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Abstract: Tracking tunnels are widely used for monitoring small mammal populations, but inference on 
population size is hindered by the non-linear relationship between frequency of detection and abundance. 
The detection-abundance relationship can be used to relate the probability of a tunnel being tracked to the 
abundance of animals in the population and the population growth rate. We describe equations that show that 
a complementary-log-log link transformation for analysis of presence-absence tracking data allows estimation 
of small mammal population growth rates and proportional differences in abundance at different sites or under 
different treatments, as well as estimation of the rate at which animals pass through tunnels. We demonstrate the 
utility of this type of model to long-term temporal monitoring data of rat irruptions during beech mast seeding 
events, and show that the results are similar to theoretical growth rates of rat populations under such scenarios. 
This form of analysis yields biologically interpretable parameters and thus is an improvement on most current 
analytical techniques; however, it still requires the assumption that the probability of detection remains constant 
or is independently modelled, and it can still not be used to make inference on absolute population size.
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Introduction

Indices are widely used field methods for monitoring animal 
populations (Whisson et al. 2005). However, estimating 
abundance from indices and estimating changes in abundance 
in time and space are confounded by the non-linear relationship 
between detection and abundance. They are further confounded 
by probabilities of detection which can vary in time and 
space (Conn et al. 2004). In New Zealand, small mammals, 
particularly rodents, are most commonly index monitored 
with tracking tunnels (Gillies & Williams 2013). Indices from 
tracking tunnels are most commonly presented as the percentage 
frequency of detection (i.e. the percentage of tunnels with 
detections - hereinafter “tracking rate”), since distinguishing 
individuals on tracking cards is not reliable (Russell et al. 
2009). Furthermore, these tracking rates are rarely calibrated 
with independent studies of population abundance (see Brown 
et al. 1996). This is particularly problematic for conservation 
managers trying to assess the population growth rates of 
pest animals, and the effectiveness of pest animal control 
programmes. The obvious measure of pest control efficiency, 
for example, percentage of pest animals killed, is not easily 
extracted from tracking rates. The non-linear relationship 
between tracking rates and abundance means that a decrease 
in a tracking rate from (for example) 80% to 40% does not 
represent the same percentage reduction in abundance as a 
change from 40% to 20%.

Presence-absence data such as tracking tunnel data are 
often analysed using generalised linear models (“glms”) 
with logistic link functions (logistic regression) (Hosmer 
& Lemeshow 2000). Such analyses model the relationship 
between the odds of detection and a suite of covariates, but 

the parameter estimates produced by these models are often 
not readily interpretable when applied to tracking rates. For 
example, a logistic regression parameter estimate associated 
with time might erroneously be regarded as a population 
growth rate, but it is in fact the log of the rate of change of 
the odds of detection.

The relationship between species detection and abundance 
can be used to estimate animal abundance from detection data 
(MacKenzie et al. 2002, Royle & Nichols 2003, Cruz et al. 
2013) but these models require repeated sampling during each 
survey; an approach not possible with baited tracking tunnels, 
as animals become habituated to regularly offered bait.

Caughley (1977) described the relationship between 
presence and absence of animals in detection devices and their 
abundance, based on properties of the Poisson distribution, 
and showed that so long as absolute population size estimates 
are not required, robust relative estimates of population size 
among sites, and its change over time, are possible. Caughley’s 
technique makes the important assumptions that the animals 
behave randomly and independently, and that their detectability 
does not change in time and space. Recent advances in both 
computational power and generalised linear modelling (“glm”) 
methods enable easy application of Caughley’s idea.

Here we show how detection data from tracking tunnels 
can provide estimates of relative population change in time 
and space using glms with complementary-log-log (“cloglog”) 
link functions (see also Appendix 1 of Getzlaff et al. 2013).

To demonstrate the utility of this approach we use glms 
with cloglog links with rat tracking data collected during 
population irruptions in beech forests in New Zealand and 
estimate population growth rates. 
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Model

It is reasonable to assume that in the absence of resource 
constraints animal populations grow exponentially. Thus:

 Nt+Δt = Nt × λΔt (1)

Where:
N is the number of rats in the environment
t  is time
λ  is the finite rate of population increase

Or alternatively:

 Nt+Δt = e(log(Nt)+Δtlog(λ)) (2)

The number of animals that leave tracks in a tracking 
tunnel, c, will be related to their population size N, and their 
probability of detection, p, thus:

 ct = pNt
 (3)

Without an independent calibration study for an index, 
probability of detection and population size are confounded. 
However, in the absence of any other information we might 
as well assume that the number of animals that leave tracks 
in tracking tunnels is linearly proportional to their abundance 
(i.e. as population size increases so does the number of animals 
passing through tunnels), thus:

 ct ∝ Nt
 (4)

It is not possible to determine how many animals have 
passed through a tracking tunnel, we can only say whether 
any have passed through the tunnel (i.e. presence or absence 
of tracking). However, we know from the Poisson distribution 
that given a density N, the probability of a sample including 
no animals is given by:

 pno animals = e-Nt (5)

Thus the probability of a sample including at least one 
animal is given by: 

 pat least 1 animal = 1 – pno animals
 (6)

               = 1 – e –Nt

Applying this relationship to tracking tunnel data, the 
probability of tracking any animals, ft, is related to the number 
passing through the tracking tunnel by the following:

 ft = 1 – e –ct (7)

and

 ft+Δt = 1 – e – (ct× λ Δt) (8)

To linearise this relationship, we can re-arrange it as follows:

 ft+Δt = 1 – e –e(log(ct )+Δtlog(λ)) (9)

and

 log(– log(1 – ft+Δt)) = log(ct) + Δtlog(λ) (10)

The term on the left of Eqn 10 is the cloglog function 
which is available as a link function in many generalised linear 
modelling packages, such as R (R Core Team, 2016). Thus, 
if one used the tracking results for each tunnel in a tracking 
tunnel survey and expressed the results as 1 when tracked and 
0 when not tracked, one can estimate the parameters log (ct) 
and log(λ) in R using:

glm(tracks~time, family=binomial(link=’cloglog’))

The intercept term log(ct) provides an estimate of the number 
of animals passing through a tracking tunnel but cannot be used 
to make inference on population size Nt due to the inescapable 
confounding effect of detectability (p), which is inestimable. 
However, the slope parameter estimate associated with “time” 
will be the maximum likelihood estimate of log(λ), i.e. the 
instantaneous population growth rate, r.

This formulation is a regression of cloglog transformed 
tracking rates against time. The cloglog link function 
transforms tracking rates such that the linear predictors are not 
constrained between 0 and 1. This facilitates linear modelling, 
and fortuitously provides theoretically plausible estimates of 
population growth rates.

As for any regression model, co-varying factors can be 
included as covariates to factor out their influence. This is 
particularly important where such factors might be correlated 
with the probability of detection.

Similarly, any random variation among transect lines 
can be accounted for using mixed effects models. Using the 
package lme4 in R (Bates et al. 2015), for example, a model 
estimating growth rates from tracking tunnel data grouped by 
tunnel within transect lines, could be specified by

glm(tracks~time+(1|transect/tunnel), family=binomial 
(link=’cloglog’))

The relative abundance of animals between sites can be 
compared using a model that would be specified in R by

glm(tracks~site, family=binomial(link=’cloglog’))

and the parameter estimates associated with the site terms 
can be interpreted in much the same way as growth rates. 
That is the intercept parameter log(site0) is an estimate of the 
average number of animals passing through a tracking tunnel 
at the reference site, and parameters log(site1) to log(siten) are 
estimates of the relative abundance of animals at sites 1 to n 
compared to the abundance at site 0.

Again, using the same logic, a Before-After-Control-
Impact (BACI) experimental design might be analysed using 
a model specified by

glm(tracks~site+time+site:time, family=binomial(link=’ 
cloglog’))

where time is before or after treatment, and the parameter 
site:time is the log of the effect of the treatment on abundance.

Example

We used the analytical framework described above to estimate 
population growth rates of ship rats (Rattus rattus) monitored 
with tracking tunnels in southern beech (Nothofagaceae) forest 
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of New Zealand. In New Zealand beech forests, populations 
of ship rats sometimes increase irruptively following the mast 
seeding of beech trees (King & Moller 1997). We used rat 
tracking data from five beech forest sites in Otago, Southland 
and North Canterbury where tracking tunnel data have been 
collected in the year following beech mast. Tracking data were 
collected using the methods of Gillies & Williams (2013). 
Tracking tunnels were placed along transects of 10 tunnels at 
50 m intervals. There were between 60–100 tracking tunnels at 
each of the five sites, and inked tracking cards were placed in 
the tunnels for one night once every 1–3 months. Tunnels were 
baited with peanut butter placed at both ends of the tunnels.

The dataset comprised 2040 records for individual tracking 
tunnels each with three variables:

site - the site at which the data were collected

tracks -  the presence (1) or absence (0) of tracking in a  
  tunnel when it was checked

days  - days since 1 January in the year of the beech mast

Visual inspection of the data (Fig. 1) show that rat tracking 
rates increased following beech mast at the five sites.

Figure 1. Rat tracking rates following six beech masts at five beech forest sites.
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We used AICc (Burnham & Anderson 2002) to compare 
three generalised linear models: one with a common growth 
rate and intercept for all sites (Model 1), one with a common 
growth rate but separate intercepts for the sites (Model 2), 
and one with separate growth rates and intercepts for the sites 
(Model 3) (Table 1). AICc values suggest that the model with 
separate growth rates and intercepts (Model 3) was best.

Model 1 estimated a common growth for all the sites of 
1.0103 per day, while Model 3 estimated rates ranging from 
1.0071 to 1.0191 at each of the sites.

To determine whether the rates of population growth 
estimated by the GLMs are biologically plausible we combined 
data from three sources to estimate the maximum possible 
growth rate of rats in New Zealand. Estimates of litter size 
came from Innes et al. (2001), while estimates of breeding 
frequency, age at first breeding and survival came from 
Tompkins & Veltman (2006). Sweetapple & Nugent (2007) 
and Innes et al. (2001) provided estimates of the proportion 
of females that were breeding. We populated a Leslie matrix 
with the data from these sources that would give the maximum 
possible growth rate and estimated the growth rate from the 
dominant eigenvalue of the matrix. This provided an estimated 

Table 1. AICc values for three different GLMs of rat population growth during periods of rapid population growth following 
beech mast.
__________________________________________________________________________________________________________________________________________________________________

Model  AICc ΔAICc
__________________________________________________________________________________________________________________________________________________________________

3 glm(tracks~days*site, family=binomial(link=’cloglog’)) 154.98 0.00
2 glm(tracks~days+site, family=binomial(link=’cloglog’)) 183.64 28.66
1 glm(tracks~days, family=binomial(link=’cloglog’)) 475.15 320.17
__________________________________________________________________________________________________________________________________________________________________
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maximum daily growth rate of 1.0103, remarkably similar to 
the estimates from the tracking tunnels.

Discussion

The analytical framework we describe makes important 
assumptions: that animals behave randomly and independently 
of each other (a Poisson process) and that the detectability of 
animals is constant among comparisons in time and space. 
We have no good reason to assume that these assumptions 
are met, but in the absence of other information they are the 
most parsimonious assumptions we can make. Tracking tunnel 
data have no power to detect non-random animal behaviour or 
changes in detectability: such information will have to come 
from studies not involving tracking tunnels.

Presence-absence data are often analysed using logistic 
generalised linear models, using the logit link and analyses 
using the logit and cloglog links often produce similar results. 
The important difference when analysing tracking tunnel data 
is that slope parameters in logistic generalised linear models 
estimate the rate of change in the odds of detection, whereas 
slope parameters in a cloglog generalised linear model can be 
interpreted as estimates of the rate of change in the number 
of animals passing through tunnels, or changes in abundance.

The estimate of the average daily population growth 
rate of ship rats after beech mast provided by the GLMs was 
almost exactly equal to estimates derived from population 
studies of rats in New Zealand. This does not necessarily 
indicate that tracking rates accurately reflect changes in rat 
population size because it is possible that the changes in our 
tracking tunnel indexes reflected changes in behaviour rather 
than a real population increase, but it is at least encouraging. 
The prediction of rat irruptions and the control of rats have 
become important tools in the conservation management of 
endangered species in New Zealand (Elliott & Suggate 2007, 
Elliott & Kemp 2016). Determining the relative importance 
of population growth and detectability on changes in the rate 
at which animals are detected in tracking tunnels could have 
significant impact on rat control in New Zealand.

The analytical framework we describe here can be 
generalised to any presence-absence detector, such as chew 
cards, wax-tags (Whisson et al. 2005, Sweetapple & Nugent 
2011) or even traps. When analysed appropriately, index data 
can provide robust information on animal population dynamics.
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