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Abstract

The generalised linear mixed models (GLMM) is one of the most important tools
for analysing clustered data. One of the main feature of clustered data is observa-
tional units within the same cluster are correlated, though observational units from
different clusters may be independent. The random effects in the GLMM are used to
model this correlation.

The random effects in the GLMM are unobservable. Writing down an exact ex-
pression for the marginal likelihood from the GLMM involves a high dimensional
integral and so is intractable when the dimension of the random effects is large.
There are two different approaches to handle this problem in the literature. First, ap-
proximate the integral directly by the Laplace’s method (Breslow and Clayton, 1993;
Pinheiro and Chao, 2006). Secondly, approximate the integrand or joint density by
the lower dimensional object such as the product of marginal density or conditional
density. This is also called the pseudo-likelihood estimation (Besag, 1974). Typically,
one cannot even write down the marginal likelihood explicitly. So the Laplace’s
method doesn’t apply here. But one can still use the pseudo-likelihood.

Under various regularity conditions, the consistency and asymptotic normality of
the pseudo-likelihood estimator have been established using generalised estimating
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equations (GEE). There are many ways to construct the pseudo-likelihood (Lindsay,
1988; Varin et al., 2011). In this thesis, I work exclusively with the pairwise composite
likelihood as it is the simplest pseudo-likelihood construction that still captures the
pairwise correlation structure.

I am interested in the weighted pairwise composite likelihood under complex
sampling. Complex sampling is typically informative (Pfeffermann, 1996). One has
to add weights in the pairwise likelihood to account for informative sampling, usu-
ally chosen to be the inverse sampling inclusion probability. Rao et al. (2013); Yi
et al. (2016) considered the weighted pairwise likelihood for two-stage samples in
the special case when the sampling clusters are the model clusters. They established
consistency of the weighted pairwise composite likelihood estimator and suggested
a variance estimator.

In this thesis, I continue the study of the weighted pairwise composite likeli-
hood estimator in complex sampling initiated in Rao et al. (2013); Yi et al. (2016).
More precisely, my goal is to extend the asymptotic results of the weighted pair-
wise likelihood estimators to the case when the sampling clusters are not the same
as the model clusters. In particular, the consistency and asymptotic normality of
the weighted pairwise likelihood estimator are established. Furthermore, I show the
empirical variance estimator is consistent. This is surprisingly more difficult than it
first seems. It is complicated by the structure of the sampling design, where pairs
in the same model clusters might not be in the same sampling clusters. I present
simulation results examining the performance of the weighted pairwise likelihood
estimators for a random intercept model and a random slope model under various
two-stage sampling designs.

Finally, the random effects in the mixed model could potentially be correlated as
in spatial statistics. My goal in here is to keep extending the asymptotic properties
of the weighted pairwise composite likelihood estimator under the Matérn spatial
random intercept model. More precisely, I establish consistency and asymptotic nor-
mality of the weighted pairwise likelihood estimator under that setting.

Thesis Supervisor: Professor Thomas Lumley



Acknowledgments

It is a pleasure to thank my supervisor Prof. Thomas Lumley for answering my numer-
ous questions. His insight and input were invaluable.

The financial support of the Marsden Fund of New Zealand Royal Society and Uni-
versity of Auckland Doctoral Scholarship Extension is gratefully acknowledged.



Contents

1 Introduction

1.1 Example: Hispanic Community Health Study/Study of Latinos . . . . . . .
1.2 Example: Diabetes . . .. ... ... ... ... ... ... ... ... . ...
1.3 Example: Schoolandarea . . ... ... ....... ... ... ......
14 Thesisoutline . . . ... ... .. ... . ... o
2 An introduction to complex sampling

2.1 Design-based approach . .. .. ....... .. ... .. ... .. ... ...
211 Basicnotation . . . ... ... ... .. oo
212 Poissonsampling . . . .. ... ... . o oo
2.1.3 Simple random sample without replacement (SRSWOR) . . . . . ..

214 Stratified sampling . . . . ... ... Lo oo oo
215 Two-stagesampling . .. ... ....... ... ... ... ......

2.2 Model-based approach . . . ... ...... ... ... .. .. . ..
221 Conditionalmodel . . ... .. ... ... oo o
222 Linearmixedmodel . ... ... ... ... ... ... . ...

223 Marginalmodel . . . . ... ... oo o
2.2.3.1 Quasi-likelihood . . . . . . ... ... ... ... .

2.23.2 Generalized Estimating Equation (GEE) . . ... ... ...

224 Relationship between marginal and conditional model . . . . . . ..

2.3 Model-design-based approach . . . ... ... ... ... ... .. ... ...
231 Asymptoticsetting . . . . ... ... oL oo
23.2 Informative sampling . . ... ... . ... ... ... .. ... ...
2.3.3 Full-likelihood approach . . .. ... ... . ... ... .......
234 Weighted estimating equation . .. ... ................

3 Maximum pseudo-likelihood

31 Motivation . . . . . ... L
32 Setting . ... ... e



3.3 Pairwise composite likelihood estimation without complex sampling . . . . 61
3.4 Weighted pairwise composite likelihood estimation with complex sampling 63

341 Construction . .. ..... ... ... . ... . oo 63
342 Consistency . .. ... ... ... e 66
343 \Variance estimation . . ... ... ... ... . .00 oL 75
344 Yi'sapproach . ... ... . ... ... ... oo 80
3.4.5 Jacknife variance estimation. . . . . ... ... ... ... ... 82
When sampling and model clusters are not the same 83
41 Setting:design. . .. ... ... ... .. e 83
42 Setting:model . . .. ... L 88
43 Consistency . . ... .. .. . .. e 91
44 Asymptoticnormality . ... ... ... . .. o o 93
4.5 Variance estimation . . . . . ... ... Lo o o 99
451 Empirical variance estimation . . ... ... ... ... .. .. ..., 99
4.6 Consistency of empirical variance estimation: the sampling clusters are
themodel clusters. . . . . ... ... ... .. ... . 104
4.6.1 Example: Poisson sampling design . . . . ... ... ......... 105
4.6.2 Example: SRSWOR sampling design . . . ... ... .. ....... 107
4.7 Consistency of empirical variance estimation: the sampling clusters are
not the same as the model clusters . . . ... .................. 112
471 Example: Poisson sampling design . . . .. ... ... . ... .... 112
472 Example: SRSWOR sampling design . . . ... ... ......... 114
4.8 Model-based variance estimation . . . . .. ... ... . o0 0oL 124
4.9 Simulation: Random intercept model . . . ... ... ... ... .. L. 125
491 Model .. ... .. . 125
492 Basicnotation ... ........ ... o oo 128
49.3 Design: stratified sampling . . .. ... ... ... ... .. ... ... 131
494 Design: two-stage SRSWOR . . .. ... ... ... ... .. ..... 138
495 Design: two-stage Poisson . . . .. ... ... 00000 142
410 Simulation: Random slope model . . . ... ... ... ... ... .. ..., 146
4101 Model . . ... ... 146



4.10.2 Design: stratified sampling . . . .. ... ...... ... .. ....
4.10.3 Design: two-stage SRSWOR . . . . . . ... ... ... ... ...
4.10.4 Design: two-stage Poisson . . . . . ... ... ..o

5 Matérn spatial model

51 Introduction . ... ... ... ...
52 Setting:design . . ... ... L Lo
5.3 Alternative approachesonmodel . . . . .. ... ... ... ... ...

5.3.1 Why not Gaussian Markov Random Fields (GMRF)? . . . .. .. ..

53.2 Why not marginal models under a mixing conditions? . . . . . . ..
54 Matérn covariance function . . . ... ... oo oL
5.5 Setting: Matérn spatial random intercept model . . . . . ... ... ... ..
5.6 Pointwise Law of Large Numbers . . . . ... .. ... ... ... . ....
57 Central Limit Theorem . . . . . . ... ... ... . . ... ...
58 Consistency . . . .. ... . ... e
59 Asymptoticnormality . ... .. ... ... . . o Lo

6 Future work

7 Appendix I: elementary result
7.1 Basic notation and definition . . . . . . . . ... ... .
72 Basicresults . . . . . . . .. e

8 References

164
164
164
164
165
166
168
171
173
179
184
186

188

189
189
191

193



1 Introduction

I want to fit a mixed model to a population distribution, but I only have data from a com-
plex (multi-stage) sample. The sampling is informative, that is, the model holding for
the (biased) sample is different from the model holding for the population (Pfeffermann,
1996). Ignoring the sampling design and just fitting the mixed model to the sample dis-
tribution will lead to biased inference. Although both the sampling and model involve
“clusters”, the sample clusters and model clusters need not be the same in general. In
addition, the random effects could potentially be correlated over space or time.

I would like to comment on the difference between the sampling clusters and model
clusters. The sampling clusters can be thought of the primary sampling units (PSU)
in the sampling design and the model clusters can be thought of a fibre (or inverse
image) of the random effects. More precisely, the random effect is defined on the set
of model clusters and two distinct model clusters are assigned different value of the
random effects.

Closely related are Pfeffermann et al. (1998); Pfeffermann and Sverchkov (1999, 2003);
Rabe-Hesketh and Skrondal (2006); Pfeffermann and Sverchkov (2009), who proposed
various sample weighted likelihoods, and the more recent papers by Rao et al. (2013); Yi
et al. (2016), who proposed the weighted pairwise likelihood estimation to such problem
under the assumption the sampling clusters are the model clusters and random effects
are independent. My main interest is to extend the weighted pairwise likelihood to the
case:

(i) when the sampling clusters are not the same as the model clusters.

(ii) when the random effects could potentially be correlated.

and works out what can we say about variance estimation under those setting.
I start by considering some examples where these conditions apply.

1.1 Example: Hispanic Community Health Study/Study of Latinos

The Hispanic Community Health Study/Study of Latinos (HCHS/SOL) is a genetic co-
hort study of the US Hispanics/Latinos conducted by the National Heart, Lung, and
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Blood Institute (National Heart, Lung, and Blood Institute, 2010; Conomos et al., 2016).
The purpose of the HCHS/SOL is to identify the risk factors associated with cardiovas-
cular disease for Hispanic/Latinos in the US. The risk factors they measured included
approximately 10° genetic variants (SNP).

I want to fit a linear mixed model for the effects of ancestry A and a genetic variant
X on the trait Y with genetic relatedness b as a random effect. More precisely, let
Y = (Yq,...,YN)T be the vector of trait (say blood pressure) for the finite population
u={1, N} Let A = (Aj,...,An)T be the vector of ancestry data and let X =
(X1, ... XN)T be the vector of genotypes. Let € = (e1,...,ex)T be a random error with

~ N(0,0°I).

Consider a random intercept mixed model

Yk == ,30 + ﬁlAk + ﬁZXk + bk + €k,

b ~ N(0,7°D), D

where b = (by, .. .,bN)T is an unobserved genetic random effect. Some of by in b are
correlated because of genetic relatedness. More precisely, T2 is a genetic variance due to
genetic effect and D is a matrix of empirical measure of pairwise kinship relatedness,
i.e.,, Dy = 2 if k and [ are self-identical twins, Dy; = 1 if k and [ are parent and child,
or brother, Dy, = % for grandparent/grandchild, anti/uncle, and Dy; = 0 otherwise.
Observe the variance of the blood pressure can be decomposed into two parts: genetic
variance component T2 and non-genetic variance o2. The parameters I want to estimate
are 0 = (Bo, p1, B2, 0%, ).

The sampling in HCHS/SOL is based on geographical region. More precisely, sam-
pling is given by a three-stage design: census block group, household and people (Sorlie
et al,, 2010). In particular, the sampling clusters are the objects corresponding to the
census block group and household.

The sample data one has arisen from a two phase process:

(i) First-phase: the population data (i.e., all Hipanic/Latino people in the US) are
regarded as a realisation of the model 1.1.

(ii) Second-phase: the sample data (i.e., 16415 observational units (LaVange et al.,



2010)) are drawn from the population data by complex sampling (i.e., three-stage

sampling design).
Observe the sampling clusters are geographic region (i.e., census block group and house-
hold) and the model clusters are genetic relatedness (i.e., kinship relatedness). They are
not the same. More specifically, some people in the same household are unrelated (e.g.,
spouses); some people in different households are related. There is no literature work to
handle this setting. In fact, I will not solve this problem completely in this thesis, as this
is the three-stage sampling design. For what I have to do in this thesis, I only consider
the two-stage sampling design when the sampling clusters are not the same as the model
clusters. But the three-stage sampling design should be a straightforward extension of
my approach.

Remark. One could fit a ordinary linear regression using sampling weights
Yie = Bo + P1Ak + P2 Xy + €,

even though the errors €, are correlated. The least squares estimator for o, 1 and
B2 is consistent and asymptotically unbiased. However, the least squares estimator is an
inefficient estimator. In fact, the loss of information is substantial in the HCHS/SOL. This
result is due to HCHS/SOL Genetics Coordinating Centre (Thomas Lumley’s personal
communication).

1.2 Example: Diabetes

The map of estimates of the Percentage of Adults with Diagnosed Diabetes in the Figure
1.1 is based on a survey conducted by the Behavioural Risk Factor Surveillance System
(BRFSS) in Centers for Disease Control and Prevention (CDC) (Centers for Disease Con-
trol and Prevention (CDC), 2007). The sample and model clusters in here are counties.

Let Yj, be the diabetes status for person k in county i, i.e., Yj; = 1 if the person k in
county i has diabetes and 0 otherwise. Define p;; = Ey[Yj]|. Let Xj be the age group
variable and let b; be an age-adjusted county level unobserved random effect.

Consider a logistic random intercept mixed model

Yik|pik ~ Bernoulli(pi),

. (1.2)
logit(pix) = Bo+ B1Xi +bi,

10



County-Level Diabetes Prevalence, 2007
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Figure 1.1: Estimates of Percentage of Adults with Diagnosed Diabetes (Centers for
Disease Control and Prevention (CDC), 2007).

where the random effects b; ~ N(0, 72). Note the random effects b; for different counties
are independent. This is a standard setting considered in the literature.

However, the problem with the logistic random intercept model 1.2 is that there is
a sudden jump of the percentage of diabetes p;, across the boundary between different
counties as shown in the Figure 1.1. More explicitly, pick a point on the boundary and
draw an e-ball around that point, no matter how small € is, pj differs significantly on
that e-ball. One needs to modify the model assumption that the random effects b; are
independent.

What I want to do in here is to model the the spatial covariance structure, which
could be useful for smoothing the random effect b;. In chapter 5, I will study the Matérn
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spatial model.

1.3 Example: School and area

This is an example raised by J.N.K. Rao in the discussion section of Pfeffermann et al.
(1998) which still remains open. Let me start by introducing the setting.

I want to fit a linear mixed model for an individual variable such as the effects of
atttendence rate X;; and the school effects b; on student’s math score Yj; for student k
in school i. The model clusters are schools, i.e., students in the same school should be
positive correlated and students from different schools should be independent.

Consider a linear mixed model

Yilbi ~ N(Bo+ B1Xix + b, 0?),

b; ~ N(0,72). (1.3)

The parameter one wants to estimate is @ = (B, B1,02, 7>)T. Note the population data
are regarded as a realisation of the model 1.3.

The sample data are drawn from the population by a two-stage sampling design
based on geographic region. Consider the following two-stage sampling design, area is
the primary sampling units (PSU) and students within that areas are the secondary sam-
pling units (SSU). Observe the sampling clusters (i.e., area) are not the same as the model
clusters (i.e., school). Some people in the same area can go to different schools; some
people in the same school can go to different area, i.e., each student could be nested in a
different sampling clusters and model clusters.

The problem one has in here is much simple compared with the problems in the
HCHS/SOL, since the sampling design is just a two-stage sampling design. In chapter
4, I will study the weighted pairwise likelihood approach to such problem in detail and
analysis the properties of the weighted pairwise likelihood estimator.

12



Two-stage model for the population model
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Figure 1.2: School and area.

1.4 Thesis outline

The purpose of this thesis is to analyse the asymptotic properties of the weighted pair-
wise composite likelihood estimators for a general two-stage sampling. My approach is
drawn from Yi et al. (2016); Rao et al. (2013). There are five chapters in this thesis.

In chapter 2, I briefly give an introduction to complex sampling from both design and
model perspective. Various sampling design such as Poisson, simple random sampling
without replacement (SRSWOR), stratified sampling, two-stage sampling will be consid-
ered. In addition, one needs to introduce the mixed model to account for correlation in
the population. I will also review some well-known results and techniques that will be
used in this thesis.

In chapter 3, I review the key results from Rao et al. (2013); Yi et al. (2016) in the
setting of the two-stage sampling where the sampling clusters are the model clusters.
More precisely, I am going to present proof done by Yi et al. (2016) in detail, which is
a starting point in the literature of the weighted pairwise likelihood estimation under
complex sampling. In particular, the consistency and variance estimator of the weighted
pairwise likelihood estimator wil be established.
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Chapter 4 is the main contribution of this thesis. In chapter 4, my main interest is to
extend the previous results to the case when the sampling clusters are not the same as
the model clusters. Essentially, the same proof with minor modification will yield the
weighted pairwise likelihood estimator is a consistent estimator, but proving consistency
of the empirical variance estimator is surprisingly more difficult than it first seems and
requires a new approach. It is complicated by the structure of the sampling design,
where pairs in the same model clusters might not be in the same sampling clusters.
I also conduct a simulation study examining the performance of the naive maximum
likelihood, pairwise likelihood and weighted pairwise likelihood estimator as well as
the empirical variance estimator.

In chapter 5, my interest is to keep extending the asymptotic results of the weighted
pairwise likelihood estimator to the case when the random effects could be correlated.
More precisely, I establish consistency and asymptotic normality of the weighted pair-
wise likelihood estimator under the Matérn spatial random intercept model.

14



2 An introduction to complex sampling

In this chapter, I outline some basic techniques or terminologies used in complex sam-
pling: design-based estimation, Horvitz-Thompson estimator, super-population model,
conditional model, marginal model, informative sampling and asymptotic limit. Essen-
tially, all the terms are standard in the literature and material in here can be found in
many textbooks (Fuller, 2011; Cochran, 2007; Cassel et al., 1977; Sarndal et al., 1978, 2003;
Demidenko, 2013; Song, 2007; Jiang, 2007; Ardilly and Tillé, 2006; Hall, 2005; Grace, 2016;
Kim and Shao, 2013).

Roughly speaking, complex sampling involves multi-stage sampling, unequal sam-
pling probability and stratification. There are three approaches for analysing data gen-
erated from complex sampling;:

(i) Design—based approach.
(i) Model-based approach.

(iii) Model-design-based approach.

In all of the following, I will take the model-design-based approach. The goal in the
model-design-based approach is to construct estimator which incorporates the feature
of the sampling design to estimate unknown parameters @ from the super-population.

2.1 Design-based approach

In this section, I will introduce Horvitz-Thompson(HT) estimator and various sampling
design such as Poisson, simple random sampling without replacement (SRSWOW)), strat-
ified sampling, two-stage sampling.

2.1.1 Basic notation

In the design-based setting, the sample data are drawn from a fixed finite population
of size N. For notational convenience and without loss of generality, I will identify the
elements of population U by the numbers 1,...,N, ie, U = {1,2,...,N}. An element k
in the population U is called an observational unit.

15



Let y be a response variable. It is assumed to be a fixed unknown constant unless ob-
servational unit k is already in the sample S. Now I want to introduce probability model
to describe how the sample data are drawn from the population. Note the population
itself is not considered as random.

Definition 2.1. Let F be the set of all subsets of U and let I be a probability on measure
space (U, F), i.e.,

P:F—[0,1]
A P(A).

Then P is called the design measure.

The first-order, second-order, fourth-order and eighth-order sampling inclusion prob-
ability are important characteristics for design measure IP. More precisely,

Definition 2.2. Given a design measure PP, the first-order, second-order, fourth-order and
eighth-order sampling inclusion probability are defined to be

T = 2 ]P(A),

{AeF:keA}

=), P(A),

{AeF:kleA}

Tkl = Z ]P(A),
{AeF k1K 'eA}

nklk/l/k//l//k///l/l/ == Z :[P(A),
ATk LK1 K" 17 K 1me A}

where k, 1K', I, k"1, k" 1" € U.

Remark. Observe 7ty = 7 and 7ty = 7. Similarly, 7ty is invariant under permuta-
tionof k, I, k', I.

Remark. Note one needs the fourth-order sampling inclusion probabilities 7ty to be
known explicitly for the empirical variance estimator, and needs assumptions on the
eighth-order ones (more about this in chapter 3 and 4).

16



It is more convenient to work with the sample indicator function 14 instead of design
measure P. In all of the following, I denote the sample by S, which is an element of F
generated from the design measure IP.

Definition 2.3. Let k € U, the sample indicator function is defined to be 1y = 1yjcg)-
Remark. Note the sample indicator function is random from design perspective.

Remark. I will use the following notation:

T = 1kly,
Ty = Ll 11y,

1klkll/k/ll/lkl//l/// = 1k1[ 1kllll 1kll 11[/ 1k//l 1l/ll .

Henceforth, I denote the expectation with respect to the sampling design by E,
variance by Var; and covariance by Cov,. Define

Ay = Cov (1, 1)
forall k,1 € U.
Lemma 2.4. The sample indicator function 1 has the following properties:
(i) Ex(1g) = .

(i) Br(ly) = mg-

(iii) Vary (1) = m(1 — 7).

(iv) Ny = 100 — 17T
Proof. Obvious. L
Definition 2.5. Define the sample size to be n = >, ; 1.
Remark. For some design, the sample size n will be a random variable.

Lemma 2.6. The sample size n has the following properties:

17



) Ex(n) = yen Ex(1y)
(ii) Var?'f(n) - Zkeu Zleu Ag-

Proof. (i) follows directly from the definition of n, i.e., n = > ;; 1x. To prove (ii), observe

Var(n) = Var (Z 1k>

kel
r 2
=Eq | > Lk—Ex | )] 1k”
LkeU kel
r 2
=Ex | ) (L~ Exly)
Lkel
=Ex | D) D (L —Exly) (1 — Exl))
LkeU leU
= > D2 B [y = LR (1) — Br[141) + Bx 1] Ex [1]]
kel lelU
= Z Z [Er [1i] = Ex [1e] Ex [1,]]
kel lelU
- ¥
kel leU

Lemma 2.7. For a fixed sample size design, then
(@) Ykeu 2eu Bn(la) = n’,
(i) 2 keu Dt = 2geu B = 0.

Proof. To prove (i), observe

PIYEa(l) = D ) () =E-(D Lk > 1)) =

kel lelU kel lelU kel leU

18



To prove (ii), observe

DA =D Bra(l) = D Br(1)Ex(1)

kel kel kel
=Ex (Z 1k11) ~En (Z 1k) Ex(1))
kel kel
= nExn(1;) — nEx (1)
= 0.
Similarly, one can show »;.;; Ay = 0. O

Definition 2.8. Define
Apaprr = CgV (L, Lpryr)
Aklk/l/k//l//k///l/// — COV (]_klk/l/, 1k//l//k///l///) .
7T
Remark. Observe
Tl = ]En [1klk’l’] ,
nklk/l/k//l//k///l/// — ]ET[ [1klk/l/k//l//k///l///] ’

Ay = Ty — T Tk,

Aklk/l/k/ll//k///l/// — ﬂklk/l/k//l/lkl//l/// - nklk/l/ nk//ll/k/l/l///.

Remark. In all of the following, I assume there exists € > 0 such that 7, > €,y >
€, Ty > €, Tk > € for all k, LK, I, K", 17, k", 1" € U, namely each unit, pair,
quadruple and octuple in the population have a positive probability to be in the sample
S.

Definition 2.9. Define the first-order, second-order, fourth-order and eighth-order weight

19



to be

1
wy = —
k 7Tk,
1
Wyl = —
TTk]
1
Wik = ’
TTkIk! 1Y

1

wklk'l’k"l”k”’l”’ =,
ﬂklklllk//l//k///l///

Remark. The first-order weight wy is interpreted as the number of observational units
in the population represented by unit k in the sample.

The goal of the design-based approach is to estimate some function of y = (y1,...,yn)T

such as the population total t = )}, ;; yx. Let us talk about the Horvitz-Thompson esti-
mator.

Definition 2.10. The Horvitz-Thompson (HT) estimator for the population total t =
> ey Yk is defined to be

t = Z 1wy
kel

Definition 2.11. Let 6, be the true value. Estimator §n is called the design-unbiased with
respect to design measure 77 if E(,,) = 6.

Lemma 2.12. The HT estimator t for the population total t has the following properties:
(i) The HT estimator t is an unbiased estimator for the population total t, i.e., B (t) = t.

(ii) The variance of t is given by

Vgr(ﬂ = Z 2 Ay (Wrykwryr) -

kel leU

(iii) An unbiased estimator for Vary () is

Varg () = Y > lgwi b (wryxwiys) -
kel leUu

20



(iv) The variance of the variance estimator \//eﬁ"n(ﬂ is

Var (Varn ) DI Ak wia Ao Moy (wiyxwryr) (wiywpyr) -
kel leU k'el l'eld

Remark. The key proofs in Chapters 3 and 4 will have a similar basic structure to Lemma
2.12.

Proof. To see this, observe

Er(t) = Ex | )] 1kwkyk] = D Ex[lwwi = )y,
kel kel kel
ng@ = Var D 1kwkyk] 22 Cov(1x, 1p) (wiykwryr) = >0 A (wiykwryr)
kel kel leU kel lelU
E, [Va\rn@] = Ex | Y] D) lnwuby (wkyszyl)]
kel leU
= > 2 Exllulwndn (k)
kel leU
= 3> B (wrykwry)
kel leU
Var [\/fa\rn@] = Var D) Tywidn (wkykwlyl)]
kel leU

=X 3> Cov (L, L) wiaBawir By (wWrykwryr) (Wi yrwryr)
kel leU kel I'eU

= 3230 D Mk @ Ay My (wWryrwryy) (wpypwpyy) -
kel leU kK'eU l'eUd

]

Lemma 2.13. For a fixed sample size design, the HT estimator t for the population total t has the
following properties:

(i) The variance of t is given by

Var = ——= Z Z Akl wkyk — (Ulyl) .
keUleU
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(ii) An unbiased estimator for Var(t) is given by

— 1
Vary(F) = ) 2D Tnwad (wry — o)
kel leU

(iii) The variance of the variance estimator \//eﬁ"n(ﬂ is

— 1
Var (Var7r®> =1 YYD AgprwnAuwir Ay (wryx — wiyn)? (weyp — wpyp)?.
kel leU kK'el l'eU

Proof. To prove (i), observe

Vgr(/t) = 2 Z A (wryrwryr)

kel leU
1
=3 PNV (w,%y,% + wiyp - 2wk:l/kw11/l>
kel lelU
1
=5 YN A (wry — wiyr)®
kel lelU

The first equality follows from Lemma 2.12. The second equality follows from Lemma
2.7,1ie.,

21 D duwiyi = 3 Wiy ) M =0,

kel leU kel leld
Z Z Aklwlzylz = Z wlzylz Z Ay = 0.
kel leU lelu kel
The rest is clear. I omit the detail. O]

2.1.2 Poisson sampling

In a Poisson sampling design, the observational units are sampled independently, but
with unequal probability 7.

Definition 2.14. Let {7}y be a sequence of real number in [0,1] and {€x}rcy be a
sequence of independent uniform random variable on [0,1]. Observational unit k is in
the sample S if € < .
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Remark. If 7t = 7 for all k € U, then it is called the Bernoulli sampling design.

Lemma 2.15. Under a Poisson sample design, the sample indicator function 1 has the following
properties:

(i) Ex(1x) = my.
(ii) Ex(1y) = mmy,  ifk # 1
(iii) Vary (1) = m(1 — 7).
(iv) Ay =0, ifk+#L
Proof. By definition, 1; is independent of 1; under design measure if k # I. O
Note the Poisson sampling design is not a fixed sample size design. More precisely,
Lemma 2.16. Under a Poisson sampling design,
(i) En(n) = Xeu k-
(it) Varg(n) = ey (1 — 7).

Proof. By Lemma 2.6, one has

n) = 2 ]En(lk) = Z TTk,

kel kel
Var ZZAH— ZAkl+2Akl—7Tk 1—7m) +0 = m(1— 71y).
kel leU k#1
kleU klelU

]

Lemma 2.17. Under a Poisson sampling design, the HT estimator t for the population total t
has the following properties:

(i) The HT estimator t for the population total t is

t = Z 1ka)kyk.
kel
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(ii) The variance of t is given by

Var(h) = ¥ (wi— 1) 12

kel
(iii) An unbiased estimator for Var,(t) is

Vara(®) = 3 T (@~ 1) 7.
kel

(iv) The variance of the variance estimator \/kﬁn@ is

Var (Var(B)) = 3 (@~ 1)’y

kel

Proof. (i) is obvious.
To prove (ii), observe

Vgr@ =3 Ay (wyrewryy)

kel leU
= ) M (@) + ) D (wWeyreworyy)
k=l k2l
k,leU kleU
= > e (1 - ) wiyg +0
kel
= > (wk— 1)y}
kel

The first equality follows from Lemma 2.12. The third equality follows from Lemma
2.15.
(iii) is clear.
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To prove (iv), observe

Var <\/7a\rn(5> = Var (Z Lywy (wp —1) ]/%)

kel
= > wilwe = 1)y Var(1y)
kel
= Z w,%(wk - 1)2y%7rk(1 — 771)
kel
= (wp - 1)°yt.
kel

The second equality follows from the fact 1; is independent of 1; under design measure
if k # I. The third equality follows from Lemma 2.15. O

Remark. Observe Varj (\7a\rn-(a> = O(N).

2.1.3 Simple random sample without replacement (SRSWOR)

Definition 2.18. A simple random sample without replacement (SRSWOR) of fixed size
n is a sampling design IP such that

P:F—[0,1]
M7, if|A] = n.

A—TP(A) =
0, otherwise.
Lemma 2.19. Under a SRSWOR, the sample indicator function 1y has the following properties:

(i) Bx(lu) = i1, ifk#1.

(iii) Vary(1x) = (1= %)

(iv) Mg = -2 (1-%), ifk#L
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Proof. To see this, observe

G o
BTN

N—
Er(1x) = () -1

My NN-1

n

Var(1y) = Ex[13] - [Ex1]" = (1 - %)

T CE N R )

Lemma 2.20. Under a SRSWOR design, the HT estimator t for the population total t has the
following properties:

(i) The HT estimator t for the population total t is

t=— Z LYk

keU
(ii) The variance of t is given by
ny\ N? ,
Vgr(ﬂ = (1 - —) —07,

where

(iii) An unbiased estimator for Var,(t) is

2
N/\2

Vare(f) = (1- ) -, 0%

1 Sew v\

kel

where
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Proof. (i) is obvious. To prove (ii), one has

Var(f) = —5 2 2 A (wye — o)

keUleU
1 1 =n
=5 T Yk — Y1)
2N—1N< ) kezwezu =)
2
:%Nl— < %) Z( Zkeuyk_’_Zk;Lllyk_yl)
kel leU
11 n\ N ( Zkeuyk>2
=~ (1-=)=2N Y — Skl 7k
2N—1< N)n kezu k N
2
:N1—1<1_%>N7 (y" Zki\bl[yk)
kel
ny\ N?
=(-x) %7

The first equality follows from Lemma 2.13. The second equality follows from Lemma
2.19. The fourth equality follows from the following fact:

ZZ(W—%) NZ < Zkeuyk> )

kel leU kel

55 (- B2) (- B) - 5 (- g2) 2 - Bg2) o

kel leU kel leUu
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To prove (iii), observe

Vary () = —5 Z > Tawi by (i — wry)?
keUleU
IN(N-1) 1 n
== 1 -
2nn—1) N— 1N( ) kezwezu (e = y1)°
11 ny N? Zku /P ulkyk ?
L0 S (o St Dt
kel lelU
11 ny N2 Skeu Lk |
3t (1) o2 31 (e =0 )
kel
1 ny N? Seu v\
—n—l(l_ﬁ>7 1k(yk_ n )
kel
n NZAZ
= (1-3) 57

The first equality follows from Lemma 2.13. The second equality follows from Lemma
2.19. The fourth equality follows from the following fact:

Z Z 11, ( M) = Z 1 (  keu 1kyk) ’

kel leU kel
S Y 1 (  Dkeu kyk) (yl_M> -V (yk_@> S, (yz ~ Zkel,rll m)
kel leU kel leu
[

2.1.4 Stratified sampling

Definition 2.21. Let Uf = {U5,-- -, UIC\,I} be a partition of population U of size Ny, - - - , Ny;.
For each strata UY, I select a sample U? — U of size n; according to a sample design IP;(-).

s=Ju;.
i
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Assume the selection in each strata is made independently, i.e.,
P;ir (kI) = P;(k)IPy (1)
forallke Uf, 1 e U5 and i # i'.

Let y;x be the value of a response variable y at the k-th element in the strata i and let
t be the population total, i.e., t = 21]\21 ti = ZZ\L D ket Yik-

Lemma 2.22. Under a stratified sampling, the HT estimator t for the population total t has the
following properties:

(i) The HT estimator t for the population total t is given by
Np
E=> 1,
i=1
where /t\z = Zkellf 1k|,-wk|iyik.
(ii) The variance of t is given by
N
Vgr(ﬂ = ;Vgr(ti),

where Varn(?i) = Zkeu; Zleuif Akl|z’ (wk|iyikwl|iyil) .

(iii) An unbiased estimator for Var, (1) is
Var, (t) = Z Var(t;),
i=1

where Vary (t;) = Yeue Yieus Tajiwn)idiay (wWiyiwniyin) -

(iv) The variance of the variance estimator \/7a\rn® is
V72T1r (Varﬂﬂ) = ;V;’%lr (Varn(ti)> ,

29



where

Var <Varn > Z Z Z Z Ao i )i ibir i (Wkivikwyiyin)
keUs [eUS Kelf Iels

(wk’|iyik’wl/|z’yil’) .
Proof. These are simply sum over strata and follow directly from Lemma 2.12. O

Corollary 2.23 (Stratified Poisson). Under a stratified Poisson sampling, the HT estimator t
for the population total t has the following properties:

(i) The HT estimator t for the population total t is given by

=" 1wy yik-

i=1kel*

(ii) The variance of t is given by

Var /) Z Z wk|l yzk

i=1kel;

(iii) An unbiased estimator for Varn(ﬂ is

Np
Var, (1) = 2 Z Lyjicor)i(wpyi — 1)%21«

i=1kel*

(iv) The variance of the variance estimator \/7a\rn® is

Var (Varn > Z 2 Wi — ylk

i=1kel;

Corollary 2.24 (Stratified SRSWOR). Under a stratified SRSWOR sampling, the HT estimator
t for the population total t has the following properties:
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(i) The HT estimator t for the population total t is given by

Ny ,
t=>> 1k|iIr\l]_;yik-

i=1kel*

(ii) The variance of t is given by

where

where

2
. 1 Dkeurs LkiVik

2 o i
i > C <1k|i%k i -

2.1.5 Two-stage sampling

Let U = {1,...,N} be the population and consider a partition of U by the sampling
clusters, i.e., let Uf = {Uf, -, U}, } be the sampling clusters. In practice, the sampling
clusters are the objects corresponding to the first-stage sampling units or primary sam-
pling units (PSU).

Define F to be the set of all subsets of U, i.e.,

F = {qu :1<{1,2,...,Ni}}.

iel
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Let IP; be the first-stage design probability on measure space (Uf, F)

]PI F— [0, 1]
A —> P(A).

Define F; to be the set of all subsets of U;, wherei =1,..., Ni. Let IP; be the second-
stage design probability on measure space (U, F;)

IPZ' : ﬁ - [01 1]
A P;(A).

Let U; € F be the first-stage sample. If U € U}, a second-stage sample U is selected
from F; by sampling design IP;. Let S = | J; U} and n = |S|.

Remark. In all of the following, I will denote i,i’,i”,i" for the clusters and k, I, k', I, k", 1", k" , 1"
for elements in the clusters.

Definition 2.25. Define the first-order, second-order and fourth-order sampling inclusion

probability to be
7'[1 — Z ]I)I(A)I
AeF:UfeA
T = Z IPI(A)/
AeF:US,USeA
TCijjmim = Z ]PI(A)’
Ae F:UF UG UG, UG, €A
Tk|i = Z ]Pi(A)/
AeF;ke A
TCk1)i = Z ]Pi(A)’
AeF;kleA
Tk |i = )3 Pi(A).
AeF;kLK l'eA

Assuming the invariance and independent properties, i.e.,
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(i) The second-stage sampling design is invariant of the first-stage Uj, i.e., P;(k|U}) =
P;(k) forall ke Uf and i =1,..., Ny.

(ii) The second-stage sampling design is independent of the first-stage U7, i.e., P;» (kl) =
IP; (k)P (1) for all k € Uf,l € U and i # i'.

In other words, given that cluster i is sampled, the probability of sampling element k in
cluster i does not depend on

(i) which other clusters were sampled.
(ii) which elements are sampled in those clusters.
Then one can deduce the final inclusion probability 7ty and 7ty to be
e = iy, if ke U;.

7Ti7Tkl|i/ if k,l S Uf
Tkl = . .
nii’n—k|inl\i’/ if ke Uf,l € UZC, and i # 1.

Definition 2.26. Define the first and second-stage sample weight to be

1
w; = ;,
1
1
Wijr = e
il
1
a)k|1’ - Eﬁ"
1
Wkl|i = 7Tkl|i/
1
Wy = ;k,
1
Wy = 7T_kl

It is more convenient to work with the sample indicator function 1;, 1j; instead of
design measure.
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Definition 2.27. Define the sample indicator function to be
Li = Tueeus,
i = Tkews|uceus-
Remark. I will use the following notation:
Lir = 1ily,
].l'i/l'//i/// — 11'].1'/11'//]_1'///,
Tk = Trgilyyis
Tkiri = Trilyiler iy

Remark. Observe

Eﬂ(li) =TT,
Er (1) = iy,
IEﬂ(lii/i”z”/) = 7'[1'1'/1'//1'///,
Er (1) = mxis
Er(1xi) = 7tajis
Er(Lxwr)i) = Tapr)i-
Definition 2.28. Define
Ajr = Cg v(1;, 1),
Aii/i//l'/// = C7(T) ( Zl Y] Z”Z”’)
Diaji = Cov(Lyi, 1pji),
Dpawerrji = Cov (L, Tewi)-

Remark. Observe
Ajpp = iy — Ty,
Aijirinim = Tljrinim — Tijs T,
Awji = Ta)i — To(i T0)is

Ak = Tk )i — To)i T i
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Definition 2.29. Let Nj be the number of clusters in the population U and let nj be the
number of clusters in the sample S, i.e., n; = Zf\lzll 1;.

Definition 2.30. Let N; be the number of elements in the population cluster U; and let
n; be the number of elements in the sample clusters U}, i.e., n; = > yye 1xi-

Remark. Observe
N
N=)>'N,
i=1

Ni
n = Z 11'111'.
i=1

Let y;x be the value of a response variable y at the k-th element in the cluster i. Define
the population total to be t = Zfﬁl t;, where t; = >\ 11c Vik-

In all of the following, let 711 be the first-stage sam}l)hng probability and let 71, be the
second-stage sampling probability, conditional on the first-stage sampling clusters L.

Lemma 2.31. Under a two-stage sampling, the HT estimator t for the population total t has the
following properties:

(i) The HT estimator t for the population total t is given by
Np
t= Z 1iw,-tl~,
i=1

where ti = Zkel,[f 1k|,-wk|l-yik.
(ii) The HT estimator t is an unbiased estimator for population total t.

(iii) The variance of t is given by
\@@:w+m
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where

N1 N;

Vi = Z Z Ay (witjwpty),

i=1i'=1

Ni
Vo= > > wibhgi (wriyieor i) -

i=1kelF leU¢

(iv) An unbiased estimator for Var, (%) is

Va\rn’(/t) = ‘71 + ‘/}2/

where
N Np
V1 = Z Z 1i,-/a)il-/Aii/ (witiwi/t,v> ,
i=11=1

Np
Vo= > D) Lwilupwnbuy (wriyiwr i) -
i=1 keU¢ U

Proof. (i) is obvious. To prove (ii), note

N
]En(ﬂ =En Z 1iw; Z 1k|z'wk|iyik
i=1 keU;

N
= En, | D Liwi Y Bry (] wyivie
=1 kelf

.
=En, | Liwit;
Li=1
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To prove (iii), observe

Vgr(a = \fgr

Ni

Er, [ Y] D) Liwidywgyic
i=1kely

Np
Y LiwiEr, | D Lgiokyik

keUs

+ Er,

+ Er,

Ni
Var DD Liwilgiwvic
2 \i=lkelf

Np
2
Z liwi Var > Tiwriic
|i=1 keUs

Np
+Er | D) D) D) L Auyi (wriyinwnivin)

i=1 keUl.C leUf

Ni

= Z Z Ajir (wjtiwitin) + Z Z Z wW;ily)i (wk\iyikwlﬁyil)

= Var
el .
=1
Ni
= Var 1;w;t;
) Z 1 %1
=1
N
i=1i=1
=V + W.

i=1 keuf leuf

In the second equality, I used the fact that 1; is independent of 1; under design measure

702.

To prove (iv), note
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E, [\75”(5}
NN
=En, Z Z LipwipAjpwitiwity + Z Z Z 1w dgiwi)iDu)i (WriYiew|ivin)

i=1i'=1 i= 1keucleu‘3
N1 N

Z Z 1ﬁlwﬁ/Aﬁ/wiwi/]En2 [/tvt\ ]

i=17=1
N Np

_Z Z AjpwiwpEr, [ i } + Z Z Z Akl\z wk\zyzkwl\zyzl)

i=1i'= i= 1keucleuc

NI NI NI
= > AjywiwyEn, [titi’} + > AjpwiwiEn, [titi’] D My (wiyiewyivin)
i,i'=1 ii'=1 i=—1 kelf IeUs

i=i' i#i

=E,

Np
+ Er, [Z Z Z Liwi B, [1xji] wr)iBii (wkiyikwliyil)]

i=1 kellC lell"’

i 1 kel lels i,i’'=1
i=i' i#l

NI NI
= Z Ajjrwiws [Z > Auji (wriyieor i) +t?] + ) Apwiwitity+

Z Z Z Apaji (Wi iyin)

i=1kelUs leUs
N1 Np

— Z 2 Ajpwiwitity + Z (1 )w? Z Z Awji (wiiiyikwniyir) +

i=1i'=1 kellf leus

I
Z Z Z Ajgai (wk\iyikwuiyil)

i=1 kellc leuc

N N Np
—Z Z Aii (witiwirty) + Z Z Z Aji (WriYikewriyin) + Z Z Z Awji (wriyikwrivin)

i=1li'= keUs leUs i=1keU; leUf
NI Np
—2 2 Aip (witiwirty) + 2 Z Z Wi Akl\z wk|zyzkwl\zyzl)
i=1i'=1 i=1kel; lelf
=V + W.

38



The fifth equality follows from the following facts:

]ETEZ [/t\l/t\ll] = COV(/t\il/t\i/) + ]ETEZ |:/t\l:| ]ETL'Z |:/t\li|

T

2okets 2uteure Dkl (wiiyiwriyi) + £, ifi=1.
titi, ifi#17.

2.2 Model-based approach

The model-based approach assumes a model for the population and sampling design is
typically assumed to be ignorable given the model covariates, i.e., the sample data follow
the population model when the sampling is ignorable. In other words, y = (y1,...,yn)’
is considered to be an realisation of a random vector Y = (Y3, ..., YN)T from some para-
metric model. The goal in here is to estimate the model parameters. For what I have to
do in this thesis, the observational units are not homogenous, i.e., the conditional distri-
bution y;|x; is not independent identically distributed (IID). More explicitly, consider a
partition of U by the structure of the model, i.e., let Mj = {M3,---, MCTC} be the model
clusters. What I want to do is to assume the observational units within the same model
cluster are correlated, though observational units from different model clusters may be
independent. In other words, the model clusters are the objects corresponding to the fi-
bre (inverse image) of random effects. More precisely, the random effects are defined on
the set of model clusters and two distinct model clusters are assigned different value of
the random effects. In this section, I assume the sampling clusters are the model clusters,
ie., Uf = M.

Roughly speaking, there are two approaches to model the correlated data, namely
the conditional models and marginal models (Neuhaus et al., 1991). A marginal (con-
ditional) model is one in which the marginal (conditional) mean and covariance are
modelled directly. The main difference between two modelling approaches is on the in-
terpretation of the parameters. In the marginal (conditional) model, the parameters are
interpreted as population-average (cluster-specific effect). Typically, estimation in the
conditional model is done by the maximum likelihood estimation (MLE) and estimation
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in the marginal model is done by generalised estimating equation (GEE). I will take a
conditional approach in this thesis.

Henceforth, I denote the expectation with respect to model by Ey, covariance by
Covy and variance by Vary.

2.2.1 Conditional model

The history of the generalised linear mixed model (GLMM) is reviewed by Breslow and
Clayton (1993); Diggle (2002). The GLMM is an extension of generalized linear model
(McCullagh and Nelder, 1989). More precisely,

Definition 2.32. Let Yj; be a kth random variable for cluster i for i = 1,--- , N,k =
1,---,N; and b; be the random effects for cluster i. Conditional distribution Yj;|b; is said
to be GLMM if the following conditions are satisfied:

(1) Yi|b; is independent and follows a distribution from the exponential family, i.e.,

YirOix — d (i)
¢

where ¢ is some scale parameter and 4, c is some known functions.

f(yiklbi) = exp +c(Yix @) |

(2) The conditional mean Ey[Yj|b;] can be modelled through a smooth monotone link
function g, i.e.,
S(Ey[Yixlbi]) = X8 + Zibi,
where
(i) Xjkis a py x 1 fixed matrix and B is a p; x 1 fixed unknown parameter.
(ii) Zj is a pp x 1 tixed matrix, b; is a p» x 1 unobserved random effect and follows
a normal distribution, i.e., b; ~ N(0,D(n)).

The parameters one wants to estimate are 8 = (3, n)T.

Remark. The joint density of Y and b is given by

N N N1 N;
fOV,b) = [ [ (Vb)) = [ [ F(Vilba) £(0:) = [ [ ] ] F(Yaelbi) £ (B5).
i=1 i=1 i=1k=1
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Since the random effects b; are unobserved, then the marginal density f(Y") is given by

Ni N;

N, Ny . N;
fY) = J | [£(Yalbi) f(bi)db; = | | f [ ] £(Yiel) £ (1) b
/ i=17 k=1

i=1k=1

Definition 2.33. The census full log-likelihood is given by

Np
HOEDWAC)
i=1
where
N; 1 1
t;(6) = log Uﬂf(yiklbi)\D\z exp (—EbiTlei) dbi] :
k=1

Definition 2.34. The naive sample log-likelihood is given by

Np
(0) = > 165(0),
i=1
where

(;(0) = log U 11 f(yilbi)| D] "2 exp <_%b;'rD1bi) dbi] : (2.1)

keu;

Remark. The integral in 2.1 involves a high-dimensional integral and so is intractable
when the dimension of random effects b; is large. Approximation of integration based
on the Laplace approximation is discussed in Breslow and Clayton (1993); Pinheiro and
Chao (2006). For the linear mixed model, one can compute the marginal distribution of
Y; directly (more about this in section 2.2.2).

Example 1. Let pj € [0, 1]. The conditional logistic mixed model is given by

Yir|pix ~ Bernoulli(pj),
logit(pi) = X3B8 + Zib;,

where the random effects b; ~ N(0,D(n)). The census full log-likelihood is given by
Np
(8) = ), (),
i=1
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where
= log [fnpy’k — pix)' V¥ D]~ 2exp ( 1bTD lb) dbi] .

The naive sample log-likelihood is given by

Np
(0) = > 165(6)
i=1
where

= log U [ [ Pl —pa)'¥*| DI~ 2exp( 1bTD 1b) db] :

keUs

Example 2. Let Ajx € IN. The conditional Poisson mixed model is given by

Yik|Aik ~ POiSSO”()\ik)

where the random effects b; ~ N(0,D(n)). The census full log-likelihood is given by

Np
=Y 65(0)
i=1

where
]/ ik

= log [fn exp)\lk Ak |D| zexp( 1bTD 1b) dbi].

The naive sample log-likelihood is given by

Np
= ). 1:£5(6)
i=1
where
yzk 1 1
= log JH exp)xlk M |D|_7 exp (——b;rD_lb,') db; | .
keU; 2
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2.2.2 Linear mixed model

The modern formulation of the linear mixed model was proposed by Laird and Ware
(1982). More precisely,

Definition 2.35. A linear mixed model is given by

Y| X, b ~ N(X;B + Zb;, 0*I),
bi ~ N(0,D(n)),

where
(i) Yiisa N; x 1 random vector fori =1,... Ny.
(ii) X;is a N;j x pp fixed matrix and 8 is a p; x 1 fixed unknown parameter.
(iii) Z; is a N; x py fixed matrix and b; is a p, x 1 dimensional random effects.

The parameters I want to estimate are 8 = (3,02,1)T. One can show the census full
log-likelihood is given by
Yi|X; ~ N(Xi8, Vi(e,m),

where Vi(0%,m) = 0*I + Z;D(n)Z!. In other words, the census full log-likelihood is
given by

1 1
t(0) = —5 > log Vi - 5 Dy —xiB) 'V (yi — xiB).

i=1 i=1
Let y7, x}, b}, Vi be the sample data corresponding to y;, x;, b;, V;. Then the naive sample
log-likelihood is given by

Ni Ni
1 1 -1
£(0) = 5 D1 1ilog Vil — 5 . 1i(y; ~xi8)T (V)™ (3~ xi8).
i=1 i=1
The naive maximum likelihood estimator for 3 is given by
Np 1N
B(e*n) = (Z 1L (x5)" (V5) X?) (Z 1ix; (V3) y?) :

i=1 i=1
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For the variance component (02,71)7, this reduces to maximise the profile log-likelihood
G(c%m) = £ (3(02,77),02, n) :

In general, there is no closed form formula for (32’77)T, but numerical method can be

used to obtain 8 (Demidenko, 2013).

2.2.3 Marginal model

In the marginal model, I only make assumptions about the first and second moment of
a response variable Y, without specifying the exact distribution of Y. Hence one cannot
use the MLE, since the full-likelihood can not be uniquely determined from the first two
moments. In general, one has to use GEE techniques to handle the marginal model with
correlated data.

2.2.3.1 Quasi-likelihood In this section, I briefly mention how to construct the census
quasi-likelihood from sum of the single quasi-likelihood. The quasi-likelihood estima-
tion method was first proposed by Wedderburn (1974). I start by introducing the setting.

(i) Marginal mean u;; = Ey(Yj;) depends on the model variables through a smooth
monotone link function g, i.e., g(pi) = X18.

(ii) Marginal variance depends on the marginal mean, i.e., Vary(Yjx) = ¢V (uj), where
¢ is some scaling parameter and V is some known function of .

The parameters I want to estimate are & = 3 = (B1,- -+, Bp,)". One can construct the
quasi-likelihood. More precisely,

Definition 2.36. The census quasi-likelihood function is defined to be

Np
Q) =D D Qv i),

i=1kel*
where " ,
‘ ‘ ‘ _ i yik —
sz(.”zk/]/zk) Vit 47V(t) dt
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Remark. Note there is no assumption that the data are generated from this quasi-
likelihood function.

Remark. Observe

[v}l,lek( lkl )} =0,

1
Vér [V Qi (pirs Yir)] = OV (i)’
Ey [Vﬁik#iink(Vik, Yik)} = oV ()

Lemma 2.37. Each quasi-score function Vﬁquk(y,-k, Yix) is an unbiased estimating equation
with respect to model measure Y, i.e.,

Ey [Vﬁquk(ﬂik, Yik)] =0 forallg=1,---,p1.

Proof. To see this, note

[ Hik Y. — ¢
Y [vﬁquk(ﬂik/ Yik)} =Ey |V ik dt}

Prly, oV (t)
ik Y

= Ey _V v, (PV( )dtvﬁqylk]

[ i Hik
~E \
Y ¢v<;4-k>} ubtk

a 4’V(Vk)
=0, forallg=1,---,p;.

Proposition 2.38. The census quasi-score function is given by

VpQ(my Z DV Y — ), (22)

45



where

(Vo) (Vg
= (Vaui)' = : - 5
(Vo)) \ Ty
Vi = ¢diag {V(un), -, V(in,)},
Yin — pin
Yi—pi = '
Yle — HiN;
Proof. Observe
Vg, Q (1 y)
VeQ (1 y) = :
Vg, Q (1, y)

N

= > (Vaw)' V(Y — )

i 1

= ZDTV (¥; — i)

=M ket V gy Qik (i Yik)

ZINH 2kells Vﬁpl Qir(Hik, Yik)
Z ZkeUC q)V Hk vﬁhulk

Z 1 kel ﬁ ;,ik) Vg, Hik

Vﬁl HiN;

V:Bpl P[INZ

Definition 2.39. The sample quasi-likelihood function is defined to be

Np
y) = > 1 > 1iQuk (i i)

i=1 kel
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where " ;
dt
Yik (PV (t)

Lemma 2.40. The sample quasi-score function is an unbiased estimating equation with respect

Qik(tik, Vik) =

to model measure Y, i.e.,

vy [VpQ (1, Y)] = 0.

Proof. Note the sample quasi-score function is a sum of single unbiased estimating equa-

tion, i.e.,
Ey [VQ' (1, Y 21 > 1By [V Qi (ik, Yix)] = 0.
i=1  kelf
The last equality follows from Lemma 2.37. O

Let y;, =%, u3, b7, V:*, D7 be the sample data corresponding to y;, z;, u;, b;, Vi, D;.

Definition 2.41. Define the sample quasi-likelihood estimator 8 for (3 to be the solution
of the following sample quasi-score function

VeQ' (1Y 21 (D)7 (V) (Y = ) = 0.

Remark. If 7 = X7 3, then the sample quasi-likelihood estimator 3 is given by

-1
(21 (x5’ >1X5> (%L(XE)T(VES)‘1W>~
i=1

This is also the weighted least square estimator. The variance estimator of Bis given by
Var (21 (XHT(ve)~ 1X> (Zl (x$H)T Var (Y7 )(X,.S)T(V;S)1>
-1
(Z LX)Vt xs >
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The true variance Vary(Y;s) is typically unknown, but one can estimate Vary (Y;*) by the

empirical variance Vary (Y). More precisely,

Var(B (21 >1X> (Zle ) War (¥; )(Xf)T(W)‘1>
-1

21 (x3)T X) ,

—_— —~ T e~
where Vary (Y°) = <Y;S — ,us) (Y;S — ,u5>.

Remark. In general, there is no closed form formula for 3 and numerical methods has
to be used (Demidenko, 2013). More explicitly, let V3Q°(3) be the sample quasi-score
function, i.e.,

Ni
VpQ*(B) = 2 L(D) (V)Y — ).

By Fisher’s iterated method, one has

I@(”rl) — ,@(r) + [_ Ey [V%BQS(B(V))} ]_1VﬁQS(,@(r)),
where

v [V350°8)] = 21 (D:)T(V#) ' Ds.

2.2.3.2 Generalized Estimating Equation (GEE) Generalized estimating equation (GEE)
is an extension of quasi-score function. Note V; = ¢ diag {V(y;1), -, V(pin,)} in 2.2 is
diagonal in the quasi-score setting. Even if covariance matrix V; is misspecified, the
quasi-likelihood estimator is still consistent, but it does affect the variance. To improve
efficiency, one could consider modelling correlation structure by a working covariance
matrix Vj(n). In other words, the working covariance matrix V;(n) is user-defined and
non-diagonal. The parameter one wants to estimate is 8 = (3, n)T. This is also known
as the generalized estimating equation. More precisely,
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Definition 2.42. The census GEE estimator §N is defined as a solution of

Np

Y DIV ()Y — i) =0,
i-1

where V;(n) is a user-defined working covariance matrix.

Definition 2.43. The sample GEE estimator 6, is defined as a solution of

N
D LDHTVE) T ) (- ) =
i=1

where V*(n) is a user-defined working covariance matrix.

Theorem 2.44. Under certain regularity conditions, then

Ni2(6, — 8y) 2 N(0,G(6y)),

where
Np
G(6)) = IIILHOONI<ZZ;1 (D5)T(V (60 1Ds> [21

Np _q
(10T (Vi (60)) ' ;)
i=1
Proof. This is proved in Liang and Zeger (1986).

Remark. One can estimate G(6y) by the empirical variance

G(,) —thOONI(Zl (D)7 1DS> [21 (D)7
o

Np 1
(YD) (v (6.)7'D5)
i=1

—_— —~ T o~
where Vary (Y;°) = (Y;S — us) (Yf — pﬁ).

*(60)) " Var (¥7)(V;*(80)) (D)) |

1

Vi (6.))Var (Y1) (V;(6.)) (D)) |

(2.3)

Remark. Variance estimation in 2.3 is given by a sandwich form, which is very similar

to variance estimation for the weighted pairwise likelihood estimator under a two-stage

sampling design (more about this in chapter 3 and 4).
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2.2.4 Relationship between marginal and conditional model

The relationship between the marginal and conditional model has been dissussed exten-
sively in the literature (Zeger et al., 1988; Neuhaus et al., 1991). I would like to comment
on the difference between the marginal and conditional model for the logistic regression
model. In particular, I want to show they are not equivalent. Let Yj; be a binary random
variable.

(i) Consider a conditional logistic model

Yik|pik ~ Bernoulli(py),
logit(pik) = Po+ Prxik + bi,

then the conditional mean is given by

o1 exp(Bo+ Prxix + bi)
Ey Yalbil = 1+ exp (Bo+ Bixix +bi)

Hence, the marginal mean is given by

exp (Bo + Bixix + b;)

Ey[Yi] = Ey [Ey[Yulbi]] = Ey |1 +exp (Bo + Brxg + 57| (2.4)
1
(ii) Consider a marginal logistic model
logit(pix) = 710 + 11Xk,
then the marginal mean is given by
exp (70 + 71 Xik)
=, = . 2.5
IEY[Ylk] Pik 1+ exp ('YO I ’leik) ( )

Observe 2.5 is not equivalent to 2.4 as the expectation is a linear operator and inte-
grand is nonlinear in b;.

Remark. It can be shown that estimation from marginal and conditional approach are the
same for linear and Poission model. For more detail, see Demidenko (2013); Gromping
(1996). But this is not true for logistic model.
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2.3 Model-design-based approach

The goal in the model-design-based approach is to construct estimator which incorpo-
rates the feature of the sampling design to estimate unknown parameters 6 from the
super-population. Roughtly speaking, this can be decomposed into two steps:

(i) Inference from the sample data to the finite population.
(ii) Inference from the finite population to the model.

There are two probability measures in this setting: the design measure IP; (the values of
the sample inclusion indicators 1 for each observational unit is random) and the model
measure Py (the values of the model variable Y for each observational unit is random).
I will use Ey, for the expectation, Vary for the variance and Covy, for the covariance
under the model-design-based measure.

I would like to discuss informally how to think about the framework. The design-
based framework works conditional with 1]Y and model-based framework works con-
ditional with Y|1. The model-design-based framework mean working jointly in (Y,1)
rather than conditionally. Since design-expectations are always taken first, the basic
approach is to first conditional on Y and then remove the conditioning by law of it-
erated expectation, i.e.,, Ey; = Ey[E;y. The model-design variance is given by con-
ditional on Y first, then remove the conditioning by law of conditional variance, i.e.,
Vary, = Vary E |y + Ey Varyy.

In this section, I assume the sampling clusters are the model clusters, i.e., U; = M.

2.3.1 Asymptotic setting

I want to take the limit of an estimator. In particular, I want to talk about the notion of
convergence in probability and convergence in distribution. With the structure I intro-
duced so far, I cannot define those notions. This is because the sample size n is bounded
by population size N, which is assumed to be finite. To formally define those notions,
one needs to construct infinite produce spaces and extend probability on it. But for what
I have to do in this thesis, this level of mathematical formality is unnecessary. I shall
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not elaborate the details of this construction, as this has been discussed in many papers
(Isaki and Fuller, 1982; Rubin-Bleuer and Kratina, 2005).

In all of the following, I assume both the sample and population size need to diverge
and the sampling fraction should converge, ie., n — o, N — o and % — ¢, where
c € [0,1). Let O be the true value.

Definition 2.45. Given a superpopulation model, an estimator 6, is design consistent
if for almost all model realisation w from the superpopulation and for all € > 0, there
exists a ny € IN such that for all n > ng, one has

P, (”én(w) — 0| > e) <e.
Remark. It can be shown that HT estimator are design consistent (Isaki and Fuller, 1982).

Definition 2.46. Estimator én is model consistent if for all € > 0, there exists a 1g € IN
such that for all n > ng, one has

]Py(”en — 00“ > 6) < €.
Remark. Finite-dimensional MLE estimator are model consistent under certain regular-
ity conditions. For more details, see chapter 5 in Van der Vaart (2000).

2.3.2 Informative sampling

There are several possible definitions of the informative sampling in the literature. I will
use the following one in this thesis (Pfeffermann et al., 1998; Rubin-Bleuer and Kratina,
2005).

Definition 2.47. Sampling design is uninformative if design variable is independent of
the response variable after conditioning on the model variable, i.e.,

1y L Yu‘X u-
If sampling design is not uninformative, then one shall call it informative.

Remark. The definition of the informative sampling can be easily extended to the two-
stage sampling (Pfeffermann et al., 1998).
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Example 3. Suppose sampling inclusion probability is given by

m:U—[0,1]
1
T 1tew
then 7t(k) is an increasing function of yi. Hence, observational units with a larger value of y are

k — (k)

oversampled.

What is significant in here is ignoring the sampling design and just fitting the mixed
model to the sampling distribution will lead to biased inference (Pfeffermann and Sver-
chkov, 2009). To see this, let fs(y,«) be the sampling distribution and f,(y, x) be the
population distribution.

Lemma 2.48. Under the informative sampling design, the model holding for the sample is differ-
ent from the model holding for the population, i.e.,

fs(yo ) # fp(yi k)
Proof. Observe

fs(r ) = fp(yr ol 1 = 1)
foWi o, 1 = 1)
fr(le=1)
fp(yk/wk)fp(lk =1)
fr(lk=1)
= fo(Yr )

#

]

There are many possible solutions in here. One could add design variables in the the
model, but there are two problems with this approach. First, we don’t want the sampling
design (which might be chose by someone else) to affect the choice of parameters that we
estimate. Hence we prefer not to directly model the design variables. Too many design
variables reduce the power of the model. Secondly, design variable Z may be a mediator
variable, i.e., design variable Z may be correlated with both the response variable Y and
model variable X. Then one cannot distinguish the effect of model variable X on the
response variable Y. See the figure below.
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: g

Figure 2.1: Mediator variable Z (left) and confounding variable Z (right) .

Alternatively, one could incorporate the sampling weights into the likelihood, pro-
ducing a weighted likelihood, where the weight is given by the inverse sampling inclu-
sion probability, i.e., wy = 1/7m;. This is the approach I will take for the rest of thesis.
The rational of this construction is the weighted likelihood is an unbiased estimator for
the census likelihood (more about this later).

Remark. In the literature, there are other ways to construct the weights such as calibra-
tion to handle more sophisticated setting such as incomplete data or missing data. For
more detail, see Gelman (2007); Kim and Shao (2013); Kim and Park (2010); Lumley and
Scott (2017); Grace (2016).

2.3.3 Full-likelihood approach

In this section, I will briefly mention full-likelihood approach. Scott and Wild (1997,
2001) show how to construct full-likelihood for the logistic regression when the sampling
clusters are the model clusters.

The full-likelihood is much more complicated and is not tractable when the sampling
clusters are not equal the model clusters. In the literature, no one has described how
to construct full-likelihood. This is because it lacks the conditional independent, i.e.,
observational units in the same sampling cluster might not be in the same model cluster.

Consider a random intercept model with informative Poisson sampling at stage 1 and
simple random sampling at stage 2. Assume the sampling clusters are equal to model
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clusters, the sampling is independent across the clusters. Let ¢(b;, 0) be the density of b;
and f(y, 0|b;) be the conditional density of y;. The population likelihood is

Ny
11 Jg(bi, 0) [ [ f (i 61b:)db;.
i1

keUs

Let gr be the sampling likelihood at stage 1. Then the likelihood of the data is
proportional to

N
1 ng(bifa) [ | f(ix 61b:)db;.
i=1 kel;

We have a product of one-dimensional numerical integrals for the full likelihood to
maximise, which is completely feasible. The sample likelihood is also tractable.

When the sampling clusters are not the same as the model clusters, the sampling
likelihood gr for a particular sample cluster depends on the b; and Yj; for all model
clusters that intersect it, so the product over i cannot simply be taken outside the integral.
In the simulation setting in the thesis (100 x 100) with overlap of 0.6, 40 b; contribute
to each sampling probability so even under Poisson sampling we have 40-dimensional
numerical integrals to compute the likelihood. This is just intractable, which is why we
want to use pseudo-likelihood.

2.3.4 Weighted estimating equation

In this section, I will briefly mention how to construct an unbiased sample weighted
estimating equation when the census estimating equation can be written as a linear
combination of individual estimating equation. In general, it is impossible to construct
an unbiased sample weighted estimating equation when the census estimating equation
is non-linear. It happens quite often and is not just remote mathematical territory. For
example, normal linear mixed model. What then can we do? I will come back to this
question in chapter 3, which is why I want to study the pseudo-likelihood estimation.
Let (@) be a census estimating equation and suppose §°(6) can be written as a
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linear combination of individual estimating equation, i.e.,
Np
Pe(0) = >0 pulyir)- (2.6)
i=1kel¢
Then the Horvitz-Thompson estimator for (@) is given by
N
P5(0) = > Liwi > Lyiworiix (Vie)-
i=1 kelt

Observe E [¢°(0)] = y°(0).
In all of the following, let 6, be the sample weighted estimator and 6y be the true
value of the model. More precisely,

Definition 2.49. The sample weighted estimator 6, of 6 is defined as a solution of

1 S
—°(0) = 0.
N (6)
Definition 2.50. The census estimator 9~N of 0 is defined as a solution of
1 C
—°(0) = 0.
N (6)
Remark. It can be shown that the true parameter 6y of 6 is a solution of

Er | 3:9°(6)] =0,

where ¢° is the census likelihood score. In other words, ﬁllpf(eo) = 0 is an unbiased
estimating equation.

Under regularity conditions, as N — o, n — o and § — ¢, one can show the sample
weighted estimator converges to the census estimator and census estimator converges to
the true value by classical smooth argument as in chapter 5 of Van der Vaart (2000), i.e.,

~

6, — 0N 2,0 under design measure 7,

§N LN 6y under model measure Y.

See the figure below.
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(Super-population model with
true parameters 6:

e Conditional model:
model the conditional
distribution Y'|b and
random effect b. Then
the likelihood for the
population is given by

fY) = f f(Y'|b)g(b)db.

e Marginal model: only
model the first and
second moment of Y,
without specifying the
exact distribution of Y.
Then use GEE

Np
2. DIV Y — i) = 0.

\ =1

~

[Census data generated from
super-population model Y:

e Census estimating

equation y°.

through complex sampling 7:

e Sample weighted

estimating equation °.

/Sample data from census data |

e

|

p
True parameter 60y:

e 0, LN 6y under
model-design measure
Y.

-

Census estimator Oy:

e Oy 2, 6y under model
measure Y.

Sample weighted estimator 6,:

e 0,0y 7, 0 under
design measure 7.




Let me summarise the key step in here, as I will apply such argument without further

comment.

(i) Write down the census estimating equation as a linear combination of individual
estimating equation.

(i) Add weight to form an unbiased sample weighted estimating equation.

(iii) Reduce to a standard argument to show the estimator is consistent and asymptotic
normality, as N — oo, n — o and 3y — ¢, where c € [0, 1).

But there are still two important questions remaining.

(i) How can we handle the non-linear case, i.e., the census estimating equation cannot
be written as a linear combination of individual estimating equation.

(i) How can we add the weight for the non-linear case to form an unbiased sample
weighted estimating equation? Note consistency of the estimation relied on an
unbiased estimating equation.

This is essentially impossible to construct an unbiased estimating equation, as the
expectation is a linear operator and integrand is nonlinear. I will propose alternative
solution in chapter 3. My short answer is to transform a nonlinear case into a lin-
ear case, i.e., instead of considering full-likelihood, considering pseudo-likelihood so
that the weight is linear in the sample weighted estimating equation. Outside complex
sampling, the rationals for using pseudo-likelihood is to avoid strong distributional as-
sumption and reduce computational burden (Heagerty and Lele, 1998). With complex
sampling, pseudo-likelihood is used for a completely different reason. Namely, we want
to construct an unbiased estimating equation, so that weight is linear in the sample
weighted estimating equation (more about this in chapter 3).

I want to come back to the non-linear case and show an example one could potentially
encounter. In general, the census estimating equation cannot always be written as a
linear combination of individual estimating equation as in 2.6. In that case, it is not clear
how to construct the sample likelihood. This is not just remote mathematical territory
and it happens quite often. For example, normal linear mixed model.
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Consider a linear mixed model in section 2.2.2. The census full-likelihood is given by

where Vi(0?,n) = 01 + Z;D(n) Z]".

Lemma 2.51. Suppose V; can be decomposed into a 2 x 2 block matrices

(2.7)
V| =|Vi°B; — AT A (2.8)
where (V;._l) = (V- AiBl-_lAiT)_1
S
Proof. For more detail, see Lu and Shiou (2002). O

With complex sampling, the elements of (V;_l> is not available, where <Vi_1> is

S S
the sample block of the inverse of covariance. Hence it is not clear how to construct
an unbiased sample log-pseudo-likelihood. To see this, one could try naive sample log-

likelihood
:__Z1log|VS\——Zl —x%( )S(Y?—X?B)-

But it is impossible to calculate (Vi_l) s and |V?| based on the sample data as shown by
Lemma 2.51. It is hopeless to apply formula 2.7 and 2.8 as block matrices A;, B; involve
the census data Z;.
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3 Maximum pseudo-likelihood

In this chapter, I want to study the pseudo-likelihood estimation with complex sampling.
More precisely, I discuss a specific pseudo-likelihood construction, namely the pairwise
composite likelihood. With complex sampling, one has to add weight in the pairwise
likelihood. My goal in this chapter is to review the key results from Rao et al. (2013);
Yi et al. (2016) in the setting of the two-stage sampling where the sampling clusters
are the model clusters. More precisely, I am going to present proof done by Rao et al.
(2013); Yi et al. (2016) in detail, which is a starting point in the literature of the weighted
pairwise likelihood estimator under complex sampling. In particular, the consistency
and variance estimator of the weighted pairwise likelihood estimator will be presented.

3.1 Motivation

Roughly speaking, a pseudo-likelihood is constructed by modifying a true likelihood
function to get a more tractable objective function. In particular, there is no assumption
the data are generated from this pseudo-likelihood. Without complex sampling, there
are two main reasons for such approach (Heagerty and Lele, 1998). One is to avoid
strong distributional assumption. The other is to reduce the computational burden. With
complex sampling, pseudo-likelihood is used for a completely different reason. Namely,
one wants to construct an unbiased estimation equation, so that weight is linear in the
sample weighted estimating equation. The pairwise likelihood is a special case of the
pseudo-likelihood estimation. In the literature, the pseudo-likelihood is first developed
by Besag (1974). In the modern sense, the pseudo-likelihood refers to any functions
that are modification from a true likelihood. Composite likelihood is constructed from
the sum of marginal likelihood or conditional likelihood (Lindsay, 1988). In particular,
the pairwise composite likelihood is constructed from the sum of pairwise likelihood.
Observe

{Pairwise likelihood} € {Composite likelihood} < {Pseudo-likelihood}.

In all of the following, I will exclusively study the pairwise likelihood.
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3.2 Setting

In this chapter, I will always work under the following setting. Suppose the two-level
super-population model is given by

Yir| Xix, bi ~ f(Viklxik, bi, 01),
b; ~ g(bi|62),

fori =1,--- ,Nrand k = 1,---,N;. This is more general setting than GLMM, as the
conditional model does not have to be an exponential family and the random effects do
not have to be normal random vector. The paper by Rao et al. (2013); Yi et al. (2016) is
devoted to studying the weighted pairwise likelihood under such setting and I follow
their approaches very closely in this chapter.

Let Y; = (Y, ,Yin)LY = (Y1, ,Yy) T and 6 = (61,6,)T € ® = R™. Define
0y to be the true value for the super-population model. Assume 6 is an interior point
of a compact set @. In all of this chapter, I assume the sampling clusters are the model
clusters, i.e., U; = M.

3.3 Pairwise composite likelihood estimation without complex sam-
pling

Consider the pairwise composite likelihood without complex sampling, i.e., one observes

all the census data. The idea is to replace the census log-full-likelihood /;(y;1,- - -, yin.)

for each cluster i by the sum of all possible pairwise log-likelihood pf(yi, y;;) in that

cluster. Observe correlation information about observational units k and ! in cluster i is
captured in the pairwise log-likelihood p#(y;, yi1). More precisely,

Definition 3.1. Define the census pairwise log-likelihood for cluster i to be

pli(0) = >, pluii(6),
k<l
ke

where

plii(6) = log Uf(]/z‘k|xik, bi, 01) f (yii|xii, bi, 01)g(bi|62)db; | . (3.1)

61



Then the census pairwise log-likelihood is given by summing over all possible clusters,

ie.,
Np
ple(6) = ) pti(6).
i=1

Remark. There are many ways of constructing the pairwise log-likelihood by imposing
conditions on which pair one chooses in each cluster. I took all possible pairs in the
same cluster as my definition. This might not always be a optimal choice. In fact, one
can show that choosing all pairs can reduce efficiency, even if all the pairwise likelihood
functions are independent (Xu, 2012). This is still an open question in the literature on
how to construct the optimal pairs and how or whether to weight them. For what I have
to do in this thesis, it suffices to consider all possible pairs in the same model clusters.

Remark. The integral in 3.1 involves a high-dimensional integral and so is intractable
when the dimension of random effects b; is large. Approximation of integration based
on the Laplace approximation is discussed in Breslow and Clayton (1993); Pinheiro and
Chao (2006).

Remark. Observe the pairwise likelihood and full likelihood are exact the same when
the cluster are of size 2. Note pf¢ is independent of pf, for i # i’ under the model
measure Y.

Definition 3.2. The census pairwise log-likelihood estimator Oy of 9 is defined as a
solution of

1 c —

Remark. Consistency and asymptotical normality of the pairwise log-likelihood estima-
tor without complex sampling have been established in many papers (Xu, 2012; Cox and
Reid, 2004).

62



3.4 Weighted pairwise composite likelihood estimation with complex
sampling
3.4.1 Construction

With complex sampling, the population model does not hold for the sample (Pfeffer-
mann, 1996). To estimate the census pairwise log-likelihood from sample data, one
needs to add weight to account for informative sampling.

Definition 3.3. Define the sample weighted pairwise log-likelihood for cluster i to be

pl(0) = > wiyiplui(0),
k<l
kel

where
plii(0) = log Uf(yiklxik, b, 61) f (yii|xii, bj, 01)g(bi]62)db; | .

The sample weighted pairwise log-likelihood is given by

N
pl*(0) = > Liw;pt;(0).
i=1

Lemma 3.4. Let hyi(yr, y1) = SUp e @) IV opLlit)i(Yk, y1,0)|. Suppose there exists a § > 0

such that supy; .y By [hlll*lf} < o0, then the sample weighted pairwise log-likelihood is a design-
unbiased estimator for the census pairwise log-likelihood under design measure T, i.e.,

Er [pf(0)] = pt*(6).
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Proof. Observe

Ny
Er [pl7(0)] = Eny,m, [2 1iwz‘Pff~(¢9)]
i=1
Np
> Liwipti (0)|U3
i=1

— ]Enl ]ET[Z

N

i=1
N

= > Wi, [1;p(6)]
i=1

N
= > pl5(6)
i—1

= pte(0).

Corollary 3.5. Let hyyi(Yk, Y1) = supyecey | Vorlui (Vi yi,0)| and guyi(ye, yi) =
sup,geoy | VaoPlui(Ye yi,0)|. Suppose there exists a & > 0 such that sup,; , , Ey [hllde] <

and supy; ;. ;y By [gim‘s] < oo, then the sample weighted pairwise score function is a design-
unbiased estimator for the census pairwise score function under the design measure 7, i.e.,

Ex [Vopt*(0)] = Vopt(6),
Ex | V3epl(0)] = Vapt(0).

Lemma 3.6. Let Iyq)i(yk, y1) = supgeey | Vopluyi(Ye yi,0)|. Suppose there exists a 6 > 0
such that supy; ;. ;, Ey [hi;ﬂ < oo, then

]Eyﬂ [Vgpgs (00)] =0.
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Proof. By Corollary 3.5, one has
Ey [Vopt®(60)] =Ey[Vept©(60)]

Ny
=>1 > Ey [Voplui(6o)]
i=1 k<l
K leUs

_ Z Z fVef yzkryzlf‘%)f(yl,- oYi-u Y,

i=1 k<l fylklyllleo
k,leUs

Yic Vik+1), - Yig-1)-Yi Vi), YiNg Yit1,
dy,-l e dYi—0) Yk AYir1) - Yig-1)AYadyigia) -

_2 5 fVef yzkzyzlr00)f(yik,yil,00)d]/ikdyil

i=1 k<l fylklyllleo
kleUsf

_Z Z vejf yzkryZZIOO)dylkdyzl

i=1 k<l
kleUsf

N
Y5 v
i=1 k<l
K leUs

=0.

rYi(k—1)r

J YNy, 00)dyr - -
-dyindyii1 -

dy;_1

-dyn,

]

Example 4 (Pairwise likelihood estimator for linear mixed model). Consider a linear mixed

model defined in section 2.2.2. I work with the pairwise composite likelihood instead. The census

pairwise likelihood is given by

N

1 1
ple(0) = Z > [— 5 log Zht| — §(Ykl —xuB) L (yi — Xklﬁ)},

where Xy are now 2 x 2 variance-covariance matrices for pair k, 1. Then one can show the census
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pairwise likelihood estimators of 3 is given by

-1

Ni Ni
a Ty —1 Ty —1
B = Z Z Xir Xy Xkl Z Z X Xy Y
i=1 k<l i=1 k<l
klels K lels

The sample weighted pairwise likelihood is given by

1 1 _
pl(0) = > wi > wyy { — 5 log [Tl — 5 (yu — xuB) Eg (yu — szﬁ)]
T

One can show the sample weighted pairwise likelihood estimators of B is given by

-1

3 Ty—1 Ty—1
B=| D wi > Wy xu Ywi Y wxiEg'yu
iel; k<l el k<l
KleUs Kleus

3.4.2 Consistency

I now turn to the problem I stated in the beginning of this chapter: when is the pairwise
likelihood estimator a consistent estimator? I am going to present proof done by Yi et al.
(2016), which is a starting point in the literature of the weighted pairwise likelihood
estimator under complex sampling, but I will include more detail. I am going to use a
similar approach for the more general case (more about this in chapter 4). Let 6, be the
sample weighted pairwise likelihood estimator and 6, be the true value of the model.
More precisely,

Definition 3.7. The sample weighted pairwise likelihood estimator 6, of 6 is defined as
a solution of ,

— *(0) = 0.

N, Vert (o)

Remark. It can be shown that the true parameter 8 of 8 is a solution of
Ey | L Vopt(0)| =0
YN 6P =u

66



In all of the following, I assume the elements within the cluster are bounded, both
the sample and population clusters need to diverge and the sampling fraction for the
cluster should converge, i.e., N; < A for all i, ny — o0, N — o and ;\1]_11 — ¢, where A > 0
and ce [0,1).

Theorem 3.8. Under the following regularity conditions,

A.1 O is a compact subset of RV and 0y is an interior point of ©.

A.2 Let hyy)i(Yix, Yi) = SUp e @) IV pliy)i(0)|. Suppose there exists a 6 > 0 such that SUP; k13 IEyh,lngs <
o and sup; Ey|Y;[° < oo, where Y; = (Y, -+, Yin) ™.

A.3 For any given c > 0 and a given sequence {y;} satisfying ||ly;| < c, the sequence of function
{Voply,i(0)} is equicontinuous on any open subset A of ©.

A.4 For all variables Viy; satisfy Nil 25\21 > k<l szlli = Oy(1), one has
kleUs

Np
1 1 _1
N Ywi D wiVigi — N > Viai =0y (”I 2)
Views k<l Lic1 k<l
kel kleUs
with respect to design probability 7t
A.5 The number of elements within any clusters is bounded, i.e., sup; N; < A for some A > 0.

A.6 Forall € > 0, there exists a 6 > 0 such that

inf Ey, {NLVQ;?ES(O)} > 0.
I

(0c0:|0—0 =€}

then

with respect to model-design probability Y rt.

Remark. A.2 is a standard 1 + / moment assumption for the pointwise law of large
number to hold. Observe 1 + § moment bound is crucial, it is not enough to assume first
moment exists. One typically needs a 2 4+ § moment bound for the central limit theorem
to hold (more about this in section 4.4).
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Remark. A.6 is a technical assumption to ensure that ) is the unique zero of Ey [ﬁl Vopl® (0)}
on O. The assumptions given above are essentially the same as Yi et al. (2016).

Remark. This result also holds when the sampling clusters are not the same as the model
clusters (more about this in Chapter 4).

Remark. In view of Theorem 7.21, I may assume p = 1.

The key step to establish Theorem 3.8 is the uniform law of large numbers (ULLN)
on a compact set which can be proved from the pointwise law of large numbers (PLLN)
and equicontinuity conditions. Once this has been done, the rest is just routine. The
argument is slightly modification from Lemma 5.3 from Shao (2003), Yi et al. (2016);
Carrillo-Garcia (2008). More precisely,

Lemma 3.9. With the same conditions A.1 — A.5 as in Theorem 3.8, then one has

sup 20 (3.2)

6O

1 1
L 9pe(0) — By {—WS(@]
I Ni

with respect to model-design probability Y 7t.

Proof. 1 start by introducing some notation. Let 8 € @ and p > 0, define B,(0) = {6’ €
O : |0 — 0’| < p}. Consider the upper sum and the lower sum of the weighted pairwise
score function on B,(6), i.e.,

1

Uo(0) =57 Ywi > wy sup Veply(6'),
Izeus k<l 0'€Bp( )
kel
Lo(6) sz > Wili , mf Voplyi(8).
Izeus k<l ( )
leUS
Observe
1U,(6) — Z w; Z Wit (iayis (3.3)
zeus k<l

klel;

where hy i (Yix, Yir) = supecey [ Vop£ii(6)]-
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I want to show the difference between the upper sum and lower sum of the weighted
pairwise score function convergence to 0 as the radius of the ball p go to 0. More

precisely,
Claim: Let 8 € O, for all € > 0, there exists a p > 0 and ny € IN such that for all n; > ny,
one has

Py (|Up(8) ~ Lp(0)] > €) <e.

Proof: The proof is based on a truncation argument. I want to truncate the difference
between the upper sum and lower sum such that [Uy(6) — Ly(8)[1y;|>c; is bounded
by using moment condition A.2, where Y; = (Y1, - /YiNi)T- For the remainder term
IUp(6) — Lp(0)|14y;|<c}, I am going to show the measure of that set is small by using
the equicontinuity condition A.3. More precisely, let 8 € ©, for alle > 0,c > 0and p > 0,
one has

Pyr (|Up(0) = Lo(0)] = €)
=Py (|Up(8) — Lo(0)|1{jy;5c) = €) + Pyr ([Up(0) — Lo(0)[1{jy;j<c) =€) . (34)

For the first term in 3.4, I can choose a sufficiently large ¢ > 0 to make it as small as I
want by using the moment bound. Fixed such ¢ > 0, I can bound the second term in 3.4
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by equicontinuity condition. More precisely, for the first term in 3.4, one has

1 €
Py, ([Up(8) — Lo(8) |1y >c} = €) < Pyg N D wi Y Wiy se = 5
iel} k<l

leUs
2 1
< ZEyn [+ 2, @i D, whpihiilyyse)
€ N =~
iell k<I
K leUs

2 |1 &
=By | 2 2 il
Uizt k<

2A2
< = sup Ey [l {v;>c)]
{i,k,1}

2)? 115] T =
< == sup [Evh| T Py (Y] > o))
€ (ki)
222 116] T 5 6T
=% sup []Eyhk”i } [nvy(uyiu > ¢ )]
€ {ikl}
2/\2 1 0 2
<= sup [Eyii?| ™ [Bx (W) et
€ {ikl)
In the first inequality, I used 3.3. In the second inequality, I used Markov’s Inequality
Lemma 7.16. In the third inequality, I used A.5 , ie. sup;N; < A. In the fourth, I
used Holder’s Inequality Lemma 7.14. In the last inequality, I used Markov’s Inequality
Lemma 7.16 again.
From the moment bound A.2, I can find a ¢ > 0 such that
T{Szlz?z)} [Eth1|i] []EY(HYiH )} <5,
ie.,
(3.5)

N ™

Py (|Up(8) — Lo(0)| 1y >} = €) <
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Fix such ¢ > 0, for the second term in 3.4, I use the equicontinuity condition A.3, i.e.,
for all € > 0, there exists a p > 0 such that

sup

Voplii(61)1vi<c) = Vorluji(02)1v1<| < 12
01,92614

for all open sets A with diam(A) < p and for all k,[,i. In particular, for all € > 0, there
exists a p > 0 such that

sup Voplii(0)1lgyi<er — inf Vepliyi(0)lyi<o < —
e/egfe) 0P ki (0')1()v;)<c) N Plai(0)1vi<e) < 33

for all k,1,i. Summing over all possible pairs and normalising by NLI' one has

[Up(8) — Lo(0) [ 1(jy;)<c) < N sz > wkz|zA2

zells k<l
klel;

Hence,

Pr ([Up(6) = Lo(0)[1jv;)<c) = €) < Pr | <= Z wi ), wklllAz > €

zeLIS k<l
klel;

=Pr _2‘01 Z wkl\z/

zeUS k<l
klel;

< (3.6)

N ™

In the last inequality, I used the following fact: by A.4 and A.5, one has

N szwkuz——ZZl_OP( )
I iel? k<l i=1 k<l
U kleus kleUs

supN; < A
i
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Putting all those estimates 3.5 and 3.6 together, one has

Py (|Up(0) = Lp(6)] = €)
=Py (|Up(0) = Lo(0)1()y; =) = €) + Pyr (|Uo(8) — Lo(0)|1{jy;)<c} = €)
€ €
<€.
This completes the proof of the claim. |

Now, I want to show the lower sum convergences to the expectation of the lower sum
function. More precisely,
Claim: Let 6 € O, for all p > 0 and € > 0, there exists a 1y € IN such that for all n; > ny,
one has
Pyr (I1Lp(0) —Eyx [Lo(0)] | > €) <e.

Proof: Observe

Py (HLp(e) —Eyx [Lp(e)] | = e)
<Py (15(0) ~ Ex [Lo(6)] | > 5) + Py ([Ex [Lo(6)] ~ Exr [Lo(0)] | > 5) . 7)

For the first term in 3.7, using A.4, one has

1 1 )
N w; Wil -nf v E . 0/ o nf V g . 0/ :O n2 ,
0 2 oy Voplui®) — 3, Xk, Vorts@) = O(”})
bklel; klels
ie.,
€ €
Pr (ILp(6) ~ B [Lo(0)] | = 5) < 5
Hence,

Pyr (ILp(6) ~ Ex [L,(0)] | = (3:8)

For the second term in 3.7, observe

\%
NI
N—

A
NI

N

1 .
Ex [Lp(6)] = g 2, Jnf pti(0)
i=1
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is a sum of independent random variables under model measure Y. By the pointwise
law of large numbers, one has

€

Py (1B [Lp(8)] ~ By [Lp(0)] | = 5) < 5. (39)

Putting all those estimates 3.7, 3.8 and 3.9 together, one has

Py (|Lp(8) — Eyx [Lo(0)] | = €) <e.

[

Now I proceed to the proof of the uniform law of large numbers Lemma 3.9. Observe

the set of open balls {B,(8) : 8 € ©®} forms an open cover for @. Since © is compact,

then there exists a finite subcover, say {B,(0;) : 8, € ®,h = 1,...,H} such that ® c
U;Ile B,(6y). Observe

sup Z wi Y. wiliVeplji(0) — Eyn Z wi Y. wiVeplui(6)
60 zeus k<l IEUS k<l
KleUs kel

1
—sup sup | L Y Y wk1|iV0Pfkl\i(01/q>—]EYﬂ Zwl > @i Veplui(6})
b 0,eBp(6y) | lieus oL Ileus k]f<Lll
=i <

=sup Z Wi Y, Wi sup  Veplyi(6},) — eeinf Ey, sz > @i Veplui(6})
h

Ni iels k<l 0;,€B,(6y,) By (6y) Ni iells k<l
k,lel k,lel;
< sup (Up(6r) — Eyx [ 0(61)])
=sup (U, (8;) — Ly(6y)) + sup (Lo(6) —Eyx [Lo(61)]) - (3.10)
h

The first equality follows from construction. The second equality follows from Lemma
7.13. The inequality follows from Fatou’s Lemma, i.e.,

Eyr | Inf Z wi Y. wpiVeplui(6y)| < inf Eyg Z wi Y, @i Voplui(6})
0,€Bo(01) N1 iels k<l 0,80 (6n) zeus k<l
kleus kleus
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Hence

1

Pyr [ sup Z wi Y wiVeplji(0) — Eyx N dwi > wwiVeplu(0)| | =€
0c® zeus k<l Views k<l
kel klel;

(o)

<Py | sup (Up(61) — Ly(61) = g) +Pyq <s1;p (Lo(61) — Eyx [Lo(63)])

>
2)

H H
<}§]PYH <u‘0(0h) o LP(Oh) = g) +}§]PY7T (Lp(eh) —Ey, [Lp(eh)} = g)

€ €
<H- +H-

2 + 2
<He.

The first inequality follows from 3.10. The third inequality follows from the previous
two claims.
Using the same argument, one can show

1

Py, | inf Z wi Y wiVeplii(0) —Byx | — > wi >, wuiVeplu(0)| | < —e
6cO NI NI )
iel; k<l iely k<l
klel; klel;
<E€.
This completes the proof of Lemma 3.9. O

I now proceed to the proof of Theorem 3.8.

Proof. From A.6, for all € > 0, there exists a 6 > 0 such that

(o] <

IE,yn {iVQPKS(én)} ‘ > 5} .
Ny
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Fix such é§ > 0, observe
0, — eoH >e) <Py, (‘]Em [ Vopts( } ' > 5)

=Pyn (’N Vopl*(6,) — Eyn { Vopl* (6 H > 5)

]PYn (

1
< Pyr (Sup ﬁlvgpﬁ(e) —Eyr [EVBpES(H)] ' > 5) 2 0.

6O

The last inequality follows from Lemma 3.9. This completes the proof of Theorem 3.8.
O

3.4.3 Variance estimation

I now turn to the problem of variance estimation. Let us write this down in detail, as
I will apply similar arguments without further comment. The argument given in here
essentially follows the paper Yi et al. (2016), though with more explicit detail.

Variance is given by

Var(6,) = J1(6) +J2(6), (3.11)

where J1(0) = Ey [Varn(én)] and J,(0) = Vary []En(én)] The first term J;(0) is the
variance due to design and the second term J,(0) is due to model variance. If the first-
stage sampling fraction n;/ Ny is small, then one can show model variance J,(€) can be
ignored. More precisely,

Lemma 3.10. Under the following reqularity conditions,
A1 J5(0) = O<N1_1>.
A.2 The first-stage sampling fraction ny/ Ny is small, i.e., ny/ Ny = o(1).

then one has

Proof.
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Remark. Observe if E, [én] = Oy and Oy — O = Oy (NI_%>, then J,(0) = O(Nl_l).

Therefore it suffices to estimate J;(0). Typically 6, is a nonlinear function and Var,
operator does not behave nicely on the space of nonlinear functions. The standard tech-
nique in the literature is to linearise it by a Taylor series. In complex sampling setting,
the argument is due to Binder (1983). More precisely,

Lemma 3.11. With the same conditions as in Theorem 3.8 and assume 6, — 0y = Oy <n1_%>,

then
n 1 2 c - 1 s 1 2 c - -1
Vgr(@n) = _ﬁlveepg (00) Vf[ll' ﬁIVgpﬁ (00) —EVGQPE (9()) +0p (Tll )
Proof. Observe
_ 1 s(p
1 1 . |
= i Vort*(60) + ﬁlvg(,pﬁ(eo)T(en —6)) + 0, (nl—%)
1 1 A~ 1 T ~
= - Vopl*(80) + - V3Pt (80)" (6 — 60) + - (VEop*(60) — Viop“(60)) (B — 60)
N N N
1 s 1 2 c T/p -1
= VoPt (60) + 3 Viopt(60)" (6, — 60) + 0y (7).

In the second equality, I used Taylor Theorem 7.18 to function N%Vg pl°(0) at 6. In the
fourth equality, I used the fact that 8, — 6y = 0p(1) and A.4 in Theorem 3.8. The point
in here is that I replace V5,p¢%(6p) by V3,p¢¢(6y), which is a constant with respect to
design measure 7t. Therefore

~ 1 T _1
0, — 60y = (—ﬁIVE)ngC(00)> EVQPES(O()) +0p (nI 2) .

Since 0y and Vgpl©(6y) are constants with respect to design 7, one has

- 1 . -t 1 ; 1 ) -t _
Vgr(@n) = (—ﬁlvgepﬁ (00)) Vgr (EVQ;M (00)> (—EV%O;M (00)) —I—OP(nI 1).

]
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The natural estimator for ﬁlvgapﬂc(%) is & Lv Opﬁs(én). More precisely,
Proposition 3.12. With the same conditions as in Theorem 3.8. In addition, assume

B.1 Let gui(Yik, Yu) = SUp e o) vaepék”i(e)]\. Suppose there exists a 6 > 0 such that
SUPy; i1y IEygilTi‘s < o0 and sup, By|Y;|° < oo, where Y; = (Y, -+, Yin,) T

B.2 For any given ¢ > 0 and a given sequence {y;} satisfying |y;| < c, the sequence of function
{Vegpﬁk”l( )} is equicontinuous on any open subset A of ©.

then , .
ﬁlvéepfs(en) - EV%epgc(OO) = op(1)

under design measure 7T.
To prove this, one needs a lemma to start with.
Lemma 3.13. With the same conditions A.1 — A.5 as in Theorem 3.8. In addition, assume

B.1 Let gi(Yir, Y ) = SUP(pc@) | Vaeplui(0). Suppose there exists a 6 > 0 such that
SUP; k1) ]Engl|z < o and sup, Ey|Y;|® < oo, where Y; = (Y, -+, Yin,) ™.

B.2 For any given c > 0 and a given sequence {y;} satisfying ||ly;| < c, the sequence of function
{Vaopli(0)} is equicontinuous on any open subset A of ©.

then
20

N V0p(0) ~ By | - Thopt(0)]

with respect to model-design probability Y7t

sup
0e®

Proof. This can be done using exactly the same argument as in Lemma 3.9. I omit the
detail. =

Now I proceed to the proof of Proposition 3.12.
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Proof. Observe

P (H L2 065(6,) ——vgepz (60) e)
Ni
RRVIIG ——v @) =€) 4P (|92, (8,) — = V2,p6(60)
N 66P 66P 2 e 06 AN 0
s b c E i 2 cip _i 2 c
<P (zlelg NIV op?°(0) NIV opl°(0 )H 2) +1Pn< Vorl (0n) NIVOOPE (60)
(3.12)
For the first term in 3.12, one has
€ €
P, (sup V BPES(O) - V epgc( )' E) < E (313)
0e®

by Lemma 3.13.

For the second term in 3.12, note én LN 0y by Theorem 3.8. Hence, by the Continuous
Mapping Theorem 7.20, one has
€
<
:)

1 A~
Pr (| 5 Viopt(62) — . Vaopt ()] >

g' (3.14)
Putting all those estimates 3.12, 3.13 and 3.14 together, one has
1 —yr o n 1,
" (Hﬁlvggiﬂﬁ (8n) = ﬁIVBGPK (60)| = €) <e.
O

It remains to estimate Vary (Vgp°(6y)). I will explicitly calculate Var,; (Vopl®(6y)).
Let 711 be the first-stage design measure and let 71, be the second-stage design measure

conditional on the first-stage sampling cluster U;. Recall Aypyr; = Tgiep )i — )i i
Lemma 3.14. Observe

1
Vrerlr <EV9P€S(00)) =W (90) + Vz(e()),
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where

N N
1 1 1

V (00 NIZ Z Z A”/ Wi Vgpf (Oo)wl/VQPEZ/(Oo))
i= 11’ 1

sz DT> D (Wi VopLiai(80)wieriV opLiori(60)) -
i=1 k<l K<l
IeUS K e

Proof. Observe
Var iV %(6o)
r \ Ny OPE

1 1
—g2 Var B, (Vopt(60)] + 2 Ery |Var (Vapti()]

[ N [ Ni
1 1
:m\é&ir Zliwi]Eﬂ_’z (Vgpéf(@o)) +WIEH1 le Var(VngS(Bo))]
I Li=1 I Li=1
1 Rl
=— Var levepf (6o) +—szVar Z LyjiwniVeplii(6o)
N m |3 Ny k<l
lels
; NN
N2 Z Z COV 11,1 )((UZVQPE (00)&)1/V9p£l/(00) + N—Zwl Z 2 C7?V (1kl\ir 1k’l’|i)
i—1i—1 I'isn k= k< 7
kIeUs K/ el
(wkijiVapLui(80)wi iV eplini(6o))
;. NN
22 > Air (wiVept (80)wi Veapls (60)) +—sz DD Ay
I r_ NI ’_q1
i=1i'=1 i=1 k<l K<l
KISUS K Veus

(wit}i Vo plii(60)wiriVepLliri(6o)) -

In the second equality, I used the fact 1; is independent of 1 for all i # i’ with respect to
design measure 7. O
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Remark. One can estimate Var, (NLIVBpES(HOD by the empirical variance estimator

Vary, <ﬁIV¢9p€S(§n)>, ie.,

— 1 ~ ~ ~ ~
Varn (EVGMS(OnO = Vl(Bn) + Vz( n)/

where
SN 1 Nt N R R
Va(B) =57 2, 3. Lwwinie (@i opti(@n)wiVopti (8n)
i= 11’ 1
V2(6,) = 221“’1 Z Z Tk irier i Dk i <wkl|zvoi9€k1‘z(en)wkq/‘lVQ;?fk/l/‘l(On)>,
heUs e

One can show this is an unbiased estimator, i.e., E, [\//z;'n (Nilvgpes (0))} = Var, (ﬁIVQpZS (0)) .
The argument is similar to Lemma 2.31, so I omit the detail.
It can be shown that the empirical variance estimator Var, <NLIV9 pés(én)> is a con-
sistent estimator for some reasonable sampling designs. For more detail, see Chapter
4.

3.4.4 Yi’s approach

Recall exact computation for Var; (Vgpl®(6y)) needs fourth-order sampling inclusion
probability as shown in Lemma 3.14. Yi et al. (2016) approximated the design by one
where the PSU i is selected with replacement with probability p; for all i = 1,---, Ny
Note 71; = njp;. Hence

—Vgpfs(eo = — Z w;Vepls(6p)
zeUs
—Vopti(6
N1n1 l;g opl; (o).

Observe %Vg pl:(6p) are independent identically distributed random variables from the

. . . . . 1
design perspective by construction. In particular, the mean and variance of EVg pt: (6o)
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are given by
1 S 1 S
|5 Vapti 0] <En (En |- Vaptiton)|
1
~Ex, | Vopti(60)]
Ny
= pi—Vopl5(6y)
iz i
Ny

= Vopti(6o),
i=1

1 1
Vgl‘ {EVQPE;S(OO)} :\7/%1' <]E7'(2 [EVOPEZS(GO)

) +En, (\{%r {%VOP@S’(OO)D

Ny
1 1
=Var |, Vopti(an)| + 3 pivar | Fort00)

2

Ny
1
= Z pi [ Vgpfs 0p) Z Vgpfc 0y)| + Z pi \;[azr [EVBPK?(OO)} .
i=1 !

i=1

Hence an unbiased variance estimator for Var, [%V@ pl: (0)] is given by

2
— 1 1 1
Var | —Vgpli(0)| = —Vopli(0) — — Vopl:(6
i | Vopti(o)] e A Zup ot <>]
1 1 2
= : > {—Vgpff(@)—VngS(O)} . (3.15)
ML LP

In the second equality, I use the fact 77; = nyp;.
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Therefore, the empirical variance estimator for Var, [ﬁl Vopl? (00)} is given by

o (Loe@n) =L Lvm Ly, pe@
Var, (NIVQpE (On)) Nz nIVf%\r {pivf)pﬁi(ﬂ)}

L1 ¥ Fvepei(e})r

_L nm 2 sia ]2
TNE (1) ,.;f wf [Vopti 6] -

In the second equality, I used 3.15 and the fact Vgp¢® (én) = 0. In the last equality, I used

U
Wi = np;”

3.4.5 Jacknife variance estimation

I want to discuss Jacknife variance estimation for Vary(6,). Recall

Var(8,) = J1(6) +J2(60),
Yr
where J;1(0) = Ey [Varn(én)} and J(0) = Vary [En(én)] By Lemma 3.10, if the first-
stage sampling fraction is small, then the model variance J,(€) can be ignored.
It reduces to estimate J;1(0). One can estimate Var, [én by resampling the sampling
clusters using a jackknife. Consider a partition of the sampling clusters U} into m sub-
group. Let é(j) be the j’s deleted Jacknife estimator, i.e., using the same method as 6 to

~

estimate @ after deleting j’s group data. Then the Jacknife estimator for Var,(0) is given
by
(6;-67,

Var(6) = ﬁ
1

m

j
where

>

mé— (m — 1)5(]),
1 i ~
m],:1

on I
I
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4 When sampling and model clusters are not the same

In this chapter, I want to extend the asymptotic properties of the sample weighted pair-
wise likelihood estimator to the case when the sampling clusters are not the same as the
model clusters. The main goal of this chapter is to establish consistency and asymptotic
normality of the sample weighted pairwise likelihood estimator. In addition, I construct
an empirical variance estimator for the sample weighted pairwise likelihood estimator
and show it is consistent. Essentially, the same proof with minor modification will yield
the weighted pairwise likelihood estimator is a consistent estimator. Once this has been
done, it reduces to a standard argument to find the asymptotic distribution. But proving
the consistency of the empirical variance estimator is surprisingly more difficult than it
first seems and requires a new approach. I start by introducing the setting.

4.1 Setting: design

Let U = {1,..., N} be the population and consider two partitions of U. One partition is
by the sampling design and the other is by the structure of the model. More specifically,
let Uf = {Uj, -, U§,} be the sampling clusters and Mj = {Mj, - -, M7 } be the model
clusters. In practice, the sampling clusters are the objects corresponding to the first-stage
sampling units (PSU) and the model clusters are the objects corresponding to the fibre
(inverse image) of random effects. More precisely, the random effect is defined on the
set of model clusters and two distinct model clusters are assigned different value of the
random effects.

Definition 4.1. The sampling clusters U are finer than the model clusters My if U; < M.

Definition 4.2. The sampling clusters U is coarser than the model clusters M if Mf <

Remark. It happens quite often that the sampling clusters and model clusters cannot
be directly compared, i.e., Uf ¢ Mf and M ¢ U;. For example, Hispanic Community
Health Study/Study of Latinos in section 1.1. One must search for a solution in this

more general setting.
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Define F to be the set of all subsets of Uj, i.e.,, F = {{J;c; U : I = {1,2,..., Ni}}. Let
IP; be the first-stage design probability on measure space (Uf, F)

]PI F— [0, 1]
A—> Pi(A).

Define F; to be the set of all subsets of U fori = 1,..., N;. Let IP; be the second-stage
design probability on measure space (Uf, F;)

P;,: F;, — [0,1]
A P;(A).

Let U; € F be the first-stage sample. If Uf € U}, a second-stage sample U € F; is
selected by sampling design IP;. Let S =  J; U}.

Remark. In all of the following, I will denote i,i’,i”,i" for the clusters and k, I, k', I, k", 1", k" , 1"

for elements in the cluster.

In my construction below, I will need some notation for identifying whether obser-

vational units are in the same sampling cluster.

Definition 4.3. Let s be a set-valued function from the population to the set of sampling
clusters

s:U— Uy
k»—>s(k)

such that for every observational unit k € U, s(k) is the unique sampling cluster contains
k.

Definition 4.4. Let r € N and kq,--- ,k, € U. Define the bracket
<k1/ Tty k?’>

to be a subset of U such that elements within the bracket have the same sampling clus-
ters, i.e., s(k1) = s(kp) = --- = s(ky).
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Remark. Observe (kq,--- ,k,» < s(kq).

Remark. This notation will be needed in proving consistency of the empirical variance
estimator (more about this in section 4.6 and 4.7).

Definition 4.5. Two brackets (ki,--- , k) and {I1,- - - ,I5) are said to be disjoint if they have
different sampling clusters, i.e., s(k) # s(I1). I will denote by (ky,- -,k ){Iy,- -+, ).

Definition 4.6. Let {k1,--- ,k,} and {l1,--- , s} be two subsets of U. {ky,---,k,} is said to
have a common root with {ly,---,[s} if there exists 1 < p < r and 1 < g < s such that

s(kp) = s(ly).

Definition 4.7. Define the first-order, second-order and fourth-order sampling inclusion
probability for clusters to be

T = Z ]PI(A),

Ae]—':UfeA

= Y, [Pi(4),

Ae]-':Uf,Uf,eA

7'[1'1'11'//1'/// = Z IPI (A) .

AeF:Uf, UG, UG, US, e A

Definition 4.8. Define the first-order, second-order, third-order and fourth-order condi-
tional inclusion probability to be

sy = Y, Pyg(A),
AG./T'.S(k)IkEA
Ty = >, Pag(4), i ki),
Ae]-'s(k):k,leA
Tk s (k) = Z Py (A), if kIK'),
Ae]-'s(k>:k Lk'e A
Tkl s (k) = Z Py (A), if KIK'T),
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One can easily deduce the final first-order 7, second-order 7ry; and fourth-order
inclusion probability 7ty using the independent and invariant property as before, i.e,

Tt = TTk|s (k) TTs (k)

g = 4 KIS Ts (k) if (kI),
Tts(k) s (1) TTs(k)s(1),  Otherwise.

-

Toakrv|s (k) TCs (k) if (kIK'",
TC|s (k) TCs (k) T/ 1| (k') TTs (k! ) if CkDXK'T),
Tk |s (k) TTs (k) 7T (1) Ts (1) if (kk')II"),
T |s (k) TCs (k) TT1 (1) TTs (1) if CkI")(IK'),
TCake|s (k) TCs () 70| (1) TCs (1) if CkIK I,
TOa1|s (k) TCs (k) T (k') TCs (') if Ckll' )K",
Tk 175 (k) s (k) T¥1[s (1) TCs (1) if (kK'1T),
TOIk'l = TOier|s(k) s (1) Tkl (k) TCs (K) if (AKX k),
Tt |s (k) s (k) T s (k') TTs (k') TE07|s (1) TTs (17) if kDT,
TCke (k) TCs () T|s (1) TCs (1) 70 |s (1) TTs (1) if (kK )XDT),
T0r|s (k) TCs (k) TC1s (1) T8s (1) Tk |s (k') TTs (k') if (kI )XIXK),
TCkr|s(1) T8 (1) TCk|s (k) Ts (k) 7T/ (17) TCs (1) if (KT,
TO1 (1) TUs (1) Tkl () TCs () TR s (k') TTs (') if (1)K,
T01 s (k') TTs (') T0Ks (k) TEs (k) TU]s (1) TTs (1) if (K'1")<D),
L 7Tkis (k) T211s(1) 70 s (k) 01 (1) s Rys (s (ks () 1 CROXEXRCT)

Remark. In all of the following, I assume there exists a € > 0 such that sup,; 1y > €,

SUPykry Tkl = € and SUP i1k m Tk k! 1k = €.
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Definition 4.9. Define the first-order, second-order and fourth-order weights to be

1
wy = —,
k -
1
Wil = —
7Tkl
1
Wik = .
kiK'

It is more convenient to work with the sample indicator function 1;, 1 instead of
design measure.

Definition 4.10. Define the sample indicator function to be
Li = uceus,
I = Tges-
Remark. I will use the following notation:
1”/ :1111/,
11'1'/1'111'/// :1111/ 11'//11'/”,
Ly =11y,
Tawr =11 151y,

1klk/l/k/ll//k///l/// :1k1l ]_k/ 11/ 1k// 1lll 1k/// 1l/// .
Remark. Observe
Ex [1k] = 7,

E Liwr] = e,

]ETf [1klk/l/k//l//k///l///] = nklk/l/k/ll//k///ll//.

Definition 4.11. Define
Aklk’l’ = C7CT)V(1kl, 1k’l’)/

Aklk/l/k//l//k///l/// — COV(]_klk/l/, 1k//l//k//ll///).
7T
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Remark. Observe
Ay = Ty — T Ty,
Aklk/l/k/ll//k///l/// == ﬂklk!l/k//l/lkl//l/// —_— nklk/l/ nk//l//k/l/ll//.

Definition 4.12. Let Ny be the number of sampling clusters in the population U and let
ny be the number of sampling clusters in the sample S, i.e., ny = 21]\21 1;.

Definition 4.13. Let N; be the number of elements in the sampling cluster U; and let n;
be the number of sampled elements in the sampling cluster U;, i.e., n; = > ;e 1gji-

Remark. Observe
N
N=)>'N,
i=1
Ni
n = Z 11'711'.
i=1

4.2 Setting: model

In contrast to previous literature, I do not assume the sampling clusters are the same as
the model clusters, i.e., U; # M.

Definition 4.14. Define
M; = M;nS,
My = {Mj, -, M }\J.

Definition 4.15. Let m be the set-value function from the population to the set of model
clusters

m:U— M
k — m(k)

such that for every observational unit k € U, m(k) is the unique model cluster contains
k.
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Definition 4.16. Let T; be the number of model clusters in the population U and let ¢,
be the number of model clusters in the sample S, i.e., t; = [Mj].

In all of the following, I assume if the sampling fraction for the PSU ny/Nj is small,
then the sampling fraction for the model cluster ts/T. is also small.

Definition 4.17. Let T; be the number of elements in the model clusters M; and let ¢; be

the number of elements in the sample M}, i.e., t; = |M|.

Observe

Tc
N=>T,
i=1

fs
n = Z ti-
i=1
Consider a two-level model,
Yir| Xik, b; ~ f(yik|xix, bi, 01),
b; ~ g(bi62),

for observational unit k in the model clusters i, where i = 1,...,T.. Observe b, is the
random effect for the model clusters M7 and the random effects for different model
clusters are independent under the model measure Y, i.e., b; L by if i # 7'.

Definition 4.18. Define the census pairwise log-likelihood for the model clusters i to be

plye(0) = > plailyey0), i=1-- T,

k<l
kleM;

where
Pluji(Yr, v1,8) = log Uf(yk!xk/ bi, 01)f (y1]x1,bi, 01)g(bi|62)db; |, k1 M;.

Then the census pairwise log-likelihood is given by
T
plae(8) = > plase(6).
i=1
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Remark. The subindex M denotes that the pairwise likelihood is calculated for the model
clusters not sampling clusters. The idea of writing in term of model clusters is I get a
sum of independent random variable under model measure Y, i.e., p¢ M pl s, are
independent under model measure, so that I can use the pointwise law of large number
and the central limit theorem (more about this in Theorem 4.23 and Theorem 4.25).

Remark. Under the correlated random effect assumption, one can forget about this defi-
nition, as ple (0) are correlated under model measure Y. One needs mixing conditions
to establish the pointwise law of large number and the central limit theorem (more about
this in Chapter 5).

Definition 4.19. Define the sample weighted pairwise log-likelihood for the model clus-
ters i to be

ngf(e) = Z 1klwklp€kl|i(yk/}/l,0), i=1,--,T.
e

Then the sample weighted pairwise log-likelihood is given by

T,
plas(0) = > plass(6).
i=1

One can show the sample weighted pairwise log-likelihood recovers the census pair-
wise log-likelihood in this new context after taking expectation. More precisely,

Lemma 4.20. Let hyi(yx, y1) = supgecey |VorLii(yk y1,0)|. Suppose there exists a 6 > 0
such that supy; 1y Ey [hi;ﬂ < o0, then

Ex [plu-(8)] = plase(6).
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Proof. The proof is almost exactly the same as Lemma 3.4. Observe

T.

Erx [plws(0)] =Ex | Y, > Luwupluyi(ve, y1, )

i=1 k<l
k,leMf

T;
= >0 2. Plai(vey1,6)

i=1 k<l
k,le M

O]

Corollary 4.21. Let hyji(yk, y1) = supgeey | VopLui (Ve v1,0)| and (v yi) = sup ooy | Vaeplui (Vi b
Suppose there exists a 6 > 0 such that supy; , Ey [hil*'l‘s} < oo and supy; ., By [giﬁiﬁ} < o,

then the sample weighted pairwise score function is a design-unbiased estimator for the census

pairwise score function under the design measure 7, i.e.,

Ex [Voplm:(0)] = Vaplu:(0),
Ex |V3oplns(8)| = Viopluc(6).

4.3 Consistency

My goal in this section is to establish the sample weighted pairwise log-likelihood es-
timator is a consistent estimator. Let 6, be the sample weighted pairwise likelihood
estimator and 6y be the true value of the model. More precisely,

Definition 4.22. The sample weighted pairwise log-likelihood estimator 6, of 6 is de-
fined as a solution of

1
1

Remark. It can be shown that the true parameter 6y of 0 is a solution of
1
I
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In all of the following, I assume the number of elements within any clusters is
bounded, both the sample and population clusters need to diverge and the sampling
fraction for the cluster should converge, i.e., N; < A and T; < A all i, ny — o0, N — o,
1y

N 6t >, T, — o, % = O(%) and where A > 0and c€ [0,1).
Let us state the main result.

Theorem 4.23. Under the following reqularity conditions,

A.1 O is a compact subset of RV and 0y is an interior point of ©.

A2 Let hyi(ye yi) = supgeey | Vorlu)i(Ve i, 0)|. Suppose there exists a 6 > 0 such that
supy; .y Ey [hil*ﬂ < o0 and sup, By|Y;|° < oo, where Y; = {yy : k € M¢}.

A.3 For any given ¢ > 0 and a given sequence {y;} satisfying |y;| < c, the sequence of function
{Voplui(y y1,0)} is equicontinuous on any open subsets A of ©.

A.4 For any variable Viy; satisfy %1 Z?;l Zk k<l szlli = Oy(1), one has
JeM;
1 I 1 I )
T D Tnwi Vigi — T DD Vi =0, <ts*?>

i=1 k<l i=1 k<l
kleM¢

with respect to design probability 7.

A.5 The number of element within any clusters is bounded, i.e., sup; N; < A and sup,; T; < A
some A > 0.

A.6 Forall € > 0, there exists a 6 > 0 such that

1
inf Ev. | ~Voplas(0 5.
(00160, >c} Y"[TIV"P e >} g

then

(4.1)
under model-design measure Y 7t.
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Remark. A.2 can be relaxed to that the second moment is finite.

I proceed the same way as before to argue the sample weighted pairwise likelihood
estimator is consistent by establishing a uniform law of large numbers (ULLN).

Lemma 4.24. With the same conditions A.1 — A.5 as in Theorem 4.23, then one has

sup

ECRIRS!

1 1
=V pl(6) ~ Eyn {ﬁvpew(e)} H L) (4.2)

with respect to model-design probability Y 7.
Proof. Essentially, this can be done in the same way as Lemma 3.9. I omit the detail. [
Let us turn to the proof of Theorem 4.23.

Proof. The proof is essentially the same as Theorem 3.8. O

4.4 Asymptotic normality

My next goal is to establish the asymptotic normality of the sample weighted pairwise
likelihood estimator. The asymptotic distribution can be constructed from a second-
order Taylor series expansion at the true value 68y. I slightly modify the argument from
Rubin-Bleuer and Kratina (2005); Boistard et al. (2017).

Theorem 4.25. Under the following regularity conditions,
A.1 O is a compact subset of RV and 0y is an interior point of ©.

A2 Let hyi(ye yi) = supgeoy | Vorlu)i(Ve yi, 0)|. Suppose there exists a 6 > 0 such that
supy; .y By [h%fﬂ < o0 and sup, By|Y;|° < oo, where Y; = {yy : k € M¢}.

A.3 For any given ¢ > 0 and a given sequence {y;} satisfying |y;| < c, the sequence of function
{Voplui(y y1,0)} is equicontinuous on any open subsets A of ©.
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A.4 For any variable Vi ; satisfy %1 ZiTLI D kel szlli = Oy(1), one has
k leM¢

—Z > TwiViaji — T Z 2 Vi =0, ( )

zlk<l 11k<l

with respect to design probability 7.

A.5 The number of element within any clusters is bounded, i.e., sup; N; < A and sup,; T; < A
some A > 0.

A.6 Forall € > 0, there exists a 6 > 0 such that

> 4.

n {%VGPKMS(O)}

inf
{60:]6—6)|>¢}
A.7 Let g1i(Yk Y1) = SUP(geoy IVaerlui (Vi yi, 0). Suppose there exists a & > 0 such that
supy; iy Ey [giﬁi‘s} < o0 and sup; Ey|Y;[° < oo, where Y; = {y; : k € M¢}.

A.8 For any given c > 0 and a given sequence {y;} satisfying |y;| < c, the sequence of function
{Veepﬁk”l(yk, y;,0)} is equicontinuous on any open subset A of ©.

A.9 For any variable Vyy); satisfies the following conditions,

1 vT 2 _
@) 7 2% Zk,]l(e<1\l/ll? Viai = Op(1),

. T
7 € i

then
1 & e D
o' TZ > 1k1wlekz|i*TZ > Vi | = N(0,1)
Uizl k< Uizt k<
k,leM¢ k,le M

with respect to design probability 7.
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A0 limtJ; > 0 and im T, Jy > 0, where J(0) = Vary [%VngMs(B) and Jy(0) =
Vary %IVGPKMC(H)}.
A.11 Assume lim f[—sc = (, where ¢ € [0, 1].

then

1

J(60) PH(80) (8, — 60) > N (0,1+¢ |(limtJ(60) ' (im T (80))] ), (43)
where
H(6) = By |1 Vioptar(6)]
1x(6) = Var | - Vaptus0)|,
Jy(6) = Var {%VOPKMC(B)l :
In particular, if the first-stage sampling fraction is small, then
Jx(60) T H(60) (6, — 60) 2> N (0,1) (44)
under model-design measure Y 7t.

Remark. A.2 is a standard 2 4+ 6 moment assumption for the central limit theorem to
hold. Observe 2 + § moment bound is crucial, it is not enough to assume second moment
exists.

Remark. A.7 and A.8 are used to prove the Uniform Law of Large Numbers (ULLN) for
LV30ptu(6).

Remark. In view of Theorem 7.21, I may assume p = 1.

Before I prove this theorem, I need two results to start with. Once this has been done,
the rest of the proof is just routine.
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Lemma 4.26. Under A.1-A.8 of Theorem 4.25, then

sup

1 1
—V2,000s(8) — Eyy [—vgepew(a)} ‘ 20
9o || 11 Ti

under the model-design measure Y 7t.

Proof. The argument is essentially the same as the argument given in Lemma 3.9. I omit
the details. H

Lemma 4.27. Under the same conditions as in Theorem 4.25, then

NI—=

1(6) "} (- Voptar(6) - Eve | -Voptae(6)] ) B> N (0.1+¢ [(imea(6)) ! (im T (6))] )

under model-design measure Y 7t. In particular, if the first-stage sampling fraction is small, then

NI—=

J(0)~ (%IVOPEMS(O) —Eyn [%VGIMMS(@)D 2> N(0,1)

with respect to model-design measure Y 71.

Proof. Observe

J.(6)"2 (%VGPEMS(G) —Ey, {%VGPEMS(Q)D
—J.(0)} (%Vgprs(O) _E, {%wpzMg(e)D +
J.(6)2 (IEn {%VOPEMS(O)} —Eyx {%VG)PEMS(O)D
=J(6)"2 (%VOPEMS(B) —Eg {%VOPEMS(G)D +
s % _1 1 1 1 1
| [0020) 7 (137002 130 (x| £-Voptar(0)] ~ Bve | £ Tapta(0)] ).
(4.5)
For the first term in 4.5, by A.2, A.10, A.9, one has
Jx(6) 2 (%VBPEMS(O) —Ex [%VGPEMS(G)D 2 N(0,1) (4.6)
I I
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with respect to design measure 7.
For the second term in 4.5, observe

T,

1 1 &
Ex |=Voplys(0 :—EV e (0
T[{TI OPM()} Tli:1 ePMl()

is a sum of independent random variables under model measure Y. By the central limit
theorem, one has

N|—

1(0)F (Ex [ 1-Voptar(0)] - Bre | £ Vot @) ) 2N QD) @)

with respect to model measure Y.
From A.10 and A.11, one has

| [eaxon aven!] & ¢ [imegae) imTave)!]. @

Putting 4.7 and 4.8 together, by Theorem 4.4 in Billingsley (2013), one has

] [et0) 7 (v @) 3v(0) (B | £ 50pta0(0)]  Bre [ £ aptr0)] ) 2
N (0.¢ | (tim £:J(6)) ™" (lim TeJv (6))] ) (49)

with respect to model measure Y.

Putting 4.5, 4.6 and 4.9 together, by Theorem 5.1 in Rubin-Bleuer and Kratina (2005),
one has

11 1 . ~1
1(6) "} (- Voptan(6) - Eve | £ Voptae(6)] ) P> N (0,14 ¢ [(imea(6)) ! (im T (6))] )
with respect to model-design measure Y7t. This completes the proof. O

Let us turn to the proof of Theorem 4.25.
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Proof. Observe
1 ~
0 =—=Voply:(8y)
I
1 1 ~ 1
= Voptur (00) + = Vaoptu (00) (6, — 60) + o, (%)
1 1, T
:TIVQPEMS (00) + ]EYT[ {TIVGOPEMS (00):| (On — 00)+
]. 2 1 2 T ~ _1
TIVOOPEMS (90) —Ey, ﬁVggpﬁMS(eo) (0;1 - 00) + Op (ts 2>
1 1 2 T ~ _1
:TIVngMs (90) + ]Eyn TIVQQPEMS (00) (Gn — 90) + Op (ts 2>
1 T/A _1
= Voptue(60) ~ H(60)"(6, — 60) +0p<ts z).

In the first equality, I used the definition of 6,,. In the second equality, I applied a Taylor
expansion to function %Vg plass(0) at By. In the fourth, I used the fact that 0, LN 6y from
Theorem 4.23 and A.4. Then one has

Tip _ _1 -1
H(60)" (8~ 00) = = Voptu:(80) +op(t72),
ie.,
A~ _1 (1
1(00) HH(00)" (8, — 00) = J(60)* - Vptac (00) ) +0,(0)
By Lemma 4.27 and Ey [%IVQ;MMS (00)} = 0, one has

J<(60) 2 H(80)" (B, — 60) 2> N (0,14 [(1im £,)x(80)) ™" (lim TeJ(80)) | )

under model-design measure Y7t. O

Remark. There are two problems on evaluating H(6y), J.(6y) and Jy(6p). First, H, J,
and Jy are a sum over the population data, but one only observes a sample. Secondly,
H, J; and Jy cannot be evaluated at 8), because one does not know the true value 6.
This problem can be handled by using the plug-in estimator.
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It remains to estimate H(6y),J~(6y) and Jy(6p). In all of the following, I am going to
assume first-stage sampling fraction is small to simplify the exposition. Then it reduces
to estimate H(60p) and J.(60p). It is straightforward to construct estimator H(6,) such
that

H(6,) - H(60)
under model-design measure Y7t. My goal in the next section is to construct estimator
J<(6y) for J(6y) such that

Tc]\ﬂ(én) (TCJTL’(QO))_l ﬁ’ I

under design measure 7. This is surprisingly more difficult than it first seems. Once I
prove the limit exists, then one has

A~ A~

0,)" (6, — 60) 2 N(0,1),

N——
NI—=
S )
|
—~
Dy
2
N—
N|\>—‘
T
—~

(T (60)) 7% (T (80)

ie.,

TN(én)_%ﬁ(en)T(en —6) 2, N(0,I)

under model-design measure Y7t.

4.5 Variance estimation

It is straightforward to construct a consistent estimator for H(6y). Namely, one can
estimate H(0y) = Ey, [—%V%OMMS(OO)] by

~ ~ 1 ~
H(6,) = —ﬁvgngMs(Hn).

The proof of consistency is essentially an rephrase of Lemma 4.26 and the triangle in-
equality. The difficulty in here is to estimate J(6).

4.5.1 Empirical variance estimation

One can estimate H(6y) = Ey, [—%VggpﬁMs(Go)] by
1 ~
H(6,) = —ﬁvgepew(en).
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More precisely,

Lemma 4.28. Under A.1-A.8 of Theorem 4.25, then
H(6,) — H(6) - 0.

Proof. Note 6, 5 6, by Theorem 4.23. From the Continuous Mapping Theorem 7.20,

one has
H(0,) —H(6)) L0 (4.10)
under model-design measure Y.
Hence
Py (JH(6,) —H(60)| > ¢)
<Py (IH(8,) ~ H(By)| > 3 ) + Py (JH(B,) — H(B0)| > )
2 2
~ € ~ €
<Py <SUP |H(6) —H(0)| > E) + Py (HH(Q ) —H(6o)| = E)
0cO
€, €
2 2
<€
The third inequality follows from Lemma 4.26 and 4.10. O

Therefore, it remains to estimate the design variance J(0). Observe

Jam:vm(lemmm)

222 o> Cov (1, 1wr) (wiaVopli (8)wir Voplir(0))
A

T

C C
TZZ D0 D M (waVepli(0)wirVeplir(8)),
C i=1i'=1 k<l K<l
kleM; K/, I'e M,
where
Ayixr = Ty — T Ty -
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Remark. Observe if one samples all the population data, then J(0) = 0, as Ay = 0
forall k,1,K',I' e U.

Observe one needs data in the population to calculate J(0). But one only observes
a sample. Therefore, J;(6) must be estimated by the data from the sample. One can
estimate J;(6) by

T T.
J=(0 222 D0 D Vawrwrrr Ay (W Vepli(8)wir Veplir(6)) .
L o oy R
KIEMS K IEME,

Remark. Observe J(8) is an unbiased estimator for J;(8) under design measure 7, i.e.,

Ex |J2(0)] = Jx(0).

Remark. Observe

Var [chr((e)] = Var | — Z Z DD Takr @ik Darr (W Vepl (0)wer Veplir(6))

Ci=li'=1 k<l K<l
k,le M k’,l’eM.C,

T. T. T,
2 ZC ZC ZC ZC: Z 2 2 Z COV (1klk/l’ 1k”l”k”’l”’) WkIK'1
i=17=1i"=1i"=1 k<l K<l " 1" K" <

k, lEMC K, l’eMC k// "eME, k", ZIIIGMC
i’ i i
Aklk/l/wk//l//k///l///Ak//l//k///l/// (wkZVGPKkl (O)Wk'l/vepgkq/ (3))

(wk”l”VOPZk”l”(O)Wk’”l”’VBPZk”’l”’(0))
T. T, T. T.

—_— = 2 2 Z Z Z Z 2 Z Z Aklk/l/k//l//k///l/l/wklk/l/Aklk/llwklll//k///l///
l 1 l/_ 1// 1 1///_1 k< l kl//<l///

lems eishas ke, ke,
l l 1

Ak//l//k///l/// (a)kIVngkl(H)C(Jk/l/VQPEk/ZI(O)) ((Uk//l//VQPEk//l//(O)C(Jk///l///Vngk///l///(0)) ,

where

Aklk'l’k”l”k”’l”’ = ﬂklk’l'k”l”k”’l”’ — nklk'l' nk”l”k”’l”"
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A natural question to ask in here is: when does one have a convergence in probabil-
ity? More precisely, can we show

T x(0n) — T 2(60) > 0

under design measure 71?7 By Markov’s Inequality Theorem 7.17, it boils down to show
under what condition does one have Var, [chn(é?)} — 0 for all 8 € ©. The questions is
surprisingly more subtle than it first seems. I will come back to this question on next two
sections. More precisely, I will show that a set of reasonable sampling designs (Poisson,
Stratified and SRSWOR) satisfy this condition (more about this in section 4.6 and 4.7).
For the moment, let me suppose Var, [T(jn(ﬂ)} — 0 for all 6 € O.

Lemma 4.29. With the same conditions as in Theorem 4.25 and Var [chn(é’)} — 0 for all
0 € O, then one has
TJx(6n) — TJ=(60) &> 0

under design measure 7T.

To prove Lemma 4.29, I need a uniform convergence lemma to start with. In all of
the following, without loss of generality, one may assume 6 is 1-dimensional by Cramer-
Wold Theorem.

Lemma 4.30. With the same conditions as in Lemma 4.29, then one has

sup | T« (0) — TeJx(8)] 5 0.
0c®

Proof. First, I want to show TCTH(O) — TcJ=(0) — 0. To see this, observe

Ex [T2(0) - TJx(6)]
]Pn_< 7T cJTT 62 cJTT
:Varrc [Tc/]\n(e)]

€2

T.J.(6) — TCJﬂ(a)H > e)

N

— 0.

In the first inequality, I use the Chebyshev’s inequality Theorem 7.17.
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Let p > 0, consider the upper and the lower function of the T.J on B,(8),i.e.,

Up(6) = sup TCTﬂ(H')
0'cB, (0)

= ZZ DY Lwrwier Dy (wiVepli (0" wiy Vepliy (6')),
9/ ) Ci=1i'=1 k<l K<l
k,le M k',zfeMl?,
Ly(0) = inf T.J (6
P( ) OIEIBP(O) chc( )

T. T
= o 11’1f Z Z 2 Z 1klk’l’wklk’l’Aklk’l’ (wklvf;pﬂkl(0’)wk/l/V9p£kq/(0’)) .
Bp0) fc i1 k=l g
kleM; K I'e M,

Then one can apply similar argument as in Lemma 3.9 to show

sup [TJ=(0) — T.J(8)]| & o.
0O

I omit the detail.

I now proceed to the proof of Lemma 4.29.

Proof. Therefore, one has

sup [T =(8) — TJ(8)] >0 (4.11)
0cO®

under design measure 7.
Note 8, — 8y X 0 under model-design measure Y7t by Theorem 4.23. By the Contin-
uous Mapping Theorem 7.20, one has

T (6,) — TeJ (60) £> 0 (4.12)

under design measure 7t.
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Tc]\ﬂ(én) - Tc]n(GO)H = €>
T (8) = TI(60)] = 5) + P

(
<Pn(

TJ(6,) — Tan(ﬁ’o)H > g)

1.Jx(8) ~ TJ=(0) | §> + P

<Pr (SUP Tc]n(é\n) - Tc]n(BO)H = g)

The third inequality follows from 4.11 and 4.12. This completes the proof. O
We are ready to state the main results.

Theorem 4.31. With the same conditions as in Theorem 4.25. Assume the first-stage sampling
fraction for PSU is small and supy.g Vary [TJ,T(O)] — 0, then

~ ~

1o A T/A D
Jx(6,) 7H(6,)" (6, — 69) — N(0,1)
under model-design measure Y 7r.

Proof. This is clear from Theorem 4.25, Lemma 4.28 and Lemma 4.29. O]

4.6 Consistency of empirical variance estimation: the sampling clus-
ters are the model clusters

In all of this section, I assume the sampling clusters are the model clusters. My goal is
to show Poisson, stratified and SRSWOR sampling all meet the following conditions

Var [Tjn(e)} )

Although the argument given in here cannot be directly applied when the sampling
clusters are not the model clusters, they provide an important theme: the tree struc-
ture of Ay, Ay and Aggppgnrgmpn are crucial for establishing convergence. In all of
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the following, I assume the number of elements within any clusters is bounded, i.e.,
sup; N; < A and sup; T; < A for some A > 0. Let hij; = supgy_g | Vopli(0)|. Furthermore,
assume there exists a ¢ > 0 such that supy; hy < ¢, sup, wy < ¢, supypy Wirr < ¢
and sup, sy pugmm Wik < c. 1 first establish Vary [T,jn(ﬂ)} — 0 for the Poisson
sampling when the sampling clusters are the model clusters.

4.6.1 Example: Poisson sampling design

Assume the sampling clusters are the model clusters, i.e.,, Uf = Mj. Consider the fol-
lowing two-stage sample design:

(i) First-stage: Poisson sampling with 7; for each sampling cluster i.

(ii) Second-stage: SRSWR with sample size n; = C; from population size N; = C; for
the sampling cluster i.

I start by making two observations.

Lemma 4.32. Assume the sampling clusters are the model clusters, i.e., U = Mj. Under the
above Poisson sampling setting, then

(i) Suppose kIk'l" has two sampling cluster, i.e., (kIYK'l"), then A = 0.
(Zl) If<klk/l,><k”l”k”/l”/>, then Aklk’l’k”l”k”’l”’ =0.
Proof. To prove (i), observe

Ay =Exliger — ExlgEx 1y
GGG G 1 G GG

=TTs(k) TTs (k') Cr, Cy Cy Gy T[S(k)c_zc_zns(k’)c_zc_z
=0.
To prove (ii), observe

Aklk!l/k!/l/lk///l/// :]En']_klk/l/k//l//k///l/// - ]Eﬂjlklk/l/]:Enlk//l//k///l///

c1\® C\* c\*
=TTs(k) TTs (k") G, — TTs(k) G, TTs (k") G,

=0.
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O

Proposition 4.33. Assume the sampling clusters are the model clusters, i.e., Uf = Mj. Under
the above Poisson sampling setting, then for all 6 € ©

Var [chﬂ(O)} — 0.

Proof. The proof is based on bounding the number of non-zero terms in a straightfor-
ward expansion of the sum defining J (). Observe

Var [ch\n( ] = Var ZZ >0 D) Yawrwikwr Dy (Wi Vepli (8)wir Vepli (6))

i=1i'=1 k<l K<l
kleMS k' e M¢,
1

— L Var Z DD Taerwier Dy (W Vepli(8)wir Veplir (0))

T2 =
i=1 k<l K<l
kleMs i/, l’eM¢

C
Tcz Z Z Z Z Z Z Aklk/l/k//l//k///l///(,(Jklk/l/Aklk/llwk//l//k///l///

i=1i'=1 k<l K<I'! K'<I" K'<
k leMC k/ l/GMc k// l//eMc k//l ll//eMc

Ak//l//k///l/// (wleQP&d(O)a)k/l/Vngk/l/(0)) ((Uk//l//Vngk//l//(e)wk///l///VQr)gkml///(0))
T p— Z Z Z Z Z Aklk’l’k”l”k’”l”’wklk’l’Aklk’l/wk’/l”k”’l’”
€=l k<l K<l K<l K<
k leMC k/ l/ MC kl/ l// MC k////l/l/eMlq
Ak//l//k///l/// (wkZVngkl(e)wk/l/Vprk/l/(e)) ((Uk//l//Vngk//l//(e)wk///l///Vngk///l///(0))
1
=0
(%)
In the second equality, I used Lemma 4.32, i.e., Ay = 0 if kIX(K'T"). In the fourth
equality, I used Lemma 432, 1e., Aklk’l’k”l”k”’l”’ =0 if <klk/l/><k”1”k/”l/”>. O

Remark. The argument above can be extended to the case when the sampling clusters
Ui are coarser than the model clusters My, i.e., Mj < U;j. The idea is pairs in the same
model clusters must be in the same sampling clusters.
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Remark. When the sampling clusters are the model clusters, I used an independence
identity, basically relying on the independent pair from different clusters. In particular,
note the tree structure of the Ay, Agnprgmm and Apggprpgrmgmpm is vital. See the figure
below. However, this argument no longer holds when the sampling clusters are not the

same as the model clusters.

kl k/l/ k//l// k///l///

Aklk’l/ Ak’/l”k”’l”’

Aklk!l/k!/l!/k///l///

Figure 4.1: Tree structure.

4.6.2 Example: SRSWOR sampling design

Assume the sampling clusters are the model clusters, i.e., Uf = Mj. Consider the fol-

lowing two-stage sample design:

(i) First-stage: SRSWOR with the sample size n; from the population size Nj for the
sampling clusters.

(ii) Second-stage: SRSWR with the sample size n; = C; from the population size N; =
C, for sampling cluster i.

I start by making two observations.
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Lemma 4.34. Assume the sampling clusters are the model clusters, i.e., Uf = Mi. Under the
above SRSWOR sampling setting,

(i) Suppose kIK'l" has two sampling clusters, i.e., (kIY(K'l"), then Ay = O(TC’1>.

(ii) TF KLY RIS, then Agoprinprmm = O<TC_1>.
Proof. To prove (i), observe

Apr = Exlgpy — ExlgE 1y
_n1C1C1n1—1C1C1 n1C1C1n1C1C1
T NGGN-1GCG NGGNGGC
_tSC1C1t5—1C1C1 ts C1C1ts C1 G

T T.CGCT,-1CGC T.CCT.CC

T. \T.—1 T,
;E(l_f_s)
T.— 1T, T

-o(T.™).

= —C

To prove (ii), observe

Asaririenr = Br Ly — Er LB L mgomm
ny C1C1C1C1 711—1C1C1C1C1 ny C1C1C1C1 ny C1C1C1C1
T NGGGON-1GGGEG NGGGOGNGGGE
ts C1C1C1Cts—1CICI GG GGGt GGG G

TG GGT,~1C0C GG T.CCCC T, CCC G

b (21 f
C T.\T.—-1 T.
1t ts
= — S1- =
CTC—lTC( TC>

=o(T.™).
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Proposition 4.35. Assume the sampling clusters are the model clusters, i.e., U = Mi. Under
the above SRSWOR sampling setting, then for all @ € ©

Var [Tjn(a)} - 0.

Proof. The proof is based on splitting the sum into four pieces and counting the number

of terms in each pieces. Recall

Var [T(jn( ] = Var 22 Y 2 Lakrwakr Ay (Wi Vepla(0)wir Veplir (6))

i=1i'=1 k<l K<l
k, ZGMC K Z’GM?

T 2 ZC] ZCI ZC: ZC] Z Z Z Z Aklk/l/k//l//k///l///CUklk/l/Aklk/l/wk//l//k/l/l///

l 1 1/ 1 Z// 1 1”/ 1 k<l I / k// // k///<l///
kleMs i/, l’eMC K’ l”eMC, k" 1" e Mg,

Ak//l//k///l/// (wleQ;aEkl(O)wk/l/VQpékzl/(0)) (wk”l”VQPEk”l”(O)Wk”’l”’VQPEk”’l’”(0)) .

I may split the sum over the model cluster into four pieces

zzzz YooY o+ Y o+ Y |an

i=1i=1i{"=1i"=1 one distinct two distinct three distinct four distinct
model cluster model cluster model cluster model cluster

and show the contribution of each term is small.
For the first sum in 4.13, there is only one sampling cluster. Hence

< - 1o o(T.™).
Wi, T
For the second sum in 4.13, there are two sampling clusters. There are three possibil-
ities.
First, if both kIk'l" and k"1”"k"1" have one sampling cluster, i.e., (kIK'I")(K"1"K"” 1", then
Ny pgmym = O(TC_1> by Lemma 4.34. Hence

L% = ho(wo(r) -o(r)

two distinct
model cluster
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Secondly, if one of kIk'l’ or k"I"k”1"” has one cluster and the other has two clusters.

WLOG, assume klIk'l’ has one cluster and k"I"k"”1” has two clusters, then Agupmpm

O(Tc_l) by Lemma 4.34. Hence
= io(Tf)o(Tc—l) =o(1.).

1
T2 Z TC2

I two distinct
model cluster

Thirdly, if both kIk'l’ and k"1"k"1" have two clusters, then Ay = O<TC_1> and

Ak”l”k”/l”’ = O<T5_1> by Lemma 4.34. Hence
1 1 2 -1 -1
L3 = ho(m)e(no(n)
¢ two distinct ¢
model cluster
For the third sum in 4.13, there are three sampling clusters. Observe at least one of
kIK'l" or K"I"K"1" have two clusters. Without loss of generality, suppose klk'l" has two
clusters, then Ay = O( T, ! by Lemma 4.34. There are two possibilities here.
First, suppose k"1"k"1” has only one sampling cluster, i.e., (kI){K'I"Y(K"1"K"1"), then

=o(1.72).

Aklk!l/k!/l!/k///l///
:]Enrlklk/l/klll//k///l/// —_— ]Enlklk/l/:ﬂanlk/ll//k///l///
o (G =1 (G =2 (G (G m-1 (G (G
N \GC) Ni—1\C) Ni—-2\GC, Ni\C) Ni—1\GC) N \C
b (GBS (G 2 (G (G o (G (G
T T.\GC) T.-1\GC) T.—-2\C T.\GC/) T.—-1\GC ) T.\G
N TC TC_]- TC_Z TC
_ . 1 tts—1 2_%
o TC_ZTcTC_]. TC
=O(T;1).
Hence 1 1
_ - = 3 -1 -1\ _ -1
> =7z0(rf)o(rt)o(1 1) = o)

2
Te three distinct
model cluster



Secondly, suppose k"I"k"1" has only two sampling clusters, then Aynpmmm = O(Tc_l)
by Lemma 4.34. Hence

% Y= %o@ﬁ)o(nl)o(nl) - o(Tgl).
€ three distinct ¢
model cluster

For the fourth sum in 4.13, there are four sampling clusters, i.e., kI){K'I" )K" 1" )K" 1.
Then

Aklk/l/klll//kl//l///

:]Eﬂ_’lklk/l/k//lllkllll/ll - ]E7-[1klkll/:[E7'[1k//lllk///l//I

2
_m (G =l (G m=2 (GO =8 (G (G m 1 C_z
TN\G) N-1\GC) N-2\GC) N-3\G, N \ G, NI—l C
k(G k-1 (G G\ -3 (a\ [t glzg—l

_Cts ts_l ts_2ts_3_ts ts_l
CT.T.—1\T.-2T,-3 T.T.—1

~0(T.7).
Observe Ay = O(TC*1> and Aprppgmm = O(TC’1> by Lemma 4.34. Therefore

% 3= %O(Tcd‘)O(TC_1>O<TC_1>O<TC_1> = O(TC_1>.

four distinct
model cluster

Putting all those estimates together, one has
Var [Tjn(e)} - O(T;l).
This completes the proof. O

Remark. When the sampling clusters are the model clusters, I used an almost indepen-
dence identity, basically relying on some of term Ay, Agrpngmpm Ot Dyrprgnprgmpm being
O <TC_1). In particular, note the tree structure of the Agjyryr, Agrprgmpm and Aggprprgnprgmim is
vital. However, this argument no longer holds when the sampling clusters are not the
same as the model clusters.
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Remark. One can use a similar argument to show Var, [TCTH(O)} =0 (TC_1> for strati-
fied SRSROW. I omit the detail.

4.7 Consistency of empirical variance estimation: the sampling clus-

ters are not the same as the model clusters

When the sampling clusters are not the same as the model clusters, the argument is more
involved to establish Var, [chl (0)} — 0. It is complicated by the structure of sampling
design, i.e., pair kI in the same model cluster might not be in the same sampling cluster.
I will show Var, [TJH(B)} — 0 for Poisson, SRSWOR and stratified sampling. The proof

consists of rewriting Var, [chn (0)} as the sum of terms which one can explore the decay
tor Ay, Agrpriempr and Agggepsgrpmgenym. The key construction in here is inspired by Lumley
(1998); Lumley and Mayer Hamblett (2003).

4.7.1 Example: Poisson sampling design

Assume the sampling clusters are not the same as the model clusters, ie., U # M;.
Consider the following two-stage sample design:

(i) First-stage: Poisson sampling with 7; for the sampling cluster 1.

(ii) Second-stage: SRSWR with sample size n; = C; from population size N; = C, for
sampling cluster i.

I start by introducing some notation. Define
P={kleU?: k<l and m(k)=m(l)}.

Definition 4.36. Let kI € P, define the neighbourhood of pair kI to be a set S = P such
that

(i) If K1 € Sy, then kI € Sy

(ii) If kI ¢ Spp and K'I' ¢ Sy, then 1j; and 1 are independent under design measure
TT.
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Define Sy, to be the complement of S; in P, i.e., Sy = P\Sk -

Remark. Under the above Poisson sampling setting, Sy, is the set of pairs that share at
least one sampling cluster of kI, i.e.,

Sy ={K'l"e P:s(k') =s(k) ors(k') =s(I) or s(I') = s(k) or s(I') = s(I)}.
In particular, observe supy,;_p |Su| < A% and supy,;p |Su| < TeA.
Lemma 4.37. If k'l € Sy, then Agp = 0.

Proof. Essentially, this is just chasing down the definition. If K'I' € Sy, ie., k'l' ¢ Sy,
then kI ¢ Sy from the definition. Then from the definition, this implies 1j; and 14 are
independent, i.e., Ay = 0. O

Proposition 4.38. Under the above Poisson sampling setting, then for all 6 € ©
Var [chﬂ(e)} - 0.
Proof. Observe
Var [TC]n(e)]

C C
=Var | - ZZ >0 D0 Yer@wkr A (Wi Vepli (0)wwr Veplir(6))
Ci=1i'=1 k<l K<l
kleM; k', I'e M,

1
=— Var Z Z T4 D | akrwrir A (Wi Vopliy (0)wiy Vopli (0))
i=1 k<l k/l/ESkl k’l’egkl

Tc
=—Var | > Y > Lyppwupr Dy (wuVeplia(0)wir Vepliy (8))
=1 ke TSy

T 2 Z Z Z Z Z Z Cov(lkllk/l/ 1k/ll//1k///l///)wklk/l/Aklk!l/wk//l//kl//l///Ak/ll//k///l///

C =1 k<l k’Z'GSk[ =1 k”<l” k”’l”’GSk//l//
k,leM K", EM

(wkZVngkl(e)wk/l/Vngk/l/( )) (wk”l”vepek”l”(O)Wk”’l”’vepek”’l”/(0)) . (414)
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In the third equality, I used Lemma 4.37, i.e., Ay = 0 if K'I' € Sy.
Note if (1y, 1k’l’) is independent of (1k’/l”/ 1k”’l”’)r then 1j; 14y is independent of 1y yn1jmm
and Cov (1 1py, 1gmuLgmm) = 0. In particular, covariance is nonzero if

K'1" e Skl,k”l” € Skll/,k”/lm € Skl/ or kK"1" e Sk’l’~ (4.15)

So the upper bound for number of nonzero term in Var, [TCTH(O)} is T.A8. To see this,

observe there are T, A2 choices for kI and at most A2 choices for k'l given ki, at most 4)2
for 4.15 to be true, and at most A? choice for k1" given k"1”. Therefore, from 4.14, one
has

Var [Tcin(a)] - o(T;z)o(mz)o(A2>o<4A2)o(A2) - O(Tgl).

Remark. The argument above can be easily extend to the stratified Poisson sampling
design. I omit the detail.

4.7.2 Example: SRSWOR sampling design

Assume the sampling clusters are not the same as the model clusters, i.e. Uj # M;. The
argument for the SRSWOR two-stage sampling is more involved. Consider the following
two-stage sample design:

(i) First-stage: SRSWOR with the sample size nj from the population size Nj for the
sampling cluster.

(ii) Second-stage: SRSWR with sample size n; = C; from population size N; = C; for
each sampling cluster i.

I start by introducing some notations. Define

P=1{keU?:k<I and m(k)=m(l)}.
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Definition 4.39. Let kI, k', k"1"” € P. Define

rs(l') =s(k) ors(l') =s(1)},

Sy ={K'l"e P :s(k') =s(k) or s(k') = s(I)
(I) or s(k") = s(k") or s(k") = s(I') or

Sy ={k"" € P :s(k") = s(k) or s(k") = s(l) or
s(1") = s(k) or s(I") = s(I) or s(I") = s(k') or s(I") = s(I')},
Sy ={k"1" € P 2 s(k") = s(k) or s(k”) = s(I) or s(k") = s(k') or s(k") = s(I') or
s(K") = s(k") or s(k") = s(1") or s(I") = s(k) or s(I") = s(I) or s(I") = s(k') or
s(I") = s(I') or s(I") = s(k") or s(I") = s(I")}.

Let Sy be the complement of Sy, Syx be the complement of Sy, and Syjprgeyr be the

\_//\

complement of Syjp/gr» in P. More precisely,

Sk =P\Sk,
Skikr =P\Skwr,
Stk =P\Skiwrinr-

Remark. &y is the set of pairs that shares at least one sampling cluster of kl. Sy is the
set of pairs that shares at least one sampling cluster of kIk'l’. Sy is the set of pairs
that shares at least one sampling cluster of kIk'I'k"1”.

Remark Let kI, kK'l',k"" € P. Observe supy; |S| < A2, supyuy |Skkr| < A2, supgppgn |Skixiken| <
Supkl |Skl| TCA SUpP iy |Sklk/l/| Tc/\z and SUP g |Sklk/1/k//l//| < TC/\Z.

Lemma 4.40. Under the above SRSWOR setting. If K'l' € Sy, then
Ay = O<Tc71>-

Proof. To see this, there are two cases to consider.
First, suppose s(k’) = s(I’), then there are only two possibilities, either (kI){k'l") or

XKL
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A N ==———-m - — —
K = N[ Co CoNf—1C,Cy Ny Co Cy N{Co Cy
_Cﬂ np— 1 B ﬂ
NI \N -1 N;
NI —1N Ny
=0 <N1_1>
—0 (T;l).
If (KXIXKT, then

A, cCm—1Gm-2G6G mCGm-1GmGG
K = N CyNf—1Cy N —2C,Cy NiCaNi—1Co Ny Cy Cy

_Cnli’l[—l HI—Z_HI
O NIN -1 \N -2 N
— ¢ 1 1’111’11—1 2_21’11
 NI—-2NiNy—1 N;
—o(ni”!)

:O<TC_1>.

Secondly, suppose s(k’) # s(I’), then either (kI){(K')1") or (k) IXKXI".
If (k1K' 1"y, then

n1C1C1n1—1C1n1—2C1 111C1C1711C1711—1C1

Aklk”’:ﬁlc_zc_zNI—lc_le—ZC_z NG G NG N -1C
:cﬂ”l_l(nl_z_ﬂ)
NINI—l NI—Z NI
=_¢ 1 ﬂnl_l(Z—%>
NI—ZNINI—l NI
:O(N171>

=o(T. 7).
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If (KXK', then

Ay 2 Cim=1Cm=2Cm=-3C mCGm-1GmGm-1G
K N CoNf—1CoNf—2Co N —3Cy N{GoN;—1CyNyCo Nj—1GC,

_Cﬂnl—l n—2mn—3 _ﬂnl—l
O NINf-1\N-2N; -3 NiNj—1
=0 <N1_1>
~0 (T;l).
Corollary 4.41. Under the above SRSWOR setting, lf K"1" e gklk’l’k”l”/ then Ak”l”k”’l’” =

o),

Proof. To see this, observe if k"1" € Sypgrr, then k1" € Sguyr. By Lemma 4.40, one has
Ak//l//k/l/ll// e O <TC_1> . D

O

Lemma 4.42. Under the above SRSWOR setting, if K"l" € Sy and kK"1" € Sy, then

Aklk/l/k//l//k///l/// == O <TC_1> .

Proof. Observe any element in k”1”"k"1” has no common root with any one of kIk'l’. The
proof is not hard, but tedious to write down all the detail. I omit the detail. O

Proposition 4.43. Under the above SRSWOR setting, then for all 8 € ©
Var [chn(e)} - 0.

Proof. Recall

Var [chn( ] = Var ZZ DD Tk @ik Darr (W Vel (0)wer Veplir(6))
Ci=1i'= 1kll{€<]\l/fckll/'eMC

T 2 ZC: ZC: Zc: ZC: Z Z Z Z Aklk/l/k//l//k///l///Wklk/l/Aklk/llwk//l//k///l///
//I

C o i=1i=1i"=1i"=1 k<l K<l k' < K" <
KJeMS K eMs, K l”eMC K l’”er,,,

Ak//l//k///l/// (wleQ;?Ekl(e)wk/l/Vprk/l/(e)) ((Uk//l//Vngk//l//(e)wk///l///Vngk///l///(0)) .
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One can write the sum in the following

TCZZZ IR 2t 2t

llk]l{e<1\l/1 KUeSy  KleSy) \K'1"€Squy  kK'1"eSyy ) \K"1"ESgpmomm KMESy

D I YD YRS 3 S YD SR Y

lilk]l{€<]\l/[ K18y K" eSiyy K" 1" €Sy Te 1_1k]l(e<1\l/1 K'1'eSy k" eS8y K" 1" €Syt

i i

ZZZZZ IR 3 S0 YD D VN

C i=1 k ]l(<]\l/1 k/lIESkl k”l”eSklk/[/ k”/l///etsklk/l/k//l// C i=1 k<]\l/1 k/l,ESkl k//l”esklk'l/ ki eSklk/l/k//l”

4 1 4 1

ZZZZZ )IRRIEE 3 S5 YD SRS VN

C i=1 L ]l<6<]\[/I K1'eSy K78y k/”l///esklk’l’k”l” C i=1 5 ]l<e<1\l/I K''eSy k//lllesklk’l’ k/”lmesklk’l’k”l”

1 1

LYYy vy sLyy sy oy oy

i=1 k<l kll/ESk k' ELgk]k/]/ k”/lmesklk/]lkl/l// C i=1 k<l k/Z,ESk[ k”l”eSklk/l/ k"m ESklk/l/k//l//

/

(4.16)
For the first term in 4.16, one can show

2222

C i=1 k §C<l k/l/GSkl k”l//ESklk/l/ k" esklk’l’k”l”
eM

=0 (TC_ )O(TC)O ()@)o <A2>O (/\2>O <A2>
:o(ir;l).

To see this, note there are T, choices for i, at most A2 choices for ki given i, at most A2
choices for k'I’ given ki, at most A? choices for k”I” given kIk'l’ and at most A? choices for
K"1" given kIK'I'K"1".

118



For the second term in 4.16, one can show

1yy Sy oY ¥

¢ i=1 r ]l<e<]\l/[C kK'1eSy k”l/’egk]k,l, kwlﬁ/esklk’l’k’/l”
4 i

:oCn”)ouao(ﬁ)o(ﬁ)o(n»ﬂo(ﬁ)o(n;ﬁ (4.17)

=0(T.7).

To see this, note there are T, choices for i, at most A? choices for kI given i, at most
A? choices for k'l given kI, at most T A? choices for k”"I” and at most A? choices for
K"1" given kIK'I'K"l”. For the last term O<TC_1> in 4.17, then either (A) at least one

Of Ak”l”k”’l’” = O(Tcil) or Aklk’l’k”l”k”’l’” = O(Tcil) or (B) one may pI'OVG directly

% S Zk,]fe<1\l/1 : 2K1eSy 2oKMS gy 2k S gy = O (Tc_l) :

To see this, Z’chere are two possibilities for k1", only one of k”1” has a common root
with at least one of kIk'l'k"l” or both of k”1"” have common root with at least one of
kIK'U'K"1".

First, suppose one and only one of k1" (say k") has a common root with at least
one of kIk'I'k"l". In particular, then the other (i.e., I”) has no common root with any one
of kIK'l'k"1”. Then either k” has a common root with at least one of klk'l’ or k" has a
common root with at least one of k”I”. Observe those events are mutually disjoint.

If k" has a common root with at least one of kIk'l’, then k" has no common root with
k"1". Hence k"1" € Synn. Therefore Agnpmmpm = O(Tc_l) by Lemma 4.40.

If k¥ has a common root with at least one of k”1”, then k" has no common root with
any one of kIk'l'. Hence k"1" € Syy. Observe k"lI" € Sy by construction. Therefore
Apaxrvxmprgmm = O (Tc_l) from Lemma 4.42.

Secondly, suppose both of k1" have common root with at least one of kIk'I'k"1”, then
either both of k”1"” have common root with at least one of kIk'l’, or both of k1" have
common root with at least one of k”I”, or one of k1" (say k) have common root with at
least one of klk'l’ and the other (i.e., I”") have common root with at least one of k”1”.

If both of k”1"” have common root with at least one of kIk'I’, then k”1" € Sg»». Hence
one has Aprpngmm = O <TC_1> by Lemma 4.40.
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If both of k”1" have common root with at least one of k”1”, then both of k1" have
no common root with any one of kIk'l’. Hence k"1" € Syy. Observe k"l” € Sy by
construction. Therefore Ay jijnjmgmm = O (Tc_l from Lemma 4.42.

If k" has common root with at least one of klk’l’ and I has common root with at least
one of k”1”, then one can show

Ly oy sy

¢ =1 k]l(e<]\l/l : K1€S K178y K" 1" €Sk
~0 <Tc_2>O(TC)O<A2>O<A2>O(A)O(A)O<A2>
—0 (TC_1> .
To see this, note there are T, choices for i, at most A2 choices for kI, at most A2 choices
for k'l" given ki, at most A choice for k” given kIk'l’, at most A choice for I” given k", at

most A2 choice for k”1" given 1",
For the third term in 4.16, one can show

1yy S Y ¥

€ i=1 k]l(€<]\l/lc k/llegkl K" eS 1 KM ES g i
4 i

—0 (TC—Z)O(Tc)o(AZ)o(TCA2>o(A2>o<A2)o(TC—1> (4.18)
=0 <TC_1>.
To see this, note there are T. choices for i, at most A? choices for ki given i, at most

T.A? choices for k'I’, at most A? choices for k”I" given kIk'l’ and at most A? choices
for k”1" given kIK'I'k"]”. For the last term O(Tc_l) in 4.18, observe k'l' € Sy, hence

Ay = O(TC_1> by Lemma 4.40.
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For the fourth term in 4.16, one can show

2222 2

T i=1 k<l k’l’GSkz K'17€S K" 1" €Sy yrimy
:O<TC_ )O(TC)O<A2>O(TC/\2>O(TCA2>O(A2>O<TC_1>O(TC_1> (4.19)
=0(T.7).

To see this, note there are T. choices for i, at most A2 choices for ki given i, at most
T.A? choices for k'l’, at most T.A? choices for k”1” and at most A? choices for k”1"” given
kIK'I'k"1”. For the first O<TC_1> in 4.19, observe k'’ € Sy, hence Ay = O(TC_1> by

Lemma 4.40. For the last term O(Tc_l) in 4.19. I use the following fact at least one of
Ak//ll/k///l/// = O(TC_1> or Aklk/l’k”l”k”’l”/ = O(Tc_l). If this does not hOld, then one can

- 1T, _ _ _ -1
prove directly =5 >;;%) Zk k< 2i1eEy 2k gy 2kMIES g = O <Tc )
4 i

To see this, there are two possibilities for k1", only one of k”1"” has a common root
with at least one of kIk'l'k"l” or both of k”1” have common root with at least one of
kIK'U'K"1".

First, suppose one and only one of k1" (say k") has a common root with at least
one of kIK'l'k"l”. In particular, the other (i.e., I”) has no common root with any one
of kIK'l'k"1”. Then either k” has a common root with at least one of klk'l’ or k" has a
common root with at least one of k”I”. Observe those events are mutually disjoint.

If k" has a common root with at least one of kIk’l’, then k” has no common root with
K"l". Hence k"1" € Sinn. Therefore Agmjmmm = O(Tc’1> by Lemma 4.40.

If k¥ has a common root with at least one of k”1”, then k" has no common root with
any one of kIk'l'. Hence k"1" € Syp. Observe k"I" € Sy by construction. Therefore
Araxryxmprgmm = O (Tc_l) from Lemma 4.42.

Secondly, suppose both of k1" have common root with at least one of kIk'I'k"1”, then
either both of k”1"” have common root with at least one of klk’l’, or both of k1" have
common root with at least one of k”I”, or one of k”'1"” (say k) have common root with at
least one of kIk'l’ and the other root (say /") have common root with at least one of k"1”.
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If both of k”1" have common root with at least one of kIk'I’, then k”1" € Sgr». Hence
one has Aprjugmm = O <TC_1> by Lemma 4.40.

If both of k1" have common root with at least one of k”1”, then both k”1"” have no
common root with any one of kIk'l’. Hence, any element in k”I”k"I" has no common
root with any one of kIk'l’. Therefore Agynmgmm = O(T.~!) from Lemma 4.42.

l n

If ¥ has common root with at least one of kIk'l’ and I has common root with at least

one of k"1”, then

LYy ¥y oy oy

¢ i=1 éKAZ/I K'1eSky kK" €Sy K" €Sk primp

’ 1

=o(T;Z)O(Tc)o(A2)o(TCAZ)O(A)O(A)O(AZ)o(Tgl) (4.20)

~o(T. 7).

To see this, note there are T, choices for i, at most A% choices for ki given i, at most T.A2
choices for k'l’, at most A choices for k” given klk'l’, at most A choices for I given k", at
most A? choices for k"I” given I". For the last O <TC_1> in 4.20, observe K'I' € Sy, hence

Ay = o(Tgl) by Lemma 4.40.
For the fifth term in 4.16, one can show

LYy s vy

i=1 K ]l(6<l k/lIESkl k”l”ESklk/l' k///lmegklk/llk”l”

:O<TC_ )O(TC)O<A2>O(A2>O<A2>O<T /\2>O< —1> (4.21)
=0(T.7).
To see this, note there are T, choices for i, at most A2 choics for ki given i, at most

A% choices for k'l given kI, at most A2 choices for k1" given kIk'l" and at most T.A2
choices for k”1”. For the last term O(TC_1> in 4.21, observe k”1" € Sy Therefore

Ak”l”k”’l”’ =0 <TC_1> by COI‘OH&I‘Y 4.41.
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For the sixth term in in 4.16, one can show

LYy v o» oy

i=1 §Ce<z\l/1i KESi KM17eS yy K" 1MES gy ynn
:o(QJ)oaao(ﬂ)o(ﬁ)o(nxﬁo(nxﬁo(n*ﬂo(n*ﬁ (4.22)

~0(T.7).

To see this, note there are T, choices for i, at most A? choices for ki given 7, at most A2
choices for k'l’ given ki, at most T.A? choices for k”1” and at most T-A? choices for k”'1".
For the first O<T5_1> in 4.22, observe k"1" e gklk’l’k”l”/ hence Aprpnjmm = O(TC_1> by

Corollary 4.41. For the last term O(TC’1> in 4.22, observe k"1" € Sy and K'I' € Syyr

by construction. Therefore Ay yrynprgmm = O <TC_1> from Lemma 4.42.
For the seventh term in in 4.16, one has

LYy y vy

i=1 . §(€<Z , K1'eSy K'"eSyy kmlmegklk/l’k”l”
4 i

:o(54)0030(ﬁ)o(n»ﬁo(ﬁ)o(nxﬂo(n4ﬂo(n*ﬁ (4.23)

~0(T.7).

To see this, note there are T, choices for i, A% choices for ki given i, at most T.A? choices
for k'I’, at most A2 choices for k"I” given klk'l' and at most T.A? choices for k”I"”. For
the last two term O <TC_1> O<TC_1> in 4.23, observe k'I' € Sy and k1" € Sijprririr, hence

Ny = O(TC’1> by Lemma 4.40 and Ayrjugmm = O <TC’1> by Corollary 4.41.
For the eighth sum in in 4.16, one has

Iyy oy on oy

¢ i=1 ll<<l KVeS KMVES KM 1MES g mm
:o(n*)oawo(ﬁ)o(nxﬂo(nkﬂo(nxﬁo(n*ﬂo(n*ﬁo(nfﬂ (4.24)
=o(T. 7).
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To see this, note there are T, choices for i, A2 choices for ki given i, at most T.A% choices
for K'l', at most T, A2 choices for k”1” and at most T.A2 choices for k”1"”. For the first two
O(Tc_l) O(TC_1> in 4.24, observe k'l' € Sy; and k1" € Sy, hence Ay = O (Tc_l)

by Lemma 4.40 and Agnprmpm = O(Tc_l) by Corollary 4.41. For the last term O <TC_1>

in 4.24, observe k1" € Sy and K'I' € Sy by construction. Therefore Ay pnpmgmm =
O <TC_1> from Lemma 4.42.
Putting all those estimates together, one has

Var [Tjn(e)} - O(T,fl) - 0.
This completes the proof. O

Remark. Note the tree structure of the Ay, Agrjrgmpn and Ayggeprgnpgmym is vital to estab-
lish the convergence.

4.8 Model-based variance estimation

Instead of estimating J;(6y) by empirical variance

~ A~

T
1 & - -
J2(00) = =5 > D kwr@r Duawr (wkzvoﬂkz(en)wkwvepék'l'(@n)) :

¢ i=1 k<l
kleM¢

I could estimate J;1(6p) by model variance

~

T
~ 1 & ~ .
J(6) = T2 1D Lk @wir My wiwpr Ey [Vepgkz(On)Vepﬁk/l/(Hn)} :

¢ i=1 k<l
k,le M5

Using the same argument as in the previous section, one can show

Var [Tjn(e))] - SO<TC_1> )
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4.9 Simulation: Random intercept model

A simulation study for a random intercept model was conducted to examine perfor-
mance of the weighted pairwise likelihood estimation and consistency of variance es-
timation under various uninformative and informative sampling design. Based on 150
simulation replicates, median bias, median absolute deviation (mad) and median esti-
mated standard deviation (esd) are computed to measure the performance of the:

(i) naive maximum likelihood estimation (NMLE).
(ii) pairwise likelihood estimation (PLE).
(iii) weighted pairwise likelihood estimation (WPLE).

The NMLE can be implemented by using R lme4 package (Bates, Maechler, Bolker,
Walker et al., 2014). There is no R package for PLE and WPLE. I wrote the R codes
for PLE and WPLE. Sampling design can be implemented by using R sampling package
(Tillé and Matei, 2009). The code for these simulations is publicly available at https:
//github.com/Xudong3/.

49.1 Model

A random intercept model is given by

Yilbi ~ N(Bo+ B1Xi + bi,0?),
b; ~ N(0,7%),

fori=1,---,T;andk =1,---, T;. The parameters I want to estimate are 6 = (ﬁo,ﬁl,az, TZ)T.

The sample weighted pairwise likelihood is given by

T.

Pl (0) = > D Tuwiapliayi(yk y1,6),

i=1 k<l
k,le M
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where

1 11
Plai(Ye y1,0) = —5logd — 5 [rlz(nz +12) = 2r TR 4 (0 + Tz)] ’

d—= (0.2 + TZ)Z . T4,
"e = Yk — Bo — P1xx.
The pairwise score function is given by

ply}i(Yiy1,9)
dBo

Oply)i(Yiy1,9)
p1

ply}i(Yiy1.0)

002
ply}i(Yiy1,9)

oT2

% [re(0? + %) — 12 — T2 + 11 (0% + T2)]
% [T’k((?'z + Tz)xk — rkrle — Tszxk + 7’1(0’2 + Tz)xl}
=1 1 2417 [ri((72+T2)72rk7112+rl2(02+rz)](02—1-12) P42

Voplui(ye y1,0) =

2o T 7
112211 T2 +17 [1’%(0’2+T2)727‘k7‘1T2+7‘I2((72+T2)]02 o2
2 d - a2 +7

I first generated a target population of size 100 x 100, which consists of 100 sample
clusters of size 100. Then I generated 100 model clusters. The parameter ‘overlap’ is the
percentage of observational units in each sampling cluster such that the sample clusters
match the model clusters. I assume the ‘overlap’ is the same across all the sampling
clusters. I set the parameter ‘overlap’= 4/5 in all of the setting. See figure below. In
the figure below, I work on 5 clusters of size 5. The extension to 100 clusters of size 100

can be done similarly. Each small rectangle represents an observational unit and

the whole rectangle represents the population of size 25. It consists of 5 clusters of size
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5,ie, Nt =T, =5and N; = T; = 5 for all i. Each column represents a sampling

cluster of size 5, i.e., Uf = {Uj,---,Ut}. Each (left) and

(right) represent a model cluster of size 5, i.e., M{ = {M{,---, Mg} .
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up u; Uus Ui Us up u; Uus Ui Us

M [ Mz | Mg | Mg [ Ms M [ Mz | Mg | Mg [ Ms
M [ M3 | M3 | My | M5 My [ Mg | M3 | My | M5
M | v | mg | Mg | g M | v | mg | Mg | g
Mg | mis | Mg | Mg | g M | v | mg | Mg | g
Mg | Mg | v | Mg | g Mg | mis | Mg | Mg | g

Figure 4.2: Overlap between the sampling clusters and the model clusters when the
overlap parameter is % (left) and % (right).

4.9.2 Basic notation

For the simulations below, I want to introduce some notation. Let g be the number of

simulations replicate.

Definition 4.44. Let 6y be the true value, then the median bias of 0 is defined to be
median bias(8) = median{6, — 6y : r =1, - - q}.
Definition 4.45. The median absolute deviation (mad) of 0 is defined to be

mad(8) = xmedian{|§r—median{§r:r:1,--~ Her=1,---q},
q q

1
¢~1(3)

where ¢ is the standard normal density function.
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Definition 4.46. The sample pairwise likelihood estimator  of 6 is defined as a solution
of

T,
1 Cc
T Z Z 1 Veplyi(yr y1,0) = 0.

LiZ1 k<
kleM¢

Definition 4.47. The median estimated standard deviation (esd) of the sample pairwise
likelihood estimator 6 is defined to be

~

esd(0) = median{(diag{H; ' (8,)],(6,)H,;(6,)})

Nl—

cr=1,---q},

T,
1 & ~
H,(0,) = — = 2 Z Luwi Vgepli (6r),
I i=1 k<l
k,le M

T. T R R
J:(6y) :% XD D Lawrwiakr Aaer <V9P€kl(9r)vepfk/l/(Gr)T> :

C i=1i=1 k<l K<l
kleMf K I'eMS,
1

Definition 4.48. The median estimated standard deviation (esd) of the sample pairwise

~.

score PS(6) is defined to be

N—=

esd(PS(0)) = median{(diag{J,(6,)})2 : r=1,---gq}.

Definition 4.49. The sample weighted pairwise likelihood estimator 6 of 6 is defined as

a solution of

T
1 c
T >0 25 wwaVoepluyi(ye v1,6) = 0.

Uiz k<
K leM¢

Definition 4.50. The median estimated standard deviation (esd) of the sample weighted
pairwise likelihood estimator 6 is defined to be

esd(6) = median{(diag{H; ' (,)],(6,) B, (6)})7 : v =1, q},
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T
1 & ~
Hr(er):_TZ > luwaVaeprtu(6;),
izt k<
k,le M
T. T,

SR 1 ~ .
J:(6r) =72 YD D Lprwier Aaer (wklvepﬁkl(9r)wk/l/vepek/1/(9r)T> :
Coi=1i'=1 k<l K<l
KIEMS K VEME,

Definition 4.51. The median estimated standard deviation (esd) of the sample weighted

A

pairwise score WPS(0) is defined to be

NI—=

esd(WPS(0)) = median{(diag{J,(6,)})Z : r = 1,-- - q}.

Remark. For the implementation of PLE and WPL, boundary constraint (i.e., 0> > 0 and
72 > 0) and initial starting value have to be given for the optimisation algorithm. It
was found that solution might not converge and is very sensitive to initial starting value
using “BFGS” and ”L-BFGS-B” methods from optim function in R. One can use bobyqa
function from R minqa package (Bates, Mullen, Nash and Varadhan, 2014) to overcome
those issues. This is due to Thomas Lumley.

Remark. The simulations are being done to assess convergence in distribution of 6,
and in probability of H(8,), J(8,). Observe convergence in probability and distribution
implies convergence of median and median absolute deviation, but not the mean and
standard deviation, which is why I am using median and median absolute deviation.

Remark. Ideally, one wants to test the performance of the weighted pairwise likelihood
estimation by varying model parameters, design parameters, overlap parameter and
sample size. In particular, consistency of the empirical variance estimator requires a large
sample size. However, J(0) is computational demanding. Despite considerable effort has
been made to optimize the codes such as writing the sampling inclusion probability in
C, computation of J(0) is still slow and cannot be completely vectorise due to memory
constraint. Computational load restricts the number of replicates and the sample size.

Remark. I want to mention why the full-likelihood is intractable when the sampling
clusters are not equal to the model clusters.
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Consider a random intercept model with informative Poisson sampling at stage 1 and
simple random sampling at stage 2. Assume the sampling clusters are equal to model
clusters, the sampling is independent across the clusters. Let g(b;, @) be the density of b;
and f(yx, 0|b;) be the conditional density of y;. The population likelihood is

Ny
[ [50) [T v oltn
i=1

keU;

Let gr be the sampling likelihood at stage 1. Then the likelihood of the data is
proportional to

N
I ng(bi/O) [ ] fix 61b)db.
i=1 kel;

We have a product of one-dimensional numerical integrals for the full likelihood to
maximise, which is completely feasible. The sample likelihood is also tractable.

When the sampling clusters are not the same as the model clusters, the sampling
likelihood gr for a particular sample cluster depends on the b; and Yj; for all model
clusters that intersect it, so the product over i cannot simply be taken outside the integral.
In the simulation setting in the thesis (100 x 100) with overlap of 0.6, 40 b; contribute
to each sampling probability so even under Poisson sampling we have 40-dimensional
numerical integrals to compute the likelihood. This is just intractable, which is why we
want to use pseudo-likelihood.

4.9.3 Design: stratified sampling

Consider an uninformative stratified SRSWOR, i.e., SRSWOR with the sample size n; =
10 for each sampling cluster i.

Under an uninformative sampling design, the main simulation results are the fol-
lowing:

(i) NMLE, PLE and WPLE have similar levels of bias.

(ii) The mad is closely estimated by the esd for both PLE and WPLE. There is little loss
of efficiency from using PLE.
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(iii) It is not clear which estimation method gives a better result.

The coefficients of variation of the weight wy; for uninformative sampling is 0.04.
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Table 1: Performance of NMLE, PLE and WPLE under an uninformative stratified sam-
pling design when the true value By =3, 1 =1, 0% =1, 2 = 0.8.

Uninformative NMLE PLE WPLE
parameters median bias mad median bias mad esd(f) median bias mad esd(6)
Bo 0.10 0.03 0.10 0.04 0.05 0.10 0.04 0.04
B1 —-0.02 0.03 0.00 0.03 0.03 0.00 0.03 0.03
o? 0.00 0.05 0.00 0.05 0.05 0.00 0.05 0.05
T2 0.00 0.05 —0.02 0.06 0.07 —0.02 0.06 0.07

Table 2: Pairwise score and weighted pairwise score under an uninformative stratified

sampling design when the true value g =3, 1 =1, 0> =1, T2 = 0.8.

Uninformative

Pairwise score

Weighted pairwise score

parameters

~

median bias mad esd(PS(0))

median bias

A~

mad esd(WPS(0))

Bo
B
2

T2

3.54
0.45
0.20
—0.10

1.48
3.11
1.42
1.05

1.64
2.90
1.31
1.07

376.43 157.63
36.88 338.97
23.83 147.27

—13.09 107.88

171.48
305.64
138.51
112.92
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Figure 4.3: QQ plot for Weighted pairwise likelihood estimator under an uninformative
stratified sampling design when the true value g =3, 1 = 1,02 =1, 2 = 0.8.

134



Consider an informative stratified SRSWOR, i.e., SRSWOR with the sample size

aexp (—br;) N.
1+aexp(=br;) '|

i

where

ri= >, (yk—Po—P1xk),

keU:s(k)=i
a =0.15,
b =0.45.

Under an informative sampling design, the main simulation results are the following:
(i) NMLE and WPLE have similar levels of bias, but PLE has large bias.
(ii) The mad is closely estimated by the esd for both PLE and WPLE.

The coefficients of variation of the weight wy; for informative sampling is 0.61.
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Table 3: Performance of NMLE, PLE and WPLE under an informative stratified sam-
pling design when the true value By =3, 1 = 1,0? =1, 2 = 0.8.

Informative NMLE PLE WPLE

parameters median bias mad median bias mad esd(f) median bias mad esd(6)

Bo 0.09 0.03 —0.06 0.04 0.04 0.10 0.04 0.04
B1 -0.03 0.02 —-0.21 0.02 0.02 —-0.01 0.02 0.02
o2 0.00 0.04 0.03 0.04 0.04 —0.01 0.04 0.04
72 0.01 0.04 024 0.07 0.08 —-0.02 0.06 0.06

Table 4: Pairwise score and weighted pairwise score under an informative stratified
sampling design when the true value g =3, 1 =1, 0> =1, T2 = 0.8.

Informative Pairwise score Weighted pairwise score

~. ~

parameters median bias mad esd(PS(6)) median bias mad esd(WPS(0))

Bo -10.54 3.53 2.70 376.49 150.07 147.95
B1 —-61.41 5.10 5.16 —68.72  263.20 268.63
o? 731 216 221 —15.78 122.08 119.13
72 1434 294 1.69 327 8497 94.00
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Figure 4.4: QQ plot for weighted pairwise likelihood estimator under an uninformative
stratified sampling design when the true value By =3, 81 = 1,02 =1, 7> = 0.8. .
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4.9.4 Design: two-stage SRSWOR

Consider an uninformative two-stage sample design,
(i) First stage: SRSWOR with the sample size n; = 10.
(ii) Second stage: SRSWOR with the sample size n; = 10 for each sampling cluster .

Under an uninformative sampling design, the main simulation results are the fol-
lowing;:

(i) PLE and WPLE have similar levels of bias, but NMLE has small bias.
(i) The esd underestimates the mad for both PLE and WPLE.
(iii) It is clear NMLE estimation method gives a better result.

The coefficients of variation of the weight wy; for uninformative sampling is 0.87.
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Table 5: Performance of NMLE, PLE and WPLE under an uninformative two-stage
SRSWOR sampling design when the true value By =2, f1 =4, 0> = 0.5, 7> = 1.

Uninformative NMLE PLE WPLE
parameters median bias mad median bias mad esd(f) median bias mad esd(6)
Bo -0.14 0.18 -0.12  0.29 0.29 -0.09 0.32 0.27
B1 —0.04 0.10 —-0.06 0.14 0.11 —0.07 0.15 0.11
0?2 0.01 0.14 0.03 0.15 0.14 —-0.01 0.18 0.14
72 -0.12  0.39 -0.32  0.39 0.28 -041 0.37 0.27
Table 6: Pairwise score and weighted pairwise score under an uninformative two-stage
SRSWOR sampling design when the true value By =2, f1 =4, 0> = 0.5, 72 = 1.
Uninformative Pairwise score Weighted pairwise score
parameters median bias mad esd(PS(f)) median bias mad esd(WPS(H))
Bo —-0.24 0.58 0.70 —280.23 1102.93 1277.43
B1 —-0.32  0.80 0.81 —587.28 1942.44 1543.60
o? 0.04 0.36 0.33 —69.17  692.46 634.71
T2 —0.08 0.28 0.33 —155.78  561.73 619.67




Consider an informative two-stage sample design,
(i) First stage: SRSWOR with the sample size n; = 10.

(ii) Second stage: SRSWOR with the sample size

| aexp(=bri)
= [1 + aexp(—bri)Nl}'

where

ri= >, (yk—PBo—Brxi),

kel:s(k)=i
a =0.05,
b =0.45.

Under an informative sampling design, the main simulation results are the following;:
(i) PLE and WPLE have similar levels of bias, but NMLE has small bias.
(ii) The esd underestimates the mad for both PLE and WPL.
(iii) It is clear NMLE estimation method gives a better result.

The coefficients of variation of the weight wy; for informative sampling is 1.04.
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Table 7: Performance of NMLE, PLE and WPLE under an informative two-stage SR-
SWOR sampling design when the true value B = 2, B; = 4, 0> = 0.5, 72 = 1.

Informative NMLE PLE WPLE

parameters median bias mad median bias mad esd(f) median bias mad esd(6)

Bo -0.12 0.11 -0.24 0.26 0.26 —-0.13 0.30 0.25
B1 —-0.03 0.05 -0.14 0.13 0.08 —-0.06 0.11 0.09
o2 0.03 0.07 0.05 0.08 0.08 0.00 0.11 0.09
72 —-0.09 0.24 —-0.39 0.34 0.22 -034 035 0.25

Table 8: Pairwise score and weighted pairwise score under an informative two-stage
SRSWOR sampling design when the true value By =2, 1 =4, 0> = 0.5, 72 = 1.

Informative Pairwise score Weighted pairwise score

~ ~

parameters median bias mad esd(PS(#)) median bias mad esd(WPS(9))

Bo —560 6.85 6.98 —466.77 1111.37 1146.43
B1 —11.8 14.35 6.95 —613.53 1285.81 1278.82
o2 041 2.60 2.37 7.08  569.78 468.09
72 -0.38 2.85 3.19 -163.01 527.12 525.69
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4.9.5 Design: two-stage Poisson

Consider an uninformative two-stage sample design,

(i) First stage: Poisson sampling with sampling inclusion probability 7;, where 7; is
generated from uniform distribution on [0, 1].

(ii) Second stage: SRSWOR with the sample size n; = 10.

Under an uninformative sampling design, the main simulation results are the fol-
lowing:

(i) PLE and WPLE have similar levels of bias, but NMLE has small bias.
(i) The esd under-estimates the mad for both PLE and WPL.
(iii) It is clear NMLE estimation method gives a better result.

The coefficients of variation of the weight wy; for uninformative sampling is 1.83.
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Table 9: Performance of NMLE, PLE and WPLE under an uninformative Poisson sam-

pling design when the true value By =1, 1 =3, 0> =1, 2 = 0.5.

Uninformative NMLE PLE WPLE
parameters media bias mad median bias mad esd(f) median bias mad esd(6)
Bo —0.02 0.06 —0.04 0.08 0.08 —0.03 0.13 0.10
B1 0.00 0.05 0.00 0.05 0.04 0.00 0.07 0.05
o? 0.00 0.07 0.00 0.07 0.07 0.00 0.09 0.08
T2 —-0.07 0.08 —-0.09 0.10 0.08 —-0.12 0.13 0.09

Table 10: Pairwise score and weighted pairwise score under an uninformative Poisson

sampling design when the true value Bp =1, 1 = 3, 0> = 1, T2 = 0.5.

Uninformative

Pairwise score

Weighted pairwise score

parameters

~

median bias mad esd(PS(0))

median bias

A~

mad esd(WPS(0))

Bo
B
2

T2

—0.53

0.04
—0.33
—0.62

1.44
2.31
0.75
0.89

1.53
1.98
0.87
0.91

—105.40
—57.50
—82.28

—162.41

549.73
763.15
269.34
295.49

465.32
602.51
255.38
268.44
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Consider an informative two-stage sample design,

(i) First stage: Poisson sampling with sampling inclusion probability

_aexp(—br;)
~ 1+aexp (—br;)’

1
where

ri= >, (k—Bo—Brxi),

kel:s(k)=i
a=0.2
b =0.45.

(ii) Second stage: SRSWOR with the sample size n; = 10.
Under an informative sampling design, the main simulation results are the following;:
(i) PLE and WPLE have similar levels of bias, but NMLE has small bias.
(i) The esd underestimates the mad for both PLE and WPL.
(iii) It is clear NMLE estimation method gives a better result.

The coefficients of variation of the weight wy; for informative sampling is 0.95.
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Table 11: Performance of NMLE, PLE and WPLE under an informative Poisson sampling
design when the true value fg = 1, B; = 3, 0> = 1, 7> = 0.5.

Informative NMLE PLE WPLE

parameters median bias mad median bias mad esd(f) median bias mad esd(6)

Bo 0.02 0.13 0.01 0.19 0.16 0.01 0.20 0.16
B1 —-0.02 0.06 —0.06 0.08 0.08 —-0.02 0.10 0.08
o2 -0.02 0.12 —-0.01 0.12 0.12 —-0.02 0.14 0.12
72 —-0.06 0.19 —-0.15 0.20 0.13 -0.19 0.20 0.13

Table 12: Pairwise score and weighted pairwise score under an informative Poisson
sampling design when the true value Bg =1, 1 = 3, 0> = 1, T2 = 0.5.

Informative Pairwise score Weighted pairwise score

~ ~

parameters median bias mad esd(PS(6)) median bias mad esd(WPS(0))

Bo 0.15 0.78 0.89 84.82 941.84 939.00
B1 —-0.61 1.01 1.00 —224.39 1044.01 1130.23
o2 -0.17 0.39 0.44 —198.02  461.58 438.59
72 —-0.26 0.51 0.50 —240.66  500.04 492.43
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410 Simulation: Random slope model

A simulation study for a random slope model was conducted to examine performance
of the weighted pairwise likelihood estimation and consistency of variance estimation
under various uninformative and informative sampling design. Based on 150 simula-
tion replicates, median bias, median absolute deviation (mad) and median estimated
standard deviation (esd) are computed to measure the performance of the

(i) naive maximum likelihood estimation (NMLE).
(ii) pairwise likelihood estimation (PLE).
(iii) weighted pairwise likelihood estimation (WPLE).

The code for these simulations is publicly available at https://github.com/Xudong3/.

4.10.1 Model

A random slope model is given by

Yirlai, bi ~ N(Bo+ B1Xix + a; + b Xy, 02),
a; ~ N 0 ’ T121 T122 )
bi 0 T2 Ty

fori=1,---,T,andk =1, -, T;. The parameters I want to estimate are 8 = (B, 1, o2, T121/ T12, T222)T.
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Observe

COV 1kr )

(Y,
= Co (Bo + B1Xix + a; + bi Xix + €ix, o + 1 Xis + a; + b; Xy + €ip)
—Co (a; + b; X + €, a; + b Xi + €;1)
= Co (a; + bi Xix, a; + b; Xy) + Cov(elk, €i)
= Cov(al, i)+ X Cov(al, bi) + Xk Cev(bi,ai) + X X Cgv(bi, b;) + Cgv(eik, €i)
=171 + XiTi2 + X2 + X Xy, + C{}V(Gik, €il)

7121 42X T2 + Xiszzzz +0?, if k=1

- T121 + XuTi2 + XikT122 + XikXiszzz, otherwise.
The sample weighted pairwise log likelihood is given by

plys (0 Z > Tawipluaii(Yi v, 0),

i=1 k<l
k,le M

where
‘ 0) = — Llog (dy) — 2dig! [rEey —2 !
pliaii(Yk y1,0) = — 5 10g (du) — 5dy™ |recu — 2rrici + rick |
2 2.2 2
Crk =Tiq1 + 2XixT12 + Xj Ty + 07,
2 2 2
Crl =Ty + XiiTi2 + XixTip + XikXi Ty,
2 2 2 2
Cly :Tll + ZXille + xiszz +0 ’
2 2.2 2 2 22 2
dy = <T11 + 22X T + X T + 0 > (Tn +2xTip + X T + 0 ) -
2 2 2)?
(Tn + Xj T2 + Xik T + xikxiszz) ’

"k =Yik — Po — B1Xik-
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The pairwise score function is given by

Vorlui(yr y1,0)
OpLii(Yiy1,0)
JBo
Opli|i(Yey1,9)
oB1
Oply|i(Yi.y1,9)
_ o2
= | oplu)i(Yiy1.9)
6T121
Oply|i(Yiy1,9)
(?Tu
3Psz\i(y2k,y1/9)
0Ty,
—%dikl(—Zrkc” + 21’le1 + 21’ka1 — Zrlckk)
11
T (—2riXikCr + 2XikT1Chy 4 27kXi1Chy — 271 Xi1Chkc)
oy ody)
— 39+ 39 (rhoy — 2ryriop + o) — 34— (12 +17)
2 dy 2 dkl k l del k l
_ N2 2
= 10t 1097 2 2 11 2
—3a- + 2 (reen = 2reric + rici) — 37, (g — 2nri g =g(1) +17)
1% 1% 2 " 2 11,2 2
T oT
-3 d;i;z + 5 d%lz (I’kCll — 2rkrlckl + 1’1 Ckk) — zd—kl(rkle — Zrkrllg( ):g(l)(xk + xl) + 1’1 2xk)
adlzd i}zd
19% | 1% (.2 2 11,22 2.2
—3 >t z (riccu = 2rerici + ricw) — 33 (eXi — 2 g (o =g (1) XkX1 + 17X
where
od
—kzl =Cy1 + Ckks
oo
PRl + Crk — 2¢k1,
11
o =2xpCpp + C2x; — 201 (xx + x7),
od
—Sl =x3cy + CreX} — 20K Xk X
0Ty
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4.10.2 Design: stratified sampling

Consider a uninformative stratified SRSWOR, i.e., SRSWOR with the sample size n; =
10 for each sampling cluster i.
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Under an uninformative sampling design, the main simulation results are the fol-
lowing:

(i) NMLE, WPLE and PLE have similar levels of bias.
(ii) The mad is closely estimated by the mad for both PLE and WPL.
(iii) It is not clear which estimation method gives a better result.

The coefficients of variation of the weight wy; for uninformative sampling is 0.04.
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Table 13: Performance of NMLE, PLE and WPLE under an uninformative stratified
sampling design when the true value g = 1, 1 = 3, a2 = 0.8, 7121 =1, 7yp = 0.5,

3, = 0.8.
Uninformative NMLE PLE WPLE
parameters median bias mad median bias mad esd(f) median bias mad esd()
Bo 0.02 0.03 0.00 0.05 0.05 0.00 0.05 0.05
B1 0.01 0.03 0.01 0.06 0.05 0.01 0.06 0.05
o? —0.02  0.03 —0.04 0.04 0.04 —0.04 0.04 0.04
2 ~0.10  0.08 ~0.07 009  0.09 ~0.07 009  0.09
T12 -0.02 0.04 0.01 0.06 0.06 0.01 0.06 0.06
Tzzz 0.20 0.06 0.23 0.08 0.08 0.23 0.08 0.08

Table 14: Pairwise score and weighted pairwise score under an uninformative stratified

sampling design when the true value By = 1, B; = 3, 02 = 08, 4 = 1, 71 = 0.5,

3, = 0.8.
Uninformative Pairwise score Weighted pairwise score
parameters median bias mad esd(PS(f)) median bias mad esd(WPS(H))
Bo 0.23 1.38 1.46 23.04 14524 152.81
B1 0.36 2.06 1.41 36.97 219.49 147.99
o? 024 1.10 1.18 2426 112.62 124.62
2 028 0.79 0.84 2939 8348 88.24
T12 —232 146 1.21 —248.06 161.464 126.85
2 3.80 1.24 0.81 405.58  126.55 85.23
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Consider an informative stratified SRSWOR, i.e., SRSWOR with the sample size

n-:[ aexp (by;) }
1 ) ’

1+ aexp (by;

where

Yi= Z Yir

kel,s(k)=i
a =0.15,
b =0.25.

Under an informative sampling design, the main simulation results are the following;:

(i) NMLE, WPLE and PLE generate bias, but PLE has large bias.
(ii) The mad is closely estimated by the mad for both PLE and WPL.

(iii) It is not clear which estimation method gives a better result.

The coefficients of variation of the weight wy; for informative sampling is 0.71.
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Table 15: Performance of NMLE, PLE and WPLE under an informative stratified sam-
pling design when the true value Bp =1, f1 =3, o2 =0.8, T121 =1, 1, =0.5, Tzzz =0.8.

Informative NMLE PLE WPLE

~ A~

parameters median bias mad median bias mad esd(f#) median bias mad esd(0)

Bo 0.02 0.03 -0.17 0.04 0.04 0.02 0.05 0.05
B1 0.00 0.02 —0.58 0.05 0.04 0.01 0.06 0.05
o2 —0.01 0.03 —0.04 0.03 0.03 —-0.04 0.04 0.04
T121 —-0.11 0.07 —0.05 0.07 0.08 —0.05 0.08 0.08
T2 -0.03 0.03 —0.10 0.05 0.05 0.01 0.06 0.07
Tzzz 0.18 0.05 0.15 0.08 0.06 0.25 0.08 0.09

Table 16: Pairwise score and weighted pairwise score under an informative stratified
sampling design when the true value g = 1, 1 = 3, a2 = 0.8, 7121 =1, 1, = 05,
2, = 0.8.

Informative Pairwise score Weighted pairwise score

~.

parameters median bias mad esd(PS(6)) medianbias mad esd(WPS())

o 541 3.28 2.65 48.12 146.08 136.84
B —45.95 4.18 2.63 51.46 196.18 151.54
o2 3.75 2.08 2.26 5.83  98.05 110.82
2 6.80 1.46 1.59 35.03 76.78 75.19
T —21.29 431 2.17 —245.37 144.46 113.99
3, 2435 4.13 1.49 403.15 142.63 84.19
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4.10.3 Design: two-stage SRSWOR

Consider an uninformative two-stage sample design,
(i) First stage: SRSWOR with the sample size n; = 10.
(ii) Second stage: SRSWOR with the sample size n; = 10.

Under an uninformative sampling design, the main simulation results are the fol-
lowing;:

(i) NMLE, PLE and WPLE generate a biased estimate, but WPLE has large bias.
(i) The esd underestimates the mad for both PLE and WPLE.
(iii) It is not clear which estimation method gives a better result.

The coefficients of variation of the weight wy; for uninformative sampling is 1.42.

154



Table 17: Performance of NML, PL and WPL under an uninformative two-stage SR-
SWOR sampling design when the true value g =1, B =2, o2 =1, 7121 =0.8, 1o = 0.6,

3, =1.2.
Uninformative NMLE PLE WPLE
parameters median bias mad mediabias mad esd(f) mediabias mad esd(f)

Bo 0.18 0.25 0.17 0.32 0.33 0.15 0.33 0.32
B1 0.10 0.27 0.08 0.39 0.36 0.11 040 0.36
o2 —0.02 0.8 —0.03 0.21 0.20 —0.03 0.27 0.21
2 0.11 041 —-0.06 046  0.39 —-0.12 040 037
T2 —-0.02 0.32 -0.12  0.39 0.33 -0.15 041 0.33
2 —0.05 043 —0.28 047 0.43 —0.36 0.51 0.39

Table 18: Pairwise score and weighted pairwise score under an uninformative two-

stage SRSWOR sampling design when the true value o = 1, B1 = 2, 0> = 1, 73, = 0.8,

T = 0.6, T3, = 1.2,

Uninformative Pairwise score Weighted pairwise score
parameters median bais mad esd(PS(f)) median bias mad esd(WPS(H))

Bo 024 049 0.52 366.15  949.93 939.71
B1 0.09 0.58 0.57 172.32  1143.33 986.67
o2 0.01 0.26 0.24 —23.47 521.14 459.61
2 0.05 0.22 0.21 —2.33 3986 410.37
T12 —-0.03 0.35 0.37 —-17.63  646.14 679.29
3 —0.02 0.23 0.24 —64.46  495.10 497.78
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Sample Quantiles

Sample Quantiles

Figure 4.5: QQ plot for the weighted pairwise likelihood estimator under an uninfor-
mative two-stage SRSWOR sampling design when the true value fo =1, f; = 2,02 =1,
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Consider an informative two-stage sample design,
(i) First stage: SRSWOR with the sample size n; = 10.

(ii) Second stage: SRSWOR with the sample size

| aexp(=bry)
= [1 + aexp (—bri)le'

where

ri= Y, (yk—Bo—Bx),

kel s(k)=i
a =03
b =0.45.

Under an informative sampling design, the main simulation results are the following;:
(i) NMLE, PLE and WPLE generate a biased estimate, but PLE has very big bias.
(ii) The esd underestimates the mad for both PLE and WPLE.
(iii) It is not clear which estimation method gives a better result.

The coefficients of variation of the weight wy; for informative sampling is 2.79.
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Table 19: Performance of NMLE, PLE and WPLE under an informative two-stage SR-

SWOR sampling design when the true value By =1, f; =3, 0% = 0.8, 3 = 1, T1p = 0.5,
2

Ty, = 0.8.

Informative NMLE PLE WPLE

parameters median bias mad median bias mad esd(f) medianbias mad esd()

Bo 0.19 0.15 -0.12 039 029 010 031  0.29
B1 0.09 0.19 —0.63 036 024 —0.01 044 031
o2 —-0.03 0.13 005 015  0.14 000 020  0.16
(e —-0.01 0.34 —-0.17 034 026 -0.13 046 033
T2 —0.01 026 —-028 031 022 —-0.16 039 028
3 —0.03 028 —-072 035 028 —-0.36 040 036

Table 20: Pairwise score and weighted pairwise score under an informative two-stage
SRSWOR sampling design when the true value o = 1, f1 = 2, 02 = 1, 74, = 0.8,
71 = 0.6, T3, = 1.2,

Informative Pairwise score Weighted pairwise score

~. A~

parameters median bias mad esd(PS(6)) median bias mad esd(WPS(0))

Bo 1.63  5.39 3.97 352.60  785.09 865.40
B1 —6.98 7.34 4.41 —62.38 1121.25 926.64
o? 0.12 1.81 1.51 -35.33  357.23 377.96
2 0.12 1.62 1.64 091 407.85 351.69
T -122 2383 3.49 ~40.09  496.73 594.07
2 —-0.60 1.56 2.99 —-103.49  359.13 388.20
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Figure 4.6: QQ plot for the weighted pairwise likelihood estimator under an informative
two-stage SRSWOR sampling design when the true value By = 1, 1 = 2, 0% = 1,

% =08, 12 =06, 75, = 1.2.
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4.10.4 Design: two-stage Poisson

Consider an uninformative two-stage sample design with the following design,

(i) First stage: Poisson sampling with sampling inclusion probability 7;, where 7; is
generated from uniform distribution on [0, 1].

(ii) Second stage: SRSWOR with the sample size n; = 10.

Under an uninformative sampling design, the main simulation results are the fol-
lowing:

(i) NMLE, PLE and WPLE have similar levels of bias.
(i) The esd under-estimates the mad for both PLE and WPLE.
(iii) It is not clear which estimation method gives a better result.

The coefficients of variation of the weight wy; for uninformative sampling is 1.74.
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Table 21: Performance of NMLE, PLE and WPLE under an uninformative two-stage
Poisson sampling design when the true value By = 1, f; = 1.5, 02 = 08, 3, = 1,

T2 = 0.5, T222 =1.2.

Uninformative NMLE PLE WPLE
parameters median bias mad media bias mad esd(f) mediabias mad esd(8)
Bo 0.03 0.09 0.04 0.13 0.12 0.03 0.17 0.15
B1 0.11 0.08 0.13 0.13 0.12 0.14 0.18 0.16
o? —-0.01 0.05 —-0.03 0.06 0.06 —-0.03 0.08 0.07
T121 0.07 0.16 0.04 0.21 0.17 —-0.03 0.27 0.20
12 0.13 0.12 0.11 0.21 0.14 0.11 0.24 0.17
T222 0.08 0.14 0.12 0.27 0.21 0.05 031 0.25

Table 22: Pairwise score and weighted pairwise score under an uninformative two-

stage Poisson sampling design when the true value fo = 1, B; = 1.5, 02> = 0.8, 73, = 1,
T — 0.5, Tzzz =1.2.

Uninformative

Pairwise score

Weighted pairwise score

parameter

~.

median bias mad esd(PS(6))

median bias

A~

mad esd(WPS(0))

Bo
B1

02
2
1

T12

2
)

0.07
1.11
—0.16
0.06
0.48
0.20

1.12
1.19
0.61
0.63
0.99
0.73

1.12
1.13
0.71
0.53
0.82
0.55

66.3
299.46
—44.37
—23.76
127.93
13.56

443.13
429.85
232.07
193.70
309.88
182.79

379.73
395.88
223.01
166.01
249.39
180.84
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Consider an informative two-stage sample design,
(i) First stage: SRSWOR with the sampling inclusion probability

_aexp (—br)
~ 1+aexp(=br;)’

i
where

ri= > (yk—Po— Prxx),

kel,s(k)=i
a=0.3
b =0.45.

(ii) Second stage: SRSWOR with the sample size n; = 10.
Under an informative sampling design, the main simulation results are the following;:
(i) NMLE, PLE and WPLE generate a biased estimate, but PLE has a large bias.
(ii) The esd under-estimates the mad for both PLE and WPLE.
(iii) NMLE gives a better result.

The coefficients of variation of the weight wy; for informative sampling is 0.75.
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Table 23: Performance of NMLE, PLE and WPLE under an informative two-stage Pois-

son sampling design when the true value Bp = 1, f; = 1.5, 0> = 0.8, 73, = 1, 1o = 0.5,
2

T, = 1.2.

Informative NMLE PLE WPLE

~ ~

parameter median bias mad median bias mad esd(f#) medianbias mad esd(0)

Bo —0.02  0.09 —022 031 014 —0.04 026 021
B —0.01  0.09 ~177 020  0.10 —012 029 021
o2 0.00 0.05 0.14 009 007 —0.04 013  0.09
2 0.02 0.19 —0.06 0.15 0.8 021 034 022
1 012 0.1 —020 018  0.09 —0.11 025 017
3, 0.10 0.16 —0.67 026  0.12 —026 033 022

Table 24: Pairwise score and weighted pairwise score under an informative two-stage
Poisson sampling design when the true value By = 1, f; = 1.5, a2 = 0.8, T121 =1,
T2 = 0.5, Tzzz =1.2.

Informative Pairwise score Weighted pairwise score

A~

parameter median bias mad esd(PS(f)) median bias mad esd(WPS(8))

Bo 17.06 3.72 3.68 ~31.06 627.60 506.47
B ~76.66 5.92 5.75 ~136.20 575.57 556.00
o2 526 2.07 1.93 ~153.15 324.10 258.76
e 1147 134 1.52 ~106.65 256.37 209.32
i 335 472 4.10 53.62 325.65 298.49
3 47.40 370 4.58 ~123.43  201.49 204.02
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5 Matérn spatial model

5.1 Introduction

In this chapter, I want to keep extending the asymptotic properties of the sample weighted
pairwise likelihood to the case when the random effects could potentially be correlated.

The main goal of this chapter is to establish consistency and asymptotic normality of

the sample weighted pairwise likelihood estimator under the Matérn spatial model. The

key step is to prove the pointwise law of large numbers (PLLN) and the central limit

theorem (CLT) for the random field Vgpl(0) = {Vgpl(0) : kI € AS}. Once this has

been done, the rest is just routine.

I start by introducing the setting, essentially there is nothing new in the design. But
for the model, until I set up a lot of definitions, I would not be able to state precisely what
I mean. In all of the following, the limit should be interpreted as expanding domain, i.e.,
I assume both the sample size and population size go to infinity in the limit.

5.2 Setting: design

Let U < R™ be a finite population with spatial location in R” and let | - | be the standard
Euclidean norm. Let wy; be the pairwise sampling weight for kI € U?.

5.3 Alternative approaches on model

There are two popular approaches on modelling spatially correlated random field b =
{by : ke U}:

(i) Gaussian Markov Random Fields, i.e., directly modelling a sparse precision matrix
(Besag, 1974).

(i) Marginal models under a mixing condition (Guyon, 1995; Lumley and Heagerty,
1999).

However, both approaches have problems. One possible solution is to model the covari-
ance structure explicitly. This is the approach I will take.
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5.3.1 Why not Gaussian Markov Random Fields (GMRF)?

Consider a undirected graph G = (U, ¢€), where U is the set of nodes (i.e., the set of
population) and € is the set of undirected edges. Recall the precision matrix is defined
to be the inverse of covariance matrix.

Definition 5.1. A random field X = {Xy : k € U} with mean g and precision matrix
Q is a Gaussian Markov Random Fields (GMRF) with respect to a undirected graph
G = (U, e) if the joint distribution function is Gaussian, i.e.,

N, 1 1
flw) = m) FiQl exp [ 5 (@ — 1) Qe — )
and le = 0 iff kI ¢ €.

Remark. In my definition, there is no restriction on the cardinality of €. One could have
le] = O(N?). But the point is to assume || is small so that precision matrix is sparse,
i.e., if [e] = O(N), then @Q contains only O(N) non-zero elements.

Remark. There is another equivalent formulation of GMRF using the full conditional
distribution function f(xx|x_x). This approach was first developed by Besag (1974)
and known as conditional autoregressive model (CAR). The Hammersley-Clifford Theo-
rem shows under certain regularity conditions the full conditional distribution function
f (xg|x_) uniquely determines the joint distribution function X = {X : k € U} (Rue and
Held, 2005).

Lemma 5.2. Let X be a GMRF with respect to a undirected graph G = (U, €) with mean p and

precision matrix Q, then Corry (xg, Xj|x_y;) = _\/S—LQ'
kk'll

Proof. For more detail, see Rue and Held (2005). O

Remark. In particular, observe
xp Lxjlx_py = Qu=0.

Note Qi =0 == x; L x;.
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The problem with GMREF is modelling the precision matrix @ does not help us to con-
struct the pairwise likelihood function. To see this, consider a spatial random intercept
model,

Yi| X, bk ~ N(X B + by, 02),
b~ N(0,Q),

where 02 > 0, b = {b; : k e U} and Q is the precision matrix of b.

To construct the pairwise likelihood, one needs to know the covariance between all
possible correlated observational units from the precision matrix, i.e., one needs to com-
pute Covy (b, b;) from Q. This is computationally expensive, as one needs to find the
inverse of the precision matrix Q~!, which is a N x N matrix. Observe it is not sufficient
to invert a submatrix of Q. The way to remediate this problem is by forgetting about the
precision matrix and instead focus on modelling the covariance matrix directly (more
about this later).

5.3.2 Why not marginal models under a mixing conditions?

There are many ways to define the mixing condition in the literature (Bradley et al,,
2005). In all of the following, I will study exclusively the a-mixing conditions.

Definition 5.3. Let (Q), F,IP) be a probability space and A, B be two sub-c-algebras of
F, then the a-mixing coefficients between A and B is defined by

(A, B) = sup{|P(A~B) —IP(A)P(B)|: Ac A, Be B}

I am working with the weighted pairwise likelihood which are naturally defined on
U? = R?™. I start by defining the distance function on U?.

Definition 5.4. Define the distance function p(kl, k'l’) between pairs of observational
units to be

o:UrxU* — RT
kI x K'1"— p(kI,K'l') = min{[[k — &', |k = 1'], |1 = K, |1 = T'[}}-
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Definition 5.5. Let X = {X); : kI € U?} be a random field and p,q be two positive
integers. Then the a-mixing coefficients for the random field X is defined as

ocf,(lq(r) = sup{a(A,B) : |A| < p,|B| <g,dist(A,B) > r},

where A, B < U?, dist(A, B) = mingea wrep p(kl, K''), A is the o-algebra generated by
the random variables {Xj;: kI € A} and B is the o-algebra generated by the random
variables {Xy; : kI € B}, i.e,,

A:U(Xkl:kZEA),
B:(T(XklikleB).

Define

oaffloo(r) :sup{txff,q(r) :q €N},

0500 (1) =sup{a . (r) : p e N}.

Remark. Observe zxfflq(r) is increasing in p, g and decreasing in r. In particular, observe
tpq(r) < ol oo (1) (5.1)

for all p,q € IN.

Lemma 5.6. Let ¢ be a real-valued measurable function and X = {Xy : kI € U?} be a random
field. Define w(X) = {¢(Xy) : kl € U%}. Then

X
oc;/j,% )(r) < a;f,q(r)

forall p,ge N and r > 0.
Proof. Essentially, this is just chasing down the defintion. I omit the detail. O

One can establish the Pointwise Law of Large Numbers (PLLN) and the Central
Limit Theorem (CLT) under appropriate mixing conditions as in Theorem 3.3.1 (Guyon,
1995). From this, one can deduce the Uniform Law of Large Numbers (ULLN) from
equicontinuity conditions. Then it reduces to a standard argument to show the weighted
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pairwise likelihood estimator is consistent and asymptotically normality (more about
this in section 5.6 and 5.7).

But there is a problem with the marginal model. I am working under a parametric
mixed model. In particular, I am interested in the variance components. The marginal
model is basically a semiparametric approach. By construction, a marginal model does

not specify variance components.

5.4 Matérn covariance function

After settling down on some preliminary definitions, my main goal is to introduce
Matérn random field which is one of the most popular isotropic random field in spatial
statistics. The key properties of Matérn random field is that it has an exponential decay
covariance structure, which is crucial for establishing mixing conditions for the point-

wise law of large number and the central limit theorem (more about this in section 5.6
and 5.7).

Definition 5.7. The set of random variables
X={Xj:keUcR" m=>=1}
is called a random field.

Remark. In all of the following, I assume m = 2, i.e.,, U is a finite subset of R2. An
example is the partition of the US into the counties as shown in the Figure 1.1. Observe
the percentage of diagnosed diabetes are attached to each county.

Definition 5.8. Let X = {X} : k € U} be a random field. Define the mean function yf
and covariance function CX(k, I ) to be

He =Ey [Xi],
CX(k, l) = C?V(Xk, Xl)'

Definition 5.9. The distribution of the random field X = {Xj; : k € U} is uniquely
determined by its finite-dimensional distribution

Fé,m,kr(xl,. . .,xr) = ]P(Xkl < X100, Xp < Xr)

T
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forallr e N and kq,...,k, € U.

Remark. One of the most important random field is Gaussian random field. The distri-
bution of Gaussian random field is completely determined by its mean function y{X and
covariance function CX(k,I).

Definition 5.10. A random field X = {Xj : k € U} is called weakly stationary if its mean

and covariance function are translation invariant, i.e.,
7/‘1}{( :‘ul)c(—i—h’
CX(k+h, 1 +h) =CX(k,1) = CX(k 1),
forall he R and k,1 € U.

Definition 5.11. An isotropic random field X = {Xj : k € U} is a weakly stationary
random field with an isotropic covariance function, i.e., covariance only depends on the
distance between observational units

CX(k,1) = C*([k—1])
forall k,1 € U.

In all of the following, I will exclusively study the Matérn covariance function, which
is one of the most important isotropic covariance function (Matérn, 1960). More precisely,

Definition 5.12. A Matérn random field X = {X : k € U} is an isotropic random field
with a Matérn covariance function, i.e., covariance is given by
X X ™ v
Coaprlk 1) =Co, (Ik=1]) = 21T (0) (rellke = 11)" Ky (xellke = 11)) ,
where I' is the gamma function, 2 > 0 is the marginal variance, and K, is the modified
Bessell function of the second-kind with shape parameter v > 0 and scale parameter

~ _ 2
x > 0. In particular, observe szlle(O) =T
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Remark. The modified Bessel function of the second-kind is defined as a solution of
2y +xy — (x> +0v*)y = 0. (5.2)

One can show the solution to 5.2 is given by

tl_y(x) — Ip(x)
2 sin(vn)

Ky(x) =

4

where

Lo(x) = (§>U§)r(i+1)rgv+i+1) (g)%' (53)

Note the power series in 5.3 has an infinite radius of convergence and convergence is
rapid (Boyce et al., 1992). Implementations of the Bessel functions are widely available.

Remark. As |k — || — oo, then one has

7T
Ky (k= 1]) ~ mexp[—’(ﬂk =1,
ie.,
o2 7T
CE , (k=1]) ~ 5TT(0) (el —1])" S Tl exp[—«|k —1|].

In particular, Cl},{2 oIk =1])) is a rapidly decaying function in [k — | for all 2,0 > 0

and k¥ > 0, i.e, sz ok =1]) = O(exp[—x[k —1]]). This rapid decay simplifies proofs
because the integral of sz o () outside a ball of radius r is of the same or small order

than exp|[—x«|r].
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Y
0.0 04 038

Figure 5.1: Matérn correlation function shown for 2 =1,v=1,« =1 (red line) and
2 =1,v =2,k =1 (green line) .

Remark. The Matérn covariance function can be thought as a discrete version of solu-
tions to stochastic partial differential equation (SPDE)

(k> — A)2x(k) = B(k),

where a = v+ %,k > 0,0 >0, A =3", 88_152 and B(k) is a standard Gussian random
variable (Lindgren et al., 2011). l

5.5 Setting: Matérn spatial random intercept model

The goal of this section is to introduce Matérn spatial random intercept model and derive
some properties of sample weighted pairwise likelihood in this new context. Essentially
there is nothing new in here.

Consider a Matérn spatial random intercept model
Y =Bo+ P1Xp1 + -+ BpXip + bx + €k,
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where € = {¢; : k € U} is a Gaussian random field with u§ = 0 and C¢(k,1) = 01},
and b = {b; : k e U} is a Gaussian Matérn random field with ! = 0 and Cg2 o D) =

Ch (ke =11) = W (ke —11)° Ky (x[[k —1]) -

The parameters are 6 = (Bo, B1,- - , ﬁp,az, T2 T

,U,K)

Remark. Under a Matérn spatial random intercept model, observe Covy (v, y;) = Covy (b, b)
for k # I. In particular, Covy (yg, y;) = O(exp[—x«|k —1]]).

Definition 5.13. Let € > 0. Define

A ={kleU?:C
AS = {kleS?:CP

L o (lk=1]) = €},
(I —=1[) = €}

T2,0,%

Remark. The exact value of € are user defined. € determines which pairs one should use
for the calculation of pairwise likelihood. If € = 0, then .A{ is all possible pairs.

Remark. For every € > 0, there exists a > 0 such that AS = {kl e U? : |k — | < J}.

Definition 5.14. Define the census pairwise log-likelihood to be

ple() = >, plu(6
kle AS

where

pl(0) = *—10g|2k1| Tkzzkl Tkl

g (LT Gyl
Cly (k=) T 4a? )

r = (yk —Bo—P1xyr— - — ,Bpxkp> .

—Bo—B1xin — - — Ppxip

Definition 5.15. Define the sample weighted pairwise log-likelihood to be

ple(0) = > Tuwiplu(6).
kle Ag
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Lemma 5.16. Suppose there exists a 6 > 0 such that supy ;, Ey |supgce, plir ()] < o,
then the sample weighted pairwise log-likelihood is a design-unbiased estimator for the census
pairwise log-likelihood under design measure 7, i.e.,

Er [pl°(0)] = pt*(6).

Proof. The proof is almost exactly the same as Lemma 3.4. Observe

Er [pt?(6)] = Ex

> 1kzwklP5kl(9)]

kle AS

= >, plu(9)

kle AS
= pl°(0).
]

Corollary 5.17. Let hyy (yx, y1) = supygcey |Voplui(y y1,0)| and gu (v, y1) = supgeey | Voarlui(Wi i,
Suppose there exists a 6 > 0 such that sup , Ey [hlll*‘s} < o and supy ;, Ey [gllf‘s] < o,

then the sample weighted pairwise score function is a design-unbiased estimator for the census

pairwise score function under the design measure T, i.e.,

Ex [Vopt*(0)] = Vopt(6),
Ex | V3ept*(0)] = Vopt(0).

5.6 Pointwise Law of Large Numbers

The goal of this section is to show under a Matérn spatial random intercept model, the
random field Vgpl(0) = {Vopli(0) : kl € A} satisfies mixing condition 5.4 so that one
can use the Pointwise Law of Large Numbers (PLLN) (Guyon, 1995; Jenish and Prucha,
2009). There are general conditions in the literature to establish PLNN. Since I only
consider Matérn covariance structure, i.e., observations are nearly independent at large
distance, essentially all those conditions are trivially satisfied. Let me start by stating
two general results.
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Lemma 5.18. Assume the following regularity conditions,

A1 Let U2 < R?®" be a countable infinite set such that there exists a § > 0 such that
o(kL,K'l") = 6 for kL,K'l' € UZ.

A.2 Let {U% < U2 : N € IN} be a sequence of finite population with |U%;| — o0 as N — oo.

A3 Let X = {Xy : kI € AL} be a random field. Suppose there exists a 6 > 0 such that

A.4 Assume the random field X satisfies the following mixing conditions
0
J rzm_locfl(r)dr < oo (5.4)
0

then
1
|Ag|

1 p
> Xy —Ey AT > Xu| >0
KleAs €l kleAs

under the model measure Y.

Remark. A.1is a technical assumption to ensure there is a minimum separation between
pairs in the U2.. In particular, this implies

B(K, Uy| = O(r*™),
sup B r(unl=o(r*")

which is a sufficient condition for convergence when dealing with irregular set Uz, <
R2™. One can drop A.1, if U? is just a lattice, i.e., U? « Z?™. For more detail, see Guyon
(1995).

Proof. See Jenish and Prucha (2009) for the proof. O]

Lemma 5.19. Let X = {Xy : kI € Z*"} be a stationary Gaussian random field such that
Covy Xy, Xprr) = O(p(kl,K'I")~") for some t > 2m and the characteristic function of X is
bounded below, then aX . (r) = O(r*"~1).

Proof. For the proof, see page 59 from Doukan (1994). O
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I now turn to the Pointwise Law of Large Numbers (PLLN) for the random field
Vepl(6) under a Matérn spatial random intercept model. To prove this, I need to intro-
duce some notation to start with.

Definition 5.20. Define the random field a(0) = {a;;(0) : kl € AL} and d(6) = {dy(0) :
kl € At} associated with random field Y(0) = {Y;(0) : k € U} to be

a1 (0) = Yi(0) +Y1(0),
A (0) = Yi(6) — Y1(0).

Remark. Observe

CQV(akz (0),a11(0))

)
:CQV(Yk(O) +Y,(6), Y (0) + Y (6))
= Cov(Y(8), Y (8)) + Cov(Yi(8), Yi(6)) + Cov(Yi(8), Y (8)) + Cov(Y(6), Yr(6))
=O(exp[—xp(kl,K'T)]), (5.5)

where p(kl,k'l") = min{||k — ||, |k = U|, [l — k|, | = I"||}. In particular, a(0) is a Gaussian
random field with the exponential decay covariance structure.
Similarly, one can show

Cov(dy (), dpr(0)) = O(exp[—Kp (kL K'T)]), (5.6)
Cov(ag(8), i (8)) = O(expl—xo(kL,K1)]). (5.7)
Lemma 5.21. Observe ay;(0) is independent of dy;(0) under the model measure Y, i.e., ay; L dy.

Proof. Note ay;(0) and dy;(0) are Gaussian random variables from Theorem 7.22. Thus
it suffices to show they are uncorrelated. Observe

Cov(a(8),d(0))
= Cov(Y(6) +Y(0), Yi(0) — Y1(6))
= Cov(Y(0), Yi(8)) — Cov(Y(6), Yi(6)) + Cov(Yi(8), Y(6)) — Cov(Y(6), Y1(6))

=0.
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This completes the proof. O

My strategy below is to decompose @—Hv(,pﬁ(e) into two pieces (Lemma 5.22), and
for each piece I have an explicit bound on the mixing coefficients (Lemma 5.23) so that I
can apply Lemma 5.18. More precisely,

Lemma 5.22. There exists a real-valued measurable function 1 and 1, such that

t°(0) = ! > 1(aa(0) + —= D, ¢a(du(6)).

’ e‘kleAC ’ e‘ kle AS

!A\

Proof. Observe

(Yk(e),Yl(e)) _ (ﬂkl(e) ;‘dkl(e)’ akl(e) ;dkl(e)) .

In particular, the pairwise density function f(y,(0),y;(0)) can be expressed as a function
of ay(0) and dy;(0), i.e., there exists a measuable function ¢ such that

f(yx(0),y1(0)) = ¢(a(0),dx(0)).

From Lemma 5.21, ay;(0) is independent from dy;(0) under model measure Y. Hence
there exists a measurable function ¢; and ¢; such that

$(ax1(0),dr(0)) = C1(ax(0))¢2(dr(9)),

f(yi(0),y1(0)) = ¢1(ai(0))G2(dii (6)).

Taking logs on both sides and then differentiating, one has
Vopli(0) = ¢1(an(0)) + 2(du(8)), (5.8)
where 1(ay(0)) = Vglog(&1(aw(0))) and Po(dy(0)) = Velog(Ea(dy(0))). Summing

over all possible pairs and then normalising by ‘j—c‘, one has

1
(6) = &g > i(an(8)) + |A\ > a(di(0)).

€l kle AS kle AS

1
| A€l
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Lemma 5.23. Let Y = (Y1, ,YN)" follow a Matérn spatial random intercept model. The
random field 1(a(0)) = {¢1(a(0)) : kI € A} and 2(d(0)) = {2(du(9)) : kI € AT}
satisfy the following mixing condition

Dclolg,gg(e))(r) _ O(r2m—t
l/’z(d(e))(,,) _ O<r2m—t

Xoo,00
for every integer t > 2m.

Proof. From 5.5, one has Covy (ay(0), ax(0)) = O(exp[—xp(kl,k'I")]). In particular, ob-
serve
C}c()v(akl(e),akq/(e)) = O(p(kl, k/l/)_t) (59)

for every integer t > 2m.
Note the random field a(0) = {ay(0) : kI € A%} is a Gaussian random field. From 5.9
and Lemma 5.19, one has
%) (r) = O(rz’"‘*) (5.10)
for every integer t > 2m.
Therefore, from 5.10 and Lemma 5.6, one gets

océ@,(og(e))(r) _ O<1’2m_t>

for every integer t > 2m.
The case of »(d(0)) can be handle similarly, I omit the detail. O

Corollary 5.24. Observe

Proof. This is clear from Lemma 5.23 and 5.1. OJ

Corollary 5.25. Observe
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(i) There exists a 6 > 0 such that §;” r>™~ 10411/}11( 10D (125 dr < oo

(i) §o r2m- 1a$1q( a(8 ))(r)dr <wifp+qg<4

0 _
(iii) oclf’géa( ))(r) = O(r=2m).
(iv) There exists a 6 > 0 such that §;’ r>"~ 1“11/121( (0 ))(r)ziﬂ‘dr < o,

(v) § r*" 1zx$2q( (© ))(r)dr <wifp+qg<4

. d _
(vi) ocfzgé @) = O(r=2m).
Proof. This is clear from Lemma 5.23 and 5.1. N

Remark. Corollary 5.25 is only needed for the proof of the central limit theorem in next

section.

I am ready to state the Pointwise Law of Large Numbers under a Matérn spatial
random intercept model.

Theorem 5.26. Let Y = (Yq,---,Yn)T follow a Matérn spatial random intercept model. In
addition, assume the following regularity conditions,

A1 Let U2 < R?®" be a countable infinite set such that there exists a § > 0 such that
p(kLK'I") = 6 for kI, k'l e UZ.

A.2 Let {U3 < U3 : N € IN} be a sequence of finite population with |U%;| — o as N — oo.

A.3 Let hyy (v, y1) = SUPgc@) IV pli(0)|. Suppose there exists a & > 0 such that SUP (3 lEyhlllM <

0.

then

Vopl<(8) - Vopl“(6 >} g

!AC\ {IAC!

under the model measure Y.
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Proof. By Lemma 5.22, it suffices to show

T 2 () ~Ey | 3 pilau(e))| Lo, G11)
€l kle AS | 7€ kle Ag i

1C > ¢o(du(0)) — Ey 1C > a(du(0))| & 0. (5.12)

A kle A< A kle AS

But 5.11 and 5.12 are clear from Corollary 5.24 and Lemma 5.18. This completes the
proof. O

5.7 Central Limit Theorem

The goal of this section is to show under a Matérn spatial random intercept model,
the random field Vgpl(0) = {Voply(0) : kil € AS} satisfies certain mixing conditions
A4 in Lemma 5.27, so that one can use the Central Limit Theorem (CLT). There are
general conditions in the literature to establish CLT (Guyon, 1995). Since I only consider
Matérn covariance structure, i.e., observations are nearly independent at large distance,
essentially all those conditions are trivially satisfied. Let me start by stating two general
results.

Lemma 5.27. Assume the following reqularity conditions,

A1 Let U2 <= R?" be a countable infinite set such that there exists a 6 > 0 such that
p(kL,K'l") = 6 for kL, K'l' € UZ.

A.2 Let {U% < U2 : N € N} be a sequence of finite population with |U%| — o as N — .

A3 Let X = {Xy : kI € AL} be a random field. Suppose there exists a 6 > 0 such that
SUP (1) Ey X3 < .

A.4 Assume the random field X satisfies the following mixing conditions
(i) There exists a 6 > 0 such that §;’ rzm_locfl(r)ﬁdr < oo

(i) §o r"a (r)dr < oif p+q <4
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(iii) oy (r) = O(r 2").

A.5 lim|AS|oZ > 0, where 02 = Vary [ 17 Dkl AS Xkl}.

| A
then
1 1 1 D
o\ A > Xy —Ey ] > Xul| | = N(0,1)
€l kle AS €l kle AS
under the model measure Y.
Proof. See Guyon (1995); Jenish and Prucha (2009) for the proof. O

Remark. Guyon (1995) proves the results initially for a grid of points Z", using mo-
ments bound and Stein’s Lemma (Stein, 1981). It is stated that A.1 replaces the grid
assumption to allow any set without accumulation point (Guyon, 1995). Jenish and
Prucha (2009) relate the moment and mixing assumptions of Guyon (1995) to give A.1.

Lemma 5.28. Suppose
X, 2X,
Y, 2y,
and X, is independent of Yy, then X is independent of Y and (X, Yy)" D, (X, Y)T.

Proof. Since X, P, Xand Y, o, Y, then by definition, one has

lim E [f(X,)] =E [f(X)],

lim E [g(Y,)] =E [g(Y)],

n—aoo

for all bounded continuous functions f, g. Hence

lim [IE [f(Xa)] E [g(Yx)]] = E [f(X)] E [g(Y)]. (5.13)

n—ao0

Since X, is independent of Y;,, by Theorem 7.25, one has

E [f(Xn)g(Yn)] = E [f(Xn)] E [g(Y2)] (5.14)
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for all bounded continuous functions f, g.
Putting 5.13 and 5.14 together, one has

lim I [£(X,)g(¥,)] = E [F(X)] E[g(Y)]. (5.15)

n—oo

By Dominated Convergence Theorem 7.24, one has

E[ lim [f(Xa)g(Ya)]] = E [f(X)] E [g(Y)],

E [ lim f(X,) lim g(¥,)| = E[f(X)]E [5(Y)],
ie.,

E[f(X)g(Y)] = E[f(X)] E[g(V)],
for all bounded continuous functions f, g. Therefore, by Theorem 7.25, X is independent

of Y.
To prove (X, Y)T N (X,Y)T, by Theorem 7.21, it suffices to show

01Xy + Yy 21X + oY (5.16)

for all c1,cr € R.
Let ¢x be the characteristic function of X, i.e.,

ox R — C
s px(t) = E [exp(itX)]

To prove 5.16, by Lévy’s Continuity Theorem 7.23, it suffices to show

r}l—r»rolo ¢C1Xn+C2Yn (t) = ¢61X+02Y(t)

for all c1,cp,t € R.
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Observe

im ¢c,x, +c,v, (t) = lim E [exp(it(c1 X, + c2Yn))]

n—aoo n—0o0

(
= lim E [exp(itc; X,))] E [exp(itca Yy )]
(

n—0o0

= lim E [exp(itc1 Xn)] nlin;O]E [exp(itcYn)]

n—aoo
=E Lh_r)go exp(itchn)] E [nlglgo exp(itczYn)}
=E [exp(itc1 X)] E [exp(itc,Y)]
=E [exp(it(c1X + c2Y))]

:(Pclx—i-czY(t)'

In the second equality, I used the fact X;, L Y,, and Theorem 7.25. In the fourth equality,
I used Dominated Convergence Theorem 7.24. In the fifth equality, I used continuous
mapping theorem and the fact X, 2, X, Y, 2 Y. In the sixth equality, I used the fact
X 1Y and Theorem 7.25.

This completes the proof. O

I am ready to state the Central Limit Theorem under a Matérn spatial random inter-
cept model. My strategy below is to decompose @vg pl€(0) into two pieces (Lemma
5.22), and for each piece I have an explicit bound on the mixing coefficients (Lemma
5.23) so that I can apply Lemma 5.27. Then I used Lemma 5.28 to recover @Vg ple(0).

Theorem 5.29. Let Y = (Yq,---,Yn)T follow a Matérn spatial random intercept model. In
addition, assume the following reqularity conditions,

A1 Let U2 <= R?*" be a countable infinite set such that there exists a 6 > 0 such that
p(kLK'l") = 6 for kI, K'I" € U2,

A.2 Let {U3 < U2 : N € IN} be a sequence of finite population with |U%;| — o as N — oo.

A3 Let hyy(yi, y1) = SUP e @) IV pli(0)|. Suppose there exists a & > 0 such that SUp 5y ]Eyhil*‘s <
0.

A4 lim |AL|Jy(0) > O, where Jy(6) = Vary |jg|v9pw(9) .
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then

1

1
)% (L vypec(o {
under the model measure Y.

Proof. By Corollary 5.25 and Lemma 5.27, one has

(a)D L, N(o,1)

1 _ -
-2
D
\AC| > (ap( \AC > p1(an(0 | Z 1 (an (0 — N(0,1),
kle AS kle AS i kleAC ]
_% ] _
D
|AC| PR ACHC \AC PR ACHC | > ¥a(du(0 — N(0,I).
kle AS kle AS i Al kle AS i
Hence,
VA Z ¥1(ax (6 Ve > wi(an(6 >
el ricae ALl yiche
N | 0,lim | A¢| Var Z 1 (ax (0 (5.17)
Y kleAC
and

kle AS

> a(da(0 ) . (5.18)

|AC > Wa(di(6 ])—’

VAL 7 > ¥a(du(0
|A kle AS

c
|A kle AS

Putting 5.17 and 5.18 together, then by Lemma 5.28 and Lemma 5.22, one has

(0 lim |A{| Var

VIAE (g Topt(0) By | - Vapt<(6) ) 2> N(0,tim | Acli(0)),

ie.,

[

1v(0)F (14 Vort:(0) - B | i Vapt®)] ) 2 NGO,

This completes the proof. O
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5.8 Consistency

In all of the following, 6, will be the sample weighted pairwise likelihood estimator and
0o will be the true value of the model. More precisely,

Definition 5.30. The sample weighted pairwise likelihood estimator 6, of 6 is defined

as a solution of ,

| Ag|

Definition 5.31. The true value 6y of 0 is defined as a solution of

Vopl:(6) = 0.

1 c -

I am ready to state the weighted pairwise likelihood estimator is consistent under a
Matérn spatial random intercept model. Essentially, there is nothing new here.

Theorem 5.32. Let Y = (Yq,---,Yn)T follow a Matérn spatial random intercept model. In
addition, assume the following reqularity conditions,

A1 Let U2 <= R?" be a countable infinite set such that there exists a 6 > 0 such that
o (kL K'l") = 6 for kI, K'I" e UZ.

A.2 Let {U% < U2 : N € IN} be a sequence of finite population with |U%| — o as N — o
and {S%; = U%, : N € N} be a sequence of finite sample with |S%;| — 0 as N — .

A.3 © is a compact subset of RP and 6y is an interior point of ©.

A4 Let hy(yx, v1) = supgeey | VPl (0)]. Suppose there exists a 6 > 0 such that sup g ¢y Eyh} i <
0.

1
A.5 For any given ¢ > 0 and a given sequence {(yx,y;)} satisfying (|yk|> + |yi|?)? < c, the
sequence of function {V gpli(yx,y1,0) : kl € AL} is equicontinuous on any open subset
A of O.
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A.6 For all variables Vi, satisfying |v‘{2| DkleAS V2 = 0,(1), we have
LC > lywyVi(0) - LC > Vi(6) =0, <n1_%)
A kle AS Al kle AS

with respect to design probability 7t

A.7 Forall € > 0, there exists a 6 > 0 such that

1 S

inf
{6€0:|0—0)[ =€}

then

A~

6, > 6y
with respect to model-design probability Y 7t.

I proceed the same way as before to argue the sample weighted pairwise likelihood
estimator is consistent by establishing a uniform law of large numbers (ULLN) on a
compact set.

Lemma 5.33. With the same conditions A.1 — A.6 as in Theorem 5.32, then one has
1

sup | ——Vopt*(8) — Eyr [ngpﬁ(a)] 20 (5.19)
o<o | A | A
with respect to design-model probability Y7t
Proof. Using Theorem 5.26, this can be done exactly the same as Lemma 3.9. O
I now proceed to the proof of Theorem 5.32.
Proof. This can be done exactly the same as Theorem 3.8. I omit the detail. O
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5.9 Asymptotic normality

I am ready to state the weighted pairwise likelihood estimator is asymptotical normal
under a Matérn spatial random intercept model. Essentially, there is nothing new here.

Theorem 5.34. Let Y = (Yq,---,Yn)T follow a Matérn spatial random intercept model. In
addition, assume the following reqularity conditions,

A1 Let U2 <= R?" be a countable infinite set such that there exists a 6 > 0 such that
o(kL,K'I") = 6 for kL, K'l' € UZ.

A2 Let {U% < U% : N € N} be a sequence of finite population with |U%| — o as N — o
and {S3, = U%, : N € N} be a sequence of finite sample with |S%;| — o0 as N — oo.

A.3 O is a compact subset of RV and 0y is an interior point of ©.

A4 Let hyy(yk, v1) = supgeey | VPl (). Suppose there exists a 6 > 0 such that sup Eyh? <
0.

1
A.5 For any given ¢ > 0 and a given sequence {(yx,y;)} satisfying (|yx|> + |yi|?)? < c, the
sequence of function {Vgply(0)} is equicontinuous on any open subset A of ©.

A.6 For all variables Vy; satisfying @ DkleAS V2 = Op(1), one has

1 1 1
A2 > T Vig - AT > Vi :Op<nl 2)
€l kle AS €l kle AS

with respect to design probability 7.

A.7 Forall € > 0, there exists a 6 > 0 such that

Ey [ngpﬁ(e)] H -6,

inf
{60:(0—6y|>e} |Ag|

A.8 Let g (Yk, Y1) = SUP(ge@) IV20pLk(0)|. Suppose there exists a 8 > 0 such that SUP (/e Ac) ]Eyg,%;”sl <
0.
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1

A.9 For any given ¢ > 0 and a given sequence {(yx,y;)} satisfying (|ye|?>+ |v1|*)? < ¢, the
sequence of function {NV3,pl (yk, y1,0) : kl € AS} is equicontinuous on any open subset
Aof ©.

A.10 For any variable Vi satisfies the following conditions,

(@) e Siteas Luwi Vi (0) = O(1).

(b) lim | AS|o2 > 0, where 02 = Var, [|f1‘5| D ke As 1k1wlekl(0)] .

then

_ 1 1 D
o' A > 1klwlekl(0)_m > wuVu(8)| = N(0,1)
el ke el ke

with respect to design probability 7.

A1 lim |AS|Jx > 0and lim | AS[Jy > 0, where ] =(8) = Vary [‘jg‘VQ]?st(H)} and Jy (8) =
Vary m—g'vgpew(e)} :

A.12 Assume lim

Iﬁa = {, where { € [0,1].
then
Jx(60) *H(60) (8, — 60) 2> N (0,1+¢ [ (lim | A)J=(6)) " (tim | AC]1v (6))] ), (5:20)

where

1
H(60) = Ey, {——|AC|V%,9;9£S(0)} ,
1 S
J=(0) = Vgr [_IAEIVGM (0)} ,

Jy(6) = Var [‘jgvgpzcw)] .

In particular, if the sampling fraction is small, then

J(80) " TH(80) (6, — 80) 2 N (0,1). (5.21)

Proof. This essentially reduces to the same argument as Theorem 4.25. I omit the detail.
O
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6 Future work

In this chapter, I want to mention briefly what is more to be done. I will concentrate on
computational aspects of variance estimation and prediction (or estimation) of random
effect.

As shown in section 4.9 and 4.10, I get consistent estimation under complex sampling
for the weighted pairwise likelihood estimation. However, sandwich variance estimator
underestimates the variance. I believe this is due to the small simulations replicate and
sample size. Of course, one really needs a simulation to show this. It is impractical to
run a large simulation using current codes. Therefore computational method needs to
be improved in the future. I believe this would be feasible such as writing all the codes
in C to optimise the performance, but this is just a pain.

I have not talked about how to make a prediction (or estimation) of random effects in
this thesis. This is not because this is unimportant. I believe this is a very hard problem,
and it is not clear how to construct a solution. More explicitly, there are two problems in
here. First, from 3.1, one pair of observation does not make random effects b; identifiable.
Secondly, suppose the random effects b; is identifiable, then one gets different prediction
of random effect for each pairs. It is not clear how to construct a single prediction of
random effect from those.

Computation for generalized linear mixed models is also difficult because the stan-
dard approach of Laplace approximation or adaptive Gaussian quadrature requires esti-
mation of the random effects to determine quadrature points.
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7 Appendix I: elementary result

In this chapter, I recall some basic results, techniques or notation that will be used thor-
ough in this thesis. I only state the results, as the proof can be found in many standard
textbooks (Van der Vaart, 2000; Shao, 2003; Brockwell and Davis, 2013; Durrett, 2010;
Kallenberg, 2006; Simon et al., 2015).

7.1 Basic notation and definition

Let @ € ©® <« RP, define

v (2 aN (o 2
90— \o0," " 0,) \061" 706,
&2 &2
- &2 . &2
00,00, ag%

Define
Ck(@) = {f : ® > R : f is k times continuously differentiable}.

Definition 7.1. Let « € R?, I define the Euclidean norm of x to be
1
o = (F+ 3+ +22)".
Definition 7.2. Let X = (x;j); j=1,.. » be a p x p matrix. Define the norm of X to be

) 3
I1X| = (Z xfj) . (7.1)

ij=1
Definition 7.3. Let A, B < IRP, I define the distance between A and B to be

dist(A,B) = inf{|la —b|| : a € A,b e B}.
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Definition 7.4. Let « € R and € > 0. Define e-ball to be
Be(w) = {y e R? : |y —a < e}.
Definition 7.5. Let A be a bounded subset of IR?, I define the diameter of A by
diam(A) = sup{|x —y|| : x,y € A}.

Definition 7.6. Let {X,},en and {Y;},en be a sequence of random variables. We say
Xn = Op(Yy) if there exists a ¢ > 0

lim sup IP (|Xn| > c) =0.

=
n—o0 | Yl

Definition 7.7. Let {X,},en and {Y,}nen @ sequence of random variables. We say X, =

0p(Yy) if forallc > 0
1mUPCX”>c):0

n—00 |Yn‘ -

Definition 7.8. Let {X,,},en be a sequence of random variables. X, D, X if for all
bounded continuous functions f

lim B [f(X,)] = E[f(X)].

n—aoo

Definition 7.9. A sequence of random variables {X,(0)},cN is said to be equicontinuous
if for all € > 0, there exists a § > 0 such that if |@; — 6| < J, then

sup [ X, (61) — Xu(62)| <e.
nelN

Definition 7.10. Let X be a random variable. Then the characteristic function of X is
defined to be

¢px(t) = E [exp(itX)].

Definition 7.11. Let (X,d) be a metric space and let A = X, A is totally bounded if for
every € > 0, it can be covered by finitely many € ball.

Remark. Let (X,d) be a metric space and let A ¢ X. A is compact iff A is totally
bounded and complete.
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7.2 Basic results
Lemma 7.12. Let A and B be nonempty bounded subsets of R, then
(i) sup A = —inf(—A), where —A = {—a:a € A}.
(ii)) Ifc > 0, supcA = csup A, where cA = {ca :a e A}.
(iii) sup(A + B) = sup(A) +sup(B), where A+B={a+0b:a,be A}.
Lemma 7.13. Let X be a random variable, then
(i) supgee EE [X] < E [supyeq X].
(ii) infpep E [X] > E [infgep X].

Lemma 7.14 (Holder’s Inequality). Let p > 1,9 > 1 such that % + % =1, then

E [|XY]] < (E [|X|"])7 (E[|Y]'])7 .

Lemma 7.15 (Cauchy-Schwartz Inequality).

E(xv]) < (E[1x7])* (E[1vp])’.

Lemma 7.16 (Markov’s Inequality). Let X be a non-negative random variable such that E [X] <
oo and let ¢ > 0, then
E [X
P(X >c) < %
Lemma 7.17 (Chebyshev’s Inequality). Let X be a non-negative random variable such that

E [X] < 0 and let ¢ > 0, then
1
P(|X-EX|>c¢) < EVar [X].

Theorem 7.18 (Taylor’s Theorem). Let 6y € RP and let 1, be a sequence of vector in RP such
that limy, .o v, — 0. Let {6y}, be a sequence of random vectors such that 8, — 8g = Op(ry,).
Suppose f : RP — R is C? differentiable, then

f(0n) = f(60) + Vxf(60)(0n — BO)T + 0p(Tn).
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Theorem 7.19 (Slutsky’s Theorem). Let X, P, X and Y, LN ¢, where c is a constant, then
(i) X+ Yy 2 X+c.
(ii) XuYn D> cX.
(i) Y71X, 2 c71X.

Theorem 7.20 (Continuous Mapping Theorem). Let X, be a sequence of random variable
such that X, B> X and g is continuous function, then g(X,) - g(X).

Theorem 7.21 (Cramer-Wold Theorem). Let X, be a sequence of RP-dimensional random
vector, then
X, 2 X — d'Xx, 2 d'X forall a € RP.

Theorem 7.22. A random vector (Xy,..., Xn)T is a multivariate normal random vector iff
X1+ -+ anXn
is a normal random variable for all aq,--- ,ay € R.

Theorem 7.23 (Lévy’s Continuity Theorem). Let {X},eN be a sequence of random variables
with characteristic function {¢x, (t)}neN-

(i) If Xp 2> X, then ¢x, (t) — dx(t) for all t.
(ii) If px, (t) — ¢x(t) for all t and ¢x(t) is continuous at t = 0, then X, o x

Theorem 7.24 (Dominated Convergence Theorem). Let {X,},eN be a sequence of random
variables such that X,, > X. Suppose there exists a random variable Y such that |X,| <Y and
E [|Y]] < oo, then limy,_. E [X,,]| = E [X].

Theorem 7.25. X and Y are independent iff for all bounded continuous functions f, g,
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