
Algebraic Structures and Their Applications Vol. 5 No. 1 (2018) pp 23-39.

AN EFFICIENT ALGORITHM FOR MIXED DOMINATION ON GENERALIZED
SERIES-PARALLEL GRAPHS

M. RAJAATI, M. R. HOOSHMANDASL∗, A. SHAKIBA, P. SHARIFANI AND M. J. DINNEEN

Communicated by S. Alikhani

ABSTRACT. A mixed dominating set S of a graph G = (V,E) is a subset of vertices and edges like

S ⊆ V ∪ E such that each element v ∈ (V ∪ E) \ S is adjacent or incident to at least one element

in S. The mixed domination number γm(G) of a graph G is the minimum cardinality among all mixed

dominating sets in G. The problem of finding γm(G) is known to be NP-complete. In this paper, we

present an explicit polynomial-time algorithm using the parse tree to construct a mixed dominating set

of size γm(G) where G is a generalized series-parallel graph.

1. INTRODUCTION

A subset of vertices and edges S ⊆ V ∪ E in a graph G = (V,E) is a mixed dominating set if

for every v ∈ (V ∪ E) \ S, v is either adjacent or incident to at least one element in S. The mixed

domination problem, also known as the total cover problem, is a variant of the classical dominating

set problem and was introduced by Alavi et. al in 1977 [2]. Placing phase measurement units(PMUs)

in an electric power system is one of its known applications [15]. The mixed domination number of a

graph G is the minimum cardinality among all mixed dominating sets of G and is denoted by γm(G).

MSC(2010): Primary:05C85

Keywords: Mixed Dominating Set; Generalized Series-Parallel; Parse Tree; Tree-width.

Received: 20 April 2018, Accepted: 01 September 2018.

∗Corresponding author

c⃝ 2018 Yazd University.
23

24 Alg. Struc. Appl. Vol. 5 No. 1 (2018) 23-39.

In [2], Alavi et. al. showed that for a connected graph G of order n, the value of γm(G) is bounded

from above by ⌈n/2⌉. In [3], they have also illustrated some extremal cases and gave some properties

for connected graphs, which have a total covering number equal to ⌈n/2⌉. In [11], Majumdar showed

that the problem of finding γm(G) is NP-complete for general graphs. Also, it is shown that this

problem remains NP -complete even if it is restricted to chordal graphs [7], planar bipartite graphs

[12], and split graphs[10, 15] . Finding a mixed dominating set of minimum cardinality is tractable

for some families of graphs such as trees [1, 15, 10], cactus graphs [10] and graphs with bounded

tree-width[13].

Rajaati et. al. proposed a dynamic programming algorithm to solve the mixed domination problem

on graphs with bounded tree-width using the tree decomposition of graphs in [13]. In this paper, we

use the parse tree of graphs to present an explicit polynomial-time algorithm to construct a mixed dom-

inating set for generalized series-parallel graphs in linear time. Moreover, we enumerate the number

of γm-sets of G. The rest of the paper is organized as follows: In Section 2, we review some basic

definitions and set our notions. In Section 3, we present a linear time algorithm to find a γm-set and

determine the number of γm-sets for G using the parse tree of a generalized series-parallel graph G.

Then, we analyze the correctness and computational complexity of the proposed algorithms.

2. PRELIMINARIES

In this section, we review some basic requirements on graph theory and set our notations. For

notation and terminology which are not listed here, an interested reader is advised to consult [14].

Let G = (V,E) be a graph with vertex set V and edge set E. The (open) neighborhood of a

vertex v ∈ V in G is the set of all vertices adjacent to v and is denoted by NG(v). The closed

neighborhood of a vertex v in G is defined as NG[v] = NG(v) ∪ {v}. The mixed neighborhood of r

in G, for an element r ∈ V ∪ E, is denoted by Nmd
G (r) and is defined as Nmd

G (r) = {s ∈ V ∪ E |
s is adjacent or incident to r}. Similarly, the closed mixed neighborhood of r is denoted by Nmd

G [r]

and is equal to Nmd
G [r] = Nmd

G (r) ∪ {r}.
The problem of domination and its variations are well-studied topics in the literature of graph theory

[5, 6]. The mixed domination problem is one of these variants. A subset S ⊆ V ∪ E is a mixed

dominating set if for every r ∈ V ∪ E, it is the case that |Nmd
G [r] ∩ S| ≥ 1. The minimum cardinality

among such sets is denoted by γm(G). Moreover, a γm-set for G is a mixed dominating set of size

γm(G).

Definition 2.1 (Generalized Series-Parallel Graphs[4]). A generalized series-parallel, or GSP for

short, is a graph G = (V,E, s, t) with two distinguished vertices s, t ∈ V , which are called termi-

nals, and is defined recursively as follows:

(1) oi: A graph G consisting of two vertices connected by a single edge is a GSP .

Alg. Struc. Appl. Vol. 5 No. 1 (2018) 23-39. 25

(2) os: Given two GSP graphs G1 = (V1, E1, s1, t1) and G2 = (V2, E2, s2, t2), the series operation

of G1 and G2 is denoted by G1osG2 and is a new GSP graph G = (V,E, s1, t2) where

V = (V1 ∪ V2) \ {s2},

and

E = (E1 ∪ E2 ∪ {{t1, v} : v ∈ NG2(s2)}) \ {{s2, v} : v ∈ NG2(s2)}.

(3) op: Given two GSP graphs G1 = (V1, E1, s1, t1) and G2 = (V2, E2, s2, t2), the parallel operation

of G1 and G2 is denoted by G1opG2 and is a new GSP graph G1opG2 = (V,E, s1, t1) where

V = (V1 ∪ V2) \ {s2, t2},

and

E = (E1 ∪ E2 ∪ {{s1, v} : v ∈ NG2(s2)} ∪ {{t1, v} : v ∈ NG2(t2)}) \

({{s2, v} : v ∈ NG2(s2)} ∪ {{t2, v} : v ∈ NG2(t2)})

(4) og: Given two GSP graphs G1 = (V1, E1, s1, t1) and G2 = (V2, E2, s2, t2), the generalized

series operation of G1 and G2 is denoted by G1ogG2 and is a new GSP graph G1ogG2 =

(V,E, s1, t1) where

V = (V1 ∪ V2) \ {s2},

and

E = (E1 ∪ E2 ∪ {{t1, v} : v ∈ NG2(s2)}) \ ({{s2, v} : v ∈ NG2(s2)}).

(5) Any GSP graph is obtained by finite applications of rules (1) through (4).

If the rule (4) is removed, then we obtain a subclass of GPSs called series-parallel or

SP graphs. These rules are illustrated in Figure 1. Note that in Figure 1, the graph

(Ĝog(G1osG2))os((G1osG2)opĜ) is a GSP , however it is not an SP . We generalize the concept

G3

s3 t3

G1

s1 t1

G2

s2 t2

G1osG2

s1 t2

s1 t2

(G1osG2)opG3

G3og(G1osG2)

s3 t3

(G3og(G1osG2))os((G1osG2)opG3)

s3

t2

v

w

v t1 w v

t1

w

v t1

FIGURE 1. An illustration of applying GSP rules.

26 Alg. Struc. Appl. Vol. 5 No. 1 (2018) 23-39.

of p-graph, which are defined for SP s in [9], for GSP graphs in the following definition.

Definition 2.2 (p-graph). Let G = (V,E, x, y) be a GSP and Ĝ = (V̂ , Ê, x̂, ŷ) be a subgraph of G

satisfying the following conditions:

(1) either x̂ = x or x /∈ V̂ and there exists an edge {u, v} ∈ E \ Ê such that v = x̂ ∈ V̂ .

(2) either ŷ = y or w /∈ V̂ and there exists an edge {w, z} ∈ E \ Ê such that z = ŷ ∈ V̂ .

Then, Ĝ is called a p-graph of G.

A generalized series-parallel graph G can be represented by a binary parse tree T which is defined

as follows.

Definition 2.3 (Binary Parse Tree for GSP Graphs[9]). A binary parse tree for GSP graph G is

defined recursively as follows:

(1) A tree consisted of a single vertex labeled (u, v)i is a binary parse tree for primitive GSP ,

G = ({u, v}, {u, v}, u, v).
(2) Let G = (V,E) be a GSP obtained by some composition of two other GSP graphs G1 and

G2, and T1 and T2 be their binary parse trees, respectively. Then, a binary parse tree for G is

a tree with the root r labeled as either (u, v)s, (u, v)p or (u, v)g depending on which operation

is used to generate G. The vertices u and v are terminals of G and the roots of T1 and T2 are

the left and the right children of r, respectively.

It is obvious that in any binary parse tree for a GSP graph G, every internal vertex of the

tree has exactly two children and there are |E| leaves.

Remark 2.4. Note that when we use a label (x, y), we do not care about the label being either

(x, y)i, (x, y)s, (x, y)p and (x, y)g.

Let t be an internal vertex of a binary parse tree T , and for GSP graph G, τ(t) denote the

subtree of T rooted at t. Also, the left and the right subtrees of t are denoted by τℓ(t) and τr(t),

respectively. Then, the vertices of T are labeled as follows:

(a) For each edge e = {x, y} ∈ E, there exists exactly one leaf which is labeled by (x, y) in

T .

(b) For each internal vertex t ∈ VT , which is labeled by (x, y)s, the root of τℓ(t) is labeled

by (x, z) and the root of τr(t) is labeled by (z, y) where z is some vertex in V . These

vertices are called s-vertices.

(c) For each internal vertex t ∈ VT labeled (x, y)p, the root of τℓ(t) and τr(t) are labeled by

(x, y). These vertices are called p-vertices.

(d) For each internal vertex t ∈ VT labeled (x, z)g, the root of τℓ(t) is labeled by (x, z) and

the root of τr(t) is labeled by (z, y) where z is a vertex in V . These vertices are called

g-vertices.

Alg. Struc. Appl. Vol. 5 No. 1 (2018) 23-39. 27

A binary parse tree for a GSP graph G is illustrated in Figure 2. Note that there may exist several

binary parse trees for a GSP and the binary parse tree is not necessarily unique. Given a GSP graph

G, a binary parse tree is computable by a linear time algorithm according to the following Lemma.

Lemma 2.5 ([8]). For a given GSP graph G, a binary parse tree can be found in linear time.

(v1, v2)

(v4, v7) (v7, v8)

(v4, v8)s (v4, v8)

(v4, v8)p

v1

v2

v3

v4 v5

v6

v7v8

v9

G
(v2, v3)

(v1, v3)s

(v1, v3)

(v1, v3)p

(v3, v4)

(v3, v6) (v6, v4)

(v3, v4)s

(v3, v4)p

(v1, v4)s

(v4, v5)

(v1, v4)g

T

(v1, v4)g

(v4, v9)

(v1, v9)s

FIGURE 2. A binary parse tree for a GSP graph G.

3. A DYNAMIC PROGRAMMING ALGORITHM TO FIND A MINIMUM MIXED DOMINATING SET

In this section, we first set some necessary notations which are used throughout the section. Then,

we present our proposed algorithm in details to find a γm-set, count them and computing γm(G) for a

given GSP graph G.

Let t be a vertex in a parse tree T , for a GSP graph G, and Ĝ be a p-graph of subtree with root t.We

define the sets ch(t) andMMDi,j(x, y) as follow:

• The set ch(t) consists of all children of t. In other words, in a parse tree T , if t is a leaf vertex,

then ch(t) is an empty set and if it is an internal node, then ch(t) contains two elements.

• Let (x, y) be the label of t and i, j ∈ {0, 1, 2, 3, 4, 5, 6}. The setMMDi,j(x, y) is a γm-set

for Ĝ where the label of the vertex t is (x, y), and i, j satisfy one of the following conditions:

Case 0.: If i = 0, then x ∈ MMDi,j(x, y) and at least one of its incident edges like e

which belongs toMMDi,j(x, y).

Case 1.: If i = 1, then x ∈ MMDi,j(x, y) and none of its incident edges are in

MMDi,j(x, y).

Case 2.: If i = 2, then x /∈ MMDi,j(x, y) and at least one of its incident edges like e are

inMMDi,j(x, y).

Case 3.: If i = 3, then x /∈ MMDi,j(x, y) and none of its incident edges are in

MMDi,j(x, y), since all of them are dominated by an edge or a vertex inMMDi,j(x, y).

Moreover, there is a vertex like x′ inMMDi,j(x, y) such that {x, x′} ∈ E(Ĝ).

28 Alg. Struc. Appl. Vol. 5 No. 1 (2018) 23-39.

Case 4.: If i = 4, then x /∈ MMDi,j(x, y) and at least one of its incident edges are not

dominated. Moreover, there is a vertex like x′ in MMDi,j(x, y) such that {x, x′} ∈
E(Ĝ).

Case 5.: If i = 5, then x /∈ MMDi,j(x, y) and none of its incident edges are in

MMDi,j(x, y), since all of them are dominated by an edge or a vertex inMMDi,j(x, y).

Moreover, there is no vertex like x′ inMMDi,j(x, y) such that {x, x′} ∈ E(Ĝ).

Case 6.: If i = 6, then x /∈ MMDi,j(x, y), none of its incident edges are in

MMDi,j(x, y), and at least one of them is not dominated. Moreover, there is no ver-

tex like x′ inMMDi,j(x, y) such that {x, x′} ∈ E(Ĝ).

These cases can be defined for y based on j, similarly. We use MINSIZE(· · ·) to denote a set with

smallest cardinality among the input sets. With these definitions, our proposed algorithm constructs

MMDi,j(x, y) as a mixed dominating set of minimum cardinality for graph G(x, y). It also computes

Ni,j(x, y) as the number of minimal cardinality mixed dominating sets.

Now, we are ready to state our algorithm. The algorithm finds a binary parse tree like T for the input

GSP graph G in linear time using the procedure described in [8]. Next, it traverses T in a bottom-up

order. Each subtree in the parse tree corresponds to a p-graph for G and each vertex t of T is labeled

by either (x, y)i, (x, y)s, (x, y)p or (x, y)g where x and y are terminals in the corresponding p-graph

of τ(t).

For each visiting vertex t, one of the procedures PROCESSLEAF, PROCESSSVERTEX, PRO-

CESSPVERTEX or PROCESSGVERTEX is called based on the type of t. For each procedure, the input is

consisted of vertices x and y. By traversing the parse tree T and calling proper procedures for each ver-

tex, our algorithm finds a subset ofMMDi,j(x, y) ⊆ V (Ĝ) where for each i, j ∈ {0, 1, 2, 3, 4, 5, 6},
the setMMDi,j(x, y) stores a minimum mixed dominating set of Ĝ with the assumption that x, y or

some of their incident edges cannot be dominated.

After visiting the root node of T and computingMMDi,j(x, y) for it, a γm-set for G can be found.

Finally, aMMDi,j(x, y) set with minimum cardinality is returned where i, j ∈ {0, 1, 2, 3}.
The input to the PROCESSLEAF procedure is a leaf vertex v ∈ VT labeled by (x, y)leaf , and the its

output is a setMMDi,j(x, y) for i, j ∈ M. Note that a leaf corresponds to an edge {x, y} in G. All

valid cases for different i, j ∈M can be summarized as follows:

(1) The vertices x and y and the edge {x, y} are dominated and at least one of them is a member

ofMMDi,j(x, y). So i, j satisfies one of the following conditions:

• i = 0 and j ∈ {0, 2},
• i = 1 and j ∈ {1, 3},
• i = 2 and j ∈ {0, 2},
• i = 3 and j = 1.

Alg. Struc. Appl. Vol. 5 No. 1 (2018) 23-39. 29

(2) The vertices x and y and the edge {x, y} are not dominated and are not members of

MMDi,j(x, y). So, we have i = j = 6.

Let v be a vertex of T labeled by (x, y)s. In the PROCESSSVERTEX procedure, we compute the set

MMDi,j(x, y) for given terminal vertices x, y and a common vertex z. The sets MMDℓ
iℓ,jℓ

(x, z)

and MMDr
ir,jr(z, y) are corresponding to τℓ(t) and τr(t), where the roots of τℓ(t) and τr(t) are

labeled by (x, z) and (z, y), respectively. The members ofMMDℓ
iℓ,jℓ

(x, z), MMDr
ir,jr(z, y), and

MMDi,j(x, y) are those vertices of T which are corresponding to p-graphs G1 = (V1, E1, x, z),

G2 = (V2, E2, z, y) and Ĝ = G1osG2 = (V̂ , Ê, x, y), respectively.

The possible cases based on belonging z toMMDi,j(x, y) and the vertex or edge dominating z,

are summarized in Table 1. To be precise, consider the following cases:

Case 0.: Vertex z and at least one of its incident edges belong toMMDi,j(x, y). So, we have

(jℓ, ir) ∈ {(0, 0), (0, 1), (1, 0)}.
Case 1.: Vertex z ∈ MMDi,j(x, y) and none of its incident edges belong to MMDi,j(x, y)

which implies jℓ = ir = 1.

Case 2.: Vertex z /∈ MMDi,j(x, y) and an edge incident to z belong to MMDi,j(x, y). So,

we have either (jℓ, ir) ∈ {2} × {2, 3, 4, 5, 6}, or (ir, jℓ) ∈ {2} × {2, 3, 4, 5, 6}).
Case 3.: Vertex z and its incident edges does not belong to MMDi,j(x, y). So, we have

(jℓ, ir) ∈ {(3, 3), (3, 5), (5, 3)}.

Now, let v be a vertex of T labeled by (x, y)p. The sets MMDℓ
iℓ,jℓ

(x, y) and MMDr
ir,jr(x, y)

correspond to τℓ(t) and τr(t), respectively. For each i, j ∈ M , we describe a method for finding

MMDi,j(x, y). Note that it is enough to find a relation among the values (i, j), (iℓ, jℓ) and (ir, jr).

To do so, we use the procedure FINDLIST. Let the input to this procedure be a value like i ∈M . Then,

the procedure returns a set of pairs which are proper values for iℓ and ir. Note that for j ∈ M , the

procedure returns proper jℓ and jr, similarly.

Note that τℓ(t), τr(t) and τ(t) correspond to p-graphs G1 = (V1, E1, x, y), G2 = (V2, E2, x, y) and

Ĝ = G1opG2 = (V̂ , Ê, x, y), respectively. For i ∈ M (resp. j ∈ M), the values of iℓ and ir (resp. jℓ
and jr) are determined as follows. The following cases are also illustrated in Table 2.

Case 0.: i = 0 implies (iℓ, ir) ∈ {(0, 0), (0, 1), (1, 0)},
Case 1.: i = 1 implies iℓ = ir = 1,

Case 2.: i = 2 implies either (iℓ, ir) ∈ {2} × {2, 3, 4, 5, 6} or (iℓ, ir) ∈ {2, 3, 4, 5, 6} × {2},
Case 3.: i = 3 implies (iℓ, ir) ∈ {(3, 3), (3, 5), (5, 3)},
Case 4.: i = 4 implies either (iℓ, ir) ∈ {(3, 4), (3, 6), (4, 4), (4, 5), (4, 6)} or

(ir, iℓ) ∈ {(3, 4), (3, 6), (4, 4), (4, 5), (4, 6)},
Case 5.: i = 5 implies iℓ = ir = 5,

Case 6.: i = 6 implies (iℓ, ir) ∈ {(5, 6), (6, 5), (6, 6)}.

30 Alg. Struc. Appl. Vol. 5 No. 1 (2018) 23-39.

1: procedure PROCESSSVERTEX(x, z, y)

2: for all i, j ∈M do

3: setlist← ∅;

4: Min←MMDℓ
i,0(x, z) ∪MMDr

0,j(z, y)

5: Ni,j(x, y)← N ℓ
i,0(x, z)×N r

0,j(z, y)

6: for all (jℓ, ir) ∈ {0, 1} do

7: AddMMDℓ
i,jℓ

(x, z) ∪MMDr
ir,j(z, y) to setlist;

8: PROCESSCALNUM (Min, Ni,j(x, y),MMDℓ
i,jℓ

(x, z),MMDr
ir,j(z, y), N

ℓ
i,jℓ

(x, z),

N r
ir,j

(z, y))

9: end for

10: for all (ir) ∈ {2, 3, 4, 5, 6} do

11: AddMMDℓ
i,2(x, z) ∪MMDr

ir,j(z, y) to setlist;

12: PROCESSCALNUM (Min, Ni,j(x, y),MMDℓ
i,jℓ

(x, z),MMDr
ir,j(z, y), N

ℓ
i,jℓ

(x, z),

N r
ir,j

(z, y))

13: end for

14: for all (jℓ) ∈ {2, 3, 4, 5, 6} do

15: AddMMDℓ
i,jℓ

(x, z) ∪MMDr
2,j(z, y) to setlist;

16: PROCESSCALNUM (Min, Ni,j(x, y),MMDℓ
i,jℓ

(x, z),MMDr
ir,j(z, y), N

ℓ
i,jℓ

(x, z),

N r
ir,j

(z, y))

17: end for

18: AddMMDℓ
i,3(x, z) ∪MMDr

3,j(z, y) to setlist;

19: PROCESSCALNUM (Min, Ni,j(x, y), MMDℓ
i,jℓ

(x, z), MMDr
ir,yj (z, y), N

ℓ
i,jℓ

(x, z),

N r
ir,j

(z, y))

20: AddMMDℓ
i,3(x, z) ∪MMDr

5,j(z, y) to setlist;

21: PROCESSCALNUM (Min, Ni,j(x, y), MMDℓ
i,jℓ

(x, z), MMDr
ir,j(z, y), N

ℓ
i,jℓ

(x, z),

N r
ir,j

(z, y))

22: AddMMDℓ
i,5(x, z) ∪MMDr

3,j(z, y) to setlist;

23: PROCESSCALNUM (Min, Ni,j(x, y), MMDℓ
i,jℓ

(x, z), MMDr
ir,j(z, y), N

ℓ
i,jℓ

(x, z),

N r
ir,j

(z, y))

24: MMDi,j(x, y)←Minsize(setlist);

25: end for

26: end procedure

Alg. Struc. Appl. Vol. 5 No. 1 (2018) 23-39. 31

1: procedure FINDLIST(k)

2: M ← {0, 1, 2, 3, 4, 5, 6}

3: for all k ∈M do

4: list← ∅

5: end for

6: switch k do

7: case 0

8: list← {(0, 0), (0, 1), (1, 0)}

9: case 1

10: list← {(1, 1)}

11: case 2

12: for all k′ ∈M \ {0, 1} do

13: Add (2, k′) to list

14: Add (k′, 2) to list

15: end for

16: case 3

17: list← {(3, 3), (3, 5), (5, 3)}

18: case 4

19: for all k′ ∈M \ {0, 1, 2} do

20: Add (4, k′) to list

21: Add (k′, 4) to list

22: end for

23: case 5

24: Add (5, 5) to list

25: case 6

26: Add (5, 6), (6, 5), (6, 6) to list

27: end procedure

Let v be a vertex of T labeled (x, y)g. In the procedure PROCESSGVERTEX, the setMMDi,j(x, y)

is computed for the given vertices x and y. The setsMMDℓ
i,jℓ

(x, y) andMMDr
ir,jr(x, y) correspond

to τℓ(t) and τr(t), respectively.

Let the roots of τℓ(t) and τr(t) be labeled by (x, y) and (y, z), respectively, for some z ∈ V . Also,

assume thatMMDℓ
iℓ,jℓ

(x, y) andMMDr
ir,jr(x, y) are the associated sets with the vertices (x, y) and

32 Alg. Struc. Appl. Vol. 5 No. 1 (2018) 23-39.

1: procedure PROCESSPVERTEX(x, y)

2: for all i, j ∈M do

3: list1← ProcessF indlist(i)

4: list2← ProcessF indlist(j)

5: (iℓ1 , jℓ1), (ir1 , jr1)← an arbitrary element of list1× list2

6: Min←MMDℓ
iℓ1 ,jℓ1

(x, y) ∪MMDr
ir1 ,jr1

(x, y)

7: Ni,j(x, y)← N ℓ
iℓ1 ,jℓ1

(x, y)×N r
ir1 ,jr1

(x, y)

8: for all (iℓ, jℓ), (ir, jr) ∈ list1× list2 do

9: AddMMDℓ
iℓ1 ,jℓ1

(x, y) ∪MMDr
ir,jr(x, y) to setlist;

10: PROCESSCALNUM (Min, Ni,j(x, y), MMDℓ
iℓ,jℓ

(x, y), MMDr
ir,jr(x, y),

N ℓ
iℓ,jℓ

(x, y), N r
ir,jr

(x, y))

11: end for

12: MMDi,j(x, y)←Minsize(setlist);

13: end for

14: end procedure

1: procedure PROCESSGVERTEX(x, y)

2: for all i, j ∈M do

3: list1← ProcessF indlist(j);

4: jℓ1 , ir1 ← an arbitrary element of list1

5: Min←MMDℓ
i,jℓ1

(x, z) ∪MMDr
ir1 ,jr

(z, y)

6: Ni,j(x, y)← N ℓ
i,jℓ1

(x, z)×N r
ir1 ,jr

(z, y)

7: for all ((jℓ, ir), jr) ∈ list1× {0, 1, 2, 3} do

8: AddMMDℓ
i,jℓ

(x, y) ∪MMDr
ir,jr(x, y) to setlist;

9: PROCESSCALNUM (Min, Ni,j(x, y), MMDℓ
i,jℓ

(x, z), MMDr
ir,jr(x, y),

N ℓ
i,jℓ

(x, z), N r
ir,jr

(x, y))

10: end for

11: MMDi,j(x, y)←Minsize(setlist);

12: end for

13: end procedure

(y, z) of T . It is obvious that z does not appear in ancestors of t in the parse tree. So, z and all of its

incident edges must be closely dominated which implies j ∈ {0, 1, 2, 3}. Since y is the common vertex

between G1 and G2, based on j, the set denoted by list1, which equals the set of possible pairs, can be

Alg. Struc. Appl. Vol. 5 No. 1 (2018) 23-39. 33

computed for jℓ and ir by procedure FINDLIST. Several cases are possible for y which are shown in

Table 3 which are discussed below:

Case 0.: j = 0 implies (jℓ, ir) ∈ {(0, 0), (1, 0), (0, 1)},
Case 1.: j = 1 implies jℓ = ir = 1,

Case 2.: j = 2 implies either (jℓ, ir) ∈ {2} × {2, 3, 4, 5, 6} or (jℓ, ir) ∈ {2, 3, 4, 5, 6} × {2},
Case 3.: j = 3 implies (jℓ, ir) ∈ {(3, 3), (3, 5), (5, 3)},
Case 4.: j = 4 implies either (jℓ, ir) ∈ {3} × {4, 6}, (jℓ, ir) ∈ {4} × {4, 5, 6}, (ir, jℓ) ∈
{3} × {4, 6} or (ir, jℓ) ∈ {4} × {4, 5, 6},

Case 5.: j = 5 implies jℓ = ir = 5,

Case 6.: j = 6 implies (jℓ, ir) ∈ {(5, 6), (6, 5), (6, 6)}.

ByMMDi,j(x, y)← MINSIZE(Setlist), we remove all undefinable sets from Setlist. If Setlist

is empty, thenMMDi,j(x, y) becomes undefinable.

1: procedure PROCESSCALNUM(Min,N , S1, S2, s′1, s′2)

2: if |S1 ∪ S2| ≤Min then

3: N ← s′1 × s′2

4: else if |S1 ∪ S2| = Min then

5: N ← N + s′1 × s′2

6: end if

7: end procedure

We study the correctness and complexity of our proposed algorithm below.

Theorem 3.1. For a given generalized series-parallel graph G = (V,E), the Algorithm 1 finds a

γm-set for G in time O(|V |).

Proof. In Algorithm1, we traverse the parse tree T in a bottom-up fashion and compute at most 49

sets for each of its internal vertices. Each initial set for the leaves of the tree represents all possible

mixed dominating sets in a graph consisting of only one edge. Let G1 = (V1, E1) and G2 = (V2, E2)

be the graphs represented by the subtrees τℓ(t) and τr(t), respectively. Assume that they are given to

the procedures PROCESSLEAF, PROCESSSVERTEX, PROCESSPVERTEX and PROCESSGVERTEX. It

is easy to see that these procedures find all possible γm-sets in each corresponding graph. Finally, our

algorithm extracts only a valid minimum mixed dominating set. The steps of the algorithm require

at most |O(VT)| operations. Since each binary tree with n leaves has O(n) vertices and the binary

parse tree of every GSP graph G has |E(G)| leaves. So, we have |VT | ∈ O(|E(G)|). Every GSP

graph G is planar. In a planar graph, we have |E| ≤ 3|V | − 6. Also, we know that a parse tree T can

be constructed in O(|V |)[9]. So, the algorithm computes a γm-set for a given GSP graph G in time

O(|V |).

34 Alg. Struc. Appl. Vol. 5 No. 1 (2018) 23-39.

1: Find a parse tree of G like T

2: for each v in the post order traversal of the parse tree do

3: switch type of v do

4: case Leaf

5: PROCESSLEAF(x, y) ◃ (x, y)i is the label of v

6: case s− vertex

7: PROCESSSVERTEX(x, z, y) ◃ (x, y)s, (x, z) and (z, y) are labels of v, the left and the

right children of v, respectively.

8: case p− vertex

9: PROCESSPVERTEX(x, y) ◃ (x, y)p is the label of v and the labels of left and right

children of v are (x, y).

10: case g − vertex

11: PROCESSGVERTEX(x, y, z) ◃ (x, y)s, (x, y) and (y, z) are labels of v, the left and the

right children of v, respectively.

12: end for

13: D ← ∅

14: Min←MMD0,0(x, y)

15: for all i, j ∈ {0, 1, 2, 3} do

16: AddMMDi,j(x, y) to D

17: if |MMDi,j(x, y)| ≤Min then

18: Nγm ← N(xi, yj)

19: else if |MMDi,j(x, y)| = Min then

20: Nγm ← Nγm +N(xi, yj)

21: end if

22: end for

23: γm-set←Minsize(D)

24: γm(G)← |γm-set |

4. ACKNOWLEDGMENTS

This article has been written while the fourth author was in a sabbatical visit to University of

Auckland. He would like to express his gratitude to Prof. Cristian S. Calude and his research group

for the nice and friendly hospitality.

Alg. Struc. Appl. Vol. 5 No. 1 (2018) 23-39. 35

Algorithm 1 Finding a γm-sets of a GSP graph G

1: procedure PROCESSLEAF(x, y)

2: for all i, j ∈ {0, 1, 2, 3, 4, 5, 6} do

3: MMDi,j(x, y)← NaN ;

4: Ni,j(x, y) = 0;

5: end for

6: MMD0,0(x, y)← {x, y, xy} and N0,0(x, y) = 1;

7: MMD0,2(x, y)← {x, xy} and N0,2(x, y) = 1;

8: MMD1,1(x, y)← {x, y} and N1,1(x, y) = 1;

9: MMD1,3(x, y)← {x} and N1,3(x, y) = 1;

10: MMD2,0(x, y)← {y, xy} and N2,0(x, y) = 1;

11: MMD2,2(x, y)← {xy} and N2,2(x, y) = 1;

12: MMD3,1(x, y)← {y} and N3,1(x, y) = 1;

13: MMD6,6(x, y)← ∅ and N6,6(x, y) = 1.

14: end procedure

REFERENCES

[1] G. S. Adhar, S. Peng, Mixed domination in trees: a parallel algorithm, Congr. Numer. 100 (1994) 73-80.

[2] Y. Alavi, M. Behzad, L. M. Lesniak-Foster, E. Nordhaus, Total matchings and total coverings of graphs, J. Graph

Theory 1(2) (1977) 135-140.

[3] Y. Alavi, J. Liu, J. Wang, Z. Zhang, On total covers of graphs, Discrete Math. 100 (1992) 229-233.

[4] P. Chebolu, M. Cryan, R. Martin, Exact counting of Euler tours for generalized series-parallel graphs, J. Discrete

Algorithms 10 (2012) 110-122.

[5] T. W. Haynes, S. Hedetniemi, P. Slater, Fundamentals of domination in graphs, CRC Press, 1998.

[6] T. W. Haynes, S. Hedetniemi, P. Slater, Domination in graphs: advanced topics, Taylor & Francis, 1998.

[7] S. M. Hedetniemi, S. T. Hedetniemi, R. Laskar, A. McRae, A. Majumdar, Domination, independence and irredundance

in total graphs: a brief survey, Graph Theory, Combinatorics and Applications: Proceedings of the 7th Quadrennial

International Conference on the Theory and Applications of Graphs 2 (1995) 671-683.

[8] J. E. Hopcroft, R. E. Tarjan, Dividing a graph into triconnected components, SIAM J. Comput. 2(3) (1973) 135-158.

[9] T. Kikuno, N. Yoshida,Y. Kakuda, A linear algorithm for the domination number of a series-parallel graph, Discrete

Appl. Math. 5(3) (1983) 299-311.

[10] J. K. Lan, G. J. Chang, On the mixed domination problem in graphs, Theoret. Comput. Sci. 476(84) (2013) 84-93.

[11] A. Majumdar, Neighborhood Hypergraphs: A Framework for Covering and Packing Parameters in Graphs, PhD thesis,

Clemson University, Department of Mathematical Sciences, South Carolina, 1992.

[12] D. F. Manlove, On the algorithmic complexity of twelve covering and independence parameters of graphs, Discrete

Appl. Math. 91(1) (1999) 155-175.

36 Alg. Struc. Appl. Vol. 5 No. 1 (2018) 23-39.

[13] M. Rajaati, M. R. Hooshmandasl, M. J. Dinneen, A. Shakiba, On fixed-parameter tractability of the mixed domination

problem for graphs with bounded tree-width, Discrete Math. Theor. Comput. Sci. 20(2) (2018) 1-25.

[14] D. B. West, Introduction to graph theory, Prentice Hall Upper Saddle River, 2001.

[15] Y. Zhao, L. Kang, M. Y. Sohn, The algorithmic complexity of mixed domination in graphs, Theoret. Comput. Sci.

412(22) (2011) 2387-2392.

TABLE 1. Different situations for s-vertices

Case (a) (b) (c) (d) (e)

0

z

G1 G2

z

G1 G2

z

G1 G2

jℓ = 0, ir = 0 jℓ = 0, ir = 1 jℓ = 1, ir = 0

1

z

G1 G2

jℓ = 1, ir = 1

2

z

G1 G2

z

G1 G2

z

G1 G2

z

G1 G2

z

G1 G2

jℓ = 2, ir = 2 jℓ = 2, ir = 3 jℓ = 2, ir = 4 jℓ = 2, ir = 5 jℓ = 2, ir = 6

jℓ = 3, ir = 2 jℓ = 4, ir = 2 jℓ = 5, ir = 2 jℓ = 6, ir = 2

3

z

G1 G2

z

G1 G2

z

G1 G2

jℓ = 3, ir = 3 jℓ = 3, ir = 5 jℓ = 5, ir = 3

Alg. Struc. Appl. Vol. 5 No. 1 (2018) 23-39. 37

TABLE 2. Different situations for p-vertices

Case (a) (b) (c) (d) (e)

0 x

G1

G2

x

G1

G2

x

G1

G2

jℓ = 0, ir = 0 jℓ = 0, ir = 1 jℓ = 1, ir = 0

1 x

G1

G2

jℓ = 1, ir = 1

2 x

G1

G2

x

G1

G2

x

G1

G2

x

G1

G2

x

G1

G2

jℓ = 2, ir = 2 jℓ = 2, ir = 3 jℓ = 2, ir = 4 jℓ = 2, ir = 5 jℓ = 2, ir = 6

jℓ = 3, ir = 2 jℓ = 4, ir = 2 jℓ = 5, ir = 2 jℓ = 6, ir = 2

3 x

G1

G2

x

G1

G2

x

G1

G2

jℓ = 3, ir = 3 jℓ = 3, ir = 5 jℓ = 5, ir = 3

4 x

G1

G2 G2

x

G1

x

G1

G2

x

G1

G2

x

G1

G2

jℓ = 3, ir = 4 jℓ = 3, ir = 6 jℓ = 4, ir = 4 jℓ = 4, ir = 5 jℓ = 4, ir = 6

jℓ = 4, ir = 3 jℓ = 6, ir = 3 jℓ = 5, ir = 4 jℓ = 6, ir = 4

5 x

G1

G2

jℓ = 5, ir = 5

6 x

G1

G2

x

G1

G2

x

G1

G2

jℓ = 6, ir = 5 jℓ = 5, ir = 6 jℓ = 6, ir = 6

38 Alg. Struc. Appl. Vol. 5 No. 1 (2018) 23-39.

TABLE 3. Different situations for g-vertices

Case (a) (b) (c) (d) (e)

0

y

G1 G2

y

G1 G2

y

G1 G2

jℓ = 0, ir = 0 jℓ = 0, ir = 1 jℓ = 1, ir = 0

1

y

G1 G2

jℓ = 1, ir = 1

2

y

G1 G2 G1 G2

y

G1 G2

y

G1 G2

y

G1 G2

y

jℓ = 2, ir = 2 jℓ = 2, ir = 3 jℓ = 2, ir = 4 jℓ = 2, ir = 5 jℓ = 2, ir = 6

jℓ = 3, ir = 2 jℓ = 4, ir = 2 jℓ = 5, ir = 2 jℓ = 6, ir = 2

3 G1 G2

y

G1 G2

y

G1 G2

y

jℓ = 3, ir = 3 jℓ = 3, ir = 5 jℓ = 5, ir = 3

4

y

G1 G2 G1 G2

y

G1 G2

y

G1 G2

y

G1 G2

y

jℓ = 3, ir = 4 jℓ = 3, ir = 6 jℓ = 4, ir = 4 jℓ = 4, ir = 5 jℓ = 4, ir = 6

jℓ = 4, ir = 3 jℓ = 6, ir = 3 jℓ = 5, ir = 4 jℓ = 6, ir = 4

5 G1 G2

y

jℓ = 5, ir = 5

6 G1 G2

y

G1 G2

y

G1 G2

y

jℓ = 6, ir = 5 jℓ = 5, ir = 6 jℓ = 6, ir = 6

M.Rajaati

Department of Computer Science

Yazd University

Alg. Struc. Appl. Vol. 5 No. 1 (2018) 23-39. 39

Yazd, Iran.

m.rajaati@stu.yazd.ac.ir

M. R. Hooshmandasl

Department of Computer Science

Yazd University

Yazd, Iran.

hooshmandasl@yazd.ac.ir

A. Shakiba

Department of Computer Science

Vali-e-Asr University of Rafsanjan

Rafsanjan, Iran.

ali.shakiba@vru.ac.ir

P. Sharifani

Department of Computer Science

Yazd University

Yazd, Iran.

pouyeh.sharifani@gmail.com

M. J. Dinneen

Department of Computer Science

The University of Auckland

Auckland, New Zealand.

m.dinneen@auckland.ac.nz

	1. Introduction
	2. Preliminaries
	3. A dynamic programming algorithm to find a minimum mixed dominating set
	4. Acknowledgments
	References

