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Abstract

The generalised linear mixed models (GLMM) is one of the most important tools
for analysing clustered data. One of the main feature of clustered data is observa-
tional units within the same cluster are correlated, though observational units from
different clusters may be independent. The random effects in the GLMM are used to
model this correlation.

The random effects in the GLMM are unobservable. Writing down an exact ex-
pression for the marginal likelihood from the GLMM involves a high dimensional
integral and so is intractable when the dimension of the random effects is large.
There are two different approaches to handle this problem in the literature. First, ap-
proximate the integral directly by the Laplace’s method (Breslow and Clayton, 1993;
Pinheiro and Chao, 2006). Secondly, approximate the integrand or joint density by
the lower dimensional object such as the product of marginal density or conditional
density. This is also called the pseudo-likelihood estimation (Besag, 1974). Typically,
one cannot even write down the marginal likelihood explicitly. So the Laplace’s
method doesn’t apply here. But one can still use the pseudo-likelihood.

Under various regularity conditions, the consistency and asymptotic normality of
the pseudo-likelihood estimator have been established using generalised estimating

∗Submitted to the Department of Statistics in partial fulfilment of the requirements for the degree of
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equations (GEE). There are many ways to construct the pseudo-likelihood (Lindsay,
1988; Varin et al., 2011). In this thesis, I work exclusively with the pairwise composite
likelihood as it is the simplest pseudo-likelihood construction that still captures the
pairwise correlation structure.

I am interested in the weighted pairwise composite likelihood under complex
sampling. Complex sampling is typically informative (Pfeffermann, 1996). One has
to add weights in the pairwise likelihood to account for informative sampling, usu-
ally chosen to be the inverse sampling inclusion probability. Rao et al. (2013); Yi
et al. (2016) considered the weighted pairwise likelihood for two-stage samples in
the special case when the sampling clusters are the model clusters. They established
consistency of the weighted pairwise composite likelihood estimator and suggested
a variance estimator.

In this thesis, I continue the study of the weighted pairwise composite likeli-
hood estimator in complex sampling initiated in Rao et al. (2013); Yi et al. (2016).
More precisely, my goal is to extend the asymptotic results of the weighted pair-
wise likelihood estimators to the case when the sampling clusters are not the same
as the model clusters. In particular, the consistency and asymptotic normality of
the weighted pairwise likelihood estimator are established. Furthermore, I show the
empirical variance estimator is consistent. This is surprisingly more difficult than it
first seems. It is complicated by the structure of the sampling design, where pairs
in the same model clusters might not be in the same sampling clusters. I present
simulation results examining the performance of the weighted pairwise likelihood
estimators for a random intercept model and a random slope model under various
two-stage sampling designs.

Finally, the random effects in the mixed model could potentially be correlated as
in spatial statistics. My goal in here is to keep extending the asymptotic properties
of the weighted pairwise composite likelihood estimator under the Matérn spatial
random intercept model. More precisely, I establish consistency and asymptotic nor-
mality of the weighted pairwise likelihood estimator under that setting.

Thesis Supervisor: Professor Thomas Lumley
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1 Introduction

I want to fit a mixed model to a population distribution, but I only have data from a com-
plex (multi-stage) sample. The sampling is informative, that is, the model holding for
the (biased) sample is different from the model holding for the population (Pfeffermann,
1996). Ignoring the sampling design and just fitting the mixed model to the sample dis-
tribution will lead to biased inference. Although both the sampling and model involve
”clusters”, the sample clusters and model clusters need not be the same in general. In
addition, the random effects could potentially be correlated over space or time.

I would like to comment on the difference between the sampling clusters and model
clusters. The sampling clusters can be thought of the primary sampling units (PSU)
in the sampling design and the model clusters can be thought of a fibre (or inverse
image) of the random effects. More precisely, the random effect is defined on the set
of model clusters and two distinct model clusters are assigned different value of the
random effects.

Closely related are Pfeffermann et al. (1998); Pfeffermann and Sverchkov (1999, 2003);
Rabe-Hesketh and Skrondal (2006); Pfeffermann and Sverchkov (2009), who proposed
various sample weighted likelihoods, and the more recent papers by Rao et al. (2013); Yi
et al. (2016), who proposed the weighted pairwise likelihood estimation to such problem
under the assumption the sampling clusters are the model clusters and random effects
are independent. My main interest is to extend the weighted pairwise likelihood to the
case:

(i) when the sampling clusters are not the same as the model clusters.

(ii) when the random effects could potentially be correlated.

and works out what can we say about variance estimation under those setting.
I start by considering some examples where these conditions apply.

1.1 Example: Hispanic Community Health Study/Study of Latinos

The Hispanic Community Health Study/Study of Latinos (HCHS/SOL) is a genetic co-
hort study of the US Hispanics/Latinos conducted by the National Heart, Lung, and
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Blood Institute (National Heart, Lung, and Blood Institute, 2010; Conomos et al., 2016).
The purpose of the HCHS/SOL is to identify the risk factors associated with cardiovas-
cular disease for Hispanic/Latinos in the US. The risk factors they measured included
approximately 106 genetic variants (SNP).

I want to fit a linear mixed model for the effects of ancestry A and a genetic variant
X on the trait Y with genetic relatedness b as a random effect. More precisely, let
Y = (Y1, . . . , YN)

T be the vector of trait (say blood pressure) for the finite population
U = t1, . . . , Nu. Let A = (A1, . . . , AN)

T be the vector of ancestry data and let X =

(X1, . . . XN)
T be the vector of genotypes. Let ε = (ε1, . . . , εN)

T be a random error with
ε „ N(0, σ2I).

Consider a random intercept mixed model

Yk = β0 + β1Ak + β2Xk + bk + εk,
b „ N(0, τ2D),

(1.1)

where b = (b1, . . . , bN)
T is an unobserved genetic random effect. Some of bk in b are

correlated because of genetic relatedness. More precisely, τ2 is a genetic variance due to
genetic effect and D is a matrix of empirical measure of pairwise kinship relatedness,
i.e., Dkl = 2 if k and l are self-identical twins, Dkl = 1 if k and l are parent and child,
or brother, Dkl = 1

2 for grandparent/grandchild, anti/uncle, and Dkl = 0 otherwise.
Observe the variance of the blood pressure can be decomposed into two parts: genetic
variance component τ2 and non-genetic variance σ2. The parameters I want to estimate
are θ = (β0, β1, β2, σ2, τ2)T.

The sampling in HCHS/SOL is based on geographical region. More precisely, sam-
pling is given by a three-stage design: census block group, household and people (Sorlie
et al., 2010). In particular, the sampling clusters are the objects corresponding to the
census block group and household.

The sample data one has arisen from a two phase process:

(i) First-phase: the population data (i.e., all Hipanic/Latino people in the US) are
regarded as a realisation of the model 1.1.

(ii) Second-phase: the sample data (i.e., 16415 observational units (LaVange et al.,
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2010)) are drawn from the population data by complex sampling (i.e., three-stage
sampling design).

Observe the sampling clusters are geographic region (i.e., census block group and house-
hold) and the model clusters are genetic relatedness (i.e., kinship relatedness). They are
not the same. More specifically, some people in the same household are unrelated (e.g.,
spouses); some people in different households are related. There is no literature work to
handle this setting. In fact, I will not solve this problem completely in this thesis, as this
is the three-stage sampling design. For what I have to do in this thesis, I only consider
the two-stage sampling design when the sampling clusters are not the same as the model
clusters. But the three-stage sampling design should be a straightforward extension of
my approach.

Remark. One could fit a ordinary linear regression using sampling weights

Yk = β0 + β1Ak + β2Xk + εk,

even though the errors εk are correlated. The least squares estimator for β0, β1 and
β2 is consistent and asymptotically unbiased. However, the least squares estimator is an
inefficient estimator. In fact, the loss of information is substantial in the HCHS/SOL. This
result is due to HCHS/SOL Genetics Coordinating Centre (Thomas Lumley’s personal
communication).

1.2 Example: Diabetes

The map of estimates of the Percentage of Adults with Diagnosed Diabetes in the Figure
1.1 is based on a survey conducted by the Behavioural Risk Factor Surveillance System
(BRFSS) in Centers for Disease Control and Prevention (CDC) (Centers for Disease Con-
trol and Prevention (CDC), 2007). The sample and model clusters in here are counties.

Let Yik be the diabetes status for person k in county i, i.e., Yik = 1 if the person k in
county i has diabetes and 0 otherwise. Define pik = EY[Yik]. Let Xik be the age group
variable and let bi be an age-adjusted county level unobserved random effect.

Consider a logistic random intercept mixed model

Yik|pik „ Bernoulli(pik),
logit(pik) = β0 + β1Xik + bi,

(1.2)
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Figure 1.1: Estimates of Percentage of Adults with Diagnosed Diabetes (Centers for
Disease Control and Prevention (CDC), 2007).

where the random effects bi „ N(0, τ2). Note the random effects bi for different counties
are independent. This is a standard setting considered in the literature.

However, the problem with the logistic random intercept model 1.2 is that there is
a sudden jump of the percentage of diabetes pik across the boundary between different
counties as shown in the Figure 1.1. More explicitly, pick a point on the boundary and
draw an ε-ball around that point, no matter how small ε is, pik differs significantly on
that ε-ball. One needs to modify the model assumption that the random effects bi are
independent.

What I want to do in here is to model the the spatial covariance structure, which
could be useful for smoothing the random effect bi. In chapter 5, I will study the Matérn
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spatial model.

1.3 Example: School and area

This is an example raised by J.N.K. Rao in the discussion section of Pfeffermann et al.
(1998) which still remains open. Let me start by introducing the setting.

I want to fit a linear mixed model for an individual variable such as the effects of
atttendence rate Xik and the school effects bi on student’s math score Yik for student k
in school i. The model clusters are schools, i.e., students in the same school should be
positive correlated and students from different schools should be independent.

Consider a linear mixed model

Yik|bi „ N(β0 + β1Xik + bi, σ2),
bi „ N(0, τ2).

(1.3)

The parameter one wants to estimate is θ = (β0, β1, σ2, τ2)T. Note the population data
are regarded as a realisation of the model 1.3.

The sample data are drawn from the population by a two-stage sampling design
based on geographic region. Consider the following two-stage sampling design, area is
the primary sampling units (PSU) and students within that areas are the secondary sam-
pling units (SSU). Observe the sampling clusters (i.e., area) are not the same as the model
clusters (i.e., school). Some people in the same area can go to different schools; some
people in the same school can go to different area, i.e., each student could be nested in a
different sampling clusters and model clusters.

The problem one has in here is much simple compared with the problems in the
HCHS/SOL, since the sampling design is just a two-stage sampling design. In chapter
4, I will study the weighted pairwise likelihood approach to such problem in detail and
analysis the properties of the weighted pairwise likelihood estimator.
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Two-stage model for the population model

s1

p1 p2 p3

s2

p4 p5 p6 p7

s3

p8 p9

Two-stage model for the sample

a1

p11 p21

a2

p31 p41 p51

a3

p61 p71 p81 p91

Figure 1.2: School and area.

1.4 Thesis outline

The purpose of this thesis is to analyse the asymptotic properties of the weighted pair-
wise composite likelihood estimators for a general two-stage sampling. My approach is
drawn from Yi et al. (2016); Rao et al. (2013). There are five chapters in this thesis.

In chapter 2, I briefly give an introduction to complex sampling from both design and
model perspective. Various sampling design such as Poisson, simple random sampling
without replacement (SRSWOR), stratified sampling, two-stage sampling will be consid-
ered. In addition, one needs to introduce the mixed model to account for correlation in
the population. I will also review some well-known results and techniques that will be
used in this thesis.

In chapter 3, I review the key results from Rao et al. (2013); Yi et al. (2016) in the
setting of the two-stage sampling where the sampling clusters are the model clusters.
More precisely, I am going to present proof done by Yi et al. (2016) in detail, which is
a starting point in the literature of the weighted pairwise likelihood estimation under
complex sampling. In particular, the consistency and variance estimator of the weighted
pairwise likelihood estimator wil be established.
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Chapter 4 is the main contribution of this thesis. In chapter 4, my main interest is to
extend the previous results to the case when the sampling clusters are not the same as
the model clusters. Essentially, the same proof with minor modification will yield the
weighted pairwise likelihood estimator is a consistent estimator, but proving consistency
of the empirical variance estimator is surprisingly more difficult than it first seems and
requires a new approach. It is complicated by the structure of the sampling design,
where pairs in the same model clusters might not be in the same sampling clusters.
I also conduct a simulation study examining the performance of the naive maximum
likelihood, pairwise likelihood and weighted pairwise likelihood estimator as well as
the empirical variance estimator.

In chapter 5, my interest is to keep extending the asymptotic results of the weighted
pairwise likelihood estimator to the case when the random effects could be correlated.
More precisely, I establish consistency and asymptotic normality of the weighted pair-
wise likelihood estimator under the Matérn spatial random intercept model.
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2 An introduction to complex sampling

In this chapter, I outline some basic techniques or terminologies used in complex sam-
pling: design-based estimation, Horvitz-Thompson estimator, super-population model,
conditional model, marginal model, informative sampling and asymptotic limit. Essen-
tially, all the terms are standard in the literature and material in here can be found in
many textbooks (Fuller, 2011; Cochran, 2007; Cassel et al., 1977; Särndal et al., 1978, 2003;
Demidenko, 2013; Song, 2007; Jiang, 2007; Ardilly and Tillé, 2006; Hall, 2005; Grace, 2016;
Kim and Shao, 2013).

Roughly speaking, complex sampling involves multi-stage sampling, unequal sam-
pling probability and stratification. There are three approaches for analysing data gen-
erated from complex sampling:

(i) Design–based approach.

(ii) Model–based approach.

(iii) Model–design–based approach.

In all of the following, I will take the model–design–based approach. The goal in the
model–design–based approach is to construct estimator which incorporates the feature
of the sampling design to estimate unknown parameters θ from the super-population.

2.1 Design-based approach

In this section, I will introduce Horvitz-Thompson(HT) estimator and various sampling
design such as Poisson, simple random sampling without replacement (SRSWOW), strat-
ified sampling, two-stage sampling.

2.1.1 Basic notation

In the design-based setting, the sample data are drawn from a fixed finite population
of size N. For notational convenience and without loss of generality, I will identify the
elements of population U by the numbers 1, . . . , N, i.e., U = t1, 2, . . . , Nu. An element k
in the population U is called an observational unit.
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Let yk be a response variable. It is assumed to be a fixed unknown constant unless ob-
servational unit k is already in the sample S. Now I want to introduce probability model
to describe how the sample data are drawn from the population. Note the population
itself is not considered as random.

Definition 2.1. Let F be the set of all subsets of U and let P be a probability on measure
space (U,F ), i.e.,

P : F ÝÑ [0, 1]

A ÞÝÑ P(A).

Then P is called the design measure.

The first-order, second-order, fourth-order and eighth-order sampling inclusion prob-
ability are important characteristics for design measure P. More precisely,

Definition 2.2. Given a design measure P, the first-order, second-order, fourth-order and
eighth-order sampling inclusion probability are defined to be

πk =
ÿ

tAPF :kPAu

P(A),

πkl =
ÿ

tAPF :k,lPAu

P(A),

πklk1l1 =
ÿ

tAPF :k,l,k1,l1PAu

P(A),

πklk1l1k2l2k3l3 =
ÿ

tAPF :k,l,k1,l1,k2,l2,k3,l3PAu

P(A),

where k, l, k1, l1, k2, l2, k3, l3 P U.

Remark. Observe πkl = πlk and πkk = πk. Similarly, πklk1l1 is invariant under permuta-
tion of k, l, k1, l1.

Remark. Note one needs the fourth-order sampling inclusion probabilities πklk1l1 to be
known explicitly for the empirical variance estimator, and needs assumptions on the
eighth-order ones (more about this in chapter 3 and 4).
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It is more convenient to work with the sample indicator function 1k instead of design
measure P. In all of the following, I denote the sample by S, which is an element of F
generated from the design measure P.

Definition 2.3. Let k P U, the sample indicator function is defined to be 1k = 1tkPSu.

Remark. Note the sample indicator function is random from design perspective.

Remark. I will use the following notation:

1kl = 1k1l,

1klk1l1 = 1k1l1k11l1 ,

1klk1l1k2l2k3l3 = 1k1l1k11l11k21l21k31l3 .

Henceforth, I denote the expectation with respect to the sampling design by Eπ,
variance by Varπ and covariance by Covπ. Define

∆kl = Cov
π

(1k, 1l)

for all k, l P U.

Lemma 2.4. The sample indicator function 1k has the following properties:

(i) Eπ(1k) = πk.

(ii) Eπ(1kl) = πkl.

(iii) Varπ(1k) = πk(1´ πk).

(iv) ∆kl = πkl ´ πkπl.

Proof. Obvious.

Definition 2.5. Define the sample size to be n =
ř

kPU 1k.

Remark. For some design, the sample size n will be a random variable.

Lemma 2.6. The sample size n has the following properties:
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(i) Eπ(n) =
ř

kPU Eπ(1k).

(ii) Varπ(n) =
ř

kPU
ř

lPU ∆kl.

Proof. (i) follows directly from the definition of n, i.e., n =
ř

kPU 1k. To prove (ii), observe

Var
π
(n) = Var

π

(
ÿ

kPU

1k

)

= Eπ

[
ÿ

kPU

1k ´Eπ

[
ÿ

kPU

1k

]]2

= Eπ

[
ÿ

kPU

(1k ´Eπ1k)

]2

= Eπ

[
ÿ

kPU

ÿ

lPU

(1k ´Eπ1k)(1l ´Eπ1l)

]
=

ÿ

kPU

ÿ

lPU

Eπ [1k1l ´ 1kEπ[1l]´Eπ[1k]1l + Eπ [1k]Eπ [1l]]

=
ÿ

kPU

ÿ

lPU

[Eπ [1kl]´Eπ [1k]Eπ [1l]]

=
ÿ

kPU

ÿ

lPU

∆kl.

Lemma 2.7. For a fixed sample size design, then

(i)
ř

kPU
ř

lPU Eπ(1kl) = n2.

(ii)
ř

kPU ∆kl =
ř

lPU ∆kl = 0.

Proof. To prove (i), observe
ÿ

kPU

ÿ

lPU

Eπ(1kl) =
ÿ

kPU

ÿ

lPU

Eπ(1k1l) = Eπ(
ÿ

kPU

1k
ÿ

lPU

1l) = n2.

18



To prove (ii), observe
ÿ

kPU

∆kl =
ÿ

kPU

Eπ(1kl)´
ÿ

kPU

Eπ(1k)Eπ(1l)

= Eπ

(
ÿ

kPU

1k1l

)
´Eπ

(
ÿ

kPU

1k

)
Eπ(1l)

= nEπ(1l)´ nEπ(1l)

= 0.

Similarly, one can show
ř

lPU ∆kl = 0.

Definition 2.8. Define

∆klk1l1 = Cov
π

(1kl, 1k1l1) ,

∆klk1l1k2l2k3l3 = Cov
π

(1klk1l1 , 1k2l2k3l3) .

Remark. Observe

πklk1l1 = Eπ [1klk1l1 ] ,

πklk1l1k2l2k3l3 = Eπ [1klk1l1k2l2k3l3 ] ,

∆klk1l1 = πklk1l1 ´ πklπk1l1 ,

∆klk1l1k2l2k3l3 = πklk1l1k2l2k3l3 ´ πklk1l1πk2l2k3l3 .

Remark. In all of the following, I assume there exists ε ě 0 such that πk ą ε, πkl ą

ε, πklk1l1 ą ε, πklk1l1k2l2k3l3 ą ε for all k, l, k1, l1, k2, l2, k3, l3 P U, namely each unit, pair,
quadruple and octuple in the population have a positive probability to be in the sample
S.

Definition 2.9. Define the first-order, second-order, fourth-order and eighth-order weight
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to be

ωk =
1

πk
,

ωkl =
1

πkl
,

ωklk1l1 =
1

πklk1l1
,

ωklk1l1k2l2k3l3 =
1

πklk1l1k2l2k3l3
.

Remark. The first-order weight ωk is interpreted as the number of observational units
in the population represented by unit k in the sample.

The goal of the design-based approach is to estimate some function of y = (y1, . . . , yN)
T

such as the population total t =
ř

kPU yk. Let us talk about the Horvitz-Thompson esti-
mator.

Definition 2.10. The Horvitz-Thompson (HT) estimator for the population total t =
ř

kPU yk is defined to be
pt =

ÿ

kPU

1kωkyk.

Definition 2.11. Let θ0 be the true value. Estimator pθn is called the design-unbiased with
respect to design measure π if Eπ(pθn) = θ0.

Lemma 2.12. The HT estimator pt for the population total t has the following properties:

(i) The HT estimator pt is an unbiased estimator for the population total t, i.e., Eπ(pt) = t.

(ii) The variance of pt is given by

Var
π
(pt) =

ÿ

kPU

ÿ

lPU

∆kl (ωkykωlyl) .

(iii) An unbiased estimator for Varπ(pt) is

yVarπ(pt) =
ÿ

kPU

ÿ

lPU

1klωkl∆kl (ωkykωlyl) .
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(iv) The variance of the variance estimator yVarπ(pt) is

Var
π

(
yVarπ(pt)

)
=

ÿ

kPU

ÿ

lPU

ÿ

k1PU

ÿ

l1PU

∆klk1l1ωkl∆klωk1l1∆k1l1 (ωkykωlyl) (ωk1yk1ωl1yl1) .

Remark. The key proofs in Chapters 3 and 4 will have a similar basic structure to Lemma
2.12.

Proof. To see this, observe

Eπ(pt) = Eπ

[
ÿ

kPU

1kωkyk

]
=

ÿ

kPU

Eπ[1k]ωkyk =
ÿ

kPU

yk,

Var
π
(pt) = Var

π

[
ÿ

kPU

1kωkyk

]
=

ÿ

kPU

ÿ

lPU

Cov
π

(1k, 1l) (ωkykωlyl) =
ÿ

kPU

ÿ

lPU

∆kl (ωkykωlyl) ,

Eπ

[
yVarπ(pt)

]
= Eπ

[
ÿ

kPU

ÿ

lPU

1klωkl∆kl (ωkykωlyl)

]
=

ÿ

kPU

ÿ

lPU

Eπ[1kl]ωkl∆kl (ωkykωlyl)

=
ÿ

kPU

ÿ

lPU

∆kl (ωkykωlyl) ,

Var
π

[
yVarπ(pt)

]
= Var

π

[
ÿ

kPU

ÿ

lPU

1klωkl∆kl (ωkykωlyl)

]
=

ÿ

kPU

ÿ

lPU

ÿ

k1PU

ÿ

l1PU

Cov
π

(1kl, 1k1l1)ωkl∆klωk1l1∆k1l1 (ωkykωlyl) (ωk1yk1ωl1yl1)

=
ÿ

kPU

ÿ

lPU

ÿ

k1PU

ÿ

l1PU

∆klk1l1ωkl∆klωk1l1∆k1l1 (ωkykωlyl) (ωk1yk1ωl1yl1) .

Lemma 2.13. For a fixed sample size design, the HT estimator pt for the population total t has the
following properties:

(i) The variance of pt is given by

Var
π
(pt) = ´

1
2

ÿ

kPU

ÿ

lPU

∆kl (ωkyk ´ωlyl)
2 .
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(ii) An unbiased estimator for Varπ(pt) is given by

yVarπ(pt) = ´
1
2

ÿ

kPU

ÿ

lPU

1klωkl∆kl (ωkyk ´ωlyl)
2 .

(iii) The variance of the variance estimator yVarπ(pt) is

Var
π

(
yVarπ(pt)

)
=

1
4

ÿ

kPU

ÿ

lPU

ÿ

k1PU

ÿ

l1PU

∆klk1l1ωkl∆klωk1l1∆k1l1 (ωkyk ´ωlyl)
2 (ωk1yk1 ´ωl1yl1)

2 .

Proof. To prove (i), observe

Var
π
(pt) =

ÿ

kPU

ÿ

lPU

∆kl (ωkykωlyl)

= ´
1
2

ÿ

kPU

ÿ

lPU

∆kl

(
ω2

k y2
k + ω2

l y2
l ´ 2ωkykωlyl

)
= ´

1
2

ÿ

kPU

ÿ

lPU

∆kl (ωkyk ´ωlyl)
2 .

The first equality follows from Lemma 2.12. The second equality follows from Lemma
2.7, i.e.,

ÿ

kPU

ÿ

lPU

∆klω
2
k y2

k =
ÿ

kPU

ω2
k y2

k

ÿ

lPU

∆kl = 0,

ÿ

kPU

ÿ

lPU

∆klω
2
l y2

l =
ÿ

lPU

ω2
l y2

l

ÿ

kPU

∆kl = 0.

The rest is clear. I omit the detail.

2.1.2 Poisson sampling

In a Poisson sampling design, the observational units are sampled independently, but
with unequal probability πk.

Definition 2.14. Let tπkukPU be a sequence of real number in [0, 1] and tεkukPU be a
sequence of independent uniform random variable on [0, 1]. Observational unit k is in
the sample S if εk ď πk.
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Remark. If πk = π for all k P U, then it is called the Bernoulli sampling design.

Lemma 2.15. Under a Poisson sample design, the sample indicator function 1k has the following
properties:

(i) Eπ(1k) = πk.

(ii) Eπ(1kl) = πkπl, if k ‰ l.

(iii) Varπ(1k) = πk(1´ πk).

(iv) ∆kl = 0, if k ‰ l.

Proof. By definition, 1k is independent of 1l under design measure if k ‰ l.

Note the Poisson sampling design is not a fixed sample size design. More precisely,

Lemma 2.16. Under a Poisson sampling design,

(i) Eπ(n) =
ř

kPU πk.

(ii) Varπ(n) =
ř

kPU πk(1´ πk).

Proof. By Lemma 2.6, one has

Eπ(n) =
ÿ

kPU

Eπ(1k) =
ÿ

kPU

πk,

Var
π
(n) =

ÿ

kPU

ÿ

lPU

∆kl =
ÿ

k=l
k,lPU

∆kl +
ÿ

k‰l
k,lPU

∆kl = πk(1´ πk) + 0 = πk(1´ πk).

Lemma 2.17. Under a Poisson sampling design, the HT estimator pt for the population total t
has the following properties:

(i) The HT estimator pt for the population total t is

pt =
ÿ

kPU

1kωkyk.
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(ii) The variance of pt is given by

Var
π
(pt) =

ÿ

kPU

(ωk ´ 1) y2
k.

(iii) An unbiased estimator for Varπ(pt) is

yVarπ(pt) =
ÿ

kPU

1kωk (ωk ´ 1) y2
k.

(iv) The variance of the variance estimator yVarπ(pt) is

Var
π

(
yVarπ(pt)

)
=

ÿ

kPU

(ωk ´ 1)3 y4
k.

Proof. (i) is obvious.
To prove (ii), observe

Var
π
(pt) =

ÿ

kPU

ÿ

lPU

∆kl (ωkykωlyl)

=
ÿ

k=l
k,lPU

∆kl (ωkykωlyl) +
ÿ

k‰l
k,lPU

∆kl (ωkykωlyl)

=
ÿ

kPU

πk (1´ πk)ω2
k y2

k + 0

=
ÿ

kPU

(ωk ´ 1) y2
k.

The first equality follows from Lemma 2.12. The third equality follows from Lemma
2.15.

(iii) is clear.
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To prove (iv), observe

Var
π

(
yVarπ(pt)

)
= Var

π

(
ÿ

kPU

1kωk (ωk ´ 1) y2
k

)
=

ÿ

kPU

ω2
k(ωk ´ 1)2y4

k Var
π
(1k)

=
ÿ

kPU

ω2
k(ωk ´ 1)2y4

kπk(1´ πk)

=
ÿ

kPU

(ωk ´ 1)3 y4
k.

The second equality follows from the fact 1k is independent of 1l under design measure
if k ‰ l. The third equality follows from Lemma 2.15.

Remark. Observe Varπ

(
yVarπ(pt)

)
= O(N).

2.1.3 Simple random sample without replacement (SRSWOR)

Definition 2.18. A simple random sample without replacement (SRSWOR) of fixed size
n is a sampling design P such that

P : F ÝÑ [0, 1]

A ÞÝÑ P(A) =

$

&

%

(N
n )
´1

, if |A| = n.

0, otherwise.

Lemma 2.19. Under a SRSWOR, the sample indicator function 1k has the following properties:

(i) Eπ(1k) =
n
N .

(ii) Eπ(1kl) =
n
N

n´1
N´1 , if k ‰ l.

(iii) Varπ(1k) =
n
N (1´ n

N ).

(iv) ∆kl = ´ 1
N´1

n
N
(
1´ n

N
)

, if k ‰ l.
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Proof. To see this, observe

Eπ(1k) =
(N´1

n´1)

(N
n )

=
n
N

,

Eπ(1kl) =
(N´2

n´2)

(N
n )

=
n
N

n´ 1
N ´ 1

,

Var
π
(1k) = Eπ[12

k]´ [Eπ1k]
2 =

n
N

(
1´

n
N

)
,

∆kl = Eπ[1kl]´Eπ[1k]Eπ[1l] =
n
N

(
n´ 1
N ´ 1

´
n
N

)
= ´

1
N ´ 1

n
N

(
1´

n
N

)
.

Lemma 2.20. Under a SRSWOR design, the HT estimator pt for the population total t has the
following properties:

(i) The HT estimator pt for the population total t is

pt =
N
n

ÿ

kPU

1kyk.

(ii) The variance of pt is given by

Var
π
(pt) =

(
1´

n
N

) N2

n
σ2,

where

σ2 =
1

N ´ 1

ÿ

kPU

(
yk ´

ř

kPU yk

N

)2

.

(iii) An unbiased estimator for Varπ(pt) is

yVarπ(pt) =
(

1´
n
N

) N2

n
pσ2,

where

pσ2 =
1

n´ 1

ÿ

kPU

(
1kyk ´

ř

kPU 1kyk

n

)2

.
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Proof. (i) is obvious. To prove (ii), one has

Var
π
(pt) = ´

1
2

ÿ

kPU

ÿ

lPU

∆kl (ωkyk ´ωlyl)
2

=
1
2

1
N ´ 1

n
N

(
1´

n
N

) N2

n2

ÿ

kPU

ÿ

lPU

(yk ´ yl)
2

=
1
2

1
N ´ 1

(
1´

n
N

) N
n

ÿ

kPU

ÿ

lPU

(
yk ´

ř

kPU yk

N
+

ř

kPU yk

N
´ yl

)2

=
1
2

1
N ´ 1

(
1´

n
N

) N
n

2N
ÿ

kPU

(
yk ´

ř

kPU yk

N

)2

=
1

N ´ 1

(
1´

n
N

) N2

n

ÿ

kPU

(
yk ´

ř

kPU yk

N

)2

=
(

1´
n
N

) N2

n
σ2.

The first equality follows from Lemma 2.13. The second equality follows from Lemma
2.19. The fourth equality follows from the following fact:

ÿ

kPU

ÿ

lPU

(
yk ´

ř

kPU yk

N

)2

= N
ÿ

kPU

(
yk ´

ř

kPU yk

N

)2

,

ÿ

kPU

ÿ

lPU

(
yk ´

ř

kPU yk

N

)(
yl ´

ř

kPU yk

N

)
=

ÿ

kPU

(
yk ´

ř

kPU yk

N

)
ÿ

lPU

(
yl ´

ř

kPU yk

N

)
= 0.
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To prove (iii), observe

yVarπ(pt) = ´
1
2

ÿ

kPU

ÿ

lPU

1klωkl∆kl (ωkyk ´ωlyl)
2

=
1
2

N(N ´ 1)
n(n´ 1)

1
N ´ 1

n
N

(
1´

n
N

) N2

n2

ÿ

kPU

ÿ

lPU

1kl (yk ´ yl)
2

=
1
2

1
n´ 1

(
1´

n
N

) N2

n2

ÿ

kPU

ÿ

lPU

1k1l

(
yk ´

ř

kPU 1kyk

n
+

ř

kPU 1kyk

n
´ yl

)2

=
1
2

1
n´ 1

(
1´

n
N

) N2

n2 2n
ÿ

kPU

1k

(
yk ´

ř

kPU 1kyk

n

)2

=
1

n´ 1

(
1´

n
N

) N2

n

ÿ

kPU

1k

(
yk ´

ř

kPU 1kyk

n

)2

=
(

1´
n
N

) N2

n
pσ2.

The first equality follows from Lemma 2.13. The second equality follows from Lemma
2.19. The fourth equality follows from the following fact:

ÿ

kPU

ÿ

lPU

1k1l

(
yk ´

ř

kPU 1kyk

n

)2

= n
ÿ

kPU

1k

(
yk ´

ř

kPU 1kyk

n

)2

,

ÿ

kPU

ÿ

lPU

1k1l

(
yk ´

ř

kPU 1kyk

n

)(
yl ´

ř

kPU 1kyk

n

)
=

ÿ

kPU

1k

(
yk ´

ř

kPU 1kyk

n

)
ÿ

lPU

1l

(
yl ´

ř

kPU 1kyk

n

)
= 0.

2.1.4 Stratified sampling

Definition 2.21. Let Uc
I = tUc

1, ¨ ¨ ¨ , Uc
NI
u be a partition of population U of size N1, ¨ ¨ ¨ , NNI .

For each strata Uc
i , I select a sample Us

i Ă Uc
i of size ni according to a sample design Pi(¨).

The sample S is given by
S =

ď

i

Us
i .
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Assume the selection in each strata is made independently, i.e.,

Pii1(kl) = Pi(k)Pi1(l)

for all k P Uc
i , l P Uc

i1 and i ‰ i1.

Let yik be the value of a response variable y at the k-th element in the strata i and let
t be the population total, i.e., t =

řNI
i=1 ti =

řNI
i=1

ř

kPUc
i

yik.

Lemma 2.22. Under a stratified sampling, the HT estimator pt for the population total t has the
following properties:

(i) The HT estimator pt for the population total t is given by

pt =
NI
ÿ

i=1

pti,

where pti =
ř

kPUc
i

1k|iωk|iyik.

(ii) The variance of pt is given by

Var
π
(pt) =

NI
ÿ

i=1

Var
π
(pti),

where Varπ(pti) =
ř

kPUc
i

ř

lPUc
i

∆kl|i
(
ωk|iyikωl|iyil

)
.

(iii) An unbiased estimator for Varπ(pt) is

yVarπ(pt) =
NI
ÿ

i=1

yVarπ(pti),

where yVarπ(pti) =
ř

kPUc
i

ř

lPUc
i

1kl|iωkl|i∆kl|i
(
ωk|iyikωl|iyil

)
.

(iv) The variance of the variance estimator yVarπ(pt) is

Var
π

(
yVarπ(pt)

)
=

NI
ÿ

i=1

Var
π

(
yVarπ(pti)

)
,
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where

Var
π

(
yVarπ(pti)

)
=

ÿ

kPUc
i

ÿ

lPUc
i

ÿ

k1PUc
i

ÿ

l1PUc
i

∆klk1l1|iωkl|i∆kl|iωk1l1|i∆k1l1|i
(
ωk|iyikωl|iyil

)
(
ωk1|iyik1ωl1|iyil1

)
.

Proof. These are simply sum over strata and follow directly from Lemma 2.12.

Corollary 2.23 (Stratified Poisson). Under a stratified Poisson sampling, the HT estimator pt
for the population total t has the following properties:

(i) The HT estimator pt for the population total t is given by

pt =
NI
ÿ

i=1

ÿ

kPUc
i

1k|iωk|iyik.

(ii) The variance of pt is given by

Var
π
(pt) =

NI
ÿ

i=1

ÿ

kPUc
i

(ωk|i ´ 1)y2
ik.

(iii) An unbiased estimator for Varπ(pt) is

yVarπ(pt) =
NI
ÿ

i=1

ÿ

kPUc
i

1k|iωk|i(ωk|i ´ 1)y2
ik.

(iv) The variance of the variance estimator yVarπ(pt) is

Var
π

(
yVarπ(pt)

)
=

NI
ÿ

i=1

ÿ

kPUc
i

(ωk|i ´ 1)3y4
ik.

Corollary 2.24 (Stratified SRSWOR). Under a stratified SRSWOR sampling, the HT estimator
pt for the population total t has the following properties:
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(i) The HT estimator pt for the population total t is given by

pt =
NI
ÿ

i=1

ÿ

kPUc
i

1k|i
Ni

ni
yik.

(ii) The variance of pt is given by

Var
π
(pt) =

NI
ÿ

i=1

(
1´

ni

Ni

)
N2

i
ni

σ2
i ,

where

σ2
i =

1
Ni ´ 1

ÿ

kPUc
i

(
yik ´

ř

kPUc
i

yik

Ni

)2

.

(iii) An unbiased estimator for Varπ(pt) is

yVarπ(pt) =
NI
ÿ

i=1

(
1´

ni

Ni

)
N2

i
ni

pσ2
i ,

where

pσ2
i =

1
ni ´ 1

ÿ

kPUc
i

(
1k|iyik ´

ř

kPUc
i

1k|iyik

ni

)2

.

2.1.5 Two-stage sampling

Let U = t1, . . . , Nu be the population and consider a partition of U by the sampling
clusters, i.e., let Uc

I = tUc
1, ¨ ¨ ¨ , Uc

NI
u be the sampling clusters. In practice, the sampling

clusters are the objects corresponding to the first-stage sampling units or primary sam-
pling units (PSU).

Define F to be the set of all subsets of Uc
I , i.e.,

F = t
ď

iPI

Uc
i : I Ă t1, 2, . . . , NIuu.
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Let PI be the first-stage design probability on measure space (Uc
I ,F )

PI : F ÝÑ [0, 1]

A ÞÝÑ PI(A).

Define Fi to be the set of all subsets of Uc
i , where i = 1, . . . , NI. Let Pi be the second-

stage design probability on measure space (Uc
i ,Fi)

Pi : Fi ÝÑ [0, 1]

A ÞÝÑ Pi(A).

Let Us
I P F be the first-stage sample. If Uc

i P Us
I , a second-stage sample Us

i is selected
from Fi by sampling design Pi. Let S =

Ť

i Us
i and n = |S|.

Remark. In all of the following, I will denote i, i1, i2, i3 for the clusters and k, l, k1, l1, k2, l2, k3, l3

for elements in the clusters.

Definition 2.25. Define the first-order, second-order and fourth-order sampling inclusion
probability to be

πi =
ÿ

APF :Uc
i PA

PI(A),

πii1 =
ÿ

APF :Uc
i ,Uc

i1PA

PI(A),

πii1i2i3 =
ÿ

APF :Uc
i ,Uc

i1 ,U
c
i2 ,Uc

i3PA

PI(A),

πk|i =
ÿ

APFi :kPA

Pi(A),

πkl|i =
ÿ

APFi :k,lPA

Pi(A),

πklk1l1|i =
ÿ

APFi :k,l,k1,l1PA

Pi(A).

Assuming the invariance and independent properties, i.e.,
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(i) The second-stage sampling design is invariant of the first-stage Us
I , i.e., Pi(k|Us

I ) =

Pi(k) for all k P Uc
i and i = 1, . . . , NI.

(ii) The second-stage sampling design is independent of the first-stage Us
I , i.e., Pii1(kl) =

Pi(k)Pi1(l) for all k P Uc
i , l P Uc

i1 and i ‰ i1.

In other words, given that cluster i is sampled, the probability of sampling element k in
cluster i does not depend on

(i) which other clusters were sampled.

(ii) which elements are sampled in those clusters.

Then one can deduce the final inclusion probability πk and πkl to be

πk = πiπk|i, if k P Uc
i .

πkl =

$

&

%

πiπkl|i, if k, l P Uc
i .

πii1πk|iπl|i1 , if k P Uc
i , l P Uc

i1 and i ‰ i1.

Definition 2.26. Define the first and second-stage sample weight to be

ωi =
1
πi

,

ωii1 =
1

πii1
,

ωk|i =
1

πk|i
,

ωkl|i =
1

πkl|i
,

ωk =
1

πk
,

ωkl =
1

πkl
.

It is more convenient to work with the sample indicator function 1i, 1k|i instead of
design measure.
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Definition 2.27. Define the sample indicator function to be

1i = 1Uc
i PUs

I
,

1k|i = 1kPUs
i |U

c
i PUs

I
.

Remark. I will use the following notation:

1ii1 = 1i1i1 ,

1ii1i2i3 = 1i1i11i21i3 ,

1kl|i = 1k|i1l|i,

1klk1l1|i = 1k|i1l|i1k1|i1l1|i.

Remark. Observe

Eπ(1i) = πi,

Eπ(1ii1) = πii1 ,

Eπ(1ii1i2i3) = πii1i2i3 ,

Eπ(1k|i) = πk|i,

Eπ(1kl|i) = πkl|i,

Eπ(1klk1l1|i) = πklk1l1|i.

Definition 2.28. Define

∆ii1 = Cov
π

(1i, 1i1),

∆ii1i2i3 = Cov
π

(1ii1 , 1i2i3),

∆kl|i = Cov
π

(1k|i, 1l|i),

∆klk1l1|i = Cov
π

(1kl|i, 1k1l1|i).

Remark. Observe

∆ii1 = πii1 ´ πiπi1 ,

∆ii1i2i3 = πii1i2i3 ´ πii1πi2i3 ,

∆kl|i = πkl|i ´ πk|iπl|i,

∆klk1l1|i = πklk1l1|i ´ πkl|iπk1l1|i.
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Definition 2.29. Let NI be the number of clusters in the population U and let nI be the
number of clusters in the sample S, i.e., nI =

řNI
i=1 1i.

Definition 2.30. Let Ni be the number of elements in the population cluster Uc
i and let

ni be the number of elements in the sample clusters Us
i , i.e., ni =

ř

kPUc
i

1k|i.

Remark. Observe

N =
NI
ÿ

i=1

Ni,

n =
NI
ÿ

i=1

1ini.

Let yik be the value of a response variable y at the k-th element in the cluster i. Define
the population total to be t =

řNI
i=1 ti, where ti =

ř

kPUc
i

yik.
In all of the following, let π1 be the first-stage sampling probability and let π2 be the

second-stage sampling probability, conditional on the first-stage sampling clusters Us
I .

Lemma 2.31. Under a two-stage sampling, the HT estimator pt for the population total t has the
following properties:

(i) The HT estimator pt for the population total t is given by

pt =
NI
ÿ

i=1

1iωipti,

where pti =
ř

kPUc
i

1k|iωk|iyik.

(ii) The HT estimator pt is an unbiased estimator for population total t.

(iii) The variance of pt is given by
Var

π
(pt) = V1 + V2,
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where

V1 =
NI
ÿ

i=1

NI
ÿ

i1=1

∆ii1 (ωitiωi1ti1) ,

V2 =
NI
ÿ

i=1

ÿ

kPUc
i

ÿ

lPUc
i

ωi∆kl|i
(
ωk|iyikωl|iyil

)
.

(iv) An unbiased estimator for Varπ(pt) is

yVarπ(pt) = pV1 + pV2,

where

pV1 =
NI
ÿ

i=1

NI
ÿ

i1=1

1ii1ωii1∆ii1
(

ωiptiωi1pti1
)

,

pV2 =
NI
ÿ

i=1

ÿ

kPUc
i

ÿ

lPUc
i

1iωi1kl|iωkl|i∆kl|i
(
ωk|iyikωl|iyil

)
.

Proof. (i) is obvious. To prove (ii), note

Eπ(pt) = Eπ1,π2

 NI
ÿ

i=1

1iωi
ÿ

kPUc
i

1k|iωk|iyik


= Eπ1

 NI
ÿ

i=1

1iωi
ÿ

kPUc
i

Eπ2

[
1k|i
]

ωk|iyik


= Eπ1

[ NI
ÿ

i=1

1iωiti

]
= t.
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To prove (iii), observe

Var
π
(pt) = Var

π1

Eπ2

 NI
ÿ

i=1

ÿ

kPUc
i

1iωi1k|iωk|iyik

+ Eπ1

Var
π2

 NI
ÿ

i=1

ÿ

kPUc
i

1iωi1k|iωk|iyik


= Var

π1

 NI
ÿ

i=1

1iωiEπ2

ÿ

kPUc
i

1k|iωk|iyik

+ Eπ1

 NI
ÿ

i=1

1iω
2
i Var

π2

ÿ

kPUc
i

1k|iωk|iyik


= Var

π1

( NI
ÿ

i=1

1iωiti

)
+ Eπ1

 NI
ÿ

i=1

ÿ

kPUc
i

ÿ

lPUc
i

1iω
2
i ∆kl|i

(
ωk|iyikωl|iyil

)
=

NI
ÿ

i=1

NI
ÿ

i1=1

∆ii1 (ωitiωi1ti1) +
NI
ÿ

i=1

ÿ

kPUc
i

ÿ

lPUc
i

ωi∆kl|i
(
ωk|iyikωl|iyil

)
= V1 + V2.

In the second equality, I used the fact that 1i is independent of 1i1 under design measure
π2.

To prove (iv), note
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Eπ

[
yVarπ(pt)

]
=Eπ1,π2

 NI
ÿ

i=1

NI
ÿ

i1=1

1ii1ωii1∆ii1ωiptiωi1pti1 +
NI
ÿ

i=1

ÿ

kPUc
i

ÿ

lPUc
i

1iωi1kl|iωkl|i∆kl|i
(
ωk|iyikωl|iyil

)
=Eπ1

[ NI
ÿ

i=1

NI
ÿ

i1=1

1ii1ωii1∆ii1ωiωi1Eπ2

[
ptipti1
]]

+ Eπ1

 NI
ÿ

i=1

ÿ

kPUc
i

ÿ

lPUc
i

1iωiEπ2

[
1kl|i

]
ωkl|i∆kl|i

(
ωk|iyikωl|iyil

)
=

NI
ÿ

i=1

NI
ÿ

i1=1

∆ii1ωiωi1Eπ2

[
ptipti1
]
+

NI
ÿ

i=1

ÿ

kPUc
i

ÿ

lPUc
i

∆kl|i
(
ωk|iyikωl|iyil

)
=

NI
ÿ

i,i1=1
i=i1

∆ii1ωiωi1Eπ2

[
ptipti1
]
+

NI
ÿ

i,i1=1
i‰i1

∆ii1ωiωi1Eπ2

[
ptipti1
]
+

NI
ÿ

i=1

ÿ

kPUc
i

ÿ

lPUc
i

∆kl|i
(
ωk|iyikωl|iyil

)

=
NI
ÿ

i,i1=1
i=i1

∆ii1ωiωi1

ÿ

kPUc
i

ÿ

lPUc
i

∆kl|i
(
ωk|iyikωl|iyil

)
+ t2

i

+
NI
ÿ

i,i1=1
i‰i1

∆ii1ωiωi1titi1+

NI
ÿ

i=1

ÿ

kPUc
i

ÿ

lPUc
i

∆kl|i
(
ωk|iyikωl|iyil

)
=

NI
ÿ

i=1

NI
ÿ

i1=1

∆ii1ωiωi1titi1 +
NI
ÿ

i=1

πi(1´ πi)ω
2
i

ÿ

kPUc
i

ÿ

lPUc
i

∆kl|i
(
ωk|iyikωl|iyil

)
+

NI
ÿ

i=1

ÿ

kPUc
i

ÿ

lPUc
i

∆kl|i
(
ωk|iyikωl|iyil

)
=

NI
ÿ

i=1

NI
ÿ

i1=1

∆ii1 (ωitiωi1ti1) +
NI
ÿ

i=1

(ωi ´ 1)
ÿ

kPUc
i

ÿ

lPUc
i

∆kl|i
(
ωk|iyikωl|iyil

)
+

NI
ÿ

i=1

ÿ

kPUc
i

ÿ

lPUc
i

∆kl|i
(
ωk|iyikωl|iyil

)
=

NI
ÿ

i=1

NI
ÿ

i1=1

∆ii1 (ωitiωi1ti1) +
NI
ÿ

i=1

ÿ

kPUc
i

ÿ

lPUc
i

ωi∆kl|i
(
ωk|iyikωl|iyil

)
=V1 + V2.
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The fifth equality follows from the following facts:

Eπ2 [ptipti1 ] = Cov
π2

(pti,pti1) + Eπ2

[
pti

]
Eπ2

[
pti

]
=

$

&

%

ř

kPUc
i

ř

lPUc
i

∆kl|i
(
ωk|iyikωl|iyil

)
+ t2

i , if i = i1.

titi1 , if i ‰ i1.

2.2 Model–based approach

The model-based approach assumes a model for the population and sampling design is
typically assumed to be ignorable given the model covariates, i.e., the sample data follow
the population model when the sampling is ignorable. In other words, y = (y1, . . . , yN)

T

is considered to be an realisation of a random vector Y = (Y1, . . . , YN)
T from some para-

metric model. The goal in here is to estimate the model parameters. For what I have to
do in this thesis, the observational units are not homogenous, i.e., the conditional distri-
bution yi|xi is not independent identically distributed (IID). More explicitly, consider a
partition of U by the structure of the model, i.e., let Mc

I = tMc
1, ¨ ¨ ¨ , Mc

Tc
u be the model

clusters. What I want to do is to assume the observational units within the same model
cluster are correlated, though observational units from different model clusters may be
independent. In other words, the model clusters are the objects corresponding to the fi-
bre (inverse image) of random effects. More precisely, the random effects are defined on
the set of model clusters and two distinct model clusters are assigned different value of
the random effects. In this section, I assume the sampling clusters are the model clusters,
i.e., Uc

I = Mc
I .

Roughly speaking, there are two approaches to model the correlated data, namely
the conditional models and marginal models (Neuhaus et al., 1991). A marginal (con-
ditional) model is one in which the marginal (conditional) mean and covariance are
modelled directly. The main difference between two modelling approaches is on the in-
terpretation of the parameters. In the marginal (conditional) model, the parameters are
interpreted as population-average (cluster-specific effect). Typically, estimation in the
conditional model is done by the maximum likelihood estimation (MLE) and estimation
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in the marginal model is done by generalised estimating equation (GEE). I will take a
conditional approach in this thesis.

Henceforth, I denote the expectation with respect to model by EY, covariance by
CovY and variance by VarY.

2.2.1 Conditional model

The history of the generalised linear mixed model (GLMM) is reviewed by Breslow and
Clayton (1993); Diggle (2002). The GLMM is an extension of generalized linear model
(McCullagh and Nelder, 1989). More precisely,

Definition 2.32. Let Yik be a kth random variable for cluster i for i = 1, ¨ ¨ ¨ , NI, k =

1, ¨ ¨ ¨ , Ni and bi be the random effects for cluster i. Conditional distribution Yik|bi is said
to be GLMM if the following conditions are satisfied:

(1) Yik|bi is independent and follows a distribution from the exponential family, i.e.,

f (yik|bi) = exp
[

yikθik ´ d(θik)

φ
+ c(yik, φ)

]
,

where φ is some scale parameter and d, c is some known functions.

(2) The conditional mean EY[Yik|bi] can be modelled through a smooth monotone link
function g, i.e.,

g(EY[Yik|bi]) = XT
ikβ+ZT

ikbi,

where

(i) Xik is a p1 ˆ 1 fixed matrix and β is a p1 ˆ 1 fixed unknown parameter.

(ii) Zik is a p2ˆ 1 fixed matrix, bi is a p2ˆ 1 unobserved random effect and follows
a normal distribution, i.e., bi „ N(0, D(η)).

The parameters one wants to estimate are θ = (β,η)T.

Remark. The joint density of Y and b is given by

f (Y , b) =
NI
ź

i=1

f (Yi, bi) =
NI
ź

i=1

f (Yi|bi) f (bi) =
NI
ź

i=1

Ni
ź

k=1

f (Yik|bi) f (bi).
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Since the random effects bi are unobserved, then the marginal density f (Y ) is given by

f (Y ) =

ż NI
ź

i=1

Ni
ź

k=1

f (Yik|bi) f (bi)dbi =
NI
ź

i=1

ż Ni
ź

k=1

f (Yik|bi) f (bi)dbi.

Definition 2.33. The census full log-likelihood is given by

`c(θ) =
NI
ÿ

i=1

`c
i (θ),

where

`c
i (θ) = log

[
ż Ni
ź

k=1

f (yik|bi)|D|
´ 1

2 exp
(
´

1
2
bT

i D
´1bi

)
dbi

]
.

Definition 2.34. The naive sample log-likelihood is given by

`s(θ) =
NI
ÿ

i=1

1i`
s
i (θ),

where

`s
i (θ) = log

ż ź

kPUs
i

f (yik|bi)|D|
´ 1

2 exp
(
´

1
2
bT

i D
´1bi

)
dbi

 . (2.1)

Remark. The integral in 2.1 involves a high-dimensional integral and so is intractable
when the dimension of random effects bi is large. Approximation of integration based
on the Laplace approximation is discussed in Breslow and Clayton (1993); Pinheiro and
Chao (2006). For the linear mixed model, one can compute the marginal distribution of
Yi directly (more about this in section 2.2.2).

Example 1. Let pik P [0, 1]. The conditional logistic mixed model is given by

Yik|pik „ Bernoulli(pik),

logit(pik) = XT
ikβ+ZT

ikbi,

where the random effects bi „ N(0, D(η)). The census full log-likelihood is given by

`c(θ) =
NI
ÿ

i=1

`c
i (θ),
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where

`c
i (θ) = log

[
ż Ni
ź

k=1

pyik
ik (1´ pik)

1´yik |D|´
1
2 exp

(
´

1
2
bT

i D
´1bi

)
dbi

]
.

The naive sample log-likelihood is given by

`s(θ) =
NI
ÿ

i=1

1i`
s
i (θ),

where

`s
i (θ) = log

ż ź

kPUs
i

pyik
ik (1´ pik)

1´yik |D|´
1
2 exp

(
´

1
2
bT

i D
´1bi

)
dbi

 .

Example 2. Let λik P N. The conditional Poisson mixed model is given by

Yik|λik „ Poisson(λik),

log(λik) = XT
ikβ+ZT

ikbi,

where the random effects bi „ N(0, D(η)). The census full log-likelihood is given by

`c(θ) =
NI
ÿ

i=1

`c
i (θ),

where

`c
i (θ) = log

[
ż Ni
ź

k=1

(exp λik)
λ

yik
ik

yik!
|D|´

1
2 exp

(
´

1
2
bT

i D
´1bi

)
dbi

]
.

The naive sample log-likelihood is given by

`s(θ) =
NI
ÿ

i=1

1i`
s
i (θ),

where

`s
i (θ) = log

ż ź

kPUs
i

(exp λik)
λ

yik
ik

yik!
|D|´

1
2 exp

(
´

1
2
bT

i D
´1bi

)
dbi

 .
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2.2.2 Linear mixed model

The modern formulation of the linear mixed model was proposed by Laird and Ware
(1982). More precisely,

Definition 2.35. A linear mixed model is given by

Yi|Xi, bi „ N(Xiβ+Zibi, σ2I),

bi „ N(0, D(η)),

where

(i) Yi is a Ni ˆ 1 random vector for i = 1, . . . NI.

(ii) Xi is a Ni ˆ p1 fixed matrix and β is a p1 ˆ 1 fixed unknown parameter.

(iii) Zi is a Ni ˆ p2 fixed matrix and bi is a p2 ˆ 1 dimensional random effects.

The parameters I want to estimate are θ = (β, σ2,η)T. One can show the census full
log-likelihood is given by

Yi|Xi „ N(Xiβ,Vi(σ
2,η)),

where Vi(σ
2,η) = σ2I + ZiD(η)ZT

i . In other words, the census full log-likelihood is
given by

`c(θ) = ´
1
2

NI
ÿ

i=1

log |Vi| ´
1
2

NI
ÿ

i=1

(yi ´ xiβ)
TV´1

i (yi ´ xiβ).

Let ys
i , xs

i , b
s
i ,V

s
i be the sample data corresponding to yi, xi, bi,Vi. Then the naive sample

log-likelihood is given by

`s(θ) = ´
1
2

NI
ÿ

i=1

1i log |Vs
i | ´

1
2

NI
ÿ

i=1

1i(ys
i ´ xs

iβ)
T (Vs

i )
´1 (ys

i ´ xs
iβ).

The naive maximum likelihood estimator for β is given by

pβ(σ2,η) =

( NI
ÿ

i=1

1i (xs
i )

T (Vs
i )
´1 xs

i

)´1( NI
ÿ

i=1

1ixs
i (V

s
i )
´1 ys

i

)
.
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For the variance component (σ2,η)T, this reduces to maximise the profile log-likelihood

`s
p(σ

2,η) = `s
(
pβ(σ2,η), σ2,η

)
.

In general, there is no closed form formula for (pσ2, pη)T, but numerical method can be
used to obtain θ (Demidenko, 2013).

2.2.3 Marginal model

In the marginal model, I only make assumptions about the first and second moment of
a response variable Y , without specifying the exact distribution of Y . Hence one cannot
use the MLE, since the full-likelihood can not be uniquely determined from the first two
moments. In general, one has to use GEE techniques to handle the marginal model with
correlated data.

2.2.3.1 Quasi-likelihood In this section, I briefly mention how to construct the census
quasi-likelihood from sum of the single quasi-likelihood. The quasi-likelihood estima-
tion method was first proposed by Wedderburn (1974). I start by introducing the setting.

(i) Marginal mean µik = EY(Yik) depends on the model variables through a smooth
monotone link function g, i.e., g(µik) = XT

ikβ.

(ii) Marginal variance depends on the marginal mean, i.e., VarY(Yik) = φV(µik), where
φ is some scaling parameter and V is some known function of µik.

The parameters I want to estimate are θ = β = (β1, ¨ ¨ ¨ , βp1)
T. One can construct the

quasi-likelihood. More precisely,

Definition 2.36. The census quasi-likelihood function is defined to be

Qc(µ,y) =
NI
ÿ

i=1

ÿ

kPUc
i

Qik(µik, yik),

where

Qik(µik, yik) =

ż µik

yik

yik ´ t
φV(t)

dt.
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Remark. Note there is no assumption that the data are generated from this quasi-
likelihood function.

Remark. Observe

EY
[
∇µik Qik(µik, Yik)

]
= 0,

Var
Y

[
∇µik Qik(µik, Yik)

]
=

1
φV(µik)

,

EY

[
∇2

µikµik
Qik(µik, Yik)

]
= ´

1
φV(µik)

.

Lemma 2.37. Each quasi-score function ∇βq Qik(µik, Yik) is an unbiased estimating equation
with respect to model measure Y, i.e.,

EY

[
∇βq Qik(µik, Yik)

]
= 0 for all q = 1, ¨ ¨ ¨ , p1.

Proof. To see this, note

EY

[
∇βq Qik(µik, Yik)

]
= EY

[
∇βq

ż µik

Yik

Yik ´ t
φV(t)

dt
]

= EY

[
∇µik

ż µik

Yik

Yik ´ t
φV(t)

dt∇βq µik

]
= EY

[
Yik ´ µik
φV(µik)

]
∇βq µik

=
EY [Yik]´ µik

φV(µik)
∇βq µik

= 0, for all q = 1, ¨ ¨ ¨ , p1.

Proposition 2.38. The census quasi-score function is given by

∇βQc(µ,y) =
NI
ÿ

i=1

DT
i V

´1
i (Yi ´µi), (2.2)
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where

DT
i = (∇βµi)

T =


(
∇β1µi

)T

...(
∇βp1

µi
)T

 =


∇β1µi1 . . . ∇β1µiNi

...
...

∇βp1
µi1 . . . ∇βp1

µiNi

 ,

Vi = φ diag tV(µi1), ¨ ¨ ¨ , V(µiNi)u,

Yi ´µi =

 Yi1 ´ µi1
...

YiNi ´ µiNi

 .

Proof. Observe

∇βQc(µ,y) =


∇β1 Qc(µ,y)

...
∇βp1

Qc(µ,y)



=


řNI

i=1
ř

kPUc
i
∇β1 Qik(µik, yik)

...
řNI

i=1
ř

kPUc
i
∇βp1

Qik(µik, yik)



=


řNI

i=1
ř

kPUc
i

Yik´µik
φV(µik)

∇β1µik
...

řNI
i=1

ř

kPUc
i

Yik´µik
φV(µik)

∇βp1
µik


=

NI
ÿ

i=1

(∇βµi)
T V ´1

i (Yi ´µi)

=
NI
ÿ

i=1

DT
i V

´1
i (Yi ´µi).

Definition 2.39. The sample quasi-likelihood function is defined to be

Qs(µ,y) =
NI
ÿ

i=1

1i
ÿ

kPUc
i

1k|iQik(µik, yik),
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where

Qik(µik, yik) =

ż µik

yik

yik ´ t
φV(t)

dt.

Lemma 2.40. The sample quasi-score function is an unbiased estimating equation with respect
to model measure Y, i.e.,

EY [∇βQs(µ,Y )] = 0.

Proof. Note the sample quasi-score function is a sum of single unbiased estimating equa-
tion, i.e.,

EY [∇βQs(µ,Y )] =
NI
ÿ

i=1

1i
ÿ

kPUc
i

1k|iEY [∇βQik(µik, Yik)] = 0.

The last equality follows from Lemma 2.37.

Let ys
i ,xs

i ,µ
s
i , b

s
i ,V

s
i ,Ds

i be the sample data corresponding to yi,xi,µi, bi,Vi,Di.

Definition 2.41. Define the sample quasi-likelihood estimator pβ for β to be the solution
of the following sample quasi-score function

∇βQs(µ,Y ) =
NI
ÿ

i=1

1i(D
s
i )

T(V s
i )
´1(Y s

i ´µ
s
i ) = 0.

Remark. If µs
i = Xs

i β, then the sample quasi-likelihood estimator pβ is given by

pβ =

( NI
ÿ

i=1

1i(X
s
i )

T(V s
i )
´1Xs

i

)´1( NI
ÿ

i=1

1i(X
s
i )

T(V s
i )
´1Y s

i

)
.

This is also the weighted least square estimator. The variance estimator of pβ is given by

Var
Y
( pβ) =

( NI
ÿ

i=1

1i(X
s
i )

T(V s
i )
´1Xs

i

)´1( NI
ÿ

i=1

1i(X
s
i )

T(V s
i )
´1 Var

Y
(Y s

i ) (X
s
i )

T(V s
i )
´1

)
( NI
ÿ

i=1

1i(X
s
i )

T(V s
i )
´1Xs

i

)´1

.
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The true variance VarY(Y
s

i ) is typically unknown, but one can estimate VarY(Y
s

i ) by the
empirical variance yVarY

(
Y s

i
)
. More precisely,

yVar
Y
( pβ) =

( NI
ÿ

i=1

1i(X
s
i )

T(V s
i )
´1Xs

i

)´1( NI
ÿ

i=1

1i(X
s
i )

T(V s
i )
´1

yVar
Y

(Y s
i ) (X

s
i )

T(V s
i )
´1

)
( NI
ÿ

i=1

1i(X
s
i )

T(V s
i )
´1Xs

i

)´1

,

where yVarY
(
Y s

i
)
=
(
Y s

i ´
xµs
)T (

Y s
i ´

xµs
)

.

Remark. In general, there is no closed form formula for pβ and numerical methods has
to be used (Demidenko, 2013). More explicitly, let ∇βQs(β) be the sample quasi-score
function, i.e.,

∇βQs(β) =
NI
ÿ

i=1

1i(D
s
i )

T(V s
i )
´1(Y s

i ´µ
s
i ).

By Fisher’s iterated method, one has

pβ(r+1) = pβ(r) +
[
´EY

[
∇2
ββQs( pβ(r))

] ]´1
∇βQs( pβ(r)),

where

EY

[
∇2
ββQs(β)

]
= ´

NI
ÿ

i=1

1i(D
s
i )

T(V s
i )
´1Ds

i .

2.2.3.2 Generalized Estimating Equation (GEE) Generalized estimating equation (GEE)
is an extension of quasi-score function. Note Vi = φ diag tV(µi1), ¨ ¨ ¨ , V(µiNi)u in 2.2 is
diagonal in the quasi-score setting. Even if covariance matrix Vi is misspecified, the
quasi-likelihood estimator is still consistent, but it does affect the variance. To improve
efficiency, one could consider modelling correlation structure by a working covariance
matrix Vi(η). In other words, the working covariance matrix Vi(η) is user-defined and
non-diagonal. The parameter one wants to estimate is θ = (β,η)T. This is also known
as the generalized estimating equation. More precisely,
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Definition 2.42. The census GEE estimator rθN is defined as a solution of
NI
ÿ

i=1

DT
i V

´1
i (η)(Yi ´µi) = 0,

where Vi(η) is a user-defined working covariance matrix.

Definition 2.43. The sample GEE estimator pθn is defined as a solution of

NI
ÿ

i=1

1i(D
s
i )

T(V s
i )
´1(η)(Y s

i ´µ
s
i ) = 0,

where V s
i (η) is a user-defined working covariance matrix.

Theorem 2.44. Under certain regularity conditions, then

NI
1
2 (pθn ´ θ0)

D
ÝÑ N(0, G(θ0)),

where

G(θ0) = lim
NIÑ8

NI

( NI
ÿ

i=1

1i(D
s
i )

T(V s
i (θ0))

´1Ds
i

)´1[ NI
ÿ

i=1

1i(D
s
i )

T(V s
i (θ0))

´1 Var
Y
(Y s

i )(V
s

i (θ0))
´1(Ds

i )
]

( NI
ÿ

i=1

1i(D
s
i )

T(V s
i (θ0))

´1Ds
i

)´1
.

Proof. This is proved in Liang and Zeger (1986).

Remark. One can estimate G(θ0) by the empirical variance

pG(pθn) = lim
NIÑ8

NI

( NI
ÿ

i=1

1i(D
s
i )

T(V s
i (

pθn))
´1Ds

i

)´1[ NI
ÿ

i=1

1i(D
s
i )

T(V s
i (

pθn))
´1

yVar
Y
(Y s

i )(V
s

i (
pθn))

´1(Ds
i )
]

( NI
ÿ

i=1

1i(D
s
i )

T(V s
i (

pθn))
´1Ds

i

)´1
, (2.3)

where yVarY
(
Y s

i
)
=
(
Y s

i ´
xµs
)T (

Y s
i ´

xµs
)

.

Remark. Variance estimation in 2.3 is given by a sandwich form, which is very similar
to variance estimation for the weighted pairwise likelihood estimator under a two-stage
sampling design (more about this in chapter 3 and 4).
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2.2.4 Relationship between marginal and conditional model

The relationship between the marginal and conditional model has been dissussed exten-
sively in the literature (Zeger et al., 1988; Neuhaus et al., 1991). I would like to comment
on the difference between the marginal and conditional model for the logistic regression
model. In particular, I want to show they are not equivalent. Let Yik be a binary random
variable.

(i) Consider a conditional logistic model

Yik|pik „ Bernoulli(pik),
logit(pik) = β0 + β1xik + bi,

then the conditional mean is given by

EY[Yik|bi] =
exp (β0 + β1xik + bi)

1 + exp (β0 + β1xik + bi)
.

Hence, the marginal mean is given by

EY[Yik] = EY [EY[Yik|bi]] = EY

[
exp (β0 + β1xik + bi)

1 + exp (β0 + β1xik + bi)

]
. (2.4)

(ii) Consider a marginal logistic model

logit(pik) = γ0 + γ1xik,

then the marginal mean is given by

EY[Yik] = pik =
exp (γ0 + γ1xik)

1 + exp (γ0 + γ1xik)
. (2.5)

Observe 2.5 is not equivalent to 2.4 as the expectation is a linear operator and inte-
grand is nonlinear in bi.

Remark. It can be shown that estimation from marginal and conditional approach are the
same for linear and Poission model. For more detail, see Demidenko (2013); Grömping
(1996). But this is not true for logistic model.
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2.3 Model–design–based approach

The goal in the model–design–based approach is to construct estimator which incorpo-
rates the feature of the sampling design to estimate unknown parameters θ from the
super-population. Roughtly speaking, this can be decomposed into two steps:

(i) Inference from the sample data to the finite population.

(ii) Inference from the finite population to the model.

There are two probability measures in this setting: the design measure Pπ (the values of
the sample inclusion indicators 1 for each observational unit is random) and the model
measure PY (the values of the model variable Y for each observational unit is random).
I will use EYπ for the expectation, VarYπ for the variance and CovYπ for the covariance
under the model–design–based measure.

I would like to discuss informally how to think about the framework. The design-
based framework works conditional with 1|Y and model-based framework works con-
ditional with Y|1. The model-design-based framework mean working jointly in (Y, 1)
rather than conditionally. Since design-expectations are always taken first, the basic
approach is to first conditional on Y and then remove the conditioning by law of it-
erated expectation, i.e., EYπ = EYEπ|Y. The model-design variance is given by con-
ditional on Y first, then remove the conditioning by law of conditional variance, i.e.,
VarYπ = VarY Eπ|Y + EY Varπ|Y.

In this section, I assume the sampling clusters are the model clusters, i.e., Uc
I = Mc

I .

2.3.1 Asymptotic setting

I want to take the limit of an estimator. In particular, I want to talk about the notion of
convergence in probability and convergence in distribution. With the structure I intro-
duced so far, I cannot define those notions. This is because the sample size n is bounded
by population size N, which is assumed to be finite. To formally define those notions,
one needs to construct infinite produce spaces and extend probability on it. But for what
I have to do in this thesis, this level of mathematical formality is unnecessary. I shall

51



not elaborate the details of this construction, as this has been discussed in many papers
(Isaki and Fuller, 1982; Rubin-Bleuer and Kratina, 2005).

In all of the following, I assume both the sample and population size need to diverge
and the sampling fraction should converge, i.e., n Ñ 8, N Ñ 8 and n

N Ñ c, where
c P [0, 1). Let θ0 be the true value.

Definition 2.45. Given a superpopulation model, an estimator pθn is design consistent
if for almost all model realisation ω from the superpopulation and for all ε ą 0, there
exists a n0 P N such that for all n ą n0, one has

Pπ

(
}pθn(ω)´ θ0} ą ε

)
ă ε.

Remark. It can be shown that HT estimator are design consistent (Isaki and Fuller, 1982).

Definition 2.46. Estimator pθn is model consistent if for all ε ą 0, there exists a n0 P N

such that for all n ą n0, one has

PY(}pθn ´ θ0} ą ε) ă ε.

Remark. Finite-dimensional MLE estimator are model consistent under certain regular-
ity conditions. For more details, see chapter 5 in Van der Vaart (2000).

2.3.2 Informative sampling

There are several possible definitions of the informative sampling in the literature. I will
use the following one in this thesis (Pfeffermann et al., 1998; Rubin-Bleuer and Kratina,
2005).

Definition 2.47. Sampling design is uninformative if design variable is independent of
the response variable after conditioning on the model variable, i.e.,

1U K YU|XU.

If sampling design is not uninformative, then one shall call it informative.

Remark. The definition of the informative sampling can be easily extended to the two-
stage sampling (Pfeffermann et al., 1998).
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Example 3. Suppose sampling inclusion probability is given by

π : U ÝÑ [0, 1]

k ÞÝÑ π(k) =
1

1 + e´yk
,

then π(k) is an increasing function of yk. Hence, observational units with a larger value of y are
oversampled.

What is significant in here is ignoring the sampling design and just fitting the mixed
model to the sampling distribution will lead to biased inference (Pfeffermann and Sver-
chkov, 2009). To see this, let fs(y,x) be the sampling distribution and fp(y,x) be the
population distribution.

Lemma 2.48. Under the informative sampling design, the model holding for the sample is differ-
ent from the model holding for the population, i.e.,

fs(yk,xk) ‰ fp(yk,xk).

Proof. Observe

fs(yk,xk) = fp(yk,xk|1k = 1)

=
fp(yk,xk, 1k = 1)

fp(1k = 1)

‰
fp(yk,xk) fp(1k = 1)

fp(1k = 1)

= fp(yk,xk).

There are many possible solutions in here. One could add design variables in the the
model, but there are two problems with this approach. First, we don’t want the sampling
design (which might be chose by someone else) to affect the choice of parameters that we
estimate. Hence we prefer not to directly model the design variables. Too many design
variables reduce the power of the model. Secondly, design variable Z may be a mediator
variable, i.e., design variable Z may be correlated with both the response variable Y and
model variable X. Then one cannot distinguish the effect of model variable X on the
response variable Y. See the figure below.
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X Y

Z

X Y

Z

Figure 2.1: Mediator variable Z (left) and confounding variable Z (right) .

Alternatively, one could incorporate the sampling weights into the likelihood, pro-
ducing a weighted likelihood, where the weight is given by the inverse sampling inclu-
sion probability, i.e., wk = 1/πk. This is the approach I will take for the rest of thesis.
The rational of this construction is the weighted likelihood is an unbiased estimator for
the census likelihood (more about this later).

Remark. In the literature, there are other ways to construct the weights such as calibra-
tion to handle more sophisticated setting such as incomplete data or missing data. For
more detail, see Gelman (2007); Kim and Shao (2013); Kim and Park (2010); Lumley and
Scott (2017); Grace (2016).

2.3.3 Full-likelihood approach

In this section, I will briefly mention full-likelihood approach. Scott and Wild (1997,
2001) show how to construct full-likelihood for the logistic regression when the sampling
clusters are the model clusters.

The full-likelihood is much more complicated and is not tractable when the sampling
clusters are not equal the model clusters. In the literature, no one has described how
to construct full-likelihood. This is because it lacks the conditional independent, i.e.,
observational units in the same sampling cluster might not be in the same model cluster.

Consider a random intercept model with informative Poisson sampling at stage 1 and
simple random sampling at stage 2. Assume the sampling clusters are equal to model
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clusters, the sampling is independent across the clusters. Let g(bi,θ) be the density of bi

and f (yik,θ|bi) be the conditional density of yik. The population likelihood is

NI
ź

i=1

ż

g(bi,θ)
ź

kPUc
i

f (yik,θ|bi)dbi.

Let gR be the sampling likelihood at stage 1. Then the likelihood of the data is
proportional to

NI
ź

i=1

ż

gR(bi,θ)
ź

kPUs
i

f (yik,θ|bi)dbi.

We have a product of one-dimensional numerical integrals for the full likelihood to
maximise, which is completely feasible. The sample likelihood is also tractable.

When the sampling clusters are not the same as the model clusters, the sampling
likelihood gR for a particular sample cluster depends on the bi and Yij for all model
clusters that intersect it, so the product over i cannot simply be taken outside the integral.
In the simulation setting in the thesis (100ˆ 100) with overlap of 0.6, 40 bi contribute
to each sampling probability so even under Poisson sampling we have 40-dimensional
numerical integrals to compute the likelihood. This is just intractable, which is why we
want to use pseudo-likelihood.

2.3.4 Weighted estimating equation

In this section, I will briefly mention how to construct an unbiased sample weighted
estimating equation when the census estimating equation can be written as a linear
combination of individual estimating equation. In general, it is impossible to construct
an unbiased sample weighted estimating equation when the census estimating equation
is non-linear. It happens quite often and is not just remote mathematical territory. For
example, normal linear mixed model. What then can we do? I will come back to this
question in chapter 3, which is why I want to study the pseudo-likelihood estimation.

Let ψc(θ) be a census estimating equation and suppose ψc(θ) can be written as a
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linear combination of individual estimating equation, i.e.,

ψc(θ) =
NI
ÿ

i=1

ÿ

kPUc
i

ψik(yik). (2.6)

Then the Horvitz-Thompson estimator for ψc(θ) is given by

ψs(θ) =
NI
ÿ

i=1

1iωi
ÿ

kPUc
i

1k|iωk|iψik(yik).

Observe Eπ [ψs(θ)] = ψc(θ).
In all of the following, let pθn be the sample weighted estimator and θ0 be the true

value of the model. More precisely,

Definition 2.49. The sample weighted estimator pθn of θ is defined as a solution of

1
NI

ψs(θ) = 0.

Definition 2.50. The census estimator rθN of θ is defined as a solution of

1
NI

ψc(θ) = 0.

Remark. It can be shown that the true parameter θ0 of θ is a solution of

EY

[
1
NI

ψc(θ)

]
= 0,

where φc is the census likelihood score. In other words, 1
NI

ψc(θ0) = 0 is an unbiased
estimating equation.

Under regularity conditions, as N Ñ 8, n Ñ 8 and n
N Ñ c, one can show the sample

weighted estimator converges to the census estimator and census estimator converges to
the true value by classical smooth argument as in chapter 5 of Van der Vaart (2000), i.e.,

pθn ´ rθN
p
ÝÑ 0 under design measure π,

rθN
p
ÝÑ θ0 under model measure Y.

See the figure below.
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Super-population model with
true parameters θ0:

• Conditional model:
model the conditional
distribution Y |b and
random effect b. Then
the likelihood for the
population is given by

f (Y ) =

ż

f (Y |b)g(b)db.

• Marginal model: only
model the first and
second moment of Y ,
without specifying the
exact distribution of Y .
Then use GEE

NI
ÿ

i=1

DT
i V

´1
i (Yi ´µi) = 0.

True parameter θ0:

• pθn
p
ÝÑ θ0 under

model-design measure
Yπ.

Census data generated from
super-population model Y:

• Census estimating
equation ψc.

Census estimator rθN:

• rθN
p
ÝÑ θ0 under model

measure Y.

Sample data from census data
through complex sampling π:

• Sample weighted
estimating equation ψs.

Sample weighted estimator pθn:

• pθn ´ rθN
p
ÝÑ 0 under

design measure π.57



Let me summarise the key step in here, as I will apply such argument without further
comment.

(i) Write down the census estimating equation as a linear combination of individual
estimating equation.

(ii) Add weight to form an unbiased sample weighted estimating equation.

(iii) Reduce to a standard argument to show the estimator is consistent and asymptotic
normality, as N Ñ 8, n Ñ 8 and n

N Ñ c, where c P [0, 1).

But there are still two important questions remaining.

(i) How can we handle the non-linear case, i.e., the census estimating equation cannot
be written as a linear combination of individual estimating equation.

(ii) How can we add the weight for the non-linear case to form an unbiased sample
weighted estimating equation? Note consistency of the estimation relied on an
unbiased estimating equation.

This is essentially impossible to construct an unbiased estimating equation, as the
expectation is a linear operator and integrand is nonlinear. I will propose alternative
solution in chapter 3. My short answer is to transform a nonlinear case into a lin-
ear case, i.e., instead of considering full-likelihood, considering pseudo-likelihood so
that the weight is linear in the sample weighted estimating equation. Outside complex
sampling, the rationals for using pseudo-likelihood is to avoid strong distributional as-
sumption and reduce computational burden (Heagerty and Lele, 1998). With complex
sampling, pseudo-likelihood is used for a completely different reason. Namely, we want
to construct an unbiased estimating equation, so that weight is linear in the sample
weighted estimating equation (more about this in chapter 3).

I want to come back to the non-linear case and show an example one could potentially
encounter. In general, the census estimating equation cannot always be written as a
linear combination of individual estimating equation as in 2.6. In that case, it is not clear
how to construct the sample likelihood. This is not just remote mathematical territory
and it happens quite often. For example, normal linear mixed model.
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Consider a linear mixed model in section 2.2.2. The census full-likelihood is given by

`c(θ) = ´
1
2

NI
ÿ

i=1

log |Vi| ´
1
2

NI
ÿ

i=1

(yi ´ xiβ)
TV´1

i (yi ´ xiβ),

where Vi(σ
2,η) = σ2I +ZiD(η)ZT

i .

Lemma 2.51. Suppose Vi can be decomposed into a 2ˆ 2 block matrices

Vi =

(
V s

i Ai

AT
i Bi

)
,

where V s
i is the sample variance, then

V ´1
i =

 (
V ´1

i

)
s
¨

¨ ¨

 , (2.7)

|V s
i | =|V

s
i Bi ´A

T
i Ai|. (2.8)

where
(
V ´1

i

)
s
= (V s

i ´AiB
´1
i AT

i )
´1.

Proof. For more detail, see Lu and Shiou (2002).

With complex sampling, the elements of
(
V ´1

i

)
s

is not available, where
(
V ´1

i

)
s

is
the sample block of the inverse of covariance. Hence it is not clear how to construct
an unbiased sample log-pseudo-likelihood. To see this, one could try naive sample log-
likelihood

`s(θ) = ´
1
2

NI
ÿ

i=1

1i log |Vs
i | ´

1
2

NI
ÿ

i=1

1i(ys
i ´ xs

iβ)
T
(

V´1
i

)
s
(ys

i ´ xs
iβ).

But it is impossible to calculate (V ´1
i )s and |Vs

i | based on the sample data as shown by
Lemma 2.51. It is hopeless to apply formula 2.7 and 2.8 as block matrices Ai,Bi involve
the census data Zi.
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3 Maximum pseudo-likelihood

In this chapter, I want to study the pseudo-likelihood estimation with complex sampling.
More precisely, I discuss a specific pseudo-likelihood construction, namely the pairwise
composite likelihood. With complex sampling, one has to add weight in the pairwise
likelihood. My goal in this chapter is to review the key results from Rao et al. (2013);
Yi et al. (2016) in the setting of the two-stage sampling where the sampling clusters
are the model clusters. More precisely, I am going to present proof done by Rao et al.
(2013); Yi et al. (2016) in detail, which is a starting point in the literature of the weighted
pairwise likelihood estimator under complex sampling. In particular, the consistency
and variance estimator of the weighted pairwise likelihood estimator will be presented.

3.1 Motivation

Roughly speaking, a pseudo-likelihood is constructed by modifying a true likelihood
function to get a more tractable objective function. In particular, there is no assumption
the data are generated from this pseudo-likelihood. Without complex sampling, there
are two main reasons for such approach (Heagerty and Lele, 1998). One is to avoid
strong distributional assumption. The other is to reduce the computational burden. With
complex sampling, pseudo-likelihood is used for a completely different reason. Namely,
one wants to construct an unbiased estimation equation, so that weight is linear in the
sample weighted estimating equation. The pairwise likelihood is a special case of the
pseudo-likelihood estimation. In the literature, the pseudo-likelihood is first developed
by Besag (1974). In the modern sense, the pseudo-likelihood refers to any functions
that are modification from a true likelihood. Composite likelihood is constructed from
the sum of marginal likelihood or conditional likelihood (Lindsay, 1988). In particular,
the pairwise composite likelihood is constructed from the sum of pairwise likelihood.
Observe

tPairwise likelihoodu P tComposite likelihoodu Ă tPseudo-likelihoodu.

In all of the following, I will exclusively study the pairwise likelihood.
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3.2 Setting

In this chapter, I will always work under the following setting. Suppose the two-level
super-population model is given by

Yik|Xik, bi „ f (yik|xik, bi,θ1),

bi „ g(bi|θ2),

for i = 1, ¨ ¨ ¨ , NI and k = 1, ¨ ¨ ¨ , Ni. This is more general setting than GLMM, as the
conditional model does not have to be an exponential family and the random effects do
not have to be normal random vector. The paper by Rao et al. (2013); Yi et al. (2016) is
devoted to studying the weighted pairwise likelihood under such setting and I follow
their approaches very closely in this chapter.

Let Yi = (Yi1, ¨ ¨ ¨ , YiNi)
T,Y = (Y1, ¨ ¨ ¨ ,YNI)

T and θ = (θ1,θ2)
T P Θ Ă Rm. Define

θ0 to be the true value for the super-population model. Assume θ0 is an interior point
of a compact set Θ. In all of this chapter, I assume the sampling clusters are the model
clusters, i.e., Uc

I = Mc
I .

3.3 Pairwise composite likelihood estimation without complex sam-
pling

Consider the pairwise composite likelihood without complex sampling, i.e., one observes
all the census data. The idea is to replace the census log-full-likelihood `i(yi1, ¨ ¨ ¨ , yiNi)

for each cluster i by the sum of all possible pairwise log-likelihood p`(yik, yil) in that
cluster. Observe correlation information about observational units k and l in cluster i is
captured in the pairwise log-likelihood p`(yik, yil). More precisely,

Definition 3.1. Define the census pairwise log-likelihood for cluster i to be

p`c
i (θ) =

ÿ

kăl
k,lPUc

i

p`kl|i(θ),

where

p`kl|i(θ) = log
[
ż

f (yik|xik, bi,θ1) f (yil|xil, bi,θ1)g(bi|θ2)dbi

]
. (3.1)
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Then the census pairwise log-likelihood is given by summing over all possible clusters,
i.e.,

p`c(θ) =
NI
ÿ

i=1

p`c
i (θ).

Remark. There are many ways of constructing the pairwise log-likelihood by imposing
conditions on which pair one chooses in each cluster. I took all possible pairs in the
same cluster as my definition. This might not always be a optimal choice. In fact, one
can show that choosing all pairs can reduce efficiency, even if all the pairwise likelihood
functions are independent (Xu, 2012). This is still an open question in the literature on
how to construct the optimal pairs and how or whether to weight them. For what I have
to do in this thesis, it suffices to consider all possible pairs in the same model clusters.

Remark. The integral in 3.1 involves a high-dimensional integral and so is intractable
when the dimension of random effects bi is large. Approximation of integration based
on the Laplace approximation is discussed in Breslow and Clayton (1993); Pinheiro and
Chao (2006).

Remark. Observe the pairwise likelihood and full likelihood are exact the same when
the cluster are of size 2. Note p`c

i is independent of p`c
i1 for i ‰ i1 under the model

measure Y.

Definition 3.2. The census pairwise log-likelihood estimator rθN of θ is defined as a
solution of

1
NI
∇θp`c(θ) = 0.

Remark. Consistency and asymptotical normality of the pairwise log-likelihood estima-
tor without complex sampling have been established in many papers (Xu, 2012; Cox and
Reid, 2004).
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3.4 Weighted pairwise composite likelihood estimation with complex
sampling

3.4.1 Construction

With complex sampling, the population model does not hold for the sample (Pfeffer-
mann, 1996). To estimate the census pairwise log-likelihood from sample data, one
needs to add weight to account for informative sampling.

Definition 3.3. Define the sample weighted pairwise log-likelihood for cluster i to be

p`s
i (θ) =

ÿ

kăl
k,lPUs

i

ωkl|i p`kl|i(θ),

where

p`kl|i(θ) = log
[
ż

f (yik|xik, bi,θ1) f (yil|xil, bi,θ1)g(bi|θ2)dbi

]
.

The sample weighted pairwise log-likelihood is given by

p`s(θ) =
NI
ÿ

i=1

1iωi p`s
i (θ).

Lemma 3.4. Let hkl|i(yk, yl) = sup
tθPΘu }∇θp`kl|i(yk, yl,θ)}. Suppose there exists a δ ą 0

such that sup
ti,k,luEY

[
h1+δ

kl|i

]
ă 8, then the sample weighted pairwise log-likelihood is a design-

unbiased estimator for the census pairwise log-likelihood under design measure π, i.e.,

Eπ [p`s(θ)] = p`c(θ).
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Proof. Observe

Eπ [p`s(θ)] = Eπ1,π2

[ NI
ÿ

i=1

1iωi p`s
i (θ)

]

= Eπ1

[
Eπ2

[ NI
ÿ

i=1

1iωi p`s
i (θ)|U

s
I

]]

=
NI
ÿ

i=1

ωiEπ1 [1iEπ2 [p`
s
i (θ)|U

s
I ]]

=
NI
ÿ

i=1

ωiEπ1 [1i p`c
i (θ)]

=
NI
ÿ

i=1

p`c
i (θ)

= p`c(θ).

Corollary 3.5. Let hkl|i(yk, yl) = sup
tθPΘu }∇θp`kl|i(yk, yl,θ)} and gkl|i(yk, yl) =

sup
tθPΘu }∇2

θθp`kl|i(yk, yl,θ)}. Suppose there exists a δ ą 0 such that sup
ti,k,luEY

[
h1+δ

kl|i

]
ă 8

and sup
ti,k,luEY

[
g1+δ

kl|i

]
ă 8, then the sample weighted pairwise score function is a design-

unbiased estimator for the census pairwise score function under the design measure π, i.e.,

Eπ [∇θp`s(θ)] = ∇θp`c(θ),

Eπ

[
∇2
θθp`s(θ)

]
= ∇2

θθp`c(θ).

Lemma 3.6. Let hkl|i(yk, yl) = sup
tθPΘu }∇θp`kl|i(yk, yl,θ)}. Suppose there exists a δ ą 0

such that sup
ti,k,luEY

[
h1+δ

kl|i

]
ă 8, then

EYπ[∇θp`s(θ0)] = 0.
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Proof. By Corollary 3.5, one has

EYπ [∇θp`s(θ0)] =EY[∇θp`c(θ0)]

=
NI
ÿ

i=1

ÿ

kăl
k,lPUc

i

EY
[
∇θp`kl|i(θ0)

]

=
NI
ÿ

i=1

ÿ

kăl
k,lPUc

i

ż ∇θ f (yik, yil,θ0)

f (yik, yil,θ0)
f (y1, ¨ ¨ ¨ ,yi´1, yi1, ¨ ¨ ¨ , yi(k´1),

yik, yi(k+1), ¨ ¨ ¨ , yi(l´1), yil, yi(l+1), ¨ ¨ ¨ yiNi ,yi+1, ¨ ¨ ¨ ,yNI ,θ0)dy1 ¨ ¨ ¨ dyi´1

dyi1 ¨ ¨ ¨ dyi(k´1)dyikdyi(k+1) ¨ ¨ ¨ dyi(l´1)dyildyi(l+1) ¨ ¨ ¨ dyiNi dyi+1 ¨ ¨ ¨ dyNI

=
NI
ÿ

i=1

ÿ

kăl
k,lPUc

i

ż ∇θ f (yik, yil,θ0)

f (yik, yil,θ0)
f (yik, yil,θ0)dyikdyil

=
NI
ÿ

i=1

ÿ

kăl
k,lPUc

i

∇θ
ż

f (yik, yil,θ0)dyikdyil

=
NI
ÿ

i=1

ÿ

kăl
k,lPUc

i

∇θ1

=0.

Example 4 (Pairwise likelihood estimator for linear mixed model). Consider a linear mixed
model defined in section 2.2.2. I work with the pairwise composite likelihood instead. The census
pairwise likelihood is given by

p`c(θ) =
NI
ÿ

i=1

ÿ

kăl
k,lPUc

i

[
´

1
2

log |Σkl| ´
1
2
(ykl ´ xklβ)

TΣ´1
kl (ykl ´ xklβ)

]
,

where Σkl are now 2ˆ 2 variance-covariance matrices for pair k, l. Then one can show the census
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pairwise likelihood estimators of β is given by

rβ =

 NI
ÿ

i=1

ÿ

kăl
k,lPUc

i

xT
klΣ

´1
kl xkl


´1 NI

ÿ

i=1

ÿ

kăl
k,lPUc

i

xT
klΣ

´1
kl ykl

 .

The sample weighted pairwise likelihood is given by

p`s(θ) =
ÿ

iPUs
I

ωi
ÿ

kăl
k,lPUs

i

ωkl|i

[
´

1
2

log |Σkl| ´
1
2
(ykl ´ xklβ)

TΣ´1
kl (ykl ´ xklβ)

]
.

One can show the sample weighted pairwise likelihood estimators of β is given by

pβ =

ÿ

iPUs
I

ωi
ÿ

kăl
k,lPUs

i

ωkl|ix
T
klΣ

´1
kl xkl


´1ÿ

iPUs
I

ωi
ÿ

kăl
k,lPUs

i

ωkl|ix
T
klΣ

´1
kl ykl

 .

3.4.2 Consistency

I now turn to the problem I stated in the beginning of this chapter: when is the pairwise
likelihood estimator a consistent estimator? I am going to present proof done by Yi et al.
(2016), which is a starting point in the literature of the weighted pairwise likelihood
estimator under complex sampling, but I will include more detail. I am going to use a
similar approach for the more general case (more about this in chapter 4). Let pθn be the
sample weighted pairwise likelihood estimator and θ0 be the true value of the model.
More precisely,

Definition 3.7. The sample weighted pairwise likelihood estimator pθn of θ is defined as
a solution of

1
NI
∇θp`s(θ) = 0.

Remark. It can be shown that the true parameter θ0 of θ is a solution of

EY

[
1
NI
∇θp`c(θ)

]
= 0.
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In all of the following, I assume the elements within the cluster are bounded, both
the sample and population clusters need to diverge and the sampling fraction for the
cluster should converge, i.e., Ni ď λ for all i, nI Ñ 8, NI Ñ 8 and nI

NI
Ñ c, where λ ą 0

and c P [0, 1).

Theorem 3.8. Under the following regularity conditions,

A.1 Θ is a compact subset of Rp and θ0 is an interior point of Θ.

A.2 Let hkl|i(Yik, Yil) = sup
tθPΘu }∇p`kl|i(θ)}. Suppose there exists a δ ą 0 such that sup

ti,k,luEYh1+δ
kl|i ă

8 and supi EY}Yi}
δ ă 8, where Yi = (Yi1, ¨ ¨ ¨ , YiNi)

T.

A.3 For any given c ą 0 and a given sequence tyiu satisfying }yi} ď c, the sequence of function
t∇θp`kl|i(θ)u is equicontinuous on any open subset A of Θ.

A.4 For all variables Vkl|i satisfy 1
NI

řNI
i=1

ř

kăl
k,lPUc

i

V2
kl|i = Op(1), one has

1
NI

ÿ

iPUs
I

ωi
ÿ

kăl
k,lPUs

i

ωkl|iVkl|i ´
1
NI

NI
ÿ

i=1

ÿ

kăl
k,lPUc

i

Vkl|i = Op

(
nI
´ 1

2

)

with respect to design probability π.

A.5 The number of elements within any clusters is bounded, i.e., supi Ni ď λ for some λ ą 0.

A.6 For all ε ą 0, there exists a δ ą 0 such that

inf
tθPΘ:}θ´θ0}ěεu

›

›

›

›

EYπ

[
1
NI
∇θp`s(θ)

] ›
›

›

›

ą δ.

then
pθn

p
ÝÑ θ0

with respect to model-design probability Yπ.

Remark. A.2 is a standard 1 + δ moment assumption for the pointwise law of large
number to hold. Observe 1+ δ moment bound is crucial, it is not enough to assume first
moment exists. One typically needs a 2 + δ moment bound for the central limit theorem
to hold (more about this in section 4.4).
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Remark. A.6 is a technical assumption to ensure that θ0 is the unique zero of EYπ

[
1

NI
∇θp`s(θ)

]
on Θ. The assumptions given above are essentially the same as Yi et al. (2016).

Remark. This result also holds when the sampling clusters are not the same as the model
clusters (more about this in Chapter 4).

Remark. In view of Theorem 7.21, I may assume p = 1.

The key step to establish Theorem 3.8 is the uniform law of large numbers (ULLN)
on a compact set which can be proved from the pointwise law of large numbers (PLLN)
and equicontinuity conditions. Once this has been done, the rest is just routine. The
argument is slightly modification from Lemma 5.3 from Shao (2003), Yi et al. (2016);
Carrillo-Garcia (2008). More precisely,

Lemma 3.9. With the same conditions A.1 – A.5 as in Theorem 3.8, then one has

sup
θPΘ

›

›

›

›

1
NI
∇p`s(θ)´EYπ

[
1
NI
∇p`s(θ)

] ›
›

›

›

p
ÝÑ 0 (3.2)

with respect to model-design probability Yπ.

Proof. I start by introducing some notation. Let θ P Θ and ρ ą 0, define Bρ(θ) = tθ1 P

Θ : }θ ´ θ1} ă ρu. Consider the upper sum and the lower sum of the weighted pairwise
score function on Bρ(θ), i.e.,

Uρ(θ) =
1
NI

ÿ

iPUs
I

ωi
ÿ

kăl
k,lPUs

i

ωkl|i sup
θ1PBρ(θ)

∇θp`kl|i(θ
1),

Lρ(θ) =
1
NI

ÿ

iPUs
I

ωi
ÿ

kăl
k,lPUs

i

ωkl|i inf
θ1PBρ(θ)

∇θp`kl|i(θ
1).

Observe
}Uρ(θ)´ Lρ(θ)} ď

2
NI

ÿ

iPUs
I

ωi
ÿ

kăl
k,lPUs

i

ωkl|ihkl|i, (3.3)

where hkl|i(Yik, Yil) = sup
tθPΘu }∇θp`kl|i(θ)}.
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I want to show the difference between the upper sum and lower sum of the weighted
pairwise score function convergence to 0 as the radius of the ball ρ go to 0. More
precisely,
Claim: Let θ P Θ, for all ε ą 0, there exists a ρ ą 0 and n0 P N such that for all nI ě n0,
one has

PYπ

(
}Uρ(θ)´ Lρ(θ)} ě ε

)
ď ε.

Proof: The proof is based on a truncation argument. I want to truncate the difference
between the upper sum and lower sum such that }Uρ(θ) ´ Lρ(θ)}1t}Yi}ącu is bounded
by using moment condition A.2, where Yi = (Yi1, ¨ ¨ ¨ , YiNi)

T. For the remainder term
}Uρ(θ) ´ Lρ(θ)}1t}Yi}ďcu, I am going to show the measure of that set is small by using
the equicontinuity condition A.3. More precisely, let θ P Θ, for all ε ą 0, c ą 0 and ρ ą 0,
one has

PYπ

(
}Uρ(θ)´ Lρ(θ)} ě ε

)
=PYπ

(
}Uρ(θ)´ Lρ(θ)}1t}Yi}ącu ě ε

)
+ PYπ

(
}Uρ(θ)´ Lρ(θ)}1t}Yi}ďcu ě ε

)
. (3.4)

For the first term in 3.4, I can choose a sufficiently large c ą 0 to make it as small as I
want by using the moment bound. Fixed such c ą 0, I can bound the second term in 3.4
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by equicontinuity condition. More precisely, for the first term in 3.4, one has

PYπ

(
}Uρ(θ)´ Lρ(θ)}1t}Yi}ącu ě ε

)
ď PYπ

 1
NI

ÿ

iPUs
I

ωi
ÿ

kăl
k,lPUs

i

ωkl|ihkl|i1t}Yi}ącu ě
ε

2



ď
2
ε

EYπ

 1
NI

ÿ

iPUs
I

ωi
ÿ

kăl
k,lPUs

i

ωkl|ihkl|i1t}Yi}ącu



=
2
ε

EY

 1
NI

NI
ÿ

i=1

ÿ

kăl
k,lPUc

i

hkl|i1t}Yi}ącu


ď

2λ2

ε
sup
ti,k,lu

EY
[
hkl|i1t}Yi}ącu

]
ď

2λ2

ε
sup
ti,k,lu

[
EYh1+δ

kl|i

] 1
1+δ

[PY(}Yi} ą c)]
δ

1+δ

=
2λ2

ε
sup
ti,k,lu

[
EYh1+δ

kl|i

] 1
1+δ
[
PY(}Yi}

δ
ą cδ)

] δ
1+δ

ď
2λ2

ε
sup
ti,k,lu

[
EYh1+δ

kl|i

] 1
1+δ
[
EY(}Yi}

δ)
] δ

1+δ c´
δ2

1+δ .

In the first inequality, I used 3.3. In the second inequality, I used Markov’s Inequality
Lemma 7.16. In the third inequality, I used A.5 , i.e., supi Ni ď λ. In the fourth, I
used Hölder’s Inequality Lemma 7.14. In the last inequality, I used Markov’s Inequality
Lemma 7.16 again.

From the moment bound A.2, I can find a c ą 0 such that

2λ2

ε
sup
ti,k,lu

[
EYh1+δ

kl|i

] 1
1+δ
[
EY(}Yi}

δ)
] δ

1+δ c´
δ2

1+δ ď
ε

2
,

i.e.,
PYπ

(
}Uρ(θ)´ Lρ(θ)}1t}Yi}ącu ě ε

)
ď

ε

2
. (3.5)
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Fix such c ą 0, for the second term in 3.4, I use the equicontinuity condition A.3, i.e.,
for all ε ą 0, there exists a ρ ą 0 such that

sup
θ1,θ2PA

›

›

›

›

∇θp`kl|i(θ1)1t}Yi}ďcu ´∇θp`kl|i(θ2)1t}Yi}ďcu

›

›

›

›

ď
ε

λ2

for all open sets A with diam(A) ď ρ and for all k, l, i. In particular, for all ε ą 0, there
exists a ρ ą 0 such that

sup
θ1PBρ(θ)

∇θp`kl|i(θ
1)1t}Yi}ďcu ´ inf

θ1PBρ(θ)
∇θp`kl|i(θ

1)1t}Yi}ďcu ď
ε

λ2

for all k, l, i. Summing over all possible pairs and normalising by 1
NI

, one has

}Uρ(θ)´ Lρ(θ)}1t}Yi}ďcu ď
1
NI

ÿ

iPUs
I

ωi
ÿ

kăl
k,lPUs

i

ωkl|i
ε

λ2 .

Hence,

Pπ

(
}Uρ(θ)´ Lρ(θ)}1t}Yi}ďcu ě ε

)
ď Pπ

 1
NI

ÿ

iPUs
I

ωi
ÿ

kăl
k,lPUs

i

ωkl|i
ε

λ2 ě ε



= Pπ

 1
NI

ÿ

iPUs
I

ωi
ÿ

kăl
k,lPUs

i

ωkl|i ě λ2


ď

ε

2
. (3.6)

In the last inequality, I used the following fact: by A.4 and A.5, one has

1
NI

ÿ

iPUs
I

ωi
ÿ

kăl
k,lPUs

i

ωkl|i ´
1
NI

NI
ÿ

i=1

ÿ

kăl
k,lPUc

i

1 = Op

(
nI
´ 1

2

)
,

sup
i

Ni ď λ.
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Putting all those estimates 3.5 and 3.6 together, one has

PYπ

(
}Uρ(θ)´ Lρ(θ)} ě ε

)
=PYπ

(
}Uρ(θ)´ Lρ(θ)}1t}Yi}ącu ě ε

)
+ PYπ

(
}Uρ(θ)´ Lρ(θ)}1t}Yi}ďcu ě ε

)
ď

ε

2
+

ε

2
ďε.

This completes the proof of the claim. �

Now, I want to show the lower sum convergences to the expectation of the lower sum
function. More precisely,
Claim: Let θ P Θ, for all ρ ą 0 and ε ą 0, there exists a n0 P N such that for all nI ě n0,
one has

PYπ

(
}Lρ(θ)´EYπ

[
Lρ(θ)

]
} ě ε

)
ď ε.

Proof: Observe

PYπ

(
}Lρ(θ)´EYπ

[
Lρ(θ)

]
} ě ε

)
ďPYπ

(
}Lρ(θ)´Eπ

[
Lρ(θ)

]
} ě

ε

2

)
+ PYπ

(
}Eπ

[
Lρ(θ)

]
´EYπ

[
Lρ(θ)

]
} ě

ε

2

)
. (3.7)

For the first term in 3.7, using A.4, one has

1
NI

ÿ

iPUs
I

ωi
ÿ

kăl
k,lPUs

i

ωkl|i inf
θ1PBρ(θ)

∇θp`kl|i(θ
1)´

1
NI

NI
ÿ

i=1

ÿ

kăl
k,lPUc

i

inf
θ1PBρ(θ)

∇θp`kl|i(θ
1) = Op

(
nI
´ 1

2

)
,

i.e.,
Pπ

(
}Lρ(θ)´Eπ

[
Lρ(θ)

]
} ě

ε

2

)
ď

ε

2
.

Hence,
PYπ

(
}Lρ(θ)´Eπ

[
Lρ(θ)

]
} ě

ε

2

)
ď

ε

2
. (3.8)

For the second term in 3.7, observe

Eπ

[
Lρ(θ)

]
=

1
NI

NI
ÿ

i=1

inf
θPBρ

p`c
i (θ)
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is a sum of independent random variables under model measure Y. By the pointwise
law of large numbers, one has

PYπ

(
}Eπ

[
Lρ(θ)

]
´EYπ

[
Lρ(θ)

]
} ě

ε

2

)
ď

ε

2
. (3.9)

Putting all those estimates 3.7, 3.8 and 3.9 together, one has

PYπ

(
}Lρ(θ)´EYπ

[
Lρ(θ)

]
} ě ε

)
ď ε.

�

Now I proceed to the proof of the uniform law of large numbers Lemma 3.9. Observe
the set of open balls tBρ(θ) : θ P Θu forms an open cover for Θ. Since Θ is compact,
then there exists a finite subcover, say tBρ(θh) : θh P Θ, h = 1, . . . , Hu such that Θ Ă
ŤH

h=1 Bρ(θh). Observe

sup
θPΘ

 1
NI

ÿ

iPUs
I

ωi
ÿ

kăl
k,lPUs

i

ωkl|i∇θp`kl|i(θ)´EYπ

 1
NI

ÿ

iPUs
I

ωi
ÿ

kăl
k,lPUs

i

ωkl|i∇θp`kl|i(θ)




= sup
h

sup
θ1hPBρ(θh)

 1
NI

ÿ

iPUs
I

ωi
ÿ

kăl
k,lPUs

i

ωkl|i∇θp`kl|i(θ
1
h)´EYπ

 1
NI

ÿ

iPUs
I

ωi
ÿ

kăl
k,lPUs

i

ωkl|i∇θp`kl|i(θ
1
h)




= sup
h

 1
NI

ÿ

iPUs
I

ωi
ÿ

kăl
k,lPUs

i

ωkl|i sup
θ1hPBρ(θh)

∇θp`kl|i(θ
1
h)´ inf

θ1hPBρ(θh)
EYπ

 1
NI

ÿ

iPUs
I

ωi
ÿ

kăl
k,lPUs

i

ωkl|i∇θp`kl|i(θ
1
h)




ď sup
h

(
Uρ(θh)´EYπ

[
Lρ(θh)

])
= sup

h

(
Uρ(θh)´ Lρ(θh)

)
+ sup

h

(
Lρ(θh)´EYπ

[
Lρ(θh)

])
. (3.10)

The first equality follows from construction. The second equality follows from Lemma
7.13. The inequality follows from Fatou’s Lemma, i.e.,

EYπ

 inf
θ1hPBρ(θh)

1
NI

ÿ

iPUs
I

ωi
ÿ

kăl
k,lPUs

i

ωkl|i∇θp`kl|i(θ
1
h)

 ď inf
θ1hPBρ(θh)

EYπ

 1
NI

ÿ

iPUs
I

ωi
ÿ

kăl
k,lPUs

i

ωkl|i∇θp`kl|i(θ
1
h)

 .
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Hence

PYπ

sup
θPΘ

 1
NI

ÿ

iPUs
I

ωi
ÿ

kăl
k,lPUs

i

ωkl|i∇θp`kl|i(θ)´EYπ

 1
NI

ÿ

iPUs
I

ωi
ÿ

kăl
k,lPUs

i

ωkl|i∇θp`kl|i(θ)


 ě ε


ďPYπ

(
sup

h

(
Uρ(θh)´ Lρ(θh)

)
ě

ε

2

)
+ PYπ

(
sup

h

(
Lρ(θh)´EYπ

[
Lρ(θh)

])
ě

ε

2

)

ď

H
ÿ

h=1

PYπ

(
Uρ(θh)´ Lρ(θh) ě

ε

2

)
+

H
ÿ

h=1

PYπ

(
Lρ(θh)´EYπ

[
Lρ(θh)

]
ě

ε

2

)
ďH

ε

2
+ H

ε

2
ďHε.

The first inequality follows from 3.10. The third inequality follows from the previous
two claims.

Using the same argument, one can show

PYπ

 inf
θPΘ

 1
NI

ÿ

iPUs
I

ωi
ÿ

kăl
k,lPUs

i

ωkl|i∇θp`kl|i(θ)´EYπ

 1
NI

ÿ

iPUs
I

ωi
ÿ

kăl
k,lPUs

i

ωkl|i∇θp`kl|i(θ)


 ď ´ε


ďε.

This completes the proof of Lemma 3.9.

I now proceed to the proof of Theorem 3.8.

Proof. From A.6, for all ε ą 0, there exists a δ ą 0 such that

!
›

›

›

pθn ´ θ0

›

›

›
ě ε

)

Ă

"
›

›

›

›

EYπ

[
1
NI
∇θp`s(pθn)

]›
›

›

›

ą δ

*

.
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Fix such δ ą 0, observe

PYπ

(›
›

›

pθn ´ θ0

›

›

›
ě ε
)
ď PYπ

(›
›

›

›

EYπ

[
1
NI
∇θp`s(pθn)

]›
›

›

›

ą δ

)
= PYπ

(›
›

›

›

1
NI
∇θp`s(pθn)´EYπ

[
1
NI
∇θp`s(pθn)

]›
›

›

›

ą δ

)
ď PYπ

(
sup
θPΘ

›

›

›

›

1
NI
∇θp`s(θ)´EYπ

[
1
NI
∇θp`s(θ)

]›
›

›

›

ą δ

)
p
ÝÑ 0.

The last inequality follows from Lemma 3.9. This completes the proof of Theorem 3.8.

3.4.3 Variance estimation

I now turn to the problem of variance estimation. Let us write this down in detail, as
I will apply similar arguments without further comment. The argument given in here
essentially follows the paper Yi et al. (2016), though with more explicit detail.

Variance is given by
Var
Yπ

(pθn) = J1(θ) + J2(θ), (3.11)

where J1(θ) = EY

[
Varπ(pθn)

]
and J2(θ) = VarY

[
Eπ(pθn)

]
. The first term J1(θ) is the

variance due to design and the second term J2(θ) is due to model variance. If the first-
stage sampling fraction nI/NI is small, then one can show model variance J2(θ) can be
ignored. More precisely,

Lemma 3.10. Under the following regularity conditions,

A.1 J2(θ) = O
(

NI
´1
)

.

A.2 The first-stage sampling fraction nI/NI is small, i.e., nI/NI = o(1).

then one has
J2(θ) = o

(
nI
´1
)

.

Proof.
J2(θ) = O

(
NI
´1
)
= O

(
o
(

nI
´1
))

= o
(

nI
´1
)

.
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Remark. Observe if Eπ

[
pθn

]
= rθN and rθN ´ θ0 = Op

(
NI
´ 1

2

)
, then J2(θ) = O

(
NI
´1
)

.

Therefore it suffices to estimate J1(θ). Typically pθn is a nonlinear function and Varπ

operator does not behave nicely on the space of nonlinear functions. The standard tech-
nique in the literature is to linearise it by a Taylor series. In complex sampling setting,
the argument is due to Binder (1983). More precisely,

Lemma 3.11. With the same conditions as in Theorem 3.8 and assume pθn ´ θ0 = Op

(
nI
´ 1

2

)
,

then

Var
π
(pθn) =

(
´

1
NI
∇2
θθp`c(θ0)

)´T

Var
π

(
1
NI
∇θp`s(θ0)

)(
´

1
NI
∇2
θθp`c(θ0)

)´T

+ op

(
nI
´1
)

.

Proof. Observe

0 =
1
NI
∇θp`s(pθn)

=
1
NI
∇θp`s(θ0) +

1
NI
∇2
θθp`s(θ0)

T(pθn ´ θ0) + op

(
nI
´ 1

2

)
=

1
NI
∇θp`s(θ0) +

1
NI
∇2
θθp`c(θ0)

T(pθn ´ θ0) +
1
NI

(
∇2
θθp`s(θ0)´∇2

θθp`c(θ0)
)T

(pθn ´ θ0)

+ op

(
nI
´ 1

2

)
=

1
NI
∇θp`s(θ0) +

1
NI
∇2
θθp`c(θ0)

T(pθn ´ θ0) + op

(
nI
´ 1

2

)
.

In the second equality, I used Taylor Theorem 7.18 to function 1
NI
∇θp`s(θ) at θ0. In the

fourth equality, I used the fact that pθn ´ θ0 = op(1) and A.4 in Theorem 3.8. The point
in here is that I replace ∇2

θθp`s(θ0) by ∇2
θθp`c(θ0), which is a constant with respect to

design measure π. Therefore

pθn ´ θ0 =

(
´

1
NI
∇2
θθp`c(θ0)

)´T 1
NI
∇θp`s(θ0) + op

(
n´

1
2

I

)
.

Since θ0 and ∇θp`c(θ0) are constants with respect to design π, one has

Var
π
(pθn) =

(
´

1
NI
∇2
θθp`c(θ0)

)´T

Var
π

(
1
NI
∇θp`s(θ0)

)(
´

1
NI
∇2
θθp`c(θ0)

)´T

+ op

(
nI
´1
)

.
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The natural estimator for 1
NI
∇2
θθp`c(θ0) is 1

NI
∇2
θθp`s(pθn). More precisely,

Proposition 3.12. With the same conditions as in Theorem 3.8. In addition, assume

B.1 Let gkl|i(Yik, Yil) = sup
tθPΘu }∇2

θθp`kl|i(θ)}. Suppose there exists a δ ą 0 such that
sup

ti,k,luEYg1+δ
kl|i ă 8 and supi EY}Yi}

δ ă 8, where Yi = (Yi1, ¨ ¨ ¨ , YiNi)
T.

B.2 For any given c ą 0 and a given sequence tyiu satisfying }yi} ď c, the sequence of function
t∇2

θθp`kl|i(θ)u is equicontinuous on any open subset A of Θ.

then
1
NI
∇2
θθp`s(pθn)´

1
NI
∇2
θθp`c(θ0) = op(1)

under design measure π.

To prove this, one needs a lemma to start with.

Lemma 3.13. With the same conditions A.1 – A.5 as in Theorem 3.8. In addition, assume

B.1 Let gkl|i(Yik, Yil) = sup
tθPΘu }∇2

θθp`kl|i(θ)}. Suppose there exists a δ ą 0 such that
sup

ti,k,luEYg1+δ
kl|i ă 8 and supi EY}Yi}

δ ă 8, where Yi = (Yi1, ¨ ¨ ¨ , YiNi)
T.

B.2 For any given c ą 0 and a given sequence tyiu satisfying }yi} ď c, the sequence of function
t∇2

θθp`kl|i(θ)u is equicontinuous on any open subset A of Θ.

then

sup
θPΘ

›

›

›

›

1
NI
∇2
θθp`s(θ)´EYπ

[
1
NI
∇2
θθp`s(θ)

] ›
›

›

›

p
ÝÑ 0

with respect to model-design probability Yπ.

Proof. This can be done using exactly the same argument as in Lemma 3.9. I omit the
detail.

Now I proceed to the proof of Proposition 3.12.
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Proof. Observe

Pπ

(›
›

›

›

1
NI
∇2
θθp`s(pθn)´

1
NI
∇2
θθp`c(θ0)

›

›

›

›

ě ε

)
ďPπ

(›
›

›

›

1
NI
∇2
θθp`s(pθn)´

1
NI
∇2
θθp`c(pθn)

›

›

›

›

ě
ε

2

)
+ Pπ

(›
›

›

›

1
NI
∇2
θθp`c(pθn)´

1
NI
∇2
θθp`c(θ0)

›

›

›

›

ě
ε

2

)
ďPπ

(
sup
θPΘ

›

›

›

›

1
NI
∇2
θθp`s(θ)´

1
NI
∇2
θθp`c(θ)

›

›

›

›

ě
ε

2

)
+ Pπ

(›
›

›

›

1
NI
∇2
θθp`c(pθn)´

1
NI
∇2
θθp`c(θ0)

›

›

›

›

ě
ε

2

)
.

(3.12)

For the first term in 3.12, one has

Pπ

(
sup
θPΘ

›

›

›

›

1
NI
∇2
θθp`s(θ)´

1
NI
∇2
θθp`c(θ)

›

›

›

›

ě
ε

2

)
ď

ε

2
(3.13)

by Lemma 3.13.
For the second term in 3.12, note pθn

p
ÝÑ θ0 by Theorem 3.8. Hence, by the Continuous

Mapping Theorem 7.20, one has

Pπ

(›
›

›

›

1
NI
∇2
θθp`c(pθn)´

1
NI
∇2
θθp`c(θ0)

›

›

›

›

ě
ε

2

)
ď

ε

2
. (3.14)

Putting all those estimates 3.12, 3.13 and 3.14 together, one has

Pπ

(›
›

›

›

1
NI
∇2
θθp`s(pθn)´

1
NI
∇2
θθp`c(θ0)

›

›

›

›

ě ε

)
ď ε.

It remains to estimate Varπ (∇θp`s(θ0)). I will explicitly calculate Varπ (∇θp`s(θ0)).
Let π1 be the first-stage design measure and let π2 be the second-stage design measure
conditional on the first-stage sampling cluster Us

I . Recall ∆klk1l1|i = πklk1l1|i ´ πkl|iπk1l1|i.

Lemma 3.14. Observe

Var
π

(
1
NI
∇θp`s(θ0)

)
= V1(θ0) + V2(θ0),

78



where

V1(θ0) =
1

NI
2

NI
ÿ

i=1

NI
ÿ

i1=1

∆ii1 (ωi∇θp`c
i (θ0)ωi1∇θp`c

i1(θ0)) ,

V2(θ0) =
1

NI
2

NI
ÿ

i=1

ωi
ÿ

kăl
k,lPUc

i

ÿ

k1ăl1
k1,l1PUc

i

∆klk1l1|i
(
ωkl|i∇θp`kl|i(θ0)ωk1l1|i∇θp`k1l1|i(θ0)

)
.

Proof. Observe

Var
π

(
1
NI
∇θp`s(θ0)

)
=

1
NI

2 Var
π1

[Eπ2 (∇θp`s(θ0))] +
1

NI
2 Eπ1

[
Var
π2

(∇θp`s(θ0))

]
=

1
NI

2 Var
π1

[ NI
ÿ

i=1

1iωiEπ2 (∇θp`s
i (θ0))

]
+

1
NI

2 Eπ1

[ NI
ÿ

i=1

1iω
2
i Var

π2
(∇θp`s

i (θ0))

]

=
1

NI
2 Var

π1

[ NI
ÿ

i=1

1iωi∇θp`c
i (θ0)

]
+

1
NI

2

NI
ÿ

i=1

ωi Var
π2

 ÿ

kăl
k,lPUc

i

1kl|iωkl|i∇θp`kl|i(θ0)


=

1
NI

2

NI
ÿ

i=1

NI
ÿ

i1=1

Cov
π1

(1i, 1i1) (ωi∇θp`c
i (θ0)ωi1∇θp`c

i1(θ0)) +
1

NI
2

NI
ÿ

i=1

ωi
ÿ

kăl
k,lPUc

i

ÿ

k1ăl1
k1,l1PUc

i

Cov
π2

(
1kl|i, 1k1l1|i

)
(
ωkl|i∇θp`kl|i(θ0)ωk1l1|i∇θp`k1l1|i(θ0)

)
=

1
NI

2

NI
ÿ

i=1

NI
ÿ

i1=1

∆ii1 (ωi∇θp`c
i (θ0)ωi1∇θp`c

i1(θ0)) +
1

NI
2

NI
ÿ

i=1

ωi
ÿ

kăl
k,lPUc

i

ÿ

k1ăl1
k1,l1PUc

i

∆klk1l1|i

(
ωkl|i∇θp`kl|i(θ0)ωk1l1|i∇θp`k1l1|i(θ0)

)
.

In the second equality, I used the fact 1i is independent of 1i1 for all i ‰ i1 with respect to
design measure π2.
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Remark. One can estimate Varπ

(
1

NI
∇θp`s(θ0)

)
by the empirical variance estimator

yVarπ

(
1

NI
∇θp`s(pθn)

)
, i.e.,

yVarπ

(
1
NI
∇θp`s(pθn)

)
= pV1(pθn) + pV2(pθn),

where

pV1(pθn) =
1

NI
2

NI
ÿ

i=1

NI
ÿ

i1=1

1ii1ωii1∆ii1
(

ωi∇θp`s
i (
pθn)ωi1∇θp`s

i1(
pθn)
)

,

pV2(pθn) =
1

NI
2

NI
ÿ

i=1

1iωi
ÿ

kăl
k,lPUc

i

ÿ

k1ăl1
k1,l1PUc

i

1klk1l1|iωklk1l1|i∆klk1l1|i

(
ωkl|i∇θp`kl|i(pθn)ωk1l1|i∇θp`k1l1|i(pθn)

)
.

One can show this is an unbiased estimator, i.e., Eπ

[
yVarπ

(
1

NI
∇θp`s(θ)

)]
= Varπ

(
1

NI
∇θp`s(θ)

)
.

The argument is similar to Lemma 2.31, so I omit the detail.
It can be shown that the empirical variance estimator yVarπ

(
1

NI
∇θp`s(pθn)

)
is a con-

sistent estimator for some reasonable sampling designs. For more detail, see Chapter
4.

3.4.4 Yi’s approach

Recall exact computation for Varπ (∇θp`s(θ0)) needs fourth-order sampling inclusion
probability as shown in Lemma 3.14. Yi et al. (2016) approximated the design by one
where the PSU i is selected with replacement with probability pi for all i = 1, ¨ ¨ ¨ , NI.
Note πi = nIpi. Hence

1
NI
∇θp`s(θ0) =

1
NI

ÿ

iPUs
I

ωi∇θp`s
i (θ0)

=
1
NI

1
nI

ÿ

iPUs
I

1
pi
∇θp`s

i (θ0).

Observe 1
pi
∇θp`s

i (θ0) are independent identically distributed random variables from the

design perspective by construction. In particular, the mean and variance of 1
pi
∇θp`s

i (θ0)
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are given by

Eπ

[
1
pi
∇θp`s

i (θ0)

]
=Eπ1

(
Eπ2

[
1
pi
∇θp`s

i (θ0)

])
=Eπ1

[
1
pi
∇θp`c

i (θ0)

]
=

NI
ÿ

i=1

pi
1
pi
∇θp`c

i (θ0)

=
NI
ÿ

i=1

∇θp`c
i (θ0),

Var
π

[
1
pi
∇θp`s

i (θ0)

]
=Var

π1

(
Eπ2

[
1
pi
∇θp`s

i (θ0)

])
+ Eπ1

(
Var
π2

[
1
pi
∇θp`s

i (θ0)

])
=Var

π1

[
1
pi
∇θp`c

i (θ0)

]
+

NI
ÿ

i=1

pi Var
π2

[
1
pi
∇θp`s

i (θ0)

]

=
NI
ÿ

i=1

pi

[
1
pi
∇θp`s

i (θ0)´
NI
ÿ

i=1

∇θp`c
i (θ0)

]2

+
NI
ÿ

i=1

pi Var
π2

[
1
pi
∇θp`s

i (θ0)

]
.

Hence an unbiased variance estimator for Varπ

[
1
pi
∇θp`s

i (θ)
]

is given by

yVar
π

[
1
pi
∇θp`s

i (θ)

]
=

1
nI ´ 1

ÿ

iPUs
I

 1
pi
∇θp`s

i (θ)´
1
nI

ÿ

iPUs
I

1
pi
∇θp`s

i (θ)

2

=
1

nI ´ 1

ÿ

iPUs
I

[
1
pi
∇θp`s

i (θ)´∇θp`s(θ)

]2

. (3.15)

In the second equality, I use the fact πi = nIpi.
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Therefore, the empirical variance estimator for Varπ

[
1

NI
∇θp`s(θ0)

]
is given by

yVarπ

(
1
NI
∇θp`s(pθn)

)
=

1
NI

2
1
nI
yVar

π

[
1
pi
∇θp`s

i (
pθ)

]
=

1
NI

2
1

nI(nI ´ 1)

ÿ

iPUs
I

[
1
pi
∇θp`s

i (
pθn)

]2

=
1

NI
2

nI

(nI ´ 1)

ÿ

iPUs
I

ω2
i

[
∇θp`s

i (
pθn)
]2

.

In the second equality, I used 3.15 and the fact ∇θp`s(pθn) = 0. In the last equality, I used
ωi =

1
nI pi

.

3.4.5 Jacknife variance estimation

I want to discuss Jacknife variance estimation for VarYπ(pθn). Recall

Var
Yπ

(pθn) = J1(θ) + J2(θ),

where J1(θ) = EY

[
Varπ(pθn)

]
and J2(θ) = VarY

[
Eπ(pθn)

]
. By Lemma 3.10, if the first-

stage sampling fraction is small, then the model variance J2(θ) can be ignored.
It reduces to estimate J1(θ). One can estimate Varπ

[
pθn

]
by resampling the sampling

clusters using a jackknife. Consider a partition of the sampling clusters Us
I into m sub-

group. Let pθ(j) be the j’s deleted Jacknife estimator, i.e., using the same method as pθ to
estimate θ after deleting j’s group data. Then the Jacknife estimator for Varπ(pθ) is given
by

yVarπ(pθ) =
1

m(m´ 1)

m
ÿ

j=1

(pθj ´
p

sθ)2,

where

pθj =mpθ´ (m´ 1)pθ(j),

p

sθ =
1
m

m
ÿ

j=1

pθj.
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4 When sampling and model clusters are not the same

In this chapter, I want to extend the asymptotic properties of the sample weighted pair-
wise likelihood estimator to the case when the sampling clusters are not the same as the
model clusters. The main goal of this chapter is to establish consistency and asymptotic
normality of the sample weighted pairwise likelihood estimator. In addition, I construct
an empirical variance estimator for the sample weighted pairwise likelihood estimator
and show it is consistent. Essentially, the same proof with minor modification will yield
the weighted pairwise likelihood estimator is a consistent estimator. Once this has been
done, it reduces to a standard argument to find the asymptotic distribution. But proving
the consistency of the empirical variance estimator is surprisingly more difficult than it
first seems and requires a new approach. I start by introducing the setting.

4.1 Setting: design

Let U = t1, . . . , Nu be the population and consider two partitions of U. One partition is
by the sampling design and the other is by the structure of the model. More specifically,
let Uc

I = tUc
1, ¨ ¨ ¨ , Uc

NI
u be the sampling clusters and Mc

I = tMc
1, ¨ ¨ ¨ , Mc

Tc
u be the model

clusters. In practice, the sampling clusters are the objects corresponding to the first-stage
sampling units (PSU) and the model clusters are the objects corresponding to the fibre
(inverse image) of random effects. More precisely, the random effect is defined on the
set of model clusters and two distinct model clusters are assigned different value of the
random effects.

Definition 4.1. The sampling clusters Uc
I are finer than the model clusters Mc

I if Uc
I Ă Mc

I .

Definition 4.2. The sampling clusters Uc
I is coarser than the model clusters Mc

I if Mc
I Ă

Uc
I .

Remark. It happens quite often that the sampling clusters and model clusters cannot
be directly compared, i.e., Uc

I Ć Mc
I and Mc

I Ć Uc
I . For example, Hispanic Community

Health Study/Study of Latinos in section 1.1. One must search for a solution in this
more general setting.
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Define F to be the set of all subsets of Uc
I , i.e., F = t

Ť

iPI Uc
i : I Ă t1, 2, . . . , NIuu. Let

PI be the first-stage design probability on measure space (Uc
I ,F )

PI : F ÝÑ [0, 1]

A ÞÝÑ PI(A).

Define Fi to be the set of all subsets of Uc
i for i = 1, . . . , NI. Let Pi be the second-stage

design probability on measure space (Uc
i ,Fi)

Pi : Fi ÝÑ [0, 1]

A ÞÝÑ Pi(A).

Let Us
I P F be the first-stage sample. If Uc

i P Us
I , a second-stage sample Us

i P Fi is
selected by sampling design Pi. Let S =

Ť

i Us
i .

Remark. In all of the following, I will denote i, i1, i2, i3 for the clusters and k, l, k1, l1, k2, l2, k3, l3

for elements in the cluster.

In my construction below, I will need some notation for identifying whether obser-
vational units are in the same sampling cluster.

Definition 4.3. Let s be a set-valued function from the population to the set of sampling
clusters

s :U ÝÑ Uc
I

k ÞÝÑ s(k)

such that for every observational unit k P U, s(k) is the unique sampling cluster contains
k.

Definition 4.4. Let r P N and k1, ¨ ¨ ¨ , kr P U. Define the bracket

xk1, ¨ ¨ ¨ , kry

to be a subset of U such that elements within the bracket have the same sampling clus-
ters, i.e., s(k1) = s(k2) = ¨ ¨ ¨ = s(kr).
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Remark. Observe xk1, ¨ ¨ ¨ , kry Ă s(k1).

Remark. This notation will be needed in proving consistency of the empirical variance
estimator (more about this in section 4.6 and 4.7).

Definition 4.5. Two brackets xk1, ¨ ¨ ¨ , kry and xl1, ¨ ¨ ¨ , lsy are said to be disjoint if they have
different sampling clusters, i.e., s(k1) ‰ s(l1). I will denote by xk1, ¨ ¨ ¨ , kryxl1, ¨ ¨ ¨ , lsy.

Definition 4.6. Let tk1, ¨ ¨ ¨ , kru and tl1, ¨ ¨ ¨ , lsu be two subsets of U. tk1, ¨ ¨ ¨ , kru is said to
have a common root with tl1, ¨ ¨ ¨ , lsu if there exists 1 ď p ď r and 1 ď q ď s such that
s(kp) = s(lq).

Definition 4.7. Define the first-order, second-order and fourth-order sampling inclusion
probability for clusters to be

πi =
ÿ

APF :Uc
i PA

PI(A),

πii1 =
ÿ

APF :Uc
i ,Uc

i1PA

PI(A),

πii1i2i3 =
ÿ

APF :Uc
i ,Uc

i1 ,U
c
i2 ,Uc

i3PA

PI(A).

Definition 4.8. Define the first-order, second-order, third-order and fourth-order condi-
tional inclusion probability to be

πk|s(k) =
ÿ

APFs(k) :kPA

Ps(k)(A),

πkl|s(k) =
ÿ

APFs(k) :k,lPA

Ps(k)(A), if xkly,

πklk1|s(k) =
ÿ

APFs(k) :k,l,k1PA

Ps(k)(A), if xklk1y,

πklk1l1|s(k) =
ÿ

APFs(k) :k,l,k1,l1PA

Ps(k)(A), if xklk1l1y.
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One can easily deduce the final first-order πk, second-order πkl and fourth-order
inclusion probability πklk1l1 using the independent and invariant property as before, i.e,

πk = πk|s(k)πs(k),

πkl =

$

&

%

πkl|s(k)πs(k), if xkly,

πk|s(k)πl|s(l)πs(k)s(l), otherwise.

πklk1l1 =

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

πklk1l1|s(k)πs(k), if xklk1l1y,

πkl|s(k)πs(k)πk1l1|s(k1)πs(k1), if xklyxk1l1y,

πkk1|s(k)πs(k)πll1|s(l)πs(l), if xkk1yxll1y,

πkl1|s(k)πs(k)πlk1|s(l)πs(l), if xkl1yxlk1y,

πklk1|s(k)πs(k)πl1|s(l1)πs(l1), if xklk1yxl1y,

πkll1|s(k)πs(k)πk1|s(k1)πs(k1), if xkll1yxk1y,

πkk1l1|s(k)πs(k)πl|s(l)πs(l), if xkk1l1yxly,

πlk1l1|s(k)πs(l)πk|s(k)πs(k), if xlk1l1yxky,

πkl|s(k)πs(k)πk1|s(k1)πs(k1)πl1|s(l1)πs(l1), if xklyxk1yxl1y,

πkk1|s(k)πs(k)πl|s(l)πs(l)πl1|s(l1)πs(l1), if xkk1yxlyxl1y,

πkl1|s(k)πs(k)πl|s(l)πs(l)πk1|s(k1)πs(k1), if xkl1yxlyxk1y,

πlk1|s(l)πs(l)πk|s(k)πs(k)πl1|s(l1)πs(l1), if xlk1yxkyxl1y,

πll1|s(l)πs(l)πk|s(k)πs(k)πk1|s(k1)πs(k1), if xll1yxkyxk1y,

πk1l1|s(k1)πs(k1)πk|s(k)πs(k)πl|s(l)πs(l), if xk1l1yxkyxly,

πk|s(k)πl|s(l)πk1|s(k1)πl1|s(l1)πs(k)s(l)s(k1)s(l1), if xkyxlyxk1yxl1y.

Remark. In all of the following, I assume there exists a ε ą 0 such that supkl πkl ě ε,
supklk1l1 πklk1l1 ě ε and supklk1l1k2l2k3l3 πklk1l1k2l2k3l3 ě ε.
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Definition 4.9. Define the first-order, second-order and fourth-order weights to be

ωk =
1

πk
,

ωkl =
1

πkl
,

ωklk1l1 =
1

πklk1l1
.

It is more convenient to work with the sample indicator function 1i, 1k instead of
design measure.

Definition 4.10. Define the sample indicator function to be

1i = 1Uc
i PUs

I
,

1k = 1kPS.

Remark. I will use the following notation:

1ii1 =1i1i1 ,

1ii1i2i3 =1i1i11i21i3 ,

1kl =1k1l,

1klk1l1 =1k1l1k11l1 ,

1klk1l1k2l2k3l3 =1k1l1k11l11k21l21k31l3 .

Remark. Observe

Eπ [1kl] = πkl,

Eπ [1klk1l1 ] = πklk1l1 ,

Eπ [1klk1l1k2l2k3l3 ] = πklk1l1k2l2k3l3 .

Definition 4.11. Define

∆klk1l1 = Cov
π

(1kl, 1k1l1),

∆klk1l1k2l2k3l3 = Cov
π

(1klk1l1 , 1k2l2k3l3).
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Remark. Observe

∆klk1l1 = πklk1l1 ´ πklπk1l1 ,

∆klk1l1k2l2k3l3 = πklk1l1k2l2k3l3 ´ πklk1l1πk2l2k3l3 .

Definition 4.12. Let NI be the number of sampling clusters in the population U and let
nI be the number of sampling clusters in the sample S, i.e., nI =

řNI
i=1 1i.

Definition 4.13. Let Ni be the number of elements in the sampling cluster Uc
i and let ni

be the number of sampled elements in the sampling cluster Us
i , i.e., ni =

ř

kPUc
i

1k|i.

Remark. Observe

N =
NI
ÿ

i=1

Ni,

n =
NI
ÿ

i=1

1ini.

4.2 Setting: model

In contrast to previous literature, I do not assume the sampling clusters are the same as
the model clusters, i.e., Uc

I ‰ Mc
I .

Definition 4.14. Define

Ms
i = Mc

i X S,

Ms
I = tMs

1, ¨ ¨ ¨ , Ms
Tc
uzH.

Definition 4.15. Let m be the set-value function from the population to the set of model
clusters

m : U ÝÑ Mc
I

k ÞÝÑ m(k)

such that for every observational unit k P U, m(k) is the unique model cluster contains
k.
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Definition 4.16. Let Tc be the number of model clusters in the population U and let ts

be the number of model clusters in the sample S, i.e., ts = |Ms
I |.

In all of the following, I assume if the sampling fraction for the PSU nI/NI is small,
then the sampling fraction for the model cluster ts/Tc is also small.

Definition 4.17. Let Ti be the number of elements in the model clusters Mc
i and let ti be

the number of elements in the sample Ms
i , i.e., ti = |Ms

i |.

Observe

N =
Tc
ÿ

i=1

Ti,

n =
ts
ÿ

i=1

ti.

Consider a two-level model,

Yik|Xik, bi „ f (yik|xik, bi,θ1),

bi „ g(bi|θ2),

for observational unit k in the model clusters i, where i = 1, . . . , Tc. Observe bi is the
random effect for the model clusters Mc

i and the random effects for different model
clusters are independent under the model measure Y, i.e., bi K bi1 if i ‰ i1.

Definition 4.18. Define the census pairwise log-likelihood for the model clusters i to be

p`Mc
i
(θ) =

ÿ

kăl
k,lPMc

i

p`kl|i(yk, yl,θ), i = 1, ¨ ¨ ¨ , Tc,

where

p`kl|i(yk, yl,θ) = log
[
ż

f (yk|xk, bi,θ1) f (yl|xl, bi,θ1)g(bi|θ2)dbi

]
, k, l P Mc

i .

Then the census pairwise log-likelihood is given by

p`Mc(θ) =
Tc
ÿ

i=1

p`Mc
i
(θ).
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Remark. The subindex M denotes that the pairwise likelihood is calculated for the model
clusters not sampling clusters. The idea of writing in term of model clusters is I get a
sum of independent random variable under model measure Y, i.e., p`Mc

1
, ¨ ¨ ¨ , p`Mc

TI
are

independent under model measure, so that I can use the pointwise law of large number
and the central limit theorem (more about this in Theorem 4.23 and Theorem 4.25).

Remark. Under the correlated random effect assumption, one can forget about this defi-
nition, as p`Mc

i
(θ) are correlated under model measure Y. One needs mixing conditions

to establish the pointwise law of large number and the central limit theorem (more about
this in Chapter 5).

Definition 4.19. Define the sample weighted pairwise log-likelihood for the model clus-
ters i to be

p`Ms
i
(θ) =

ÿ

kăl
k,lPMc

i

1klωkl p`kl|i(yk, yl,θ), i = 1, ¨ ¨ ¨ , Tc.

Then the sample weighted pairwise log-likelihood is given by

p`Ms(θ) =
Tc
ÿ

i=1

p`Ms
i
(θ).

One can show the sample weighted pairwise log-likelihood recovers the census pair-
wise log-likelihood in this new context after taking expectation. More precisely,

Lemma 4.20. Let hkl|i(yk, yl) = sup
tθPΘu }∇θp`kl|i(yk, yl,θ)}. Suppose there exists a δ ą 0

such that sup
ti,k,luEY

[
h1+δ

kl|i

]
ă 8, then

Eπ [p`Ms(θ)] = p`Mc(θ).
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Proof. The proof is almost exactly the same as Lemma 3.4. Observe

Eπ [p`Ms(θ)] = Eπ

 Tc
ÿ

i=1

ÿ

kăl
k,lPMc

i

1klωkl p`kl|i(yk, yl,θ)


=

Tc
ÿ

i=1

ÿ

kăl
k,lPMc

i

p`kl|i(yk, yl,θ)

= p`Mc(θ).

Corollary 4.21. Let hkl|i(yk, yl) = sup
tθPΘu }∇θp`kl|i(yk, yl,θ)} and gkl|i(yk, yl) = sup

tθPΘu }∇2
θθp`kl|i(yk, yl,θ)}.

Suppose there exists a δ ą 0 such that sup
ti,k,luEY

[
h1+δ

kl|i

]
ă 8 and sup

ti,k,luEY

[
g1+δ

kl|i

]
ă 8,

then the sample weighted pairwise score function is a design-unbiased estimator for the census
pairwise score function under the design measure π, i.e.,

Eπ [∇θp`Ms(θ)] = ∇θp`Mc(θ),

Eπ

[
∇2
θθp`Ms(θ)

]
= ∇2

θθp`Mc(θ).

4.3 Consistency

My goal in this section is to establish the sample weighted pairwise log-likelihood es-
timator is a consistent estimator. Let pθn be the sample weighted pairwise likelihood
estimator and θ0 be the true value of the model. More precisely,

Definition 4.22. The sample weighted pairwise log-likelihood estimator pθn of θ is de-
fined as a solution of

1
TI
∇θp`Ms(θ) = 0.

Remark. It can be shown that the true parameter θ0 of θ is a solution of

EY

[
1
TI
∇θp`Mc(θ)

]
= 0.
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In all of the following, I assume the number of elements within any clusters is
bounded, both the sample and population clusters need to diverge and the sampling
fraction for the cluster should converge, i.e., Ni ď λ and Ti ď λ all i, nI Ñ 8, NI Ñ 8,
nI
NI
Ñ c, ts Ñ 8, Tc Ñ 8, ts

Tc
= O

(
nI
NI

)
and where λ ą 0 and c P [0, 1).

Let us state the main result.

Theorem 4.23. Under the following regularity conditions,

A.1 Θ is a compact subset of Rp and θ0 is an interior point of Θ.

A.2 Let hkl|i(yk, yl) = sup
tθPΘu }∇θp`kl|i(yk, yl,θ)}. Suppose there exists a δ ą 0 such that

sup
ti,k,luEY

[
h1+δ

kl|i

]
ă 8 and supi EY}Yi}

δ ă 8, where Yi = tyk : k P Mc
i u.

A.3 For any given c ą 0 and a given sequence tyiu satisfying }yi} ď c, the sequence of function
t∇θp`kl|i(yk, yl,θ)u is equicontinuous on any open subsets A of Θ.

A.4 For any variable Vkl|i satisfy 1
TI

řTc
i=1

ř

kăl
k,lPMc

i

V2
kl|i = Op(1), one has

1
TI

Tc
ÿ

i=1

ÿ

kăl
k,lPMc

i

1klωklVkl|i ´
1
TI

Tc
ÿ

i=1

ÿ

kăl
k,lPMc

i

Vkl|i = Op

(
ts
´ 1

2

)

with respect to design probability π.

A.5 The number of element within any clusters is bounded, i.e., supi Ni ď λ and supi Ti ď λ

some λ ą 0.

A.6 For all ε ą 0, there exists a δ ą 0 such that

inf
tθPΘ:}θ´θ0}ěεu

›

›

›

›

EYπ

[
1
TI
∇θp`Ms(θ)

] ›
›

›

›

ą δ.

then
pθn

p
ÝÑ θ0 (4.1)

under model-design measure Yπ.
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Remark. A.2 can be relaxed to that the second moment is finite.

I proceed the same way as before to argue the sample weighted pairwise likelihood
estimator is consistent by establishing a uniform law of large numbers (ULLN).

Lemma 4.24. With the same conditions A.1 – A.5 as in Theorem 4.23, then one has

sup
θPΘ

›

›

›

›

1
TI
∇p`Ms(θ)´EYπ

[
1
TI
∇p`Ms(θ)

] ›
›

›

›

p
ÝÑ 0 (4.2)

with respect to model-design probability Yπ.

Proof. Essentially, this can be done in the same way as Lemma 3.9. I omit the detail.

Let us turn to the proof of Theorem 4.23.

Proof. The proof is essentially the same as Theorem 3.8.

4.4 Asymptotic normality

My next goal is to establish the asymptotic normality of the sample weighted pairwise
likelihood estimator. The asymptotic distribution can be constructed from a second-
order Taylor series expansion at the true value θ0. I slightly modify the argument from
Rubin-Bleuer and Kratina (2005); Boistard et al. (2017).

Theorem 4.25. Under the following regularity conditions,

A.1 Θ is a compact subset of Rp and θ0 is an interior point of Θ.

A.2 Let hkl|i(yk, yl) = sup
tθPΘu }∇θp`kl|i(yk, yl,θ)}. Suppose there exists a δ ą 0 such that

sup
ti,k,luEY

[
h2+δ

kl|i

]
ă 8 and supi EY}Yi}

δ ă 8, where Yi = tyk : k P Mc
i u.

A.3 For any given c ą 0 and a given sequence tyiu satisfying }yi} ď c, the sequence of function
t∇θp`kl|i(yk, yl,θ)u is equicontinuous on any open subsets A of Θ.
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A.4 For any variable Vkl|i satisfy 1
TI

řTc
i=1

ř

kăl
k,lPMc

i

V2
kl|i = Op(1), one has

1
TI

Tc
ÿ

i=1

ÿ

kăl
k,lPMc

i

1klωklVkl|i ´
1
TI

Tc
ÿ

i=1

ÿ

kăl
k,lPMc

i

Vkl|i = Op

(
ts
´ 1

2

)

with respect to design probability π.

A.5 The number of element within any clusters is bounded, i.e., supi Ni ď λ and supi Ti ď λ

some λ ą 0.

A.6 For all ε ą 0, there exists a δ ą 0 such that

inf
tθPΘ:}θ´θ0}ěεu

›

›

›

›

EYπ

[
1
TI
∇θp`Ms(θ)

] ›
›

›

›

ą δ.

A.7 Let gkl|i(yk, yl) = sup
tθPΘu }∇2

θθp`kl|i(yk, yl,θ)}. Suppose there exists a δ ą 0 such that

sup
ti,k,luEY

[
g2+δ

kl|i

]
ă 8 and supi EY}Yi}

δ ă 8, where Yi = tyk : k P Mc
i u.

A.8 For any given c ą 0 and a given sequence tyiu satisfying }yi} ď c, the sequence of function
t∇2

θθp`kl|i(yk, yl,θ)u is equicontinuous on any open subset A of Θ.

A.9 For any variable Vkl|i satisfies the following conditions,

(a) 1
TI

řTc
i=1

ř

kăl
k,lPMc

i

V2
kl|i = Op(1),

(b) lim tsσ
2
π ą 0, where σ2

π = Varπ

(
1
TI

řTc
i=1

ř

kăl
k,lPMc

i

1klωklVkl|i

)
.

then

σ´1
π

 1
TI

Tc
ÿ

i=1

ÿ

kăl
k,lPMc

i

1klωklVkl|i ´
1
TI

Tc
ÿ

i=1

ÿ

kăl
k,lPMc

i

Vkl|i

 D
ÝÑ N(0, I)

with respect to design probability π.
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A.10 lim tsJπ ą 0 and lim TcJY ą 0, where Jπ(θ) = Varπ

[
1
TI
∇θp`Ms(θ)

]
and JY(θ) =

VarY

[
1
TI
∇θp`Mc(θ)

]
.

A.11 Assume lim ts
Tc

= ζ, where ζ P [0, 1].

then

Jπ(θ0)
´ 1

2 H(θ0)(pθn ´ θ0)
D
ÝÑ N

(
0, I + ζ

[
(lim tsJπ(θ0))

´1 (lim TcJY(θ0))
])

, (4.3)

where

H(θ) = EYπ

[
´

1
TI
∇2
θθp`Ms(θ)

]
,

Jπ(θ) = Var
π

[
1
TI
∇θp`Ms(θ)

]
,

JY(θ) = Var
Y

[
1
TI
∇θp`Mc(θ)

]
.

In particular, if the first-stage sampling fraction is small, then

Jπ(θ0)
´ 1

2 H(θ0)(pθn ´ θ0)
D
ÝÑ N (0, I) (4.4)

under model-design measure Yπ.

Remark. A.2 is a standard 2 + δ moment assumption for the central limit theorem to
hold. Observe 2+ δ moment bound is crucial, it is not enough to assume second moment
exists.

Remark. A.7 and A.8 are used to prove the Uniform Law of Large Numbers (ULLN) for
1
TI
∇2
θθp`Ms(θ).

Remark. In view of Theorem 7.21, I may assume p = 1.

Before I prove this theorem, I need two results to start with. Once this has been done,
the rest of the proof is just routine.
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Lemma 4.26. Under A.1–A.8 of Theorem 4.25, then

sup
θPΘ

›

›

›

›

1
TI
∇2
θθp`Ms(θ)´EYπ

[
1
TI
∇2
θθp`Ms(θ)

]›
›

›

›

p
ÝÑ 0

under the model-design measure Yπ.

Proof. The argument is essentially the same as the argument given in Lemma 3.9. I omit
the details.

Lemma 4.27. Under the same conditions as in Theorem 4.25, then

Jπ(θ)
´ 1

2

(
1
TI
∇θp`Ms(θ)´EYπ

[
1
TI
∇θp`Ms(θ)

])
D
ÝÑ N

(
0, I + ζ

[
(lim tsJπ(θ))

´1 (lim TcJY(θ))
])

under model-design measure Yπ. In particular, if the first-stage sampling fraction is small, then

Jπ(θ)
´ 1

2

(
1
TI
∇θp`Ms(θ)´EYπ

[
1
TI
∇θp`Ms(θ)

])
D
ÝÑ N (0, I)

with respect to model-design measure Yπ.

Proof. Observe

Jπ(θ)
´ 1

2

(
1
TI
∇θp`Ms(θ)´EYπ

[
1
TI
∇θp`Ms(θ)

])
=Jπ(θ)

´ 1
2

(
1
TI
∇θp`Ms(θ)´Eπ

[
1
TI
∇θp`Ms(θ)

])
+

Jπ(θ)
´ 1

2

(
Eπ

[
1
TI
∇θp`Ms(θ)

]
´EYπ

[
1
TI
∇θp`Ms(θ)

])
=Jπ(θ)

´ 1
2

(
1
TI
∇θp`Ms(θ)´Eπ

[
1
TI
∇θp`Ms(θ)

])
+[

ts

Tc

] 1
2 [

(tsJπ(θ))
´ 1

2 (TcJY(θ))
1
2
]

JY(θ)
´ 1

2

(
Eπ

[
1
TI
∇θp`Ms(θ)

]
´EYπ

[
1
TI
∇θp`Ms(θ)

])
.

(4.5)

For the first term in 4.5, by A.2, A.10, A.9, one has

Jπ(θ)
´ 1

2

(
1
TI
∇θp`Ms(θ)´Eπ

[
1
TI
∇θp`Ms(θ)

])
D
ÝÑ N (0, I) (4.6)
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with respect to design measure π.
For the second term in 4.5, observe

Eπ

[
1
TI
∇θp`Ms(θ)

]
=

1
TI

Tc
ÿ

i=1

∇θp`Mc
i
(θ)

is a sum of independent random variables under model measure Y. By the central limit
theorem, one has

JY(θ)
´ 1

2

(
Eπ

[
1
TI
∇θp`Ms(θ)

]
´EYπ

[
1
TI
∇θp`Ms(θ)

])
D
ÝÑ N (0, I) (4.7)

with respect to model measure Y.
From A.10 and A.11, one has[

ts

Tc

] 1
2 [

(tsJπ(θ))
´ 1

2 (TcJY(θ))
1
2
] p
ÝÑ ζ

1
2

[
(lim tsJπ(θ))

´ 1
2 (lim TcJY(θ))

1
2
]

. (4.8)

Putting 4.7 and 4.8 together, by Theorem 4.4 in Billingsley (2013), one has[
ts

Tc

] 1
2 [

(tsJπ(θ))
´ 1

2 (TcJY(θ))
1
2
]

JY(θ)
´ 1

2

(
Eπ

[
1
TI
∇θp`Ms(θ)

]
´EYπ

[
1
TI
∇θp`Ms(θ)

])
D
ÝÑ

N
(

0, ζ
[
(lim tsJπ(θ))

´1 (lim TcJY(θ))
])

(4.9)

with respect to model measure Y.
Putting 4.5, 4.6 and 4.9 together, by Theorem 5.1 in Rubin-Bleuer and Kratina (2005),

one has

Jπ(θ)
´ 1

2

(
1
TI
∇θp`Ms(θ)´EYπ

[
1
TI
∇θp`Ms(θ)

])
D
ÝÑ N

(
0, I + ζ

[
(lim tsJπ(θ))

´1 (lim TcJY(θ))
])

with respect to model-design measure Yπ. This completes the proof.

Let us turn to the proof of Theorem 4.25.
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Proof. Observe

0 =
1
TI
∇θp`Ms(pθn)

=
1
TI
∇θp`Ms(θ0) +

1
TI
∇2
θθp`Ms(θ0)

T(pθn ´ θ0) + op

(
ts
´ 1

2

)
=

1
TI
∇θp`Ms(θ0) + EYπ

[
1
TI
∇2
θθp`Ms(θ0)

]T

(pθn ´ θ0)+(
1
TI
∇2
θθp`Ms(θ0)´EYπ

[
1
TI
∇2
θθp`Ms(θ0)

])T

(pθn ´ θ0) + op

(
ts
´ 1

2

)
=

1
TI
∇θp`Ms(θ0) + EYπ

[
1
TI
∇2
θθp`Ms(θ0)

]T

(pθn ´ θ0) + op

(
ts
´ 1

2

)
=

1
TI
∇θp`Ms(θ0)´H(θ0)

T(pθn ´ θ0) + op

(
ts
´ 1

2

)
.

In the first equality, I used the definition of pθn. In the second equality, I applied a Taylor
expansion to function 1

TI
∇θp`Ms(θ) at θ0. In the fourth, I used the fact that pθn

p
ÝÑ θ0 from

Theorem 4.23 and A.4. Then one has

H(θ0)
T(pθn ´ θ0) =

1
TI
∇θp`Ms(θ0) + op

(
ts
´ 1

2

)
,

i.e.,

Jπ(θ0)
´ 1

2 H(θ0)
T(pθn ´ θ0) = Jπ(θ0)

´ 1
2

(
1
TI
∇θp`Ms(θ0)

)
+ op(1).

By Lemma 4.27 and EYπ

[
1
TI
∇θp`Ms(θ0)

]
= 0, one has

Jπ(θ0)
´ 1

2 H(θ0)
T(pθn ´ θ0)

D
ÝÑ N

(
0, I + ζ

[
(lim tsJπ(θ0))

´1 (lim TcJY(θ0))
])

under model-design measure Yπ.

Remark. There are two problems on evaluating H(θ0), Jπ(θ0) and JY(θ0). First, H, Jπ

and JY are a sum over the population data, but one only observes a sample. Secondly,
H, Jπ and JY cannot be evaluated at θ0, because one does not know the true value θ0.
This problem can be handled by using the plug-in estimator.
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It remains to estimate H(θ0), Jπ(θ0) and JY(θ0). In all of the following, I am going to
assume first-stage sampling fraction is small to simplify the exposition. Then it reduces
to estimate H(θ0) and Jπ(θ0). It is straightforward to construct estimator pH(pθn) such
that

pH(pθn)
p
ÝÑ H(θ0)

under model-design measure Yπ. My goal in the next section is to construct estimator
pJπ(pθn) for Jπ(θ0) such that

TcpJπ(pθn) (TcJπ(θ0))
´1 p
ÝÑ I

under design measure π. This is surprisingly more difficult than it first seems. Once I
prove the limit exists, then one has

(TcJπ(θ0))
´ 1

2
(

TcpJπ(pθn)
) 1

2
pJπ(pθn)

´ 1
2 pH(pθn)

T(pθn ´ θ0)
D
ÝÑ N(0, I),

i.e.,
pJπ(pθn)

´ 1
2 pH(pθn)

T(pθn ´ θ0)
D
ÝÑ N(0, I)

under model-design measure Yπ.

4.5 Variance estimation

It is straightforward to construct a consistent estimator for H(θ0). Namely, one can
estimate H(θ0) = EYπ

[
´ 1

TI
∇2
θθp`Ms(θ0)

]
by

pH(pθn) = ´
1
TI
∇2
θθp`Ms(pθn).

The proof of consistency is essentially an rephrase of Lemma 4.26 and the triangle in-
equality. The difficulty in here is to estimate J(θ0).

4.5.1 Empirical variance estimation

One can estimate H(θ0) = EYπ

[
´ 1

TI
∇2
θθp`Ms(θ0)

]
by

pH(pθn) = ´
1
TI
∇2
θθp`Ms(pθn).
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More precisely,

Lemma 4.28. Under A.1–A.8 of Theorem 4.25, then

pH(pθn)´H(θ0)
p
ÝÑ 0.

Proof. Note pθn
p
ÝÑ θ0 by Theorem 4.23. From the Continuous Mapping Theorem 7.20,

one has
H(pθn)´H(θ0)

p
ÝÑ 0 (4.10)

under model-design measure Yπ.
Hence

PYπ

(
}pH(pθn)´H(θ0)} ě ε

)
ďPYπ

(
}pH(pθn)´H(pθn)} ě

ε

2

)
+ PYπ

(
}H(pθn)´H(θ0)} ě

ε

2

)
ďPYπ

(
sup
θPΘ

}pH(θ)´H(θ)} ě
ε

2

)
+ PYπ

(
}H(pθn)´H(θ0)} ě

ε

2

)
ď

ε

2
+

ε

2
ďε.

The third inequality follows from Lemma 4.26 and 4.10.

Therefore, it remains to estimate the design variance Jπ(θ). Observe

Jπ(θ) =Var
π

(
1
Tc
∇θp`Ms(θ)

)
=

1
Tc

2

Tc
ÿ

i=1

Tc
ÿ

i1=1

ÿ

kăl
k,lPMc

i

ÿ

k1ăl1
k1,l1PMc

i1

Cov
π

(1kl, 1k1l1) (ωkl∇θp`kl(θ)ωk1l1∇θp`k1l1(θ))

=
1

Tc
2

Tc
ÿ

i=1

Tc
ÿ

i1=1

ÿ

kăl
k,lPMc

i

ÿ

k1ăl1
k1,l1PMc

i1

∆klk1l1 (ωkl∇θp`kl(θ)ωk1l1∇θp`k1l1(θ)) ,

where
∆klk1l1 = πklk1l1 ´ πklπk1l1 .
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Remark. Observe if one samples all the population data, then Jπ(θ) = 0, as ∆klk1l1 = 0
for all k, l, k1, l1 P U.

Observe one needs data in the population to calculate Jπ(θ). But one only observes
a sample. Therefore, Jπ(θ) must be estimated by the data from the sample. One can
estimate Jπ(θ) by

pJπ(θ) =
1

Tc
2

Tc
ÿ

i=1

Tc
ÿ

i1=1

ÿ

kăl
k,lPMc

i

ÿ

k1ăl1
k1,l1PMc

i1

1klk1l1ωklk1l1∆klk1l1 (ωkl∇θp`kl(θ)ωk1l1∇θp`k1l1(θ)) .

Remark. Observe pJπ(θ) is an unbiased estimator for Jπ(θ) under design measure π, i.e.,
Eπ

[
pJπ(θ)

]
= Jπ(θ).

Remark. Observe

Var
π

[
TcpJπ(θ)

]
=Var

π

 1
Tc

Tc
ÿ

i=1

Tc
ÿ

i1=1

ÿ

kăl
k,lPMc

i

ÿ

k1ăl1
k1,l1PMc

i1

1klk1l1ωklk1l1∆klk1l1 (ωkl∇θp`kl(θ)ωk1l1∇θp`k1l1(θ))


=

1
Tc

2

Tc
ÿ

i=1

Tc
ÿ

i1=1

Tc
ÿ

i2=1

Tc
ÿ

i3=1

ÿ

kăl
k,lPMc

i

ÿ

k1ăl1
k1,l1PMc

i1

ÿ

k2ăl2
k2,l2PMc

i2

ÿ

k3ăl3
k3,l3PMc

i3

Cov
π

(1klk1l1 , 1k2l2k3l3)ωklk1l1

∆klk1l1ωk2l2k3l3∆k2l2k3l3 (ωkl∇θp`kl(θ)ωk1l1∇θp`k1l1(θ))

(ωk2l2∇θp`k2l2(θ)ωk3l3∇θp`k3l3(θ))

=
1

Tc
2

Tc
ÿ

i=1

Tc
ÿ

i1=1

Tc
ÿ

i2=1

Tc
ÿ

i3=1

ÿ

kăl
k,lPMc

i

ÿ

k1ăl1
k1,l1PMc

i1

ÿ

k2ăl2
k2,l2PMc

i2

ÿ

k3ăl3
k3,l3PMc

i3

∆klk1l1k2l2k3l3ωklk1l1∆klk1l1ωk2l2k3l3

∆k2l2k3l3 (ωkl∇θp`kl(θ)ωk1l1∇θp`k1l1(θ)) (ωk2l2∇θp`k2l2(θ)ωk3l3∇θp`k3l3(θ)) ,

where
∆klk1l1k2l2k3l3 = πklk1l1k2l2k3l3 ´ πklk1l1πk2l2k3l3 .
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A natural question to ask in here is: when does one have a convergence in probabil-
ity? More precisely, can we show

TcpJπ(pθn)´ TcJπ(θ0)
p
ÝÑ 0

under design measure π? By Markov’s Inequality Theorem 7.17, it boils down to show
under what condition does one have Varπ

[
TcpJπ(θ)

]
Ñ 0 for all θ P Θ. The questions is

surprisingly more subtle than it first seems. I will come back to this question on next two
sections. More precisely, I will show that a set of reasonable sampling designs (Poisson,
Stratified and SRSWOR) satisfy this condition (more about this in section 4.6 and 4.7).
For the moment, let me suppose Varπ

[
TcpJπ(θ)

]
Ñ 0 for all θ P Θ.

Lemma 4.29. With the same conditions as in Theorem 4.25 and Varπ

[
TcpJπ(θ)

]
Ñ 0 for all

θ P Θ, then one has
TcpJπ(pθn)´ TcJπ(θ0)

p
ÝÑ 0

under design measure π.

To prove Lemma 4.29, I need a uniform convergence lemma to start with. In all of
the following, without loss of generality, one may assume θ is 1-dimensional by Cramer-
Wold Theorem.

Lemma 4.30. With the same conditions as in Lemma 4.29, then one has

sup
θPΘ

}TcpJπ(θ)´ TcJπ(θ)}
p
ÝÑ 0.

Proof. First, I want to show TcpJπ(θ)´ TcJπ(θ)Ñ 0. To see this, observe

Pπ

(›
›

›
TcpJπ(θ)´ TcJπ(θ)

›

›

›
ě ε
)
ď

Eπ

[
TcpJπ(θ)´ TcJπ(θ)

]2

ε2

=
Varπ

[
TcpJπ(θ)

]
ε2 Ñ 0.

In the first inequality, I use the Chebyshev’s inequality Theorem 7.17.
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Let ρ ą 0, consider the upper and the lower function of the TcpJπ on Bρ(θ), i.e.,

Uρ(θ) = sup
θ1PBρ(θ)

TcpJπ(θ
1)

= sup
θ1PBρ(θ)

1
Tc

Tc
ÿ

i=1

Tc
ÿ

i1=1

ÿ

kăl
k,lPMc

i

ÿ

k1ăl1
k1,l1PMc

i1

1klk1l1ωklk1l1∆klk1l1 (ωkl∇θp`kl(θ
1)ωk1l1∇θp`k1l1(θ

1)) ,

Lρ(θ) = inf
θ1PBρ(θ)

TcpJπ(θ
1)

= inf
θ1PBρ(θ)

1
Tc

Tc
ÿ

i=1

Tc
ÿ

i1=1

ÿ

kăl
k,lPMc

i

ÿ

k1ăl1
k1,l1PMc

i1

1klk1l1ωklk1l1∆klk1l1 (ωkl∇θp`kl(θ
1)ωk1l1∇θp`k1l1(θ

1)) .

Then one can apply similar argument as in Lemma 3.9 to show

sup
θPΘ

}TcpJπ(θ)´ TcJπ(θ)}
p
ÝÑ 0.

I omit the detail.

I now proceed to the proof of Lemma 4.29.

Proof. Therefore, one has
sup
θPΘ

}TcpJπ(θ)´ TcJπ(θ)}
p
ÝÑ 0 (4.11)

under design measure π.
Note pθn ´ θ0

p
ÝÑ 0 under model-design measure Yπ by Theorem 4.23. By the Contin-

uous Mapping Theorem 7.20, one has

TcJπ(pθn)´ TcJπ(θ0)
p
ÝÑ 0 (4.12)

under design measure π.
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Hence

Pπ

(›
›

›
TcpJπ(pθn)´ TcJπ(θ0)

›

›

›
ě ε
)

ďPπ

(›
›

›
TcpJπ(pθn)´ TcJπ(pθn)

›

›

›
ě

ε

2

)
+ Pπ

(›
›

›
TcJπ(pθn)´ TcJπ(θ0)

›

›

›
ě

ε

2

)
ďPπ

(
sup
θPΘ

›

›

›
TcpJπ(θ)´ TcJπ(θ)

›

›

›
ě

ε

2

)
+ Pπ

(›
›

›
TcJπ(pθn)´ TcJπ(θ0)

›

›

›
ě

ε

2

)
ď

ε

2
+

ε

2
ďε.

The third inequality follows from 4.11 and 4.12. This completes the proof.

We are ready to state the main results.

Theorem 4.31. With the same conditions as in Theorem 4.25. Assume the first-stage sampling
fraction for PSU is small and supθPΘ Varπ

[
TcpJπ(θ)

]
Ñ 0, then

pJπ(pθn)
´ 1

2 pH(pθn)
T(pθn ´ θ0)

D
ÝÑ N(0, 1)

under model-design measure Yπ.

Proof. This is clear from Theorem 4.25, Lemma 4.28 and Lemma 4.29.

4.6 Consistency of empirical variance estimation: the sampling clus-
ters are the model clusters

In all of this section, I assume the sampling clusters are the model clusters. My goal is
to show Poisson, stratified and SRSWOR sampling all meet the following conditions

Var
π

[
TcpJπ(θ)

]
Ñ 0.

Although the argument given in here cannot be directly applied when the sampling
clusters are not the model clusters, they provide an important theme: the tree struc-
ture of ∆klk1l1 , ∆k1l1 and ∆klk1l1k2l2k3l3 are crucial for establishing convergence. In all of
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the following, I assume the number of elements within any clusters is bounded, i.e.,
supi Ni ď λ and supi Ti ď λ for some λ ą 0. Let hkl = supθPΘ }∇θp`kl(θ)}. Furthermore,
assume there exists a c ą 0 such that supkl hkl ď c, supkl ωkl ď c, supklk1l1 ωklk1l1 ď c

and supklk1l1k2l2k3l3 ωklk1l1k2l2k3l3 ď c. I first establish Varπ

[
TcpJπ(θ)

]
Ñ 0 for the Poisson

sampling when the sampling clusters are the model clusters.

4.6.1 Example: Poisson sampling design

Assume the sampling clusters are the model clusters, i.e., Uc
I = Mc

I . Consider the fol-
lowing two-stage sample design:

(i) First-stage: Poisson sampling with πi for each sampling cluster i.

(ii) Second-stage: SRSWR with sample size ni = C1 from population size Ni = C2 for
the sampling cluster i.

I start by making two observations.

Lemma 4.32. Assume the sampling clusters are the model clusters, i.e., Uc
I = Mc

I . Under the
above Poisson sampling setting, then

(i) Suppose klk1l1 has two sampling cluster, i.e., xklyxk1l1y, then ∆klk1l1 = 0.

(ii) If xklk1l1yxk2l2k3l3y, then ∆klk1l1k2l2k3l3 = 0.

Proof. To prove (i), observe

∆klk1l1 =Eπ1klk1l1 ´Eπ1klEπ1k1l1

=πs(k)πs(k1)
C1

C2

C1

C2

C1

C2

C1

C2
´ πs(k)

C1

C2

C1

C2
πs(k1)

C1

C2

C1

C2

=0.

To prove (ii), observe

∆klk1l1k2l2k3l3 =Eπ1klk1l1k2l2k3l3 ´Eπ1klk1l1Eπ1k2l2k3l3

=πs(k)πs(k2)

(
C1

C2

)8

´ πs(k)

(
C1

C2

)4

πs(k2)

(
C1

C2

)4

=0.
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Proposition 4.33. Assume the sampling clusters are the model clusters, i.e., Uc
I = Mc

I . Under
the above Poisson sampling setting, then for all θ P Θ

Var
π

[
TcpJπ(θ)

]
Ñ 0.

Proof. The proof is based on bounding the number of non-zero terms in a straightfor-
ward expansion of the sum defining pJπ(θ). Observe

Var
π

[
TcpJπ(θ)

]
=Var

π

 1
Tc

Tc
ÿ

i=1

Tc
ÿ

i1=1

ÿ

kăl
k,lPMc

i

ÿ

k1ăl1
k1,l1PMc

i1

1klk1l1ωklk1l1∆klk1l1 (ωkl∇θp`kl(θ)ωk1l1∇θp`k1l1(θ))



=
1

Tc
2 Var

π

 Tc
ÿ

i=1

ÿ

kăl
k,lPMc

i

ÿ

k1ăl1
k1,l1PMc

i

1klk1l1ωklk1l1∆klk1l1 (ωkl∇θp`kl(θ)ωk1l1∇θp`k1l1(θ))


=

1
Tc

2

Tc
ÿ

i=1

Tc
ÿ

i1=1

ÿ

kăl
k,lPMc

i

ÿ

k1ăl1
k1,l1PMc

i

ÿ

k2ăl2
k2,l2PMc

i1

ÿ

k3ăl3
k3,l3PMc

i1

∆klk1l1k2l2k3l3ωklk1l1∆klk1l1ωk2l2k3l3

∆k2l2k3l3 (ωkl∇θp`kl(θ)ωk1l1∇θp`k1l1(θ)) (ωk2l2∇θp`k2l2(θ)ωk3l3∇θp`k3l3(θ))

=
1

Tc
2

Tc
ÿ

i=1

ÿ

kăl
k,lPMc

i

ÿ

k1ăl1
k1,l1PMc

i

ÿ

k2ăl2
k2,l2PMc

i

ÿ

k3ăl3
k3,l3PMc

i

∆klk1l1k2l2k3l3ωklk1l1∆klk1l1ωk2l2k3l3

∆k2l2k3l3 (ωkl∇θp`kl(θ)ωk1l1∇θp`k1l1(θ)) (ωk2l2∇θp`k2l2(θ)ωk3l3∇θp`k3l3(θ))

=O
(

1
Tc

)
.

In the second equality, I used Lemma 4.32, i.e., ∆klk1l1 = 0 if xklyxk1l1y. In the fourth
equality, I used Lemma 4.32, i.e., ∆klk1l1k2l2k3l3 = 0 if xklk1l1yxk2l2k3l3y.

Remark. The argument above can be extended to the case when the sampling clusters
Uc

I are coarser than the model clusters Mc
I , i.e., Mc

I Ă Uc
I . The idea is pairs in the same

model clusters must be in the same sampling clusters.
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Remark. When the sampling clusters are the model clusters, I used an independence
identity, basically relying on the independent pair from different clusters. In particular,
note the tree structure of the ∆klk1l1 , ∆k2l2k3l3 and ∆klk1l1k2l2k3l3 is vital. See the figure
below. However, this argument no longer holds when the sampling clusters are not the
same as the model clusters.

kl k1l1 k2l2 k3l3

∆klk1l1 ∆k2l2k3l3

∆klk1l1k2l2k3l3

Figure 4.1: Tree structure.

4.6.2 Example: SRSWOR sampling design

Assume the sampling clusters are the model clusters, i.e., Uc
I = Mc

I . Consider the fol-
lowing two-stage sample design:

(i) First-stage: SRSWOR with the sample size nI from the population size NI for the
sampling clusters.

(ii) Second-stage: SRSWR with the sample size ni = C1 from the population size Ni =

C2 for sampling cluster i.

I start by making two observations.
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Lemma 4.34. Assume the sampling clusters are the model clusters, i.e., Uc
I = Mc

I . Under the
above SRSWOR sampling setting,

(i) Suppose klk1l1 has two sampling clusters, i.e., xklyxk1l1y, then ∆klk1l1 = O
(

Tc
´1
)

.

(ii) If xklk1l1yxk2l2k3l3y, then ∆klk1l1k2l2k3l3 = O
(

Tc
´1
)

.

Proof. To prove (i), observe

∆klk1l1 = Eπ1klk1l1 ´Eπ1klEπ1k1l1

=
nI

NI

C1

C2

C1

C2

nI ´ 1
NI ´ 1

C1

C2

C1

C2
´

nI

NI

C1

C2

C1

C2

nI

NI

C1

C2

C1

C2

=
ts

Tc

C1

C2

C1

C2

ts ´ 1
Tc ´ 1

C1

C2

C1

C2
´

ts

Tc

C1

C2

C1

C2

ts

Tc

C1

C2

C1

C2

= c
ts

Tc

(
ts ´ 1
Tc ´ 1

´
ts

Tc

)
= ´c

1
Tc ´ 1

ts

Tc

(
1´

ts

Tc

)
= O

(
Tc
´1
)

.

To prove (ii), observe

∆klk1l1k2l2k3l3 = Eπ1klk1l1k2l2k3l3 ´Eπ1klk1l1Eπ1k2l2k3l3

=
nI

NI

C1

C2

C1

C2

C1

C2

C1

C2

nI ´ 1
NI ´ 1

C1

C2

C1

C2

C1

C2

C1

C2
´

nI

NI

C1

C2

C1

C2

C1

C2

C1

C2

nI

NI

C1

C2

C1

C2

C1

C2

C1

C2

=
ts

Tc

C1

C2

C1

C2

C1

C2

C1

C2

ts ´ 1
Tc ´ 1

C1

C2

C1

C2

C1

C2

C1

C2
´

ts

Tc

C1

C2

C1

C2

C1

C2

C1

C2

ts

Tc

C1

C2

C1

C2

C1

C2

C1

C2

= c
ts

Tc

(
ts ´ 1
Tc ´ 1

´
ts

Tc

)
= ´c

1
Tc ´ 1

ts

Tc

(
1´

ts

Tc

)
= O

(
Tc
´1
)

.
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Proposition 4.35. Assume the sampling clusters are the model clusters, i.e., Uc
I = Mc

I . Under
the above SRSWOR sampling setting, then for all θ P Θ

Var
π

[
TcpJπ(θ)

]
Ñ 0.

Proof. The proof is based on splitting the sum into four pieces and counting the number
of terms in each pieces. Recall

Var
π

[
TcpJπ(θ)

]
=Var

π

 1
Tc

Tc
ÿ

i=1

Tc
ÿ

i1=1

ÿ

kăl
k,lPMc

i

ÿ

k1ăl1
k1,l1PMc

i1

1klk1l1ωklk1l1∆klk1l1 (ωkl∇θp`kl(θ)ωk1l1∇θp`k1l1(θ))


=

1
Tc

2

Tc
ÿ

i=1

Tc
ÿ

i1=1

Tc
ÿ

i2=1

Tc
ÿ

i3=1

ÿ

kăl
k,lPMc

i

ÿ

k1ăl1
k1,l1PMc

i1

ÿ

k2ăl2
k2,l2PMc

i2

ÿ

k3ăl3
k3,l3PMc

i3

∆klk1l1k2l2k3l3ωklk1l1∆klk1l1ωk2l2k3l3

∆k2l2k3l3 (ωkl∇θp`kl(θ)ωk1l1∇θp`k1l1(θ)) (ωk2l2∇θp`k2l2(θ)ωk3l3∇θp`k3l3(θ)) .

I may split the sum over the model cluster into four pieces

1
Tc

2

Tc
ÿ

i=1

Tc
ÿ

i1=1

Tc
ÿ

i2=1

Tc
ÿ

i3=1

=
1

Tc
2

 ÿ

one distinct
model cluster

+
ÿ

two distinct
model cluster

+
ÿ

three distinct
model cluster

+
ÿ

four distinct
model cluster

 (4.13)

and show the contribution of each term is small.
For the first sum in 4.13, there is only one sampling cluster. Hence

1
Tc

2

ÿ

one distinct
model cluster

=
1

Tc
2 O(Tc) = O

(
Tc
´1
)

.

For the second sum in 4.13, there are two sampling clusters. There are three possibil-
ities.

First, if both klk1l1 and k2l2k3l3 have one sampling cluster, i.e., xklk1l1yxk2l2k3l3y, then
∆klk1l1k2l2k3l3 = O

(
Tc
´1
)

by Lemma 4.34. Hence

1
Tc

2

ÿ

two distinct
model cluster

=
1

Tc
2 O
(

Tc
2
)

O
(

Tc
´1
)
= O

(
Tc
´1
)

.

109



Secondly, if one of klk1l1 or k2l2k3l3 has one cluster and the other has two clusters.
WLOG, assume klk1l1 has one cluster and k2l2k3l3 has two clusters, then ∆k2l2k3l3 =

O
(

Tc
´1
)

by Lemma 4.34. Hence

1
Tc

2

ÿ

two distinct
model cluster

=
1

Tc
2 O
(

Tc
2
)

O
(

Tc
´1
)
= O

(
Tc
´1
)

.

Thirdly, if both klk1l1 and k2l2k3l3 have two clusters, then ∆klk1l1 = O
(

Tc
´1
)

and

∆k2l2k3l3 = O
(

Tc
´1
)

by Lemma 4.34. Hence

1
Tc

2

ÿ

two distinct
model cluster

=
1

Tc
2 O
(

Tc
2
)

O
(

Tc
´1
)

O
(

Tc
´1
)
= O

(
Tc
´2
)

.

For the third sum in 4.13, there are three sampling clusters. Observe at least one of
klk1l1 or k2l2k3l3 have two clusters. Without loss of generality, suppose klk1l1 has two
clusters, then ∆klk1l1 = O

(
Tc
´1
)

by Lemma 4.34. There are two possibilities here.
First, suppose k2l2k3l3 has only one sampling cluster, i.e., xklyxk1l1yxk2l2k3l3y, then

∆klk1l1k2l2k3l3

=Eπ1klk1l1k2l2k3l3 ´Eπ1klk1l1Eπ1k2l2k3l3

=
nI

NI

(
C1

C2

)2 nI ´ 1
NI ´ 1

(
C1

C2

)2 nI ´ 2
NI ´ 2

(
C1

C2

)4

´
nI

NI

(
C1

C2

)2 nI ´ 1
NI ´ 1

(
C1

C2

)2 nI

NI

(
C1

C2

)4

=
ts

Tc

(
C1

C2

)2 ts ´ 1
Tc ´ 1

(
C1

C2

)2 ts ´ 2
Tc ´ 2

(
C1

C2

)4

´
ts

Tc

(
C1

C2

)2 ts ´ 1
Tc ´ 1

(
C1

C2

)2 ts

Tc

(
C1

C2

)4

=c
ts

Tc

ts ´ 1
Tc ´ 1

(
ts ´ 2
Tc ´ 2

´
ts

Tc

)
=´ c

1
Tc ´ 2

ts

Tc

ts ´ 1
Tc ´ 1

(
2´

2ts

Tc

)
=O

(
Tc
´1
)

.

Hence
1

Tc
2

ÿ

three distinct
model cluster

=
1

Tc
2 O
(

Tc
3
)

O
(

Tc
´1
)

O
(

Tc
´1
)
= O

(
Tc
´1
)

.
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Secondly, suppose k2l2k3l3 has only two sampling clusters, then ∆k2l2k3l3 = O
(

Tc
´1
)

by Lemma 4.34. Hence

1
Tc

2

ÿ

three distinct
model cluster

=
1

Tc
2 O
(

Tc
3
)

O
(

Tc
´1
)

O
(

Tc
´1
)
= O

(
Tc
´1
)

.

For the fourth sum in 4.13, there are four sampling clusters, i.e., xklyxk1l1yxk2l2yxk3l3y.
Then

∆klk1l1k2l2k3l3

=Eπ1klk1l1k2l2k3l3 ´Eπ1klk1l1Eπ1k2l2k3l3

=
nI

NI

(
C1

C2

)2 nI ´ 1
NI ´ 1

(
C1

C2

)2 nI ´ 2
NI ´ 2

(
C1

C2

)2 nI ´ 3
NI ´ 3

(
C1

C2

)2

´

(
nI

NI

(
C1

C2

)2 nI ´ 1
NI ´ 1

(
C1

C2

)2
)2

=
ts

Tc

(
C1

C2

)2 ts ´ 1
Tc ´ 1

(
C1

C2

)2 ts ´ 2
Tc ´ 2

(
C1

C2

)2 ts ´ 3
Tc ´ 3

(
C1

C2

)2

´

(
ts

Tc

(
C1

C2

)2 ts ´ 1
Tc ´ 1

(
C1

C2

)2
)2

=c
ts

Tc

ts ´ 1
Tc ´ 1

(
ts ´ 2
Tc ´ 2

ts ´ 3
Tc ´ 3

´
ts

Tc

ts ´ 1
Tc ´ 1

)
=O

(
Tc
´1
)

.

Observe ∆klk1l1 = O
(

Tc
´1
)

and ∆k2l2k3l3 = O
(

Tc
´1
)

by Lemma 4.34. Therefore

1
Tc

2

ÿ

four distinct
model cluster

=
1

Tc
2 O
(

Tc
4
)

O
(

Tc
´1
)

O
(

Tc
´1
)

O
(

Tc
´1
)
= O

(
Tc
´1
)

.

Putting all those estimates together, one has

Var
π

[
TcpJπ(θ)

]
= O

(
Tc
´1
)

.

This completes the proof.

Remark. When the sampling clusters are the model clusters, I used an almost indepen-
dence identity, basically relying on some of term ∆klk1l1 , ∆k2l2k3l3 or ∆klk1l1k2l2k3l3 being
O
(

Tc
´1
)

. In particular, note the tree structure of the ∆klk1l1 , ∆k2l2k3l3 and ∆klk1l1k2l2k3l3 is
vital. However, this argument no longer holds when the sampling clusters are not the
same as the model clusters.
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Remark. One can use a similar argument to show Varπ

[
TcpJπ(θ)

]
= O

(
Tc
´1
)

for strati-
fied SRSROW. I omit the detail.

4.7 Consistency of empirical variance estimation: the sampling clus-
ters are not the same as the model clusters

When the sampling clusters are not the same as the model clusters, the argument is more
involved to establish Varπ

[
TcpJ1(θ)

]
Ñ 0. It is complicated by the structure of sampling

design, i.e., pair kl in the same model cluster might not be in the same sampling cluster.
I will show Varπ

[
TcpJπ(θ)

]
Ñ 0 for Poisson, SRSWOR and stratified sampling. The proof

consists of rewriting Varπ

[
TcpJπ(θ)

]
as the sum of terms which one can explore the decay

for ∆klk1l1 , ∆k2l2k3l3 and ∆klk1l1k2l2k3l3 . The key construction in here is inspired by Lumley
(1998); Lumley and Mayer Hamblett (2003).

4.7.1 Example: Poisson sampling design

Assume the sampling clusters are not the same as the model clusters, i.e., Uc
I ‰ Mc

I .
Consider the following two-stage sample design:

(i) First-stage: Poisson sampling with πi for the sampling cluster i.

(ii) Second-stage: SRSWR with sample size ni = C1 from population size Ni = C2 for
sampling cluster i.

I start by introducing some notation. Define

P = tkl P U2 : k ă l and m(k) = m(l)u.

Definition 4.36. Let kl P P , define the neighbourhood of pair kl to be a set Skl Ă P such
that

(i) If k1l1 P Skl, then kl P Sk1l1 .

(ii) If kl R Sk1l1 and k1l1 R Skl, then 1kl and 1k1l1 are independent under design measure
π.
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Define sSkl to be the complement of Skl in P , i.e., sSkl = PzSkl .

Remark. Under the above Poisson sampling setting, Skl is the set of pairs that share at
least one sampling cluster of kl, i.e.,

Skl = tk1l1 P P : s(k1) = s(k) or s(k1) = s(l) or s(l1) = s(k) or s(l1) = s(l)u.

In particular, observe supklPP |Skl| ď λ2 and supklPP |
sSkl| ď Tcλ2.

Lemma 4.37. If k1l1 P sSkl, then ∆klk1l1 = 0.

Proof. Essentially, this is just chasing down the definition. If k1l1 P sSkl, i.e., k1l1 R Skl,
then kl R Sk1l1 from the definition. Then from the definition, this implies 1kl and 1k1l1 are
independent, i.e., ∆klk1l1 = 0.

Proposition 4.38. Under the above Poisson sampling setting, then for all θ P Θ

Var
π

[
TcpJπ(θ)

]
Ñ 0.

Proof. Observe

Var
π

[
TcpJπ(θ)

]

=Var
π

 1
Tc

Tc
ÿ

i=1

Tc
ÿ

i1=1

ÿ

kăl
k,lPMc

i

ÿ

k1ăl1
k1,l1PMc

i1

1klk1l1ωklk1l1∆klk1l1 (ωkl∇θp`kl(θ)ωk1l1∇θp`k1l1(θ))



=
1

Tc
2 Var

π

 Tc
ÿ

i=1

ÿ

kăl
k,lPMc

i

 ÿ

k1l1PSkl

+
ÿ

k1l1P sSkl

 1klk1l1ωklk1l1∆klk1l1 (ωkl∇θp`kl(θ)ωk1l1∇θp`k1l1(θ))



=
1

Tc
2 Var

π

 Tc
ÿ

i=1

ÿ

kăl
k,lPMc

i

ÿ

k1l1PSkl

1klk1l1ωklk1l1∆klk1l1 (ωkl∇θp`kl(θ)ωk1l1∇θp`k1l1(θ))


=

c
Tc

2

Tc
ÿ

i=1

ÿ

kăl
k,lPMc

i

ÿ

k1l1PSkl

Tc
ÿ

i2=1

ÿ

k2ăl2
k2,l2PMc

i2

ÿ

k3l3PSk2 l2

Cov
π

(1kl1k1l1 , 1k2l21k3l3)ωklk1l1∆klk1l1ωk2l2k3l3∆k2l2k3l3

(ωkl∇θp`kl(θ)ωk1l1∇θp`k1l1(θ)) (ωk2l2∇θp`k2l2(θ)ωk3l3∇θp`k3l3(θ)) . (4.14)
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In the third equality, I used Lemma 4.37, i.e., ∆klk1l1 = 0 if k1l1 P sSkl.
Note if (1kl, 1k1l1) is independent of (1k2l2 , 1k3l3), then 1kl1k1l1 is independent of 1k2l21k3l3

and Covπ(1kl1k1l1 , 1k2l21k3l3) = 0. In particular, covariance is nonzero if

k2l2 P Skl, k2l2 P Sk1l1 , k3l3 P Skl, or k3l3 P Sk1l1 . (4.15)

So the upper bound for number of nonzero term in Varπ

[
TcpJπ(θ)

]
is Tcλ8. To see this,

observe there are Tcλ2 choices for kl and at most λ2 choices for k1l1 given kl, at most 4λ2

for 4.15 to be true, and at most λ2 choice for k3l3 given k2l2. Therefore, from 4.14, one
has

Var
π

[
TcpJπ(θ)

]
= O

(
Tc
´2
)

O
(

Tcλ2
)

O
(

λ2
)

O
(

4λ2
)

O
(

λ2
)
= O

(
Tc
´1
)

.

Remark. The argument above can be easily extend to the stratified Poisson sampling
design. I omit the detail.

4.7.2 Example: SRSWOR sampling design

Assume the sampling clusters are not the same as the model clusters, i.e. Uc
I ‰ Mc

I . The
argument for the SRSWOR two-stage sampling is more involved. Consider the following
two-stage sample design:

(i) First-stage: SRSWOR with the sample size nI from the population size NI for the
sampling cluster.

(ii) Second-stage: SRSWR with sample size ni = C1 from population size Ni = C2 for
each sampling cluster i.

I start by introducing some notations. Define

P = tkl P U2 : k ă l and m(k) = m(l)u.
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Definition 4.39. Let kl, k1l1, k2l2 P P . Define

Skl =tk1l1 P P : s(k1) = s(k) or s(k1) = s(l) or s(l1) = s(k) or s(l1) = s(l)u,

Sklk1l1 =tk2l2 P P : s(k2) = s(k) or s(k2) = s(l) or s(k2) = s(k1) or s(k2) = s(l1) or

s(l2) = s(k) or s(l2) = s(l) or s(l2) = s(k1) or s(l2) = s(l1)u,

Sklk1l1k2l2 =tk3l3 P P : s(k3) = s(k) or s(k3) = s(l) or s(k3) = s(k1) or s(k3) = s(l1) or

s(k3) = s(k2) or s(k3) = s(l2) or s(l3) = s(k) or s(l3) = s(l) or s(l3) = s(k1) or

s(l3) = s(l1) or s(l3) = s(k2) or s(l3) = s(l2)u.

Let sSkl be the complement of Skl, sSklk1l1 be the complement of Sklk1l1 , and sSklk1l1k2l2 be the
complement of Sklk1l1k2l2 in P . More precisely,

sSkl =PzSkl,
sSklk1l1 =PzSklk1l1 ,

sSklk1l1k2l2 =PzSklk1l1k2l2 .

Remark. Skl is the set of pairs that shares at least one sampling cluster of kl. Sklk1l1 is the
set of pairs that shares at least one sampling cluster of klk1l1. Sklk1l1k2l2 is the set of pairs
that shares at least one sampling cluster of klk1l1k2l2.

Remark. Let kl, k1l1, k2l2 P P . Observe supkl |Skl| ď λ2, supklk1l1 |Sklk1l1 | ď λ2, supklk1l1k2l2 |Sklk1l1k2l2 | ď

λ2, supkl |
sSkl| ď Tcλ2, supklk1l1 |

sSklk1l1 | ď Tcλ2 and supklk1l1k2l2 |
sSklk1l1k2l2 | ď Tcλ2.

Lemma 4.40. Under the above SRSWOR setting. If k1l1 P sSkl, then

∆klk1l1 = O
(

Tc
´1
)

.

Proof. To see this, there are two cases to consider.
First, suppose s(k1) = s(l1), then there are only two possibilities, either xklyxk1l1y or

xkyxlyxk1l1y.
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∆klk1l1 =
nI

NI

C1

C2

C1

C2

nI ´ 1
NI ´ 1

C1

C2

C1

C2
´

nI

NI

C1

C2

C1

C2

nI

NI

C1

C2

C1

C2

=c
nI

NI

(
nI ´ 1
NI ´ 1

´
nI

NI

)
=´ c

1
NI ´ 1

nI

NI

(
1´

nI

NI

)
=O

(
NI
´1
)

=O
(

Tc
´1
)

.

If xkyxlyxk1l1y, then

∆klk1l1 =
nI

NI

C1

C2

nI ´ 1
NI ´ 1

C1

C2

nI ´ 2
NI ´ 2

C1

C2

C1

C2
´

nI

NI

C1

C2

nI ´ 1
NI ´ 1

C1

C2

nI

NI

C1

C2

C1

C2

=c
nI

NI

nI ´ 1
NI ´ 1

(
nI ´ 2
NI ´ 2

´
nI

NI

)
=´ c

1
NI ´ 2

nI

NI

nI ´ 1
NI ´ 1

(
2´

2nI

NI

)
=O

(
NI
´1
)

=O
(

Tc
´1
)

.

Secondly, suppose s(k1) ‰ s(l1), then either xklyxk1yxl1y or xkyxlyxk1yxl1y.
If xklyxk1yxl1y, then

∆klk1l1 =
nI

NI

C1

C2

C1

C2

nI ´ 1
NI ´ 1

C1

C2

nI ´ 2
NI ´ 2

C1

C2
´

nI

NI

C1

C2

C1

C2

nI

NI

C1

C2

nI ´ 1
NI ´ 1

C1

C2

=c
nI

NI

nI ´ 1
NI ´ 1

(
nI ´ 2
NI ´ 2

´
nI

NI

)
=´ c

1
NI ´ 2

nI

NI

nI ´ 1
NI ´ 1

(
2´

2nI

NI

)
=O

(
NI
´1
)

=O
(

Tc
´1
)

.
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If xkyxlyxk1yxl1y, then

∆klk1l1 =
nI

NI

C1

C2

nI ´ 1
NI ´ 1

C1

C2

nI ´ 2
NI ´ 2

C1

C2

nI ´ 3
NI ´ 3

C1

C2
´

nI

NI

C1

C2

nI ´ 1
NI ´ 1

C1

C2

nI

NI

C1

C2

nI ´ 1
NI ´ 1

C1

C2

=c
nI

NI

nI ´ 1
NI ´ 1

(
nI ´ 2
NI ´ 2

nI ´ 3
NI ´ 3

´
nI

NI

nI ´ 1
NI ´ 1

)
=O

(
NI
´1
)

=O
(

Tc
´1
)

.

Corollary 4.41. Under the above SRSWOR setting, if k3l3 P sSklk1l1k2l2 , then ∆k2l2k3l3 =

O
(

Tc
´1
)

.

Proof. To see this, observe if k3l3 P sSklk1l1k2l2 , then k3l3 P sSk2l2 . By Lemma 4.40, one has
∆k2l2k3l3 = O

(
Tc
´1
)

.

Lemma 4.42. Under the above SRSWOR setting, if k2l2 P sSklk1l1 and k3l3 P sSklk1l1 , then

∆klk1l1k2l2k3l3 = O
(

Tc
´1
)

.

Proof. Observe any element in k2l2k3l3 has no common root with any one of klk1l1. The
proof is not hard, but tedious to write down all the detail. I omit the detail.

Proposition 4.43. Under the above SRSWOR setting, then for all θ P Θ

Var
π

[
TcpJπ(θ)

]
Ñ 0.

Proof. Recall

Var
π

[
TcpJπ(θ)

]
=Var

π

 1
Tc

Tc
ÿ

i=1

Tc
ÿ

i1=1

ÿ

kăl
k,lPMc

i

ÿ

k1ăl1
k1,l1PMc

i1

1klk1l1ωklk1l1∆klk1l1 (ωkl∇θp`kl(θ)ωk1l1∇θp`k1l1(θ))


=

1
Tc

2

Tc
ÿ

i=1

Tc
ÿ

i1=1

Tc
ÿ

i2=1

Tc
ÿ

i3=1

ÿ

kăl
k,lPMc

i

ÿ

k1ăl1
k1,l1PMc

i1

ÿ

k2ăl2
k2,l2PMc

i2

ÿ

k3ăl3
k3,l3PMc

i3

∆klk1l1k2l2k3l3ωklk1l1∆klk1l1ωk2l2k3l3

∆k2l2k3l3 (ωkl∇θp`kl(θ)ωk1l1∇θp`k1l1(θ)) (ωk2l2∇θp`k2l2(θ)ωk3l3∇θp`k3l3(θ)) .
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One can write the sum in the following

1
Tc

2

Tc
ÿ

i=1

ÿ

kăl
k,lPMc

i

 ÿ

k1l1PSkl

+
ÿ

k1l1P sSkl

 ÿ

k2l2PSklk1 l1

+
ÿ

k2l2P sSklk1 l1

 ÿ

k3l3PSklk1 l1k2 l2

+
ÿ

k3l3P sSklk1 l1k2 l2


=

1
Tc

2

Tc
ÿ

i=1

ÿ

kăl
k,lPMc

i

ÿ

k1l1PSkl

ÿ

k2l2PSklk1 l1

ÿ

k3l3PSklk1 l1k2 l2

+
1

Tc
2

Tc
ÿ

i=1

ÿ

kăl
k,lPMc

i

ÿ

k1l1PSkl

ÿ

k2l2P sSklk1 l1

ÿ

k3l3PSklk1 l1k2 l2

+

1
Tc

2

Tc
ÿ

i=1

ÿ

kăl
k,lPMc

i

ÿ

k1l1P sSkl

ÿ

k2l2PSklk1 l1

ÿ

k3l3PSklk1 l1k2 l2

+
1

Tc
2

Tc
ÿ

i=1

ÿ

kăl
k,lPMc

i

ÿ

k1l1P sSkl

ÿ

k2l2P sSklk1 l1

ÿ

k3l3PSklk1 l1k2 l2

+

1
Tc

2

Tc
ÿ

i=1

ÿ

kăl
k,lPMc

i

ÿ

k1l1PSkl

ÿ

k2l2PSklk1 l1

ÿ

k3l3P sSklk1 l1k2 l2

+
1

Tc
2

Tc
ÿ

i=1

ÿ

kăl
k,lPMc

i

ÿ

k1l1PSkl

ÿ

k2l2P sSklk1 l1

ÿ

k3l3P sSklk1 l1k2 l2

+

1
Tc

2

Tc
ÿ

i=1

ÿ

kăl
k,lPMc

i

ÿ

k1l1P sSkl

ÿ

k2l2PSklk1 l1

ÿ

k3l3P sSklk1 l1k2 l2

+
1

Tc
2

Tc
ÿ

i=1

ÿ

kăl
k,lPMc

i

ÿ

k1l1P sSkl

ÿ

k2l2P sSklk1 l1

ÿ

k3l3P sSklk1 l1k2 l2

.

(4.16)

For the first term in 4.16, one can show

1
Tc

2

Tc
ÿ

i=1

ÿ

kăl
k,lPMc

i

ÿ

k1l1PSkl

ÿ

k2l2PSklk1 l1

ÿ

k3l3PSklk1 l1k2 l2

=O
(

Tc
´2
)

O(Tc)O
(

λ2
)

O
(

λ2
)

O
(

λ2
)

O
(

λ2
)

=O
(

Tc
´1
)

.

To see this, note there are Tc choices for i, at most λ2 choices for kl given i, at most λ2

choices for k1l1 given kl, at most λ2 choices for k2l2 given klk1l1 and at most λ2 choices for
k3l3 given klk1l1k2l2.
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For the second term in 4.16, one can show

1
Tc

2

Tc
ÿ

i=1

ÿ

kăl
k,lPMc

i

ÿ

k1l1PSkl

ÿ

k2l2P sSklk1 l1

ÿ

k3l3PSklk1 l1k2 l2

=O
(

Tc
´2
)

O(Tc)O
(

λ2
)

O
(

λ2
)

O
(

Tcλ2
)

O
(

λ2
)

O
(

Tc
´1
)

(4.17)

=O
(

Tc
´1
)

.

To see this, note there are Tc choices for i, at most λ2 choices for kl given i, at most
λ2 choices for k1l1 given kl, at most Tcλ2 choices for k2l2 and at most λ2 choices for
k3l3 given klk1l1k2l2. For the last term O

(
Tc
´1
)

in 4.17, then either (A) at least one

of ∆k2l2k3l3 = O
(

Tc
´1
)

or ∆klk1l1k2l2k3l3 = O
(

Tc
´1
)

or (B) one may prove directly
1

Tc
2

řTc
i=1

ř

kăl
k,lPMc

i

ř

k1l1PSkl

ř

k2l2P sSklk1 l1

ř

k3l3PSklk1 l1k2 l2
= O

(
Tc
´1
)

.

To see this, there are two possibilities for k3l3, only one of k3l3 has a common root
with at least one of klk1l1k2l2 or both of k3l3 have common root with at least one of
klk1l1k2l2.

First, suppose one and only one of k3l3 (say k3) has a common root with at least
one of klk1l1k2l2. In particular, then the other (i.e., l3) has no common root with any one
of klk1l1k2l2. Then either k3 has a common root with at least one of klk1l1 or k3 has a
common root with at least one of k2l2. Observe those events are mutually disjoint.

If k3 has a common root with at least one of klk1l1, then k3 has no common root with
k2l2. Hence k3l3 P sSk2l2 . Therefore ∆k2l2k3l3 = O

(
Tc
´1
)

by Lemma 4.40.
If k3 has a common root with at least one of k2l2, then k3 has no common root with

any one of klk1l1. Hence k3l3 P sSklk1l1 . Observe k2l2 P sSklk1l1 by construction. Therefore
∆klk1l1k2l2k3l3 = O

(
Tc
´1
)

from Lemma 4.42.
Secondly, suppose both of k3l3 have common root with at least one of klk1l1k2l2, then

either both of k3l3 have common root with at least one of klk1l1, or both of k3l3 have
common root with at least one of k2l2, or one of k3l3 (say k3) have common root with at
least one of klk1l1 and the other (i.e., l3) have common root with at least one of k2l2.

If both of k3l3 have common root with at least one of klk1l1, then k3l3 P sSk2l2 . Hence
one has ∆k2l2k3l3 = O

(
Tc
´1
)

by Lemma 4.40.
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If both of k3l3 have common root with at least one of k2l2, then both of k3l3 have
no common root with any one of klk1l1. Hence k3l3 P sSklk1l1 . Observe k2l2 P sSklk1l1 by
construction. Therefore ∆klk1l1k2l2k3l3 = O

(
Tc
´1
)

from Lemma 4.42.
If k3 has common root with at least one of klk1l1 and l3 has common root with at least

one of k2l2, then one can show

1
Tc

2

Tc
ÿ

i=1

ÿ

kăl
k,lPMc

i

ÿ

k1l1PSkl

ÿ

k2l2P sSklk1 l1

ÿ

k3l3PSklk1 l1k2 l2

=O
(

Tc
´2
)

O(Tc)O
(

λ2
)

O
(

λ2
)

O(λ)O(λ)O
(

λ2
)

=O
(

Tc
´1
)

.

To see this, note there are Tc choices for i, at most λ2 choices for kl, at most λ2 choices
for k1l1 given kl, at most λ choice for k3 given klk1l1, at most λ choice for l3 given k3, at
most λ2 choice for k3l3 given l3.

For the third term in 4.16, one can show

1
Tc

2

Tc
ÿ

i=1

ÿ

kăl
k,lPMc

i

ÿ

k1l1P sSkl

ÿ

k2l2PSklk1 l1

ÿ

k3l3PSklk1 l1k2 l2

=O
(

Tc
´2
)

O(Tc)O
(

λ2
)

O
(

Tcλ2
)

O
(

λ2
)

O
(

λ2
)

O
(

Tc
´1
)

(4.18)

=O
(

Tc
´1
)

.

To see this, note there are Tc choices for i, at most λ2 choices for kl given i, at most
Tcλ2 choices for k1l1, at most λ2 choices for k2l2 given klk1l1 and at most λ2 choices
for k3l3 given klk1l1k2l2. For the last term O

(
Tc
´1
)

in 4.18, observe k1l1 P sSkl, hence

∆klk1l1 = O
(

Tc
´1
)

by Lemma 4.40.
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For the fourth term in 4.16, one can show

1
Tc

2

Tc
ÿ

i=1

ÿ

kăl
k,lPMc

i

ÿ

k1l1P sSkl

ÿ

k2l2P sSklk1 l1

ÿ

k3l3PSklk1 l1k2 l2

=O
(

Tc
´2
)

O(Tc)O
(

λ2
)

O
(

Tcλ2
)

O
(

Tcλ2
)

O
(

λ2
)

O
(

Tc
´1
)

O
(

Tc
´1
)

(4.19)

=O
(

Tc
´1
)

.

To see this, note there are Tc choices for i, at most λ2 choices for kl given i, at most
Tcλ2 choices for k1l1, at most Tcλ2 choices for k2l2 and at most λ2 choices for k3l3 given
klk1l1k2l2. For the first O

(
Tc
´1
)

in 4.19, observe k1l1 P sSkl, hence ∆klk1l1 = O
(

Tc
´1
)

by

Lemma 4.40. For the last term O
(

Tc
´1
)

in 4.19. I use the following fact at least one of

∆k2l2k3l3 = O
(

Tc
´1
)

or ∆klk1l1k2l2k3l3 = O
(

Tc
´1
)

. If this does not hold, then one can

prove directly 1
Tc

2

řTc
i=1

ř

kăl
k,lPMc

i

ř

k1l1P sSkl

ř

k2l2P sSklk1 l1

ř

k3l3PSklk1 l1k2 l2
= O

(
Tc
´1
)

To see this, there are two possibilities for k3l3, only one of k3l3 has a common root
with at least one of klk1l1k2l2 or both of k3l3 have common root with at least one of
klk1l1k2l2.

First, suppose one and only one of k3l3 (say k3) has a common root with at least
one of klk1l1k2l2. In particular, the other (i.e., l3) has no common root with any one
of klk1l1k2l2. Then either k3 has a common root with at least one of klk1l1 or k3 has a
common root with at least one of k2l2. Observe those events are mutually disjoint.

If k3 has a common root with at least one of klk1l1, then k3 has no common root with
k2l2. Hence k3l3 P sSk2l2 . Therefore ∆k2l2k3l3 = O

(
Tc
´1
)

by Lemma 4.40.
If k3 has a common root with at least one of k2l2, then k3 has no common root with

any one of klk1l1. Hence k3l3 P sSklk1l1 . Observe k2l2 P sSklk1l1 by construction. Therefore
∆klk1l1k2l2k3l3 = O

(
Tc
´1
)

from Lemma 4.42.
Secondly, suppose both of k3l3 have common root with at least one of klk1l1k2l2, then

either both of k3l3 have common root with at least one of klk1l1, or both of k3l3 have
common root with at least one of k2l2, or one of k3l3 (say k3) have common root with at
least one of klk1l1 and the other root (say l3) have common root with at least one of k2l2.
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If both of k3l3 have common root with at least one of klk1l1, then k3l3 P sSk2l2 . Hence
one has ∆k2l2k3l3 = O

(
Tc
´1
)

by Lemma 4.40.
If both of k3l3 have common root with at least one of k2l2, then both k3l3 have no

common root with any one of klk1l1. Hence, any element in k2l2k3l3 has no common
root with any one of klk1l1. Therefore ∆klk1l1k2l2k3l3 = O

(
Tc
´1
)

from Lemma 4.42.
If k3 has common root with at least one of klk1l1 and l3 has common root with at least

one of k2l2, then

1
Tc

2

Tc
ÿ

i=1

ÿ

kăl
k,lPMc

i

ÿ

k1l1P sSkl

ÿ

k2l2P sSklk1 l1

ÿ

k3l3PSklk1 l1k2 l2

=O
(

Tc
´2
)

O(Tc)O
(

λ2
)

O
(

Tcλ2
)

O(λ)O(λ)O
(

λ2
)

O
(

Tc
´1
)

(4.20)

=O
(

Tc
´1
)

.

To see this, note there are Tc choices for i, at most λ2 choices for kl given i, at most Tcλ2

choices for k1l1, at most λ choices for k3 given klk1l1, at most λ choices for l3 given k3, at
most λ2 choices for k2l2 given l3. For the last O

(
Tc
´1
)

in 4.20, observe k1l1 P sSkl, hence

∆klk1l1 = O
(

Tc
´1
)

by Lemma 4.40.
For the fifth term in 4.16, one can show

1
Tc

2

Tc
ÿ

i=1

ÿ

kăl
k,lPMc

i

ÿ

k1l1PSkl

ÿ

k2l2PSklk1 l1

ÿ

k3l3P sSklk1 l1k2 l2

=O
(

Tc
´2
)

O(Tc)O
(

λ2
)

O
(

λ2
)

O
(

λ2
)

O
(

Tcλ2
)

O
(

Tc
´1
)

(4.21)

=O
(

Tc
´1
)

.

To see this, note there are Tc choices for i, at most λ2 choics for kl given i, at most
λ2 choices for k1l1 given kl, at most λ2 choices for k2l2 given klk1l1 and at most Tcλ2

choices for k3l3. For the last term O
(

Tc
´1
)

in 4.21, observe k3l3 P sSklk1l1k2l2 . Therefore

∆k2l2k3l3 = O
(

Tc
´1
)

by Corollary 4.41.
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For the sixth term in in 4.16, one can show

1
Tc

2

Tc
ÿ

i=1

ÿ

kăl
k,lPMc

i

ÿ

k1l1PSkl

ÿ

k2l2P sSklk1 l1

ÿ

k3l3P sSklk1 l1k2 l2

=O
(

Tc
´2
)

O(Tc)O
(

λ2
)

O
(

λ2
)

O
(

Tcλ2
)

O
(

Tcλ2
)

O
(

Tc
´1
)

O
(

Tc
´1
)

(4.22)

=O
(

Tc
´1
)

.

To see this, note there are Tc choices for i, at most λ2 choices for kl given i, at most λ2

choices for k1l1 given kl, at most Tcλ2 choices for k2l2 and at most Tcλ2 choices for k3l3.
For the first O

(
Tc
´1
)

in 4.22, observe k3l3 P sSklk1l1k2l2 , hence ∆k2l2k3l3 = O
(

Tc
´1
)

by

Corollary 4.41. For the last term O
(

Tc
´1
)

in 4.22, observe k3l3 P sSklk1l1 and k1l1 P sSklk1l1

by construction. Therefore ∆klk1l1k2l2k3l3 = O
(

Tc
´1
)

from Lemma 4.42.
For the seventh term in in 4.16, one has

1
Tc

2

Tc
ÿ

i=1

ÿ

kăl
k,lPMc

i

ÿ

k1l1P sSkl

ÿ

k2l2PSklk1 l1

ÿ

k3l3P sSklk1 l1k2 l2

=O
(

Tc
´2
)

O(Tc)O
(

λ2
)

O
(

Tcλ2
)

O
(

λ2
)

O
(

Tcλ2
)

O
(

Tc
´1
)

O
(

Tc
´1
)

(4.23)

=O
(

Tc
´1
)

.

To see this, note there are Tc choices for i, λ2 choices for kl given i, at most Tcλ2 choices
for k1l1, at most λ2 choices for k2l2 given klk1l1 and at most Tcλ2 choices for k3l3. For
the last two term O

(
Tc
´1
)

O
(

Tc
´1
)

in 4.23, observe k1l1 P sSkl and k3l3 P sSklk1l1k2l2 , hence

∆klk1l1 = O
(

Tc
´1
)

by Lemma 4.40 and ∆k2l2k3l3 = O
(

Tc
´1
)

by Corollary 4.41.
For the eighth sum in in 4.16, one has

1
Tc

2

Tc
ÿ

i=1

ÿ

kăl
k,lPMc

i

ÿ

k1l1P sSkl

ÿ

k2l2P sSklk1 l1

ÿ

k3l3P sSklk1 l1k2 l2

=O
(

Tc
´2
)

O(Tc)O
(

λ2
)

O
(

Tcλ2
)

O
(

Tcλ2
)

O
(

Tcλ2
)

O
(

Tc
´1
)

O
(

Tc
´1
)

O
(

Tc
´1
)

(4.24)

=O
(

Tc
´1
)

.
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To see this, note there are Tc choices for i, λ2 choices for kl given i, at most Tcλ2 choices
for k1l1, at most Tcλ2 choices for k2l2 and at most Tcλ2 choices for k3l3. For the first two
O
(

Tc
´1
)

O
(

Tc
´1
)

in 4.24, observe k1l1 P sSkl and k3l3 P sSklk1l1k2l2 , hence ∆klk1l1 = O
(

Tc
´1
)

by Lemma 4.40 and ∆k2l2k3l3 = O
(

Tc
´1
)

by Corollary 4.41. For the last term O
(

Tc
´1
)

in 4.24, observe k3l3 P sSklk1l1 and k1l1 P sSklk1l1 by construction. Therefore ∆klk1l1k2l2k3l3 =

O
(

Tc
´1
)

from Lemma 4.42.
Putting all those estimates together, one has

Var
π

[
TcpJπ(θ)

]
= O

(
Tc
´1
)
Ñ 0.

This completes the proof.

Remark. Note the tree structure of the ∆klk1l1 , ∆k2l2k3l3 and ∆klk1l1k2l2k3l3 is vital to estab-
lish the convergence.

4.8 Model-based variance estimation

Instead of estimating J1(θ0) by empirical variance

pJπ(pθn) =
1

Tc
2

Tc
ÿ

i=1

ÿ

kăl
k,lPMc

i

1klk1l1ωklk1l1∆klk1l1
(

ωkl∇θp`kl(pθn)ωk1l1∇θp`k1l1(pθn)
)

.

I could estimate J1(θ0) by model variance

pJπ(pθn) =
1

Tc
2

Tc
ÿ

i=1

ÿ

kăl
k,lPMc

i

1klk1l1ωklk1l1∆klk1l1ωklωk1l1EY

[
∇θp`kl(pθn)∇θp`k1l1(pθn)

]
.

Using the same argument as in the previous section, one can show

Var
π

[
TcpJπ(θ)

]
= 8O

(
Tc
´1
)
Ñ 0.
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4.9 Simulation: Random intercept model

A simulation study for a random intercept model was conducted to examine perfor-
mance of the weighted pairwise likelihood estimation and consistency of variance es-
timation under various uninformative and informative sampling design. Based on 150
simulation replicates, median bias, median absolute deviation (mad) and median esti-
mated standard deviation (esd) are computed to measure the performance of the:

(i) naive maximum likelihood estimation (NMLE).

(ii) pairwise likelihood estimation (PLE).

(iii) weighted pairwise likelihood estimation (WPLE).

The NMLE can be implemented by using R lme4 package (Bates, Maechler, Bolker,
Walker et al., 2014). There is no R package for PLE and WPLE. I wrote the R codes
for PLE and WPLE. Sampling design can be implemented by using R sampling package
(Tillé and Matei, 2009). The code for these simulations is publicly available at https:

//github.com/Xudong3/.

4.9.1 Model

A random intercept model is given by

Yik|bi „ N(β0 + β1Xik + bi, σ2),
bi „ N(0, τ2),

for i = 1, ¨ ¨ ¨ , Tc and k = 1, ¨ ¨ ¨ , Ti. The parameters I want to estimate are θ = (β0, β1, σ2, τ2)T.
The sample weighted pairwise likelihood is given by

p`Ms(θ) =
Tc
ÿ

i=1

ÿ

kăl
k,lPMc

i

1klωkl p`kl|i(yk, yl,θ),
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where

p`kl|i(yk, yl,θ) = ´
1
2

log d´
1
2

1
d

[
r2

l (σ
2 + τ2)´ 2rlrkτ2 + r2

k(σ
2 + τ2)

]
,

d = (σ2 + τ2)2
´ τ4,

rk = yk ´ β0 ´ β1xk.

The pairwise score function is given by

∇θp`kl|i(yk, yl,θ) =


Bp`kl|i(yk,yl ,θ)

Bβ0
Bp`kl|i(yk,yl ,θ)

Bβ1
Bp`kl|i(yk,yl ,θ)

Bσ2
Bp`kl|i(yk,yl ,θ)

Bτ2



=


1
d
[
rk(σ

2 + τ2)´ rkτ2 ´ rlτ
2 + rl(σ

2 + τ2)
]

1
d
[
rk(σ

2 + τ2)xk ´ rkτ2xl ´ rlτ
2xk + rl(σ

2 + τ2)xl
]

´1
2

r2
k+r2

l
d +

[r2
k(σ

2+τ2)´2rkrlτ
2+r2

l (σ
2+τ2)](σ2+τ2)

d2 ´ σ2+τ2

d

´1
2

r2
k´2rkrlτ

2+r2
l

d ´
[r2

k(σ
2+τ2)´2rkrlτ

2+r2
l (σ

2+τ2)]σ2

d2 + σ2

d

 .

I first generated a target population of size 100ˆ 100, which consists of 100 sample
clusters of size 100. Then I generated 100 model clusters. The parameter ’overlap’ is the
percentage of observational units in each sampling cluster such that the sample clusters
match the model clusters. I assume the ’overlap’ is the same across all the sampling
clusters. I set the parameter ’overlap’= 4/5 in all of the setting. See figure below. In
the figure below, I work on 5 clusters of size 5. The extension to 100 clusters of size 100

can be done similarly. Each small rectangle represents an observational unit and
the whole rectangle represents the population of size 25. It consists of 5 clusters of size
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5, i.e., NI = Tc = 5 and Ni = Ti = 5 for all i. Each column represents a sampling

cluster of size 5, i.e., Uc
I = tUc

1, ¨ ¨ ¨ , Uc
5u. Each (left) and

(right) represent a model cluster of size 5, i.e., Mc
I = tMc

1, ¨ ¨ ¨ , Mc
5u .
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Figure 4.2: Overlap between the sampling clusters and the model clusters when the
overlap parameter is 3

5 (left) and 4
5 (right).

4.9.2 Basic notation

For the simulations below, I want to introduce some notation. Let q be the number of
simulations replicate.

Definition 4.44. Let θ0 be the true value, then the median bias of pθ is defined to be

median bias(pθ) = mediantpθr ´ θ0 : r = 1, ¨ ¨ ¨ qu.

Definition 4.45. The median absolute deviation (mad) of pθ is defined to be

mad(pθ) =
1

φ´1(3
4)
ˆmediant|pθr ´mediantpθr : r = 1, ¨ ¨ ¨ qu| : r = 1, ¨ ¨ ¨ qu,

where φ is the standard normal density function.
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Definition 4.46. The sample pairwise likelihood estimator rθ of θ is defined as a solution
of

1
TI

Tc
ÿ

i=1

ÿ

kăl
k,lPMc

i

1kl∇θp`kl|i(yk, yl,θ) = 0.

Definition 4.47. The median estimated standard deviation (esd) of the sample pairwise
likelihood estimator rθ is defined to be

esd(rθ) = mediant(diagtrH´1
r (rθr)rJr(rθr)rH´1

r (rθr)u)
1
2 : r = 1, ¨ ¨ ¨ qu,

where

rHr(rθr) =´
1
TI

Tc
ÿ

i=1

ÿ

kăl
k,lPMc

i

1klωkl∇2
θθp`kl(rθr),

rJr(rθr) =
1

Tc
2

Tc
ÿ

i=1

Tc
ÿ

i1=1

ÿ

kăl
k,lPMc

i

ÿ

k1ăl1
k1,l1PMc

i1

1klk1l1ωklk1l1∆klk1l1
(
∇θp`kl(rθr)∇θp`k1l1(rθr)

T
)

.

Definition 4.48. The median estimated standard deviation (esd) of the sample pairwise
score PS(rθ) is defined to be

esd(PS(rθ)) = mediant(diagtrJr(rθr)u)
1
2 : r = 1, ¨ ¨ ¨ qu.

Definition 4.49. The sample weighted pairwise likelihood estimator pθ of θ is defined as
a solution of

1
TI

Tc
ÿ

i=1

ÿ

kăl
k,lPMc

i

1klωkl∇θp`kl|i(yk, yl,θ) = 0.

Definition 4.50. The median estimated standard deviation (esd) of the sample weighted
pairwise likelihood estimator pθ is defined to be

esd(pθ) = mediant(diagtpH´1
r (pθr)pJr(pθr)pH´1

r (pθr)u)
1
2 : r = 1, ¨ ¨ ¨ qu,
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where

pHr(pθr) =´
1
TI

Tc
ÿ

i=1

ÿ

kăl
k,lPMc

i

1klωkl∇2
θθp`kl(pθr),

pJr(pθr) =
1

Tc
2

Tc
ÿ

i=1

Tc
ÿ

i1=1

ÿ

kăl
k,lPMc

i

ÿ

k1ăl1
k1,l1PMc

i1

1klk1l1ωklk1l1∆klk1l1
(

ωkl∇θp`kl(pθr)ωk1l1∇θp`k1l1(pθr)
T
)

.

Definition 4.51. The median estimated standard deviation (esd) of the sample weighted
pairwise score WPS(pθ) is defined to be

esd(WPS(pθ)) = mediant(diagtpJr(pθr)u)
1
2 : r = 1, ¨ ¨ ¨ qu.

Remark. For the implementation of PLE and WPL, boundary constraint (i.e., σ2 ą 0 and
τ2 ą 0) and initial starting value have to be given for the optimisation algorithm. It
was found that solution might not converge and is very sensitive to initial starting value
using ”BFGS” and ”L-BFGS-B” methods from optim function in R. One can use bobyqa
function from R minqa package (Bates, Mullen, Nash and Varadhan, 2014) to overcome
those issues. This is due to Thomas Lumley.

Remark. The simulations are being done to assess convergence in distribution of pθn

and in probability of pH(pθn), pJ(pθn). Observe convergence in probability and distribution
implies convergence of median and median absolute deviation, but not the mean and
standard deviation, which is why I am using median and median absolute deviation.

Remark. Ideally, one wants to test the performance of the weighted pairwise likelihood
estimation by varying model parameters, design parameters, overlap parameter and
sample size. In particular, consistency of the empirical variance estimator requires a large
sample size. However, J(θ) is computational demanding. Despite considerable effort has
been made to optimize the codes such as writing the sampling inclusion probability in
C, computation of J(θ) is still slow and cannot be completely vectorise due to memory
constraint. Computational load restricts the number of replicates and the sample size.

Remark. I want to mention why the full-likelihood is intractable when the sampling
clusters are not equal to the model clusters.
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Consider a random intercept model with informative Poisson sampling at stage 1 and
simple random sampling at stage 2. Assume the sampling clusters are equal to model
clusters, the sampling is independent across the clusters. Let g(bi,θ) be the density of bi

and f (yik,θ|bi) be the conditional density of yik. The population likelihood is

NI
ź

i=1

ż

g(bi,θ)
ź

kPUc
i

f (yik,θ|bi)dbi.

Let gR be the sampling likelihood at stage 1. Then the likelihood of the data is
proportional to

NI
ź

i=1

ż

gR(bi,θ)
ź

kPUs
i

f (yik,θ|bi)dbi.

We have a product of one-dimensional numerical integrals for the full likelihood to
maximise, which is completely feasible. The sample likelihood is also tractable.

When the sampling clusters are not the same as the model clusters, the sampling
likelihood gR for a particular sample cluster depends on the bi and Yij for all model
clusters that intersect it, so the product over i cannot simply be taken outside the integral.
In the simulation setting in the thesis (100ˆ 100) with overlap of 0.6, 40 bi contribute
to each sampling probability so even under Poisson sampling we have 40-dimensional
numerical integrals to compute the likelihood. This is just intractable, which is why we
want to use pseudo-likelihood.

4.9.3 Design: stratified sampling

Consider an uninformative stratified SRSWOR, i.e., SRSWOR with the sample size ni =

10 for each sampling cluster i.
Under an uninformative sampling design, the main simulation results are the fol-

lowing:

(i) NMLE, PLE and WPLE have similar levels of bias.

(ii) The mad is closely estimated by the esd for both PLE and WPLE. There is little loss
of efficiency from using PLE.
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(iii) It is not clear which estimation method gives a better result.

The coefficients of variation of the weight ωkl for uninformative sampling is 0.04.
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Table 1: Performance of NMLE, PLE and WPLE under an uninformative stratified sam-
pling design when the true value β0 = 3, β1 = 1, σ2 = 1, τ2 = 0.8.

Uninformative NMLE PLE WPLE

parameters median bias mad median bias mad esd(rθ) median bias mad esd(pθ)

β0 0.10 0.03 0.10 0.04 0.05 0.10 0.04 0.04
β1 ´0.02 0.03 0.00 0.03 0.03 0.00 0.03 0.03
σ2 0.00 0.05 0.00 0.05 0.05 0.00 0.05 0.05
τ2 0.00 0.05 ´0.02 0.06 0.07 ´0.02 0.06 0.07

Table 2: Pairwise score and weighted pairwise score under an uninformative stratified
sampling design when the true value β0 = 3, β1 = 1, σ2 = 1, τ2 = 0.8.

Uninformative Pairwise score Weighted pairwise score

parameters median bias mad esd(PS(rθ)) median bias mad esd(WPS(pθ))

β0 3.54 1.48 1.64 376.43 157.63 171.48
β1 0.45 3.11 2.90 36.88 338.97 305.64
σ2 0.20 1.42 1.31 23.83 147.27 138.51
τ2 ´0.10 1.05 1.07 ´13.09 107.88 112.92
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Figure 4.3: QQ plot for Weighted pairwise likelihood estimator under an uninformative
stratified sampling design when the true value β0 = 3, β1 = 1, σ2 = 1, τ2 = 0.8.

134



Consider an informative stratified SRSWOR, i.e., SRSWOR with the sample size

ni =

S

a exp (´bri)

1 + a exp (´bri)
Ni

W

,

where

ri =
ÿ

kPU:s(k)=i

(yk ´ β0 ´ β1xk),

a =0.15,

b =0.45.

Under an informative sampling design, the main simulation results are the following:

(i) NMLE and WPLE have similar levels of bias, but PLE has large bias.

(ii) The mad is closely estimated by the esd for both PLE and WPLE.

The coefficients of variation of the weight ωkl for informative sampling is 0.61.
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Table 3: Performance of NMLE, PLE and WPLE under an informative stratified sam-
pling design when the true value β0 = 3, β1 = 1, σ2 = 1, τ2 = 0.8.

Informative NMLE PLE WPLE

parameters median bias mad median bias mad esd(rθ) median bias mad esd(pθ)

β0 0.09 0.03 ´0.06 0.04 0.04 0.10 0.04 0.04
β1 ´0.03 0.02 ´0.21 0.02 0.02 ´0.01 0.02 0.02
σ2 0.00 0.04 0.03 0.04 0.04 ´0.01 0.04 0.04
τ2 0.01 0.04 0.24 0.07 0.08 ´0.02 0.06 0.06

Table 4: Pairwise score and weighted pairwise score under an informative stratified
sampling design when the true value β0 = 3, β1 = 1, σ2 = 1, τ2 = 0.8.

Informative Pairwise score Weighted pairwise score

parameters median bias mad esd(PS(rθ)) median bias mad esd(WPS(pθ))

β0 ´10.54 3.53 2.70 376.49 150.07 147.95
β1 ´61.41 5.10 5.16 ´68.72 263.20 268.63
σ2 7.31 2.16 2.21 ´15.78 122.08 119.13
τ2 14.34 2.94 1.69 3.27 84.97 94.00
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Figure 4.4: QQ plot for weighted pairwise likelihood estimator under an uninformative
stratified sampling design when the true value β0 = 3, β1 = 1, σ2 = 1, τ2 = 0.8. .
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4.9.4 Design: two-stage SRSWOR

Consider an uninformative two-stage sample design,

(i) First stage: SRSWOR with the sample size nI = 10.

(ii) Second stage: SRSWOR with the sample size ni = 10 for each sampling cluster i.

Under an uninformative sampling design, the main simulation results are the fol-
lowing:

(i) PLE and WPLE have similar levels of bias, but NMLE has small bias.

(ii) The esd underestimates the mad for both PLE and WPLE.

(iii) It is clear NMLE estimation method gives a better result.

The coefficients of variation of the weight ωkl for uninformative sampling is 0.87.
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Table 5: Performance of NMLE, PLE and WPLE under an uninformative two-stage
SRSWOR sampling design when the true value β0 = 2, β1 = 4, σ2 = 0.5, τ2 = 1.

Uninformative NMLE PLE WPLE

parameters median bias mad median bias mad esd(rθ) median bias mad esd(pθ)

β0 ´0.14 0.18 ´0.12 0.29 0.29 ´0.09 0.32 0.27
β1 ´0.04 0.10 ´0.06 0.14 0.11 ´0.07 0.15 0.11
σ2 0.01 0.14 0.03 0.15 0.14 ´0.01 0.18 0.14
τ2 ´0.12 0.39 ´0.32 0.39 0.28 ´0.41 0.37 0.27

Table 6: Pairwise score and weighted pairwise score under an uninformative two-stage
SRSWOR sampling design when the true value β0 = 2, β1 = 4, σ2 = 0.5, τ2 = 1.

Uninformative Pairwise score Weighted pairwise score

parameters median bias mad esd(PS(rθ)) median bias mad esd(WPS(pθ))

β0 ´0.24 0.58 0.70 ´280.23 1102.93 1277.43
β1 ´0.32 0.80 0.81 ´587.28 1942.44 1543.60
σ2 0.04 0.36 0.33 ´69.17 692.46 634.71
τ2 ´0.08 0.28 0.33 ´155.78 561.73 619.67
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Consider an informative two-stage sample design,

(i) First stage: SRSWOR with the sample size nI = 10.

(ii) Second stage: SRSWOR with the sample size

ni =

S

a exp(´bri)

1 + a exp(´bri)
Ni

W

,

where

ri =
ÿ

kPU:s(k)=i

(yk ´ β0 ´ β1xk),

a =0.05,

b =0.45.

Under an informative sampling design, the main simulation results are the following:

(i) PLE and WPLE have similar levels of bias, but NMLE has small bias.

(ii) The esd underestimates the mad for both PLE and WPL.

(iii) It is clear NMLE estimation method gives a better result.

The coefficients of variation of the weight ωkl for informative sampling is 1.04.
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Table 7: Performance of NMLE, PLE and WPLE under an informative two-stage SR-
SWOR sampling design when the true value β0 = 2, β1 = 4, σ2 = 0.5, τ2 = 1.

Informative NMLE PLE WPLE

parameters median bias mad median bias mad esd(rθ) median bias mad esd(pθ)

β0 ´0.12 0.11 ´0.24 0.26 0.26 ´0.13 0.30 0.25
β1 ´0.03 0.05 ´0.14 0.13 0.08 ´0.06 0.11 0.09
σ2 0.03 0.07 0.05 0.08 0.08 0.00 0.11 0.09
τ2 ´0.09 0.24 ´0.39 0.34 0.22 ´0.34 0.35 0.25

Table 8: Pairwise score and weighted pairwise score under an informative two-stage
SRSWOR sampling design when the true value β0 = 2, β1 = 4, σ2 = 0.5, τ2 = 1.

Informative Pairwise score Weighted pairwise score

parameters median bias mad esd(PS(rθ)) median bias mad esd(WPS(pθ))

β0 ´5.60 6.85 6.98 ´466.77 1111.37 1146.43
β1 ´11.8 14.35 6.95 ´613.53 1285.81 1278.82
σ2 0.41 2.60 2.37 7.08 569.78 468.09
τ2 ´0.38 2.85 3.19 ´163.01 527.12 525.69
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4.9.5 Design: two-stage Poisson

Consider an uninformative two-stage sample design,

(i) First stage: Poisson sampling with sampling inclusion probability πi, where πi is
generated from uniform distribution on [0, 1].

(ii) Second stage: SRSWOR with the sample size ni = 10.

Under an uninformative sampling design, the main simulation results are the fol-
lowing:

(i) PLE and WPLE have similar levels of bias, but NMLE has small bias.

(ii) The esd under-estimates the mad for both PLE and WPL.

(iii) It is clear NMLE estimation method gives a better result.

The coefficients of variation of the weight ωkl for uninformative sampling is 1.83.

142



Table 9: Performance of NMLE, PLE and WPLE under an uninformative Poisson sam-
pling design when the true value β0 = 1, β1 = 3, σ2 = 1, τ2 = 0.5.

Uninformative NMLE PLE WPLE

parameters media bias mad median bias mad esd(rθ) median bias mad esd(pθ)

β0 ´0.02 0.06 ´0.04 0.08 0.08 ´0.03 0.13 0.10
β1 0.00 0.05 0.00 0.05 0.04 0.00 0.07 0.05
σ2 0.00 0.07 0.00 0.07 0.07 0.00 0.09 0.08
τ2 ´0.07 0.08 ´0.09 0.10 0.08 ´0.12 0.13 0.09

Table 10: Pairwise score and weighted pairwise score under an uninformative Poisson
sampling design when the true value β0 = 1, β1 = 3, σ2 = 1, τ2 = 0.5.

Uninformative Pairwise score Weighted pairwise score

parameters median bias mad esd(PS(rθ)) median bias mad esd(WPS(pθ))

β0 ´0.53 1.44 1.53 ´105.40 549.73 465.32
β1 0.04 2.31 1.98 ´57.50 763.15 602.51
σ2 ´0.33 0.75 0.87 ´82.28 269.34 255.38
τ2 ´0.62 0.89 0.91 ´162.41 295.49 268.44
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Consider an informative two-stage sample design,

(i) First stage: Poisson sampling with sampling inclusion probability

πi =
a exp (´bri)

1 + a exp (´bri)
,

where

ri =
ÿ

kPU:s(k)=i

(yk ´ β0 ´ β1xk),

a =0.2

b =0.45.

(ii) Second stage: SRSWOR with the sample size ni = 10.

Under an informative sampling design, the main simulation results are the following:

(i) PLE and WPLE have similar levels of bias, but NMLE has small bias.

(ii) The esd underestimates the mad for both PLE and WPL.

(iii) It is clear NMLE estimation method gives a better result.

The coefficients of variation of the weight ωkl for informative sampling is 0.95.
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Table 11: Performance of NMLE, PLE and WPLE under an informative Poisson sampling
design when the true value β0 = 1, β1 = 3, σ2 = 1, τ2 = 0.5.

Informative NMLE PLE WPLE

parameters median bias mad median bias mad esd(rθ) median bias mad esd(pθ)

β0 0.02 0.13 0.01 0.19 0.16 0.01 0.20 0.16
β1 ´0.02 0.06 ´0.06 0.08 0.08 ´0.02 0.10 0.08
σ2 ´0.02 0.12 ´0.01 0.12 0.12 ´0.02 0.14 0.12
τ2 ´0.06 0.19 ´0.15 0.20 0.13 ´0.19 0.20 0.13

Table 12: Pairwise score and weighted pairwise score under an informative Poisson
sampling design when the true value β0 = 1, β1 = 3, σ2 = 1, τ2 = 0.5.

Informative Pairwise score Weighted pairwise score

parameters median bias mad esd(PS(rθ)) median bias mad esd(WPS(pθ))

β0 0.15 0.78 0.89 84.82 941.84 939.00
β1 ´0.61 1.01 1.00 ´224.39 1044.01 1130.23
σ2 ´0.17 0.39 0.44 ´198.02 461.58 438.59
τ2 ´0.26 0.51 0.50 ´240.66 500.04 492.43
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4.10 Simulation: Random slope model

A simulation study for a random slope model was conducted to examine performance
of the weighted pairwise likelihood estimation and consistency of variance estimation
under various uninformative and informative sampling design. Based on 150 simula-
tion replicates, median bias, median absolute deviation (mad) and median estimated
standard deviation (esd) are computed to measure the performance of the

(i) naive maximum likelihood estimation (NMLE).

(ii) pairwise likelihood estimation (PLE).

(iii) weighted pairwise likelihood estimation (WPLE).

The code for these simulations is publicly available at https://github.com/Xudong3/.

4.10.1 Model

A random slope model is given by

Yik|ai, bi „ N(β0 + β1Xik + ai + biXik, σ2),(
ai

bi

)
„ N

((
0
0

)
,

(
τ2

11 τ12

τ12 τ2
22

))
,

for i = 1, ¨ ¨ ¨ , Tc and k = 1, ¨ ¨ ¨ , Ti. The parameters I want to estimate are θ = (β0, β1, σ2, τ2
11, τ12, τ2

22)
T.
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Observe

Cov
Y

(Yik, Yil)

=Cov
Y

(β0 + β1Xik + ai + biXik + εik, β0 + β1Xil + ai + biXil + εil)

=Cov
Y

(ai + biXik + εik, ai + biXil + εil)

=Cov
Y

(ai + biXik, ai + biXil) + Cov
Y

(εik, εil)

=Cov
Y

(ai, ai) + Xil Cov
Y

(ai, bi) + Xik Cov
Y

(bi, ai) + XikXil Cov
Y

(bi, bi) + Cov
Y

(εik, εil)

=τ2
11 + Xilτ12 + Xikτ12 + XikXilτ

2
22 + Cov

Y
(εik, εil)

=

$

&

%

τ2
11 + 2Xikτ12 + X2

ikτ2
22 + σ2, if k = l.

τ2
11 + Xilτ12 + Xikτ2

12 + XikXilτ
2
22, otherwise.

The sample weighted pairwise log likelihood is given by

p`Ms(θ) =
Tc
ÿ

i=1

ÿ

kăl
k,lPMc

i

1klωkl p`kl|i(yk, yl,θ),

where

p`kl|i(yk, yl,θ) =´
1
2

log (dkl)´
1
2

d´1
kl

[
r2

kcll ´ 2rkrlckl + r2
l ckk

]
,

ckk =τ2
11 + 2xikτ12 + x2

ikτ2
22 + σ2,

ckl =τ2
11 + xilτ12 + xikτ2

12 + xikxilτ
2
22,

cll =τ2
11 + 2xilτ12 + x2

ilτ
2
22 + σ2,

dkl =
(

τ2
11 + 2xikτ12 + x2

ikτ2
22 + σ2

) (
τ2

11 + 2xilτ12 + x2
ilτ

2
22 + σ2

)
´(

τ2
11 + xilτ12 + xikτ2

12 + xikxilτ
2
22

)2
,

rk =yik ´ β0 ´ β1xik.
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The pairwise score function is given by

∇θp`kl|i(yk, yl,θ)

=



Bp`kl|i(yk,yl ,θ)
Bβ0

Bp`kl|i(yk,yl ,θ)
Bβ1

Bp`kl|i(yk,yl ,θ)
Bσ2

Bp`kl|i(yk,yl ,θ)
Bτ2

11
Bp`kl|i(yk,yl ,θ)

Bτ12
Bp`kl|i(yk,yl ,θ)

Bτ2
22



=



´1
2

1
dkl
(´2rkcll + 2rlckl + 2rkckl ´ 2rlckk)

´1
2

1
dkl
(´2rkxikcll + 2xikrlckl + 2rkxilckl ´ 2rlxilckk)

´1
2

Bdkl
Bσ2
dkl

+ 1
2

Bdkl
Bσ2

d2
kl
(r2

kcll ´ 2rkrlckl + r2
l ckk)´

1
2

1
dkl
(r2

k + r2
l )

´1
2

Bdkl
Bτ2

11
dkl

+ 1
2

Bdkl
Bτ2

11
d2

kl
(r2

kcll ´ 2rkrlckl + r2
l ckk)´

1
2

1
dkl
(r2

k ´ 2rkrl1g(k)=g(l) + r2
l )

´1
2

Bdkl
Bτ12
dkl

+ 1
2

Bdkl
Bτ12
d2

kl
(r2

kcll ´ 2rkrlckl + r2
l ckk)´

1
2

1
dkl
(r2

k2xl ´ 2rkrl1g(k)=g(l)(xk + xl) + r2
l 2xk)

´1
2

Bdkl
Bτ2

22
dkl

+ 1
2

Bdkl
Bτ2

22
d2

kl
(r2

kcll ´ 2rkrlckl + r2
l ckk)´

1
2

1
dkl
(r2

k x2
l ´ 2rkrl1g(k)=g(l)xkxl + r2

l x2
k)


,

where

Bdkl
Bσ2 =cll + ckk,

Bdkl

Bτ2
11

=cll + ckk ´ 2ckl,

Bdkl
Bτ12

=2xkcll + ckk2xl ´ 2ckl(xk + xl),

Bdkl

Bτ2
22

=x2
kcll + ckkx2

l ´ 2cklxkxl.
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4.10.2 Design: stratified sampling

Consider a uninformative stratified SRSWOR, i.e., SRSWOR with the sample size ni =

10 for each sampling cluster i.
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Under an uninformative sampling design, the main simulation results are the fol-
lowing:

(i) NMLE, WPLE and PLE have similar levels of bias.

(ii) The mad is closely estimated by the mad for both PLE and WPL.

(iii) It is not clear which estimation method gives a better result.

The coefficients of variation of the weight ωkl for uninformative sampling is 0.04.
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Table 13: Performance of NMLE, PLE and WPLE under an uninformative stratified
sampling design when the true value β0 = 1, β1 = 3, σ2 = 0.8, τ2

11 = 1, τ12 = 0.5,
τ2

22 = 0.8.

Uninformative NMLE PLE WPLE

parameters median bias mad median bias mad esd(rθ) median bias mad esd(pθ)

β0 0.02 0.03 0.00 0.05 0.05 0.00 0.05 0.05
β1 0.01 0.03 0.01 0.06 0.05 0.01 0.06 0.05
σ2 ´0.02 0.03 ´0.04 0.04 0.04 ´0.04 0.04 0.04
τ2

11 ´0.10 0.08 ´0.07 0.09 0.09 ´0.07 0.09 0.09
τ12 ´0.02 0.04 0.01 0.06 0.06 0.01 0.06 0.06
τ2

22 0.20 0.06 0.23 0.08 0.08 0.23 0.08 0.08

Table 14: Pairwise score and weighted pairwise score under an uninformative stratified
sampling design when the true value β0 = 1, β1 = 3, σ2 = 0.8, τ2

11 = 1, τ12 = 0.5,
τ2

22 = 0.8.

Uninformative Pairwise score Weighted pairwise score

parameters median bias mad esd(PS(rθ)) median bias mad esd(WPS(pθ))

β0 0.23 1.38 1.46 23.04 145.24 152.81
β1 0.36 2.06 1.41 36.97 219.49 147.99
σ2 0.24 1.10 1.18 24.26 112.62 124.62
τ2

11 0.28 0.79 0.84 29.39 83.48 88.24
τ12 ´2.32 1.46 1.21 ´248.06 161.464 126.85
τ2

22 3.80 1.24 0.81 405.58 126.55 85.23
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Consider an informative stratified SRSWOR, i.e., SRSWOR with the sample size

ni =

S

a exp (byi)

1 + a exp (byi)

W

,

where

yi =
ÿ

kPU,s(k)=i

yk,

a =0.15,

b =0.25.

Under an informative sampling design, the main simulation results are the following:

(i) NMLE, WPLE and PLE generate bias, but PLE has large bias.

(ii) The mad is closely estimated by the mad for both PLE and WPL.

(iii) It is not clear which estimation method gives a better result.

The coefficients of variation of the weight ωkl for informative sampling is 0.71.
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Table 15: Performance of NMLE, PLE and WPLE under an informative stratified sam-
pling design when the true value β0 = 1, β1 = 3, σ2 = 0.8, τ2

11 = 1, τ12 = 0.5, τ2
22 = 0.8.

Informative NMLE PLE WPLE

parameters median bias mad median bias mad esd(rθ) median bias mad esd(pθ)

β0 0.02 0.03 ´0.17 0.04 0.04 0.02 0.05 0.05
β1 0.00 0.02 ´0.58 0.05 0.04 0.01 0.06 0.05
σ2 ´0.01 0.03 ´0.04 0.03 0.03 ´0.04 0.04 0.04
τ2

11 ´0.11 0.07 ´0.05 0.07 0.08 ´0.05 0.08 0.08
τ12 ´0.03 0.03 ´0.10 0.05 0.05 0.01 0.06 0.07
τ2

22 0.18 0.05 0.15 0.08 0.06 0.25 0.08 0.09

Table 16: Pairwise score and weighted pairwise score under an informative stratified
sampling design when the true value β0 = 1, β1 = 3, σ2 = 0.8, τ2

11 = 1, τ12 = 0.5,
τ2

22 = 0.8.

Informative Pairwise score Weighted pairwise score

parameters median bias mad esd(PS(rθ)) median bias mad esd(WPS(pθ))

α 5.41 3.28 2.65 48.12 146.08 136.84
β ´45.95 4.18 2.63 51.46 196.18 151.54

σ2 3.75 2.08 2.26 5.83 98.05 110.82
τ2

11 6.80 1.46 1.59 35.03 76.78 75.19
τ12 ´21.29 4.31 2.17 ´245.37 144.46 113.99
τ2

22 24.35 4.13 1.49 403.15 142.63 84.19
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4.10.3 Design: two-stage SRSWOR

Consider an uninformative two-stage sample design,

(i) First stage: SRSWOR with the sample size nI = 10.

(ii) Second stage: SRSWOR with the sample size ni = 10.

Under an uninformative sampling design, the main simulation results are the fol-
lowing:

(i) NMLE, PLE and WPLE generate a biased estimate, but WPLE has large bias.

(ii) The esd underestimates the mad for both PLE and WPLE.

(iii) It is not clear which estimation method gives a better result.

The coefficients of variation of the weight ωkl for uninformative sampling is 1.42.
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Table 17: Performance of NML, PL and WPL under an uninformative two-stage SR-
SWOR sampling design when the true value β0 = 1, β1 = 2, σ2 = 1, τ2

11 = 0.8, τ12 = 0.6,
τ2

22 = 1.2.

Uninformative NMLE PLE WPLE

parameters median bias mad media bias mad esd(rθ) media bias mad esd(pθ)

β0 0.18 0.25 0.17 0.32 0.33 0.15 0.33 0.32
β1 0.10 0.27 0.08 0.39 0.36 0.11 0.40 0.36
σ2 ´0.02 0.18 ´0.03 0.21 0.20 ´0.03 0.27 0.21
τ2

11 0.11 0.41 ´0.06 0.46 0.39 ´0.12 0.40 0.37
τ12 ´0.02 0.32 ´0.12 0.39 0.33 ´0.15 0.41 0.33
τ2

22 ´0.05 0.43 ´0.28 0.47 0.43 ´0.36 0.51 0.39

Table 18: Pairwise score and weighted pairwise score under an uninformative two-
stage SRSWOR sampling design when the true value β0 = 1, β1 = 2, σ2 = 1, τ2

11 = 0.8,
τ12 = 0.6, τ2

22 = 1.2.

Uninformative Pairwise score Weighted pairwise score

parameters median bais mad esd(PS(rθ)) median bias mad esd(WPS(pθ))

β0 0.24 0.49 0.52 366.15 949.93 939.71
β1 0.09 0.58 0.57 172.32 1143.33 986.67
σ2 0.01 0.26 0.24 ´23.47 521.14 459.61
τ2

11 0.05 0.22 0.21 ´2.33 398.6 410.37
τ12 ´0.03 0.35 0.37 ´17.63 646.14 679.29
τ2

22 ´0.02 0.23 0.24 ´64.46 495.10 497.78
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Figure 4.5: QQ plot for the weighted pairwise likelihood estimator under an uninfor-
mative two-stage SRSWOR sampling design when the true value β0 = 1, β1 = 2, σ2 = 1,
τ2

11 = 0.8, τ12 = 0.6, τ2
22 = 1.2.
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Consider an informative two-stage sample design,

(i) First stage: SRSWOR with the sample size nI = 10.

(ii) Second stage: SRSWOR with the sample size

ni =

S

a exp (´bri)

1 + a exp (´bri)
Ni

W

,

where

ri =
ÿ

kPU,s(k)=i

(yk ´ β0 ´ β1xk),

a =0.3

b =0.45.

Under an informative sampling design, the main simulation results are the following:

(i) NMLE, PLE and WPLE generate a biased estimate, but PLE has very big bias.

(ii) The esd underestimates the mad for both PLE and WPLE.

(iii) It is not clear which estimation method gives a better result.

The coefficients of variation of the weight ωkl for informative sampling is 2.79.
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Table 19: Performance of NMLE, PLE and WPLE under an informative two-stage SR-
SWOR sampling design when the true value β0 = 1, β1 = 3, σ2 = 0.8, τ2

11 = 1, τ12 = 0.5,
τ2

22 = 0.8.

Informative NMLE PLE WPLE

parameters median bias mad median bias mad esd(rθ) median bias mad esd(pθ)

β0 0.19 0.15 ´0.12 0.39 0.29 0.10 0.31 0.29
β1 0.09 0.19 ´0.63 0.36 0.24 ´0.01 0.44 0.31
σ2 ´0.03 0.13 0.05 0.15 0.14 0.00 0.20 0.16
τ2

11 ´0.01 0.34 ´0.17 0.34 0.26 ´0.13 0.46 0.33
τ12 ´0.01 0.26 ´0.28 0.31 0.22 ´0.16 0.39 0.28
τ2

22 ´0.03 0.28 ´0.72 0.35 0.28 ´0.36 0.40 0.36

Table 20: Pairwise score and weighted pairwise score under an informative two-stage
SRSWOR sampling design when the true value β0 = 1, β1 = 2, σ2 = 1, τ2

11 = 0.8,
τ12 = 0.6, τ2

22 = 1.2.

Informative Pairwise score Weighted pairwise score

parameters median bias mad esd(PS(rθ)) median bias mad esd(WPS(pθ))

β0 1.63 5.39 3.97 352.60 785.09 865.40
β1 ´6.98 7.34 4.41 ´62.38 1121.25 926.64
σ2 0.12 1.81 1.51 ´35.33 357.23 377.96
τ2

11 0.12 1.62 1.64 0.91 407.85 351.69
τ12 ´1.22 2.83 3.49 ´40.09 496.73 594.07
τ2

22 ´0.60 1.56 2.99 ´103.49 359.13 388.20
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Figure 4.6: QQ plot for the weighted pairwise likelihood estimator under an informative
two-stage SRSWOR sampling design when the true value β0 = 1, β1 = 2, σ2 = 1,
τ2

11 = 0.8, τ12 = 0.6, τ2
22 = 1.2.
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4.10.4 Design: two-stage Poisson

Consider an uninformative two-stage sample design with the following design,

(i) First stage: Poisson sampling with sampling inclusion probability πi, where πi is
generated from uniform distribution on [0, 1].

(ii) Second stage: SRSWOR with the sample size ni = 10.

Under an uninformative sampling design, the main simulation results are the fol-
lowing:

(i) NMLE, PLE and WPLE have similar levels of bias.

(ii) The esd under-estimates the mad for both PLE and WPLE.

(iii) It is not clear which estimation method gives a better result.

The coefficients of variation of the weight ωkl for uninformative sampling is 1.74.
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Table 21: Performance of NMLE, PLE and WPLE under an uninformative two-stage
Poisson sampling design when the true value β0 = 1, β1 = 1.5, σ2 = 0.8, τ2

11 = 1,
τ12 = 0.5, τ2

22 = 1.2.

Uninformative NMLE PLE WPLE

parameters median bias mad media bias mad esd(rθ) media bias mad esd(pθ)

β0 0.03 0.09 0.04 0.13 0.12 0.03 0.17 0.15
β1 0.11 0.08 0.13 0.13 0.12 0.14 0.18 0.16
σ2 ´0.01 0.05 ´0.03 0.06 0.06 ´0.03 0.08 0.07
τ2

11 0.07 0.16 0.04 0.21 0.17 ´0.03 0.27 0.20
τ12 0.13 0.12 0.11 0.21 0.14 0.11 0.24 0.17
τ2

22 0.08 0.14 0.12 0.27 0.21 0.05 0.31 0.25

Table 22: Pairwise score and weighted pairwise score under an uninformative two-
stage Poisson sampling design when the true value β0 = 1, β1 = 1.5, σ2 = 0.8, τ2

11 = 1,
τ12 = 0.5, τ2

22 = 1.2.

Uninformative Pairwise score Weighted pairwise score

parameter median bias mad esd(PS(rθ)) median bias mad esd(WPS(pθ))

β0 0.07 1.12 1.12 66.3 443.13 379.73
β1 1.11 1.19 1.13 299.46 429.85 395.88
σ2 ´0.16 0.61 0.71 ´44.37 232.07 223.01
τ2

11 0.06 0.63 0.53 ´23.76 193.70 166.01
τ12 0.48 0.99 0.82 127.93 309.88 249.39
τ2

22 0.20 0.73 0.55 13.56 182.79 180.84
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Consider an informative two-stage sample design,

(i) First stage: SRSWOR with the sampling inclusion probability

πi =
a exp (´bri)

1 + a exp (´bri)
,

where

ri =
ÿ

kPU,s(k)=i

(yk ´ β0 ´ β1xk),

a =0.3

b =0.45.

(ii) Second stage: SRSWOR with the sample size ni = 10.

Under an informative sampling design, the main simulation results are the following:

(i) NMLE, PLE and WPLE generate a biased estimate, but PLE has a large bias.

(ii) The esd under-estimates the mad for both PLE and WPLE.

(iii) NMLE gives a better result.

The coefficients of variation of the weight ωkl for informative sampling is 0.75.
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Table 23: Performance of NMLE, PLE and WPLE under an informative two-stage Pois-
son sampling design when the true value β0 = 1, β1 = 1.5, σ2 = 0.8, τ2

11 = 1, τ12 = 0.5,
τ2

22 = 1.2.

Informative NMLE PLE WPLE

parameter median bias mad median bias mad esd(rθ) median bias mad esd(pθ)

β0 ´0.02 0.09 ´0.22 0.31 0.14 ´0.04 0.26 0.21
β1 ´0.01 0.09 ´1.77 0.20 0.10 ´0.12 0.29 0.21
σ2 0.00 0.05 0.14 0.09 0.07 ´0.04 0.13 0.09
τ2

11 0.02 0.19 ´0.06 0.15 0.18 ´0.21 0.34 0.22
τ12 0.12 0.11 ´0.20 0.18 0.09 ´0.11 0.25 0.17
τ2

22 0.10 0.16 ´0.67 0.26 0.12 ´0.26 0.33 0.22

Table 24: Pairwise score and weighted pairwise score under an informative two-stage
Poisson sampling design when the true value β0 = 1, β1 = 1.5, σ2 = 0.8, τ2

11 = 1,
τ12 = 0.5, τ2

22 = 1.2.

Informative Pairwise score Weighted pairwise score

parameter median bias mad esd(PS(rθ)) median bias mad esd(WPS(pθ))

β0 17.06 3.72 3.68 ´31.06 627.60 506.47
β1 ´76.66 5.92 5.75 ´136.20 575.57 556.00
σ2 5.26 2.07 1.93 ´153.15 324.10 258.76
τ2

11 11.47 1.34 1.52 ´106.65 256.37 209.32
τ12 ´33.5 4.72 4.10 53.62 325.65 298.49
τ2

22 47.40 3.70 4.58 ´123.43 201.49 204.02
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5 Matérn spatial model

5.1 Introduction

In this chapter, I want to keep extending the asymptotic properties of the sample weighted
pairwise likelihood to the case when the random effects could potentially be correlated.
The main goal of this chapter is to establish consistency and asymptotic normality of
the sample weighted pairwise likelihood estimator under the Matérn spatial model. The
key step is to prove the pointwise law of large numbers (PLLN) and the central limit
theorem (CLT) for the random field ∇θp`(θ) = t∇θp`kl(θ) : kl P Ac

εu. Once this has
been done, the rest is just routine.

I start by introducing the setting, essentially there is nothing new in the design. But
for the model, until I set up a lot of definitions, I would not be able to state precisely what
I mean. In all of the following, the limit should be interpreted as expanding domain, i.e.,
I assume both the sample size and population size go to infinity in the limit.

5.2 Setting: design

Let U Ă Rm be a finite population with spatial location in Rm and let } ¨ } be the standard
Euclidean norm. Let ωkl be the pairwise sampling weight for kl P U2.

5.3 Alternative approaches on model

There are two popular approaches on modelling spatially correlated random field b =

tbk : k P Uu:

(i) Gaussian Markov Random Fields, i.e., directly modelling a sparse precision matrix
(Besag, 1974).

(ii) Marginal models under a mixing condition (Guyon, 1995; Lumley and Heagerty,
1999).

However, both approaches have problems. One possible solution is to model the covari-
ance structure explicitly. This is the approach I will take.
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5.3.1 Why not Gaussian Markov Random Fields (GMRF)?

Consider a undirected graph G = (U, ε), where U is the set of nodes (i.e., the set of
population) and ε is the set of undirected edges. Recall the precision matrix is defined
to be the inverse of covariance matrix.

Definition 5.1. A random field X = tXk : k P Uu with mean µ and precision matrix
Q is a Gaussian Markov Random Fields (GMRF) with respect to a undirected graph
G = (U, ε) if the joint distribution function is Gaussian, i.e.,

f (x) = (2π)´
N
2 |Q|

1
2 exp [´

1
2
(x´µ)TQ(x´µ)]

and Qkl = 0 iff kl R ε.

Remark. In my definition, there is no restriction on the cardinality of ε. One could have
|ε| = O

(
N2). But the point is to assume |ε| is small so that precision matrix is sparse,

i.e., if |ε| = O(N), then Q contains only O(N) non-zero elements.

Remark. There is another equivalent formulation of GMRF using the full conditional
distribution function f (xk|x´k). This approach was first developed by Besag (1974)
and known as conditional autoregressive model (CAR). The Hammersley-Clifford Theo-
rem shows under certain regularity conditions the full conditional distribution function
f (xk|x´k) uniquely determines the joint distribution function X = tXk : k P Uu (Rue and
Held, 2005).

Lemma 5.2. Let X be a GMRF with respect to a undirected graph G = (U, ε) with mean µ and
precision matrix Q, then CorrY(xk, xl|x´kl) = ´

Qkl?
QkkQll

.

Proof. For more detail, see Rue and Held (2005).

Remark. In particular, observe

xk K xl|x´kl ðñ Qkl = 0.

Note Qkl = 0 ùñ xk K xl.
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The problem with GMRF is modelling the precision matrixQ does not help us to con-
struct the pairwise likelihood function. To see this, consider a spatial random intercept
model,

Yk|Xk, bk „ N(XT
k β+ bk, σ2),

b „ N(0,Q´1),

where σ2 ą 0, b = tbk : k P Uu and Q is the precision matrix of b.
To construct the pairwise likelihood, one needs to know the covariance between all

possible correlated observational units from the precision matrix, i.e., one needs to com-
pute CovY(bk, bl) from Q. This is computationally expensive, as one needs to find the
inverse of the precision matrix Q´1, which is a NˆN matrix. Observe it is not sufficient
to invert a submatrix of Q. The way to remediate this problem is by forgetting about the
precision matrix and instead focus on modelling the covariance matrix directly (more
about this later).

5.3.2 Why not marginal models under a mixing conditions?

There are many ways to define the mixing condition in the literature (Bradley et al.,
2005). In all of the following, I will study exclusively the α-mixing conditions.

Definition 5.3. Let (Ω,F , P) be a probability space and A,B be two sub-σ-algebras of
F , then the α-mixing coefficients between A and B is defined by

α(A,B) = supt|P(AX B)´P(A)P(B)| : A P A, B P Bu.

I am working with the weighted pairwise likelihood which are naturally defined on
U2 Ă R2m. I start by defining the distance function on U2.

Definition 5.4. Define the distance function ρ(kl, k1l1) between pairs of observational
units to be

ρ : U2
ˆU2

ÝÑ R+

kl ˆ k1l1 ÞÝÑ ρ(kl, k1l1) = mint}k´ k1}, }k´ l1}, }l ´ k1}, }l ´ l1}u.

166



Definition 5.5. Let X = tXkl : kl P U2u be a random field and p, q be two positive
integers. Then the α-mixing coefficients for the random field X is defined as

αX
p,q(r) = suptα(A,B) : |A| ď p, |B| ď q, dist(A, B) ě ru,

where A, B Ă U2, dist(A, B) = minklPA,k1l1PB ρ(kl, k1l1), A is the σ-algebra generated by
the random variables tXkl: kl P Au and B is the σ-algebra generated by the random
variables tXkl : kl P Bu, i.e.,

A = σ(Xkl : kl P A),

B = σ(Xkl : kl P B).

Define

αX
p,8(r) = suptαX

p,q(r) : q P Nu,

αX
8,8(r) = suptαX

p,8(r) : p P Nu.

Remark. Observe αX
p,q(r) is increasing in p, q and decreasing in r. In particular, observe

αX
p,q(r) ă αX

8,8(r) (5.1)

for all p, q P N.

Lemma 5.6. Let ψ be a real-valued measurable function and X = tXkl : kl P U2u be a random
field. Define ψ(X) = tψ(Xkl) : kl P U2u. Then

α
ψ(X)
p,q (r) ď αX

p,q(r)

for all p, q P N and r ą 0.

Proof. Essentially, this is just chasing down the defintion. I omit the detail.

One can establish the Pointwise Law of Large Numbers (PLLN) and the Central
Limit Theorem (CLT) under appropriate mixing conditions as in Theorem 3.3.1 (Guyon,
1995). From this, one can deduce the Uniform Law of Large Numbers (ULLN) from
equicontinuity conditions. Then it reduces to a standard argument to show the weighted
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pairwise likelihood estimator is consistent and asymptotically normality (more about
this in section 5.6 and 5.7).

But there is a problem with the marginal model. I am working under a parametric
mixed model. In particular, I am interested in the variance components. The marginal
model is basically a semiparametric approach. By construction, a marginal model does
not specify variance components.

5.4 Matérn covariance function

After settling down on some preliminary definitions, my main goal is to introduce
Matérn random field which is one of the most popular isotropic random field in spatial
statistics. The key properties of Matérn random field is that it has an exponential decay
covariance structure, which is crucial for establishing mixing conditions for the point-
wise law of large number and the central limit theorem (more about this in section 5.6
and 5.7).

Definition 5.7. The set of random variables

X = tXk : k P U Ă Rm, m ě 1u

is called a random field.

Remark. In all of the following, I assume m = 2, i.e., U is a finite subset of R2. An
example is the partition of the US into the counties as shown in the Figure 1.1. Observe
the percentage of diagnosed diabetes are attached to each county.

Definition 5.8. Let X = tXk : k P Uu be a random field. Define the mean function µX
k

and covariance function CX(k, l) to be

µX
k =EY [Xk] ,

CX(k, l) =Cov
Y

(Xk, Xl).

Definition 5.9. The distribution of the random field X = tXk : k P Uu is uniquely
determined by its finite-dimensional distribution

FX
k1,...,kr

(x1, . . . , xr) = P(Xk1 ď x1, . . . , Xkr ď xr)
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for all r P N and k1, . . . , kr P U.

Remark. One of the most important random field is Gaussian random field. The distri-
bution of Gaussian random field is completely determined by its mean function µX

k and
covariance function CX(k, l).

Definition 5.10. A random field X = tXk : k P Uu is called weakly stationary if its mean
and covariance function are translation invariant, i.e.,

µX
k =µX

k+h,

CX(k + h, l + h) =CX(k, l) = CX(k´ l),

for all h P Rd and k, l P U.

Definition 5.11. An isotropic random field X = tXk : k P Uu is a weakly stationary
random field with an isotropic covariance function, i.e., covariance only depends on the
distance between observational units

CX(k, l) = CX(}k´ l})

for all k, l P U.

In all of the following, I will exclusively study the Matérn covariance function, which
is one of the most important isotropic covariance function (Matérn, 1960). More precisely,

Definition 5.12. A Matérn random field X = tXk : k P Uu is an isotropic random field
with a Matérn covariance function, i.e., covariance is given by

CX
τ2,υ,κ(k, l) = CX

τ2,υ,κ(}k´ l}) =
τ2

2υ´1Γ(υ)
(κ}k´ l})υ Kυ (κ}k´ l}) ,

where Γ is the gamma function, τ2 ą 0 is the marginal variance, and Kυ is the modified
Bessell function of the second-kind with shape parameter υ ą 0 and scale parameter
κ ą 0. In particular, observe CX

τ2,υ,κ(0) = τ2.
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Remark. The modified Bessel function of the second-kind is defined as a solution of

x2y2 + xy1 ´ (x2 + υ2)y = 0. (5.2)

One can show the solution to 5.2 is given by

Kυ(x) =
π

2
I´υ(x)´ Iυ(x)

sin (υπ)
,

where

Iυ(x) =
(x

2

)υ 8
ÿ

i=0

1
Γ(i + 1)Γ(υ + i + 1)

(x
2

)2i
. (5.3)

Note the power series in 5.3 has an infinite radius of convergence and convergence is
rapid (Boyce et al., 1992). Implementations of the Bessel functions are widely available.

Remark. As }k´ l} Ñ 8, then one has

Kυ(κ}k´ l}) «
c

π

2κ}k´ l}
exp[´κ}k´ l}],

i.e.,

CX
τ2,υ,κ(}k´ l}) «

σ2

2υ´1Γ(υ)
(κ}k´ l})υ

c

π

2κ}k´ l}
exp[´κ}k´ l}].

In particular, CX
τ2,υ,κ(}k ´ l}) is a rapidly decaying function in }k ´ l} for all τ2, υ ą 0

and κ ą 0, i.e., CX
τ2,υ,κ(}k ´ l}) = O(exp[´κ}k´ l}]). This rapid decay simplifies proofs

because the integral of CX
τ2,υ,κ(r) outside a ball of radius r is of the same or small order

than exp[´κ}r}].
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Figure 5.1: Matérn correlation function shown for τ2 = 1, υ = 1, κ = 1 (red line) and
τ2 = 1, υ = 2, κ = 1 (green line) .

Remark. The Matérn covariance function can be thought as a discrete version of solu-
tions to stochastic partial differential equation (SPDE)

(κ2
´4)

α
2 x(k) = B(k),

where α = υ + m
2 , κ ą 0, υ ą 0, 4 =

řm
i=1

B2

Bk2
i

and B(k) is a standard Gussian random

variable (Lindgren et al., 2011).

5.5 Setting: Matérn spatial random intercept model

The goal of this section is to introduce Matérn spatial random intercept model and derive
some properties of sample weighted pairwise likelihood in this new context. Essentially
there is nothing new in here.

Consider a Matérn spatial random intercept model

Yk = β0 + β1Xk1 + ¨ ¨ ¨+ βpXkp + bk + εk,
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where ε = tεk : k P Uu is a Gaussian random field with µε
k = 0 and Cε(k, l) = σ21k=l

and b = tbk : k P Uu is a Gaussian Matérn random field with µb
k = 0 and Cb

τ2,υ,κ(k, l) =

Cb
τ2,υ,κ(}k´ l}) = τ2

2υ´1Γ(υ) (κ}k´ l})υ Kυ (κ}k´ l}) .

The parameters are θ = (β0, β1, ¨ ¨ ¨ , βp, σ2, τ2, υ, κ)T.

Remark. Under a Matérn spatial random intercept model, observe CovY(yk, yl) = CovY(bk, bl)

for k ‰ l. In particular, CovY(yk, yl) = O(exp[´κ}k´ l}]).

Definition 5.13. Let ε ą 0. Define

Ac
ε = tkl P U2 : Cb

τ2,υ,κ(}k´ l}) ě εu,

As
ε = tkl P S2 : Cb

τ2,υ,κ(}k´ l}) ě εu.

Remark. The exact value of ε are user defined. ε determines which pairs one should use
for the calculation of pairwise likelihood. If ε = 0, then Ac

ε is all possible pairs.

Remark. For every ε ě 0, there exists a δ ě 0 such that Ac
ε = tkl P U2 : }k´ l} ď δu.

Definition 5.14. Define the census pairwise log-likelihood to be

p`c(θ) =
ÿ

klPAc
ε

p`kl(θ),

where

p`kl(θ) = ´
1
2

log |Σkl| ´
1
2
rT

klΣ
´1
kl rkl,

Σkl =

(
τ2 + σ2, Cb

τ2,υ,κ(}k´ l})
Cb

τ2,υ,κ(}k´ l}), τ2 + σ2

)
,

rkl =

(
yk ´ β0 ´ β1xk1 ´ ¨ ¨ ¨ ´ βpxkp

yl ´ β0 ´ β1xl1 ´ ¨ ¨ ¨ ´ βpxlp

)
.

Definition 5.15. Define the sample weighted pairwise log-likelihood to be

p`s(θ) =
ÿ

klPAc
ε

1klωkl p`kl(θ).
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Lemma 5.16. Suppose there exists a δ ą 0 such that sup
tk,luEY

[
sup

tθPΘu p`1+δ
kl (θ)

]
ă 8,

then the sample weighted pairwise log-likelihood is a design-unbiased estimator for the census
pairwise log-likelihood under design measure π, i.e.,

Eπ [p`s(θ)] = p`c(θ).

Proof. The proof is almost exactly the same as Lemma 3.4. Observe

Eπ [p`s(θ)] = Eπ

 ÿ

klPAc
ε

1klωkl p`kl(θ)


=

ÿ

klPAc
ε

p`kl(θ)

= p`c(θ).

Corollary 5.17. Let hkl(yk, yl) = sup
tθPΘu }∇θp`kl|i(yk, yl,θ)} and gkl(yk, yl) = sup

tθPΘu }∇2
θθp`kl|i(yk, yl,θ)}.

Suppose there exists a δ ą 0 such that sup
tk,luEY

[
h1+δ

kl

]
ă 8 and sup

tk,luEY

[
g1+δ

kl

]
ă 8,

then the sample weighted pairwise score function is a design-unbiased estimator for the census
pairwise score function under the design measure π, i.e.,

Eπ [∇θp`s(θ)] = ∇θp`c(θ),

Eπ

[
∇2
θθp`s(θ)

]
= ∇2

θθp`c(θ).

5.6 Pointwise Law of Large Numbers

The goal of this section is to show under a Matérn spatial random intercept model, the
random field ∇θp`(θ) = t∇θp`kl(θ) : kl P Ac

εu satisfies mixing condition 5.4 so that one
can use the Pointwise Law of Large Numbers (PLLN) (Guyon, 1995; Jenish and Prucha,
2009). There are general conditions in the literature to establish PLNN. Since I only
consider Matérn covariance structure, i.e., observations are nearly independent at large
distance, essentially all those conditions are trivially satisfied. Let me start by stating
two general results.
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Lemma 5.18. Assume the following regularity conditions,

A.1 Let U2
8 Ă R2m be a countable infinite set such that there exists a δ ą 0 such that

ρ(kl, k1l1) ě δ for kl, k1l1 P U2
8.

A.2 Let tU2
N Ă U2

8 : N P Nu be a sequence of finite population with |U2
N| Ñ 8 as N Ñ 8.

A.3 Let X = tXkl : kl P Ac
εu be a random field. Suppose there exists a δ ą 0 such that

sup
tkluEYX1+δ

kl ă 8.

A.4 Assume the random field X satisfies the following mixing conditions
ż 8

0
r2m´1αX

1,1(r)dr ă 8. (5.4)

then
1
|Ac

ε|

ÿ

klPAc
ε

Xkl ´EY

 1
|Ac

ε|

ÿ

klPAc
ε

Xkl

 p
ÝÑ 0

under the model measure Y.

Remark. A.1 is a technical assumption to ensure there is a minimum separation between
pairs in the U2

8. In particular, this implies

sup
klPR2m

|B(kl, r)
č

UN| = O
(

r2m
)

,

which is a sufficient condition for convergence when dealing with irregular set U2
N Ă

R2m. One can drop A.1, if U2 is just a lattice, i.e., U2 Ă Z2m. For more detail, see Guyon
(1995).

Proof. See Jenish and Prucha (2009) for the proof.

Lemma 5.19. Let X = tXkl : kl P Z2mu be a stationary Gaussian random field such that
CovY(Xkl, Xk1l1) = O

(
ρ(kl, k1l1)´t) for some t ą 2m and the characteristic function of X is

bounded below, then αX
8,8(r) = O

(
r2m´t).

Proof. For the proof, see page 59 from Doukan (1994).
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I now turn to the Pointwise Law of Large Numbers (PLLN) for the random field
∇θp`(θ) under a Matérn spatial random intercept model. To prove this, I need to intro-
duce some notation to start with.

Definition 5.20. Define the random field a(θ) = takl(θ) : kl P Ac
εu and d(θ) = tdkl(θ) :

kl P Ac
εu associated with random field Y(θ) = tYk(θ) : k P Uu to be

akl(θ) = Yk(θ) + Yl(θ),

dkl(θ) = Yk(θ)´Yl(θ).

Remark. Observe

Cov
Y

(akl(θ), ak1l1(θ))

=Cov
Y

(Yk(θ) + Yl(θ), Yk1(θ) + Yl1(θ))

=Cov
Y

(Yk(θ), Yk1(θ)) + Cov
Y

(Yk(θ), Yl1(θ)) + Cov
Y

(Yl(θ), Yk1(θ)) + Cov
Y

(Yl(θ), Yl1(θ))

=O(exp[´κρ(kl, k1l1)]), (5.5)

where ρ(kl, k1l1) = mint}k´ k1}, }k´ l1}, }l ´ k1}, }l ´ l1}u. In particular, a(θ) is a Gaussian
random field with the exponential decay covariance structure.

Similarly, one can show

Cov
Y

(dkl(θ), dk1l1(θ)) = O(exp[´κρ(kl, k1l1)]), (5.6)

Cov
Y

(akl(θ), dk1l1(θ)) = O(exp[´κρ(kl, k1l1)]). (5.7)

Lemma 5.21. Observe akl(θ) is independent of dkl(θ) under the model measure Y, i.e., akl K dkl.

Proof. Note akl(θ) and dkl(θ) are Gaussian random variables from Theorem 7.22. Thus
it suffices to show they are uncorrelated. Observe

Cov
Y

(akl(θ), dkl(θ))

=Cov
Y

(Yk(θ) + Yl(θ), Yk(θ)´Yl(θ))

=Cov
Y

(Yk(θ), Yk(θ))´Cov
Y

(Yk(θ), Yl(θ)) + Cov
Y

(Yl(θ), Yk(θ))´Cov
Y

(Yl(θ), Yl(θ))

=0.
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This completes the proof.

My strategy below is to decompose 1
|Ac

ε|
∇θp`c(θ) into two pieces (Lemma 5.22), and

for each piece I have an explicit bound on the mixing coefficients (Lemma 5.23) so that I
can apply Lemma 5.18. More precisely,

Lemma 5.22. There exists a real-valued measurable function ψ1 and ψ2 such that

1
|Ac

ε|
∇θp`c(θ) =

1
|Ac

ε|

ÿ

klPAc
ε

ψ1(akl(θ)) +
1
|Ac

ε|

ÿ

klPAc
ε

ψ2(dkl(θ)).

Proof. Observe

(Yk(θ), Yl(θ)) =

(
akl(θ) + dkl(θ)

2
,

akl(θ)´ dkl(θ)

2

)
.

In particular, the pairwise density function f (yk(θ), yl(θ)) can be expressed as a function
of akl(θ) and dkl(θ), i.e., there exists a measuable function ξ such that

f (yk(θ), yl(θ)) = ξ(akl(θ), dkl(θ)).

From Lemma 5.21, akl(θ) is independent from dkl(θ) under model measure Y. Hence
there exists a measurable function ξ1 and ξ2 such that

ξ(akl(θ), dkl(θ)) = ξ1(akl(θ))ξ2(dkl(θ)),

i.e.,
f (yk(θ), yl(θ)) = ξ1(akl(θ))ξ2(dkl(θ)).

Taking logs on both sides and then differentiating, one has

∇θp`kl(θ) = ψ1(akl(θ)) + ψ2(dkl(θ)), (5.8)

where ψ1(akl(θ)) = ∇θ log(ξ1(akl(θ))) and ψ2(dkl(θ)) = ∇θ log(ξ2(dkl(θ))). Summing
over all possible pairs and then normalising by 1

|Ac
ε|

, one has

1
|Ac

ε|
∇θp`c(θ) =

1
|Ac

ε|

ÿ

klPAc
ε

ψ1(akl(θ)) +
1
|Ac

ε|

ÿ

klPAc
ε

ψ2(dkl(θ)).

176



Lemma 5.23. Let Y = (Y1, ¨ ¨ ¨ , YN)
T follow a Matérn spatial random intercept model. The

random field ψ1(a(θ)) = tψ1(akl(θ)) : kl P Ac
εu and ψ2(d(θ)) = tψ2(dkl(θ)) : kl P Ac

εu

satisfy the following mixing condition

α
ψ1(a(θ))
8,8 (r) = O

(
r2m´t

)
,

α
ψ2(d(θ))
8,8 (r) = O

(
r2m´t

)
,

for every integer t ą 2m.

Proof. From 5.5, one has CovY(akl(θ), ak1l1(θ)) = O(exp[´κρ(kl, k1l1)]). In particular, ob-
serve

Cov
Y

(akl(θ), ak1l1(θ)) = O
(
ρ(kl, k1l1)´t) (5.9)

for every integer t ą 2m.
Note the random field a(θ) = takl(θ) : kl P Ac

εu is a Gaussian random field. From 5.9
and Lemma 5.19, one has

α
a(θ)
8,8(r) = O

(
r2m´t

)
(5.10)

for every integer t ą 2m.
Therefore, from 5.10 and Lemma 5.6, one gets

α
ψ1(a(θ))
8,8 (r) = O

(
r2m´t

)
for every integer t ą 2m.

The case of ψ2(d(θ)) can be handle similarly, I omit the detail.

Corollary 5.24. Observe
ż 8

0
r2m´1α

ψ1(a(θ))
1,1 (r)dr ă 8,

ż 8

0
r2m´1α

ψ2(d(θ))
1,1 (r)dr ă 8.

Proof. This is clear from Lemma 5.23 and 5.1.

Corollary 5.25. Observe
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(i) There exists a δ ą 0 such that
ş8

0 r2m´1α
ψ1(a(θ))
1,1 (r)

δ
2+δ dr ă 8.

(ii)
ş8

0 r2m´1α
ψ1(a(θ))
p,q (r)dr ă 8 if p + q ď 4.

(iii) α
ψ1(a(θ))
1,8 (r) = O

(
r´2m).

(iv) There exists a δ ą 0 such that
ş8

0 r2m´1α
ψ2(d(θ))
1,1 (r)

δ
2+δ dr ă 8.

(v)
ş8

0 r2m´1α
ψ2(d(θ))
p,q (r)dr ă 8 if p + q ď 4.

(vi) α
ψ2(d(θ))
1,8 (r) = O

(
r´2m).

Proof. This is clear from Lemma 5.23 and 5.1.

Remark. Corollary 5.25 is only needed for the proof of the central limit theorem in next
section.

I am ready to state the Pointwise Law of Large Numbers under a Matérn spatial
random intercept model.

Theorem 5.26. Let Y = (Y1, ¨ ¨ ¨ , YN)
T follow a Matérn spatial random intercept model. In

addition, assume the following regularity conditions,

A.1 Let U2
8 Ă R2m be a countable infinite set such that there exists a δ ą 0 such that

ρ(kl, k1l1) ě δ for kl, k1l1 P U2
8.

A.2 Let tU2
N Ă U2

8 : N P Nu be a sequence of finite population with |U2
N| Ñ 8 as N Ñ 8.

A.3 Let hkl(yk, yl) = sup
tθPΘu }∇p`kl(θ)}. Suppose there exists a δ ą 0 such that sup

tkluEYh1+δ
kl ă

8.

then
1
|Ac

ε|
∇θp`c(θ)´EY

[
1
|Ac

ε|
∇θp`c(θ)

]
p
ÝÑ 0

under the model measure Y.
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Proof. By Lemma 5.22, it suffices to show

1
|Ac

ε|

ÿ

klPAc
ε

ψ1(akl(θ))´EY

 1
|Ac

ε|

ÿ

klPAc
ε

ψ1(akl(θ))

 p
ÝÑ 0, (5.11)

1
|Ac

ε|

ÿ

klPAc
ε

ψ2(dkl(θ))´EY

 1
|Ac

ε|

ÿ

klPAc
ε

ψ2(dkl(θ))

 p
ÝÑ 0. (5.12)

But 5.11 and 5.12 are clear from Corollary 5.24 and Lemma 5.18. This completes the
proof.

5.7 Central Limit Theorem

The goal of this section is to show under a Matérn spatial random intercept model,
the random field ∇θp`(θ) = t∇θp`kl(θ) : kl P Ac

εu satisfies certain mixing conditions
A.4 in Lemma 5.27, so that one can use the Central Limit Theorem (CLT). There are
general conditions in the literature to establish CLT (Guyon, 1995). Since I only consider
Matérn covariance structure, i.e., observations are nearly independent at large distance,
essentially all those conditions are trivially satisfied. Let me start by stating two general
results.

Lemma 5.27. Assume the following regularity conditions,

A.1 Let U2
8 Ă R2m be a countable infinite set such that there exists a δ ą 0 such that

ρ(kl, k1l1) ě δ for kl, k1l1 P U2
8.

A.2 Let tU2
N Ă U2

8 : N P Nu be a sequence of finite population with |U2
N| Ñ 8 as N Ñ 8.

A.3 Let X = tXkl : kl P Ac
εu be a random field. Suppose there exists a δ ą 0 such that

sup
tkluEYX2+δ

kl ă 8.

A.4 Assume the random field X satisfies the following mixing conditions

(i) There exists a δ ą 0 such that
ş8

0 r2m´1αX
1,1(r)

δ
2+δ dr ă 8.

(ii)
ş8

0 r2m´1αX
p,q(r)dr ă 8 if p + q ď 4.
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(iii) αX
1,8(r) = O

(
r´2m).

A.5 lim |Ac
ε|σ

2
Y ą 0, where σ2

Y = VarY

[
1
|Ac

ε|

ř

klPAc
ε

Xkl

]
.

then

σ´1
Y

 1
|Ac

ε|

ÿ

klPAc
ε

Xkl ´EY

 1
|Ac

ε|

ÿ

klPAc
ε

Xkl

 D
ÝÑ N(0, 1)

under the model measure Y.

Proof. See Guyon (1995); Jenish and Prucha (2009) for the proof.

Remark. Guyon (1995) proves the results initially for a grid of points Z2m, using mo-
ments bound and Stein’s Lemma (Stein, 1981). It is stated that A.1 replaces the grid
assumption to allow any set without accumulation point (Guyon, 1995). Jenish and
Prucha (2009) relate the moment and mixing assumptions of Guyon (1995) to give A.1.

Lemma 5.28. Suppose

Xn
D
ÝÑX,

Yn
D
ÝÑY,

and Xn is independent of Yn, then X is independent of Y and (Xn, Yn)T DÝÑ (X, Y)T.

Proof. Since Xn
D
ÝÑ X and Yn

D
ÝÑ Y, then by definition, one has

lim
nÑ8

E [ f (Xn)] =E [ f (X)] ,

lim
nÑ8

E [g(Yn)] =E [g(Y)] ,

for all bounded continuous functions f , g. Hence

lim
nÑ8

[
E [ f (Xn)]E [g(Yn)]

]
= E [ f (X)]E [g(Y)] . (5.13)

Since Xn is independent of Yn, by Theorem 7.25, one has

E [ f (Xn)g(Yn)] = E [ f (Xn)]E [g(Yn)] (5.14)
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for all bounded continuous functions f , g.
Putting 5.13 and 5.14 together, one has

lim
nÑ8

E [ f (Xn)g(Yn)] = E [ f (X)]E [g(Y)] . (5.15)

By Dominated Convergence Theorem 7.24, one has

E
[

lim
nÑ8

[ f (Xn)g(Yn)]
]
= E [ f (X)]E [g(Y)] ,

i.e.,
E
[

lim
nÑ8

f (Xn) lim
nÑ8

g(Yn)
]
= E [ f (X)]E [g(Y)] ,

i.e.,
E [ f (X)g(Y)] = E [ f (X)]E [g(Y)] ,

for all bounded continuous functions f , g. Therefore, by Theorem 7.25, X is independent
of Y.

To prove (Xn, Yn)T DÝÑ (X, Y)T, by Theorem 7.21, it suffices to show

c1Xn + c2Yn
D
ÝÑ c1X + c2Y (5.16)

for all c1, c2 P R.
Let φX be the characteristic function of X, i.e.,

φX : R ÝÑ C

t ÞÝÑ φX(t) = E [exp(itX)] .

To prove 5.16, by Lévy’s Continuity Theorem 7.23, it suffices to show

lim
nÑ8

φc1Xn+c2Yn(t) = φc1X+c2Y(t)

for all c1, c2, t P R.
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Observe

lim
nÑ8

φc1Xn+c2Yn(t) = lim
nÑ8

E [exp(it(c1Xn + c2Yn))]

= lim
nÑ8

E [exp(itc1Xn)]E [exp(itc2Yn)]

= lim
nÑ8

E [exp(itc1Xn)] lim
nÑ8

E [exp(itc2Yn)]

=E
[

lim
nÑ8

exp(itc1Xn)
]

E
[

lim
nÑ8

exp(itc2Yn)
]

=E [exp(itc1X)]E [exp(itc2Y)]

=E [exp(it(c1X + c2Y))]

=φc1X+c2Y(t).

In the second equality, I used the fact Xn K Yn and Theorem 7.25. In the fourth equality,
I used Dominated Convergence Theorem 7.24. In the fifth equality, I used continuous

mapping theorem and the fact Xn
D
ÝÑ X, Yn

D
ÝÑ Y. In the sixth equality, I used the fact

X K Y and Theorem 7.25.
This completes the proof.

I am ready to state the Central Limit Theorem under a Matérn spatial random inter-
cept model. My strategy below is to decompose 1

|Ac
ε|
∇θp`c(θ) into two pieces (Lemma

5.22), and for each piece I have an explicit bound on the mixing coefficients (Lemma
5.23) so that I can apply Lemma 5.27. Then I used Lemma 5.28 to recover 1

|Ac
ε|
∇θp`c(θ).

Theorem 5.29. Let Y = (Y1, ¨ ¨ ¨ , YN)
T follow a Matérn spatial random intercept model. In

addition, assume the following regularity conditions,

A.1 Let U2
8 Ă R2m be a countable infinite set such that there exists a δ ą 0 such that

ρ(kl, k1l1) ě δ for kl, k1l1 P U2
8.

A.2 Let tU2
N Ă U2

8 : N P Nu be a sequence of finite population with |U2
N| Ñ 8 as N Ñ 8.

A.3 Let hkl(yk, yl) = sup
tθPΘu }∇p`kl(θ)}. Suppose there exists a δ ą 0 such that sup

tkluEYh2+δ
kl ă

8.

A.4 lim |Ac
ε|JY(θ) ą 0, where JY(θ) = VarY

[
1
|Ac

ε|
∇θp`c(θ)

]
.
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then
JY(θ)

´ 1
2

(
1
|Ac

ε|
∇θp`c(θ)´EY

[
1
|Ac

ε|
∇θp`c(θ)

])
D
ÝÑ N(0, I)

under the model measure Y.

Proof. By Corollary 5.25 and Lemma 5.27, one has

Var
Y

 1
|Ac

ε|

ÿ

klPAc
ε

ψ1(akl(θ))

´ 1
2
 1
|Ac

ε|

ÿ

klPAc
ε

ψ1(akl(θ))´EY

 1
|Ac

ε|

ÿ

klPAc
ε

ψ1(akl(θ))

 D
ÝÑ N(0, I),

Var
Y

 1
|Ac

ε|

ÿ

klPAc
ε

ψ2(dkl(θ))

´ 1
2
 1
|Ac

ε|

ÿ

klPAc
ε

ψ2(dkl(θ))´EY

 1
|Ac

ε|

ÿ

klPAc
ε

ψ2(dkl(θ))

 D
ÝÑ N(0, I).

Hence,

a

|Ac
ε|

 1
|Ac

ε|

ÿ

klPAc
ε

ψ1(akl(θ))´EY

 1
|Ac

ε|

ÿ

klPAc
ε

ψ1(akl(θ))

 D
ÝÑ

N

0, lim |Ac
ε|Var

Y

 1
|Ac

ε|

ÿ

klPAc
ε

ψ1(akl(θ))

 , (5.17)

and

a

|Ac
ε|

 1
|Ac

ε|

ÿ

klPAc
ε

ψ2(dkl(θ))´EY

 1
|Ac

ε|

ÿ

klPAc
ε

ψ2(dkl(θ))

 D
ÝÑ

N

0, lim |Ac
ε|Var

Y

 1
|Ac

ε|

ÿ

klPAc
ε

ψ2(dkl(θ))

 . (5.18)

Putting 5.17 and 5.18 together, then by Lemma 5.28 and Lemma 5.22, one has

a

|Ac
ε|

(
1
|Ac

ε|
∇θp`c(θ)´EY

[
1
|Ac

ε|
∇θp`c(θ)

])
D
ÝÑ N(0, lim |Ac

ε|JY(θ)),

i.e.,

JY(θ)
´ 1

2

(
1
|Ac

ε|
∇θp`c(θ)´EY

[
1
|Ac

ε|
∇θp`c(θ)

])
D
ÝÑ N(0, I).

This completes the proof.
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5.8 Consistency

In all of the following, pθn will be the sample weighted pairwise likelihood estimator and
θ0 will be the true value of the model. More precisely,

Definition 5.30. The sample weighted pairwise likelihood estimator pθn of θ is defined
as a solution of

1
|Ac

ε|
∇θp`s(θ) = 0.

Definition 5.31. The true value θ0 of θ is defined as a solution of

EY

[
1
|Ac

ε|
∇θp`c(θ)

]
= 0.

I am ready to state the weighted pairwise likelihood estimator is consistent under a
Matérn spatial random intercept model. Essentially, there is nothing new here.

Theorem 5.32. Let Y = (Y1, ¨ ¨ ¨ , YN)
T follow a Matérn spatial random intercept model. In

addition, assume the following regularity conditions,

A.1 Let U2
8 Ă R2m be a countable infinite set such that there exists a δ ą 0 such that

ρ(kl, k1l1) ě δ for kl, k1l1 P U2
8.

A.2 Let tU2
N Ă U2

8 : N P Nu be a sequence of finite population with |U2
N| Ñ 8 as N Ñ 8

and tS2
N Ă U2

N : N P Nu be a sequence of finite sample with |S2
N| Ñ 8 as N Ñ 8.

A.3 Θ is a compact subset of Rp and θ0 is an interior point of Θ.

A.4 Let hkl(yk, yl) = sup
tθPΘu }∇p`kl(θ)}. Suppose there exists a δ ą 0 such that sup

tklPAc
εu

EYh1+δ
kl ă

8.

A.5 For any given c ą 0 and a given sequence t(yk, yl)u satisfying
(
}yk}

2 + }yl}
2) 1

2 ď c, the
sequence of function t∇θp`kl(yk, yl,θ) : kl P Ac

εu is equicontinuous on any open subset
A of Θ.
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A.6 For all variables Vkl satisfying 1
|Ac

ε|

ř

klPAc
ε

V2
kl = Op(1), we have

1
|Ac

ε|

ÿ

klPAc
ε

1klωklVkl(θ)´
1
|Ac

ε|

ÿ

klPAc
ε

Vkl(θ) = Op

(
nI
´ 1

2

)
with respect to design probability π.

A.7 For all ε ą 0, there exists a δ ą 0 such that

inf
tθPΘ:}θ´θ0}ěεu

›

›

›

›

EYπ

[
1
|Ac

ε|
∇θp`s(θ)

] ›
›

›

›

ą δ.

then
pθn

p
ÝÑ θ0

with respect to model-design probability Yπ.

I proceed the same way as before to argue the sample weighted pairwise likelihood
estimator is consistent by establishing a uniform law of large numbers (ULLN) on a
compact set.

Lemma 5.33. With the same conditions A.1 – A.6 as in Theorem 5.32, then one has

sup
θPΘ

›

›

›

›

1
|Ac

ε|
∇θp`s(θ)´EYπ

[
1
|Ac

ε|
∇θp`s(θ)

] ›
›

›

›

p
ÝÑ 0 (5.19)

with respect to design-model probability Yπ.

Proof. Using Theorem 5.26, this can be done exactly the same as Lemma 3.9.

I now proceed to the proof of Theorem 5.32.

Proof. This can be done exactly the same as Theorem 3.8. I omit the detail.
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5.9 Asymptotic normality

I am ready to state the weighted pairwise likelihood estimator is asymptotical normal
under a Matérn spatial random intercept model. Essentially, there is nothing new here.

Theorem 5.34. Let Y = (Y1, ¨ ¨ ¨ , YN)
T follow a Matérn spatial random intercept model. In

addition, assume the following regularity conditions,

A.1 Let U2
8 Ă R2m be a countable infinite set such that there exists a δ ą 0 such that

ρ(kl, k1l1) ě δ for kl, k1l1 P U2
8.

A.2 Let tU2
N Ă U2

8 : N P Nu be a sequence of finite population with |U2
N| Ñ 8 as N Ñ 8

and tS2
N Ă U2

N : N P Nu be a sequence of finite sample with |S2
N| Ñ 8 as N Ñ 8.

A.3 Θ is a compact subset of Rp and θ0 is an interior point of Θ.

A.4 Let hkl(yk, yl) = sup
tθPΘu }∇p`kl(θ)}. Suppose there exists a δ ą 0 such that sup

tkluEYh2+δ
kl ă

8.

A.5 For any given c ą 0 and a given sequence t(yk, yl)u satisfying
(
}yk}

2 + }yl}
2) 1

2 ď c, the
sequence of function t∇θp`kl(θ)u is equicontinuous on any open subset A of Θ.

A.6 For all variables Vkl satisfying 1
|Ac

ε|

ř

klPAc
ε

V2
kl = Op(1), one has

1
|Ac

ε|

ÿ

klPAc
ε

1klωklVkl ´
1
|Ac

ε|

ÿ

klPAc
ε

Vkl = Op

(
nI
´ 1

2

)
with respect to design probability π.

A.7 For all ε ą 0, there exists a δ ą 0 such that

inf
tθPΘ:}θ´θ0}ěεu

›

›

›

›

EYπ

[
1
|Ac

ε|
∇θp`s(θ)

] ›
›

›

›

ą δ.

A.8 Let gkl(yk, yl) = sup
tθPΘu }∇2

θθp`kl(θ)}. Suppose there exists a δ1 ą 0 such that sup
tklPAc

εu
EYg2+δ1

kl ă

8.
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A.9 For any given c ą 0 and a given sequence t(yk, yl)u satisfying
(
}yk}

2 + }yl}
2) 1

2 ď c, the
sequence of function t∇2

θθp`kl(yk, yl,θ) : kl P Ac
εu is equicontinuous on any open subset

A of Θ.

A.10 For any variable Vkl satisfies the following conditions,

(a) 1
|Ac

ε|

ř

klPAc
ε

1klωklVkl(θ) = O(1).

(b) lim |Ac
ε|σ

2
π ą 0, where σ2

π = Varπ

[
1
|Ac

ε|

ř

klPAc
ε

1klωklVkl(θ)
]

.

then

σ´1
π

 1
|Ac

ε|

ÿ

klPAc
ε

1klωklVkl(θ)´
1
|Ac

ε|

ÿ

klPAc
ε

ωklVkl(θ)

 D
ÝÑ N(0, I)

with respect to design probability π.

A.11 lim |As
ε|Jπ ą 0 and lim |Ac

ε|JY ą 0, where Jπ(θ) = Varπ

[
1
|Ac

ε|
∇θp`Ms(θ)

]
and JY(θ) =

VarY

[
1
|Ac

ε|
∇θp`Mc(θ)

]
.

A.12 Assume lim |As
ε|

|Ac
ε|
= ζ, where ζ P [0, 1].

then

Jπ(θ0)
´ 1

2 H(θ0)(pθn ´ θ0)
D
ÝÑ N

(
0, I + ζ

[
(lim |Ac

ε|Jπ(θ))
´1 (lim |Ac

ε|JY(θ))
])

, (5.20)

where

H(θ) = EYπ

[
´

1
|Ac

ε|
∇2
θθp`s(θ)

]
,

Jπ(θ) = Var
π

[
1
|Ac

ε|
∇θp`s(θ)

]
,

JY(θ) = Var
Y

[
1
|Ac

ε|
∇θp`c(θ)

]
.

In particular, if the sampling fraction is small, then

Jπ(θ0)
´ 1

2 H(θ0)(pθn ´ θ0)
D
ÝÑ N (0, I) . (5.21)

Proof. This essentially reduces to the same argument as Theorem 4.25. I omit the detail.
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6 Future work

In this chapter, I want to mention briefly what is more to be done. I will concentrate on
computational aspects of variance estimation and prediction (or estimation) of random
effect.

As shown in section 4.9 and 4.10, I get consistent estimation under complex sampling
for the weighted pairwise likelihood estimation. However, sandwich variance estimator
underestimates the variance. I believe this is due to the small simulations replicate and
sample size. Of course, one really needs a simulation to show this. It is impractical to
run a large simulation using current codes. Therefore computational method needs to
be improved in the future. I believe this would be feasible such as writing all the codes
in C to optimise the performance, but this is just a pain.

I have not talked about how to make a prediction (or estimation) of random effects in
this thesis. This is not because this is unimportant. I believe this is a very hard problem,
and it is not clear how to construct a solution. More explicitly, there are two problems in
here. First, from 3.1, one pair of observation does not make random effects bi identifiable.
Secondly, suppose the random effects bi is identifiable, then one gets different prediction
of random effect for each pairs. It is not clear how to construct a single prediction of
random effect from those.

Computation for generalized linear mixed models is also difficult because the stan-
dard approach of Laplace approximation or adaptive Gaussian quadrature requires esti-
mation of the random effects to determine quadrature points.
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7 Appendix I: elementary result

In this chapter, I recall some basic results, techniques or notation that will be used thor-
ough in this thesis. I only state the results, as the proof can be found in many standard
textbooks (Van der Vaart, 2000; Shao, 2003; Brockwell and Davis, 2013; Durrett, 2010;
Kallenberg, 2006; Simon et al., 2015).

7.1 Basic notation and definition

Let θ P Θ Ă Rp, define

∇θ =
(
B

Bθ1
, . . . ,

B

Bθp

)T

,

∇2
θθ =

(
B

Bθ1
, . . . ,

B

Bθp

)T (
B

Bθ1
, . . . ,

B

Bθp

)

=


B2

Bθ2
1

¨ ¨ ¨ B2

Bθ1Bθp
... . . . ...
B2

BθpBθ1
¨ ¨ ¨ B2

Bθ2
p

 .

Define
Ck(Θ) = t f : Θ Ñ R : f is k times continuously differentiableu.

Definition 7.1. Let x P Rp, I define the Euclidean norm of x to be

}x} =
(

x2
1 + x2

2 + ¨ ¨ ¨+ x2
p

) 1
2 .

Definition 7.2. Let X = (xij)i,j=1,¨¨¨ ,p be a pˆ p matrix. Define the norm of X to be

}X} =

 p
ÿ

i,j=1

x2
ij

 1
2

. (7.1)

Definition 7.3. Let A, B Ă Rp, I define the distance between A and B to be

dist(A, B) = inft}a´ b} : a P A, b P Bu.
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Definition 7.4. Let x P Rp and ε ą 0. Define ε-ball to be

Bε(x) = ty P Rp : }y ´x} ă εu.

Definition 7.5. Let A be a bounded subset of Rp, I define the diameter of A by

diam(A) = supt}x´ y} : x, y P Au.

Definition 7.6. Let tXnunPN and tYnunPN be a sequence of random variables. We say
Xn = Op(Yn) if there exists a c ą 0

lim sup
nÑ8

P

(
|Xn|

|Yn|
ě c
)
= 0.

Definition 7.7. Let tXnunPN and tYnunPN a sequence of random variables. We say Xn =

op(Yn) if for all c ą 0

lim
nÑ8

P

(
|Xn|

|Yn|
ě c
)
= 0.

Definition 7.8. Let tXnunPN be a sequence of random variables. Xn
D
ÝÑ X if for all

bounded continuous functions f

lim
nÑ8

E [ f (Xn)] = E [ f (X)] .

Definition 7.9. A sequence of random variables tXn(θ)unPN is said to be equicontinuous
if for all ε ą 0, there exists a δ ą 0 such that if }θ1 ´ θ2| ď δ, then

sup
nPN

}Xn(θ1)´ Xn(θ2)} ď ε.

Definition 7.10. Let X be a random variable. Then the characteristic function of X is
defined to be

φX(t) = E [exp(itX)] .

Definition 7.11. Let (X, d) be a metric space and let A Ă X, A is totally bounded if for
every ε ą 0, it can be covered by finitely many ε ball.

Remark. Let (X, d) be a metric space and let A Ă X. A is compact iff A is totally
bounded and complete.
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7.2 Basic results

Lemma 7.12. Let A and B be nonempty bounded subsets of R, then

(i) sup A = ´ inf(´A), where ´A = t´a : a P Au.

(ii) If c ą 0, sup cA = c sup A, where cA = tca : a P Au.

(iii) sup(A + B) = sup(A) + sup(B), where A + B = ta + b : a, b P Au.

Lemma 7.13. Let X be a random variable, then

(i) supθPΘ E [X] ď E
[
supθPΘ X

]
.

(ii) infθPΘ E [X] ě E [infθPΘ X].

Lemma 7.14 (Hölder’s Inequality). Let p ą 1, q ą 1 such that 1
p +

1
q = 1, then

E [|XY|] ď (E [|X|p])
1
p (E [|Y|q])

1
q .

Lemma 7.15 (Cauchy-Schwartz Inequality).

E [|XY|] ď
(

E
[
|X|2

]) 1
2
(

E
[
|Y|2

]) 1
2 .

Lemma 7.16 (Markov’s Inequality). Let X be a non-negative random variable such that E [X] ă

8 and let c ą 0, then

P(X ě c) ď
E [X]

c
.

Lemma 7.17 (Chebyshev’s Inequality). Let X be a non-negative random variable such that
E [X] ă 8 and let c ą 0, then

P(|X ´EX| ě c) ď
1
c2 Var [X] .

Theorem 7.18 (Taylor’s Theorem). Let θ0 P Rp and let rn be a sequence of vector in Rp such
that limnÑ8 rn Ñ 0. Let tθnunPN be a sequence of random vectors such that θn´θ0 = Op(rn).
Suppose f : Rp Ñ R is C2 differentiable, then

f (θn) = f (θ0) +∇X f (θ0)(θn ´ θ0)
T + op(rn).
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Theorem 7.19 (Slutsky’s Theorem). Let Xn
D
ÝÑ X and Yn

p
ÝÑ c, where c is a constant, then

(i) Xn + Yn
D
ÝÑ X + c.

(ii) XnYn
D
ÝÑ cX.

(iii) Y´1
n Xn

D
ÝÑ c´1X.

Theorem 7.20 (Continuous Mapping Theorem). Let Xn be a sequence of random variable
such that Xn

p
ÝÑ X and g is continuous function, then g(Xn)

p
ÝÑ g(X).

Theorem 7.21 (Cramer-Wold Theorem). Let Xn be a sequence of Rp-dimensional random
vector, then

Xn
D
ÝÑX ðñ aTXn

D
ÝÑ aTX for all a P Rp.

Theorem 7.22. A random vector (X1, . . . , Xn)T is a multivariate normal random vector iff

a1X1 + ¨ ¨ ¨+ aNXN

is a normal random variable for all a1, ¨ ¨ ¨ , aN P R.

Theorem 7.23 (Lévy’s Continuity Theorem). Let tXunPN be a sequence of random variables
with characteristic function tφXn(t)unPN.

(i) If Xn
D
ÝÑ X, then φXn(t)Ñ φX(t) for all t.

(ii) If φXn(t)Ñ φX(t) for all t and φX(t) is continuous at t = 0, then Xn
D
ÝÑ X.

Theorem 7.24 (Dominated Convergence Theorem). Let tXnunPN be a sequence of random
variables such that Xn

p
ÝÑ X. Suppose there exists a random variable Y such that |Xn| ď Y and

E [|Y|] ă 8, then limnÑ8E [Xn] = E [X].

Theorem 7.25. X and Y are independent iff for all bounded continuous functions f , g,

E [ f (X)g(Y)] = E [ f (X)]E [g(Y)]
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Tillé, Y. and Matei, A. (2009), ‘Sampling: survey sampling’, R Package Version 2. 125

Van der Vaart, A. W. (2000), Asymptotic Statistics, Vol. 3, Cambridge University Press. 52,
56, 189

Varin, C., Reid, N. and Firth, D. (2011), ‘An overview of composite likelihood methods’,
Statistica Sinica pp. 5–42. 3

Wedderburn, R. W. (1974), ‘Quasi-likelihood functions, generalized linear models, and
the gaussnewton method’, Biometrika 61(3), 439–447. 44

198



Xu, X. (2012), Aspects of composite likelihood estimation and prediction, PhD thesis,
University of Toronto (Canada). 62

Yi, G. Y., Rao, J. and Li, H. (2016), ‘A weighted composite likelihood approach for anal-
ysis of survey data under two-level models’, Statistica Sinica 26, 569–587. 3, 8, 13, 60,
61, 66, 68, 75, 80

Zeger, S. L., Liang, K.-Y. and Albert, P. S. (1988), ‘Models for longitudinal data: a gener-
alized estimating equation approach’, Biometrics pp. 1049–1060. 50

199


	Introduction
	Example: Hispanic Community Health Study/Study of Latinos
	Example: Diabetes
	Example: School and area
	Thesis outline

	An introduction to complex sampling
	Design-based approach
	Basic notation
	Poisson sampling
	Simple random sample without replacement (SRSWOR)
	Stratified sampling
	Two-stage sampling

	Model–based approach
	Conditional model
	Linear mixed model 
	Marginal model
	Quasi-likelihood
	Generalized Estimating Equation (GEE)

	Relationship between marginal and conditional model

	Model–design–based approach
	Asymptotic setting
	Informative sampling
	Full-likelihood approach
	Weighted estimating equation


	Maximum pseudo-likelihood
	Motivation
	Setting
	Pairwise composite likelihood estimation without complex sampling
	Weighted pairwise composite likelihood estimation with complex sampling
	Construction
	Consistency
	Variance estimation
	Yi's approach
	Jacknife variance estimation


	When sampling and model clusters are not the same
	Setting: design
	Setting: model
	Consistency
	Asymptotic normality
	Variance estimation
	Empirical variance estimation

	Consistency of empirical variance estimation: the sampling clusters are the model clusters
	Example: Poisson sampling design
	Example: SRSWOR sampling design

	Consistency of empirical variance estimation: the sampling clusters are not the same as the model clusters
	Example: Poisson sampling design
	Example: SRSWOR sampling design

	Model-based variance estimation
	Simulation: Random intercept model
	Model
	Basic notation 
	Design: stratified sampling 
	Design: two-stage SRSWOR 
	Design: two-stage Poisson 

	Simulation: Random slope model
	Model
	Design: stratified sampling 
	Design: two-stage SRSWOR
	Design: two-stage Poisson 


	Matérn spatial model 
	Introduction
	Setting: design 
	Alternative approaches on model
	Why not Gaussian Markov Random Fields (GMRF)?
	Why not marginal models under a mixing conditions?

	Matérn covariance function 
	Setting: Matérn spatial random intercept model 
	Pointwise Law of Large Numbers
	Central Limit Theorem
	Consistency
	Asymptotic normality

	Future work
	Appendix i: elementary result
	Basic notation and definition
	Basic results

	References



