
Accepted for publication in Computers and Chemical Engineering, 6 October 2018 

Page 1 of 9   
 

 Logarithmic mean: 
Chen’s approximation or explicit solution? 

 
 

J.J.J. Chen 
Chemical and Materials Engineering Department, 

The University of Auckland, PB92019, Auckland 1142, New Zealand 
Email: j.chen@auckland.ac.nz 

 
Keywords: Logarithmic mean, approximation, HEN, Lambert W-function 

 
 
Abstract 
  
An explicit solution has been obtained for the logarithmic mean temperature 

difference method of heat exchanger calculation by making use of the Lambert 

W-function. The results might be of use where an explicit solution involving the 

logarithmic mean is required. 

Chen’s Approximation 
 
An approximation to the logarithmic mean (LMTD) between two numbers 1 and 

2 attributed to Chen (1987) is given in Eq. (1). 

 	 	 		 	 . .   Eq. 1 

Eq. (1) has been widely used in optimization models for heat exchanger network 

and other engineering equipment (see, for example, Yee et al. 1990, Yee & 

Grossman, 1990, Amarger et al, 1992, Lewin, 1998, Adjiman et al, 2000, 

Jackson & Grossmann, 2001, Davis & Sandall, 2003, Ponce-Ortega et al, 2008, 

Gabriel, et al., 2016, Bongartz & Mitsos, 2017, Pavao et al., 2017). The Chen 

approximation slightly overestimates the area requirement, but it avoids 

numerical problems associated with the logarithmic term, and it also has the 

important advantage that when either 1 or 2 equals zero the driving force will 



Accepted for publication in Computers and Chemical Engineering, 6 October 2018 

Page 2 of 9   
 

be approximated to be zero (Yee et al. 1990, Yee & Grossmann, 1990, Lewin, 

1998, Floudas et al., 1999, Adjiman et al., 2000, Davis & Sandall, 2003). 

Lambert W-function 

The earliest mention of the problem stated in Eq. 2 is attributed to Euler (1779), 

but Euler himself credited Lambert (1758) with it (see also Corless et al. 1996, 

Hayes 2005). Corless et al. (1996) gave a detailed analysis of the Lambert W-

function while Barry et al. (2000) gave analytical approximations for it. Hayes 

(2005) and Stewart (2005) gave simplified accounts of the properties of the 

Lambert W-function. Others, including Keady (1998) who applied the Lambert 

W-function to the Colebrook-White equation, Valluri et al. (2000) who discussed 

its possible applications in physics, and Golicnik (2012) applied the function to 

enzyme-catalysed biochemical reactions, while Disney & Warburton (2012) 

applied it to certain economic problems. Hayes (2005) suggests that scientific 

calculators should have a built in Lambert key, and on the American Scientist 

Website, Hayes (2005) asked: “Should Lambert W be added to the canon of 

standard textbook functions?” Stewart (2005) also suggested that the Lambert 

W function should be included in the mathematical curricula. 

In Eq. 2, it is easy to calculate y when the value of x is given. 

         Eq. 2 

However, in the inverse case, i.e. given y, the value of x is not readily obtained. 

This is where the Lambert W-function comes in because it is the inverse of Eq. 

2, i.e. if y is the input, the Lambert W-function gives x = W(y) such that Eq. 2 is 

satisfied. 
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For example, with reference to Fig. 1, for y=e, W(e) gives x=W(y)=1 because e 

= 1*e1, and this is plotted as (e, 1); and for y= , W  gives x=W(y)=-1 

because -1*e-1=-e-1, and this is plotted as (  , -1). 

The definition of W(y) may be written as  

       Eq. 3 

The inverse W function given by Eq. 3 has two values of W when y is between    

 and 0. When y is greater than 0, W is single valued (Hayes, 2005). 

 
Fig. 1. The Lambert W-function. 

 

The curve may be divided into three regions (Golicnik, 2012, Barry et al., 2000) 

and the branches are: 
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1. Region 1: y>0, the W0+ branch; 

2. Region 2: -e-1 < y < 0, and 0 > W > -1, the Wo
- branch; 

3. Region 3: -e-1 < y < 0, W < -1, the W-1 branch. 

Application of the Lambert W-function to the Logarithmic Mean 

Writing the heat exchanger equation as 

 	 	       Eq. 4 

Dividing by 2 and re-arranging 

 	        Eq. 5  

Consider 2 as known and 1 the unknown to be solved, 

Let          Eq. 6 

Let ,					 	 	 	      Eq. 7 

Thus,  ln 	 	 1 	      Eq. 8 

Giving 	 	 	 	       Eq. 9 

Eq. 9 may be re-cast as 

  	 	 	        Eq. 10 

Multiplying both sides by  

 	 	 	      Eq. 11 
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In Eq. 11, 2 is known, while  the unknown to be solved appears on the left-

hand-side of the equation only. 

This is where the Lambert W function comes in. Taking the W of both sides of 

Eq. 11, the LHS is of the form xex, where x 	   according to Eq. 3. 

Thus, Eq. 11 becomes 

  	 	      Eq. 12 

All terms on the RHS of Eq. 12 that are within the W function are known and 

hence 	  can be evaluated. In fact, by inspection with reference to Eq. 

3, it should give a numerical value of  . However, from Fig. 1, W of a 

negative number for -e-1 < y < 0 will yield two roots, and the value of  is 

expected to be one of them. The two roots are obtained as one each from the 

Wo
- branch and the W-1 branch. Thus  can be evaluated. 

Example 1 (for the general case when 1  2) 

To illustrate the application of Eq. 12, using the same problem considered in 

Patterson (1984): 

2 = (50-30)=20oC;   1 = (125-t1)oC;    = 1 /2 

Q = 7500kW;   UA = 175 kW/oC 

K = Q/UA = 7500/175 = 42.857oC 

2 /K = 20/42.857 = 0.4667 

Thus, if  is solved, 1 and t1 can be readily evaluated. 
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Applying Eq. 12, the LHS gives -0.4667, and the RHS gives W(-0.4667e-0.4667), 

i.e. W(-0.2927). From Figure 1, W(-0.2927) has two roots, one from the Wo
- 

branch and one from the W-1 branch. 

The exact values of the two roots may be obtained using a standard 

mathematical software package such as Wolfram MathWorld, Matlab, Macsyma, 

Maple, Mathematica etc. (Hayes 2005). Note that the Lambert W-function is 

also referred to as the Product Log function in some software packages. Barry et 

al. (2000) and Golicnik (2012), among others, have provided equations for the 

evaluation of W, and tabulated values are also given in Disney & Warburton 

(2012). 

W(-0.2927) gives -0.46 from the Wo
- branch (which is 	 = -0.4667 as 

discussed earlier) and -1.84 from the W-1 branch. Thus 

0.4667 0.46; 			 					 0.4667 	 1.84 

The first solution is ‘trivial’ as this occurs when =1, but 1  2 , and hence this 

root can be discarded. The second solution gives =3.94, resulting in 1 = 78.9 

and t1 = 46.1oC. As expected, this solution is exactly the same as that obtained 

by iteration using the actual LMTD. 

Example 2 (for the case when 1 = 2) 

Basically the Paterson (1984) case but setting 2 to be equal to K. 

2 = (72.86-30)= 42.86oC;   1 = (125-t1)oC;    = 1 /2 

Q = 7500kW;     UA = 175 kW/oC 

K = Q/UA = 7500/175 = 42.857oC 
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2 /K = 42.86/42.857  1. 

Applying Eq. 12, the LHS gives  , and the RHS gives W(-e-1). From Figure 1, 

this occurs at the junction of Wo
- and W-1, i.e. there is only one root, and       

W(-e-1) = -1, i.e. =1 giving 1 = 2. 

Discussion 

The two examples shown above are based on the case considered by 

Paterson(1984) and Chen(1987) using the transformed equation given in Eq. 

12. Eq. 12 is equivalent to Eq. 4, but it allows for the exact evaluation 2 

without a trial-and-error process which is necessary when using Eq. 4 because 

of the appearance of 2 in two places on the right-hand-side of the equation, 

inside and outside of the logarithmic term. In the case where Q (or A) is the 

only unknown, Q may be evaluated from an energy balance, and Eq. 4 will 

provide an explicit solution. 

The above examples considered 2 as the unknown. If 1 is the unknown instead 

and is required to be solved, it is simply a matter of interchanging 1 and 2 in 

Eq. 4, 5, and 6, and the solution will follow immediately. 

It is also noted that in the case where 1 = 2 as illustrated in Example 2, Eq. 4 

will become 	 	 	 	 . 

Conclusion 

An explicit solution has been shown for heat exchanger calculations using the 

logarithmic mean temperature method by employing the Lambert W-function 

due originally to Lambert (1758) and Euler (1779). It remains to be seen if it 
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will replace the use of approximations for the logarithmic term in the research 

on optimization such as those referenced in this note. 

Declaration of Interest 

None. This research did not receive any specific grant from funding agencies in 

the public, commercial, or not-for-profit sectors. 

References 

Adjiman, C.S., Androulakis, I.P., Floudas, C.A., 2000, Global optimization of mixed-
integer nonlinear problems, AIChE Jl., 46, 1769-1797. 

Amarger, R.J., Biegler, L.T., Grossmann, I.E., (1992) An automated modelling and 
reformulation systems for design optimization, Computers and Chemical Engineering, 
16, 623-636. 

Barry, D.A., Parlange, J.-Y., Li, L., Prommer, H., Cunningham, C.J., Stagnitti, F. (2000), 
Analytical approximations for real values of the Lambert W-function, Mathematics and 
Computers in Simulation, 53, 95-103. 

Bongartz, D., Mitsos, A., 2017, Deterministic global optimization of process flowsheets 
in a reduced space using McCormick relaxations, J. Global Optimization, 69, 761-796. 

Chen, J. J. J., 1987, Letter to the editor: comments on improvement on a replacement 
for the logarithmic mean. Chemical Engineering Science, 42, 2488-2489. 

Corless, R.M., Gonnet, G.H., Hare, D.E.G., Jeffrey, D.J., Knuth, D.E., 1996, On the 
lambert W function, Advances in Computational Mathematics, 5, 329-359. 

Davis, R.A., Sandall, O.C., 2003, A Simple Analysis For gas separation membrane 
experiments, Chemical Engineering Education, 74-80, Winter 2003. 

Disney, S.M., Warburton, R.D.H., 2012, On the Lambert W function: Economic order 
quantity applications and pedagogical considerations, Intl. J. Production Economics, 40, 
754-764. 

Euler, L., 1779, De serie Lambertina plurimisque eius insignibus proprietatibus, 
Leonhardi Euleri Opera Omnia, Ser. 1, Opera Mathematica 6 (1921) [orig. date 1779] 
350-369. 

Floudas, C. A., Pardalos, P.M., Adjiman, C.S., Esposito, W.R., Gumus, Z.H., Harding, 
S.T., Klepeis, J.L., Meyer, C.A., and Schweiger, C.A., 1999, Handbook of Test Problems 
in Local and Global Optimization, Kluwer Academic Press. 

Gabriel, K.J., El-Halwagi, M.M., Linke, P., 2016, Optimization across the Water-Energy 
Nexus for Integrating Heat, Power, and Water for Industrial Processes, Coupled with 
Hybrid Thermal-Membrane Desalination, Industrial & Engineering Chemistry Research, 
55, 3442-3466. 

Golicnik, M., 2012, On the Lambert W function and its utility in biochemical kinetics, 
Biochemical Engineering Journal, 63, 116-123. 



Accepted for publication in Computers and Chemical Engineering, 6 October 2018 

Page 9 of 9   
 

Hayes, B., 2005, Why W? American Scientist, 93, 104-108. See also 
https://www.americanscientist.org/article/why-w “Why W? “Should Lambert W be 
added to the canon of standard textbook functions?” (Downloaded 18 September 2018) 

Jackson, JR; Grossmann, IE., 2001, A disjunctive programming approach for the 
optimal design of reactive distillation columns, Computers and Chemical Engineering, 
25, 1661-1673. 

Keady, G., 1998, Colebrook-White formula for pipe flows, J. Hydraulic Engineering, 
124, 96-97. 

Lambert, L.J.H., 1758, Observationes variae in mathesin puram, Acta Helvetica, 
physico-mathematicoanatomico-botanico-medica 3, Basel (1758) 128-168. 

Lewin, DR, 1998, A generalized method for HEN synthesis using stochastic optimization 
- II. The synthesis of cost-optimal networks, Computers and Chemical Engineering, 22, 
1387-1405. 

Paterson, W. R., 1984, A replacement for the logarithmic mean. Chemical Engineering 
Science, 39, 1635-1636. 

Pavao, L.V., Borba Costa, C.B., Ravagnani, M. A. S. S., 2017, Heat Exchanger Network 
Synthesis without stream splits using parallelized and simplified simulated Annealing 
and Particle Swarm Optimization, Chemical Engineering Science, 158, 96-107. 

Ponce-Ortega, J. M., Jimenez-Gutierrez, A., Grossmann, I.E., 2008, Optimal synthesis 
of heat exchanger networks involving isothermal process streams, Computers and 
Chemical Engineering, 32, 1918-1942. 

Stewart, S., 2005, A new elementary function for our curricula? Australian Senior 
Mathematics Journal, 19, 8-26. 

Yee, T.F., Grossmann, I.E., Kranja, Z., 1990, Simultaneous-optimization models for 
heat integration. 1. Area and energy targeting and modelling of multi-stream 
exchangers, Computers and Chemical Engineering, 14, 1151-1164. 

Yee, T.F., Grossmann, I.E., 1990, Simultaneous-optimization models for heat 
integration. 2. Heat-exchanger networks synthesis, Computers and Chemical 
Engineering, 14, 1165-1184. 


