the derivations of new methods, up to the publication of
this tour de force, a tacit assumption was made. This was that a method derived to have a specific
order for a general scalar problem will have this same order for a coupled system of scalar problems;
that is, it will have this order for a problem with N > 1. This bald assumption is untrue, and it becomes
necessary to carry out the order analysis in a multidimensional setting.

4.1. Nonautonomous Vector-Valued Problems

This analysis was carried out in a scalar context, in contrast to later work, for which the application
was always to vector-valued problems. To cater for problems that are both nonautonomous and,
at the same time, vector-valued, we can use the terminology of the present section but with a
multidimensional interpretation.

This is done by regarding factors such as ∂y f and ∂
2
y f as linear operators and bilinear operators,

respectively, that operate on vector-valued terms to the right, using Polish notation. To maintain this
interpretation, when a problem is nonscalar, this requires the strict order of factors to be observed.
Of course, in the traditional scalar interpretation, all factors commute, and the order of factors could
have been altered.

4.2. Systematic Derivation of Taylor Series

The evaluation of y(n), n = 1, 2, . . . , 5, is now carried out in a systematic manner. We let

Dmn =
m

∑
i=0

(
m
i

)
(∂

m−i
x ∂

n+i
y f) f i. (6)

We also let Dmn denote Dmn evaluated at (x0, y0).

Lemma 1.
d

dx Dmn = Dm+1,n + mDm−1,n+1D10. (7)

Proof.

d
dx

m

∑
i=0

(
m
i

)
(∂

m−i
x ∂

n+i
y f) f i

=

(m

∑
i=0

(
m
i

)
(∂

m−i+1
x ∂

n+i
y f) f i +

m

∑
i=0

(
m
i

)
(∂

m−i
x ∂

n+i+1
y f) f i+1

)
+

m

∑
i=0

(
m
i

)
i(∂x f)(∂

m−i
x ∂

n+i
y ∂y f) f i−1

=
m+1

∑
i=0

((
m
i

)
+

(
m

i− 1

))
∂

m−i+1
x (∂

n+i
y f) f i +

m

∑
i=0

(
i

m!
i!(m− i)!

)
(∂x f)(∂

m−i
x ∂

n+i
y ∂y f) f i−1

=
m+1

∑
i=0

(
m + 1

i

)
(∂

m−i+1
x ∂

n+i
y f) f i + m

m−1

∑
i=0

(
m− 1

i

)
(∂x f)(∂

m−i−1
x ∂

n+1+i
y ∂y f) f i

= Dm+1,n + mDm−1,n+1D10.

Axioms 2018, 00, 0 8 of 13

Using Lemma 1, we find in turn that

y′ = D00

y′′ = D10

y′′′ = D20 + D01D10

y(4) = D30 + 2D11D10 + D11D10 + D01(D20 + D01D10)

= D30 + 3D11D10 + D01D20 + D2
01D10

y(5) = D40 + 3D21D10 + 3(D21 + D02D10)D10 + 3D11(D20 + D01D10)

+D11D20+D01(D30+2D11D10)+2D01D11D10+D2
01(D20+D01D10)

= D40 + 6D21D10 + 3D02D10D10 + 4D11D20 + 7D11D01D10

+ D01D30 + D2
01D20 + D3

01D10.

(8)

To find the order conditions for a Runge–Kutta method, up to order 5, we need to systematically find
the Taylor series for the stages and finally for the output. In this analysis, we assume that ∑s

j=1 aij = ci
for all stages. For the stages, it is sufficient to work only to order 4, so that the scaled stage derivatives
include h5 terms.

As a step towards finding the Taylor expansions of the stages and the output, we need to find the
series for h f (Y) for a given series Y = y0 + · · · . In the following result, we use an arbitrary weighted
series using the terms in Equation (8).

Lemma 2. If

Y = y0 + a1hD00 + a2h2D10 + a3h3 1
2 D20 + a4h3D01D10

+ a5h4 1
6 D30 + a6h4D11D10 + a7h4 1

2 D01D20 + a8h4D2
01D10 +O(h5),

then
h f (x0 + ha1, Y) = hT1 + h2T2 + h3T3 + h4T4 + h5T5 +O(h6),

where

T1 = D00,

T2 = a1D10,

T3 = 1
2 a2

1D20 + a2D01D10

T4 = 1
6 a3

1D30 + a1a2D11D10 +
1
2 a3D01D20 + a4D2

01D10

T5 = 1
24 a4

1D40 +
1
2 a2

1a2D21D10 + a1a3D11D20 +
(
a1a4 + a6

)
D11D01D10

+ 1
2 a2

2D02D2
10 +

1
6 a5D30D01 +

1
2 a7D2

01D20 + a8D3
01D10.

Proof. Throughout this proof, an expression of the form ∂
k
x ∂

m
y f is assumed to have been evaluated at

(x0, y0). Evaluate T1, T2, T3, and T4:

T1h + T2h2 + T3h3 + T4h4 +O(h5),

Axioms 2018, 00, 0 9 of 13

where

T1 = f (x0, y0) = D00,

T2 = a1 ∂x f + a1(∂y f) f = a1D10,

T3 = 1
2 a2

1 ∂
2
x f + a2

1(∂x ∂y)D00 +
1
2 a2

1(∂
2
y f)D2

00 + a2(∂y f)D10

= 1
2 a2

1D20 + a2D01D10,

T4 = 1
6 a3

1 ∂
3
x f + 1

2 a3
1(∂

2
x ∂y f)D10 +

1
2 a3

1(∂x ∂
2
y f)D2

10 +
1
6 a3

1 ∂
3
y f D3

10

+ a1a2(∂x ∂y f)D10 + a1a2(∂
2
y f)D10D01 + a3(∂y f)D20 + a4(∂y f)D01D10

= 1
6 a3

1D30 + a1a2D11D10 + a3D01D20 + a4D2
01D10.

The evaluation of T5 is similar but more complicated and is omitted.

For the stage values of a Runge–Kutta method, we have

Yi = y0 +
s

∑
j=1

aijh f (x0 + hcj, Yj)

= y0 + hciD00 +O(h2)

and then, to one further order,

Yi = y0 +
s

∑
j=1

aijh f (x0 + hcj, y0 + hcjD00) +O(h3)

= y0 + hciD00 + h2 ∑
j

aijcjD10 +O(h3).

A similar expression can be written down for the output from a step:

y1 = y0 + h ∑
i

biD00 + h2 ∑
i

biciD10 +O(h3).

A comparison with the exact solution, y0 + hy′(x0) +
1
2 h2y′′(x0) +O(h3), evaluated using Equation

(8), gives, under second order conditions,

∑
i

biD00 = D00,

∑
i

biciD10 = 1
2 D10.

This analysis can be taken further in a straightforward and systematic way and is summarised,
as far as order 5, in Theorem 1. This theorem, for which the detailed proof is omitted, has to be read
together with Table 3.

Theorem 1. In the statement of this result, the quantities p, T , σ, and φ are given in Table 3.

1. The Taylor expansion for the exact solution to the initial value problem

y′(x) = f (x, y), y(x0) = y0 (9)

to within O(h6) is y0 plus the sum of terms of the form

ehpσ−1T .

Axioms 2018, 00, 0 10 of 13

2. The Taylor expansion for the numerical solution y1 to Equation (9), using a Runge–Kutta method (A, bT, c),
to within O(h6) is y0 plus the sum of terms of the form

φhpσ−1T .

3. The conditions to order 5, for the solution of Equation (5) using (A, bT, c), are the equations of the form

φ = e.

Table 3. Data for Theorem 1 with reference numbers (O1)–(O11) and (O14)–(O17) shown.

p σ T φ = e

1 1 D00 ∑ bi = 1 (O1)

2 1 D10 ∑ bici =
1
2 (O2)

2 D20 ∑ bic2
i = 1

3 (O3)
3

1 D01D10 ∑ biaijcj =
1
6 (O4)

6 D30 ∑ bic3
i = 1

4 (O5)

1 D11D10 ∑ biciaijcj =
1
8 (O6)

4
2 D01D20 ∑ biaijc2

j =
1

12 (O7)

1 D2
01D10 ∑ biaijajkck =

1
24 (O8)

24 D40 ∑ bic4
i = 1

6 (O9)

2 D21D10 ∑ bic2
i aijcj =

1
10 (O10)

2 D11D20 ∑ biciaijc2
j =

1
15 (O11)

1 D11D01D10 ∑ bi(ci + cj)aijajkck =
7

120
5

2 D02D2
10 ∑ biaijcjaikck =

1
20 (O14)

6 D01D30 ∑ biaijc3
3 = 1

20 (O15)

2 D2
01D20 ∑ biaijajkc2

k = 1
60 (O16)

1 D3
01D10 ∑ biaijajkak`c` = 1

120 (O17)

4.3. Order Conditions for Vector Problems

The order conditions for the autonomous vector problem, given by Equation (4) for p = 5, are
identical to (O1)–(O11) and (O14)–(O17) together with the two cases of (4) missing from Table 3:

∑ biciaijajkck =
1

30 , (O12)

∑ biaijcjajkck =
1

40 . (O13)

(11). Although these do not occur in Table 3, the sum of (O12) and (O13) is equal to

∑ bi(ci + cj)aijajkck =
7

120 , (10)

which does occur as an un-numbered entry in Table 3. Apart from this discrepancy, the order conditions
for the scalar and vector problems exactly agree as far as order 5.

Axioms 2018, 00, 0 11 of 13

4.4. Derivation of Ambiguous Method

We now construct a method that has order 5 for a scalar problem but only order 4 for a vector-based
problem. This means that all the conditions Φ(t) = 1/t! need to be satisfied for the 17 trees such
that |t| ≤ 5, except for (O12) and (O13), which can be replaced by Equation (10). In constructing this
method, it is convenient to introduce a vector dT defined as

dT = bT A + bTC− bT.

This satisfies the property
dTcn−1 = 0, n = 1, 2, 3, 4, (11)

because
dTcn−1 = bT Acn−1 + bTcn − bTcn−1 =

1
n(n + 1)

+
1

n + 1
− 1

n
= 0.

In the method to be constructed, some assumptions are made. These are

i−1

∑
j=1

aijcj =
1
2 c2

i , i 6= 2, 3, (12)

c6 = 1, (13)

b2 = b3 = 0. (14)

From Equations (13) and (14) and some of the order conditions, it follows that ∑6
i=1 bici(ci − c4)(ci −

c5)(1− ci) = 0, implying that 1
120 (20c4c5 − 10(c4 + c5) + 4) = 0 and hence that (1

2 − c4)(c5 − 1
2) =

1
20 .

We choose the convenient values c4 = 1
4 and c5 = 7

10 together with c2 = 1
2 and c3 = 1. The value of b is

found from (O1), (O2), (O3), (O5), and (O9), and d is found from Equation (11) with the requirement
that d6 = 0. The results are

b = [1
14 0 0 32

81
250
567

5
54],

d = θ[1 7 7
9 − 112

27
125
27 0],

where θ is a parameter, assumed to be nonzero. The third row of A can be found from

d2
(
− 1

2 c2
2
)
+ d3

(
a32c2 − 1

2 c2
3
)
= 0, (15)

because, from several order conditions,

dT
(

Ac− 1
2 c2) = bT A2c + bTCAc− bT Ac− 1

2 bT Ac2 − 1
2 bTc3 + 1

2 bTc2

= 1
24 + 1

8 − 1
6 − 1

24 − 1
8 + 1

6 = 0.

From Equation (15), it is found that a32 = 13
4 . The values of a42 and a52 can be written in terms

of the other elements of rows 4 and 5 of A, and row 6 can be found in terms of the other rows.
There are now four free parameters remaining (a43, a53, a54, and θ) and four conditions that are not

Axioms 2018, 00, 0 12 of 13

automatically satisfied. These are (O11), (O16), (O17), and Equation (10). The solutions are given in the
complete tableau.

0
1
2

1
2

1 − 9
4

13
4

1
4

9
64

5
32 − 3

64
7

10
63

625
259

2500
231

2500
252
625

1 − 27
50 − 139

50 − 21
50

56
25

5
2

1
14 0 0 32

81
250
567

5
54

(16)

5. Numerical Test

A suitable single differential equation to test the order of convergence of this method, together with
a closely related autonomous system, is

dy
dx

=
y− x
y + x

, (17)

d
dt

[
x
y

]
=

1√
x2 + y2

[
y + x
y− x

]
(18)

The solution of Equation (17), in parametric coordinates, is

x = ξ(t) := t sin(ln(t)),

y = η(t) := t cos(ln(t)),

and this is also the solution to Equation (18).
Two experiments were carried out:

1. The scalar problem (Equation (17)) was solved using the method of Equation (16) on the interval
[ξ(π/6), ξ(5π′12)].

2. The two-dimensional problem of Equation (18), using the same method, was solved on the interval
[π/6, 5π′12].

In each case, n = 10× 2i for i = 0, 1, 2, 3, 4. The errors for the two methods and the various
numbers of steps are shown in Table 4. Also shown are the errors for n steps divided by the error for
2n steps.

Table 4. Variation of global errors for a range of step sizes.

n Problem 1 Error Ratio Problem 2 Error Ratio

10 5.3177× 10−7 30.956 1.1830× 10−5 15.068

10× 2 1.7179× 10−8 31.402 7.8506× 10−7 15.157

10× 22 5.4705× 10−10 31.679 5.1794× 10−8 15.485

10× 23 1.7268× 10−11 31.788 3.3448× 10−9 15.720

10× 24 5.4323× 10−13 — 2.1278× 10−10 —

As expected, the numerical behaviour for experiment 1 was consistent with order 5. In contrast,
for experiment 2, the numerical behaviour was consistent only with order 4.

Axioms 2018, 00, 0 13 of 13

6. Discussion

There is little scientific interest in the solution of scalar initial value problems, and there is no
advantage in constructing numerical methods that are suitable only for this special class of problems.
Hence, in the search for useful numerical methods, it is an advantage to use tree-based theory.
The results presented here emphasise the danger of using scalar theory to derive methods of order
higher than 4 because they could be incorrect.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Butcher, J.C. B-Series; Algebraic Analysis of Numerical Methods; Springer: Berlin, Germany, In preparation.
2. Butcher, J.C. Numerical Methods for Ordinary Differential Equations, 3rd ed.; John Wiley & Sons: Chichester,

UK, 2016.
3. Hut’a, A. Une amélioration de la méthode de Runge–Kutta–Nyström pour la résolution numérique des

équations différentielles du premier ordre. Acta Fac. Nat. Univ. Comenian. Math. 1956, 1, 201–224.
4. Butcher, J.C. On the integration processes of A.Hut’a. J. Austral. Math. Soc. 1963, 3, 202–206.
5. Łukasiewicz, J.; Tarski, J. Investigations into the Sentential Calculus. Comp. Rend. Soc. Sci. Lett. Vars. 1930,

23, 31–32. (In German)
6. Heun, K. Neue Methode zur approximativen Integration der Differentialgleichungen einer unabhängigen

Veränderlichen. Z. Math. Phys. 1900, 45, 23–38.
7. Kutta, W. Beitrag zur näherungsweisen Integration totaler Differentialgleichungen. Z. Math. Phys. 1901, 46,

435–453.
8. Runge, C. Über die numerische Auflösung von Differentialgleichungen. Math. Ann. 1895, 46, 167–178.

c© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Trees, Elementary Differentials, and B-Series
	Notation and Recursions
	Polish Notation Tree Construction
	Elementary Differentials
	Application to B-Series

	Trees, Forests, and Stumps
	Bicolour Diagrams to Represent Stumps
	Products of Stumps
	Atomic Stumps
	Isomeric Trees

	Scalar Differential Equations
	Nonautonomous Vector-Valued Problems
	Systematic Derivation of Taylor Series
	Order Conditions for Vector Problems
	Derivation of Ambiguous Method

	Numerical Test
	Discussion
	References

