
?

FPGA-based Acceleration of FT Convolution for Pulsar
Search Using OpenCL

HAOMIAO WANG, University of Auckland, New Zealand
PRABU THIAGARAJ, University of Manchester, UK
OLIVER SINNEN, University of Auckland, New Zealand

The Square Kilometre Array (SKA) project will be the world largest radio telescope array. With its large number
of antennas, the number of signals that need to be processed is dramatic. One important element of the SKA’s
Central Signal Processor package is pulsar search. This paper focuses on the FPGA-based acceleration of the
Frequency-Domain Acceleration Search module, which is a part of SKA pulsar search engine. In this module,
the frequency-domain input signals have to be processed by 85 Finite Impulse response (FIR) filters within a
short period of limitation and for thousands of input arrays. Because of the large scale of the input length and
FIR filter size, even high-end FPGA devices cannot parallelise the task completely. We start by investigating
both time-domain FIR filter (TDFIR) and frequency-domain FIR filter (FDFIR) to tackle this task. We applied
the overlap-add algorithm to split the coefficient array of TDFIR and the overlap-save algorithm to split the
input signals of FDFIR. To achieve fast prototyping design, we employed OpenCL, which is a high-level FPGA
development technique. The performance and power consumption are evaluated using multiple FPGA devices
simultaneously and compared with GPU results, which is achieved by porting FPGA-based OpenCL kernels.
The experimental evaluation shows that the FDFIR solution is very competitive in terms of performance, with
a clear energy consumption advantage over the GPU solution.

CCS Concepts: • Computer systems organization→Multiple instruction, multiple data; •Hardware
→ Hardware-software codesign; • Applied computing→ Astronomy;

Additional Key Words and Phrases: SKA, OpenCL, FIR filter, high-level design

ACM Reference Format:
Haomiao Wang, Prabu Thiagaraj, and Oliver Sinnen. 2018. FPGA-based Acceleration of FT Convolution
for Pulsar Search Using OpenCL. ACM Trans. Reconfig. Technol. Syst. ?, ?, Article ? (August 2018), 25 pages.
https://doi.org/0000001.0000001

1 INTRODUCTION
Pulsar (Pulsating Radio Source), as a highly magnetized rotating neutron star, is an ideal research
object for physics and astrophysics research. It has been used in a wide range of areas, such as tests
of general relativity, galactic studies, and cosmology [7]. Unlike other visible astronomical objects,
electromagnetic radiation beams emitted from pulsars are hard for the optical telescope to detect
unless the beam is towards telescope and there are no obstacles between them.

Authors’ addresses: Haomiao Wang, University of Auckland, Department of Electrical and Computer Engineering, 314
Khyber Pass Rd, Auckland, 1023, New Zealand, hwan938@aucklanduni.ac.nz; Prabu Thiagaraj, University of Manchester,
Jodrell Bank Centre for Astrophysics, UK, prabuthiagaraj@gmail.com; Oliver Sinnen, University of Auckland, Department
of Electrical and Computer Engineering, 314 Khyber Pass Rd, Auckland, 1023, New Zealand, o.sinnen@auckland.ac.nz.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
1936-7406/2018/8-ART? $15.00
https://doi.org/0000001.0000001

ACM Trans. Reconfig. Technol. Syst., Vol. ?, No. ?, Article ?. Publication date: August 2018.

https://doi.org/0000001.0000001
https://doi.org/0000001.0000001

?:2 H. Wang et al.

Hence, employing radio telescopes becomes the main approach to observe pulsars, and, in
practice, most known pulsars have been recorded by radio telescopes, including the first detected
pulsar. The pulsar signals are weak radio sources and some are even weaker than thermal noise. So
the physical scale of a radio telescope has to be large, and the integration time of a specific space
area has to be long enough. For basic pulsar search, the input signals are Fourier transformed and
analysed in the frequency domain, due to the regularity of pulsar beams. Since some pulsar beams
might be scattered by clumpy interstellar medium, a group of dispersion measure (DM) trails of
one input array has to be tested.

If the period of a pulsar is not a constant during the integration period such as in binary pulsars
(which science is most interested in), the Doppler effect makes it more difficult to be observed. For
such pulsars, acceleration search is applied by assuming a group of accelerations of a pulsar. This
paper focuses on the Fourier Domain Acceleration Search (FDAS). It is an effective approach to
remove (sweep up) the smearing of signals by using the correlation technique [24, 32].
The Square Kilometer Array (SKA) 1 will be the world’s largest radio telescope array and is

currently in its phase one (SKA1) pre-construction. Based on the covered frequency bandwidth, it
is divided into LOW, MID, and SURVEY. Because of the huge size and number of antennas, the
workload of digital signal processing becomes themain challenge for the hardware development [15].
The Central Signal Processor (CSP) package of the SKA1-MID contains many sub-elements, and the
pulsar search engine (PSS) is one of them. The PSS searches for pulsars over a range of dispersion
measure, acceleration, and period search space using various approaches. The FDAS module, which
is a compute-intensive application, is an essential part of the SKA1-MID PSS. The core computation
part of the FDAS module is to convolve with a large number of input signals with a group of
lengthy templates. Because of the need for the precision, the input signals and coefficients arrays
are complex single-precision floating-point data. The large amount of complex floating-point
operations and restrict time limitation are big problems for processors. Even for the powerful
high-performance computing systems, the overall workload is very challenging, especially its very
high power consumption, considering the remote locations of the telescopes.

It is essential for the SKA project to employ high-performance computing devices in accelerating
the compute-intensive signal processing tasks. For such a large-scale project, it is necessary to
consider all alternatives before deployment. To evaluate the performance regarding execution
latency and energy dissipation for different hardware platforms, employing the Field-programmable
gate array (FPGA) for prototype design is necessary. However, the traditional hardware development
flow using Hardware Description Languages (HDLs) such as VHDL or Verilog is a large barrier to
proper software engineering. It excludes non-hardware experts from participating and following
the development. Solutions often become very device specific. This is especially problematic in the
SKA project, where the final hardware architecture and devices (e.g., FPGA versus GPU) are not
finalized yet. As an international research project, many teams are working worldwide on different
aspects, and high-level approaches can strongly aid the interaction between different research
teams, especially for prototype designs.

In this paper, we are investigating the use of FPGAs for the efficient high-performance computing
of the core computation part of the FDAS module–FT convolution. This not only produces low-
power processing solutions for the demanding pulsar search modules, but also evaluates the viability
of using high-level approaches to achieve the needed efficiency and performance, and its ability to
support the sweeping of a large design space. The main contributions are as follows:
• Investigation and proposal of various differing designs for FT convolution. In contrast to
previous work the designs are tailored to the demanding nature of the underlying FIR filters:

1www.skatelescope.org

ACM Trans. Reconfig. Technol. Syst., Vol. ?, No. ?, Article ?. Publication date: August 2018.

FPGA-based Acceleration for Pulsar Search ?:3

large filters (i.e., a large number of coefficients), multiple filters for same input data, long
input data stream, complex floating point values and demanding real time limit.
• Exploration of the design space in several directions: convolution methods (time versus
frequency based), area versus time efficient designs, optimising for single filter versus multiple
filters, FFT parameters, single and multiple FPGAs, etc.
• Implementation of designs using high-level approach OpenCL and analysis of achieved
performance relative to upper bounds (based on available resources).
• Extensive experimental evaluation of all designs on the real host systemwith up to three FPGA
boards; porting of OpenCL implementation to GPU; performance comparisons regarding
speed (i.e., execution latency) and energy consumption.

This paper studies the FPGA-based acceleration of the FT convolution part of the FDAS module
using high-level synthesis approach, and it is organized as follows. In Section 2, the one-dimensional
convolution that is the key element of the FT convolution and hardware acceleration in the radio
astronomy area are discussed.We introduce the basic FDASmodule and time-domain and frequency-
domain based algorithms to handle its FT (Fourier Transform) convolution part in Section 3. The
FPGA-based FPGA-based FIR filter structure and optimisation for FT convolution module are
proposed in Section 4. The FPGA-based OpenCL development technique is mentioned in Section 5,
alongside a discussion of the portability of the FPGA-based kernels to other platforms. In Section 6,
the performance of a group of FIR filter implementations are evaluated, and the fastest design is
used to compared with GPU-based kernels. The conclusions are drawn in Section 7.

2 RELATEDWORK
2.1 One-dimensional Convolution
In the FT convolution module, the compute-intensive part is a large number of lengthy FIR fil-
ters, whose essence is one-dimensional (1D) convolution. The 1D convolution and FPGA-based
acceleration of 1D convolution have been well researched.
Both Intel and Xilinx (time domain transpose direct form) provide FIR compiler. For the non-

symmetry coefficient array, they employ the transpose multiply-accumulate architecture that
implements the FIR filter in time-domain. The SPIRAL project provides a multiplierless FIR/IIR
generator that uses only additions/subtractions and shifts instead of multiplications. However, the
data types of input signals and coefficient array have to be fixed-point and it supports maximum
10-tap FIR filter (as opposed to several hundreds in this work).

A thorough investigation of 1D convolution across different platforms is done in [18]. The 1D
convolution is implemented in both time-domain using the overlap-save algorithm and frequency-
domain using the overlap-save algorithm. The evaluation showed that when the template size is
several hundred, the standalone frequency-domain FPGA performs faster than GPUs and multicore
processors. The data types of the input signals and coefficient array are single-precision floating
points. Regarding the optimisation of a group of 1D convolutions with complex single-precision
floating-point operations, we believe that it has not been addressed in literature before.

2.2 Accelerator in Radio Astronomy
High-end FPGAs, as accelerators, are widely employed in accelerating large-scale computation
such as Microsoft’s hyperscale datacenters [31] and IBM’s Supervessel Cloud [10]. In many radio
astronomy projects, FPGA accelerators are employed to handle large-scale computation as well.
In [14], hundreds of Xilinx Virtex-4 FPGAs are used to implement the correlator of the SKAMP
project. In LOFAR [36, 37], multi-core CPUs and many-core architectures are evaluated to im-
plement the correlator, however, the power consumption is a problem. The Berkeley CASPER

ACM Trans. Reconfig. Technol. Syst., Vol. ?, No. ?, Article ?. Publication date: August 2018.

?:4 H. Wang et al.

group, MeerKAT, and NRAO released the FPGA-based acceleration hardware for implementing
the FX correlator of a radio telescope array [29]. In [33], FPGA platforms are employed to handle
digital channelised receivers. On the GPU side, the NVIDIA GTX480 GPU based cross-correlation
implementation for radio astronomy is evaluated in [11]. Although each device could achieve over
1TFLOPS performance, the thermal design power (TDP) of each device is over 250W .

2.3 High-level Synthesis Approaches
To reduce the time-to-market and increase the portability of source code for FPGAs, a number of
research works regarding high-level development techniques have been undertaken [16]. Known
examples are LegUp [5, 6], ROCCC [27] and Nimble [26], all of them can compile C based code
and generate bitstream files to program FPGAs. LegUp is an open source project that is available
for researchers to use. In terms of commercial tools, Maxeler provides a compiler for its FPGA
products that are based on both Java and C/C++. LabVIEW [4, 25] provides a graphical programming
environment to develop for its Xilinx FPGA-based devices.

Besides these, the two primary FPGA vendors, Intel and Xilinx, provide high-level development
tools as well. The Vivado HLS, which is based on AutoESL [40], is widely adopted for high-level
Xilinx FPGA development, targeting C, C++ and System C [34]. Another high-level development
environment is Xilinx’s SDAccel [39], which is designed for OpenCL applications targeting Xilinx
FPGA-based accelerator cards [21][17, 21]. Intel released a development tool called Altera SDK
for OpenCL [8, 9, 12, 13], which is based on OpenCL standard version 1.0. This OpenCL approach
seems very promising as it is not only supported by the major FPGA vendors, but also a major
technology used for the programming of GPUs, with the corresponding programming environments
and experience in the community. In this paper, we, therefore, employ OpenCL for the development
of relatively simple signal processing tasks on FPGAs. We want to explore the advantage of a
high-level approach to cover a large design space, by testing many different approaches. It will be
interesting to see whether OpenCL can exploit the FPGA resources efficiently for this task. We
are encouraged by the successful use of the high-level development technique in many research
areas regarding hardware acceleration, such as high-speed data compression [1], Map/Reduce, and
computationally demanding control algorithms [28].

3 FDAS MODULE AND FT CONVOLUTION
In the SKA1-MID CSP element, over 2,000 beams are formed at 4,096 channels per beam, and the
signals of each beam are processed independently, as depicted in Figure 1. Hence, each beam needs
a dedicated pulsar search engine (PSS). Because the dispersion measure (DM) is unknown (we are
looking for pulsars at unknown locations), about 6,000 trial values are tested, and several pulsar
search approaches are employed for each trial value. These approaches include single pulse search
module, time domain acceleration search module, and frequency domain acceleration search (FDAS)
that we are investigating.
The FDAS module consists of two main sub-modules: the FT convolution module and the

harmonic summing module. In the FT convolution module, 85 templates with different lengths are
applied in each trial. The 222 input points, which data type is complex single precision floating-
point (SPF), are accumulated in an integration time of 536.87s . With 6,000 DM trials to perform
until the next input set is ready, the time limitation tl imit for processing each DM trial is 89.5ms
(536.87/6,000). In this 89.5ms , the main computing task is to convolve the 222 complex SPF points
with 84 templates and calculate the power of each complex output points. Each template can be seen
as an FIR filter, whose input signals, coefficients, and output points are all complex SPF points. The
output points from all 84 FIR filters plus the input signals are combined into a filter-output-plane
(FOP, 85×4-million complex points) and the spectral power of each complex point is sent to the

ACM Trans. Reconfig. Technol. Syst., Vol. ?, No. ?, Article ?. Publication date: August 2018.

FPGA-based Acceleration for Pulsar Search ?:5

Beam2

Beami

......

......

Over 2,000 beams
are formed at 4,096

channels/beam

Beami signals are
de-dispersed for 6,000 DMs

FIR_1

FIR_k
... ...

FIR_85

Post-
processing

PSS Engine_i

FT Convolution Module

BeamN

DM1DM1

DM2...

DMj

DM6000

...

85 FIR filters, maximum length is 421-tap

Pre-
Processing

.RFIM
 .DDTR
.PSBC
.CXFT
.BRDZ
.DRED

· Single Pulse Search Modules
· Time Domain Acceleration or

Harmonic-
sum

Module

FDAS Module

Fig. 1. Data flow of SKA1-MID CSP PSS engine

harmonic-summing module for candidate detection. The process that described above is illustrated
Figure 1. In these 84 FIR filters, the lengths of them are different, and the longest FIR filter has 421
taps. In case of the uncertainty of the FIR filter length, we investigate the implementation of 84
421-tap FIR filters in this research.

The real-time compute-intensive task of the FT convolution module described above is a large
challenge for efficient computation, which essentially makes the use of acceleration hardware
necessary. Based on the specifications of the FT convolution module, the performance needed of
the 84 FIR filters is

8NKM

tl imit
= 13.26TFLOPS,

where N = 222 is the input size, K = 421 is the length of each FIR filter, M = 84 is the number
of FIR filters, and eight is derived that one complex multiplication needs eight operations (four
multiplications and four additions).The 13.26TFLOPS per beam is based on the straightforward
implementation of 1D convolution. Since there are over 2,000 beams, the overall needed performance
for one pulsar search module is over 26.5PFLOPS . In [38], relaxation of requirements was studied
to ease the requirements, such as changes to the input data type, size, number of filters, etc. From
this early work, it was clear that very efficient implementations of the filtering task need to be
investigated. In this section and the remainder of this paper, we, therefore, investigate different
algorithms for FPGA-based acceleration of the FT convolution of the FDAS module. Based on the
processing domain of an FIR filter, this is divided into time-domain and frequency-domain.

3.1 Time-domain FIR Filter (TDFIR)
3.1.1 Naïve TDFIR. Based on the discrete-time convolution, an K−tap FIR filter can be represented
as

y[i] =
K−1∑
k=0

x[i − k]h[k], f or i = 0, 1, ...N − 1, (1)

where x[·], h[·], and y[·] are complex SPF input signals, coefficients, and output results, respectively,
and N is the input size [35]. In an FPGA implementation, the SPF multipliers are instantiated by
DSP blocks and logic resources. If there are enough resources on an FPGA, the K multiplications
and additions in (1) can be parallelised in a pipeline completely to achieve high-performance.

3.1.2 Overlap-add Algorithm based TDFIR. The amount of logic resource and DSP blocks in a
specific FPGA are fixed. If the FIR filter size K is too large, an FPGA might not have enough logic
resources and DSP blocks to paralleliseK complexmultiplications and then fails to achieve a pipeline

ACM Trans. Reconfig. Technol. Syst., Vol. ?, No. ?, Article ?. Publication date: August 2018.

?:6 H. Wang et al.

ALGORITHM 1: Overlap-add Algorithm
(x, h) ←(padded input data, coefficients)
h → h1, h2, ..., hR {split h into a group of R disjoint sub-arrays evenly}
y ← 0 {create the output y and fill it with zeros}
for i = 1 to R do

yi ←convolve(x, hi) {general convolution in time-domain}
y ← y+shift(yi) {add yi to y}

end
Output← y

structure. To make an FIR filter fit into the targeted FPGA and maintain high-performance, we
apply the overlap-add algorithm (OLA) to split the coefficient array into a group of sub-arrays [30].

Algorithm 1 and Figure 2(a) outline the OLA process of splitting an FIR filter into R small sub-FIR
filters. The coefficient array is evenly decomposed into R disjoint sub-arrays. If filter size K as
K = R × K ′, where R and K ′ are integers, K ′ − 1 zero points will be padded at the end of the input
array in the OLA algorithm. Each output array has to be shifted by K ′ points and then added to the
previous output array.

3.2 Frequency-domain FIR Filter (FDFIR)
3.2.1 Naïve FDFIR . Based on the convolution theorem, Equation (2), the output of an FIR filter can
be obtained by the following steps [35]: Fourier transform of the input array and coefficient array,
element-wise multiplication of these two arrays, and inverse Fourier transform of the output array.

x ∗ h = F −1{F {x} · F {h}}, (2)

where F {·} and F −1{·} are Fourier transform and inverse Fourier transform. For FPGA implemen-
tations, a fast Fourier transform (FFT) engine will be instantiated to handle Fourier and inverse
Fourier transform.

3.2.2 Overlap-save Algorithm based FDFIR. For Fourier transforming large size input, such as the
targeted four million points (222) FFT, the on-chip memory of an FPGA is unable to store all points,
which makes it impossible to perform the complete process as described in Section 3.2.1 in one go.
Hence, we apply the overlap-save algorithm (OLS) to split the input signals into chunks [30]. Each
chunk overlaps with its two neighbour chunks, and the extent of the overlap is K − 1, where K is
the FIR filter length. For the first input chunk, K − 1 zero points have to be padded at the beginning.
After convolving in frequency-domain, the overlap, which is the first K − 1 points of each chunk,
are discarded. The OLS algorithm in Algorithm 2 and Figure 2(b) illustrate the process of splitting
the input array of size N into S sub-arrays [30] of size N /S .

3.3 Workload Comparison
The main advantage of FDFIR is that its workload growth is slower than that of TDFIR as the FIR
filter length increases. Assuming that the input length N is several magnitudes larger than the
FIR filter length K , which means N ≫ K and N + K − 1 ≈ N . This holds for our FDAS filtering
task. Table 1 compares the workload of the four different approaches discussed in the previous
sections. In the FDFIR, the complexity of computing the FFT is O(Nloд2N). For single complex
multiplication, six general operations are needed (four multiplications and two additions), and two
additional additions for the accumulation are used for summing in case of TDFIR.
In Table 1, K ′ denotes the tap length that an FPGA can parallelise completely (also the sub-

FIR filter length in Algorithm 1), NFT is the Fourier transform length (also the chunk length in

ACM Trans. Reconfig. Technol. Syst., Vol. ?, No. ?, Article ?. Publication date: August 2018.

FPGA-based Acceleration for Pulsar Search ?:7

ALGORITHM 2: Overlap-save Algorithm
(x, h) ←(padded input data, coefficients)
x → x1, x2, ..., xS {split x into group of sub-arrays; successive sub-arrays overlap by K − 1 points}
y ← 0 {initialize output y with zeros}
F {h} ←FFT(h) {Fourier transform of coefficient array}
for i = 1 to S do

F {xi } ←FFT(xi) {Fourier transform of input sub-array xi }
F {yi } ←times(F {xi }, F {h}) {element-wise multiplication of Fourier transformed input sub-array
and coefficient array}
yi ←IFFT(F {yi }) {inverse Fourier transform}
yi ←discard_overlap (yi) {discard the front K − 1 points}
y ←shift(yi) {concatenate yi to y}

end
Output← y

Coefficients C_1 C_2 C_N. . .

Input data Zero

Length = Ncoef /N -1

Output data_i

Output data_1

Output data

Output data_N

. . .

+
Length = Ncoef /N

Split

Convolve with subset
coefficient group i

Output data_2

PD_3PD_2

Input DataZero

Length =Ncoef -1

ID_1

ID_2

ID_3

ID_N
...

ID_i PD_i

Convolution
with FIR filter

Discard the Ncoef-1 elements

Output Data

PD_1 ... PD_N

Split the
input into N
small groups

(a) OLA (b) OLS

Fig. 2. Process of the OLA and OLS algorithms

Table 1. Workload of TDFIR and FDFIR

Domain Algorithm Workload (Single filter) Average Workload (M filters)

TD Naive 8KN 8KN
OLA 8K ′N

⌈ K
K ′
⌉

8K ′N
⌈ K
K ′
⌉

FD Naive N (6 + 2C · loд2N) N (6 +C · loд2N)
OLS

⌈
N

NFT −K

⌉
NFT (6 + 2C · loд2NFT)

⌈
N

NFT −K

⌉
NFT (6 +C · loд2NFT)

Algorithm 2), and C is a constant depending on the applied FFT algorithm, which is typically less
than 5. For the FD algorithms, the one-off workload cost for the Fourier transform of the coefficient
array is not included, as it is negligible with the assumption N ≫ K . The table compares the
workload for a single filter and the average workload forM filters (M ≫ 1), which is relevant to
the FT convolution module. The essential difference is that the forward Fourier transform only
needs to be performed once for allM filters.

For the OLA-TD, if K can be divided by K ′, the workload equals to the Naïve-TD workload. For
FD algorithms, the workload of Naïve-FD is not affected by FIR filter length K , but the workload
of the OLS-FD will rise with the filter size K . When K is fixed, the smaller the NFT , the larger
the overall workload. However, if the NFT is too large, the performance might drop because of

ACM Trans. Reconfig. Technol. Syst., Vol. ?, No. ?, Article ?. Publication date: August 2018.

?:8 H. Wang et al.

the on-chip memory size and the off-chip access efficiency. Hence finding the suitable NFT for a
specific FPGA device is investigated in the evaluation section.

Based on the theoretical workload, FD algorithms have a clear advantage over TD algorithms in
implementing multiple FIR filters. The evaluation will show if this advantage can be achieved in
practice.

4 FPGA-BASED FIR FILTER STRUCTURE
In this section, we discuss the structures of the two non-naïve FIR filters introduced in Sections 3.1
and 3.2: the OLA algorithm based TDFIR, referred to as OLA-TD, and the OLS algorithm based
FDFIR, referred to as OLS-FD.

4.1 OLA-TD
To handle large size FIR filters, we investigate here the structure of OLA-TD. It is based on the
Naïve TDFIR, the input signals are loaded into a shift register, the core computation part is entirely
parallelised using DSP blocks, and the structure can achieve loop pipelining. However, each output
array of the OLA-TD is shifted and accumulated to the previous output array.
Assuming an FPGA can completely parallelise K ′ complex SPF multiplications, then the same

input array has to be executed by OLA-TD structure R times to implement a K-tap FIR filter, where
R =

⌈ K
K ′
⌉
. For the Intel Stratix V FPGAs, one complex SPF multiplication needs four DSP blocks,

so K
′ is decided by the number of DSP blocks on an FPGA. If there are NDSP DSP blocks, then

K
′

=
⌊
NDSP

4

⌋
. Because of loop pipeline, it takes R ×N clock cycles to process N points with a K-tap

FIR filter.

4.2 OLS-FD
For the OLS-FD structure, two important components are Fourier transform and inverse Fourier
transform. In our work, we employ a complex SPF radix-4 feedforward FFT/IFFT engine [19]
provided by Intel. The single FFT engine can be configured so that it provides both FFT and IFFT.
The input signals are in general order, and the output array is in bit-reversed order. The workload
(number of operations) of the employed FFT engine in processing NFT points is 5NFT loд2NFT , so
here the constant C in Table 1 is 5. It can process multiple points, referred to as NFT−PC , per clock
cycle, where NFT−PC is a power of 2 such as 4 and 8. It takes the engine NFT

NFT−PC
− 1 clock cycles to

produce NFT−PC points output for a corresponding NFT−PC points input. If the output array has
to be of general order, a bit-reverse module needs to be added after the FFT engine to reorder the
output array.
There are two factors that limit the FFT engine on a specific device: the bandwidth of off-chip

memory and the number of DSP blocks. The bandwidth of off-chip memory limits the number of
points that can be loaded and stored per clock cycle, and the amount of DSP blocks determines the
number of instantiated FFT engines. Two different OLS-FD structures are proposed differing in the
number of instantiated FFT engines: area-efficient OLS-FD (AOLS-FD) and time-efficient OLS-FD
(TOLS-FD).

4.2.1 AOLS-FD. The AOLS-FD structure, as shown in Figure 3(a), consists of three separate parts:
data fetch and multiplication, FFT/IFFT, and bit-reverse. These three parts are connected through
FIFO buffers in an FPGA. The core computation part of it is the reconfigurable FFT engine. The
multiplication performed in data fetch and multiplication part is the element-wise multiplication.
To process one input array, the AOLS-FD structure has to be executed twice. For the first time,
the input array and initial array are stored in one off-chip memory bank (Bank1) and the Fourier

ACM Trans. Reconfig. Technol. Syst., Vol. ?, No. ?, Article ?. Publication date: August 2018.

FPGA-based Acceleration for Pulsar Search ?:9

Off‐chip Memory (Bank1)
(Global memory)

Off‐chip Memory (Bank2)
(Global memory)

FIFOFFT data fetch
(NDRange)

FFT and
multiplication

 (Single work‐item)

FIFO FFT bit‐reverse
(NDRange)

FIFO

IFFT data fetch
(NDRange)

IFFT engine
(Single work‐item)

IFFT bit‐
reverse

(NDRange)
FIFO FIFO

Output

Input
Processed
coefficients

Off‐chip Memory
(Global memory)
1st launch: Bank1
2nd launch: Bank2

FIFO
Data fetch and
multiplication
(NDRange)

FFT/IFFT engine
(Single work‐item)
1st launch FFT
2nd launch IFFT

FIFO Bit‐reverse
(NDRange)

Off‐chip Memory
(Global memory)
1st launch: Bank2
2nd launch: Bank1

(a)

(b)

8xChannels

8xChannels

8xChannels

8xChannels

8
xC

h
an

n
e
ls

Switch

Input

Processed
coefficients

Output

8xChannels 8xChannels

1st launch

2nd launch

1st launch

2nd launch

Fig. 3. Structures of (a) AOLS-FD and (b) TOLS-FD

transformed coefficient array is stored in another memory bank (Bank2). The initial array is an
array that is initialized with neutral elements (1 + j · 0) so that the multiplication does not affect in
the first round. After the first execution, the intermediate data generated by the bit-reverse kernel
are stored in Bank2. In the second round, the FFT engine is configured as IFFT. The data fetch and
multiplication part loads intermediate output array and pre-processed coefficient array from Bank2
and the bit-reversed kernel stores the final output array in Bank1. The first round is only necessary
once for multiple filters, hence becomes less important with growingM , which are discussed in
Section 5.2.3.

4.2.2 TOLS-FD. The TOLS-FD structure, Figure 3(b), is based on the AOLS-FD structure, however,
it only needs to be executed once. TOLS-FD contains two FFT engines, one for FFT and another
for IFFT. In this case, there is no need to store the intermediate results in off-chip memory, which
reduces the frequency of memory usage. Different from the AOLS-FD structure, the element-
wise multiplication is put after FFT engine and before bit-reverse, so the pre-processed Fourier
transformed coefficient array needs to be in bit-reversed order. The input array and pre-processed
coefficient array are stored in Bank1 and the output array is stored in Bank2.

4.3 Optimisation for FT Convolution Module
The resource usage of the acceleration device plays an important role when multiple FIR filters
need to be processed as it is meaningful in parallelising the design. The off-chip memory bandwidth
and the amount of DSP blocks NDSP are two factors that affect the proposed structures.

In this paper, we employ the Terasic DE5-Net acceleration card as the target acceleration device,
and the detailed analysis is based on it. A DE5 card has one Intel Stratix V 5SGXA7 FPGA, referred

ACM Trans. Reconfig. Technol. Syst., Vol. ?, No. ?, Article ?. Publication date: August 2018.

?:10 H. Wang et al.

to as A7. The A7 FPGA possesses 256 DSP blocks, which means 256 SPF or 64 complex SPF
multiplications can be performed in parallel. The DE5 card has two DDR3 memory banks (Bank1
and Bank2) and each bank is connected with A7 FPGA through a 64-bit data bus. The maximum
frequency of DDR3 SDRAM supported by the DE5 card is 1, 066MHz, thus the theoretical peak
data transfer rate for one memory bank is 64 × 2 × 1, 066 × 106 = 136Gbps (2 for double data rate).

For the TDFIR, NDSP
4 , which is 64, is smaller than the FIR filter length K , which is 421, so only one

input signal can be processed per clock cycle using the OLA-TD method. During processing, one
input signal is loaded, and one result point is stored in one clock cycle, which needs 128 bits/cycle
in total. Based on the theoretical transfer rate, the off-chip memory will become the barrier only
when the FPGA operation frequency is higher than 1GHz, which is impossible for Stratix V FPGAs.

Regarding the FDFIR, the segment length NFT and NFT−PC are two important parameters that
influence both TOLS-FD and AOLS-FD structures. Let us look at the DSP block usage of TOLS-NFT
and AOLS-NFT using 8 points FFT engine on an A7 FPGA as depicted in Figure 4. The DSP cost of
the FFT engine is decided by NFT and NFT−PC , and the cost of element-wise multiplication part is
decided by NFT−PC only. We see a symbolic representation of the DSP block consumption of the
different settings, distinguished by the components of the structures as FFT engine, element-wise
multiplication, etc.
For an 8-point 1,024 FFT engine, it has 96 multiplications that cost 96 DSP blocks. In Figure 4,

TOLS-1024 consumes 224 (96 × 2 + 32, which costs 88% of overall DSP blocks) DSP blocks and such
an implementation takes a large amount of off-chip memory bandwidth, which is 1,024 bits/cycle
(8 points×64-bit×2). AOLS-1024 only consumes 128 (50%) DSP blocks, and therefore it is possible
to parallelise two AOLS-1024 structures on one A7 FPGA. However, this increases the required
off-chip memory bandwidth to 1,536 bits/cycle (8 points×64-bit×3). Since the theoretical peak data
transfer is fixed, the increase of the required off-chip memory bandwidth leads to the decrease of
FPGA operation frequency. Due to that, the performance of two AOLS-1024 (2 x AOLS-1024 using
8 points FFT engine) might not be 2x times faster than that of a single AOLS-1024 on an A7 FPGA.

In the FT convolution module, only the spectral power values of the FIR filter (i.e., one SPF) are
required, which essentially halves the output bandwidth requirement. Calculating the power of
each complex value requires simple floating-point multiplications (the square root is not necessary
for this processing) which consume some more DSPs.

We name AOLS-NFT -P to represent the AOLS-NFT based structure while calculating the power
of complex value. By calculating the power, the required bandwidth of 8-point FFT engine based
structure is reduced from 1, 024 bits/cycle to 768 bits/cycle. Although it is possible for an A7 FPGA
to parallelise two AOLS-1024 structures, there are no more DSP blocks to calculate the power of
complex value. This is indicated by the overrun on the red dot part in Figure 4. The numbers of
DSP blocks used for implementing element-wise multiplication and power calculation are decided
by the number of processed points per clock cycle NFT−PC of the FFT engine.

To best exploit the resources on the FPGA, we reduce the points that are simultaneously processed
by the FFT engine NFT−PC from eight to four, and the resources usage of such kernels is illustrated
in the bottom half of Figure 4. It can be seen that up to three AOLS-1024-P or AOLS-2048-P
structures can be instantiated in parallel on an A7 FPGA. By employing the 4-point FFT engine, the
simultaneously processed points increased from 8 (a single 8-point FFT engine) to 12 (3×4-point FFT
engines). The required off-chip memory bandwidth for 4-point FFT engine based 3x AOLS-NFT -P
structure is reduced from 1,024 bits/cycle (AOLS-NFT using 8-point FFT engine and without the
power computation) to 640 bits/cycle (4 points×64-bit+4 points×32-bit×3).

ACM Trans. Reconfig. Technol. Syst., Vol. ?, No. ?, Article ?. Publication date: August 2018.

FPGA-based Acceleration for Pulsar Search ?:11

TOLS-1024 8points

2 x AOLS-1024 8points

2 x AOLS-1024-P 8points

AOLS-1024-P 8points

AOLS-1024 8points

AOLS-1024-P 4points

AOLS-2048-P 4points

3 x AOLS-2048-P 4points

3 x AOLS-1024-P 4points

FFT Engine Element-wise multiplications PowerUnused DSP blocks

Fig. 4. DSP blocks usage of OLS-FD structures

5 HIGH-LEVEL APPROACHES AND IMPLEMENTATION
For the implementation of the various FIR filtering algorithms, we have selected the high-level
approach of using OpenCL. It is employed for multiple purposes, which are as follows:
• It allows for fast prototyping of the proposed implementations and to systematically explore
a large design space while achieving high-performance computing;
• It provides portability to other platforms (i.e., CPUs and GPUs) and between generations of
the same devices (e.g., Stratix V and Arria 10);
• It makes the developed implementation accessible to non-hardware-design experts which is
essential in such a large cross-discipline project as the SKA.

5.1 OpenCL for FPGA
The open computing language (OpenCL) is based on standard ANSI C (C99) and can be executed on
heterogeneous platforms. The OpenCL platform consists of two components: host and devices [20].
In our research, one FPGA board can be seen as a compute device, and multiple acceleration cards
can be installed to the host processor. OpenCL uses the concept of two types of memory, local (fast)
memory and global (slower) memory. The off-chip memory of the FPGA board such as SDRAM and
QDRII SRAM is instantiated as the global memory of OpenCL kernels and FPGA on-chip memory
such as BRAM is used as the local memory of OpenCL kernels.

Developing for FPGA(s) using OpenCLmainly contains two parts: OpenCL kernels for the devices
and software programs for the host. To compile the FPGA-targeted OpenCL kernels, a dedicated
compiler is required. In our research, the Altera SDK for OpenCL (AOCL) is employed, and the AOCL
offline compiler (AOC) is used. The current AOCL conforms to OpenCL specification version 1.0 and
some functions of versions 1.2 and 2.0, such as clGetKernelArgInfo and pipe [23]. Furthermore,
the AOCL has optimization techniques for FPGAs, including unrolling for loops, using channels
to connect different kernels, and optimizing floating-point operations. The FPGA-based OpenCL

ACM Trans. Reconfig. Technol. Syst., Vol. ?, No. ?, Article ?. Publication date: August 2018.

?:12 H. Wang et al.

kernels can be distinguished into two types: single work-item kernels, which are recommended by
Altera [22], and NDRange kernel, where several work-items are processed together.

The host programs, which is written in C or C++, are responsible for the management and the
remaining work, such as organizing data between the host processor and device(s), setting the
arguments of OpenCL kernels, and launching kernels. In practical execution, before launching
OpenCL kernels, related data arrays are transferred from the host processor to the global memory
of the FPGA board through the PCI Express (PCIe) bus [12]. Multiple devices can be connected to
the host through the PCIe bus. When an OpenCL kernel is launched, it loads data into the global
memory of the FPGA device. Depending on the kernel’s function, part of the data or intermediate
results might be stored in local memory. After executing, the output array that is stored in the
global memory is sent back to the host processor.

5.2 FIR Filter Kernel
Based on the discussed structures in Section 4, we investigate the implementations of these using
OpenCL kernels.

5.2.1 OLA-TD. The OLA-TD kernel can be implemented as both the single work-item kernel or
NDRange kernel, and the difference between these two kernel types are investigated in this paper.
The kernel codes are given in Figure 5, where we set K ′ = 64 (SFL). The core computation part
can be completely unrolled by adding #pragma unroll. For the NDRange kernel, the global work
size that is defined in the host program is the length of input signals, and the work-group size is
specified in the device kernel (__attriute__((reqd_work_group_size(SFL, 1, 1)))), i.e., here
64 (SFL) in one dimension.
Although the NDRange kernel executes the same amount of complex SPF multiplication per

clock cycle as the single work-item kernel, their structures are different. For the NDRange OLA-TD
kernel, 64 work-items compose one work-group. By using the OpenCL barrier (barrier()), all
the related input of one work-group have to be loaded before executing the core computation part.
The FPGA executes all work-groups sequentially, and for each work-group, one work item will be
executed every clock cycle.

5.2.2 OLS-FD. Based on the structures of AOLS-FD and TOLS-FD in Figure 3, they can be im-
plemented using OpenCL kernels directly. Each function block is a kernel, and different function
kernels are connected with the channels. The data fetch and multiplication kernel and bit-reverse
kernel are simple that can be implemented using NDRange kernel. For the FFT engine, the single
work-item kernel type is employed. To execute the same amount of input signals, AOLS-NFT kernel
needs to be launched twice, and TOLS-NFT kernel only needs to be launched once.
Though the pipeline of TOLS-NFT has more stages than AOLS-NFT , they take about the same

amount of clock cycles in one launch when N ≫ NFT , which is
⌈

N
NFT −K

⌉
× N

NFT−PC
. Since the

TOLS-FD structure contains two FFT engines and they can work simultaneously, it needs fewer
clock cycles than AOLS-FD in processing the same input signals. For example, if the FFT engine is
set to process 8 points per clock and the operation frequency of the FPGA is a constant, then the
time costs of using AOLS-FD and TOLS-FD to handle, say, 3 NFT segment arrays are illustrated in
Figure 6. Although TOLS-FD structure costs fewer clock cycles, the latency in practice might not
be noticeable, since the operation frequency of AOLS and TOLS are not the same.

5.2.3 Multiple FIR Filters. The studied acceleration task for the FT convolution module is to
implement multiple FIR filters, rather than a single FIR filter. We discussed the implementation
of multiple FIR filters as the proposed structures in Section 4.1 and 4.2. Launching an OpenCL
kernel on an FPGA (i.e., the kernel has already been synthesized by AOCL, and the FPGA has been

ACM Trans. Reconfig. Technol. Syst., Vol. ?, No. ?, Article ?. Publication date: August 2018.

FPGA-based Acceleration for Pulsar Search ?:13

#define SFL 64 / / Sub− F l i t e r Leng th

_ _ a t t r i b u t e _ _ ((t a s k))
__kernel void OLA−64S (
__global f l o a t ∗ r e s t r i c t d a t aP t r , / / I n p u t
__global f l o a t ∗ r e s t r i c t f i l t e r P t r , / / C o e f f i c i e n t s
__global f l o a t ∗ r e s t r i c t r e s u l t P t r , / / Output
const int o f f s e t , / / 1 t o num_chunks
const int num_chunks ,
const int t o t a l I n p u t L e n g t h) {

f l o a t i _ r e [SFL] ;
f l o a t i _ im [SFL] ;
in t i l e n , k ;

#pragma un r o l l
for (k =0 ; k < SFL ; k ++) {

c o e f _ r e a l [k] = f i l t e r P t r [2 ∗ (SFL ∗ (o f f s e t −1)+k)] ;
coe f_ imag [k] = f i l t e r P t r [2 ∗ (SFL ∗ (o f f s e t −1)+k) + 1] ;

}

/ / Main l o o p t o p r o c e s s i n p u t s i g n a l s
for (i l e n = 0 ; i l e n < t o t a l I n p u t L e n g t h ; i l e n ++) {

f l o a t r _ r e = r e s u l t P t r [2 ∗ (i l e n + o f f s e t ∗ SFL)] ;
f l o a t r_im = r e s u l t P t r [2 ∗ (i l e n + o f f s e t ∗ SFL) + 1] ;

#pragma un r o l l
for (k =0 ; k < SFL −1; k ++) {

i _ r e [k] = i _ r e [k + 1] ;
i_ im [k] = i_ im [k + 1] ;

}
/ / S h i f t i n 1 complex da ta p o i n t t o p r o c e s s
i _ r e [SFL−1] = d a t a P t r [2 ∗ i l e n] ;
i_ im [SFL−1] = d a t a P t r [2 ∗ i l e n + 1] ;

/ / u n r o l l c o r e c ompu t a t i o n p a r t o f OLA−TD
#pragma un r o l l

for (k=SFL −1; k >=0; k−−){
r _ r e += i _ r e [k] ∗ c o e f _ r e a l [SFL−1−k]

− i _ im [k] ∗ coe f_ imag [SFL−1−k] ;
r_im += i _ r e [k] ∗ coe f_ imag [SFL−1−k]

+ i_ im [k] ∗ c o e f _ r e a l [SFL−1−k] ;
}
r e s u l t P t r [2 ∗ (i l e n + o f f s e t ∗ SFL)] = r _ r e ;
r e s u l t P t r [2 ∗ (i l e n + o f f s e t ∗ SFL) + 1] = r_im ;

}
}

#define SFL 64 / / Sub− F l i t e r Leng th

_ _ a t t r i b u t e _ _ ((r eqd_work_group_s i ze (SFL , 1 , 1)))
__kernel void OLA−64N(
__global f l o a t ∗ r e s t r i c t d a t aP t r , / / I n p u t
__global f l o a t ∗ r e s t r i c t f i l t e r P t r , / / C o e f f i c i e n t s
__global f l o a t ∗ r e s t r i c t r e s u l t P t r , / / Output
const int o f f s e t , / / 1 t o num_chunks
const int num_chunks) {

unsigned int i _ g = g e t _ g l o b a l _ i d (0) ;
unsigned int i _ l = g e t _ l o c a l _ i d (0) ;
unsigned int l o a d _ i = i _g + (o f f s e t − 1) ∗ SFL ;

/ / Load i n pu t t o l o c a l memory (on−c h i p)
__ loca l f l oa t i _ r e [SFL ∗ 2] ;
__ loca l f l oa t i _ im [SFL ∗ 2] ;
i _ r e [i _ l] = d a t a P t r [2 ∗ l o a d _ i] ;
i _ im [i _ l] = d a t a P t r [2 ∗ l o a d _ i + 1] ;
i _ r e [i _ l +SFL] = d a t a P t r [2 ∗ (l o a d _ i +SFL)] ;
i_ im [i _ l +SFL] = d a t a P t r [2 ∗ (l o a d _ i +SFL) + 1] ;

/ / To make s u r e t h e l o c a l memory i s l o a d e d p r o p e r l y
b a r r i e r (CLK_LOCAL_MEM_FENCE) ;

/ / Load t h e r e s u l t s g e n e r a t e d du r i n g l a s t l aunch
f l o a t r _ r e = r e s u l t P t r [2 ∗ i _ g] ;
f l o a t r_im = r e s u l t P t r [2 ∗ i _ g + 1] ;
unsigned int t ap = (num_chunks − o f f s e t) ∗ SFL − 1 ;

#pragma un r o l l
for (unsigned int i l e n = 0 ; i l e n <SFL ; i l e n ++) {
l o a d _ i = i _ l + i l e n ;

r _ r e += i _ r e [l o a d _ i] ∗ f i l t e r P t r [2 ∗ (tap− i l e n)]
− i _ im [l o a d _ i] ∗ f i l t e r P t r [2 ∗ (tap− i l e n) + 1] ;

r_im += i _ r e [l o a d _ i] ∗ f i l t e r P t r [2 ∗ (tap− i l e n) + 1]
+ i_ im [l o a d _ i] ∗ f i l t e r P t r [2 ∗ (tap− i l e n)] ;

}

/ / Save t h e o u t pu t
r e s u l t P t r [2 ∗ i _ g] = r _ r e ;
r e s u l t P t r [2 ∗ i _ g + 1] = r_im ;
} ;

Fig. 5. OpenCL code (using Single work-item(Left) and NDRange(Right)) of OLA-TD kernel

Table 2. Kernel Launch Times in Implementing Single Filter and Multiple Filters

Kernels TD FD
Naïve OLA Naïve AOLS TOLS

Single filter R R 2 2 1
M filters RM RM M + 1 M + 1 M

configured correspondingly) induces a certain time overhead in the order of milliseconds. The
numbers of kernel launches in implementing a single and multiple FIR filters are given in Table 2.
For TDFIR kernels, each launch takes about N clock cycles. For OLS-FD kernels, each launch

takes about
⌈

N
NFT −K

⌉
×

NFT
NFT−PC

clock cycles. Different from the OLA-TD kernel, the overlap-add
operations of the Naïve-TD kernel need to be handled in software by the host program. For the

ACM Trans. Reconfig. Technol. Syst., Vol. ?, No. ?, Article ?. Publication date: August 2018.

?:14 H. Wang et al.

SG_1

Element-wise
multiplication

IFFT Engine

0

Time

SG_1

Global Memory

SG_1

SG_2

SG_2

SG_2SG_1

(a)

SG_1FFT Engine

Element-wise
multiplication

IFFT Engine

0

Time
NFT/8-1

Global Memory

NFT/4-1 3NFT/8-2

SG_1

SG_2

SG_2

SG_2SG_1

SG_2SG_1

(b)

SG_3

SG_3

SG_3

SG_3

SG_2 SG_3

SG_3

SG_3

SG_3

3NFT/4-25NFT/8-1

SG_1

SG_1

SG_2

SG_2

SG_3

SG_3

Element-wise
multiplication

FFT Engine

Global Memory

Launching
overhead

Fig. 6. Time cost of (a)AOLS-FD and (b)TOLS-FD

OLA-TD kernel, its performance is restricted by the number of parallelised complex SPF multipliers,
which is decided by the available number of DSP blocks, and, to a lesser extent, by the available
amount of the logic resources. To process the same input array withM FIR filters, the kernel needs
to be launched RM times, which isM times implementing single FIR filter. Similar to the OLA-TD
kernel, the available logic resources and DSP blocks might be a problem for the performance of the
TOLS-FD kernel. In implementingM FIR filters, the TOLS-FD kernel has to be launchedM times.
However, the same input array is Fourier transformedM times as well.

Regarding the Naive-FD kernel, it executes the 4-million points Fourier transform and element-
wise multiplication during each launch. The 4-million FFT engine, which is provided by Intel, is
based on the general FFT engine and the 4-million points are treated as a 211 × 211 matrix. The
engine executes the 2K FFT on all rows and reorders the output matrix, followed by another 2K
FFT on all rows to generate the Fourier transformed matrix. Different from OLA-TD and TOLS-FD
kernels, the Navie-FD kernel is a generic kernel that can be configured as FFT or IFFT engine. To
implementM FIR filters, the input array only needs to be Fourier transformed once, and the kernel
needs to be launchedM +1 times instead of 2M times. The AOLS-FD kernel has the same advantage
as Naive-FD, and it needs to be launchedM + 1 times forM FIR filters as well. As the number of
FIR filters M increases, the average launching times (M+1M) of each FIR filter using Naive-FD or
AOLS-FD will be halved.

5.3 Kernel Portability
OpenCL is designed for developing codes for different target platforms, however, directly using
FPGA-based FIR kernels on other platforms, such as GPUs, might not achieve high-performance

ACM Trans. Reconfig. Technol. Syst., Vol. ?, No. ?, Article ?. Publication date: August 2018.

FPGA-based Acceleration for Pulsar Search ?:15

computing. While there is general portability regarding functionality, performance portability of
FPGA-based FIR filter kernels is affected by three main factors.

5.3.1 Single work-item vs. NDRange. The single work-item Naïve-TD and OLA-TD kernels include
several optimization techniques specific to the FPGA architecture, such as unrolling of for loops
and shift registers. For GPU-based implementation, the single work-item kernel will be executed
sequentially, which is similar to a general CPU based implementation. For example, the performance
of single work-item Naïve kernel in [38] (removing FPGA-based optimization code and commands)
on a mid-range AMD GPU is only 0.026GFLOPS , which is hundreds of times slower than that of
on mid-range FPGA. Regarding the NDRange-based Naïve-TD and OLA-TD (Figure 5) kernels,
although the for loop cannot be unrolled by GPU, it can still achieve high-performance because
hundreds to thousands of processing elements in the GPU can work in parallel.

5.3.2 Channel and Pipe. The AOCL channels are used to connect different kernels in OLS-FD
kernels. Compared with OpenCL pipes, the channel is relatively simple to use, since it is unnecessary
to enable the usage of channels in the host program. For porting to other platforms, it is better to use
the OpenCL pipe construct, since it conforms to the OpenCL standard. However, the frequency of
channel-based kernels is higher than that of pipe-based kernels on FPGA devices. Take the TOLS-FD
kernel as an example, it has two FFT engines and all function modules can be connected using Intel
channels or OpenCL pipes. When the NFT is set as 2048, the channel-based kernel frequency is 1.1
times higher than pipe-based kernels. In our work, the connections between different kernels are
all channels.

5.3.3 OpenCL Library. The employed FFT engine is dedicated for FPGAs since it contains several
FPGA-based optimization techniques and is implemented as a single work-item kernel. When the
employed FPGA-based FFT engine code is used on GPU or CPU platforms, the performance will
be hundreds of times slower as well. The alternative solution for GPU and CPU platforms is to
use the OpenCL based FFT library called clFFT. Even though the current AOCL supports OpenCL
library technique [23], the clFFT still cannot be used in FPGAs, mainly because it uses features
from OpenCL 1.2, which are not yet supported by AOCL.

6 EVALUATION
In this section, we evaluate the proposed FIR filter designs and their implementations with OpenCL.
We do this on two different, but comparable types of mid-range acceleration devices, namely FPGA
and GPU. Our objective is to determine which of the designs achieves the best performance and
lowest power/energy consumption on FPGAs and put that into relation to a comparable GPU.

6.1 Experimental Setup
The essential characteristics of the employed FPGA and GPU platforms, both PCIe boards, are
given in Table 3. For better comparability, the process technology of the Intel Stratix V 5SGXA7
FPGA and AMD Radeon R7 370 GPU, referred to as R7, were chosen to be the same, which is 28nm.

For the official provided board support package (BSP) of the DE5 card, the maximum frequency of
DDR3 SDRAM is 800MHz that makes the theoretical peak data transfer rate down to 64× 2× 800 =
102Gbps . When the OpenCL kernel frequency fmax is smaller than 200MHz, the maximum data
transfer rate is affected by fmax , and the maximum bandwidth is 64 × 2 × 4 × fmax = 512fmax ,
where factor 4 is the quarter rate, the largest rate supported by the FPGA soft memory controller.

The clock frequency of an A7 FPGA-based OpenCL kernel is decided by many factors, and
generally around 150 − 300MHz, while the clock of an R7 GPU goes up to 985MHz. It can be seen
that the R7 GPUs have several advantages over A7 FPGAs in operation frequency, global memory

ACM Trans. Reconfig. Technol. Syst., Vol. ?, No. ?, Article ?. Publication date: August 2018.

?:16 H. Wang et al.

Table 3. Details of FPGA and GPU platforms

Device (Board) Terasic DE5-Net Sapphire Nitro R7 370
Hardware Intel Stratix V 5SGXA7 AMD Radeon R7 370
Technology 28nm 28nm

Compute resource 622,000 LEs 1024 Stream Processors256 DSP blocks
On-chip memory size 50Mb —
Global memory size 2 x 2GB DDR3 4GB GDDR5

Global memory frequency 800MHz 5, 600MHz
Memory interface width 2 x 64-bit 256-bit
Max clock frequency — 985MHz

OpenCL 1.0 1.2
Max power consumption — 150W

Table 4. Resource usage of FPGA-based FIR filter kernels

Kernels Logic DSP RAM fmax Theoretical latency rRMSE
(MHz) (ms) (×10−7)

TD

TD-Naive-64S 49% 100% 15% 254.77 115.24 0.695
TD-Naive-64N 51% 100% 18% 270.05 108.72 0.699

OLA-64S 50% 100% 16% 236.01 124.40 1.94
OLA-64N 51% 100% 20% 255.29 115.01 1.77

FD

FD-Naïve 59% 87% 90% 183.55 – 2.89
AOLS-1024 52% 50% 46% 222.17 7.98 1.69
AOLS-2048 54% 59% 88% 205.59 6.41 1.78
AOLS-4096 59% 60% 72% 173.97 6.72 1.86
TOLS-1024 83% 88% 77% 168.26 5.27 3.26

frequency, and global memory bandwidth. For the FIR filter kernel, the global memory bandwidth
is not a barrier, however, the operating frequency plays an important role for both FPGA and GPU.

In our evaluation, both FPGA and GPU devices are connected with the host through 8 lanes (x8)
PCIe bus (Gen2.0, 4GB/s) and the operating system of the host is Ubuntu 14.04LTS. In terms of
the compiler, the FPGA-based kernels are compiled by AOCL version 15.0.0.145, and GPU-based
kernels are using AMD APP SDK version 3.0 [2, 3].
Regarding the measurement made in this research, we measure the execution latency from

starting the FT convolution module in the host program until the acceleration devices finish
processing the input points. Having that said, input and output points transfer to and from the host
processor is not included in the measurements as the filtering task is a part of the signal processing
pipeline of the FDAS module, and it is assumed that previous and subsequent modules are also
executed on the acceleration device. Note that, the DE5 card and the graphics card that employed
in this paper are not the final devices for SKA1 CSP PSS deployment. Regarding the proposed
structures, when the optimised approach is specified, it will be implemented using HDLs.

ACM Trans. Reconfig. Technol. Syst., Vol. ?, No. ?, Article ?. Publication date: August 2018.

FPGA-based Acceleration for Pulsar Search ?:17

6.2 FPGA Resource Usage
Before evaluating the execution latency and the energy dissipation that are discussed in the next
section, we focus on the FPGA resource consumption and the correctness. Table 4 lists the resource
usage, maximum kernel frequency, and the theoretical latency of all proposed FIR filter kernels.
The latency is calculated based on processing 222 complex SPF points using a single 421-tap FIR
filter. To confirm the correctness of the SPF outputs, we calculate the relative Root Mean Square
Error (rRMSE) of the FPGA output points in comparison to the Matlab results, whose data type
is double precision floating-point. For the TDFIR kernels, the ’S’ and ’N’ after the parallelisation
factor 64 represent the Single work-item kernel and NDRange kernel types. For all FDFIR kernels
in Table 4, the FFT engine processes 8 points per clock cycle.
For the theoretical latencies, they are calculated based on the required clock cycle (based on

the values in Table 1 and Table 2) and kernel frequency fmax (in Table 4). The kernel launching
overhead is unpredictable and it is not included in the theoretical latencies. Due to the substantial
difference in the approaches, the performances regarding GFLOPS values of the TDFIR kernels
are not comparable with those of the FDFIR kernels. For OLS-FD kernels, part of the points from
each NFT Fourier transformed values have to be discarded (due to the overlap). Hence, the real
performance of these kernels is higher than the valid performance. Take AOLS-1024 as an example,
over 40% of each 1,024 Fourier transformed points are discarded, which means the real performance
is up to 1.6x times higher than the valid performance in Table 4.
All TDFIR kernels are configured to the maximum size as they use 100% of the available DSP

blocks, which is the same as theoretical analysis. For FDFIR kernels, the DSP blocks usage does
not reach 100%, and the resource usage is balanced. The real DSP blocks usage of AOLS-NFT
and TOLS-NFT is the same as discussed in Section 4.3. As one can expect the TOLS variant uses
significantly more resources than the comparable (ALOS-1024) variant, where the DSP usage is
about 1.75x times higher.

It can be seen that the theoretical latency of Naïve-64N is the best among TDFIR kernels, however,
it can only execute one FIR filter that is up to 64 taps long. Positive is that the flexible OLA-64N
filter has very similar theoretical latency. In terms of the FDFIR kernel, TOLS-1024 performs better
than other FDFIR kernels, and AOLS-2048 performs better than other AOLS-FD with different
NFT . However, the advantage of kernel TOLS-1024 over AOLS-FD kernels might disappear when
implementing multiple FIR filters (see Section 5.2.3).

Regarding the kernels that calculate the power of complex value, we implemented six different
combinations of AOLS-NFT -P kernels employing a 4-point FFT engine. The details of resource
usage, maximum frequency, and theoretical latency are provided in Table 5, where the theoretical
latency is the average latency for a single FIR filter. Based on the theoretical latency, kernel AOLS-
2048-P performs better than all kernels in Table 4, when the kernel is replicated three times. For all
configurations, where the structure is replicated three times, the DSP block usages are over 80%,
and especially for 3xAOLS-4096-P, most resources on an A7 FPGA reach exhaustion. Because of
the high percentage of resource usage, the achieved kernel frequency is lower than other kernels.

6.3 Performance Comparison
In this section, we now evaluate and compare the execution time or latency of processing the
entire input completely. While we provide performance values regarding GFLOPS for the TDFIR
implementations, comparing this value between TDFIR and FDFIR kernels would be misleading,
as the algorithms and necessary computations are significantly different, not incurring the same
number of operations to perform the filtering.

ACM Trans. Reconfig. Technol. Syst., Vol. ?, No. ?, Article ?. Publication date: August 2018.

?:18 H. Wang et al.

Table 5. Resource usage of power calculation kernels

Kernels Number Logic DSP RAM fmax Theoretical latency
utilization blocks blocks (MHz) (ms)

AOLS-1024-P 2 54% 57% 37% 216.35 4.12
AOLS-1024-P 3 71% 85% 54% 214.27 2.77
AOLS-2048-P 2 58% 66% 59% 220.21 3.00
AOLS-2048-P 3 68% 98% 81% 205.68 2.14
AOLS-4096-P 2 59% 66% 92% 182.68 4.56
AOLS-4096-P 3 72% 99% 88% 177.24 3.13

Note: P represents that output is power of complex numbers.

6.3.1 TDFIR vs FDFIR. The execution latencies of all nine kernels in Table 4 are plotted in Figure 7
over different filter lengths. All these kernels are launched to process 4 million complex SPF numbers
using 64, 128, 256, and 421-tap FIR filters, respectively. It can be seen that TOLS-1024 is the fastest
of all nine kernels and AOLS-2048 is the second when implementing a 421-tap FIR filter. For TDFIR
kernels, additional operations are needed to accumulate the results by the host when using kernel
Naïve-64S and kernel Naïve-64N to implement an FIR filter larger than 64 taps. With this in mind,
kernel OLA-64N is the best of 4 TDFIR kernels in implementing large FIR filter. The FIR filter length
does not affect the performance of FDFIR kernels too much, while the latencies of all TDFIR kernels
are raised steadily as the filter size increases. In implementing a single 421-tap FIR filter, all FDFIR
kernels perform better than the TDFIR kernels, so we focus on FDFIR-based kernels now.
When comparing the real results with the theoretical latencies in Table 4, the real results of

NDRange-based TDFIR kernels is about the same as the theoretical latencies (1.01x times slower).
Regarding the OLS-FD kernels, the actual results are over 1.3x times slower than the theoretical
latencies. The main reason is that the kernel launching overhead is of the same order of magnitude
with the execution latency. AOLS-2048 performs better than AOLS-1024 because the proportion of
invalid points per NFT points of AOLS-2048 is smaller than that of AOLS-1024. For both AOLS-2048
and AOLS-1024, the points can be streamed between the off-chip memory and the FPGA. Regarding
AOLS-4096, it performs worse than AOLS-2048 and much worse than the estimated latency. The
distances between addresses of necessary points to Fourier transfer 4096 points are too large, which
makes AOLS-4096 fails to achieve the streaming mode.

6.3.2 FDFIR with Spectral Power Calculation. All kernels in Table 5 are evaluated and compared
with two pure FDFIR kernels (TOLS-1024 and AOLS-2048 as of Figure 7). All these kernels are
employed to implement 84 different 421-tap FIR filters, and the range of input array size is from
218 to 222. The average execution latency of one 421-tap FIR filter is plotted in Figure 8. It can be
seen that kernel AOLS-2048 performs better than kernel TOLS-1024 in implementing multiple
FIR filters, which stems largely from the fact that the forward FFT only needs to be executed
once with AOLS-2048. The average latencies of four kernel configurations with appended power
calculation are smaller than that of pure AOLS-2048, namely 3xAOLS-1024-P, 2xAOLS-2048-P,
3xAOLS-2048-P, and 2xAOLS-4096-P. All these four kernels not only process additional operations
(calculate the power of each complex value) but also perform better than all generic FIR kernels in
implementing multiple FIR filters. Kernel 3xAOLS-2048-P performs best among these eight kernels,
and the average latency of processing 222 points is 2.98ms , which is the same as predicted in Table 5.
In total, it takes over 250ms to apply 84 FIR filters.

ACM Trans. Reconfig. Technol. Syst., Vol. ?, No. ?, Article ?. Publication date: August 2018.

FPGA-based Acceleration for Pulsar Search ?:19

●

●

●

●

64 128 256 421

0

50

100

150

200

250

FIR Filter Length

K
er

ne
l E

xe
cu

tio
n

La
te

nc
y

(m
s)

● TD−Naïve−64S
TD−Naïve−64N
OLA−64S
OLA−64N
FD−Naïve
AOLS−1024
AOLS−2048
AOLS−4096
TOLS−1024

Fig. 7. Kernel execution latencies of FPGA-based FIR filter kernels

●

●

●

●

●

262144 524288 1048576 2097152 4194304

1

2

3

4

5

6

7

Input Length

A
ve

ra
ge

 E
xe

cu
tio

n
La

te
nc

y
(m

s)

● 2xAOLS−1024−P
3xAOLS−1024−P
2xAOLS−2048−P
3xAOLS−2048−P
2xAOLS−4096−P
3xAOLS−4096−P
AOLS−2048
TOLS−1024

Fig. 8. Average execution latencies of two FDFIR kernels and six (multiple) kernels with appended power
calculation

6.3.3 Multiple FPGAs. While intensively exploiting the FPGA resources and memory bandwidth,
250ms is still significantly larger than the time limit of the FT convolution module which is under
100ms . Thus we investigate using multiple FPGA devices to reduce the latency. Up to three FPGA
devices (DE5-Net boards) are used in our work, and the latency and performance are plotted in
Figure 9. We compare the three kernels with three instances each from the previous experiment,
i.e., 3xAOLS-1024-P, 3xAOLS-2048-P, 3xAOLS-4096-P varying the number of FPGAs (boards) used
in one single host system. As in the single FPGA case, 3xAOLS-2048-P performs better than the
other two kernels on multiple FPGA devices. Using three FPGA devices, kernel 3xAOLS-2048-P
can apply 84 FIR filters in 120ms , and the effective performance is around 350GFLOPS .

ACM Trans. Reconfig. Technol. Syst., Vol. ?, No. ?, Article ?. Publication date: August 2018.

?:20 H. Wang et al.

0

200

400

600

3xAOLS−1024−P

3xAOLS−2048−P

3xAOLS−4096−P

OpenCL Kernels

la
te

nc
y

of
 8

4
F

IR
 F

ilt
er

s
(m

s)

Device
1 FPGA

2 FPGAs

3 FPGAs

0

100

200

300

3xAOLS−1024−P

3xAOLS−2048−P

3xAOLS−4096−P

OpenCL Kernels
K

er
ne

l P
ef

or
m

an
ce

 (
G

F
LO

P
S

)

Device
1 FPGA

2 FPGAs

3 FPGAs

Fig. 9. Latency and performance of OpenCL kernels using multiple FPGA devices

●

●

●

●

64 128 256 421

0

50

100

FIR Filter Length

K
er

ne
l E

xe
cu

tio
n

La
te

nc
y

(m
s)

● OLA_64N
AOLS_2048
TOLS_1024
GPU_TD
GPU_FD

Fig. 10. Execution latencies of GPU and FPGA-based kernels in implementing a single FIR Filter

6.3.4 FPGA vs GPU. Now the FPGA kernels are compared to a GPU implementation. The GPU
operating frequency is locked at the maximum frequency, which is 985MHz, and all 16 compute
units are set to process in parallel. Since the R7 GPU has over 1,000 stream processors, there is no
need to use OLA algorithm on it. Regarding FDFIR, it takes tens milliseconds for R7 GPU to process
a 4-million FFT, so the OLS algorithm is employed for GPU.

The single work-item kernels are unfair for GPUs, which takes several seconds to execute, so we
only compare the NDRange kernels on FPGA and GPU. Two FPGA-based kernels are evaluated on
R7 GPU: NDRange TD-Naïve and AOLS-2048. The FPGA-based NDRange TD-Naïve kernel can be
ported directly to the R7 GPU, referred to as GPU-TD. For GPU-based AOLS-2048, referred to as
GPU-FD, the FFT engine, which is a single work-item kernel, is replaced with clFFT. The clFFT
is an API designed for AMD’s graphics card to perform FFT, which is well-optimised for GPU.
Now to the actual kernel performance comparison, we compared the execution latency of the

fastest FPGA-based TDFIR and FDFIR kernels, which are OLA-64N, AOLS-2048, and TOLS-1024,
with GPU-TD and GPU-FD. The latencies of these kernels in implementing a single 421-tap FIR
filter are plotted in Figure 10 over different filter lengths.

ACM Trans. Reconfig. Technol. Syst., Vol. ?, No. ?, Article ?. Publication date: August 2018.

FPGA-based Acceleration for Pulsar Search ?:21

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●

0 9 18 27 36 45 54 63 72 81

0

20

40

60

80

100

120

140

Total FIR Filters

K
er

ne
l E

xe
cu

tio
n

La
te

nc
y

(m
s)

● 3xAOLS−2048−P (4−Million)
3xAOLS−2048−P (2−Million)
GPU−FD (4−Million)
GPU−FD (2−Million)

Fig. 11. Execution latencies of GPU and FPGA based kernels in implementing multiple FIR filters

We observe that as the FIR filter length increases, the trends of GPU-based kernels are similar to
those of FPGA-based kernels. However, the performance of GPU-TD kernel is over three times higher
than the fastest A7 FPGA-based TDFIR kernel, which is over 450GFLOPS when implementing a
421-tap FIR filter. This is caused by the high operating frequency of GPU device. In terms of the
GPU-FD kernel, the performance of it is mainly decided by the operation frequency of the GPU
and not by the FIR filter length. For a single FIR filter, the GPU-FD kernel performs worse than the
two FPGA-based FDFIR kernels. However, in comparison with 1D convolution results in [18], the
GPU-FD performs much better than the best solution of it, where the data type is SPF instead of
complex SPF.

For applying multiple FIR filters, we compare the best performance we achieved using multiple
FPGA devices (3 FPGAs with 3xAOLS-2048-P) with a single R7 GPU, whose execution latencies are
charted in Figure 11. Two different input sizes are evaluated, which have 2 million and 4 million
points. Three FPGA-3xAOLS-2048-P implement 9 FIR filters during each launch. So the latency
of executing a single FIR filter has no difference with that of 9 FIR filters. This is the reason for
the steps that can be observed in the curves in Figure 11. The execution latency of a single GPU is
about the same as that of three FPGA devices in processing both 2-million and 4-million points.
For 4-million points, the 3xAOLS-2048-P kernel on the three A7 FPGAs performs relatively better
when the total number of FIR filters is larger than 64. Also remember that the 3xAOLS-2048-P
kernel performs more computations than the GPU-FD, as the calculation of the power value of
each complex point is included.

It should be noted that none of the considered implementations can finish processing 4-million
points in the specified time limitation of 89.4ms (green dot line). If the input size can be reduced to
2-Million points or the number of FIR filters can be reduced to 53 or less, it is possible for a single
R7 GPU or three A7 FPGAs to handle the FT convolution module for one beam.

ACM Trans. Reconfig. Technol. Syst., Vol. ?, No. ?, Article ?. Publication date: August 2018.

?:22 H. Wang et al.

6.4 Power and Energy Consumption
In the previous section, we saw that the execution time performance of three A7 FPGAs and one
R7 GPU is very similar. It is now very interesting to compare their power consumption.

6.4.1 Power Measurment. Both FPGA and GPU devices are employed as acceleration hardware in
our research. To compare the power consumption of such computation, we need to take the power
consumption of both device and host into consideration.
A plug-in power meter (Efergy Ego Smart Power Socket) is used to measure the power con-

sumption of the overall system. When the acceleration devices, both FPGA and GPU, are idle,
they still need additional power, referred to as Pdevice−idle , especially for FPGA devices. After
configuring the FPGA, the value of Pdevice−idle for different kernels are different. For DE5 board, it
costs 10 − 20W without executing any tasks and 10 − 15W for an R7 GPU board.
There are two main steps to measure the power consumption of an acceleration device based

computing. First, before installing acceleration devices, the power consumption of the basic host
in the idle state is measured, referred to as Phost−idle . Then we install the devices and launch a
kernel for up to 5 minutes by using loops till the measured power consumption in watt becomes
stable. The constant power consumption of the running system is recorded as Ptotal . The real
power consumption of Kerneli can be calculated as

PKerneli = Ptotal − Phost−idle .

The value of PKerneli is not only the power cost of the devices but the overall cost of using
acceleration devices to process a task. It consists of two parts: the power consumption of the
acceleration devices and the power consumption of the host in setting kernel arguments and
launching kernels. However, the power consumption of acceleration devices is the largest of these
three parts.

6.4.2 Power Comparison. The power efficiency and energy dissipation of multiple FPGA-based
AOLS-NFT -P kernels are depicted in Figure 12. It can be noted that the number of FPGA devices
does not influence the power efficiency and energy dissipation of AOLS-NFT -P kernels too much.
For all three AOLS-NFT -P kernels, the power efficiency remains stable as the number of FPGA
devices increases. For a specified task, the energy dissipation of it is decided by the power efficiency
of the kernels. When the workload of the task is fixed, the higher the value of power efficiency of
a kernel, the less energy it dissipates. So we mainly investigate the energy dissipation of single
device based kernels.

The average power consumption of running an R7 GPU device is 90− 105W and higher than that
of a single A7 FPGA device, which ranges from 20W to 40W . The energy dissipation of five high-
performance FPGA-based kernels is compared with the GPU-based GPU-FD kernel in processing
4-million points with 84 different 421-tap FIR filters, which is shown in Figure 13. The energy
dissipation of kernel AOLS-2048 and 3xAOLS-1024-P is both fewer than that of kernel GPU-FD,
even though the performance is worse than that of GPU-FD. Kernel 3xAOLS-2048-P has advantages
over kernel GPU-FD in both performance and energy dissipation, and the energy dissipation of it
the fewest among all evaluated kernels.

The power needed for three DE5 boards based 3xAOLS-2048-P is about the same as a single R7
GPU based GPU-FD, which is 91W . However, each DE5 board has an individual power module and
cooling system. If multiple FPGAs can be integrated into one board, the power cost might drop,
and the advantages of FPGAs over GPUs would further increase. In processing the same input
signals, the FPGA acceleration cards costs less energy than the GPU card, while providing similar
execution performance. The extremely large-scale nature of the SKA and its longevity of many
years make this an essential advantage of FPGA based solution.

ACM Trans. Reconfig. Technol. Syst., Vol. ?, No. ?, Article ?. Publication date: August 2018.

FPGA-based Acceleration for Pulsar Search ?:23

0

1

2

3

4

3xAOLS−1024−P

3xAOLS−2048−P

3xAOLS−4096−P

OpenCL Kernels

P
ow

er
 E

ffi
ci

en
cy

 (
G

F
LO

P
S

/w
at

t)

Device
1 FPGA

2 FPGAs

3 FPGAs

0

5

10

15

20

3xAOLS−1024−P

3xAOLS−2048−P

3xAOLS−4096−P

OpenCL Kernels

E
ne

rg
y

D
is

si
pa

tio
n

(J
ou

le
)

Device
1 FPGA

2 FPGAs

3 FPGAs

Fig. 12. Power efficiency and energy dissipation of executing multiple FIR filters

GPU−FD

3xAOLS−1024−P

3xAOLS−2048−P

3xAOLS−4096−P

AOLS−2048

TOLS−1024

0 5 10 15 20

Energy Dissipation (Joules)

Fig. 13. Energy consumption of executing multiple FIR filters

7 CONCLUSION
This paper investigated the FPGA-based acceleration of the FT convolution for Pulsar Search in the
SKA project using OpenCL as a high-level development technique. Because of the limitation of
memory bandwidth and resources of an FPGA, the OLA and OLS algorithms were investigated to
make it possible for an FPGA to implement multiple large FIR filters and process large size input
signals. Different approaches to implementing TDFIR and FDFIR were designed and experimentally
evaluated. The results given evidence that OpenCL can well be used to development FPGA solutions
efficiently while achieving high performance for such computations. The FPGA-based FDFIR kernels
perform better than TDFIR kernels for lengthy FIR filters. Even though the achieved GFLOPS are
higher for TDFIR, the FDFIR computation is more efficient. We studied different designs and
configurations of the proposed filters to exploit the available FPGA resources as much as possible.

ACM Trans. Reconfig. Technol. Syst., Vol. ?, No. ?, Article ?. Publication date: August 2018.

?:24 H. Wang et al.

To evaluate the portability of FPGA-based kernels, and to put the FPGA performance into relation
with GPUS, two appropriate kernels were tested on a mid-range GPU device. The experiments
demonstrate that the latency of FPGA-based FDFIR kernels is smaller than that of GPU-based
kernels for a single FIR filter. We also investigated the use of multiple FPGA devices and the
computation of multiple filters. Three A7 FPGA devices perform better than single R7 GPU device
while being more power efficient.

ACKNOWLEDGMENTS
The authors acknowledge discussions with the TDT, a collaboration between Manchester and
Oxford Universities, and MPIfR Bonn and the work benefitted from their collaboration.

REFERENCES
[1] Mohamed S Abdelfattah, Andrei Hagiescu, and Deshanand Singh. 2014. Gzip on a chip: High performance lossless

data compression on fpgas using opencl. In Proceedings of the International Workshop on OpenCL 2013 & 2014. ACM, 4.
[2] AMD. 2013. APP SDK-A Complete Development Platform. http://developer.amd.com/tools-and-sdks/opencl-zone/

amd-accelerated-parallel-processing-app-sdk/
[3] AMD. 2015. AMD APP SDK OpenCL Optimization Guide.
[4] Hugo A Andrade and Scott Kovner. 1998. Software synthesis from dataflow models for G and LabVIEW/sup TM. In

Signals, Systems & Computers, 1998. Conference Record of the Thirty-Second Asilomar Conference on, Vol. 2. IEEE,
1705–1709.

[5] Andrew Canis, Jongsok Choi, Mark Aldham, Victor Zhang, Ahmed Kammoona, Jason H Anderson, Stephen Brown, and
Tomasz Czajkowski. 2011. LegUp: high-level synthesis for FPGA-based processor/accelerator systems. In Proceedings
of the 19th ACM/SIGDA international symposium on Field programmable gate arrays. ACM, 33–36.

[6] Andrew Canis, Jongsok Choi, Mark Aldham, Victor Zhang, Ahmed Kammoona, Tomasz Czajkowski, Stephen D Brown,
and Jason H Anderson. 2013. LegUp: An open-source high-level synthesis tool for FPGA-based processor/accelerator
systems. ACM Transactions on Embedded Computing Systems (TECS) 13, 2 (2013), 24.

[7] Christopher Carilli and Steve Rawlings. 2004. Science with the Square Kilometer Array: motivation, key science
projects, standards and assumptions. arXiv preprint astro-ph/0409274 (2004).

[8] Doris Chen and Deshanand Singh. 2012. Invited paper: Using OpenCL to evaluate the efficiency of CPUS, GPUS and
FPGAS for information filtering. In Field Programmable Logic and Applications (FPL), 2012 22nd International Conference
on. IEEE, 5–12.

[9] Doris Chen and Deshanand Singh. 2013. Fractal video compression in OpenCL: An evaluation of CPUs, GPUs, and
FPGAs as acceleration platforms. In Design Automation Conference (ASP-DAC), 2013 18th Asia and South Pacific. IEEE,
297–304.

[10] Fei Chen, Yi Shan, Yu Zhang, Yu Wang, Hubertus Franke, Xiaotao Chang, and Kun Wang. 2014. Enabling FPGAs in
the cloud. In Proceedings of the 11th ACM Conference on Computing Frontiers. ACM, 3.

[11] Michael A Clark, PC La Plante, and Lincoln J Greenhill. 2012. Accelerating radio astronomy cross-correlation with
graphics processing units. International Journal of High Performance Computing Applications (2012), 1094342012444794.

[12] Tomasz S Czajkowski, Utku Aydonat, Dmitry Denisenko, John Freeman, Michael Kinsner, David Neto, Jason Wong,
Peter Yiannacouras, and Deshanand P Singh. 2012. From OpenCL to high-performance hardware on FPGAs. In Field
Programmable Logic and Applications (FPL), 2012 22nd International Conference on. IEEE, 531–534.

[13] Tomasz S Czajkowski, David Neto, Michael Kinsner, Utku Aydonat, JasonWong, Dmitry Denisenko, Peter Yiannacouras,
John Freeman, Deshanand P Singh, and Stephen D Brown. 2012. OpenCL for FPGAs: Prototyping a compiler. In
Proceedings of the International Conference on Engineering of Reconfigurable Systems and Algorithms (ERSA). The
Steering Committee of The World Congress in Computer Science, Computer Engineering and Applied Computing
(WorldComp), 1.

[14] Ludovico De Souza, John D Bunton, Ducan Campbell-Wilson, Roger J Cappallo, and Bart Kincaid. 2007. A radio
astronomy correlator optimized for the Xilinx Virtex-4 SX FPGA. In Field Programmable Logic and Applications, 2007.
FPL 2007. International Conference on. IEEE, 62–67.

[15] Peter E Dewdney, Peter J Hall, Richard T Schilizzi, and T Joseph LW Lazio. 2009. The square kilometre array. Proc.
IEEE 97, 8 (2009), 1482–1496.

[16] Stephen A Edwards. 2006. The challenges of synthesizing hardware from C-like languages. IEEE Design & Test of
Computers 23, 5 (2006), 375–386.

[17] Jeff Fifield, Ronan Keryell, Hervé Ratigner, Henry Styles, and Jim Wu. 2016. Optimizing OpenCL applications on Xilinx
FPGA. In Proceedings of the 4th International Workshop on OpenCL. ACM, 5.

ACM Trans. Reconfig. Technol. Syst., Vol. ?, No. ?, Article ?. Publication date: August 2018.

http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk/
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk/

FPGA-based Acceleration for Pulsar Search ?:25

[18] Jeremy Fowers, Greg Brown, JohnWernsing, and Greg Stitt. 2013. A performance and energy comparison of convolution
on GPUs, FPGAs, and multicore processors. ACM Transactions on Architecture and Code Optimization (TACO) 9, 4
(2013), 25.

[19] Mario Garrido, Jesús Grajal, MA Sánchez, and Oscar Gustafsson. 2013. Pipelined radix-feedforward FFT architectures.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems 21, 1 (2013), 23–32.

[20] Khronos OpenCL Working Group et al. 2008. The OpenCL Specification, version 1.0. 29. https://www.khronos.org/
registry/cl/specs/opencl-1.0.29.pdf

[21] Giulia Guidi, Enrico Reggiani, Lorenzo Di Tucci, Gianluca Durelli, Michaela Blott, and Marco D Santambrogio. 2016.
On How to Improve FPGA-Based Systems Design Productivity via SDAccel. In Parallel and Distributed Processing
Symposium Workshops, 2016 IEEE International. IEEE, 247–252.

[22] Intel. 2016. Intel SDK for OpenCL Best Practices Guide. https://www.intel.com/content/www/us/en/programmable/
documentation/mwh1391807516407.html

[23] Intel. 2016. Intel SDK for OpenCL Programming Guide. https://www.intel.com/content/www/us/en/programmable/
documentation/mwh1391807309901.html

[24] S Jouteux, R Ramachandran, BW Stappers, PG Jonker, and M Van Der Klis. 2002. Searching for pulsars in close circular
binary systems. Astronomy & Astrophysics 384, 2 (2002), 532–544.

[25] Nasser Kehtarnavaz and Sidharth Mahotra. 2010. Digital Signal Processing Laboratory: LabVIEW-Based FPGA Imple-
mentation. Universal-Publishers.

[26] Yanbing Li, Tim Callahan, Ervan Darnell, Randolph Harr, Uday Kurkure, and Jon Stockwood. 2000. Hardware-software
co-design of embedded reconfigurable architectures. In Proceedings of the 37th Annual Design Automation Conference.
ACM, 507–512.

[27] Walid Najjar and Jason Villarreal. 2013. FPGA code accelerators-the compiler perspective. In Proceedings of the 50th
Annual Design Automation Conference. ACM, 141.

[28] Denis Navarro, Oscar Lucia, Luis Angel Barragan, Isidoro Urriza, and Oscar Jimenez. 2013. High-level synthesis
for accelerating the FPGA implementation of computationally demanding control algorithms for power converters.
Industrial Informatics, IEEE Transactions on 9, 3 (2013), 1371–1379.

[29] Aaron Parsons, Dan Werthimer, Donald Backer, Tim Bastian, Geoffrey Bower, Walter Brisken, Henry Chen, Adam
Deller, Terry Filiba, Dale Gary, et al. 2009. Digital instrumentation for the radio astronomy community. arXiv preprint
arXiv:0904.1181 (2009).

[30] Karas Pavel and Svoboda David. 2013. Algorithms for efficient computation of convolution. INTECH Open Access
Publisher.

[31] Andrew Putnam, Adrian M Caulfield, Eric S Chung, Derek Chiou, Kypros Constantinides, John Demme, Hadi Es-
maeilzadeh, Jeremy Fowers, Gopi Prashanth Gopal, Jan Gray, et al. 2014. A reconfigurable fabric for accelerating
large-scale datacenter services. In 2014 ACM/IEEE 41st International Symposium on Computer Architecture (ISCA). IEEE,
13–24.

[32] Scott M Ransom, Stephen S Eikenberry, and John Middleditch. 2002. Fourier techniques for very long astrophysical
time-series analysis. The Astronomical Journal 124, 3 (2002), 1788.

[33] MA Sanchez, Mario Garrido, Marisa López-Vallejo, Jesús Grajal, and Carlos López-Barrio. 2005. Digital channelised
receivers on FPGAs platforms. In IEEE International Radar Conference, 2005. IEEE, 816–821.

[34] Moritz Schmid, Christian Schmitt, Frank Hannig, Gorker Alp Malazgirt, Nehir Sonmez, Arda Yurdakul, and Adrian
Cristal. 2016. Big Data and HPC Acceleration with Vivado HLS. In FPGAs for Software Programmers. Springer, 115–136.

[35] Steven W Smith et al. 1997. The scientist and engineer’s guide to digital signal processing. (1997).
[36] Rob V Van Nieuwpoort and John W Romein. 2009. Using many-core hardware to correlate radio astronomy signals. In

Proceedings of the 23rd international conference on Supercomputing. ACM, 440–449.
[37] Rob V van Nieuwpoort and John W Romein. 2011. Correlating radio astronomy signals with many-core hardware.

International journal of parallel programming 39, 1 (2011), 88–114.
[38] Haomiao Wang and Oliver Sinnen. 2015. FPGA based acceleration of FDAS module for Pulsar Search. In Field

Programmable Technology (FPT), 2015 International Conference on. IEEE, 240–243.
[39] Loring Wirbel. 2014. Xilinx SDAccel: a unified development environment for tomorrow data center. Technical Report.

Technical Report, The Linley Group Inc.
[40] Zhiru Zhang, Yiping Fan, Wei Jiang, Guoling Han, Changqi Yang, and Jason Cong. 2008. AutoPilot: A platform-based

ESL synthesis system. In High-Level Synthesis. Springer, 99–112.

Received December 2016; revised May 2018; accepted August 2018

ACM Trans. Reconfig. Technol. Syst., Vol. ?, No. ?, Article ?. Publication date: August 2018.

https://www.khronos.org/registry/cl/specs/opencl-1.0.29.pdf
https://www.khronos.org/registry/cl/specs/opencl-1.0.29.pdf
https://www.intel.com/content/www/us/en/programmable/documentation/mwh1391807516407.html
https://www.intel.com/content/www/us/en/programmable/documentation/mwh1391807516407.html
https://www.intel.com/content/www/us/en/programmable/documentation/mwh1391807309901.html
https://www.intel.com/content/www/us/en/programmable/documentation/mwh1391807309901.html

	Abstract
	1 Introduction
	2 Related Work
	2.1 One-dimensional Convolution
	2.2 Accelerator in Radio Astronomy
	2.3 High-level Synthesis Approaches

	3 FDAS Module and FT Convolution
	3.1 Time-domain FIR Filter (TDFIR)
	3.2 Frequency-domain FIR Filter (FDFIR)
	3.3 Workload Comparison

	4 FPGA-based FIR Filter Structure
	4.1 OLA-TD
	4.2 OLS-FD
	4.3 Optimisation for FT Convolution Module

	5 High-level Approaches and Implementation
	5.1 OpenCL for FPGA
	5.2 FIR Filter Kernel
	5.3 Kernel Portability

	6 Evaluation
	6.1 Experimental Setup
	6.2 FPGA Resource Usage
	6.3 Performance Comparison
	6.4 Power and Energy Consumption

	7 Conclusion
	Acknowledgments
	References

