

Libraries and Learning Services

University of Auckland Research
Repository, ResearchSpace

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of
the Act and the following conditions of use:

• Any use you make of these documents or images must be for research or
private study purposes only, and you may not make them available to any
other person.

• Authors control the copyright of their thesis. You will recognize the
author's right to be identified as the author of this thesis, and due
acknowledgement will be made to the author where appropriate.

• You will obtain the author's permission before publishing any material
from their thesis.

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital
copy of their work to be used subject to the conditions specified on the Library
Thesis Consent Form and Deposit Licence.

http://www.library.auckland.ac.nz/sites/public/files/documents/thesisconsent.pdf
http://www.library.auckland.ac.nz/sites/public/files/documents/thesisconsent.pdf
http://www.library.auckland.ac.nz/services/research-support/depositing-theses/licence-summary

UNIVERSITY OF AUCKLAND

Optimal Orchestration of a Cloud-Based

Internet Cafe

by

Isaac Hamling

A thesis submitted in fulfillment of the requirements for the

degree of Doctor of Philosophy in Operations Research

in the

Faculty of Engineering

Department of Engineering Science

February 2019

http://www.auckland.ac.nz/
isaac.hamling@auckland.ac.nz
Faculty Web Site URL Here (include http://)
http://www.des.auckland.ac.nz/

UNIVERSITY OF AUCKLAND

Abstract

Faculty of Engineering

Department of Engineering Science

Doctor of Philosophy

by Isaac Hamling

supervised by Michael O’Sullivan and Cameron Walker

http://www.auckland.ac.nz/
Faculty Web Site URL Here (include http://)
http://www.des.auckland.ac.nz/
isaac.hamling@auckland.ac.nz

iv

The idea to use cloud computing and virtualisation to supply video games to end users known

as cloud gaming has been growing in popularity. Internet cafes are one potential application

for cloud gaming. Internet cafes are a large market in China which has over 185,000 internet

cafes each with an average of 120 seats. These internet cafes have significant resource ineffi-

ciency which can be improved using a cloud gaming model to supply internet cafe users. A

system is presented for a cloud-based internet cafe and algorithms for maximising resource

utilisation in cloud gaming.

The cloud-based internet cafe model replaces the traditional desktop computers in an internet

cafe with servers, thin clients, and virtual machines with specifications designed to meet

specific user demands. Virtual machines are run on the servers to supply internet cafe users

with their desired game or service. Important decisions need to be made: which users to

accept, and upon which servers they should be placed. This problem is the cloud gaming

resource allocation problem.

An integer programming model is formulated for solving the offline cloud gaming resource

allocation problem for cloud-based internet cafes. This offline model shows that moving to

a cloud-based internet cafe improves daily profits over the current zoned internet cafe model

utilised in China and significantly improves resource utilisation.

A further three algorithms are presented to solve real world demand in a cloud-based internet

cafe. A prebooking system for solving a semi-online version of the problem. This algorithm

is used to place users who book seats in the cloud-based internet cafe in advance. Online

greedy and competitive algorithms are also presented for solving the online resource allocation

problem for cloud-based internet cafes. All three algorithms show competitive performance

when compared to the offline optimal allocations with exact performance depending the user

demand profile.

The cloud-based internet cafe shows the ability to improve profits, and resource efficiency in

internet cafes. The four algorithms developed can be applied to different types of internet

cafes. The competitive algorithm performs best in busy internet cafes, while the greedy

algorithms are better when they are less busy. The prebooking system is most useful for an

internet cafe with regular customers. While the offline integer program can be used for future

planning or planned events. All four algorithms and cloud gaming hardware can combine

to form a cloud-based internet cafe system for building and operating a cloud-based internet

cafe.

Acknowledgements

First of all, thank you to my supervisors Dr Micheal O’Sullivan and Dr Cameron Walker for

all the help and support throughout my doctorate. Extra thanks to Mike and Cam for the

job opportunity when funding ran out so I could continue to work on my thesis.

Thanks to the ORUA research group for all the help. Thanks to Ola for helping out over

summer testing remote desktop connections. Special thanks to Tim Harton for being my PhD

buddy and all the help setting up the cloud hardware, software and networking for testing

all our different cloud projects. Extra thanks to Tim and his wife Dr Kat Gilbert for being

good friends. Thank you to Citrix for providing software licenses for testing the hardware

implementation.

Thanks to our colleagues in China for the opportunity to visit and see the business imple-

mentation of virtualisation in internet cafes. Special thanks to Felix Xia and William for

organising accommodation, transport and showing me around their workplace.

Thanks to the OptAli research group for the opportunity to travel overseas and collaborate

with other universities. Thanks to Dr Andrea Raith and Dr Andrew Mason for organising

the OptAli project at the University of Auckland and giving me the opportunity. To the staff

and students I met at the universities in Europe, thank you for being friendly and welcoming.

Special thanks to Professor Jesper Larsen at Denmark Technical University for helping me find

my way in Denmark and for the research support. Thanks to Professor Sven O Krumke and

Junior Professor Clemens Thielen at the Technical University of Kaiserslautern for helping

me in Germany and for the research ideas. Additional thanks to Clemens for the research

support in online algorithms and for the shared publications. Thanks to Oscar Dowson for

keeping me company while travelling in Europe.

Thanks to my family for supporting me throughout my doctorate. My direct family mum,

dad and brother, thanks for all the love, support, and good conversation. Auntie Anne and

Uncle Ian, Auntie Dianna and Uncle Wayne, Hannah and Nick, Ben and Sora, Tracy, Jack

and children, thanks to all of you for the meals, company, and for being kind, and caring

while I have lived in Auckland. Thanks to my remaining family, Uncle John and Kristen,

Nana and Granddad, Grandma and Granddad Bob, Tania and Miles for the long-distance

support and company on Christmas and holidays.

Thanks to all my friends for keeping me company and helping out with everything. All the

people who’ve lived with me, Brent, Tom, Fraser, Rothborey, Llew, Andrew, and Rachel

thanks for all the love and support and not being too messy. Special thanks to my close

friends Darren, Fraser, Rothborey, Llew, and Leah for spending time with me and helping to

v

vi

take my mind of everything going on. Thanks to my friends overseas, Oli, Blanca, and Josh

for letting me stay with them while I was travelling, keeping me company, and showing me

what their lives are like.

Finally thanks to Meg, and her family for letting me stay with them and being welcoming

to someone they had never met before. Special love to Meg for being awesome but also for

believing in me and being supportive of my abilities.

Contents

Abstract iii

Acknowledgements v

List of Figures xi

List of Tables xiii

Abbreviations xv

Notation xix

Co-Authorship Forms xxiii

1 Introduction 1

1.1 Motivation . 1

1.1.1 Internet Cafes . 2

1.1.2 Cloud Gaming . 5

1.2 Cloud-Based Internet Cafes . 7

1.2.1 Virtualisation . 8

1.2.2 Virtual graphics processing units (GPUs) 8

1.2.3 Combining Cloud Gaming and Internet Cafes 9

1.2.4 Optimisation . 10

1.2.5 Using Optimisation in Cloud-based Internet Cafes 12

1.3 Thesis Outline . 14

1.4 Contribution . 15

2 Background 17

2.1 Internet Cafes . 18

2.2 Virtualisation . 20

2.2.1 Building a Cloud . 21

2.2.2 Supplying Cloud Services . 23

2.2.3 Virtual Desktop Infrastructure . 24

2.2.4 Cloud Gaming . 24

2.2.5 Virtual GPUs (vGPUs) . 26

vii

Contents viii

2.3 Resource Allocation in Cloud Computing . 27

2.3.1 Integer Programming . 30

2.3.2 Competitive Analysis of Online Algorithms 33

2.3.3 Online Algorithms and Heuristics . 34

2.4 Literature Review . 35

2.4.1 Cloud virtual machine (VM) Placement 36

2.4.2 Cloud Gaming VM Placement . 42

3 Building a Cloud-Based Internet Cafe 47

3.1 Hardware . 48

3.1.1 Servers . 50

3.1.2 GPU . 50

3.1.2.1 virtual GPUs (vGPUs) . 52

3.1.3 Storage . 56

3.2 Hypervisors . 58

3.2.1 Citrix XenServer . 58

3.2.2 Other Hypervisors . 59

3.3 Remote Desktop . 59

3.3.1 Citrix XenDesktop . 60

3.3.2 RemoteFX . 62

3.3.3 Steam Streaming . 62

3.3.4 Other Remote Desktop Software . 63

3.4 Environment Testing . 64

3.4.1 Single Machine Testing . 65

3.4.2 Parallel Testing . 68

3.4.3 Summary . 70

4 Allocation Problem 73

4.1 Problem Description . 73

4.2 Models . 77

4.2.1 Notation conventions . 77

4.2.2 Inputs . 77

4.2.2.1 Services . 78

4.2.2.2 Servers . 78

4.2.2.3 VMs . 79

4.2.3 Configurations . 80

4.2.3.1 Users . 81

4.2.4 Decisions . 82

4.2.5 Constraints . 82

4.2.6 Outputs . 83

4.3 Test Data Set . 83

4.3.1 First Test Set . 84

4.3.2 Services offered . 84

4.3.3 Server Inputs . 85

4.3.4 User Inputs . 86

4.3.5 Second Test Set . 89

Contents ix

4.3.6 Services offered . 90

4.3.6.1 Server Inputs . 91

4.3.6.2 User Inputs . 92

4.3.7 Generation Process . 96

4.3.8 Test Profiles Summary . 97

5 Offline Integer Program 99

5.1 Initial Model . 100

5.1.1 Decision Variables . 100

5.1.2 Integer Program . 102

5.1.2.1 User constraints . 102

5.1.2.2 Server constraints . 103

5.1.2.3 Event constraints . 104

5.2 Efficiency Improvements . 105

5.2.1 Symmetry . 105

5.2.2 Memory Use . 107

5.3 Updated Model . 108

5.3.1 Decision Variables . 108

5.3.2 Integer Program . 109

5.3.2.1 User Constraints . 110

5.3.2.2 Supply Constraints . 110

5.4 Fixed Zone Model . 111

5.4.1 Decision Variable . 112

5.4.2 Integer Program . 112

5.5 Results . 113

5.5.1 Test Set One . 113

5.5.2 Test Set Two . 118

6 Prebooking Integer Program 121

6.1 Model . 123

6.1.1 Batch Solver . 123

6.1.2 Model Definition . 125

6.1.2.1 Decision Variables . 125

6.1.2.2 Integer Program . 126

6.2 Results . 127

6.2.1 Time Horizon . 128

6.2.2 Solve Time . 131

6.2.3 Summary . 132

7 Online Algorithm 135

7.1 Greedy Algorithms . 136

7.2 Competitive Algorithm . 137

7.2.1 Algorithm . 139

7.2.2 Proofs . 141

7.2.3 Grouped Users . 149

7.2.4 Aggressive Improvement . 150

7.3 Results . 151

Contents x

7.3.1 Internet Cafe Size . 152

7.3.2 Stay Duration . 154

7.3.3 Comparison . 156

8 Discussion and Conclusion 159

8.1 Comparison . 160

8.2 Internet Cafe Application . 161

8.3 Graphics Driven Cloud Application . 162

8.4 Business Application . 163

8.5 Education Application . 164

8.6 Conclusion . 165

8.6.1 Key Outcomes . 165

8.6.2 Future Work . 167

8.6.3 Application . 168

8.6.4 Research Questions . 169

A Configurations 171

Bibliography 173

List of Figures

1.1 Example set up and seating arrangement of a zoned internet cafe 4

1.2 Example cloud-based internet cafe showing seating flexibility 13

3.1 Test Cloud-Based Internet Cafe Setup . 49

3.2 Nvidia GRID K1 card layout and specifications 51

3.3 Nvidia GRID K2 card layout and specifications 52

3.4 Types of vGPU with random access memory (RAM) and core divisions . . . 53

3.5 Invalid VM additions to GRID K2 card . 54

3.6 Valid VM additions to a GRID K2 card. Note that the K240 VM on the K260
card will have higher than specified graphics performance 55

3.7 Grid of 3DMark scores for vGPU and central processing unit (CPU) configu-
rations. Tests from left to right bars: Ice Storm; Cloud Gate; Sky Diver; and
Fire Strike. 67

4.1 Probability density function for hours users arrive in test set one 87

4.2 Probability density function for duration of stay in test set one 88

4.3 Probability density function for hours users arrive in test set two 93

4.4 Probability density function for duration of stay in test set two for 2.5 hour
average . 94

4.5 Probability density function for duration of stay in test set two for 3.5 hour
average . 95

4.6 Probability density function for duration of stay in test set two for 4.5 hour
average . 95

4.7 Probability density function for duration of stay in test set two for 6.5 hour
average . 96

5.1 Utilisation of CPU, RAM, and GPU resources over time for test set one test 2 116

5.2 Utilisation of CPU, RAM, and GPU over time for test set one test 6 117

5.3 Comparison of average utilisation of resources using cloud-based vs. traditional
internet cafe . 118

6.1 Features of a prebooking system over time from when a user places a booking 122

6.2 Average percentage difference of batch solver from optimal for the three dif-
ferent numbers of users . 130

6.3 Average percentage difference of batch solver from optimal for the four different
stay duration’s . 131

6.4 Average percentage difference of batch solver from optimal with 10 second vs
120 second solve time . 133

xi

List of Figures xii

7.1 Percentage From Optimal for Online Algorithms (average for all realistic and
stress test cases) . 156

List of Tables

2.1 Summary of key VM placement papers . 39

2.2 Summary of cloud gaming VM placement papers 43

3.1 Specifications of servers used for feasibility testing 50

3.2 vGPU names and specifications . 52

3.3 GPU game performance with various settings 57

3.4 Summary of remote desktop software performance 60

3.5 Test results for the K140 vGPU (Percentages show difference from single ma-
chine) . 69

3.6 Test results for the K240 vGPU (Percentages show difference from single ma-
chine) . 69

3.7 Test results for the K260 vGPU (Percentages show difference from single ma-
chine) . 69

3.8 3DMark scores of K1 and K2 vs Gaming PC 71

4.1 Example VMs for a K2 server . 75

4.2 Example of configurations for a K2 server . 75

4.3 Profit and minimum 3DMark scores for test set one services 85

4.4 Test set one Internet Cafe Sizes and Server Quantities 85

4.5 Test set one virtual machine specifications . 86

4.6 Proportion of demand for each service for test set one 89

4.7 Profit and performance details for test set two services 90

4.8 Test set two Internet Cafe Sizes and Server Quantities 91

4.9 Test set two virtual machine specifications . 92

4.10 Proportion of demand for each service for test set two 93

4.6 Proportion of demand for each service for test set one 114

5.1 Comparison of results for test set one with 100 users after running each test
for ten minutes . 114

5.2 Comparison of results for test set one with 500 users after running each test
for ten minutes . 115

5.3 Comparison of results for test set one with 1000 users after running each test
for ten minutes . 116

5.4 Comparison of results for test data set two with 10 minute solve times versus
10 hour solve times . 119

xiii

List of Tables xiv

6.1 Difference between optimal objective and batch solver results averaged over
all tested time horizons and for the 2 hour time horizon over all test sets (10
problem instances for each number of users) 129

6.2 Comparison of 10 seconds and 120 second solve times for average objective
from batch solver . 132

7.1 Competitive ratio and calculation components for different user stay durations.
Symbols, λ, F , |Q|, J , and µ are defined in §7.2.1 152

7.2 Greedy algorithm performance for different size internet cafes, average stay =
2.5 hours with 95% confidence intervals . 154

7.3 Competitive algorithm performance for different size internet cafes, average
stay = 2.5 hours with 95% confidence intervals 154

7.4 Greedy algorithm performance for different average stay durations, internet
cafe size = 500 with 95% confidence intervals 155

7.5 Competitive algorithm performance for different average stay durations, inter-
net cafe size = 500 with 95% confidence intervals 155

7.6 Results and Comparison for 20 Seat Internet Cafe 157

8.1 Comparison of algorithm performance . 160

A.1 K1 server configurations for test set 1 . 171

A.2 K2 server configurations for test set 2 . 172

Abbreviations

API application programming interface

CAD Computer Aided Design

CDN content delivery network

CI Confidence Interval

CPU central processing unit

DDR double data rate

DHCP dynamic host configuration protocol

DNS dynamic name server

DVI display visual interface

FIFO First-In First-Out

FPS frame per second

GB gigabyte

GDDR graphics double data rate (DDR)

GPU graphics processing unit

GUI graphical user interface

GaaS Gaming as a Service

HDD hard disk drive

HDMI high definition multimedia interface

xv

Abbreviations xvi

ICT information and communications technology

IP integer program

IaaS Infrastructure as a Service

LAN local area network

NAS network-attached storage

NFS Network File System

OS operating system

PC personal computer

PaaS Platform as a Service

RAM random access memory

RDP remote desktop protocol

SAN storage area network

SFP+ small form-factor pluggable transceiver plus

SLA service level agreement

SSD solid state drive

SSH secure shell

SaaS Software as Service

UI user interface

VDI virtual desktop infrastructure

VGA video graphics array

VM virtual machine

VNC Virtual Network Computing

VPN virtual private network

Abbreviations xvii

VRAM video random access memory

WAN wide area network

vCPU virtual CPU

vDisk virtual disk

vGPU virtual GPU

vRAM virtual RAM

vSwitch virtual switch

Notation

S List of servers

s A server

Q List of server resources

q A server resource

M List of GPU core configurations

m A GPU core configuration

U List of internet cafe users

u An internet cafe user

R List of services offered

r A service offered

r(u) The service a user demands

G List of GPU core types

g A GPU core type

g(s) The type of GPU core a server has

g(s, r) The type of GPU core a VM would require on a server for a service

g(m) The type of GPU core a configuration runs on

T List of time points

T (u) List of time points when a user is active

t A point in time

xix

Notation xx

E List of event points when users arrive

e A time point when a user arrives

e+ The event point after e

e− The event point before e

Z(g) List of vGPU core types for a specific GPU core type

ζ A vGPU core type

ζ(s, r) The type of vGPU cure a VM would require on a server for a service

ζ(m) The type of vGPU core a configuration uses

z(r) A list of servers which can supply a service

z(u) A list of servers a user can be placed onto

c(s, q) Quantity of a resource available on a server

b(s.r, q) The quantity of a resource consumed by a VM on a server for a resource

and service

b(s, q, u, t) The quantity of a resource consumed on a server by a user at a time

ρ(m, q) The quantity of a resource consumed by a configuration

K(s) List of indexes for GPU cores on a server

k A GPU core index

π(r) Profit per time period of a service

p(u) The profit available from a user

n(s, r) The number of users a VM can support on a server for a service

N The number of seats in an internet cafe

υ(m, r) Number of VMs running for a service for a configuration

a(u) The time a user arrives

d(u) The time a user departs

j(u) The duration a user stays

Notation xxi

J The maximum duration any user stays

ν(s, e, r) The number of VMs running for a service on a server at an event

δ The frequency with which the problem is solved

σ The quantity of future information given

γ The amount of time before arriving users are informed of acceptance

i(s, q, t) Quantity of a resource being consumed on a server at a time

Ls,q,u,t The normalised load on a server for a resource at a time when a user

arrives

Vs,q,u,t The exponential load on a server for a resource at a time when a user

arrives

µ A constant for the competitive algorithm

λ A constant for the competitive algorithm

κ A constant for the competitive algorithm

F A constant for the competitive algorithm

A A list of users accepted by both competitive algorithm

H A list of users rejected by the competitive algorithm but accepted by the

optimal solution

Co-Authorship Forms

xxiii

Dedicated to Mum

xxvi

Chapter 1

Introduction

This thesis presents the concept of cloud-based internet cafes, their architecture, and meth-

ods to ensure such cafes are effectively utilised. The concept of cloud-based internet cafes

is motivated by inefficiencies in the typical architecture of existing internet cafes and the

development of new technology which enables cloud gaming. This thesis presents a prototype

cloud-based internet cafe which leverages virtualisation technology. The information about

this prototype is then combined with internet cafe user surveys to build a representative data

set for a cloud-based internet cafe’s users. Once the cloud-based internet cafe and users have

been characterised, resource allocation algorithms are developed which allocate resources to

internet cafe users so that their desired services are provided efficiently in relevant scenarios.

The algorithms presented are both offline and online algorithms.

1.1 Motivation

Internet cafes and cloud gaming are two similar information and communications technology

(ICT) paradigms that supply games as a service to paying users. An internet cafe requires a

person to access the service in person, and a cloud gaming service supplies games remotely

over the internet. Internet cafes suffer from inefficiency because they use fixed personal

1

2

computers (PCs) to service a variety of user demands. Cloud gaming makes use of servers

with significantly more flexibility, but requires intelligent algorithms to utilise server resources

efficiently. New technology for GPU virtualisation offers increased flexibility in the resources

supplied by servers and, with intelligent decision making, the ability to improve resource

usage efficiency for both internet cafes and cloud gaming. However, cloud gaming suffers

from latency issues as a result of the service being provided over the internet, i.e., wide area

networks (WANs). Since internet cafes provide games directly on fixed PCs, latency is not

an issue for gaming within an internet cafe.

This thesis addresses the following research questions, which are fundamental in the develop-

ment of a cloud-based internet cafe:

1. can cloud gaming be combined with internet cafes, to create a new system known as a

cloud-based internet cafe, which alleviates the inefficiencies of both internet cafes and

cloud gaming?

2. can optimisation algorithms provide methods for the efficient allocation of cloud re-

sources in a cloud-based internet cafe, particularly given the use of GPU resources?

To the best of the author’s knowledge no one has presented the concept of a cloud-based

internet cafe in previous research, created a representative data set of such an internet cafe’s

users, or developed offline and/or online algorithms for the corresponding cloud resource

allocation problem that includes the use of virtual graphics processing units (vGPUs) for

cloud gaming.

1.1.1 Internet Cafes

Internet cafes are a major industry world wide and can be found in any major city. In China

there are more than 185,000 internet cafes averaging 120 seats per cafe [1]. An internet

cafe provides computing resources as a service to users by: 1) providing a space containing

computers (usually leased by the cafe); and 2) leasing time on these computers to users.

3

These computers offer services that include playing video games, web browsing, email access,

and watching videos.

In first world countries internet cafes are used as social spaces to play video games with friends

or to host tournaments [2, 3]. In China, South East Asia, and Korea there is a significant

gaming culture surrounding internet cafes [4].

In third world countries where people have limited access to PCs and the internet, an internet

cafe offers a place to access these resources. These internet cafes provide entertainment in

the form of playing games or watching videos, they give access to news and email, and enable

users to chat online with friends [5]. Nigeria holds the Guinness world record for the largest

internet cafe in the world with 1,027 seats [6].

Most internet cafes’ services include a number of different games. The computers in the inter-

net cafe must be able to run all offered services. Often the hardware (resource) requirements

in terms of CPU, RAM, and GPU vary greatly between the different services. For example,

browsing the web and checking emails require very little CPU and GPU compared to playing

games. Different games also have a large variance in resource requirements. The most popu-

lar games are low requirement, competitive, multiplayer games including League of Legends,

DoTA2, Counter-Strike: Global Offensive, and Overwatch. However, an internet cafe will

also offer the latest games including Fallout 4, Call of Duty WWII, and Battlefield 1 which

have significantly higher resource requirements. The computers that the internet cafe leases

must be able to run the latest games, but many users will demand web browsing, emails, or

games with low resource requirements. When using any service other than the latest games

the computer will have a quantity of CPU, RAM, and GPU which is left unutilised.

This gap between the resources required and the resources available results in an inefficiency.

The internet cafe is paying for computing resources which are not being utilised. Chinese

internet cafes address this inefficiency by dividing the internet cafe into two zones. One zone

is specialised for gaming, and the other is specialised for web browsing, web games, email,

and watching videos. This reduces the inefficiency in an internet cafe, but also reduces the

4

Figure 1.1: Example set up and seating arrangement of a zoned internet cafe

cafe’s flexibility by limiting the quantity of each service offered. In these zoned internet cafes,

each seat is restricted to supplying only a subset of the services offered. This restriction

reduces profits when all seats of one service are filled and the internet cafe is forced to

turn away new users requesting those services. Figure 1.1 shows a small example of how a

six seat internet cafe may be divided into zones. One side has computers which meet the

requirements of the web level services and the other side has more powerful computers which

meet the requirements of the latest games. In this internet cafe once there are three gaming

users the internet cafe is forced to turn away any future gaming users losing the potential

profit from these users.

Even with this two zone model an internet cafe continues to have significant inefficiency due

to the wide range of requirements for the games being offered. Fixing this inefficiency would

require more zones, further reducing the flexibility of the internet cafe. For this reason an

5

internet cafe would greatly benefit from a system which could have an increased number of

zones without fixing the number of seats allocated to any one zone. This system would be

able to reduce inefficiency without significantly impairing flexibility. In order to implement

a flexible, multi-zone system the internet cafe paradigm would need to shift away from phys-

ical computers placed at each seat and into a cloud computing system remotely supplying

resources to each seat. Before describing this new internet cafe paradigm in §1.2 we describe

the cloud technology which enables this paradigm, cloud gaming.

1.1.2 Cloud Gaming

Cloud gaming or Gaming as a Service (GaaS) is a service which offers computing resources

for playing video games. A cloud gaming provider rents gaming resources to users who pay

for the time they use the resources.

Cloud gaming technology supplies games to users over the internet in the form of either:

a Windows operating system (OS) onto which users can install their own games; or direct

connections to a specific game. Cloud gaming removes the need for a home PC with the ability

to play the latest games. Current notable cloud gaming platforms include Sony Playstation

Now[7], Nvidia GeForce Now[8], and LiquidSky[9].

Cloud gaming is a specific service within cloud computing. Cloud computing is a service

which offers remote computing resources for a variety of tasks. Like cloud gaming, cloud

computing has a cloud provider offering computing resources for rental by users. These users

pay for the time and quantity of resources they use.

There are three ways the cloud is offered: Infrastructure as a Service (IaaS), Platform as a

Service (PaaS), and Software as Service (SaaS). Under IaaS the cloud provider offers raw

computing resources for use by users, who are free to install any OS and software of their

choice. Examples of IaaS include Amazon Web Services EC2 [10], and Microsoft Azure [11].

Under PaaS the cloud provider offers preconfigured computing resources with OS, drivers,

and networking fully set up. An example of PaaS is Amazon Web Services Elastic Beanstalk

6

[10]. Under SaaS the cloud provider offers only a software application for use by the customer.

Examples of SaaS include Google Apps, such as Google Docs [12], and Netflix [13].

Cloud gaming providers supply GaaS under either the PaaS model (supplying a Windows OS

for playing games on) or SaaS (supplying specific games).

A cloud provider can allocate each user the exact resources they require for the service they

demand. In order to ensure that the available resources are utilised efficiently, cloud providers

use resource allocation algorithms. Resource allocation algorithms are designed to allocate

a cloud provider’s resources to users in such a way as to maximise the total profit from the

users while meeting the users’ demand for services. The cloud’s flexibility enables the offering

of continuous resource quantities for a wide variety of services.

One key hardware feature of cloud gaming is the inclusion of GPUs in a cloud’s resources. The

GPUs that are included can be either standard desktop GPU cards, or special virtualisable

GPUs. These GPU resources enable the games running in the cloud to have the enhanced

graphics performance required to ensure satisfactory game play.

Extensive research has been conducted into approaches that efficiently run cloud computing

environments, but there is little research into efficiently running cloud gaming environments.

A cloud gaming environment is different from standard cloud environment due to: 1) the

addition of GPU cards to the cloud resources; and 2) the more consistent demand for resources

of gaming users because they require fixed resources to play a game (other users’ demand for

resources can vary depending on what they are using the demanded service for) .

The addition of GPU virtualisation to the cloud gaming space offers a significant increase

in flexibility for allocating users to cloud resources. In order to make use of this increased

flexibility in an efficient way, resource allocation algorithms are required for placing users.

While these algorithms have been developed for cloud computing, research is needed for

user placement in a cloud gaming environment. New algorithms are required to handle the

complexities of vGPUs which have unique restrictions on how they are virtualised, including

7

an inability to alter allocated resources without disrupting the service, and limitations on the

discretisation of the vGPU resources.

1.2 Cloud-Based Internet Cafes

As stated in §1.1 the fundamental research questions this thesis addresses are:

1. can cloud gaming be combined with internet cafes, to create a new system known as a

cloud-based internet cafe, which alleviates the inefficiencies of both internet cafes and

cloud gaming?

2. can optimisation algorithms provide methods for the efficient allocation of cloud re-

sources in a cloud-based internet cafe, particularly given the use of GPU resources?

In order to answer the first question an outline of the architecture for a cloud-based inter-

net cafe is presented, based on cloud gaming technology. The capabilities of cloud gaming

technology within an internet cafe environment are not fully understood and require testing.

In addition, the characteristic demands on a cloud-based cafe are not well specified. Test-

ing is performed within a prototype cloud-based internet cafe environment to determine the

capabilities of cloud technology in that environment. These capabilities are combined with

internet cafe user surveys to build a representative data set for characteristic demands of a

cloud-based internet cafe’s users. Both the cafe capabilities and the representative data set

are then used to develop and test new resource allocation algorithms capable of handling

the unique requirements of a cloud-based internet cafe resource allocation problem. These

new algorithms can be utilised to ensure that recent advances in GPU virtualisation enable

cloud-based internet cafes to provide improved efficiency and flexibility over existing internet

cafes and cloud gaming services.

8

1.2.1 Virtualisation

Virtualisation is both the key to cloud computing (hence cloud gaming) and the recent ad-

vancement in GPU technology that presents potential in the combination of cloud gaming

and internet cafes. Before discussing this combination in detail, we summarise the concept

of virtualisation.

Virtualisation is the act of creating and providing virtual resources [14]. In cloud computing

virtual resources are created for CPU, RAM, Storage, Networking, and, more recently, GPU.

These virtual resources are provided by mapping them onto physical resources. The virtual

resources can then be used to provide services that users are demanding.

Cloud environments are created using server infrastructure and virtualisation. Servers are

computers with large quantities of CPU, RAM, and storage. They are designed to be stacked

efficiently in racks. Servers are placed in data centres which are able to provide the high

electricity and cooling requirements of server stacks.

Within a cloud environment, server resources are provided to users via virtual machines.

Virtual machines (VMs) are virtual computers provided using virtualised resources. These

VMs appear as physical computers to the end user. However, the CPU, RAM, and storage

on these VMs are virtual computing resources abstracted from a server’s physical resources.

Virtual resources are created and managed using hypervisors such as VMWare ESXi [15],

Citrix XenServer [16], Microsoft Hyper-V [17], and Linux KVM [18]. These hypervisors

enable a server’s resources to be divided over many VMs. Users connect to the VMs using

communication protocols including remote desktop protocol (RDP) and secure shell (SSH).

1.2.2 Virtual GPUs

Recently developed technology has enabled a server’s GPU resource to be virtualised as a

vGPU. This enables VMs on that server to share the server’s GPU and provides more

flexibility in terms of graphics resources for VMs. In particular, GPU virtualisation can be

9

used to tailor a VM’s vGPU to provide the necessary gaming performance within a cloud

gaming service. Previously cloud gaming services used physical GPUs with no virtualisation

and the consequent limited flexibility in how the physical GPU resource is mapped to VMs.

The benefits of vGPUs for cloud gaming stems from the ability to allocate virtual resources

which exactly match a user’s requirements for their demanded game. This enables more

efficient resource utilisation than an environment with either no virtualisation (where an

entire physical machine must be allocated to a user) or no vGPUs (where an entire physical

GPU must be allocated to a user). In order to fully realise the benefits of vGPU technology

for cloud gaming, i.e., to make optimal use of the added flexibility, it is important to allocate

resources to VMs in such a way that the physical resources are fully utilised.

The ability to allocate virtual resources, particularly vGPUs, to fully utilise the physical

resources is just as important when combining the cloud gaming paradigm with the internet

cafe approach. This thesis explores optimisation algorithms for solving this allocation problem

(see §1.2.4). However, first the combination of cloud gaming and internet cafes needs to be

described.

1.2.3 Combining Cloud Gaming and Internet Cafes

As described in §1.1, internet cafes suffer from inefficiencies in the way resources are allocated

and cloud gaming suffers from high latency as a result of being provided over the internet. Al-

leviating high latency over the internet cannot be achieved easily, but improving the efficiency

of internet cafes by using the cloud gaming paradigm is relatively straightforward.

Instead of providing individual physical resources (via a workstation) to users like a traditional

internet cafe, a cloud-based internet cafe provides virtualised resources to users in the same

way as cloud gaming. However, instead of providing these resources over the internet, a

cloud-based internet cafe provides these resources over a local area network (LAN) within

the cafe. The physical resources are provided by a server stack within a server room in the

cafe and accessed by users via simple workstations with limited resources, e.g., thin client

10

machines or low-cost PCs. Embedding cloud gaming within internet cafes, i.e., creating a

cloud-based internet cafe, provides the flexibility to allocate resources to users “on demand”

and, through the use of resource allocation algorithms, enables the profit obtained from the

virtualised servers to be maximised. The use of optimisation is critical for resource allocation

in cloud-based internet cafe and is discussed next.

1.2.4 Optimisation

Optimisation fills an important role in cloud computing, as virtualisation allows physical

server resources to be divided based on user demands. This induces an optimisation problem

to determine the best way to use a cloud’s resources. This type of optimisation problem is

called a resource allocation problem, and is solved differently depending on the information

known about the problem and how quickly a solution is required.

Cloud resource allocation is an instance of the multi-capacity dynamic bin packing problem

[19]. In this problem a set of bins, each with multiple limited capacity resources, must be

packed with various objects which consume quantities of the resources. In cloud computing

the objects are VMs for services which use CPU, RAM, network, and/or storage resources.

Servers act as bins in the problem and are where the VMs are packed.

There are two main categories for resource allocation problems: offline and online. Offline

problems (and hence algorithms for solving them – offline algorithms) have full information

about the servers and VMs that must be packed. Online problems (and online algorithms)

are given no future information, but have full knowledge of the servers, current VMs, and

the history of arrivals and allocations to date. The extra information available to offline

algorithms allow them to compute the optimal solution for any given profit function. On-

line algorithms obtain a percentage of the corresponding offline solution from the limited

information provided by using a selection and placement strategy.

Offline algorithms are often solved using integer linear programming, or if the problem is too

large, a heuristic. Linear programming is a well developed mathematical method for solving

11

models with requirements that can be represented by linear equations. In linear programming

the model is represented with decision variables, an objective, and a series of constraints.

Decision variables represent the choices being made. In the resource allocation problem these

variables are the choice of server onto which a VM is placed. The objective is the total profit

obtained from the choices represented by the decision variables. Constraints represent the

restrictions on allocations and, in cloud computing, constraints ensure the placement of VMs

do not require resources from any server that exceed that server’s available resources.

More specifically an integer linear program has decision variables which must be whole num-

bers rather than a continuous value. In the resource allocation problem the decision variables

represent the choice of server onto which a VM is placed. A partial VM can not be placed

onto servers, as such 0-1 (binary) variables are used to represent if a VM is placed onto a

specific server.

Online algorithms are solved using online heuristics. One type of algorithm used as online

heuristics are greedy algorithms. In the cloud computing context a greedy algorithm will

place VMs as demand arrives until all servers run out of resource capacity. The only decision

made by the greedy algorithm in resource allocation is the choice of server onto which a

VM is placed. Different choices provide different greedy algorithms and include placing VMs

onto: 1) the server with the lowest resource utilisation; 2) the server with the highest resource

utilisation; or 3) placing the VMs onto random servers. The greedy algorithm that performs

best will depend on the properties of the problem being solved. A greedy algorithm could

also include more specific placement strategies unique to different cloud services.

Other online algorithms may include rejection of users under certain conditions. These types

of algorithms tend to be problem specific. A competitive algorithm is one example of an

online algorithm with rejection. This type of algorithm focuses on worst case analysis. Worst

case analysis considers a scenario where an adversary is sending users to the algorithm in a

way which causes the algorithm to gain the minimum profit when compared to the offline

solution. This research considers what is known as the strong adversary, who knows every

12

choice the algorithm will make including the result of random outcomes. For adversarial

analysis it is necessary to prove the worst case profit of the algorithm will always be at least a

ratio of the offline optimal value. This ratio is known as the competitive ratio. A competitive

algorithm is one which attempts to maximise this ratio, often by balancing accepting and

rejecting users.

Both offline and online algorithms for resource allocation have been applied in cloud com-

puting for placing VMs onto servers when considering the CPU, RAM, network, and storage

resources. However few algorithms consider GPU resources and fewer still the virtual GPU

resources offered by Nvidia GRID [20] and AMD FirePro [21]. Those algorithms that do con-

sider vGPUs only consider single servers rather than full cloud environments. This research

gap necessitates the development of new algorithms to enable the efficient use of resources in

a cloud gaming environment and, hence, a cloud-based internet cafe.

1.2.5 Using Optimisation in Cloud-based Internet Cafes

Given: 1) the inherent inefficiency of internet cafes; 2) the flexibility provided by cloud

gaming, and 3) the effectiveness of optimisation to allocate resources efficiently; an internet

cafe that utilises cloud gaming and optimisation together provides a powerful new paradigm

for providing gaming. In a cloud-based internet cafe customers will arrive and pick a seat in

the internet cafe as in a standard internet cafe. They will then select and pay per hour for a

service level of their choice with each level providing access to different games, increasing in

cost for higher requirement games. A VM is then created with resources allocated in a local

cloud (i.e., virtualised server stack), including vGPU resources, and that VM is streamed to

the customer using a remote protocol. They can select and play games as usual.

In a cloud-based internet cafe, the cloud back-end will have less total computing resources

than having high performance workstations in every seat (as in a traditional internet cafe).

However, unlike a traditional internet cafe, a cloud-based internet cafe will fully utilise the

cloud back-end’s resources that the cafe’s owners have purchased. A resource allocation

13

Figure 1.2: Example cloud-based internet cafe showing seating flexibility

algorithm will ensure that resources are used efficiently from the cloud back-end servers.

This is important as lower total computing resources means that resources must be utilised

efficiently to supply the same number of users as in a traditional internet cafe.

Consider the zoned internet cafe previously shown in figure 1.1. Recall that there were a fixed

number of seats allocated to each zone so that resources were often under utilised or higher

profit users were turned away. In the cloud-based internet cafe shown in 1.2 any seat can

provide any demanded service, so the size of the zones can dynamically change as demand

changes. In figure 1.2 the set-up is similar to the traditional zoned setup show in figure 1.1

except that, instead of PCs connected at each seat, each seat has a thin client which provides

a connection to a VM hosted on a server. Consequently the number of Zone 1 and Zone 2

seats (using the naming convention from figure 1.1) can be adapted as needed. In figure 1.2

there are two low power, Zone 1 VMs being provided and four high power, Zone 2 VMs being

provided.

Realising an optimisation-driven, cloud-based internet cafe requires analysis of and decisions

on: 1) current hardware; 2) virtualisation platforms; and 3) remote desktop solutions for

14

cloud gaming applications. In addition, the optimisation problem must be defined. This

definition includes the creation of both model parameters and a representative data set of the

cafe for both servers and users. Given the problem definition, offline and online algorithms

for resource allocation can be developed. The online models are useful as an operational

solution for the cloud-based internet cafe and the offline models are useful for evaluating the

potential of the online algorithms.

In addition to gaming, the cloud-based internet cafe has additional applications for busi-

nesses, and universities. While most staff/students only require word processing, emails, and

web browsing, there are often a few staff/students that require more graphically intensive

applications including Computer Aided Design (CAD) and computational algorithms such

as computational fluid dynamics. Even within these applications there is variation in the

demand pattern exhibited by different staff/students. It is not cost effective to have all the

desktops in a workplace/university able to supply the highest intensity task even if all workers

sometimes require these resources. Often workplaces have specific desktops with the required

capabilities and universities have specific computer labs with specialised machines. Using the

same paradigm as described for optimisation-driven cloud-based internet cafes, businesses

and universities would be able to have any desk or lab access high performance resources

simply by connecting to the correct VMs on a virtualised server stack within a local data

centre.

1.3 Thesis Outline

This thesis presents research into the architecture and optimised operation of a cloud-based

internet cafe. However, the system described throughout this thesis can also be applied

within local clouds that provide graphics-intensive applications and for virtual workstations

in business. This addresses the limitations of a traditional internet cafe and has the ability

to offer improved flexibility and efficiency with less resources going under-utilised.

15

Chapter 2 summarises the current research in internet cafes, virtualisation, and resource

allocation. The Resource allocation is considered both in general and in a cloud environment.

Chapter 3 presents an outline of the hardware and software options for developing a cloud-

based internet cafe. Using this outline a test setup is built, benchmarked and utilised for

algorithm testing.

Chapter 4 presents the mathematical description of the resource allocation problem faced in

a cloud-based internet cafe and also presents the test data sets for benchmarking algorithms.

Chapters 5, 6, and 7 present algorithms which solve the resource allocation problem for

a cloud-based internet cafe. Chapter 5 develops integer programs for solving the resource

allocation problem to obtain optimal profits given perfect information. Chapter 6 utilises

the integer programs from chapter 5 to develop a prebooking system for an internet cafe

where users request seats in the internet cafe in advance. Finally chapter 7 develops online

algorithms which solve the resource allocation problem with no future information. All of

these algorithms are tested on data sets described in chapter 4.

Chapter 8 compares the algorithms in chapters 5, 6, and 7 and discusses their strengths and

weaknesses. This chapter also considers the potential applications for the algorithms and the

overall cloud-based internet cafe system.

1.4 Contribution

This thesis proposes a novel approach to improving an internet cafe’s resource efficiency

through the use of virtualisation in particular virtual GPUs. In order to realise this effi-

ciency, new resource allocation algorithms must be developed which take an internet cafe’s

user demands and meets those demands via virtualised resources and server virtualisation.

The cloud-based internet cafe system also makes use of recently developed technology in GPU

virtualisation to match the available graphics resources to the demanded graphics require-

ments. The use of virtualised resources, in particular vGPUs, reduces the cost inefficiency

16

that results from leasing individual workstations with more resources than most users require

(as occurs in traditional internet cafes).

Currently there is no literature describing the overall performance and capabilities of new

GPU virtualisation technology from both a hardware and software perspective. We present

an analysis of available technologies and benchmark the hardware performance in a gaming

setting. In addition to this analysis, realistic test sets were created that describe an internet

cafe’s demand profiles and the servers that could be available within a cloud-based internet

cafe.

Finally, this thesis presents resource allocation algorithms for efficiently meeting user resource

demands by allocating resources from servers using virtualisation. Algorithms are built to

operate with perfect information, partial information, and no information about future user

demands. The algorithms are developed for a cloud-based internet cafe, but can also be

applied to cloud gaming. However, the algorithms are less effective for cloud gaming envi-

ronments due to the added affect of latency.

Chapter 2

Background

This chapter presents background concepts and previous research on internet cafes, virtualisa-

tion, cloud computing, cloud gaming, and optimisation for cloud computing. The background

of optimisation for cloud computing discussed in this chapter includes both resource alloca-

tion for cloud computing and a more general optimisation model, dynamic bin packing, that

can be specialised to model resource allocation. This chapter also includes a literature review

of resource allocation for VMs in both cloud computing and cloud gaming.

Current research into internet cafes, presented in §2.1, consists predominantly of surveys,

which provide insight into the way internet cafes are managed, and the demands of users. In

particular, this research is useful for building a data set that characterises internet cafe users

and the services they typically demand.

The background concepts of cloud computing, virtualisation, and cloud gaming make up the

“building blocks” of a cloud-based internet cafe, and the background research describes the

current state-of-the-art for building these environments. The discussion on virtualisation is

limited to research that applies to private clouds, public clouds, and cloud gaming. Specific

background concepts and research are presented for virtual desktop infrastructure (VDI) and

vGPUs for cloud gaming. All of these background concepts and research are presented in

§2.2.

17

18

Section 2.3 discusses the placement of VMs onto cloud infrastructure via resource alloca-

tion algorithms. Background concepts for resource allocation are presented along with the

mathematical modelling techniques behind resource allocation algorithms. The resource al-

location problem is described as a mathematical model, and the solution techniques available

for solving the resource allocation problem are presented.

Finally, §2.4 presents a literature review on current solutions to the resource allocation prob-

lem for VM placement in both cloud computing and cloud gaming.

2.1 Internet Cafes

Internet cafe research focuses on the operational architecture of the internet cafe; and the

demand profile and demographics of internet cafe users.

An internet cafe owner leases PCs from a supplier and also has a contract for game licenses

for the computers in the internet cafe [22]. Alongside the licensed games, an internet cafe

provides access to additional services including web browsing, email, and a video player.

When entering an internet cafe, there is an expectation that a customer may use any seat in

the internet cafe for their desired service. Owners usually charge per hour for the use of a PC.

Understanding how users demand and utilise services is essential for developing a cloud-based

internet cafe, where decisions must be made to utilise demanded resources efficiently.

To the best of the author’s knowledge, no research has been published that develops strategies

for efficiently operating an internet cafe. It is clear that internet cafes perform some minor

optimisation, but any resulting findings or strategies are not published or potentially not

even fully realised. One such strategy is the implementation of zoning in China which has

been implemented to efficiently operate an internet cafe that has two clear groups of users:

gamers and non-gamers. While gamers will use the internet cafe to play a variety of games,

non-gamers use the internet cafe for checking emails, browsing the web, and watching videos.

These non-gaming users do not require the computational resources that gaming users need,

19

so some internet cafes save money by leasing cheaper, low-performance computers to supply

non-gaming users. No research has been published on the effectiveness of these zones.

No data has been released on the exact demands and profiles of internet cafe customers. This

means no raw data is available on: when customers visit cafes; how long customers stay; and

what services customers utilise. Fortunately, extensive research is available in the form of

surveys of internet cafes both from an ownership and customer perspective. These surveys

are summarised next and can provide less precise answers than raw data as to the when, how,

and what questions on customers in internet cafes.

Surveys of owners include studies on the impact, growth, and drive in developing internet

cafes. One survey of internet cafe entrepreneurs in Indonesia [23] investigated the factors that

make internet cafes successful. Significant factors in success were regular or repeat customers,

high-speed internet connections, and offering computer games as a service. Another survey

on African internet cafes [24] found that internet cafes can provide affordable access to the

internet and that using an internet cafe model (without charging for the service) through

libraries and schools can offer improved education outcomes. Another survey in China studied

the quantity and size of internet cafes in China [1] finding there to be over 185,000 internet

cafes averaging 120 seats, with large internet cafes having over 400 seats.

Surveys of internet cafe users have been conducted all over the world including Turkey [25, 26],

Pakistan [27], Ghana [5, 28], India [29], Malaysia [4], Uganda [30], China [31, 32], Nigeria [33],

Norway [2], and elsewhere [3, 34, 35]. These surveys study the who, what, when, where, and

why of internet cafe users. Some research papers survey specific subsets of internet cafe users:

medical students [29]; students [33]; or adolescents [26]. Surveys of all internet cafe users are

needed to create representative datasets for testing. These surveys study the demographics

of internet cafe users and, most importantly: the time of day users frequent internet cafes;

what services they utilise in the internet cafe; and how long users stay on average. Other

demographics include gender, age, and occupation. These surveys report that most users go

20

to internet cafes in the afternoon or evening with around half the users playing games, and

most users staying 2 to 3 hours [4, 25].

The only other noteworthy area of research on internet cafes is in the safety space. One aspect

of safety is digital privacy which considers the venerability of internet cafes to scams and key-

loggers [36, 37]. The other major safety consideration in internet cafes is physical safety,

especially hygiene in internet cafes. Studies into hygiene include the number of bacteria on

keyboards [38] and in the air [39].

This overall lack of research may be due to a lack of significant monetary incentive. The cost

of the physical desktops cannot be significantly reduced beyond zoning without using recently

developed virtualisation technology. Even zoning imposes a significant inconvenience on the

customer as a customer can no longer sit in any seat. Virtualisation allows closer matching

of demanded resources to supplied resources than physical computing. This virtualisation

necessitates the need for research into user demand profiles and supply side optimisation.

2.2 Virtualisation

Virtualisation is the act of taking physical resources and mapping them to virtual resources

[14]. Virtualisation can be performed by a private business or resources can be rented pre-

virtualised from a public provider. These virtual resources must then have a virtual machine

(VM) set up to use them, and that VM is connected to remotely using virtual desktop

infrastructure (VDI). Cloud gaming makes use of virtualisation methods to provide games

to users. More recently the advent of vGPU technology has enabled cloud gaming providers

to add virtualised graphics capabilities to VMs.

This section presents background concepts and research on the use of virtualisation to: 1)

build a cloud computing system from basic computing infrastructure – §2.2.1; and 2) deploy

cloud services (using an existing public cloud computing system) for use by end users – §2.2.2.

This cloud computing system is then accessed by users using VDI which is discussed in §2.2.3.

21

Finally, §2.2.4 summarises the use of vGPU technology in cloud gaming to enable games to

be played within a cloud computing system.

2.2.1 Building a Cloud

In private clouds, server infrastructure is managed internally and, as such, systems must

be built from the ground up to support virtualisation if that is the desired feature [40].

In private cloud systems, this requires a hypervisor capable of taking physical resources

and converting them efficiently into virtual resources for VMs [14]. The major hypervisors

available are VMWare ESXi [15], Microsoft Hyper-V [17], Citrix XenServer [41], and Linux

KVM [18]. All these hypervisors, except for Hyper-V, are based on the Linux Kernel and,

as such, support a wide variety of Linux console commands. All hypervisors are capable of

creating VMs with virtual CPUs (vCPUs), virtual RAM (vRAM), virtual disks (vDisks),

virtual switches (vSwitches) and vGPU.

After hypervisors are installed on a server, they boot and run in the same way that an operat-

ing system starts up. Once started a user can configure the server (including networking) and

then create vDisks and VMs. Individual hypervisors are often managed by software which

works remotely over multiple servers with the major management solutions being VMWare

vSphere [42] for VMWare ESXi, Citrix XenCenter [16] for XenServer, Microsoft Manage-

ment Console [43] for Microsoft Hyper-V, Virtual Machine Manager (or virt-manager) [44]

for KVM, and OpenStack [45] for managing any hypervisor. Management software simplifies

the process of creating and setting up VMs by providing a graphical user interface (GUI)

solution rather than requiring the use of the command line.

Virtual resources are created either directly on a hypervisor or through management software.

The process to create a virtualised resource is unique depending on the resource being virtu-

alised [14]. The process of creating a virtual CPU (vCPU) resource is achieved by creating a

vCPU core whose requests are forwarded on to a physical CPU core [14]. RAM is virtualised

so that each piece of vRAM used is associated with a specific piece of physical RAM. Unused

22

vRAM may have no physical RAM associated until it is in use. Networking is virtualised by

creating a virtual switch (vSwitch), which has an input port for each VM’s network connec-

tion and outputs for each physical network connection on the server on the target network

[46]. The details of this process are abstracted when using management software.

Management software makes it possible to migrate VMs between servers (unless they have

vGPUs as described in §2.2.5). This migration, at its simplest, is achieved while the virtual

machine is offline. Offline migration simply requires the movement of the vDisks to the

destination server (also known as the target server) [47]. Migration can also be performed

live in which case physical resources (CPU, RAM, and networking) must be allocated on the

target server for the VM. The vDisk is then copied and the vRAM synchronised. The user

is then switched to the new VM, and the original VM is shutdown [48]. This process takes

time and is network intensive, so previous research has investigated when to migrate VMs

and which VMs to migrate [49, 50].

VM placement and migration is simplified by using a network storage device shared between

multiple servers. Network storage devices are file stores which can be accessed as a local

disk but are in fact hosted on remote servers [51]. Network storage may consist of a single

server with multiple storage devices or multiple storage servers. Files are placed onto network

storage according to a variety of strategies. Most recently one of the preferred strategies uses

block storage and replications [52]. In this strategy, files are split into small blocks, and then

a number of replications (often 3) of each block are placed onto different storage devices in

a way which minimises the possibility of all replications going offline at once [52]. Examples

of network storage software include Microsoft Windows Storage Server [53] and Ceph [52].

Management software (for virtualised resources) significantly simplifies the usage of network

storage devices for virtualisation by providing software defined links allowing these devices

to be used as local storage on VMs.

Both VMWare and Microsoft provide the most straightforward virtualisation solutions for

building private clouds with straightforward setup and management. These solutions contain

23

many hidden advanced features that come with an associated high cost of a subscription to

the given solution. Alternatively, Citrix and Linux provide their base virtualisation solutions

for free with the option to access additional features by purchasing a subscription. To date,

virtualisation solutions provide only the most basic vGPU features for free with other vGPU

features available via subscription.

2.2.2 Supplying Cloud Services

Public clouds offer computing resources for lease on a pay-per-resource-per-time-unit model.

Public cloud providers such as Amazon Web Services [10], Microsoft Azure [11], and Google

Cloud [54] form the majority of the public cloud market. These public clouds utilise similar

virtualisation technology to the private cloud technology explained in §2.2.1.

By utilising these public clouds users can complete a variety of tasks such as providing: hosted

websites; email servers; virtual desktops; and high-performance computing. Public clouds can

offer the same services as a private cloud, but the cloud provider manages the back-end and

sells the resources to a wide variety of users [55]. Those users can utilise the public cloud

services, including virtualised resources, to develop and provide their cloud-based services

such as cloud gaming.

To provide a reliable service with acceptable performance around the world, public cloud

providers must have servers in datacenters in many locations around the world. Each location

is known as a node. The overall network of all nodes and their connections is known as a

content delivery network (CDN) [56]. These CDNs must have high-speed connections between

nodes with the ability to rapidly synchronise data between nodes [57]. This synchronisation

is especially important for websites so updates can be quickly propagated, and also allows a

user to travel around the world and maintain access to their virtual desktops.

24

2.2.3 Virtual Desktop Infrastructure

Virtual desktop infrastructure (VDI) provides a layer of management and access above the

aforementioned management software [58]. VDI offers the ability to manage multiple sets and

types of VMs, possibly being managed by multiple management software instances. A VDI

also provides methods for a user to remotely connect to specific VMs using their login(s).

The major VDI solutions are Citrix XenDesktop and XenApp [59], VMWare Horizon [60],

and Microsoft Remote Desktop and Remote Desktop Services [61]. XenDesktop, Horizon,

and Remote Desktop offer management and remote connection protocols for using VMs as

remote workstations. XenApp and Remote Desktop Services offer management and remote

connection to a specific application running on a VM. VDIs are often used to supply remote

desktops within a business, particularly for staff working remotely. A VDI offers security

alongside high-performance computing without the need for complex software on staff laptops

and desktops.

All VDIs offer at least limited support for graphical acceleration with support for OpenGL

[62] and DirectX [63] rendering. This allows the utilisation of GPUs and vGPUs in a limited

capacity. Microsoft’s offerings fully support gaming through RemoteFX [64]. Citrix Xen-

Desktop can run games using HDX but does not offer direct mouse capture which is required

for gaming.

2.2.4 Cloud Gaming

A cloud gaming system offers the ability to play video games through a cloud environment

[65]. This cloud environment may be a private cloud computing system – see §2.2.1 – or a

cloud service enabled by public clouds – see §2.2.2. Clouds (private or public) provide the

virtualised resources (including vGPUs) for cloud gaming systems and cloud gaming users

connect to cloud gaming resources via a WAN, i.e., the internet. However, many cloud

25

gaming systems utilise proprietary software, and the companies have chosen not to publish

their algorithms [66].

Current major cloud gaming providers are Nvidia GeForce Now [8], Sony Playstation Now

[7], and LiquidSky [9]. Playstation Now utilises technology acquired from the purchase of

OnLive and Gaikai [7]. This technology is based on using an entire GPU for gaming with no

graphics virtualisation [67]. In contrast, GeForce Now[68] and LiquidSky[9] both make use

of vGPU technology. However none of these providers have published specific details on how

their services utilise GPU/vGPU resources.

Cloud gaming suffers network issues introduced by the WAN connecting cloud gaming users

to cloud gaming resources. The term “network issues” broadly encompasses the overall delay

between inputting a command and seeing the result of that input, as well as the quality of the

image received. Natural delay of an uncongested network is difficult to improve and in fact

cannot exceed, at the very best, the speed of light. Hence, current research into cloud gaming

is heavily focused on reducing the congestion in a cloud gaming network and decreasing the

distance image data must travel in the cloud gaming network. This research includes work on

video encoding systems to reduce the network traffic caused by cloud gaming and reducing

the cloud gaming network latency [65, 66]. In the rest of this subsection the research into,

first, reducing network traffic and, next, reducing latency is summarised.

As a network gets congested, it is best to reduce the amount traffic being sent through the

network. In cloud gaming, the majority of network traffic is generated by sending a rendered

video from the cloud gaming resources through the connection to the cloud gaming user’s

virtual desktop. Hence, reducing the size of video being sent enables reduced network traffic,

and less network congestion, i.e., the network will work more efficiently [69]. Reducing the

video’s size without negatively impacting image quality adds additional strain on the video

encoding (i.e., more workload on the CPU in both the cloud gaming system and the user’s PC)

and requires an intelligent compression algorithm [70]. The additional CPU workload either

requires more resources at each end or more time for compression/decompression (introducing

26

a different source of latency). Research has found that gaming users find latencies over 100ms

unplayable. This limit combined with the high framerate required for video games creates

a difficult problem [71]. Gaming Anywhere is an open source cloud gaming package, which

attempts to address this issue [67]. First, frames are captured from either the desktop or

directly from inside the video game engine at the desired framerate. Then, various encoding

and compression libraries can be used to create compressed data and send it over the network

[72].

Given the aforementioned 100ms maximum latency for gaming, it is only possible to provide

users with a playable experience over the internet if they are within several hundred kilometres

of the servers that provide the virtualised resources [66]. This distance limitation means that

for a GaaS provider to achieve reasonable service, it would need to have servers in almost

every city in which that service is to be offered. Placing servers in that many cities is a

costly investment as servers must be purchased and rack space for those servers must be

rented in a data centre. This high upfront investment cost has stopped most cloud gaming

platforms from seeing mass-market success. While it would be possible to fill some holes

in such a system using public cloud resources, the typical use case for most public clouds

has less stringent requirements on latency and as such the cloud CDNs do not have enough

nodes to supply all locations with sufficient service. Furthermore, most cloud providers do

not currently have vGPU technology installed onto servers, a requirement for gaming.

2.2.5 Virtual GPUs (vGPUs)

In order to support GPU-accelerated high performance computing and GaaS, Nvidia and

AMD developed unique server GPU cards: GRID cards [20] and FirePro cards [21] respec-

tively. These GPU cards are specifically designed for virtualisation and VDI applications.

These GPU cards place multiple GPU cores onto a single card and allow each core to be

shared amongst multiple VMs as vGPUs (one vGPU for each VM). Current GPU virtuali-

sation is hardware based and related directly to the GPU card. As such, it is not possible to

27

live migrate a VM with a vGPU even if the destination server has the same GPU card. This

limitation means the only way to migrate a VM with a vGPU is offline by shutting the VM

down and removing its vGPU.

On Nvidia GRID cards, when a vGPU is created, it is allocated a core and vGPU type.

Depending on the type, the core’s resources will be divided into a number of equally sized

parts, either: eight, four, two or one. Once this division has been performed, all VMs must

be removed from the core before it can be altered [20].

Both the GRID and FirePro cards forgo external display ports (HDMI, DVI, VGA, Display-

Port) in favour of special video encoding chips which output encoded video ready to be sent

over a network for remote desktop. These chips limit the output framerate to 67FPS by

default [20].

Research conducted by Zhang et al. looks into the scheduling of GPU cores to improve the

performance of games on VMs using GPU virtualisation [73, 74]. Their research investigates

the optimal way to queue GPU processing time such that game performance is unaffected.

While research into improving the performance of individual cards is useful for future effi-

ciency it is not relevant to modelling the cloud-based internet cafe problem.

2.3 Resource Allocation in Cloud Computing

The problem of how to allocate virtualised resources to users in a cloud gaming system can be

modelled as a resource allocation problem in which users request and must then be allocated

server resources [75]. This problem exists in two contexts: offline and online. In the offline

context, all information is known a priori to the problem being solved. In the online context,

only the information of users that have already arrived is known a priori to the problem being

solved. This information updates over time as more users arrive and the problem consequently

needs to be re-solved. The field of resource allocation in both the offline and online contexts

is well studied, and that previous research is summarised next.

28

Resource allocation is a sub-category of the dynamic bin packing problem which is a specialisa-

tion of the bin packing problem. The classical bin packing problem takes a list L = (p1, . . . , pn)

of items and an infinite number of bins with capacity C. The size of an item pi is given by

a value si ≡ s(pi) where 0 < si ≤ C, 1 ≤ i ≤ n. The objective of the problem is to pack

the items into a minimum number of bins subject to the constraint that the total size of the

items in any bin is not greater than C [76].

One extension of the classical bin packing problem is when the bins may also have varying

capacities Cj , in which case the problem is known as a heterogeneous bin packing problem

[76]. The total number of bins may also be limited such that 0 < j ≤ m where m is the

total number of bins available. This problem is known as the multiple knapsack problem

(heterogeneous multiple knapsack problem if bin capacities vary) and the objective typically

changes to maximise the total number of items placed into bins [77].

The dynamic bin packing problem extends the classical bin packing problem by adding a time

component to the items. Each of the items is allowed to arrive and leave at arbitrary points

in time. In dynamic bin packing the items have two additional properties: an arrival time

ai ≡ a(pi) and a departure time di ≡ d(pi) where di − ai > 0 [78]. A further extension of the

classical bin packing problem is the multi-capacity bin packing problem where each bin and

item have multiple capacities and sizes. In this version of the problem, both C and si are

vectors of multiple capacities and sizes [79]. If the vector for each bin has different capacity

vectors Cj , then the problem is known as multi-capacity heterogeneous bin packing problem.

The resource allocation problem for VM placement at its most generic is a dynamic multi-

capacity heterogeneous multiple knapsack problem [77, 79]. This is because:

• The items have arrival and departure times – dynamic;

• The items and bins have vectors of capacities and sizes (related to the virtualised

resources) – multi-capacity;

• The bins (servers) have different vectors of capacities – heterogeneous;

29

• There are a limited number of bins – multiple knapsack.

This problem is NP-hard, so it is difficult to solve to optimality for a reasonable size problem.

However, by making assumptions that depend on each problem instance’s data, it is possible

to remove the NP-hard limitation.

In a resource allocation problem, the size vector of the items and capacity vector of the bins

represent demands on and availability of a variety of resources. One example of a resource

allocation problem is the allocation of traffic through a broadband network [80]. In this

problem, bin capacities represent bandwidth capacities of lines and switches. The items

are data packets that require bandwidth from lines and switches as they move through the

network over time, hence the dynamic nature of the problem. The main area of study for ICT

resource allocation is in cloud and grid computing where bin capacities represent a server’s

physical CPU, RAM, storage, and networking; and items are users’ demand for services

which maps to the required computing resources [81]. Cloud gaming resource allocation

adds the GPU resource to the standard cloud computing resource allocation. This extension

adds many unique complexities which are not considered in existing algorithms for cloud

computing resource allocation. Before considering the cloud computing or cloud gaming

resource allocation, approaches and algorithms for the offline and online generic resource

allocation problem are discussed.

The offline version of the resource allocation problem is most commonly solved using mixed

integer programming [82] or dynamic programming [83]. Integer programming is discussed in

detail in §2.3.1. In dynamic programming, the problem is broken down into a series of sim-

ple sub-problems. Each sub-problem is solved and its solution stored. The dynamic program

works through the problem examining, comparing, and combining sub-problem solutions until

it reaches the best solution for the overall problem [84]. The cloud gaming resource allocation

problem is not suited to the dynamic programming approach in practice as each sub-problem

requires an almost full enumeration of the problem space, thus removing the computational

30

advantage of the sub-problems and also requiring significant storage. The dynamic program-

ming approach to the cloud gaming resource allocation problem is not considered further in

this thesis.

The online version of the resource allocation problem can be solved with a wide variety

of heuristics including greedy [85], evolutionary [86], and general job scheduling heuristics

[87–89]. These online solution methods are discussed in §2.3.3.

2.3.1 Integer Programming

Linear programming is a solution method used to optimise a linear objective function within

a mathematical model whose requirements can be represented by linear relationships [90].

The decisions in a linear program are represented by decision variables which are subject to

linear equality or inequality constraints that represent the requirements. Solving the linear

program involves minimising the value of the linear objective function by setting the values

of the variables within the constraints. This problem is expressed in its canonical form as:

min cTx

Subject to:

Ax ≤ b

x ≥ 0

(2.1)

In the formulation given in (2.1), x is a vector of problem variables to be solved for, c is a

vector of costs for the variables, A is a matrix of constraint coefficients, and b is a vector of

limits for each constraint. In linear programming each variable in the vector x can take on

any continuous value that the constraints allow. Linear programs are solved using the dual

simplex method [91].

Integer programs limit some or all of the values of x to take integer values [92]. These integer

variables can be useful for binary decisions where 1 represents “yes”, and 0 represents “no”,

31

or sets of values where only whole numbers make sense, such as deciding the number of

computers to purchase. For resource allocation problems the decisions are where to place

an item. The placement choice is represented with a binary variable for each bin and item

pairing: the variable takes a value of 1 if the item is placed into that bin and 0 if it is not.

It is not possible to put fractions of the item in two (or more) different bins, so the variable

takes only integer values.

Integer programs can be solved by partially enumerating the solution space for the associated

problem in an attempt to find feasible integer solutions, and the optimal integer solution

is recorded. One strategy for exploring these feasible solutions is known as branch-and-

bound. In a branch-and-bound strategy, first, the problem is solved with the requirement

for integrality of the variables being relaxed. The resulting linear solution objective value

provides a lower bound on the problem’s objective value. This is because the linear solution

represents the best possible objective value when variables are allowed to be continuous so

that all feasible integer solutions will have objective values greater than or equal to this

objective value. Any feasible integer solution provides an objective value that forms an

upper bound on the problem’s objective value. Often heuristics are used to find a feasible

integer solution quickly. In some cases, the initial linear solution is also a feasible integer

solution (the problem is known as “naturally integer”), and branch-and-bound will stop.

Otherwise, branching is the technique used to enumerate the solution space. This enumeration

is accomplished by splitting the solution space so that two smaller subsets are created, and

infeasible (fractional) solutions that include the current linear solution are discarded. Each

smaller subset is then relaxed to be linear, solved, and the enumeration process continues

to split the solution space into more and more subsets while discarding infeasible solutions

along the way. As it progresses, the branch-and-bound algorithm builds a tree structure

where each node represents a solution where previous branches have fixed some variables

to integer values, and further branches from these nodes will fix other variables to integer

values. Hence, each node further down the tree contains more integer variables, but the

relaxed solution represented by that node has less of the solution space, so the objective

32

values are increasing the further down the tree a node is. If any node’s solution is greater

than the current upper bound, i.e., the optimal feasible integer solution found so far, then

this node is considered fathomed, and all subsequent nodes can be pruned from the tree (i.e.,

not explored). In some cases a subset becomes empty, and that node’s linear relaxation is

infeasible. Further branching will not restore feasibility, allowing this node to be fathomed.

As nodes become fathomed or provide feasible integer solutions, the lower bound increases to

be the minimum objective value of any node that is neither fathomed nor integer. Branch-

and-bound continues exploring until all nodes in the tree are either fathomed (bounded or

infeasible) or represent feasible integer solutions. At this point, the optimal feasible solution

found so far is the optimal feasible solution for the original problem. Note that the difference

between the upper bound and the lower bond is known as the optimality gap and branch-

and-bound can be terminated early if this gap is considered small enough, usually relative to

the lower bound. For full details of these solution methods refer to [82, 90, 92].

Solving a resource allocation problem using integer programming requires: 1) an integer

programming formulation for the problem – Chapter 4 provides such a formulation for the

cloud gaming resource allocation problem; 2) data that provides knowledge or estimates of

future data on capacities and sizes – this is discussed further in Chapter 4; 3) a language for

implementing the formulation and data as a problem instance; and 4) a solver for solving the

problem instance. Given the formulation and full or estimated information, the solver will

return the optimal solution to the problem instance. There are many programming languages

and software packages for implementing integer programming formulations and solving the

resulting problem instances.

Problem formulations can be implemented in a variety of languages including the currently

popular options: Python [93], C++ [94, 95], and Julia [96]. The resulting problem instances

can then be solved using a number of packages: Gurobi [94], IBM CPLEX [97], COIN-OR [95]

(CBC [98] for integer programs (IPs)). Gurobi and IBM CPLEX are commercial optimisers

capable of solving linear, mixed integer, and quadratic programming problems. COIN-OR is

33

an open source optimiser capable of solving linear programs via CLP [95] (COIN-OR LP),

and mixed integer programs via CBC [98] (COIN-OR Branch and Cut) [99].

Integer programs for cloud computing resource allocation attempt to place virtual machines

onto a set of servers such that an objective is optimised [100, 101]. Common objective func-

tions include: maximising the profit from VMs that are running; minimising the cost of

running VMs; minimising the number of servers in use; minimising the number of VM mi-

grations required; or maximising the performance of VMs [100–103]. These integer programs

may allow VMs to be migrated between servers once the VMs have started up.

These integer programs are used to solve resource allocation problems offline, §2.3.2 focuses

on techniques to for solving resource allocation problems in the online setting.

2.3.2 Competitive Analysis of Online Algorithms

The quality of solution obtained by an online algorithm is often measured using competitive

analysis [104]. Competitive analysis is the process of comparing the objective obtained from

an online algorithm to the optimal offline objective for the same problem instance. Denote

the objective obtained by a deterministic online algorithm ALG for a problem instance σ of a

maximisation problem Π by ALG(σ) and the optimal offline objective for the same instance

σ by OPT(σ). Then ALG is considered c-competitive, for c ≥ 1, if OPT(σ) ≤ c · ALG(σ)

for every instance σ of Π. The competitive ratio of ALG is defined as the infimum over

all c such that the algorithm is c-competitive, i.e., the competitive ratio ≡ min c≥1 ALG is

c-competitive. The value c is also called the competitive ratio.

This c-competitiveness provides a measure for the worst case objective value produced by

an online algorithm, i.e., solutions produced by the online algorithm will, at worst, have an

objective value of OPT
c for a maximisation problem.

34

2.3.3 Online Algorithms and Heuristics

Extensive research has been conducted into resource allocation as an online optimisation

problem. The areas with the closest relationship to the online cloud gaming resource alloca-

tion problem are online interval scheduling [105, 106] and online call admission (as surveyed

in Chapter 13 of [104]).

In an online interval scheduling problem, intervals or jobs with fixed start and end times

are presented to an online algorithm over time. This algorithm must then decide which

intervals to accept and to which machines the intervals should be assigned. The objective

is to maximise either the profit of all accepted intervals or simply the number of accepted

intervals, given that only one interval can be assigned to a machine at any point in time.

Once started, an interval cannot be moved. In most cases the online algorithm is allowed

to abort an accepted interval during its execution, but will then lose the interval and the

profit from accepting it [107–112]. Settings in which termination is not allowed are studied

in [113, 114].

In online call admission problems, calls arrive over time. Each call consists of two nodes

within a network that need to be connected and a required (potentially changing) bandwidth

of the connection along with an associated profit. All potential nodes are contained within

a network of nodes and edges with various capacities on the edges. Accepting a call requires

the assignment of a path through the network that connects the two nodes. This path must

have free capacity at least equal to the required bandwidth for the duration of the call. The

objective is to maximise the total profit of all accepted calls.

Awerbuch et al. [115] present an online algorithm for the call admission problem with a

competitive ratio of O(log nT) where n is the number of nodes in the network, and T is the

maximum call duration. Note that this results requires the assumption that the bandwidth

required by any one call is only a small fraction of the smallest edge capacity and that the

profit of the call is proportional to the product of the bandwidth and duration. This online

algorithm assigns each edge a cost function that is exponential with respect to the current load

35

of the edge and can work with multiple copies of the network. The algorithm has previously

been used for several other offline and online resource allocation problems [116–120].

Further related research has been conducted on online job scheduling in cloud and grid com-

puting environments [121]. This research considers the arrival of jobs that are then passed to

a scheduler. The scheduler uses online algorithms to allocate jobs to servers that have appro-

priate resources as the servers become available. The algorithms in the research consider how

to place jobs with respect to the requirements of other jobs in the queue to shorten the total

wait time of all jobs. This consideration may lead to long waiting times for some jobs [122].

Jobs are requested over the internet into the environment, and therefore geography can be

an important factor in many scheduling algorithms [123]. It is also important to consider the

scalability of solutions as many clouds have thousands of servers available. As the number

of servers increases computation time for job placement can contribute a significant amount

of time towards the total job processing time due to the large number of options available

[124]. This problem is often addressed by scheduling jobs in parallel using multiple schedules

controlled by a single meta-scheduler [121]. Scheduling multiple jobs at once is a difficult

problem as any conflicting allocations must be addressed before a plan can be executed.

While this sort of scalability is not a significant consideration for a cloud based internet cafe

with at most hundreds of users it can be an important factor for cloud gaming problems with

thousands of users.

The existing literature on online and offline algorithms in the cloud computing resource

allocation problem is discussed in §2.4.

2.4 Literature Review

This section contains a review of the literature on resource allocation for the placement of

VMs onto servers in both cloud computing and specifically cloud gaming. This review looks

at the latest research into VM placement in cloud environments in both the offline and online

36

settings. Two algorithms, the multi-resource algorithm and the non-migration algorithm,

are discussed in detail as they relate most closely to the cloud gaming resource allocation

problem.

2.4.1 Cloud VM Placement

There are many surveys of research into VM placement in the cloud. These surveys show

that an extensive variety of objectives for VM placement make it difficult to compare algo-

rithms. This variety also makes it hard to adapt existing solution approaches from specific

applications.

Xu et al. survey load balancing algorithms for VM placement [19]. Their survey categorises

algorithms by their:

• environment scenario – are the VMs in either public cloud(s), private cloud, or hybrid

cloud (a mix of public and private clouds);

• management system – is the management of VMs either centralised (one location makes

all decisions) or distributed (decisions are made at localised nodes);

• VM resource type – do the VMs use single or multiple resources;

• VM uniformity – are the VMs grouped as homogeneous (all VMs are the same), or

heterogeneous (VMs are allowed to be different);

• VM allocation type – do the algorithms allocate the VMs either online (dynamically)

or offline (statically);

• optmisation strategy – is the optimisation of the VM placement performed using a

heuristic, a meta-heuristic, or a hybrid approach;

• scheduling process – is the scheduling process for the VMs grouped into initial placement

strategies or migration strategies; and

37

• load balancing objective – the load balancing objectives consist of:

– load variance;

– makespan;

– number of overloaded hosts;

– percent of VMs located;

– quadratic equilibrium;

– throughput;

– standard deviation of connections;

– average imbalance level;

– capacity makespan;

– imbalance score;

– remaining resource standard deviation;

– number of migrations; and

– service level agreement (SLA) violations.

Details of these objectives can be found in [19], but the relevant objectives for cloud

gaming are load variance, percent VMs located, throughput, and SLA violations.

Xu et al. found that most algorithms deal with multiple resources, allocate heterogeneous

VMs dynamically, and use heuristics to optimise placement. However, they also found that

most meta-heuristic approaches produce better results than standard heuristic approaches

(within the limited comparison that could be made). Most algorithms are also multi-objective,

they not only try to optimise a load balancing objective, but they simultaneously try to

optimise profits, costs, or downtime. Xu et al. also note that due to the differences between

the problems addressed in each paper it is difficult to compare the algorithms. The papers

surveyed by Xu et al. in [19] demonstrate the need for algorithms that:

• work in any environment scenario;

38

• manage VM placement centrally;

• consider multiple resources;

• allocate heterogeneous VMs;

• allocate VMs dynamically, i.e., are online algorithms;

• perform initial placement using a heuristic; and

• perform adaptive migration of VMs using a meta-heuristic.

Mann surveys the mathematical modelling problem formulations and optimisation algorithms

for provisioning VMs in a cloud environment [125]. He breaks the VM allocation problems

into two groups: single datacenter and multi-IaaS. Single datacenter problems handle the

placement of VMs within one datacenter whereas multi-IaaS problems address VM placement

in multiple datacenters. Mann states that capturing hybrid cloud scenarios (i.e., a mix

of public and private clouds) will require a convergence of the two problem types. Mann

also states that the heterogeneity of problem formulations makes it challenging to compare

algorithms and he notes the need for a method to compare algorithms. Mann concludes

that, to select a potential algorithm for a given problem type or problem instance, one must

characterise the problem type/instance into categories similar to those proposed by Xu et al.

[19].

Milani et al. conduct a systematic and comprehensive review of load balancing algorithms for

VMs in the cloud [126]. The review focuses on dynamic (i.e., online) and hybrid (i.e., mixed

offline and online) load balancing techniques. They found hybrid algorithms have increased

performance over purely dynamic algorithms. It is noted that no algorithms have been

presented for cloud load balancing that can handle a variety of objectives, choosing instead to

focus on a single objective or single group of objectives. Few algorithms can handle objectives

beyond what they were designed for. Load balancing algorithms can improve cloud resource

utilisation and increase overall cloud performance. Milani et al. conclude that algorithms

39

addressing load balancing are unable to handle heterogeneous systems of VMs, and have low

scalability, both of which are a requirement for a real on-demand cloud system.

Mills et al. present an unbiased method for comparing placement algorithms [127]. The

method compares initial VM placement algorithms in simulations of large distributed systems.

They compare 18 VM placement algorithms and conclude that the selection of a suitable

server group is more important than the selection of a specific node/server. The placement of

a VM on specific nodes in on-demand infrastructure only makes a small difference in overall

profits while the selection of a grouping has the potential for substantial, long-term profit

gains.

Using the groups from these surveys key papers on VM placement in cloud computing are

summarised in table 2.1. This review focuses on algorithms with applications which work

without live migration. Summary paragraphs of each paper are presented in the remainder

of the chapter.

Table 2.1: Summary of key VM placement papers

Paper Field Objective type Load Objective Algorithm Type Information Strategy Migration

Gupta et al [128]
High Performance
Computing

Single Maximise throughput Heuristic Offline Grouping VMs No

Calcavecchia et al [129] VM placement Multi

Minimise weighted sum:
number of migrations,
load variance,
and SLA violations

Heuristic Online Historical Usage
Limited
Quantity

Hyser et al [130] VM Mapping Multi User defined Heuristic Online
VM to server
mapping

Yes

Chaisiri et al [100] VM placement Single Minimise cost
Stochastic
integer program

Hybrid Grouping VMs No

Fang et al [101] VM placement Single Minimise power usage Heuristic Offline
Network planning
and VM placement

No

Xu and Fortes [102] VM placement Multi
Maximise throughput,
minimise power usage
and heat produced

Heuristic Offline Genetic algorithm
Future
Work

Chang et al [103] VM placement Single
Either minimise cost,
maximise throughput

Heuristic Online Multiplicity No

Leinberger et al [131] VM placement Single Minimise load variance Heuristic Offline
d-capacity
bin packing

No

Gupta et al. present an application-aware VM placement algorithm for high performance

computing clouds [128]. They develop the VM placement algorithm in OpenStack and test

it using CloudSim. The VMs are placed using a distinct set of heuristic rules. Gupta et

al. find that the cloud benefits from placing VMs into smart co-locations within server in-

frastructure i.e., placing related VMs in such a way that no VM is slowing down the overall

process. They also find that knowledge of the application running on the VM can benefit

40

placement algorithms. Their algorithms show a 32% improvement in job throughput and per-

formance improvements of up to 45% using their algorithm over random VM placement. This

research demonstrates the potential for intelligent placement algorithms in high-performance

computing and the potential of grouping VMs for intelligent co-location on servers.

Calcavecchia et al. present a practical model for cloud placement called Backward Speculative

Placement (BSP) [129]. BSP projects the past resource demands of VMs onto a candidate

server. This strategy is used to place VMs given a stream of arriving requests and to peri-

odically optimise the system to handle changing demand. Calcavecchia et al. compare BSP

to a mixed integer program (with limited solve time) showing improvements in solution time

from minutes to under a second with similar solution quality. Their BSP algorithm shows

the potential of utilising historical VM resource demands when making placement decisions.

Hyser et al. present a virtual machine placement system which uses an autonomic controller

to dynamically map VMs to physical hosts depending on user policies [130]. They show that

the mapping problem is important and computationally challenging. The system presented

offers transparent live migration of VMs to match new mapping strategies. The usage of

a mapping strategy is significant as within a large datacenter it is challenging to optimise

individual VMs or to reallocate VMs manually. Instead, system-wide mapping strategies are

required for general rearrangement.

Chaisiri et al. propose an optimal virtual machine placement algorithm which uses stochastic

integer programming to minimise the cost of hosting each VM in the cloud [100]. The

algorithm takes a subset of VMs and places them into a cloud provider’s system that charges

for computing power consumed. They then consider the decision of reserving resources in

advance for a lower price or purchasing resources on demand when there is uncertainty in

how many VMs will be demanded. They create a stochastic integer program to optimise

reservation and on-demand purchasing with uncertainty in price and VM demand. They

claim that the stochastic integer program can achieve the lowest total cost possible even

under uncertainty.

41

Fang et al. present VMPlanner, a power saving algorithm which attempts to place VMs such

that as many network devices as possible can be shut down to save power [101]. VMPlanner

provides a network-wide power manager which optimises VM placement and traffic flow rout-

ing to reduce data centre power costs. A combinatorial optimisation problem is formulated

and decomposed into three problems: traffic aware VM grouping; distance aware VM-group

to server rack mapping; and power-aware inter-VM traffic flow routing. VMPlanner integrates

efficient approximation algorithms to solve these problems. Fang et al. claim VMPlanner can

outperform other network power algorithms. They demonstrate that combining VM place-

ment with network planning can potentially improve power usage in data centres. They note

that VMPlanner could be further improved by including formulation on VM relationships in

terms of network communication and the addition of an intelligent reallocation and migration

algorithm.

Xu and Fortes present a multi-objective optimisation problem for simultaneously minimising

total resource wastage, power consumption, and thermal dissipation costs that is solved using

a genetic algorithm [102]. This specialised genetic algorithm is proposed to efficiently deal

with the large solution space in problem instances for large-scale data centres. Their initial

placement algorithm shows superior performance compared to standard bin packing algo-

rithms and single objective optimisation. They also note that VM migration adds additional

flexibility but is a costly activity and propose an additional objective to handle VM migration

opportunities which minimises the impact of VM migration.

Chang et al. formulate the VM placement problem as a resource allocation problem with

multiplicity [103]. Multiplicity is the concept of allocating a quantity of resources for a

specific task where a number of users are estimated to demand that task. This is achieved

by allocating resources in groups of tasks. For example, resources may be allocated to run

virtual private networks (VPNs) for an estimated 4 VPN users. These groups of resources

are utilised in a similar way to resources in the interval scheduling problem in which VMs are

placed and use resources within the allocation for an interval before releasing the resources

for another user. These resource demands are allowed to be heterogeneous over the different

42

resource types. This heterogeneity is simplified into five resource demands for each task. An

approximation algorithm to reduce costs or improve resource utilisation is developed using

this problem structure, which applies to both private and public clouds.

Leinberger et al. present two d-capacity bin-packing algorithms for scheduling jobs in a

parallel processing system [131]. They develop permutation pack and choose pack algorithms

which place items with improved scaling and the ability to account for multiple capacities.

Permutation pack attempts to place items into bins by ordering placement by the bin capacity

to item size ratio. The result is each capacity within a bin is almost equally loaded. Choose

pack instead groups items into large and small size groups for different capacities. Choose

pack then attempts to pack these groups, so all capacities are roughly equally loaded within

each bin. They find these algorithms can improve performance over first fit packing. This

improvement shows that in situations where the capacities have little correlation in usage, a

smart balancing algorithm, which considers the different capacity demands from items, can

improve algorithm performance.

2.4.2 Cloud Gaming VM Placement

Cloud gaming VM placement is a less well studied field with few existing algorithms for VM

placement in a data centre with GPU virtualisation.

Cai et al. survey current research into cloud gaming platforms and the optimisation of those

platforms [132]. They present cloud gaming platforms which support quantitative perfor-

mance measurements, including quality of service and quality of experience measures. They

also present optimisation research which is split into two major categories: optimising cloud

server infrastructure, including resource allocation and distributed architecture; and optimis-

ing communication, including data compression and transmission. Research into resource

allocation in cloud gaming has been conducted on both VM placement and cloud scheduling

to improve the quality of cloud gaming services. The surveyed research into resource alloca-

tion mainly consists of intelligent GPU virtualisation algorithms and methods for maintaining

43

the quality of experience when sharing GPUs. However, research has also been conducted

into VM placement that considers: quality of experience; minimising the number of nodes

required; and predicted user end times. Cai et al. conclude that further optimisation of

resource allocation is needed in cloud gaming to make services profitable.

Current research papers into VM placement in cloud gaming are summarised in table 2.2,

and in the remainder of this section. Current research does not handle the full complexity of

vGPUs with papers either simplifying the problem or ignoring it. The objectives are focused

on SLA violations and maximising throughput.

Table 2.2: Summary of cloud gaming VM placement papers

Paper Field Objective type Objective Algorithm Type Information Strategy Level

Li et al [75] VM placement Single Maximise throughput Heuristic Online
Competitive
greedy

VM
simplified
vGPU

Li et al [133] VM placement Single Maximise throughput Heuristic Online
Neural
network

VM
simplified
vGPU

Zhang et al [73, 74] GPU scheduling Single
Maximise throughput or
minimise SLA violations

Heuristic Online
GPU
controller

GPU

Hong et al [134] VM placement Multi
Maximise profit and
minimise SLA violations

Integer program
and heuristic

Offline
Quality
driven

VM
no vGPU

Finkel et al [135] Evaluation Single Maximise throughput Heuristic Online
Hill-climbing
algorithm

Server
per user

Li et al. present the MinTotal Dynamic Bin Packing problem solved using first fit, best fit,

and any fit online algorithms for placing VMs in a cloud gaming system [75]. This research

has demonstrated potential competitive ratios for greedy strategies for a simplified version of

the cloud gaming problem. They find competitive ratios which relate to the ratio between the

minimum and maximum duration any user can stay. This ratio is defined as µ = max duration
min duration .

They also assume all users will utilise the same quantity of resources. They find competitive

ratios of µ+ 1 for any fit, 2µ+ 7 for first fit, and µ+ 5 for hybrid first fit, with best fit being

unbounded (i.e. has no limit on how badly it can perform). It is important to note this paper

does not consider GPU virtualisation with its full complexities and constraints.

Li et al. also present a placement strategy for cloud gaming resources which attempts to

place users based on predicted session end times [133]. This research predicts end times of

users with a neural network. They find that the added information from estimated end times

significantly improves resource utilisation when compared to first fit or best fit algorithms.

44

Due to the daily play frequency of gamers, this approach works to predict session lengths

accurately and reduces wasted cloud resources. The paper assumes that GPU is the only

resource that is a bottleneck for virtual machines.

Zhang et al. present VGRIS (Virtualized GPU Resource Isolation and Scheduling), and

vGASA (virtualised GPU Adaptive Scheduling Algorithm) resource management frameworks

for cloud gaming that seek to share GPU resources between VMs [73, 74]. VGRIS utilises

agents on VMs and a central controller to regulate GPU usage from individual VMs. VGASA

utilises agents on VMs and a central controller in a paravirtualisation framework to regulate

GPU usage. The VGASA regulation runs with three strategies: 1) scheduling algorithms

allocate enough resources to meet minimum performance requirements; 2) VMs are given

GPU resources proportional to their weight; 3) a hybrid algorithm that allocates resource

to meet minimum performance requirements, giving extra resources proportional to a VMs

weight. All algorithms can provide game performance only a few FPS lower than native

GPU. Performance is reduced by between 5% to 10% in 3DMark tests for the proportional

algorithm. This research shows the potential for vGPUs to spread resources amongst multiple

VMs given intelligent load balancing.

Hong et al. investigate optimal cloud gaming resource allocation to both maximise profit and

maintain a high quality of service [134]. This research develops an integer program which

selects and places VMs onto servers based on available resources and is solved using CPLEX.

They also develop a quality driven heuristic to solve the problem efficiently. This quality

driven heuristic places VMs onto a single server until the quality of experience drops below

a certain level while maximising total profit. The integer program is unable to scale to large

problem instances. They build an extensive test bed and run trace-driven simulations to show

that the heuristics can obtain up to 90% of the profit and 100% of the quality of experience

compared to the integer program while only taking a single second to solve. However, their

solution does not include GPU virtualisation instead passing through full physical GPUs to

VMs and is only tested for two VM types in a homogeneous system.

45

Finkel et al. build a simulation to evaluate the effectiveness of OnLive’s resource distribution

strategy [135]. OnLive dedicates entire servers to individual games with no virtualisation.

OnLive attempts to predict which games will be requested and allocates hardware for those

games in advance. This research builds a simulation utilising traces from OnLive’s historical

service demand and can build effective distributions of user demands. They find that user

demand is best satisfied by using a hill-climbing algorithm.

Current research into the cloud gaming resource allocation problem has investigated place-

ment of VMs in a resource allocation problem with limited GPU virtualisation and efficient

usage of vGPUs for individual VMs. The research has not developed algorithms for resource

allocation of VMs with the full complexity of GPU virtualisation and its limitations. Ex-

isting research has built greedy algorithms for limited GPU virtualisation with competitive

ratios relating to user stay duration’s. These competitive algorithms rely on homogeneity of

server and user demands. An integer program has also been developed which solves the cloud

gaming resource allocation problem for pass-through GPUs.

This thesis presents online and offline algorithms for a cloud gaming resource allocation prob-

lem for a cloud-based internet cafe. The online algorithms include greedy algorithms which

are able to handle heterogeneous servers and user demands, and a competitive algorithm

which enables user rejection and provides a competitive ratio for heterogeneous servers and

user demands. The offline algorithms are integer programs which function similarly to those

previously developed in research with the additional ability to handle the complexities of

GPU virtualisation.

Chapter 3

Building a Cloud-Based Internet

Cafe

Before investigating algorithms for resource allocation/VM placement in a cloud-based in-

ternet cafe, the hardware and software architecture of the cloud-based internet cafe needs

to be understood. This chapter explores and analyses the potential hardware and software

for creating a cloud-based internet cafe. Building a cloud-based internet cafe requires both a

physical and a virtual environment. The physical environment consists of the physical servers

within a server rack which will supply services to the users in the internet cafe. These servers

require supporting virtual desktop infrastructure (VDI), networking and thin clients enabling

users to connect to the servers. The virtual environment consists of VMs for running the ser-

vices, hypervisors that virtualise the physical resources of the servers for use by the VMs,

and remote desktop software to connect users to their VMs.

To investigate resource allocation in a cloud-based internet cafe, a prototype of the physical

and virtual environment, referred to here as the “test setup”, was created. Servers were

purchased to provide test hardware for the physical environment. In particular, Nvidia GRID

GPUs were used to test graphics virtualisation technology. Hypervisor and remote desktop

software was installed on these servers to create the virtual environment for testing.

47

48

Performance testing of the hardware setup was completed to investigate the hardware’s ability

to provide games in a cloud-based internet cafe. Such an environment had not been previously

implemented, so it was challenging to create a viable setup. Multiple software applications

were also tested for viability in the virtual environment. In particular, it was challenging to

find high-performance remote desktop software. All testing was performed in the test setup

under a variety of configurations to measure the performance of a prototype cloud-based

internet cafe environment. This testing provides inputs for the test data sets in §4.3.

This chapter is organised to build a cloud-based internet cafe from lowest to highest level.

First presenting hardware including; servers, networking, storage, and vGPU. Followed by

software including; hypervisors, virtualisation, and remote desktop. Finally, the “test setup”

is performance benchmarked.

3.1 Hardware

In this section the physical environment is discussed in detail including sections on the servers,

the GPUs, and the storage.

The prototype cloud-based internet cafe, i.e., the test setup, consisted of two graphics servers

that are described in §3.1.1, twelve “thin” clients, two switches, and a management server.

Part of the test setup (with only six thin clients) is shown in figure 3.1. For test thin clients

old engineering lab machines were used. These are Dell T3500 machines, i.e., older, low-

performance machines, running Ubuntu 14.04.

Two EX4200-24T Juniper switches were used to connect the servers to the thin clients (named

Green and White respectively). Each server is connected to each switch with a single 10 giga-

bit per second fibre channel small form-factor pluggable transceiver plus (SFP+) connection.

Each thin client is connected to each switch with a single CAT6 gigabit Ethernet connection.

Each switch is a separate network and subnet; the “green” network and “white” network

depending on which switch the network utilises. When a connection from a thin client to a

49

VM on a server is requested either the green or white network is selected for that connection.

A separate VM managed the network settings on the management server.

The management server is connected with dual gigabit Ethernet to both switches and hosts

a VM running pfSense that provides networking configurations for the cloud-based internet

cafe[136]. PfSense is open source firewall/router software based on FreeBSD [136]. This

VM acts as a gateway and firewall to the internet. The VM also provides a dynamic name

server (DNS) for both the green and white local networks as well as for external names. In

addition, the VM acts as a dynamic host configuration protocol (DHCP) server for both the

green and white networks, allocating IP addresses for both thin clients and VMs created on

the servers. Figure 3.1 shows the connections between all components of the setup.

Figure 3.1: Test Cloud-Based Internet Cafe Setup

The red lines represent the CAT6 gigabit Ethernet network connecting the thin clients to the White switch,

the green lines are the CAT6 Gigabit Ethernet network connecting the thin clients to the Green switch. The

blue 10 gigabit fibre channel SFP+ network connects each switch to the K1 Server and the brown 10 gigabit

per second fibre channel SFP+ network connects each switch to the K2 Server. The gold dual CAT6 gigabit

Ethernet network connects each switch to the Management Server.

The management server also provides any VMs needed to control or manage features in

the test setup. This management server has a 16 core Intel Xeon X7350 CPU at 2.93GHz

50

and 93GB RAM with no GPU. The server always runs the pfSense gateway VM and runs

additional VMs as required for monitoring activity and for the controllers that any VDIs

require.

The two graphics servers provide the VMs which supply users with their desired service.

3.1.1 Servers

The test servers for the cloud-based internet cafe were two Supermicro servers. These servers

have high specifications to provide the VMs for the demanded services. They also have

high-speed connections to the thin clients to provide stable remote connections.

These servers each have a 32 core Intel Xeon E5-2650 CPU at 2.4GHz, 65GB of RAM,

a 256GB Samsung solid state drive (SSD), dual gigabit Ethernet network connections for

internal management, and 10-gigabit SFP+ fibre channel networking to each switch for remote

connections with the thin clients. One server has a Nvidia GRID K1 GPU card, and the other

has a Nvidia GRID K2 GPU card. The GRID K1 is for workstation level graphics and the

GRID K2 for high-performance tasks. Table 3.1 summarises these specifications. §3.1.2 talks

about the specifics of the graphics cards. The servers also required additional network storage

to adequately supply VMs to users. This network storage is discussed in §3.1.3.

Table 3.1: Specifications of servers used for feasibility testing

Name CPU Cores Clock RAM GPU Storage Network

K1
Server

Intel Xeon
E5-2650

32 2.6GHz 65.5GB
Nvidia
GRID K1

256GB
SSD

x2 10 gigabit
Fibre Channel

K2
Server

Intel Xeon
E5-2650

32 2.6GHz 65.5GB
Nvidia
GRID K2

256GB
SSD

x2 10 gigabit
Fibre Channel

3.1.2 GPU

The GPU cards discussed here were used to supply the graphics processing required for

gaming VMs. The test servers had Nvidia GRID K1 and K2 GPUs [20].

51

These GPUs use Nvidia Kepler cores equivalent in performance to the Nvidia 700 series cards.

These cards are designed for server infrastructure with passive or end-to-end cooling. They

make use of two PCIe 3.0 slots for improved bandwidth and contain a unique H.264 video

encoding acceleration block in place of video output ports as they are designed for remote use

only. Cards make use of Nvidia CUDA cores and support the following rendering application

programming interfaces (APIs): CUDA, DirectX 9, 10, 11, and OpenGL 4.3. The specific

APIs supported depend on the hypervisor used for virtualisation.

A Nvidia GRID K1 has 4 Kepler GK107 GPU cores integrated into the GPU. Each core is

equivalent to a Geforce GT 720 in architecture [20]. However, the cores offer slightly higher

speeds (of 850MHz) and double the DDR3 video random access memory (VRAM) with 4GB

per core (at 891 MHz). The K1 layout is shown in figure 3.2. The GPU card draws 130W at

peak power.

Figure 3.2: Nvidia GRID K1 card layout and specifications

A Nvidia GRID K2 has 2 Kepler GK104 GPU cores with each core similar to a GeForce

GTX 770 [20]. The cores offer slightly lower clock speeds than the K1 cores (of 745MHz) and

double the GDDR5 VRAM of K1 cores with 4GB per core (at 2.5GHz). The K2 layout is

shown in figure 3.3. The board draws up to 225W of power.

The advantage of using Nvidia GRID cards over specific server augmented desktop GPU cards

comes from: the additional PCIe bandwidth; the built-in video encoding hardware; and the

extra performance offered from multiple cores. The combination of these factors enables

52

Figure 3.3: Nvidia GRID K2 card layout and specifications

virtualisation of the GPU cores in a similar way to how CPU and RAM can be virtualised in

a traditional cloud environment.

3.1.2.1 vGPUs

The virtualisation of GPUs to create vGPUs offers cloud gaming management the ability to

make meaningful decisions for resource allocation while supplying gaming users with high

performance VMs.

Table 3.2: vGPU names and specifications

vGPU Name
GRID K1 GRID K2 Max VMs per core VRAM (GB)

K100 K200 8 0.25

K120 K220 8 0.5

K140 K240 4 1

K160 K260 2 2

K180 K280 1 4

Pass (K1) Pass (K2) No virtualisation (1) 4

GPU virtualisation, while more flexible than a standard desktop GPU, still has restrictions

on how the GPU cards can be used. The virtualisation of the cards involves the creation of

a vGPU for each VM. A single GPU core on the card can be virtualised into either eighths,

fourths, halves, or one whole core. These vGPUs are named, in correspondence to their

GPU card as either K100s (K1 card) or K200s (K2 card), with the lowest performance vGPU

named K100/K200 and increasing by 20 as the resources rise until the K180/K280. These

vGPUs share core time equally and take a fixed portion of the core’s VRAM. These portions

53

are visualised in figure 3.4 and fully described in table 3.2. Shared cores process the requests

from the vGPUs in a simple First-In First-Out (FIFO) queue method. This sharing means

that if only one VM is on the GPU core, no matter what vGPU type is being used, that

VM will receive the full core speed. If two VMs are on a GPU core, then they will receive

a proportion of the core speed relative to the number of requests they send per second. As

such it is possible to run a high-performance task on a low power vGPU (e.g., a K220) if

it is the only VM on the core and requires a relatively small quantity of VRAM. This split

is illustrated in figure 3.4 which shows the K1 and K2 cores with the top half of each core

representing the undivided (shared processing) core and the bottom half the divisions of RAM

between VMs.

Figure 3.4: Types of vGPU with RAM and core divisions

It is important to note that when a VM with a vGPU is created, it is not possible to live

migrate that VM to another server or GPU core. Instead, it is necessary first to shut down

that VM then move its vDisk to the destination server or restart the VM with a new GPU

core selected. This migration is different from a VM that is not using a vGPU which may be

live migrated to another server. This limitation is because GPU virtualisation is a low-level

54

process which interacts closely with the hardware on which the VM is placed. For more

details see [20].

In addition to not being able to migrate VMs with vGPUs it is also not possible to change

the vGPU type of a VM without first shutting down that VM. Furthermore, when a VM

with a specific vGPU is run on a GPU core, the entire core may only run other VMs with the

same vGPU type. Of course it is possible to change the vGPU type of a VM before starting

it to enable it to share a GPU core, but the VM will only meet its performance requirements

if the vGPU type it is using provides greater graphics performance than its designated vGPU

type. However, since: 1) cores are restricted to a single vGPU type for all VMs on the core;

and 2) a VM cannot change its vGPU type without shutting down; a core will only be able

to run VMs of the same, vGPU type until all VMs running on that core are shut down.

For example figures 3.5 and 3.6 show invalid and valid VMs running on GPU cores respectively.

Figure 3.5: Invalid VM additions to GRID K2 card

55

Summarising the invalid configurations shown in figure 3.5, core 1 has a VM running which

uses a K240 vGPU, which means the core can only run other K240 VMs. Similarly, core 2 is

running a K260 vGPU. If a new VM running a K260 vGPU (referred to as a K260 VM) and

two new VMs running K240 vGPUs (referred to as K240 VMs) are added, then the K260 VM

cannot be placed on core 1 and the K240 VMs cannot be placed on core 2. Both placements

violate the current vGPU types on the cores. However, the K240 VMs could be upgraded

to use K260 vGPU and then placed on core 2. Unfortunately, the K260 vGPU type only

supports a maximum of two VMs, so it is not possible to add two more VMs to core 2. Note

that the K260 VM currently on core 2 could be shut down and “downgraded” to a K240 VM,

and the core could then support this downgraded VM and the two new K240 VMs, but the

performance of the service on the downgraded VM may be compromised.

Figure 3.6: Valid VM additions to a GRID K2 card. Note that the K240 VM on the K260
card will have higher than specified graphics performance

Summarising the valid configurations shown in 3.6, both core 1 and core 2 start with VMs

as in the invalid configurations (see figure 3.5). However, now the two new K240 VMs are

56

added to core 1 and a single K240 VM (running as a K260 vGPU) is added to core 2. The

vGPU types are consistent and the number of supported vGPUs of each type is sufficient.

One key performance measure for a cloud-based internet cafe is the framerate of the VMs

that exist within the cloud. Testing was carried out by connecting to these VMs using Steam

Sharing and using Steams’ built in frame per second (FPS) counter to record the performance

of a variety of games averaged over a 5 minute period. This extensive testing of both the

GRID K1 and K2 card resulted in the game performance levels shown in table 3.3. Note that

60 FPS is optimal for gaming, but a base rate of 30 FPS is considered playable [137]. Testing

showed that vGPU performance was sub-optimal for supporting gaming and in some cases,

the performance would be considered unplayable. Neither card was able to play the latest

games at 1080p on high settings at 60 FPS, with the K2 able to run Witcher 3 at 30 FPS on

medium settings in-game when given a K280 vGPU, and the K1 was barely able to reach 10

FPS on the lowest settings at 1080p. The K1 core was not able to exceed 20 FPS for lower

requirement multiplayer games like Overwatch, or Warframe, although a K2 core was able to

run two of these games using K240 vGPUs while maintaining a steady 50 FPS at 1080p with

medium settings. Performance reached 60 FPS at 1080p on medium settings with a single

VM on the K2 core. The K1 core was able to run a single instance of League of Legends,

World of Warcraft, or DoTA2 at 40 FPS at 1080p on medium settings with a K180. The K2

core was able to run 4 copies of League of Legends, World of Warcraft, and DoTA2 with a

K240 at 40 FPS at 1080p on medium settings. With only two copies of these games running

the K2 core was able to reach 60 FPS at 1080p on medium settings. More in-depth analysis

of overall server performance is discussed in §3.4.

3.1.3 Storage

Running tests on the cloud-based internet cafe prototype requires storage beyond the K1 and

K2 servers’ local 256GB SSD. This section describes the network storage used in the test

setup.

57

Table 3.3: GPU game performance with various settings

GPU vGPU VMs/Core Avg FPS Resolution Settings

Low Requirement: K1 K180 1 40 1080p Medium
League of Legends K2 K240 4 40 1080p Medium
World of Warcraft K2 K260 2 60 1080p Medium

K2 K280 1 60 1080p High

Medium Requirement: K1 K180 1 20 1080p Low
Overwatch K2 K240 2 50 1080p Medium

K2 K280 1 60 1080p Medium

High Requirement: K1 K180 1 10 1080p Lowest
Witcher 3 K2 K280 1 30 1080p Medium

K2 K280 1 45 1080p Low

Current internet cafes have local storage for the operating system and remote shared storage

for the video games. When using VMs, it is also a good idea to use a storage area network

(SAN) or network-attached storage (NAS) for all vDisks. A special storage server was set

up with four 250GB Samsung 850 EVOs SSDs, for a total of 1TB of storage, to provide

networked storage for the test setup. This storage server runs Ubuntu server 14.04 with the

drives in a RAID0 array using the BTRFS file system. This drive was connected remotely

using asynchronous Network File System (NFS). NFS is supported by default on XenServer

(the hypervisor used for the test setup). Asynchronous access means the NFS immediately

considers write requests complete while the data is still in memory, as opposed to synchronous,

which doesn’t consider a request complete until it has been written to the physical disk. It

is important to set a NFS to asynchronous access so multiple vDisks can access the NFS

simultaneously. If disk requests are forced to queue under synchronous access, then the NFS

is extremely slow. This access comes at the risk of losing data if the storage server crashes

while requests are still in memory.

The remainder of this section presents the software operating on the hardware presented

previously. Comparing the capabilities of different software options available when run on

the stated hardware in table 3.1.

58

3.2 Hypervisors

The hypervisor is the software installed on the servers that virtualises resources and enables

the creation of VMs. A hypervisor is crucial in creating a prototype cloud-based internet cafe

in which the VMs are the key to supplying services. Hypervisors include Citrix XenServer,

VMWare ESXi, Linux KVM, and Microsoft Hyper-V.

The most important feature the hypervisor needs to be useful in our test setup is support

for vGPUs. Without this support, the cards described in §3.1.2 cannot provide any of the

flexible features of the GRID GPUs that are being investigated.

3.2.1 Citrix XenServer

Citrix XenServer was the only hypervisor supporting vGPUs at the time the servers were

purchased. Additionally, Citrix is the official partner of Nvidia for their vGPU technology.

Citrix also offered academic licenses for testing purposes. For these reasons, XenServer was

used as the hypervisor for all phases of testing.

Citrix XenServer 5.1 was the first hypervisor to offer vGPU support and was the official

release hypervisor for the Nvidia GRID cards. When the servers were first set up, it was the

only hypervisor available for testing vGPU technology. Citrix XenServer 6 is the most recent

version of Citrix XenServer that offers free access to vGPU functionality. Citrix XenServer 7

offers significant stability improvements for vGPUs as well as additional vGPU configurations.

However, access to these vGPU settings is restricted to customers with XenServer Enterprise

edition. This version was used for the most recent test setup with an academic license provided

by Citrix.

XenServer in our setup is managed by XenCenter which provides an easy GUI for managing

networking, storage, and for creating VMs with vGPUs.

59

3.2.2 Other Hypervisors

Both VMware ESXi and Linux KVM (via Redhat) now support GPU virtualisation in some

form. However, neither of these hypervisors were investigated in the test setup. While

VMware ESXi offers vGPU support, this functionality has had less time to be integrated

into ESXi than the corresponding support in XenServer. The Nvidia vGPU support in KVM

comes through RedHat Enterprise, but no free version is currently available, and this support

is a recent addition to KVM.

3.3 Remote Desktop

Remote desktop is the type of software used to connect thin clients to the VMs to play

games. Important factors to consider when selecting remote desktop software are clarity,

responsiveness, flexibility, and compatibility.

Clarity is the visual fidelity of the game and is affected by the compression algorithm used

for transmitting the video. The most important factor in the compression is the bitrate (the

quantity of data transmitted per second). The bitrate affects the number of pixels that can

be updated each second. If the image displayed is rapidly changing then at low bitrates the

screen will appear pixelated and blurred, which is unacceptable when gaming.

Responsiveness is the latency between sending input and seeing the result on the screen. The

lower the compression, the higher the latency tends to be as it takes longer to encode, send,

and display each frame. Higher clarity always leads to higher response times and as such

response times must be ranked against clarity.

Flexibility refers to the different games and applications that are supported when using the

remote connection.

Compatibility is the different platforms the remote software can be used on, as well as the

relative performance of different operating systems.

60

These factors were tested using different remote desktop software to connect from thin clients

to the VMs running on the test servers with GPU resources. The VMs used for testing ran

Windows 10 with League of Legends, Warframe, DoTA2, World of Warcraft, and Bioshock

Infinite. The thin clients in the test lab ran Ubuntu 14.04, with a single thin client running

Windows 10 to test an alternative OS. Table 3.4 summarises the performance of all remote

desktop software tested based on the critical factors.

Table 3.4: Summary of remote desktop software performance

Available
Clarity
Settings

Response Flexibility
Compatibility (In brackets
= poor performance)

XenDesktop High/Low Good Limited
Windows, (Linux),
Mac, Android, iOS

RemoteFX Automatic Excellent Full Windows, (Linux)

Steam Streaming High/Low Good Steam Apps Windows, Linux, Mac

GamingAnywhere Full Control Average Full (Windows), (Linux)

TeamViewer Automatic Average Limited
Windows, Linux, Mac,
Android, iOS

VNC Automatic Average Limited
Windows, Linux, Mac,
Android, iOS

Overall XenDesktop shows potential, with the recent software updates, to be a good paid

option for a cloud-based internet cafe. However, the testing license for XenDesktop expired

leaving RemoteFX as the clear winner out of the options that were available during testing

due to its ability to run games, i.e., Excellent Response and Full Flexibility.

The remainder of this section describes the performance of each of the remote desktop software

options in more detail.

3.3.1 Citrix XenDesktop

Citrix XenDesktop is a software package which both creates remote desktop connections and

manages the VMs used with the remote desktops.

Citrix provided licenses to test XenDesktop and sent an engineer to help with installation.

This was extremely useful as XenDesktop requires a full Microsoft ActiveDirectory set up to

61

function and uses Windows accounts to authenticate connections. ActiveDirectory utilises

Windows Server, an OS that was not present in the test setup (note the test setup mostly

uses Linux as the OS). Once a Windows Server VM was set up to run XenDesktop it was

connected to the test servers, then base images for the gaming VMs were created. The VM

images are identical except for the vGPUs that each image has. A base image is duplicated

each time a new user connects to that image, and a unique VM is started up for that user.

XenDesktop is set to run extra buffer VMs by default, so users do not have to wait for a VM

to start up. This streamlining comes with the requirement that sufficient storage is available

to handle the duplicate vDisks.

Once base VM images are set up, XenDesktop uses a simple web interface to allow users

to find and connect to VMs using an ActiveDirectory account. These accounts can also

be configured with permissions that determine the VMs that are available for connections.

Connecting to a VM is simple and once connected the experience was high clarity with good

response times. Unfortunately, settings for video quality are hidden away in the Windows

registry.

Although XenDesktop smoothly starts up and runs games, the games proved impossible to

control with a mouse or controller as it is not possible to give a VM full capture of a device.

Instead, the device’s inputs must pass through the local machine and then on to the VM. This

extra “layer” causes problems in most games which use relative mouse movement rather than

absolute mouse movement. Absolute mouse movement is the standard desktop movement

and involves the mouse having a specific position on the screen, and all movement relates to

an absolute position on the screen. By contrast, with relative mouse movement the mouse

position changes per frame. This approach enables the cursor to be hidden, sensitivity to

be adjusted and movement in a game to be smooth and clean. The game window must be

able to fully capture all mouse inputs, to access relative mouse movement. Since XenDesktop

passes mouse inputs via the local machine, relative mouse movement cannot be utilised.

Unfortunately, this technical issue renders most games completely unplayable.

62

In addition, XenDesktop’s Linux application (that was deployed on the thin clients) had

performance issues with frequent connection errors and crashes.

3.3.2 RemoteFX

RemoteFX is Microsoft’s standard remote desktop connection with support for DirectX and

OpenGL. RemoteFX is automatically enabled on Windows versions newer than Windows 7.

Remote desktop is a Microsoft product and, as such, isn’t officially supported on Linux. For-

tunately, there are many unofficial open source options for remote desktop connections. For

our test setup, we used Remmina. Remmina’s latest stable release worked on Ubuntu 14.04,

supported RemoteFX and offered many quality settings. The default Remmina version that

came with Ubuntu 14.04 did not support RemoteFX, and an updated version was required

to test gaming.

Remmina and RemoteFX support full mouse capture by the destination VM which enabled

games to use the mouse with relative mouse movement. Despite supporting remote desktop,

it is clear that Remmina is not a supported application for using RemoteFX with latency and

framerate problems apparent when playing games. This is unfortunate, as remote desktop

and RemoteFX are extremely clean and stable when using a Windows machine for the thin

client that connects to a VM. Of course, it is not ideal from a commercial viewpoint to have

to pay for a Windows license on both the thin clients and the VMs.

3.3.3 Steam Streaming

Steam Streaming is a service offered on Valves Steam platform [138]. When the same Steam

account is active on the same network on multiple machines, each machine gains the option

to stream installed games from the other machine. To enable Steam Streaming in the test

setup, the Linux Steam client was installed on the thin client, and the Windows Steam client

was installed on the VM, both with the same Steam account. Test games were then installed

63

via Steam on the VM. Once games are installed it takes a single click to start playing the

desired game with minimal problems starting the game.

Steam Streaming provides settings to balance quality and bandwidth. Unfortunately, even

when set to high quality, this approach suffered from compression artefacts, and in fast-paced

games, it was difficult to ascertain what was happening. In addition, while it is possible to

add non-Steam games to Steam and stream them, this approach would often crash the game

or cause incorrect window rendering making the games unplayable.

3.3.4 Other Remote Desktop Software

The remaining remote desktop options which were tested are discussed here. All of these

options had serious issues that made them non-viable.

GamingAnywhere is an open source remote gaming platform made by Huang et al. [67, 72].

GamingAnywhere attempts to provide a highly extensible, portable, and, configurable cloud

gaming platform. It includes support for Windows and Linux. Getting GamingAnywhere

operational in our virtual environment was difficult, and once it was operational, its func-

tionality was extremely unreliable, with the Linux functionality being mostly absent. As the

last update to GamingAnywhere was in January 2015, it is in need of updates and reliability

improvements to make it a functional platform for a cloud-based internet cafe.

TeamViewer is a support application that allows someone to take control of a computer

remotely. TeamViewer has been suggested as an option for remote gaming on forums online,

but in our test setup, it was not found to be fit-for-purpose with the Linux application being

unreliable and gaming itself being unpleasant, due to low visual quality when frames are

changing rapidly (i.e., a low bitrate).

Virtual Network Computing (VNC) is a graphical desktop sharing system that uses a re-

mote frame buffer protocol to connect remotely to other computers. VNC is the standard

remote connection for Linux systems and is comparable to Remote Desktop on Windows.

64

Unfortunately, it suffers from the reverse problem to RemoteFX, where the Windows VM

end of the connection is unstable. However, the biggest downside of VNC is that it only

supports OpenGL and not DirectX. This is because DirectX is a Windows driver. Unfortu-

nately, DirectX is also the engine most games use, which makes VNC unsuitable for use in a

cloud-based internet cafe.

3.4 Environment Testing

After investigating the available hardware (see §3.1) and software options (see §3.2, 3.3) for

the prototype cloud-based internet cafe, the cloud-based internet cafe environment was tested.

This testing was conducted to determine the performance of the environment with hardware

as described in §3.1 and software as described throughout this section. The main purpose

of this testing is to investigate the feasibility of the test setup environment as a cloud-based

internet cafe environment.

For these tests, the servers were running XenServer 5.1 with Citrix XenDesktop 5.6 as the

VDI. The performance benchmarking was conducted using 3DMark. 3DMark [139] is game

benchmark software that tests a computer’s performance under standard game conditions

with a variety of levels of rendering, lighting, and physics effects.

The 3DMark software provides four tests: IceStorm, a basic benchmark; CloudGate, a

medium DirectX 9 benchmark; SkyDiver, a medium DirectX 10 benchmark; and FireStrike, a

difficult DirectX 10 benchmark. A score is given based on the framerate throughout the tests.

Each test includes two render/lighting tests and one physics test, with SkyDiver and Fire-

Strike including an additional combined test. For the cloud-based internet cafe, we categorise

games into low, medium, and high requirement games. The four 3DMark tests map to these

levels as follows: IceStorm: low; CloudGate: medium; SkyDiver: medium-high; FireStrike:

high.

65

The tests were conducted first for a single VM running on the server with a variety of different

VM specifications. Next, testing was carried out with multiple VMs with the same specifi-

cations running on a single server to provide a measurement of how performance changes as

VMs are added to a GPU core.

3.4.1 Single Machine Testing

Extensive testing was conducted with a single VM running on a single server. The VM

was given differing quantities of CPU, RAM, and different vGPUs. Test results are used to

quantify each server’s performance.

Using XenDesktop as the virtual machine management and connection program, a virtual

machine template was created running Windows 7 with Nvidia drivers and 3DMark installed.

This template was then used to create a set of VMs with each vGPU type, 1, 2, 4, 6, or 8

CPU cores and 2, 4, 8, 12, or 16GB of RAM. The four 3DMark tests were then run on each

of these machines using the default settings, and the 3DMark scores were recorded. Each

test was run independently of the others, so they did not influence the performance of one

another. After each test, the VM was changed so that all combinations of vGPU, CPU and

RAM configurations were tested. This testing resulted in a matrix of results showing the

difference arising from changing the vGPU (consisting of part of a GPU core and vRAM),

a number of CPU cores, and amount of RAM. Each configuration was tested once, taking

around 30 minutes to complete all four 3DMark tests.

The test results for each 3DMark test were fitted with linear regression models, with all

models yielding adjusted R squared values over 80%, meaning that all fitted models do an

excellent job of explaining variation observed in the data. The covariates for all these models

were the number of CPU cores and the vGPU type. In all the tests we considered including

RAM as an additional covariate, but the corresponding fitted coefficient was not significantly

different from 0, indicating that RAM was not needed in the model to explain the test score,

i.e., the test score did not differ significantly over the amounts of RAM tested. As RAM

66

does not affect the test scores, the presented test results were averaged over all the different

RAM amounts to produce a single average score for each vGPU and number of CPU cores

combination.

The results show that the Nvidia vGPU drivers put a cap on the framerate of 67FPS and

hence limit the maximum achievable score. This cap does not apply to the pass-through GPU

(no virtualisation) which has an uncapped framerate.

The results also show a significantly higher score for all tests with the K2 server over the K1

server, as expected, due to the different Kepler cores. The only real difference between the

vGPUs of each core type is the amount of available VRAM because they were the only vGPU

on the GPU core during testing. Results show that for Ice Storm, Cloud Gate, and Sky Diver

the VRAM makes no difference to the average score. However, the uncapped framerate on

the pass-through GPUs allows them to fully utilise the core’s capability with the K1 server

achieving higher scores for Ice Storm, and the K2 server achieving higher scores for Ice Storm

and Cloud Gate with no score difference for Sky Diver compared to all vGPUs. The Fire

Strike test shows the effect of VRAM on performance: the K100 and K200 cards are unable

to run the test due to insufficient VRAM. The K120 shows a lower score than the other

vGPUs available on the K1 server. There was no evidence of a difference between the other

vGPUs available on the K1 server. The K220 also showed a lower score than the other vGPUs

available on the K2 server. Similar to the K1 server, there was no evidence of a difference

between the other vGPUs available on the K2 server.

The model showed that RAM makes no significant impact on the score for any vGPU or

CPU independent of the test (p-value> 0.1). Since graphics rendering mainly uses VRAM

for loading art, it is not surprising that RAM would have no impact on the achievable score.

CPU is a significant factor towards scores achieved: as the number of CPU cores is increased

the scores in all tests increase. At one CPU core, the virtual machine is barely functional, and

scores degrade significantly. Between 2 and 8 CPU cores, there is a roughly linear decrease

for each CPU removed.

67

Figure 3.7 shows average scores for each vGPU type and CPU. RAM was not included in

the figure as it was not a significant factor. Each parallel bar represents a test score, from

left to right: Ice Storm, Cloud Gate, Sky Diver, and Fire Strike. The graphs show far higher

scores for the pass-through GRID K2 and a high Ice Storm score for pass-through GRID K1.

The GRID K2 vGPUs outperform the GRID K1 vGPUs in all but Ice Storm where both hit

the 67FPS score cap.

Figure 3.7: Grid of 3DMark scores for vGPU and CPU configurations. Tests from left to
right bars: Ice Storm; Cloud Gate; Sky Diver; and Fire Strike.

68

3.4.2 Parallel Testing

In practice, multiple machines will be running simultaneously. Quantifying the effect of

running multiple machines further informs us of the servers’ performance.

It is important to test the effect of running multiple copies of the 3DMark tests on a single

physical GPU core. If the core is overloaded, then processes must be queued (as described

in §3.1.2.1) and performance will deteriorate. To test this, multiple vGPUs were allocated to

the same core, and 3DMark was run simultaneously on each machine. Results for each VM

on the core were recorded and compared to equivalent results for a single machine. Two VMs

were tested in parallel for all configurations of 4 and 8 CPU cores; 4 and 8GB of RAM; and

K140, K240 and K260 vGPUs. Four VMs were tested in parallel with: 4 and 8 CPU cores; 4

and 8GB of RAM; and K140 vGPUs. Fewer configurations were required to be tested than

for single machines as the performance changes are related to the total load on the GPU core

and as such can be predicted for other configurations.

Parallel testing produced interesting results. Due to the framerate cap in the Nvidia drivers,

the GPU cores were not fully loaded in some tests. This spare capacity allowed parallel

processing with lower performance loss than would be experienced with uncapped framerates.

Results show a maximum achievable score that is equal to that for a single, same specification,

machine, but this maximum drops as the GPU core become overloaded due to either more

virtual machines on the GPU or a higher performance test. Results showed that the K1

server could provide multiple VMs playing low-end games and the K2 server could provide

multiple VMs playing low and medium end games.

As Table 3.5 shows, the K140 vGPU showed a statistically insignificant change (i.e. within

single machine testing score variation) in Ice Storm score when a second VM was tested

in parallel and only an approximately 20% score drop with four VMs. In the other tests,

however, adding a second VM caused around a 50% drop in score. A further 30% drop in

score occurred for all tests when four VMs were run in parallel. Interestingly, this drop is

69

Table 3.5: Test results for the K140 vGPU (Percentages show difference from single ma-
chine)

CPU Cores No. Machines IceStorm CloudGate SkyDiver FireStrike

8 1 15,890 5,634 2,859 797
8 2 15,672 (-1%) 2,943 (-48%) 1,482 (-48%) 576 (-28%)
8 4 12,213 (-23%) 1,603 (-72%) 836 (-71%) 241 (-70%)
4 1 14,858 4,385 2,711 781
4 2 14,725 (-1%) 2,748 (-37%) 1,374 (-49%) 550 (-30%)
4 4 12,062 (-19%) 1,486 (-66%) 882 (-67%) 286 (-63%)

less significant despite doubling the number of processes on an already overloaded GPU core.

This may be the result of the intelligent allocation of processes to the GPU core.

Table 3.6: Test results for the K240 vGPU (Percentages show difference from single ma-
chine)

CPU Cores No. Machines IceStorm CloudGate SkyDiver FireStrike

8 1 15,797 10,840 13,098 4,468
8 2 15,643 (-1%) 10,367 (-4%) 8,640 (-34%) 2,523 (-44%)
4 1 15,018 7,282 10,614 4,253
4 2 15,093 (0%) 7,536 (3%) 7,408 (-30%) 2,491 (-41%)

Table 3.6 and 3.7 show that the K240 and K260 vGPUs showed a statistically insignificant

change in score from the single machine for the Ice Storm, or Cloud Gate tests when a second

VM was added. Sky Diver suffered a 30% decrease in score and Fire Strike suffered a 40%

decrease in score with the second VM.

Table 3.7: Test results for the K260 vGPU (Percentages show difference from single ma-
chine)

CPU Cores No. Machines IceStorm CloudGate SkyDiver FireStrike

8 1 15,794 10,735 11,866 4,551
8 2 16,033 (2%) 10,550 (-2%) 8,417 (-29%) 2,461 (-46%)
4 1 15,009 7,911 10,337 4,551
4 2 15,436 (3%) 8,230 (4%) 7,693 (-26%) 2,573 (-43%)

70

3.4.3 Summary

This section summarises the results and places them in the context of real-world performance

which enables the construction of test data sets described in §4.3.

Placing the 3DMark scores in real world context requires the comparison of the K1 and K2

servers with a real-world high-performance PC. The comparison is best set at a baseline

level which is the maximum performance of the cards. In order to generate the maximum

performance potential of the K1 and K2 cards, both the K1 and K2 cards were setup with

only a single VM running on one of their cores. Running a single VM on a core shows the

maximum potential performance of the cards. Table 3.8 shows 3DMark scores of these VMs

compared to a high performance desktop PC with a Nvidia GeForce GTX 970, and an I7-6700

CPU capable of running Witcher 3 on high settings at 1080p with over 60FPS. The 3DMark

scores show the K1 performing acceptably on IceStorm, with increasingly poor performances

on CloudGate, SkyDiver, and FireStrike. The K2 can achieve excellent scores on IceStorm,

CloudGate, and SkyDiver, with a significant fall-off in performance on FireStrike but still

maintaining an acceptable score. However, the high-performance machine can almost double

the score of the K2 card even at its highest possible performance.

The linear regression models that were fitted to analyse the significance of each VM compo-

nent found that: 1) RAM had no impact on performance; 2) VRAM had minimal impact;

3) the number of CPU cores and the GPU core speed were the most critical factors affecting

3DMark scores and hence video game performance. In particular, it was found that the K2

server performed better than the K1 server, and performance improved as the number of

CPU cores increased.

Combining the linear regression model with the baseline performance comparison finds that

overall, neither the K1 or K2 card meet the performance requirements of a high-end internet

cafe PC in 2017 with the K2 card showing the potential to provide a medium or low-end

gaming VMs. A newer generation of cards is required to meet the modern performance

requirements of an internet cafe. However, in 2015 both the cards had the ability to play a

71

Table 3.8: 3DMark scores of K1 and K2 vs Gaming PC

Cores CPU Clock RAM GPU IceStorm CloudGate SkyDiver FireStrike

8 3.4GHz 8GB GTX 970 141,057 26,504 24,991 9,484

8 2.6GHz 8GB K2 74,562 14,318 13,379 4,550

4 2.6GHz 8GB K2 75,688 11,589 11,736 4,291

2 2.6GHz 8GB K2 38,836 5,664 7,624 3,403

8 2.6GHz 8GB K1 33,461 5,480 2,778 794

4 2.6GHz 8GB K1 31,792 4,520 2,656 782

2 2.6GHz 8GB K1 19,449 3,015 2,404 749

variety of games, and this base level is assumed when building test sets as this is when the

technology was relevant. The values for the benchmarks assuming 2015 gaming demand are

used to build test data sets described in §4.3 for the resource allocation algorithms.

This chapter described the hardware and software technology needed to construct a cloud-

based internet cafe and benchmarked this technology. This benchmark allows specifications

to be generated for VMs which meet the demands of internet cafe users. These VMs are then

used as inputs when testing algorithm performance as part of the larger test data sets. These

test data sets also utilise the server setups described in this chapter. In particular all servers

are assumed to run Citrix XenServer, with RemoteFX connecting a Windows VM with a

Windows desktop.

Chapter 4

Allocation Problem

This chapter defines the resource allocation problem for the cloud-based internet cafe consid-

ered in this thesis and describes the inputs, decisions, outputs, constraints, and assumptions.

This chapter also describes the data sets built for testing the algorithms defined in chapters

5, 6, and 7.

4.1 Problem Description

The resource allocation problem for a cloud-based internet cafe considers the acceptance of

users and the placement of those users onto a given set of servers. The objective for this

problem is to maximise the total profit gained from all users.

Users or customers arrive in the internet cafe throughout the day and then request to stay for

a number of hours. These users arrive at discrete time points (in the test sets in this thesis

either every hour or 15 minutes). They stay for a number of time points before leaving (in

this thesis they stay for a whole number of hours). While a user is staying in the internet

cafe, they demand one of the services offered in this problem: either web, low, medium or

high. Each service has a different price per hour with the price increasing as the resources

required increases. An accepted user will consume a proportion of a server’s resources to

73

74

access their service via a VM and take one of the available seats in the internet cafe. Once a

user has been placed on a server they are fixed to that location and cannot be moved. For

this reason, when servers are near capacity or most of the internet cafes seats are taken it

may be beneficial to turn away a user demanding a less profitable service or who is staying

for a shorter duration in anticipation of a more profitable user. Also, the decision to accept

or reject a user must be made immediately and cannot be delayed. If a user is rejected, they

give no profit.

The four services represent a flexible breakdown of the different applications offered in an

internet cafe. The web service uses the least resources and is for users demanding web

browsing, email, or video. The low, medium and high services are for users demanding games

of increasing resource requirements. The specific games which fall into each category are

described for the specific test sets in §4.3.

Once a user is accepted, a VM is created for them which is capable of providing the demanded

service. These VMs are created on a specific server and GPU core. The users are partitioned

into two sets: gaming, and web. Each type of VM uses a fixed proportion of a server’s CPU

and RAM resources, using a number of cores, and gigabytes (GBs) of RAM respectively.

Web VMs do not use any GPU resource and share their cores and RAM between web users.

This sharing means a single web VM can supply multiple web users. Gaming VMs use GPU

resource and have exclusive use of their CPU cores and RAM. The VM serves either low,

medium or high-end gaming users. The GPU resource consists of a portion of a GPU core’s

processing power and VRAM, which is determined by the vGPU type as described in §3.1.2.1.

The CPU cores and RAM are virtualised such that 1 virtual CPU core has one corresponding

physical core and 1 virtual RAM chip has a corresponding physical RAM chip. In the case

of web machines they are virtualised in the same 1:1 ratio but are overallocated between the

web users on the assumption no one user will be using the full quantity of CPU and RAM

allocated to the VM.

75

The GPUs are virtualised according to the rules described in §3.1.2.1. These rules mean each

user must be placed on a server and GPU core and once placed the VM will lock the core to

a given vGPU type until all VMs on that core are removed. To model this, GPU cores are

considered to be virtualised into discrete configurations. Each configuration runs a number

of VMs supplying various services. These VMs must all have the same vGPU type, which

then defines the vGPU type of the configuration. Each configuration uses a quantity of CPU

and RAM equal to the total required by the VMs in that configuration. At any point in time,

a GPU core may be assigned at most one configuration. If no VMs in the configuration are

in use at that point in time then the core may switch to any other compatible configuration.

However, if one user or more is currently using a VM running on the core, then the core may

only be swapped to a configuration with the same vGPU type as its current configuration. In

addition, the new configuration must include VMs which can supply the services demanded

by all users currently active on the core.

Table 4.1: Example VMs for a K2 server

Service CPU RAM GPU Minimum vGPU

Low 4 6 0.25 K240

Med 6 8 0.5 K260

High 8 10 1 K280

Table 4.2: Example of configurations for a K2 server

Configuration CPU RAM GPU vGPU Low Med High

K240 Low 1 4 6 0.25 K240 1 0 0

K240 Low 2 8 12 0.5 K240 2 0 0

K240 Low 3 12 18 0.75 K240 3 0 0

K240 Low 4 16 24 1 K240 4 0 0

K260 Med 1 6 8 0.5 K260 0 1 0

K260 Med 2 12 16 1 K260 0 2 0

K260 Low Med 10 14 0.75 K260 1 1 0

K260 Low 1 4 6 0.25 K260 1 0 0

K260 Low 2 8 12 0.5 K260 2 0 0

K280 High 8 10 1 K280 0 0 1

Table 4.2 shows example configurations as used in the model. In this example low users

are assigned a VM with 4 CPU cores, 6GB of RAM, and one quarter of a GPU core, on a

K240 vGPU. Medium users are assigned a VM with 6 CPU cores, 8 GB of RAM, and half

76

a GPU core, on a K260 vGPU. High users are assigned a VM with 8 CPU cores, 10 GB

of RAM, and a whole GPU core, on a K280 vGPU. These VMs are summarised in table

4.1. The vGPU types used are for a Nvidia GRID K2 GPU card as defined in table 3.2.

Configurations are set up for all combinations of VMs with total GPU usage of up to 1 core.

Configurations which do not use an entire core are considered as they must share the CPU

and RAM with configurations running on other GPU cores. If the server only has 20 CPU

cores available then always running to maximise GPU usage would result in not being able

to run VMs due to limited CPU cores. Configurations are also set up for running low VMs

on K260 vGPUs as these provide sufficient speed to meet the low VMs’ requirements and

allow the addition of medium VMs. This allows configurations with a mixture of low and

medium VMs on the GPU core simultaneously, albeit with a lower maximum number of low

VMs. However, medium VMs can not be run on K240 vGPUs as this would not meet their

minimum requirements.

The limitations of GPU virtualisation are worth noting as playing high-end video games often

needs large quantities of VRAM. When testing the servers, it was found that the GPU cores

are not powerful enough to run large numbers of gaming VMs per core. The low power of the

GPU cores plus the fact that the cores have double the VRAM of a standard desktop GPU

make the GPU core speed the bottleneck of the GPU rather than VRAM. This bottleneck

means it is possible to run the core with a lower vGPU type while still providing the VRAM

needed to play the games, providing sufficient core speed remains available. Despite the fact

that the restrictions on switching vGPU types are not significant in the real environment they

still exist practically. As such a model for allocating resources to customers which handles

these restrictions is presented in §5.1. A faster model which assumes the restriction is not a

limiting factor and produces the same solutions when that is true is presented in §5.3.

77

4.2 Models

Allocating server resources for a cloud-based internet cafe requires a model capable of making

intelligent choices about which customers to accept and how to place them on servers.

Any model must have inputs of 1) an arrival process for users in an internet cafe, 2) a

departure process for users in an internet cafe, 3) the services or requirements which will be

demanded by those users, 4) the servers that will run the VMs for the services and 5) the

specifications of the virtual machines needed to run those services. The model must then

output user allocations to servers, subject to the restrictions described in §4.1.

4.2.1 Notation conventions

The models use the following convention to differentiate between parameters and variables.

Parameter p determined by index/expression i and j is denoted p(i, j). Variable v indexed

by indices/expressions i and j is denoted vij .

The notation for this problem is overloaded such that the symbol for an element in a set (e.g.,

x ∈ X) is also used to refer to objects in that set. For example x alone refers to an item in set

X but may also be used as x(i), the element of x which is associated with i ∈ I. The symbol

may be used for such references multiple times, E.G., x(j, k), the element of x associated with

j ∈ J, k ∈ K. This overloading is done to improve the readability of the equations.

All notation conventions discussed here are summarised in the notation section at the begin-

ning of the thesis.

4.2.2 Inputs

The inputs for this model consists of (the arrival and departure of) users, services demanded

by users, servers to supply VMs, VMs to supply the services, and configurations to define

which GPU cores run which VMs.

78

4.2.2.1 Services

Services are demanded by users. In this problem, services are grouped into web, low, medium,

and high. The web service provides all non-gaming activities. Low, medium and high provide

gaming with each level containing increasingly resource-intensive games. Users pay an amount

per hour to use the service and expect it to meet a minimum performance requirement. The

services are provided by VMs on servers which have enough computing resources to meet or

exceed the minimum performance requirement.

This leads to the definition of R, the services the internet cafe will be supplying. This

set defines the services users will demand, their requirements, and profits. Each service

r∈R = {web, low, med, high} has:

• a profit π(r) per hour;

• a list of servers z(r) which can provide a VM meeting the minimum performance re-

quirements for the service, z(r) a subset of all available servers S.

4.2.2.2 Servers

Servers supply VMs for the demanded services. Each server has a type of GPU core and a

number of: CPU cores, GBs of RAM, and GPU cores. These server resources are virtualised

and divided amongst VMs created for services demanded. Each server has a VM for each

service, which uses a number of these CPU cores, GBs of RAM, and a proportion of a GPU

core.

Feasible sets of VMs can be determined for a server, depending on its specifications. These

sets of VMs are referred to as configurations. A server can run one configuration per GPU

core. A configuration runs a number of VMs for each service. Each of these VMs has the

vGPU which is defined by the configuration. In addition the total GPU used by these VMs

79

cannot exceed 1. Overall these configurations define the VMs running a server at any point

in time. See table 4.1 for examples of VMs and table 4.2 for examples of configurations.

Web services do not require any GPU resources at all and have unique non-core configurations

run directly on the server. In addition, a web user uses little CPU and RAM resource with

some exceptions. These exceptions arise from high spikes in resource usage when opening

a new web page or initial buffering of a video. These spikes mean web users require much

higher resources in some moments than during the majority of their stay. For this reason, it

makes sense for web users to share resources with each other. This is done by grouping web

users on a special shared VM which handles multiple users simultaneously.

This results in a list of servers S which will supply users with the requested service. Each

server s ∈ S has:

• resource capacities c(s, q) where q ∈ Q ≡ {cpu, ram, gpu} (the set of resources);

• a type of GPU core from the list of available GPU core types g(s) ∈ G

• a numbered list of cores K(s) = {0} ∪ {1, . . . , c(s, gpu)}, where the 0 core represents a

special “null” core for VMs where no GPU core is required.

The GPU cores being utilised by the servers are defined as G (as noted previously). Each of

those GPU cores g ∈ G = {K1,K2} has:

• A list Z(g) of different vGPUs available on that core.

A list of vGPU types for Nvidia GRID K1 and K2 cards can be found in table 3.2.

4.2.2.3 VMs

The services R are provided by VMs running on the set of servers S. For each service r ∈ R

and server s ∈ S there is a unique VM that provides the resources and performance required to

80

provide service r on server s, so VMs are denoted by pairs (r, s). Each VM (r, s) r ∈ R, s ∈ S,

defines:

• a type of GPU core g(s) ∈ G needed to provide service r,

• a type of vGPU core ζ(s, r) ∈ Z(g(s))

• a quantity of each resource required b(s, r, q), for each q ∈ Q = {cpu, ram, gpu}

In addition, some VMs may be shared between multiple users if the peak requirements are

vastly different from the averages. In this problem there is a single group of this type (web

users) that share resources. Hence, each VM also defines:

• a number of users that can share this VM n(s, r)

A service may not require any GPU and as such some VMs may have b(s, r, gpu) = 0 and

ζ(s, r) = none.

4.2.3 Configurations

The VMs are combined into sets of configurations. Each configuration uses a single GPU

core and runs a specific number of VMs of each type. Configurations are created for every

combination of VMs with total GPU resource requirement less than or equal to 1.

The set of all feasible configurations is M . Each configuration m ∈M has:

• υ(m, r) a number of VMs supplied for each requirement r ∈ R;

• ρ(m, q), for each q ∈ Q a quantity of each resource used;

• ζ(m) the type of vGPU core used;

• g(m) the type of GPU on which the configuration can be used, i.e., that contains cores

of type ζ(m).

81

4.2.3.1 Users

The internet cafe users are the focus of all decisions being made. Each user arrives and

departs at a certain time, and demands a service. The user pays for the service per hour at

the rate set for the service.

Supplying the user’s demanded service (referred to simply as the user’s service, for brevity)

requires a VM to be placed on a server. A quantity of resources is consumed on that server

for the period the user is present. The resources consumed are constant over time for all

test sets considered in this thesis. However, it is worth noting that the online algorithms

(described in Chapter 7) can handle variation in the resources consumed over time.

It is necessary to define the points in time at which decisions regarding users might be made.

The epochs t ∈ T defines all the times at which a decision might be made. T is a discrete set

of evenly spaced time points.

To model demand for services at an internet cafe, users that visit the cafe throughout the

day are defined by the set U . Each user u ∈ U has:

• an arrival time a(u) ∈ T ;

• a departure time d(u) ∈ T where d(u) > a(u);

• a stay duration j(u) = d(u)− a(u) > 0;

• demand for a service r(u) ∈ R;

• a profit resulting from providing the demanded service to a user p(u) = π(r(u)) · j(u);

• a list of servers, z(u) = z(r(u)) ⊆ S to which the user can be assigned.

• b(s, q, u, t) the quantity of each resource required by user u at time t when placed on

server s which is equal to b(s, r, q) if a(u) ≤ t < d(u), 0 otherwise (the number of non-

zero elements in this list is equal to j(u)). Note that b(s, q, u, t) allows users demanding

the same service to utilise different quantities of resources on the same server. However,

82

in all problems considered here the quantity of resources utilised is constant for any user

of the same service on the same server.

Another useful (calculated) input is the maximum duration any user stays J = maxu∈U j(u).

Let E denote the set of unique times at which users arrive, ordered temporally. Note that E

is a subset of T . Given an element e ∈ E, e+ denotes the next element in E and e− denotes

the previous element in E. If a(u) ≤ e < d(u) then user u is present at event point e ∈ E.

These event points only include user arrival times as these are the points when decisions are

made, no choices are made when users depart or when no users arrive or depart therefore it

is only necessary to consider the state of the system when users arrive.

Additionally, an internet cafe has a maximum number of users it can physically seat, N .

4.2.4 Decisions

For each user u ∈ U a decision must first be made whether to accept or reject the user. If

the user is accepted then a server s ∈ S and a GPU core k ∈ K(s) must be selected to host

the user’s VM.

4.2.5 Constraints

Decisions that can be made are limited by a number of constraints on the servers and GPU

cores.

First, at any point in time t ∈ T , no server s ∈ S may have the total resources in use exceed

the available resources c(s, q) for all q ∈ Q. Additionally the total users in the internet cafe

at any point in time t ∈ T must not exceed the total seats in the internet cafe N .

If a GPU core is running a VM with vGPU type ζ(s, r) then it is not possible to start VMs

with a different vGPU type on that core. Note that since the server will be the same, it is

the service that the VMs provide that differs and causes the difference in vGPU type. Hence,

83

any r̂ ∈ R, r̂ 6= r with ζ(s, r̂) 6= ζ(s, r) cannot be started on the same GPU core. In addition,

through consecutive points in time, the VM allocated to a user can not change.

4.2.6 Outputs

Our final outputs for all models are: an allocated server s(u) for each user u ∈ U , and for each

server s ∈ S at each event point e ∈ E for each service r ∈ R: a number of virtual machines

running ν(s, e, r). This describes which users are accepted, on which servers they are placed,

how server resources are allocated, and which virtual machines must be operating.

4.3 Test Data Set

Test data sets were generated for the problem described in §4.1 to test algorithms. These

test sets are fully described for all inputs in this section. The problem test sets are divided

into two distinct groups. The first was created a few years ago when games played had lower

requirements, and as such, each VM requires fewer resources for each service level. The

second set has higher requirements for each service matching current demands. Both test

sets use the same servers as described in §3.1.1.

These tests always have a predefined total number of users for the entire test set. The fixed

number of users provides a constant problem size so the changes in other factors can be more

easily compared.

All data sets have four services offered: web, low, medium, and high. Web offers web browsing,

emails, video watching. Low offers the lowest requirement games. Medium offers the higher

requirement games which are either slightly older or new multiplayer games designed with

performance in mind. High offers the latest games which are often single player. However,

the price and exact games played on each service vary between the two sets.

84

4.3.1 First Test Set

The first test data set was made specifically for the offline integer program in order to test the

potential gains in total resource utilisation between a traditional internet cafe and a cloud-

based internet cafe. This data set considers a 10 hour period when the internet cafe is busiest

between 3 pm and 1 am. Users in this test only arrive once an hour at the start of the hour.

Testing scalability of algorithms is important. Hence, three different sized internet cafes are

tested; 30 seats, 150 seats, and 300 seats. The average internet cafe in China (the largest

internet cafe market in the world) has 120 seats so this range covers the relevant internet cafe

sizes. This test set is also used to test variability in services consumed in the internet cafe

and is grouped into 6 test cases with three levels of web usage, and two levels of gaming split

between low, medium and high. These demand levels are described in §4.3.4.

4.3.2 Services offered

The services offered in this test set are: web; low; medium; and high. These levels are as

described in §4.3. For this test set, each level is defined by a minimum 3DMark score obtained

in §3.4. Web machines obtained a score of at least 5,000 in IceStorm, low machines obtained

a minimum score of 10,000 in IceStorm, medium machines reached a score of at least 1,400

in CloudGate, and high machines had a minimum score of 2,000 in FireStrike. The 3DMark

scores must not fall below these minimum values even when the server is fully loaded with

VMs.

The services are priced according to the resources used, with each service level requiring

twice the GPU resource of the previous level and, as such, twice the price. These prices and

3DMark scores are shown in table 4.3.

85

Table 4.3: Profit and minimum 3DMark scores for test set one services

Service Price Per Hour 3DMark Test Minimum Score

Web $ 1.00 IceStorm 5,000

Low $ 2.00 IceStorm 10,000

Medium $ 4.00 CloudGate 1,400

High $ 8.00 FireStrike 2,000

4.3.3 Server Inputs

In this test set, there are two types of servers that supply VMs for the services. These are

the servers described in §3.1.1. These servers have either a K1 GPU or a K2 GPU card,

called the K1 server or K2 server respectively. Each server has 32 CPU cores and 80GB of

RAM. The number of servers used to provide services to users is described in table 4.4 where

the quantity is determined by the total number of seats/users and the gaming demand level.

These server quantities are set such that the internet cafe can supply all seats in the internet

cafe with VMs if demand is average.

Table 4.4: Test set one Internet Cafe Sizes and Server Quantities

Size
Gaming Demand
Level

Total Users Seats
Number of
K1 Servers

Number of
K2 Servers

Small Low 100 30 1 1
High 100 30 1 1

Medium Low 500 150 5 3
High 500 150 3 5

Large Low 1000 300 10 5
High 1000 300 5 10

Each server runs VMs with specifications that give the minimum 3DMark scores even when

the GPU core is full of VMs running in parallel. Table 4.5 shows these VM specifications

for the K1 and K2 servers. Each web VM supplies 8 users with each user using on average

a single CPU core. As a single CPU core is not able to give the minimum 5,000 IceStorm

score, the web users instead share 8 cores amongst them allowing any one VM to reach the

minimum score at any point in time, on the assumption that web users do not need this speed

often.

86

Table 4.5: Test set one virtual machine specifications

K1 Server K2 Server

Service
Users
Per VM

CPU RAM vGPU GPU % CPU RAM vGPU GPU %

Web 8 8 16 none 0 8 16 none 0

Low 1 4 6 K140 0.25 4 6 K220 0.125

Medium 1 6 8 K140 0.5 6 8 K220 0.25

High 1 N/A N/A N/A N/A 8 8 K240 0.5

Configurations are the number of VMs of each service run on each GPU core where the total

GPU % must be less than or equal to 1. In addition, all VMs in a single configuration must

run the same vGPU type. A VM can be run on a vGPU type with a higher performance

value than is given in its specifications but not lower. This may allocate a higher GPU % to

that VM than the service requires. Example configurations include (on the K1 server): 4 Low

VMs; 2 Medium VMs; or 2 Low VMs and 1 Medium VM alongside 5 more configurations.

The K2 server can have configurations with; 8 Low VMs; 4 Medium VMs; 2 High VMs; 2

Medium VMs and 1 High VM; 4 Low VMs and 2 Medium VMs; 4 Low VMs and 1 High VM

or any of the other 38 combinations. These combinations must obey the rules of vGPU usage

as stated in §3.1.2.1. A full list of configurations can be found in appendix A.

Web VMs, which don’t use vGPU resources, have configurations for the utilisation of all 32

CPU cores on the servers. Hence web configurations have up to 4 web VMs supplying up to

32 users.

4.3.4 User Inputs

Users for this test set require an arrival time, a number of hours to stay, and a service to

demand.

No hard data was available on the exact usage patterns of internet cafe users. Fortunately,

plenty of surveys exist that discuss the habits of users as discussed in §2.1. To generate data

two surveys were used, consisting of 284 users in Malaysia[4], and 336 users in Turkey[25].

These surveys have a large enough sample size to be representative of usage patterns in their

87

Figure 4.1: Probability density function for hours users arrive in test set one

geographic regions. These surveys divided user arrival times into five times of day: morning,

midday, afternoon, evening, and late night. Few users used the internet cafe in the morning,

with the quantity increasing throughout the day, peaking in the evening and falling off later

at night. As we are interested in the higher demand times for resource efficiency analysis,

the time periods considered are from 3 pm until 1 am or from mid-afternoon until early late

night. The chance of any particular user arriving at any hour is shown in figure 4.1.

The surveys found that the average user stays between 2 and 3 hours, with some staying for

longer duration’s. A distribution of hours stayed was created using a gamma distribution and

is shown in figure 4.2.

These surveys showed between 40%, and 60% of users would demand the web service, with

the remaining playing games. Three groups were made, with either 30%, 50%, or 70% of

users demanding the web service.

Neither survey specified the games being played. To generate gaming service demand for

either low, medium or high gaming services, reports from AMD’s Raptr software from 2015

were used [140]. AMD Raptr is driver management software for AMD GPUs. The games in

88

Figure 4.2: Probability density function for duration of stay in test set one

this list were divided into low, medium, and high based on their recommended hardware. The

3DMark scores can be linked to performance capabilities of different generations of Nvidia

GPU cards. This link was used to set the score thresholds based on table 4.3. The low

(gaming) service was set as requiring a GPU from Nvidia’s 300 series cards or lower. The

medium service was set as requiring a GPU between Nvidia’s 700 series and 400 series. The

high service was set as requiring a GPU from either Nvidia’s 900 series or 800 series. This

categorisation leads to the top 20 most played games split with: 34.5% at low, 21.12% at

medium, and 6.31% at high. The remaining 38% of gaming hours were not spent on these

top 20 games. Demand not in the top 20 was used to create two groups: one where demand

kept the top 20 proportions, and one where the demand for medium and high increases

proportionally. The first group gave demands of 56% for low, 34% for medium, and 10% for

low giving mostly low gaming demand. The second group gave demands of 41% for low, 34%

for medium, and 25% for high giving greater high gaming demand.

Combining these differing web demands and gaming demands creates 6 test scenarios. These

scenarios are summarised in table 4.6.

89

Table 4.6: Proportion of demand for each service for test set one

Percentage Demanding Service in Scenario
S 1 S 2 S 3 S 4 S 5 S 6

Web-Gaming Ratio web web balanced balanced gaming gaming

Low-High Gaming Ratio low high low high low high

Web 70% 70% 50% 50% 30% 30%

Low 16.7% 12.3% 27.85% 20.4% 39% 28.6%

Medium 10.2% 10.1% 17.05% 16.9% 23.9% 23.7%

High 3.1% 7.6% 5.1% 12.7% 7.1% 17.7%

4.3.5 Second Test Set

The second test was designed to test the overall ability of different algorithms to provision

resources effectively in a realistic internet cafe scenario. Larger internet cafes are open 24

hours, 7 days a week and for this reason, the second test set takes place over an entire day

of operation. The test set starts at the least busy hour and ends 24 hours later allowing the

system to warm up and warm down around the busiest period. For these problems, users

arrive in 15-minute intervals, a short enough time scale to be realistic for real-world arrivals.

After using test set one to test resource efficiency, further testing was carried out with test

set two. This necessitates a change in service requirements and VM specifications to better

match the desired performance for a more realistic and modern data set. The additional

change to arrival times from every hour to every 15 minutes and total time period to 24

hours further improve the data sets realism.

This test set was used to test three usage profiles: 1) realistic, 2) stress, and 3) a special

example case, these were tested with three scenario sets. The realistic set has internet cafes

of real world size and with similar user profiles to real world internet cafes. The stress set

has a large internet cafe with user profiles exceeding the design capacity of the internet cafe.

The corner case or special set is a smaller test set designed to illustrate potential limitations

of algorithms when presented with difficult but realistic examples of user demand.

Testing the effects of internet cafe size on these algorithms is as important as it was in test

set one. Three sizes of internet cafes are considered in the realistic set: 120, 250, and 500

90

seats. The average internet cafe size in China is 120 seats, as such this test set varies from

average to large.

In addition to the realistic scenarios, the stress set also uses the 500 seat internet cafe but

extends the average length of stay for users to test when the internet cafe is significantly over

maximum capacity. This is designed as a stress test for algorithms.

The final set is the special test which is built on an internet cafe with only 25 seats and a

single set of users to show the potential pitfalls of no rejection algorithms.

These three tests all utilise the same base specifications defined next in §4.3.6 and §4.3.6.1.

4.3.6 Services offered

The services offered in the second test set are; web; low; medium; and high as in test set one.

These levels are as described in §4.3.

Prices for test case two are based on realistic pricing for zoned internet cafes in China.

These prices are no longer proportional to the resources required for the service. Prices and

requirements are stated in table 4.7. The service requirements in test set two are adjusted

from the test set one as the 3DMark scores required have changed over time so specific game

testing was completed. The second test set has the service levels defined by specific games

with minimum resolutions, frame-rates and settings. All these checks were done for VMs

running Windows 10.

Table 4.7: Profit and performance details for test set two services

Service Hourly Price Games FPS Resolution Settings

Web $ 0.80 None N/A 1080p N/A

Low $ 1.20
League of Legends, DoTA2,
Hearthstone, World of Warcraft

40 1080p medium

Medium $ 1.60 Overwatch, Warframe 40 1080p medium

High $ 2.00 Witcher 3, Fallout 4 30 1080p medium

91

4.3.6.1 Server Inputs

In this test set, there are two types of servers which supply VMs for services. These are the

servers described in §3.1.1 and are the same as in test set one. These servers have either a K1

GPU or a K2 GPU card, again called the K1 server or K2 server respectively. These servers

each have 32 CPU cores and 65GB of RAM. The quantity of RAM has changed from test

set one to match the usage rates with that of the CPU cores. The number of servers used to

provide services to users is described in table 4.8 where the total number of seats determines

the quantity of servers. These server numbers are determined such that the internet cafe can

supply all seats in the internet cafe with VMs if demand is average.

Table 4.8: Test set two Internet Cafe Sizes and Server Quantities

Size Total Users Seats Number of K1 Servers Number of K2 Servers

Special 30 25 0 4

Small 300 120 4 10

Medium 625 250 8 22

Large 1250 500 16 44

Servers must run VMs which meet the minimum performance requirements for each service

even if the server resources are at capacity. Table 4.9 shows the specifications of VMs required

to supply services on the K1 and K2 servers. The K1 server is unable to host medium or

high gaming VMs. Each web VM supplies 4 users with each user effectively using 2 cores

each. Testing found that Windows 10 performance was sluggish when run on a VM that was

allocated only 2 of a server’s CPU cores. However, even when allocated extra cores the VM

does not use over 2 CPU cores except when opening applications and for initial Windows

startup. The extra cores are needed to provide extra processing capacity in those small

intervals. For this reason, web VMs have 8 cores shared between 4 users.

In this test set, it is not possible to mix and match VMs in a way that breaks vGPU rules

as they either use an entire core or the same vGPU type. Configurations are not needed as

they are quantities of VMs placed on a single GPU core used to stop cores from switching

between vGPU types. Since this is not possible in this test, it was not necessary to build

configurations. Instead the VMs are treated individually.

92

Table 4.9: Test set two virtual machine specifications

K1 Server K2 Server

Service
Users
Per VM

CPU RAM vGPU GPU % CPU RAM vGPU GPU %

Web 4 8 16 none 0 8 16 none 0

Low 1 6 8 K180 1 4 6 K240 0.25

Medium 1 N/A N/A N/A N/A 6 8 K240 0.5

High 1 N/A N/A N/A N/A 8 8 K280 1

4.3.6.2 User Inputs

Users for this demand set require an arrival time, a number of hours to stay, and a service

to demand. As with test set one no hard data was available on the exact usage patterns of

internet cafe users. Fortunately, plenty of surveys exist on the habits of users as discussed in

§2.1. For this test set, a survey of internet cafe users in China was used alongside surveys

used in test set one to build a realistic representative data set.

This survey divided user arrival times into six times of day: early morning, morning, midday,

afternoon, evening, and late night. Few users used the internet cafe in the early morning, and

morning, with the quantity increasing throughout the day, rising in the afternoon into the

evening and lasting until late night. The probability that any particular user arrives at any

hour is shown in figure 4.3. These users are then uniformly allocated a 15-minute interval

within that hour to arrive.

The survey showed around 30% of users would demand the web service, with the remaining

playing games. However, this survey did not specify the games being played.

To generate gaming service demand of either low, medium or high, reports from AMD’s Raptr

software from November 2015 were used (more recent than the reports for test set one) [141].

AMD Raptr is driver management software for AMD GPUs. The games in this list were

divided into low, medium, and high based on their recommended hardware. The low service

was set as requiring a GPU from Nvidia’s 200 series card or lower. The medium service was

set as requiring a GPU between Nvidia’s 600 series and 300 series. The high service was

set as requiring a GPU between Nvidia’s 900 series and 700 series. This categorisation leads

93

Figure 4.3: Probability density function for hours users arrive in test set two

to the top 20 most played games split: 70% at low, 15% at medium, and 15% at high. It

is likely internet cafes only install around 20 games on their systems at any point in time.

These games would likely be the 20 most popular games, so the distribution of the top 20 is

used for the test set.

Combining these web demands and gaming demands creates the demand proportions shown

in table 4.10.

Table 4.10: Proportion of demand for each service for test set two

Service Percentage Demanding

Web 30.0%

Low 49.0%

Medium 10.5%

High 10.5%

The survey found that the average user stays 2 and a half hours before leaving. A distribution

of hours stayed was created using a gamma distribution shown in figure 4.4 which roughly

reflects the hours’ users choose to stay.

94

Figure 4.4: Probability density function for duration of stay in test set two for 2.5 hour
average

It is necessary to create congestion in the internet cafe to test the algorithms in sub-optimal

conditions for the stress test. To create congestion the time users stay is increased without

changing the number of seats in the internet cafe. This increase was achieved by altering the

gamma distributions and was done three times. First increasing the average stay time to 3

and a half hours as shown in figure 4.5. Second, the average stay was increased to 4 and a

half hours as shown in figure 4.6. Lastly, the average was increased to 6 and a half hours

which massively overloaded the internet cafe. This distribution is shown in figure 4.7.

95

Figure 4.5: Probability density function for duration of stay in test set two for 3.5 hour
average

Figure 4.6: Probability density function for duration of stay in test set two for 4.5 hour
average

96

Figure 4.7: Probability density function for duration of stay in test set two for 6.5 hour
average

A final special case was created using the same servers, VMs and services but with special

users. The number of servers is shown for the 25 seat example in table 4.8. The users for the

special test case consist of a set of exactly 20 students arriving in the internet cafe at 3 pm

and staying until dinner time at 6 pm, and a set of exactly 10 workers arriving at the internet

cafe at 5 pm and staying until 10 pm. This special case is designed to show the pitfalls of

always accepting users as the students will fill the seats in the internet cafe leaving no room

for the more profitable longer staying workers later in the day. Additionally, as there are only

10 workers, it is important to still accept some students as the workers will only use half the

available resources. There was no randomness in this test case, all values were fixed for a

single test.

4.3.7 Generation Process

For each problem 10 random realisations are generated for the given number of users. In the

generation process each user is assigned:

97

1) An arrival time (first allocated an hour in the day followed by the specific time within the

hour) generated from the distributions shown in figures 4.1, and 4.3.

2) A demand for a service which will be generated randomly from the proportions shown in

tables 4.6, and 4.10.

3) A total number of hours the user will stay, generated from the gamma distributions shown

in figures 4.2, 4.4, 4.5, 4.6, and 4.7.

4.3.8 Test Profiles Summary

Overall there are four distinct test sets generated to benchmark the algorithms.

The first test set benchmarks the potential improvement in resource efficiency that may come

from a cloud-based internet cafe. It consists of a 10 hour period with users arriving every

hour. It tests three different sized internet cafes with six unique service demand profiles. User

stay duration’s are generated from the same distribution for all sizes and demand profiles with

an average stay of two and a half hours.

The second test set benchmarks: 1) the overall potential of algorithms in a real cloud-based

internet cafe; 2) the efficacy of the algorithms as demand increases; and 3) the advantages of

algorithms that include rejection. For realism, the test consists of a full day cycle with users

arriving every 15 minutes. The realistic test contains three different sized internet cafes with a

single service demand profile. User stay duration’s are generated from the same distribution

with the average user staying 2.5 hours. For the stress test with increasing demand, the

largest internet cafe was utilised and user stay duration’s were increased to provide 3 tests

with increasing stays averaging 3.5, 4.5, and 6.5 hours. For testing rejection, a special test was

designed to show the advantages of an algorithm with rejection over an accept all policy. This

set has a small 25 seat internet cafe where users arrive after school and then again after work

before the first set of users leave. Overall, the second test builds a profile for benchmarking

algorithms against one another to operate a cloud-based internet cafe efficiently.

Chapter 5

Offline Integer Program

This chapter describes the different integer programs that were developed to solve the cloud-

based internet cafe resource allocation problem. These solve the offline problem where all

information is known when the problem is solved. The first integer program developed handles

the rules for vGPUs described in §2.2.5. The model is described in §5.1. This model proved

difficult to solve, and alterations were made to improve solution time and quality.

A second model was also developed which assumes vGPU rules will not be violated due to

the natural structure of the data set is described in §5.3. This model is paired with a third

model which calculates the optimal zone size for a traditional zone-based non-cloud internet

cafe described in §5.4.

Finally, these models are used to solve the test data sets described in §4.3 and the full results

are presented.

These models are built from the problem description, inputs, and data sets described in

Chapter 4.

99

100

5.1 Initial Model

The integer program in this section was developed to solve the resource allocation problem

for a cloud-based internet cafe. The decision variables, objective, and constraints are all fully

described in this section.

This model was presented at the Utility and Cloud Computing Conference [142]. The offline

model presented here was designed to comply with all known restrictions in the design of a

cloud-based internet cafe. The model assumes that a sufficiently large and powerful remote

storage block is available and that all connections are not limited by the network.

The model is built to place users on servers and GPU cores. It does this by setting server

GPU cores into specific configurations which run VMs that can supply a user with their

desired service. It attempts to set these configurations such that maximum profit is obtained

from users accepted into the internet cafe. The models are constructed from the problem

description in §4.1 and using model data described in §4.2.

5.1.1 Decision Variables

The model has the following binary decision variables:

For each user u ∈ U , server s ∈ S, and every GPU core k ∈ K(s) of server s, there is a binary

variable xu,s,k indicating if u is allocated to GPU core k:

xu,s,k =

1 if user u is allocated to core k of server s

0 otherwise

(5.1)

101

Similarly, for each user u ∈ U and server s ∈ S, there is a binary variable wu,s indicating

whether u is allocated to server s without assigning the user to a GPU core:

wu,s =

1 if user u is allocated to server s directly

0 otherwise

(5.2)

Constraints presented in §5.1.2 ensure that only gaming users are assigned to GPU cores and

only web users are assigned directly to servers.

To deal with the configurations of GPU cores, a binary variable ys,k,m,e is used for each

server s ∈ S, GPU core k ∈ K(s), configuration m ∈ M , and event point e ∈ E to indicate

whether GPU core k is in configuration m at event point e:

ys,k,m,e =

1 if core k of server s is in configuration m

at event point e

0 otherwise

(5.3)

Similarly, a binary variable zs,m,e is used for each server s ∈ S, configuration m ∈ M , and

event point e ∈ E to indicate whether the server itself is in configuration m at event point e:

zs,m,e =

1 if server s is in configuration m at event point e

0 otherwise

(5.4)

Constraints presented in §5.1.2 will ensure that only configurations m ∈M with g(m) = none

are active on servers, and only configurations with a matching type of GPU are active on

each GPU core.

To model when a GPU core changes to a configuration with a different type of vGPU than

102

before (which is only possible if no users are currently assigned to the core), a binary vari-

able vs,k,e is used for each server s ∈ S, GPU core k ∈ K(s), and event point e ∈ E:

vs,k,e =

1 if core k of server s changes its configuration

to a different ζ (vGPU) at event point e

0 otherwise

(5.5)

5.1.2 Integer Program

The objective is to maximise the total profit obtained by accepting users (profit of a user

multiplied by whether or not they are allocated to a server directly – wu,s – or allocated to

a GPU core – xu,s,k):

max
∑
u∈U

p(u)
∑
s∈S

wu,s +
∑

k∈K(s)

xu,s,k

 (5.6)

In order to obtain a feasible assignment of users to servers/cores, the constraints in §5.1.2.1-

5.1.2.3 are used:

5.1.2.1 User constraints

Each user u ∈ U can only be allocated once:

∑
s∈S

wu,s +
∑

k∈K(s)

xu,s,k

 ≤ 1 ∀u ∈ U (5.7)

The internet cafe must have enough seats for all users at any point e ∈ E:

∑
u∈U

a(u)≤e<d(u)

∑
s∈S

 ∑
k∈K(s)

xu,s,k + wu,s

 ≤ N ∀e ∈ E (5.8)

103

The constraint counts the number of users active in each event point (i.e. when the point is

after the user arrives a(u) but before they leave d(u)) and ensures the total active users is

less than or equal to the number of available seats.

5.1.2.2 Server constraints

Each GPU core k ∈ K(s) of a server s ∈ S can only be in one configuration at each event

point e ∈ E: ∑
m∈M

ys,k,m,e ≤ 1 ∀s ∈ S, k ∈ K(s), e ∈ E (5.9)

Each server s ∈ S itself can only be in one configuration at each event point e ∈ E:

∑
m∈M

zs,m,e ≤ 1 ∀s ∈ S, e ∈ E (5.10)

The GPU cores k ∈ K(s) of each server s ∈ S can only run configurations whose type of

GPU matches their GPU type:

∑
e∈E

∑
k∈K(s)

∑
m∈M

g(m) 6=g(s)

ys,k,m,e = 0 ∀s ∈ S (5.11)

Configurations m ∈ M that require a GPU core (i.e., with ζ 6= none) can not be active on

the servers directly (i.e. without allocating a GPU core):

∑
e∈E

∑
s∈S

∑
m∈M

ζ(m)6=none

zs,m,e = 0 (5.12)

The RAM of each server s ∈ S must not be over-allocated at any event point e ∈ E:

∑
m∈M

ρ(m, ram)

zs,m,e +
∑

k∈K(s)

ys,k,m,e

 ≤ c ∀s ∈ S, e ∈ E (5.13)

104

The CPU cores of each server s ∈ S must not be over-allocated at any event point e ∈ E:

∑
m∈M

ρ(m, cpu)

zs,m,e +
∑

k∈K(s)

ys,k,m,e

 ≤ c(s, cpu) ∀s ∈ S, e ∈ E (5.14)

5.1.2.3 Event constraints

The supply of services (i.e. running configurations with VMs for those requirements) on each

server and GPU core on that server – represented on the right-hand side of (5.15) – must

satisfy the demand by active users at each event point – represented on the left-hand side of

(5.15). Each GPU core k ∈ K(s) of a server s ∈ S must be able to supply the services of

each requirement type r ∈ R which are demanded by the users allocated to the core at each

event point e ∈ E:

∑
u∈U
r(u)=r

a(u)≤e<d(u)

xu,s,k ≤
∑
m∈M

υ(r,m) · ys,k,m,e ∀s ∈ S, k ∈ K(s), r ∈ R, e ∈ E (5.15)

Note that at most one of the variables ys,k,m,e in the sum on the right hand side can be equal

to one. Also note, since υ(web,m) = 0 for all configurations m ∈ M that are feasible for

GPU cores (i.e. have ζ(m) 6= none), this constraint also ensures that only gaming users are

assigned to GPU cores.

A second constraint is set up, similar to (5.15), for services which do not require a GPU core.

Each server s ∈ S must be capable of supplying the services of each requirement type r ∈ R

demanded by the users allocated to the server directly at each event point e ∈ E:

∑
u∈U
r(u)=r

a(u)≤e<d(u)

wu,s ≤
∑
m∈M

υ(r,m) · zs,m,e ∀s ∈ S, r ∈ R, e ∈ E (5.16)

Note that, since υ(r,m) = 0 for all r 6= web and all configurations m ∈ M that are feasible

for being active on a server directly (i.e. have ζ(m) = none), this constraint also ensures that

105

only web users are assigned directly to servers.

If, at event point e ∈ E, a GPU core k ∈ K(s) of a server s ∈ S changes from a configu-

ration m′ ∈ M that was active on the core at the previous event point e− to a configura-

tion m ∈M having a different type of vGPU, the variable vs,k,e must be set to one:

1 + vs,k,e ≥ ys,k,m,e +
∑
m′∈M

ζ(m′)6=ζ(m)

ys,k,m′,e− ∀s ∈ S, k ∈ K(s),m ∈M, e ∈ E (5.17)

Observe that at most one of the variables ys,k,m′,e in the sum on the right hand side can be

equal to one.

A core k ∈ K(s) of a server s ∈ S cannot change to a configuration with a different type of

vGPU at event point e ∈ E if a user u ∈ U is allocated to the core at event point e:

1− xu,k,s ≥ vs,k,e ∀s ∈ S, k ∈ K(s), u ∈ U, e ∈ E : a(u) < e < d(u) (5.18)

5.2 Efficiency Improvements

The model was difficult to solve due to symmetry arising from homogeneous servers. There

were also memory issues due to the large number of variables and constraints. Epsilon ob-

jective perturbations and constraint branching were implemented to help with the symmetry

problem. Variables and constraints which would be set to 0 were instead removed, and lazy

constraints were utilised to reduce the memory usage. This section discusses each of these

problems and subsequent approaches in more detail.

5.2.1 Symmetry

The inherent problem symmetry made the model difficult to solve. As there were only two

types of servers in the test data sets, it was possible to swap users between servers without

changing the objective value while creating distinct solutions. This symmetry prevented the

106

branch and bound tree from fathoming nodes. To differentiate solutions from one another the

cost coefficients were altered with an epsilon objective perturbation. The epsilon perturbation

randomly perturbs the cost coefficients in an attempt to remove symmetric solutions with

equal objective function values. Essentially each user, server pairing was given a small unique

coefficient alteration. These perturbations created a slight difference in objective when placing

different users on different servers allowing the branch and bound tree run more efficiently.

The new objective used was:

max
∑
u∈U

p(u)
∑
s∈S

wu,s +
∑

k∈K(s)

xu,s,k

+

∑
u∈U

∑
s∈S

ε · (index(u) + max (index(s))) · index(s)

wu,s +
∑

k∈K(s)

k · xu,s,k

 ,

where ε was a small value which didn’t change the optimal solution from the formulation

without the perturbation. For this problem, a value of ε = 10−5 was used. The ε value was

determined by the largest index value generated by the equation compared to the smallest

possible objective profit. The largest index value is calculated from the largest user index of

1000 and the largest server index of 50 giving a maximum combined index on the order of

104. The lowest profit would be the cheapest user staying for one hour with a profit of 1. As

such the epsilon value of 10−5 ensures the order of the perturbation is always smaller than

the objective gained when accepting any user, meaning a user will not be accepted simply for

having a high user and server index. Overall, epsilon constraint perturbations enabled high

quality solutions to be found faster. When the solver was given 10 minutes to find solutions

the bounds were improved from 10% to under 1% for many problem instances.

A second technique that was utilised in order to (attempt to) reduce symmetry was constraint

branching. Constraint branching branches on constraints, effectively the sum of a set of

variables, before branching on variables directly. In this case, new variables were created

which represented the total number of users of each service type on a server in each time

period. Constraint branching then branches on the number of users of each type rather than

107

the individual users. These additional variables and constraints increased the build time

of the model and increased the solution time for the linear program relaxation. This time

increase was significant enough that the improvement from constraint branching was entirely

negated.

Column generation techniques including Dantzig-Wolfe decomposition[143] were also consid-

ered to reduce symmetry because these methods have been shown to reduce symmetry in

bin packing problems. Column generation was tested using Dippy [144] which has an auto-

matic column generation function but the CBC solver used was unable to handle such large

problem sizes. A manual reformulation was also considered, however, the epsilon constraint

perturbations had already sufficiently reduced symmetry for all practical use cases with the

longest solve times needed at only around 10 hours.

5.2.2 Memory Use

Given the size of the real world problem instances, memory requirements were also a so-

lution issue. For initial data sets memory was not a problem, but when the problem size

was significantly increased the memory required became a problem. The increased memory

requirement arose from the data sets with 15 minute time intervals over 24 hours versus the

previous hourly intervals. This finer discretisation of time resulted in millions more con-

straints and variables. The first solution to this problem was the removal of variables which

were directly set to 0 by the constraints. Removing these variables also allowed the removal

of constraints limiting these variable values. The removal of these variables and constraints

reduced the total memory requirement by around 40%.

The variables removed in this process were those for servers upon which a user could never

be placed (i.e., the server did not have a VM capable of the demanded service). In addition,

variables were defined and then set to zero for allocating gaming users directly to the server

when they required a GPU core. These were also removed along with the related constraints.

108

5.3 Updated Model

When solving the cloud-based internet cafe resource allocation problem for test data set 2 (as

described in §4.3.5), many of the vGPU complexities were not required due to the structure

of test set 2. The reduced vGPU complexity meant it was no longer necessary to track vGPU

types and prevent the switching of vGPU types, as this can not happen in test set 2. For

this reason a new faster model was built to solve test set 2 efficiently.

The online models in chapter 7 required assumptions about GPU virtualisation which are met

by the 24-hour data sets. These assumptions are that: there is no scenario where the type of

vGPU will change infeasibly (i.e., from a K260 type to a K240 while a VM is running), and all

GPU cores can be treated as continuous resources like CPU and RAM (i.e., all combinations

of VMs will add to whole numbers of GPU cores). If these assumptions hold true, then the

variables for changing configurations are no longer needed, in fact, configurations themselves

are no longer needed, and it is instead possible to track individual VMs. This model has the

added advantage of scaling better to the 15 minute time intervals used for test set 2 presented

in §4.3.5.

Both the prebooking integer program presented in chapter 6 and the offline algorithm com-

parisons for the online models in chapter 7 make use of this model.

5.3.1 Decision Variables

The model uses the following binary decision variables:

Similar to the previous formulation in (5.1) and (5.2), for each user u ∈ U , server s ∈ S, and

every GPU core k ∈ K(s) of server s, there is a binary variable xu,s,k indicating whether u is

allocated to GPU core k on server s:

xu,s,k =

1 if user u is allocated to core k of server s

0 otherwise

(5.1)

109

Due to the lack of vGPU limitations this formulation is able to consider individual VMs

instead of configurations. Each non-web user represents a single VM but the same is not true

for web users. Therefore, for each server s ∈ S, and event point e ∈ E, there is an integer

variable ys,e indicating the number of web virtual machines being run on server s:

ys,e ≥ 0 (5.3’)

Here we use the dummy core k = 0 to represent placing web users directly onto the server

without using GPU resources and extend K(s) (and the definition of x) to include a dummy

core. As web users do not require GPU resources, all variables for placing web users onto

GPU cores are set to 0 and removed in pre-processing as described in §5.2.2:

xu,s,k = 0 ∀u ∈ U, s ∈ S, k ∈ K(s) : r(u) = web, k 6= 0 (5.19)

All non-web users require a GPU core, and as such must be allocated to a non-dummy GPU

core. All variables relating to the dummy GPU core (k = 0) are set to 0 and removed in

pre-processing as above:

xu,s,0 = 0 ∀u ∈ U, s ∈ S : r(u) 6= web (5.20)

Users can not be placed on servers to which they cannot be assigned (these variables are also

removed in pre-processing):

xu,s,k = 0 ∀u ∈ U, s ∈ S \ z(u), k ∈ K(s) (5.21)

5.3.2 Integer Program

The objective is to maximise the total profit obtained by accepting users. Note that this is

the same objective as (5.6), but wu,s has been replaced by xu,s,0 with K(s) has been extended

110

to include the dummy core k = 0. The objective definition is:

max
∑
u∈U

p(u)
∑
s∈S

 ∑
k∈K(s)

xu,s,k

 (5.6’)

Note the previous constraints, (5.19)- (5.21), ensure that invalid x variables are set to 0.

In order to obtain a feasible assignment of users to servers/cores, the constraints in §5.3.2.1

and §5.3.2.2 are used:

5.3.2.1 User Constraints

Each user u ∈ U can only be allocated at most once (mirroring (5.7)):

∑
s∈S

 ∑
k∈K(s)

xu,s,k

 ≤ 1 ∀u ∈ U (5.7)

The internet cafe must have enough seats for all users at any point e ∈ E (mirroring (5.8)):

∑
u∈U

a(u)≤e<d(u)

∑
s∈S

∑
k∈K(s)

xu,s,k ≤ N ∀e ∈ E (5.8)

5.3.2.2 Supply Constraints

Enough virtual machines for the number of web users allocated to the server must be supplied

(this constraints mirrors (5.16) but is formulated differently due to the removal of configura-

tions from the problem):

∑
u∈U

a(u)≤e<d(u)

xu,s,0 ≤ n(s,web)ys,e ∀s ∈ S, e ∈ E ((5.16)’)

Note that y is multiplied by n as y represents the number of non-GPU VMs on s and each

of these VMs can supply multiple users (equal to n).

111

Each server must have enough RAM and CPU to supply the virtual machines at any point

e ∈ E (mirroring constraints (5.14) and (5.13) in the initial model):

∑
u∈U

a(u)≤e<d(u)︸ ︷︷ ︸
sum over non-web
users active at e

b(s, r(u), q)
∑

k∈K(s)
k 6=0

xu,s,k

︸ ︷︷ ︸

q required for non-web
user u on s

+ b(s,web, q)ys,e︸ ︷︷ ︸
total q for web

users on s

≤ c(s, q)

∀s ∈ S, e ∈ E, q ∈ {cpu, ram}

(5.22)

This constraint calculates the resources consumed by each user active at each event point

who has been allocated to the server and compares that against the resource available on a

server. The users are split by users demanding GPU VMs (represented by x and those who

do not (represented by the number of VMs y).

Each server must have enough GPU resources to supply the virtual machines at any point

e ∈ E (this is unique to the new formulation as previously the set up of the configurations

ensured this was true):

∑
u∈U

a(u)≤e<d(u)︸ ︷︷ ︸
sum over non-web
users active at e

(b(s, r(u), gpu)xu,s,k)︸ ︷︷ ︸
GPU resource usage
by users on server

≤ 1 ∀s ∈ S, k ∈ K(s), e ∈ E : k 6= 0 (5.23)

Note that the capacity of each GPU core is 1 or 100%. Each user allocated to the GPU core

utilises a percentage of the core while they are active.

5.4 Fixed Zone Model

In order to compare the initial and updated model results to a traditional internet cafe with

zones for each service an integer program was created which calculates the optimal size of

each zone to maximise profit. These zone sizes are fixed for the entire day. The profit can

112

then be compared to the profit of the cloud-based internet cafe model where zone sizes change

throughout the day.

5.4.1 Decision Variable

The model uses the following binary decision variables:

As in the previous formulations from (5.1) and (5.2), for each user u ∈ U there is a binary

variable xu indicating whether u is accepted:

xu =

1 if user u is accepted

0 otherwise

(5.1’)

For each service r ∈ R there is an integer variable yr equal to the number of seats for service

r in the internet cafe:

yr ≥ 0 (5.3’’)

5.4.2 Integer Program

The objective is to maximise the total profit obtained by accepting users:

max
∑
u∈U

p(u)xu (5.6’)

The internet cafe must have enough seats for all users at any point e ∈ E:

∑
u∈U

a(u)≤e<d(u)

xu ≤ N ∀e ∈ E (5.8’)

The internet cafe must have enough seats for all users demanding r ∈ R at any point e ∈ E.

This is the fixed zone internet cafe’s equivalent of resource constraints in equations (5.14),

113

(5.13) and (5.22): ∑
u∈U

a(u)≤e<d(u)
r(u)=r

xu ≤ yr ∀e ∈ E r ∈ R (5.24)

The internet cafe must have enough seats for total seats over all zones:

∑
r∈R

yr ≤ N (5.25)

5.5 Results

These results were generated by solving the offline models in this chapter for the data sets

described in §4.3. All models were built in Python 2.7 using PuLP [93] and solved using

Gurobi [94].

5.5.1 Test Set One

These results are generated using the data outlined in §4.3.1 using the model outlined in

§5.1. All six test cases in the data set were solved using Gurobi 6.0.3 through a VM running

Windows 7 which had sixteen 2.1 GHz CPU cores and 16 GB of RAM. Gurobi [94] was

used as the solver because solve time was a problem and Gurobi offered superior solve times

compared to other solvers tested including IBM Cplex [97] and CBC [98]. Each test case

had three sizes 100, 500, and 1000 users per day. Results presented are the average of 10

realisations (generated using the methodology in §4.3.7) of the random inputs in the test data

set with 95% confidence intervals. Test set one consists of six scenarios each with different

gaming demand levels ranging from low to high labelled 1 to 6 as described in table 4.6

(reproduced here). The results are compared to the profit obtained when running the fixed

zone model on the same data.

114

Table 4.6: Proportion of demand for each service for test set one

Percentage Demanding Service in Scenario
S 1 S 2 S 3 S 4 S 5 S 6

Web-Gaming Ratio web web balanced balanced gaming gaming

Low-High Gaming Ratio low high low high low high

Web 70% 70% 50% 50% 30% 30%

Low 16.7% 12.3% 27.85% 20.4% 39% 28.6%

Medium 10.2% 10.1% 17.05% 16.9% 23.9% 23.7%

High 3.1% 7.6% 5.1% 12.7% 7.1% 17.7%

The 100 user cases were able to reach optimality in a reasonable time period, as shown in

table 5.1. For the cases with, 500 and 1000 users there was a slower rate of convergence to

the optimal solution. For this reason, the model solve time was limited to ten minutes.

Tables 5.1, 5.2, and 5.3 show the gap between the final objective values and the theoretical

upper bound as computed by the solver after ten minutes. All test cases reach an optimality

gap below 5% within the ten-minute limit. Many models reach optimality or achieve a gap

lower than 1%. The optimality gap generally increased as the number of users increased. The

overall average gap after ten minutes was 1.5%.

Table 5.1: Comparison of results for test set one with 100 users after running each test for
ten minutes

Scenario Number 1 2 3 4 5 6 Average

Number of Users 100 100 100 100 100 100

Profit 327 324 382 387 432 431
95% CI ±3.5 ±3.3 ±4.8 ±4.7 ±4.5 ±5.7
Optimality Gap 0.00% 0.00% 1.42% 0.26% 0.00% 0.00% 0.28%

Profit (Fixed Zone) 301 300 346 359 381 410
95% CI ±3.4 ±3.4 ±4.7 ±4.6 ±4.4 ±5.5
Profit Improvement 7.95% 7.41% 9.42% 7.24% 11.8% 4.87% 8.12%

All test results were compared to the fixed zone version of the model which allowed only a

single configuration of zoned seats within the internet cafe for the entire day. This version of

the model was designed to correspond to a standard internet cafe with different zones of fixed

sizes using an optimal user acceptance strategy. It is important to note that even with this

fixed zone model the zone sizes are optimised for the specific demand given. For this reason,

the fixed zone model obtains profit equivalent to the maximum profit achievable with fixed

zone sizes for the given demand. In practice, the internet cafe would have to fix its zone sizes

115

over multiple days as demand changes, obtaining a lower profit than using zones that adjust

to the days’ unique demand.

This fixed zone model can be used to measure the merit of the increased flexibility offered by

the cloud-based model where servers provide VMs that exactly meet the users demands at

any point in time. Tables 5.1, 5.2, and 5.3 show that on average the flexible models offers a

5.5% improvement in profit over the restricted model with improvements as large as 11.8%.

Additionally the initial model always produced a solution superior to that of the fixed model,

showing the value of added flexibility. It is worth noting that increasing the solve time beyond

10 minutes could further increase this gap, although the remaining optimality gaps are smaller

than the improvement currently offered by flexibility. This difference means the improvement

demonstrated by the flexible model is predominantly due to the flexible approach providing

better solutions since the optimality gap can only explain a small fraction of the improvements

for the 100, 500, and 1000 user internet cafes. The flexible models have an average profit

improvement of 8.12% for the 100 user internet cafe and a smaller 4.2% for the 500, and 1000

user internet cafes when compared with the fixed zone model. The smaller improvement in

the larger problems may be because the improvement in profit from accepting an additional

user in a 100 user internet cafe represents a larger percentage of the total profit than it does

in either a 500 or 1000 user internet cafe.

Table 5.2: Comparison of results for test set one with 500 users after running each test for
ten minutes

Scenario Number 1 2 3 4 5 6 Average

Number of Users 500 500 500 500 500 500

Profit 1629 1782 1622 1920 1739 1995
95% CI ±17 ±18 ±22 ±27 ±21 ±23
Optimality Gap 0.92% 2.97% 2.32% 1.32% 1.92% 0.87% 1.72%

Profit (Fixed Zone) 1595 1771 1517 1783 1648 1939
95% CI ±18 ±19 ±21 ±28 ±20 ±21
Profit Improvement 2.09% 0.62% 6.47% 7.14% 5.23% 2.81% 4.06%

For all scenarios, the most interesting aspect is how resource utilisation is improved in compar-

ison to the traditional internet cafe. Resource utilisation is the percentage of total available

resources that are being used by users. Figure 5.1, and 5.2 show the percentage utilisation of

116

Table 5.3: Comparison of results for test set one with 1000 users after running each test
for ten minutes

Scenario Number 1 2 3 4 5 6 Average

Number of Users 1000 1000 1000 1000 1000 1000

Profit 3109 3519 3182 3800 3265 3763
95% CI ±41 ±41 ±32 ±52 ±44 ±52
Optimality Gap 3.94% 3.01% 2.66% 1.16% 3.68% 0.86% 2.55%

Profit (Fixed Zoned) 3029 3469 2959 3496 3144 3614
95% CI ±40 ±42 ±33 ±50 ±42 ±51
Profit Improvement 2.57% 1.42% 7.01% 8.00% 3.71% 3.96% 4.44%

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5 6 7 8 9
TimePeriod

U
til

is
at

io
n

CPU
RAM
GPU

Figure 5.1: Utilisation of CPU, RAM, and GPU resources over time for test set one test 2

the CPU, RAM, and GPU resources on averaged over all servers for the 1000 user internet

cafe in scenarios two and six respectively. A utilisation of 1 corresponds to 100% of the re-

source being used. The plots show CPU utilisation near 100% for the entire time period with

the other resources around 50% utilised, compared to the lower utilisation of a traditional

internet cafe as shown in figure 5.3. The under-utilisation of non-CPU resources could be

avoided by increasing the number of CPU cores on the server or decreasing the total RAM.

Unfortunately, GPU cards come in fixed quantities and are hard to adjust. One of the most

significant contributors to low GPU resource utilisation are web users, who do not utilise any

GPU consuming only CPU and RAM resources. The existence of web users may indicate a

need for non-GPU servers to meet this demand exclusively.

117

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5 6 7 8 9
TimePeriod

U
til

is
at

io
n

CPU
RAM
GPU

Figure 5.2: Utilisation of CPU, RAM, and GPU over time for test set one test 6

The results for scenario 6, the scenario with 70% gaming users, and a higher percentage of

high gaming users is shown in Figure 5.2. A higher utilisation of GPU resources at around

70% is evident, as a result of scenario 6’s higher gaming demand. However, this utilisation

still doesn’t reach 100% due to web users taking CPU cores without using any GPU resource.

In fact, in test case 6 the K2 server GPU resource has a utilisation around 100% while the K1

server GPUs are only around 50% utilised. This lower K1 utilisation highlights a potential

need for more K2 servers in this problem.

Figure 5.3 shows the resource utilisation of a standard internet cafe (where all seats provide

all services) compared to the cloud-based internet cafe with both accepting the same users.

In this standard internet cafe, all desktop machines have specifications that are the same as a

high gaming VM, and utilisation is counted as the percentage of these resources used by the

VM for the users’ actual demanded service. The values clearly show the cloud-based model

can offer significant improvements in CPU and RAM utilisation with a minor improvement

in GPU utilisation. These results could be further improved if the CPU, RAM, and GPU

resources were set to a more appropriate ratio. Nevertheless these results show how a cloud-

based model can reduce the resource inefficiency found in a standard internet cafe.

118

0.00

0.25

0.50

0.75

1.00

CPU GPU RAM
Resource

U
til

is
at

io
n

Servers
Computers

Figure 5.3: Comparison of average utilisation of resources using cloud-based vs. traditional
internet cafe

5.5.2 Test Set Two

These results are generated using the data outlined in §4.3.5 with the model outlined in §5.3.

All three test cases in the data set were solved using Gurobi 6.5.2 through a VM running

Windows 10 which had sixteen 2.1 GHz CPU cores and 16 GB of RAM. Gurobi [94] was

used as the solver as it had shown fast solve times in the previous test sets.

Results presented for each test case are the average of 10 realisations of the random inputs

in the test data set, again generated using the methodology stated in §4.3.7.

119

Table 5.4 shows the profit and optimality gap obtained by the model after solving for 10

minutes and 10 hours. The realistic test set with 2 and a half hour stay times can solve

to optimality within 10 minutes using the new model. The stress tests with longer stay

duration’s do not come close to optimality within the 10 minutes. In fact, for the 4.5-hour

tests, only 5 of the 10 realisations even find integer solutions within 10 minutes. The other

high capacity tests reach optimality gaps in the 20-30% range which is not a suitable solution.

Table 5.4: Comparison of results for test data set two with 10 minute solve times versus
10 hour solve times

Average Stay Size
Profit
(10 minute)

Optimality
Gap

Profit
(10 hours)

Optimality
Gap

Change

2.5 Hours 300 1162.4 0% 1162.4 0% 0%

2.5 Hours 625 2429.1 0% 2429.1 0% 0%

2.5 Hours 1250 4895.9 0% 4895.9 0% 0%

3.5 Hours 1250 5137.4 22.7% 6068.4 0.95% 21.75%

4.5 Hours 1250 No Solution NA 7184.7 2.22% INF

6.5 Hours 1250 7337.2 28.4% 8754.5 1.5% 26.9%

The 10 hour solve time drastically improves the solution quality with the optimality gaps

falling from over 20% down to below 2.5%. Even the 4.5-hour case reaches a 2.22% optimality

gap despite not finding an integer solution within 10 minutes.

The model was also solved for the special 30 user test case presented as part of test set two

in §4.3.5. This test case is used to show the power of user rejection when an internet cafe is

over capacity with high profit users arriving after lower value users. The special test could

be solved to optimality instantly with a profit of $116.9. Accepting the 13 most profitable

users who arrive at 3 pm and then filling the remaining server space with all 10 of the 5

pm arrivals. These results will be used later when comparing online algorithm placement

performance in chapter 7. While this is a trivial model for the offline problem to solve to

optimality, when presented with limited future information the solution to this problem varies

drastically depending on the online strategy.

Chapter 6

Prebooking Integer Program

This chapter describes a prebooking system for a cloud-based internet cafe that can utilise

the offline integer program from chapter 5 for placing users who have booked in advance.

In a prebooking system, users must request seats in the internet cafe in advance. Users must

specify their desired arrival time, duration, and service. An algorithm decides to accept or

reject users, and determines on which servers they will be placed. Users whose arrival time is

within a defined window are notified whether their request has been accepted (this window

is referred to as the “notification window”). The algorithm can be solved again as more user

requests arrive. Users are progressively notified as their arrival enters the notification window.

The advantage of a prebooking system lies in its ability to leverage future information. Future

information allows the algorithm to make informed choices when accepting and placing users.

The prebooking system must provide an interface for users to book and a notification system

to inform users of their request status. The backend of the system solves an algorithm that

takes three input settings. These three inputs are: 1) δ (the solve frequency), the frequency

with which the algorithm is run, 2) γ (the notification window), the quantity of time before

arrival that users are informed users of the outcome of their request, and 3) σ (the time

horizon), the amount of future of information the prebooking system is given. In order

to meet the future information requirement from σ and the window for informing users of

121

122

Figure 6.1: Features of a prebooking system over time from when a user places a booking

acceptance from γ, users must place bookings at the latest by σ + γ. This time period gives

the prebooking system the necessary information to make its decision on user acceptance and

inform users within the notification window. Note that users will have to wait σ units of

time after placing their booking before they are informed of their acceptance or rejection.

Figure 6.1 shows the system graphically, with a user placing a booking, waiting σ hours to be

informed of acceptance or rejection and then finally arriving after σ + γ hours since placing

the booking.

The integer programs in chapter 5 are one of the best options for placement algorithms

because, as shown in the previous chapter, they are able to produce provably optimal solutions

for the problem formulated. These integer programs take the user requests and then decide

whose bookings to accept and reject as well as which servers to place those bookings on. The

user can then be notified of whether the request was accepted.

The prebooking system is tested using the data described in §4.3.5. The test steps through

the data set from one user arrival time to the next in order to simulate users placing requests.

Then the integer program’s decisions are fixed as they enter the users notification window.

123

6.1 Model

The integer program presented in §5.3 is used to solve the user allocation for the prebooking

system. This section presents a time-staged version of the IP which simulates the function of

the prebooking system throughout the day.

To generate solutions for benchmarking that use an entire data set, it is necessary to simulate

the placement of requests. This simulation is performed by iteratively solving the IP with

subsets of the total data set based on the time horizon and solve frequency.

This time staged model represents the prebooking system placing users in the internet cafe

over the course of a day. The simulation uses time horizon and solve frequency to decide

how to subset test data set two. The time horizon σ defines the number of hours of future

information available about bookings which have already been placed. The solve frequency

δ defines how often new data is added, and the problem solution is recomputed.

6.1.1 Batch Solver

This section defines the selection of inputs for the batch solver IP from the inputs in §4.2.2.

Consider δ to be the time between sequential solves and σ as the time into the future that

user arrivals are known.

Using these values the first iteration of the integer program takes: event points e ∈ E where

e ≤ σ and users u ∈ U where a(u) ≤ σ (i.e. users who have already placed bookings). Solving

the integer program with these limited inputs gives a solution for the first iteration of user

acceptance notifications.

Then stepping forward in time by δ gives the second iteration of the problem which includes:

event points e ∈ E where δ ≤ e ≤ σ + δ and users u ∈ U where a(u) ≤ σ + δ and d(u) > δ

(i.e. users who have placed bookings but are not yet within the notification window or users

who have been notified but are still active for the times the model is considering).

124

Generalising gives the number of iterations in the batch solver as:

N =

⌈
maxe∈E(e)

δ

⌉

For any problem instance n ∈ 0 . . . N :

• Select users: Un ⊂ U such that a(u) ≤ σ + n · δ and d(u) > n · δ

• Select event points: En ⊂ E such that n · δ ≤ e ≤ σ + n · δ

• For s ∈ S fix ys,e(n) to be equal to ys,e(n− 1) for e ≤ n · δ for all selected event points

representing resources used by users accepted in previous problem instances

• Fix user variables xu,s,k(n) to be equal to xu,s,k(n − 1) for users who arrived before

this iterations event points but are still active for any of the selected event points:

a(u) ≤ n · δ, d(u) > n · δ for all s ∈ S, k ∈ K(s) and all selected users as these represent

users accepted or rejected in previous problem instances (i.e. users who have already

been notified of acceptance)

• The users whose requests are accepted or rejected are: u ∈ Un where n · δ ≤ a(u) ≤

(n+ 1)δ

• The profit obtained from newly confirmed requests is:

∑
u∈U

n·δ≤a(u)≤(n+1)δ

p(u)

∑
s∈S

∑
k∈K(s)

xu,s,k(n)

The total profit obtained after all iterations is defined as the profit from all users whose

requests were confirmed in each iteration:

N∑
n=0

 ∑
u∈U

n·δ≤a(u)≤(n+1)δ

p(u)

∑
s∈S

∑
k∈K(s)

xu,s,k(n)

 (6.1)

125

6.1.2 Model Definition

This section states the integer program for the prebooking system using the integer program

presented in §5.3. This model solves for all users currently in the system at any problem

instance n. The solution of this model is only used to confirm the acceptance or rejection

of users arriving within the next δ time, and determines on which servers those users will

placed.

In order to formulate the integer program for any instance n the time dependent sets are

replaced by the appropriate problem instance subset. The user set U is replaced by Un, the

events set is replaced by En. The integer program from §5.3 is restated in the next sections

with the problem instance notation for completeness.

6.1.2.1 Decision Variables

The model uses the following binary decision variables:

For each user u ∈ Un, server s ∈ S, and every GPU core k ∈ K(s) of server s, there is a binary

variable xu,s,k indicating whether u is allocated to GPU core k on server s (from definition

(5.1)):

xu,s,k =

1 if user u is allocated to core k of server s

0 otherwise

(5.1)

For each server s ∈ S, and event point e ∈ En, there is a integer variable ys,e indicating the

number of web virtual machines being run on server s (from definition (5.3’)):

ys,e ≥ 0 (5.3’)

126

Web users do not require GPU resources, and as such all variables for placing web users onto

GPU cores are set to 0 (as in equation (5.19)):

xu,s,k = 0 ∀u ∈ Un, s ∈ S, k ∈ K(s) : r(u) = web, k 6= 0 (5.19*)

All non-web users require a GPU core, and as such must be allocated to a GPU core when

allocated to the server (as in equation (5.20)):

xu,s,0 = 0 ∀u ∈ Un, s ∈ S : r(u) 6= web (5.20*)

Users can not be placed on servers to which they cannot be assigned (as in equation (5.21)):

xu,s,k = 0 ∀u ∈ Un, s ∈ S \ z(u), k ∈ K(s) (5.21*)

6.1.2.2 Integer Program

The objective is to maximise the total profit obtained by accepting users (mimicking the

objective from (5.6’)):

max
∑
u∈Un

p(u)
∑
s∈S

 ∑
k∈K(s)

xu,s,k

 (5.6’*)

Subject to:

Each user u ∈ Un can only be allocated once (as in equation (5.7)):

∑
s∈S

 ∑
k∈K(s)

xu,s,k

 ≤ 1 ∀u ∈ Un (5.7*)

127

The internet cafe must have enough seats for all users at any point e ∈ En (as in equation

(5.8)): ∑
u∈Un

a(u)≤e<d(u)

∑
s∈S

∑
k∈K(s)

xu,s,k ≤ N ∀e ∈ En (5.8*)

Enough virtual machines for the number of web users allocated to the server must be supplied

(as in equation ((5.16)’)):

∑
u∈Un

a(u)≤e<d(u)

xu,s,0 ≤ n(s,web)ys,e ∀s ∈ S, e ∈ En ((5.16)’*)

Each server must have enough RAM and CPU to supply the virtual machines at any point

e ∈ En (as in equation (5.22)):

∀s ∈ S, e ∈ En, q ∈ {cpu, ram} :

∑
u∈Un

a(u)≤e<d(u)

b(s, r(u), q)
∑

k∈K(s):k 6=0

xu,s,k

+ b(s,web, q)ys,e ≤ c(s, q)
(5.22*)

Each server must have enough GPU resources to supply the virtual machines at any point

e ∈ En (as in equation (5.23)):

∑
u∈Un

a(u)≤e<d(u)

(b(s, r(u), gpu)xu,s,k) ≤ 1 ∀s ∈ S, k ∈ K(s), e ∈ En : k 6= 0 (5.23*)

6.2 Results

The prebooking model was solved for all problem instances in test set two as described in

§4.3.5. The time-staged problem was solved using Gurobi 6.5.2 on a VM running Windows

10 which had sixteen 2.1 GHz CPU cores and 16 GB of RAM.

128

The test instances were all solved with a solve frequency of one hour on the basis that an

internet cafe would want to send out confirmations of bookings as frequently as possible. The

time horizon was varied from 1 hour up to 16 hours to quantify the extra profit gained from

having more future information. Lastly, the total time Gurobi was given to solve was set at

either 10 seconds or 120 seconds for each iteration n to get an idea of the solve time needed

when deciding which requests to accept.

The batch solver is run with different settings on test data set two with each time horizon

solve time combination run for 10 different realisations of the data, generated as described

in §4.3.7. For this instance the number of iterations, N = 24 the total hours in test set twos

problems.

6.2.1 Time Horizon

The first set of results compares the effect of changing the time horizon on solution quality

compared to the optimal offline objective.

Table 6.1 shows the average objective achieved by the batch solver with 120 seconds solve

time per iteration. This average objective is compared to the optimal offline objective. The

average percentage of the offline objective obtained by all sizes and stays is 98.3% showing

good potential for this solver with a prebooking system. Table 6.1 also has the averaged

results for a time horizon of 2 hours. Even with this short time horizon, the batch solver can

obtain over 95% of the offline objective for all test cases. The 2.5-hour average stay test cases

all obtained around 99% of optimal with just a 2 hour time horizon.

As time horizon is increased, the problem gets larger, and eventually, the problem gets large

enough that it has difficulty solving within the 120 second limit per iteration. At this point,

the objectives start to worsen. The effect of the solve time limit becomes evident as the

time horizon increases. While the integer program has more information and can make more

informed decisions allowing it to come closer to the offline objective, it’s increase in size

makes it difficult to solve quickly. Eventually, the batch solver has enough information in

129

Table 6.1: Difference between optimal objective and batch solver results averaged over all
tested time horizons and for the 2 hour time horizon over all test sets (10 problem instances

for each number of users)

Users Average Stay Optimal
Prebooking
Average

% diff
+95% CI

Time horizon
2 hours

% diff
+95% CI

300 2.5 1162.4 1155.5
99.4%
±0.21%

1150.0
98.9%
±0.24%

625 2.5 2429.1 2419.2
99.6%
±0.52%

2411.4
99.3%
±0.62%

1250 2.5 4895.9 4884.3
99.8%
±0.18%

4873.8
99.5%
±0.21%

1250 3.5 6068.4 5945.5
98.0%
±0.53%

5969.3
98.4%
±0.17%

1250 4.5 7184.7 6972.9
97.1%
±0.55%

7035.8
97.9%
±0.22%

1250 6.5 8754.5 8380.4
95.7%
±0.82%

8475.6
96.8%
±0.5%

each iteration that adding more information only acts to slow down the problem without

improving the potential objective, creating worse solutions.

Figure 6.2 shows the percentage of the offline objective obtained by the batch solver for the

realistic test set with 2.5 hour average stay times with total users of 300, 625, and 1250. There

is a clear increase in the percentage of the offline objective obtained as the time horizon is

increased for all test cases. These results plateau with a time horizon of 4 hours with minimal

improvement beyond that value. It is worth noting that the 300 user test is significantly worse

in terms of percentage of optimal, followed by the 625 user test. This is not because they are

performing worse but rather because mistakes represent a bigger percentage of the objective

for the 300 user cases - missing out on one user is 0.33% of all available users compared to

0.16% for 625 users, and 0.08% for 1250 users. This means the same number of mistakes

alter the percentage difference more with less total users. The most notable feature is that

all converge to over 99.5% after 4 hours.

Figure 6.3 shows the percentage of the offline objective obtained by the batch solver for

the stress test with 1250 total users with average stay times of 2.5, 3.5, 4.5, and 6.5 hours.

Notably the maximum percentage obtained by each is shifted towards a longer time horizon

as stay time increases. The 2.5-hour average cases reach their peak percentage with a 4 hour

130

Figure 6.2: Average percentage difference of batch solver from optimal for the three differ-
ent numbers of users

time horizon, with the 3.5-hour average cases reaching their peak after 6 hours, the 4.5 hour

average cases after 7 hours, and the 6.5 hour average cases after 8 hours. The 3.5, 4.5 and

6.5-hour averages all experience a drop off in the percentage of the offline objective obtained

as the time horizon increases as the problem space becomes too large to solve in 120 seconds.

One notable feature in figure 6.3 is the dip in the percentage obtained as time horizon increases

before both the 4.5 and 6.5 average stay obtain their maximum percentage. The 4.5 hour

average stay has a local minimum at 3 hours and the 6.5 hour average stay has one at 5 hours.

This dip is because the problem size has reached a point where the algorithm is losing its

ability to obtain near optimal solutions within the solve time while also not having enough

information for the optimal solution to be close to the offline optimal. Once they have enough

information from the longer time horizon, they can make a recovery in percentage obtained

before being again overwhelmed by the problem size.

The maximum profit obtained from the batch solver appears to be related to the average

time users stay. In figure 6.2 the maximum is reached at the same time horizon for all three

internet cafe sizes. In figure 6.3 the maximum percentage of optimal profit is obtained with

different time horizons. The maximum value can be found at the larger time horizons for the

longer stay duration’s. The 2.5 hour stay duration reaches its maximum with a 5 hour time

131

horizon, 3.5 hours with a 6 hour time horizon, 4.5 with a 7 hour time horizon, and 6.5 with

a 8 hour time horizon.

Figure 6.3: Average percentage difference of batch solver from optimal for the four different
stay duration’s

6.2.2 Solve Time

To see if the solver could be used aggressively to quickly place users the problem is tested

with a 10 seconds solve time per iteration. This test was completed on all data sets in test

set two.

Table 6.2 shows the average profit obtained with a 10 second solve time compared to both the

offline and the batch solver with 120 seconds to solve. The 10 second solve times reduce the

average percentage obtained by 3%. The 10 second solve time may be practical for a small 300

user internet cafe where the extra 110 seconds of solve only results in a 0.02% improvement

and may also be practical for 625 users which only saw a 1% improvement. However, the

large 1250 user internet cafe for low stay duration is 7.5% worse meaning there are significant

gains from the extra solve time. The cases with a longer average stay performed over 10%

worse for the 10 second solve than the 120 second solve such substantial differences make a

10 second solve time not worth considering.

132

Table 6.2: Comparison of 10 seconds and 120 second solve times for average objective from
batch solver

Users
Average
Stay

Optimal
10 sec
solve

% diff
+95% CI

120 sec
solve

% diff
+95% CI

Improvement

300 2.5 1162.4 1155.2
99.38%
±0.21%

1155.5
99.40%
±0.21%

0.02%

625 2.5 2429.1 2393.1
98.52%
±0.63%

2419.2
99.59%
±0.21%

1.07%

1250 2.5 4895.9 4518.4
92.29%
±0.84%

4884.3
99.76%
±0.18%

7.47%

1250 3.5 6068.4 5291.8
87.20%
±1.09%

5945.5
97.97%
±0.53%

10.77%

1250 4.5 7184.7 6101.7
84.93%
±1.04%

6972.9
97.05%
±0.55%

12.13%

1250 6.5 8754.5 7339.4
83.84%
±1.02%

8380.4
95.73%
±0.82%

11.89%

Figure 6.4 shows how the percentage of the offline optimal profit obtained by the batch solver

changes as the time horizon is increased for different size internet cafes. The values from figure

6.2 are shown as faded bars versus result percentages for the 10 second solve. Initially, the

percentages are very similar to the 10 second solve. However, as the time horizon increases

the percentage begins to decrease with a more pronounced difference with more users. This

difference is particularly significant in the 1250 user case where the difference gets as large as

16%.

6.2.3 Summary

This chapter has presented an algorithm which acts as an offline algorithm with limited

information, creating a hybrid algorithm between online and offline. This algorithm would

be used as part of a prebooking system for the cloud-based internet cafe.

A batch solver was developed which simulates users using the prebooking system, this was

used to test the algorithm performance on test data set two as defined in §4.3.5. This

simulation is completed using the methodology laid out in §6.1.1 for 10 realisations of each

test case. The results give insight into how one may want to set the required time horizon

and solve time based on internet cafe size and user stay duration. If the internet cafe is small

133

Figure 6.4: Average percentage difference of batch solver from optimal with 10 second vs
120 second solve time

or has a time horizon of 3 hours or less, it is possible to give solutions to the problem within

10 seconds.

For larger internet cafes ideally, a longer solve time would be given. The longer users stay on

average in the internet cafe, the longer time horizon is desired and as such the longer users

need to book in advance. It appears a good general rule is to set the time horizon one hour

longer than the average duration users stay, however, this may vary depending on internet

cafe size. The prebooking system has the potential to service internet cafes where there are

consistent users who can book their arrivals in advance. However, if arrivals are unknown

then another online strategy is needed to place these more random users.

Chapter 7

Online Algorithm

This chapter presents the online algorithms developed for placing users in real time for a

cloud-based internet cafe. Greedy algorithms are presented which place users onto servers

and only turn users away when no space is available on any server. Three strategies are shown

for selecting the server to place a user. A second competitive algorithm is presented which

uses an exponential weight function to decide which users to accept or reject and where to

place them.

All algorithms are used to solve the online version of the cloud resource allocation problem

described in chapter 4 on test data set two from §4.3.5. The results of these algorithms are

presented alongside the results for the offline algorithm from chapter 5 to gauge the relative

performance of the different algorithms. A summary of problem inputs is given in the notation

section at the start of the thesis.

Users are allocated to seats in the cafe or turned away by these algorithms in the order they

arrive at the internet cafe. The algorithms must decide if they accept or reject the user and

if accepted where to place them before the next user is presented to the algorithm. These

algorithms must use imperfect information to make decisions.

135

136

7.1 Greedy Algorithms

A greedy algorithm always attempts to place a user on a server and will not reject a user

unless no resources are available.

Greedy algorithms pack users onto servers with available resources without considering future

arrivals. The most straightforward algorithm is first fit where newly arrived users are placed

onto the first server found with spare capacity. Alternative greedy algorithms (to first fit)

search all servers to find the best matching server for a chosen condition. For this problem

there are two sensible conditions: fill first, and fill last. With fill first, the users are placed

on servers such that all resources on a server are utilised before placing users onto a new

server. Fill last places users onto servers such that all servers increase in utilisation as evenly

as possible.

In order to run any greedy algorithm we must first define the set of all time points within

user u’s stay as T (u) = {t ∈ T : a(u) ≤ t < d(u)}.

A first fit algorithms runs as follows: When a new user u ∈ U arrives, search through

the list of possible servers z(u) for a server with spare capacity for the user (ordered by

ascending server performance), if a server is found place the user onto that server. Define

is,q,t, s ∈ S, q ∈ Q, t ∈ T , as the quantity of resource q being used on server s at time t. Then

a user u can only be placed on a server s ∈ z(u) if

is,q,t + b(s, q, u, t) ≤ c(s, q) ∀s ∈ z(u), q ∈ Q, t ∈ T (u)

This equation ensures that the resources currently being used by the server (is,q,t), and the

resources which the new user will consume (b(s, q, u, t)) are less than or equal to the available

resources (c(s, q)).

137

Once a server s′ is found which meets these conditions update its resource usage is′,q,t to

match the new utilisation:

is′,q,t = is′,q,t + b(s′, q, u, t) ∀q ∈ Q, t ∈ T (u)

The two other sensible conditions can be defined as follows:

1) Fill first: where new users are placed on the server with the least capacity to spare. Select

the server with the highest average percentage utilisation (with the new user added) over

all resources for the time period the user stays (given by event points (T (u)) over the users

duration (j(u))):

max
s∈z(u)

1

|Q|j(u)

∑
q∈Q

∑
t∈T (u)

(
is,q,t + b(s, q, u, t)

c(s, q)

)

2) Fill last: where new users are placed on servers with the smallest quantity of resources

currently in use. Select the server with the lowest average percentage utilisation (with the

new user added) over all resources for the time period the user stays:

min
s∈z(u)

1

|Q|j(u)

∑
q∈Q

∑
t∈T (u)

(
is,q,t + b(s, q, u, t)

c(s, q)

)

An advantage of fill first is that it keeps servers idle when the internet cafe is not at capacity,

potentially saving power costs for the owners. Conversely, fill last could offer users improved

performance when the internet cafe is not at capacity.

7.2 Competitive Algorithm

A greedy algorithm may not always perform well given certain conditions. For example,

suppose at 3pm students arrive at the internet cafe and stay until 6pm, when they leave for

dinner. Suppose also that at around 5pm workers arrive as they finish work for the day, and

they wish to stay until midnight. If the greedy algorithm has allowed the internet cafe to be

138

filled with students then there may be no capacity for these workers. In the same manner,

all the students cannot be rejected because it is not guaranteed any workers show up at 5pm.

There is a requirement for an algorithm that can strike a balance between the users present

now and the users that may arrive in the future.

The following algorithm is based on other online competitive (or adversarial) algorithms

which guarantee a minimum percentage of the optimal objective. The assumptions and

strategies required, as well as proofs for competitiveness, are adaptations of the phone call

routing online optimisation problem [115]. The competitive algorithm uses an exponential

cost function. Initially, all users are accepted but as resources on servers near capacity less

profitable users are no longer accepted with the profitability required for acceptance rising

as spare capacity diminishes. In this way, spare capacity is reserved for potential high-profit

users while some lower profit users are still accepted.

This algorithm requires assumptions concerning the complexities of the GPU virtualisation.

This algorithm considers the server GPU to be a single continuous resource, rather than a

group of individual cores. Nevertheless, it still yields feasible solutions.

In this problem, web users may share a single virtual machine. The first user consumes

resources when the virtual machine is started. Sequential users consume no additional re-

sources as they are added to the shared virtual machine until it is at capacity. As previously

explained in §4.1 it is desirable to have these shared virtual machines because these users

individually only require a small quantity of resources while active. However, when opening

new applications the resources needed are significantly higher than at other moments. By

creating shared virtual machines rather than individual virtual machines, the virtual machine

can supply the “spike” usage while also efficiently using resources during standard usage.

Unfortunately, the competitive algorithm requires that resources supplied are continuous and

that each user is independent of all others. Although users are not independent on shared

virtual machines, it can be shown that these users only cause the algorithm to be worse by at

139

most a factor equal to the number of users that can share these virtual machines. The effect

of these users is discussed in more detail in §7.2.3.

7.2.1 Algorithm

This section describes the competitive algorithm and the bounds which must be placed onto

the algorithm in order to prove the feasibility and competitive ratio of the algorithm.

The algorithm is designed such that it will accept user u onto a server s ∈ z(u) when:

∑
q∈Q

∑
t∈T

b(s, q, u, t)

c(s, q)
Vs,q,u,t ≤ p(u) (7.1)

where Vs,q,u,t is an exponential weight function determined from the resources currently being

used. This acceptance equation (7.1) exponentially weights the resources required by the new

user u and the resources currently used through V against the profit that u obtains. Using

this acceptance rule the profit the algorithm obtains will be at least

1

log2

(
2µ1+ 1

λ

)
of the profit gained by the offline algorithm where:

µ represents the maximum profit that could be gained by a single user; and

λ is a lower bound on the profit per resource used.

In order to implement and prove the performance of the algorithm, the exponential weight

function V used in the algorithm needs to be defined. First it is necessary to bound the profit

and resources used to a limited quantity. This process for defining V and µ (as well as λ and

F) is described next.

Define λ and F First, the average profit (from a user) per unit of resources used per time

unit is bounded below by λ and above by F for all users, servers, (utilised) resources and

140

time points:

0 < λ ≤ 1

|Q|
p(u)

b(s, q, u, t)j(u)
≤ F ∀ u ∈ U, s ∈ z(u), q ∈ Q, t ∈ T : b(s, q, u, t) 6= 0 (7.2)

The value F and λ represent the maximum and minimum possible profitability of users

per unit of resource consumed per time respectively. In an internet cafe the ratio of profit

to bandwidth for different services is similar, giving minimal variance between users in the

profit assumption, thus helping to limit the value of F .

Defining µ from F In (7.3) the value of µ is determined from F :

µ = 2(JF |Q|+ 1) (7.3)

This defines µ as a factor of the maximum time a user stays J , the number of different

resources they consume |Q|, and maximum profitability per resource consumed F . This is

defined to simplify the proofs for feasibility and competitiveness.

Limiting user demand using µ As servers have large quantities of resources to be sup-

plied to many users, each user only consumes a small quantity of the total resources on a

server. For this reason it is acceptable to assume that the quantity of each resource used must

not be over a fixed percentage of the total available capacity to allow sufficient flexibility when

allocating users. This percentage is given by a factor of µ, the maximum profit that can be

gained from a single user:

b(s, q, u, t) ≤ c(s, q)

log2 µ
∀ u ∈ U, s ∈ z(u), q ∈ Q, t ∈ T (7.4)

This bandwidth assumption holds up in a real world cloud-based internet cafe where the

motivation is that multiple users will be placed on each server with no one user taking up a

large percentage of available resources which would reduce flexibility.

141

Defining V from µ The algorithm uses µ alongside system variables to allocate new users

using a normalised load function where the resources utilised is given as a fraction of total

resources. Let s be the server to which a given user u is allocated (= 0 if u is rejected) and

define s(u′) as the server allocated to any user u′ that arrived before u. Then the Ls,q,u,t is

the normalised load (the proportion of total capacity being used) before user u is accepted

on server s is given by

Ls,q,u,t =
∑

a(u′)<a(u)
s(u′)=s

b(s, q, u′, t)

c(s, q)

Using this normalised load an exponential edge cost equation that defines the exponential

weight function V can be specified. The exponential weight function makes user acceptance

less likely as more users are allocated to the servers:

Vs,q,u,t = c(s, q)(µLs,q,u,t − 1) (7.5)

This exponential weight function then determines whether a user u is accepted to be allocated

to a server s ∈ z(u) as described earlier in (7.1):

∑
q∈Q

∑
t∈T

b(s, q, u, t)

c(s, q)
Vs,q,u,t ≤ p(u) (7.1)

If accepted then assign the user to such a server.

7.2.2 Proofs

To utilise this algorithm, it is necessary to prove that it will output a feasible solution, see

Proposition 7.1. To show the algorithm provides effective solutions it is necessary to prove

the competitive ratio of 1

log2

(
2µ1+

1
λ

) when compared to the offline objective, see Theorem 7.4.

Proposition 7.1. The algorithm will always output a feasible solution.

142

Proof. Assume that u is assigned to server s and is the first user that would cause a violation

of resource q on that server, i.e., this assignment causes an infeasible solution. Hence, the

relative load before accepting u, Ls,q,u,t, plus the relative load that u adds, b(s,q,u,t)
c(s,q) , must

exceed one at some point during their stay, so:

Ls,q,u,t > 1− b(s, q, u, t)

c(s, q)
for some a(u) ≤ t ≤ d(u) (7.6)

Consider a slightly rearranged version of the exponential cost equation (7.5) that is used to

decide upon accepting users to servers:

Vs,q,u,t
c(s, q)

= µLs,q,u,t − 1 (7.5’)

Note that µ > 1 (from (7.3) and the fact that J, F, |Q| ≥ 0), so (7.5’) and (7.6) combine to

give:

Vs,q,u,t
c(s, q)

> µ
1− b(s,q,u,t)

c(s,q) − 1 (7.7)

Incorporating the bandwidth assumption from (7.4):

µ
1− b(s,q,u,t)

c(s,q) − 1 ≥ µ1− 1
log2 µ − 1 =

µ

2
− 1 (7.8)

From the definition of µ in (7.3):

µ

2
− 1 = JF |Q| (7.9)

Combining (7.7)-(7.9) and multiplying the entire equation by b(s, q, u, t) gives:

b(s, q, u, t)

c(s, q)
Vs,q,u,t > JF |Q|b(s, q, u, t)

143

Finally, under profit assumption (7.2) and J ≥ j(u) gives:

b(s, q, u, t)

c(s, q)
Vs,q,u,t > JF |Q|b(s, q, u, t) ≥ j(u)F |Q|b(s, q, u, t) ≥ p(u)

Hence u could not have been as assigned to server s by the algorithm as the acceptance

equation (7.1) is violated. This provides a contradiction, meaning the algorithm will always

produce feasible solution.

Lemmas 7.2 and 7.3 that follow are preliminaries for Theorem 1 that proves the competitive

ratio for the algorithm.

Lemma 7.2. The sum of all exponential costs provides a lower bound for the total profit.

Let A be a set of users already accepted by the algorithm, with α being the most recent user

accepted or rejected. Then the profit gained from accepting A,
∑

u∈A p(u), is bounded as

follows:

(1 +
1

λ
) log2 µ

∑
u∈A

p(u) ≥
∑
t∈T

∑
s∈S

∑
q∈Q

Vs,q,α+1,t (7.10)

Proof. By induction on α:

For α = 0 (i.e., no users considered yet): both sides resolve to 0 as without users the set A

is empty and the servers have no load.

At step α: assuming (7.10) holds for α− 1 then:

1. if user α is rejected: the left-hand side of (7.10) is unchanged as A is unchanged and the

right-hand side of (7.10) is unchanged as the load on all the servers s ∈ S is unchanged,

so (7.10) holds for α;

2. if user α is accepted: the left-hand side of (7.10) increases by (1 + 1
λ) log2 µ · p(α) and

the right-hand side increases by

144

∑
t∈T
∑

s∈S
∑

q∈Q (Vs,q,α+1,t − Vs,q,α,t), so (7.10) holds for α if the left-hand side change

is ≥ the right-hand side change.

Therefore, it is sufficient to show that:

(1 +
1

λ
) log2 µ · p(α) ≥

∑
t∈T

∑
s∈S

∑
q∈Q

(Vs,q,α+1,t − Vs,q,α,t) (7.11)

Consider the change in (7.5) for resource q at time t on the server s′ where α is assigned:

Vs′,q,α+1,t − Vs′,q,α,t = c(s′, q)

(
µ
Ls′,q,α,t+

b(s′,q,α,t)
c(s′,q) − µLs′,q,α,t

)
= c(s′, q)µLs′,q,α,t

(
µ
b(s′,q,α,t)
c(s′,q) − 1

)
= c(s′, q)µLs′,q,α,t

(
2

(log2 µ)
b(s′,q,α,t)
c(s′,q) − 1

)

From the bandwidth assumption (7.4) we know that b(s′, q, α, t) ≤ c(s′,q)
log2 µ

, i.e.,

(log2 µ) b(s
′,q,α,t)
c(s′,q) ≤ 1. Since 2x − 1 ≤ x for 0 ≤ x ≤ 1, we get:

Vs′,q,α+1,t − Vs′,q,α,t ≤ c(s′, q)µLs′,q,α,t(log2 µ)
b(s′, q, α, t)

c(s′, q)

≤ (log2 µ)µLs′,q,α,tb(s′, q, α, t)

Rearranging the exponential cost equation (7.5) to get µLs′,q,α,t =
Vs′,q,α,t
c(s′,q) +1 and substituting

gives:

Vs′,q,α+1,t − Vs′,q,α,t ≤ (log2 µ)

(
Vs′,q,α,t

b(s′, q, α, t)

c(s′, q)
+ b(s′, q, α, t)

)
(7.12)

145

Combining (7.12) with the fact that the value for change is 0 in the exponential equations or

load for any s 6= s′ we can sum over t ∈ T and q ∈ Q to obtain:

∑
t∈T

∑
s∈S

∑
q∈Q

(Vs,q,α+1,t − Vs,q,α,t) ≤ log2 µ
∑
t∈T

∑
q∈Q

(
Vs′,q,α,t

b(s′, q, α, t)

c(s′, q)
+ b(s′, q, α, t)

)

≤ log2 µ

∑
t∈T

∑
q∈Q

Vs′,q,α,t
b(s′, q, α, t)

c(s′, q)
+
∑
t∈T

∑
q∈Q

b(s′, q, α, t)

(7.13)

The first term within the parentheses of the right-hand side of (7.13) can be simplified using

the fact that α was accepted on s′ and the acceptance equation (7.1). The second term can

be simplified by rearranging the lower bound from the profit assumption (7.2): b(s′, q, α, t) ≤

1
λ|Q|

p(α)
j(α) which only applies for b(s′, q, α, t) 6= 0. This gives:

∑
t∈T

∑
s∈S

∑
q∈Q

(Vs,q,α+1,t − Vs,q,α,t) ≤ log2 µ

∑
t∈T

∑
q∈Q

Vs′,q,α,t
b(s′, q, α, t)

c(s′, q)
+
∑
t∈T

∑
q∈Q

b(s′, q, α, t)

≤ log2 µ

p(α) +
∑
t∈T

b(s′,q,α,t)6=0

∑
q∈Q

1

λ|Q|
p(α)

j(α)

≤ log2 µ

p(α) +
1

λ

p(α)

j(α)

∑
t∈T

b(s′,q,α,t) 6=0

1

(7.14)

∑
t∈T :b(s′,q,α,t)6=0 1 =

∑d(α)
t=a(α) 1 = j(α) as the bandwidth is only non-zero when the user is

active. This gives:

log2 µ

p(α) +
1

λ

p(α)

j(α)

∑
t∈T

b(s′,q,α,t) 6=0

1

 = log2 (µ)(p(α) +
1

λ
p(α)) (7.15)

146

Combining (7.14) and (7.15):

∑
t∈T

∑
s∈S

∑
q∈Q

(Vs,q,α+1,t − Vs,q,α,t) ≤ log2 (µ)(p(α) +
1

λ
p(α))

∑
t∈T

∑
s∈S

∑
q∈Q

(Vs,q,α+1,t − Vs,q,α,t) ≤ (1 +
1

λ
)p(α) log2 (µ)

Matching (7.11) proving by induction Lemma 7.2 (7.10)

Lemma 7.3. The sum of all exponential costs provides an upper bound for the optimal offline

profit. Let H be the set of users accepted by the offline algorithm but not the online algorithm.

Let β be the most recent user added to H set then:

∑
u∈H

p(u) ≤
∑
t∈T

∑
s∈S

∑
q∈Q

Vs,q,β,t (7.16)

Proof. Let s′(u) be the server used by the offline algorithm to host a user u ∈ H. The fact

that each u was not accepted by the online algorithm implies that the acceptance equation

(7.1) was false for each u ∈ H:

p(u) <
∑
q∈Q

∑
t∈T

b(s′(u), q, u, t)

c(s′(u), q)
Vs′(u),q,u,t, u ∈ H (7.17)

As V is monotonically increasing with respect to H and β is the last member added to H:

p(u) <
∑
q∈Q

∑
t∈T

b(s′(u), q, u, t)

c(s′(u), q)
Vs′(u),q,β,t, u ∈ H (7.18)

Using (7.18) and summing over all u ∈ H:

∑
u∈H

p(u) <
∑
u∈H

∑
q∈Q

∑
t∈T

b(s′(u), q, u, t)

c(s′(u), q)
Vs′(u),q,β,t

147

Consider summing over s ∈ S and using an indicator function to identify s′(u):

1A =

1 A is true

0 otherwise∑
u∈H

p(u) <
∑
u∈H

∑
q∈Q

∑
t∈T

∑
s∈S

1s′(u)=s

(
b(s, q, u, t)

c(s, q)
Vs,q,β,t

)

The order of the sums can be swapped as there are no conditions of the set being summed

over:

∑
u∈H

p(u) <
∑
t∈T

∑
s∈S

∑
q∈Q

∑
u∈H

1s′(u)=s

(
b(s, q, u, t)

c(s, q)
Vs,q,β,t

)

The exponential cost does not refer to u, i.e., it is constant within the sum over u ∈ H, so it

can be moved out of that sum term:

∑
u∈H

p(u) <
∑
t∈T

∑
s∈S

∑
q∈Q

Vs,q,β,t
∑
u∈H

1s′(u)=s
b(s, q, u, t)

c(s, q)

Finally, consider the following term for any given s ∈ S :

∑
u∈H

1s′(u)=s
b(s, q, u, t)

c(s, q)
=

∑
u∈H
s′(u)=s

b(s, q, u, t)

c(s, q)
=

1

c(s, q)

∑
u∈H
s′(u)=s

b(s, q, u, t)

=
total used resource for q on s from users placed on s in H

capacity of q on s

≤ 1 (as the offline algorithm would not overload a server).

Therefore:

∑
u∈H

p(u) <
∑
t∈T

∑
s∈S

∑
q∈Q

Vs,q,β,t
∑
u∈H

1s′(u)=s
b(s, q, u, t)

c(s, q)
≤
∑
t∈T

∑
s∈S

∑
q∈Q

Vs,q,β,t

which proves Lemma 7.3.

148

Theorem 7.4. The algorithm obtains at least a log2

(
2µ1+ 1

λ

)
fraction of the profit of the

offline algorithm.

Proof. The profit of the offline algorithm (OPT) can be bounded by:

OPT = profit from users accepted by offline algorithm

= profit from users accepted by offline, not online algorithm

+ profit from users accepted by both offline and online algorithms

≤
∑
u∈H

p(u)︸ ︷︷ ︸
accepted by offline, not online

+
∑
u∈A

p(u)︸ ︷︷ ︸
accepted by online

(note that p(u) of accepted users is ≥ 0 or they would be rejected)

Using Lemma 7.3, (7.16), the first term on the right-hand side is bounded by profit bound

can be upper bounded by

∑
t∈T
∑

s∈S
∑

q∈Q Vs,q,β,t where β is the most recent user added to H, so:

OPT ≤
∑
t∈T

∑
s∈S

∑
q∈Q

Vs,q,β,t +
∑
u∈A

p(u)

Given the exponential cost value Vs,q,U+1,t when all users have been considered, i.e., the final

cost of resource q on server s, we know that the monotonicity of V gives that ∀s ∈ S, q ∈

Q, t ∈ T : Vs,q,U+1,t ≥ Vs,q,β,t, so:

OPT ≤
∑
t∈T

∑
s∈S

∑
q∈Q

Vs,q,U+1,t +
∑
u∈A

p(u)

149

Lemma 7.2, (7.10), combined with the fact that rejected users don’t alter the exponential

cost values gives:

OPT ≤
∑
t∈T

∑
s∈S

∑
q∈Q

Vs,q,U+1,t︸ ︷︷ ︸
=
∑
t∈T

∑
s∈S

∑
q∈Q

Vs,q,α+1,t

+
∑
u∈A

p(u) ≤ (1 +
1

λ
) log2 µ

∑
u∈A

p(u) +
∑
u∈A

p(u)

where α is the last user accepted by the online algorithm

OPT ≤ (1 +
1

λ
) log2 µ

∑
u∈A

p(u) +
∑
u∈A

p(u) = ((1 +
1

λ
) log2 µ+ 1)

∑
u∈A

p(u)

≤ ((1 +
1

λ
) log2 µ+ log2 2)

∑
u∈A

p(u)

≤ log2

(
2µ1+ 1

λ

)∑
u∈A

p(u)

Proving the competitive ratio for this problem

7.2.3 Grouped Users

If we have some users which can be grouped on a single virtual machine, then it is difficult

to determine how to value these users. In fact, the exponential algorithm has no way to

determine when to accept these users. A simple fix is to value the users at n · π(u) where n

is the number in each group. Then treat each of these users as if they use all the resources

on the shared VM (i.e., no sharing of resources).

From this altered profit, value define ALG(U) and OPT(U) as the real profit obtained by

the algorithm and offline optimum respectively and ALG′(U) the altered profit the algorithm

obtains.

Theorem 7.5. The algorithm with modified profit values obtains at least a 1

nlog2

(
2µ1+

1
λ

)
fraction of the profit of the offline algorithm.

150

Proof. By multiplying the profits of these users by n the normal algorithm will always obtain

profit at least as large as the algorithm with altered profits scaled back down by n:

ALG(U) ≥ ALG′(U)

n

From the competitive ratio:

OPT(U) ≥ 1

log2

(
2µ1+ 1

λ

)ALG(U)

OPT(U) ≥ 1

n · log2

(
2µ1+ 1

λ

)ALG′(U)

Therefore this modified algorithm changes the competitive ratio by a factor of n.

7.2.4 Aggressive Improvement

Unfortunately, the competitive algorithm is often too conservative when accepting users.

The algorithm will often choose to reject a user of medium value once the server is only

partially filled. To improve the performance of the algorithm, it is necessary to make it more

aggressively accept users. This aggression can be achieved, firstly by allowing the grouped

users to again share resources and, secondly, by altering the acceptance condition to encourage

accepting less profitable users.

While treating group users as larger single units provides a guaranteed competitive ratio, it

wastes resources by over-allocating resources per user. Instead, an aggressive slant can be

taken where the first grouped user is accepted using the competitive strategy, and additional

users are greedily added to the shared virtual machine until it is at capacity. At which point

opening a new virtual machine is considered once again using the competitive strategy.

151

In addition, the acceptance condition can be relaxed in order to consider less profitable users.

The relaxed acceptance condition can be implemented by scaling the profit in the acceptance

equation (7.1) by a factor (κ) to encourage the acceptance of a greater number of users. This

results in an adjusted acceptance equation:

∑
q∈Q

∑
t∈T

b(s, q, u, t)

c(s, q)
Vs,q,u,t ≤ κp(u)

This aggressive problem still makes use of the exponential costs to consider the acceptance or

rejection of users but no longer offers a guaranteed competitive ratio. In fact, the algorithm

no longer guarantees feasibility and it is important to check that no resources are overloaded

when allocating a new user to a server. In exchange for this deterioration in “worst case”

performance the algorithm can improve its objective for real-world test cases.

7.3 Results

These algorithms were tested on the data sets presented in §4.3.5. In order to test the variance

of the algorithm performance 10 random realisations of each test case in test set two were

generated as described in §4.3.7. The profits obtained by these algorithms are compared to

the profits of the optimal offline algorithm presented in §5.5.2.

To create solutions for this section: 1) all test case realisations were solved using the greedy

and competitive algorithm, 2) results were calculated as a percentage of the offline optimal,

and 3) profits and percentages were averaged within each test case including 95% confidence

intervals. These average profit and percentage of offline optimal values are then used to

compare algorithm performance in this section.

Both algorithms were implemented using C++ with no special libraries required. All algo-

rithms can allocate new users instantaneously and only take a few seconds to solve for the

full 24 hour period for all test cases. These algorithms have the added advantage of being

152

practical for usage in a cloud-based internet cafe with the ability to place users instantly and

running on free software.

Table 7.1 contains the competitive ratio and related coefficients and constants for test set

two. Coefficients λ and F represent the minimum and maximum profit per unit of resource

consumed. Constant |Q| is the number of resource types in the problem and J is the maximum

duration any one user stays. Finally, µ represents the maximum percentage of resource

capacity any one user consumes. Overall these factors are combined using the equations

in table 7.1 to give the competitive ratio or the minimum percentage of the optimal offline

objective that can be obtained by the algorithm.

The competitive ratios for all test cases are below 0.1% due the problem complexity, however,

results show good performance from the competitive algorithm. The low competitive ratio

does cause the algorithm to behave conservatively when accepting users and as such the

aggressive constant, κ was set to 600 for the aggressive competitive algorithm for all results

presented.

Table 7.1: Competitive ratio and calculation components for different user stay durations.
Symbols, λ, F , |Q|, J , and µ are defined in §7.2.1

Coefficient λ F |Q| J µ
Competitive
Ratio

Equation
min

1
|Q|

p(u)
b(s,q,u,t)j(u)

max
1
|Q|

p(u)
b(s,q,u,t)j(u)

2(JF |Q|+ 1) 1

log2

(
2µ1+

1
λ

)
2.5 hour
stay

0.0095 0.304 3 8 16.6 0.06%

3.5 hour
stay

0.0075 0.24 3 10 16.4 0.05%

4.5 hour
stay

0.0065 0.208 3 12 17.0 0.04%

6.5 hour
stay

0.0055 0.176 3 14 16.8 0.03%

7.3.1 Internet Cafe Size

The first set of test cases considered are the realistic test set with different size internet cafes

and a constant gamma distribution determining stay duration as defined in §4.3.6.2 with an

153

average of 2.5 hours. Three internet cafe sizes are considered: 120, 250, and 500 seat internet

cafes.

Tables 7.2 and 7.3 show the total profit received from the optimal algorithm, and the value

plus percentage differences from optimal for the greedy algorithms and competitive online

algorithms respectively. Since the number of servers has been selected to be capable of fitting

as many users as there are seats, all algorithms can perform relatively competitively for this

real-world data set. This result is reflected by the fact that the worst result is 85.4% of

the optimal. However, due to the large number of users in internet cafes, small percentage

differences can result in significant differences in profits over time. It is interesting to note

the percentage of profit grows as the number of seats in the internet cafe increases due to

an increased number of servers making the solutions less vulnerable to accepting users which

then forces the algorithm to reject users which the offline optimal accepted.

All greedy algorithms perform similarly. Interestingly the first fit works slightly better than

fill first or fill last on average. Both fill first and fill last have better profits than first fit in

some of the individual realisations, but on average have around 1% worse performance. This

difference may be explained by the ordering of servers in first fit by performance, causing

the low performance servers to fill first leaving space for medium and high users on the high

performance servers.

The standard competitive algorithm performs significantly worse than the greedy algorithms,

only receiving 87% of the available profit compared to 96% for each greedy algorithm. When

the aggressive adjustment is made to the competitive algorithm, it performs significantly

better obtaining 95% of the optimal profit, and while it still performs worse than the greedy

algorithms on average, it does outperform the greedy algorithms in multiple realisations.

For all sizes of internet cafe the greedy algorithms obtain a large percentage of the offline

optimal profit, more than both the competitive and aggressive competitive algorithms. The

aggressive competitive algorithm is able to close the gap and outperforms the competitive

algorithm which is too conservative with its acceptance. In the next section the effect of

154

Table 7.2: Greedy algorithm performance for different size internet cafes, average stay =
2.5 hours with 95% confidence intervals

Objective Optimal First Fit Fill First Fill Last

120 Seats 1162.4 1117.2
96.1%
±0.74%

1111.2
95.6%
±1.1%

1115.1
95.9%
±1.25%

250 Seats 2429.1 2355.2
97.0%
±0.76%

2333.8
96.1%
±0.89%

2354.1
96.9%
±0.8%

500 Seats 4895.9 4769.5
97.4%
±0.62%

4727.4
96.6%
±0.69%

4764.2
97.3%
±0.53%

Average
96.8%
±0.7%

96.1%
±0.9%

96.7%
±0.86%

Table 7.3: Competitive algorithm performance for different size internet cafes, average stay
= 2.5 hours with 95% confidence intervals

Objective Optimal Competitive Aggressive Competitive

120 Seats 1162.4 992.2
85.4%
±2.09%

1095.1
94.2%
±1.02%

250 Seats 2429.1 2114.0
87.0%
±1.48%

2330.3
95.9%
±0.63%

500 Seats 4895.9 4291.3
87.6%
±0.96%

4754.8
97.1%
±0.45%

Average
86.7%
±1.51%

95.8%
±0.7%

increasing user density in the internet cafe is tested by increasing the duration each user

stays on average. This increases the value of each choice as the internet cafe is at capacity

more frequently.

7.3.2 Stay Duration

The second group of test cases is the stress test considering an internet cafe with 500 seats for

four different user stay duration distributions with 2.5, 3.5, 4.5, and 6.5 hour average stays.

For each of these stay durations 10 random realisations are generated as described in §4.3.7.

Tables 7.4 and 7.5 show the objective values for the 500 seat internet cafe with increasing

durations for users for both the greedy and competitive algorithms respectively. The result

of the increasing average stay duration is that there are more users in the internet cafe at all

time periods, often exceeding the available seats, and the potential for users to generate very

high profit (for the internet cafe) from their high stay duration.

155

As users stay for longer all online algorithms obtain less of the total offline profit, falling

from around 97% to 90% for the longest stay. When internet cafes are full it is much more

important to accept the correct users and accepting any user as in the greedy algorithms can

result in significantly different user acceptance choices when compared to the offline optimal.

Table 7.4: Greedy algorithm performance for different average stay durations, internet cafe
size = 500 with 95% confidence intervals

Average Stay Optimal First Fit Fill First Fill Last

2.5 Hour 4895.9 4769.5
97.4%
±0.62%

4727.4
96.6%
±0.69%

4764.2
97.3%
±0.53%

3.5 Hour 6011.6 5665.6
94.2%
±0.75%

5649.1
94.0%
±0.66%

5674.4
94.4%
±0.59%

4.5 Hour 7149.4 6611.8
92.5%
±0.83%

6628.5
92.7%
±0.52%

6608.3
92.4%
±0.88%

6.5 Hour 8696.0 7816.8
89.9%
±0.61%

7794.7
89.6%
±0.63%

7825.2
90.0%
±0.63%

Average
93.5%
±0.7%

93.2%
±0.63%

93.5%
±0.66%

As the stay duration increases the aggressive competitive algorithm starts to outperform the

greedy algorithm. With 6.5 hour average stay the aggressive competitive algorithm ends

up with 0.5% extra profit over the greedy algorithm, a statistically significant difference (p-

value< 0.001). The extra profit shows the value of selectively rejecting some users. For this

reason, the competitive algorithm is superior when resources are highly contested throughout

the day.

Table 7.5: Competitive algorithm performance for different average stay durations, internet
cafe size = 500 with 95% confidence intervals

Average Stay Optimal Competitive Aggressive Competitive

2.5 Hour 4895.9 4291.3
87.6%
±0.96%

4754.82
97.1%
±0.45%

3.5 Hour 6011.6 5083.6
84.6%
±0.84%

5696.7
94.8%
±0.66%

4.5 Hour 7149.4 5787.6
81.0%
±0.55%

6619.7
92.6%
±0.48%

6.5 Hour 8696.0 6704.3
77.1%
±0.77%

7866.9
90.5%
±0.46%

Average
82.6%
±0.78%

93.7%
±0.51%

156

Figure 7.1: Percentage From Optimal for Online Algorithms (average for all realistic and
stress test cases)

7.3.3 Comparison

Overall both algorithms have very similar performance. The correct choice of algorithm will

depend on the user demand for each internet cafe. Figure 7.1 shows percentage difference

between the online algorithms averaged over all test cases split by the realistic and stress test

sets. It is clear that all algorithms but the standard competitive algorithm can offer profits

of 90%+ of the optimal profit with all algorithms performing worse on the stress tests.

In order illustrate the power of the aggressive competitive algorithm both the greedy and

competitive algorithms were used to solve the special test case with a 25 seat internet cafe

described in §4.3.6.2. In this internet cafe a set of users arrives who fill the entire internet

cafe and stay for 3 hours then while those users would still be present another set of users

arrive staying for 5 hours, these more profitable users will have to be rejected if the previous

157

users were all accepted. All three greedy algorithms have no choice but to accepted all users

and fill the internet cafe with the 3 hour users. While the aggressive competitive algorithm

strategically rejects users that would fill servers in case of potential future valuable users.

Table 7.6 shows the results where the greedy algorithms only obtain 70% of the optimal

profit while the aggressive competitive algorithm is able to obtain 89% of the optimal.

Table 7.6: Results and Comparison for 20 Seat Internet Cafe

Optimal Greedy Competitive

25 Seats 116.9 81.9 70.1% 104 89.0%

The results presented indicate that the competitive aggressive algorithm would be a good

choice for a cloud-based internet cafe. It offers acceptable profits in the real world test cases

while being less prone to error than the greedy algorithms. Results show both the greedy

and aggressive competitive algorithms have similar performance in the realistic test cases but

the greedy algorithm has poor performance on the special test case. However, the greedy

algorithm is the superior choice if the resources are not highly contested or if it is preferable

to attempt to place every user who enters the internet cafe. This choice is confirmed by the

superior performance of the greedy algorithms in §7.3.1. However, if resources are highly

contested then the competitive algorithm will allocate resources to more profitable users as

shown in §7.3.2.

Overall both the greedy and competitive algorithms have potential applications depending

on the unique usage profile of the internet cafe using the cloud-based system. Next the algo-

rithms are compared with the prebooking system and the offline IP considering the different

applications and user demands where each algorithm performs best.

Chapter 8

Discussion and Conclusion

In this chapter the results, strengths, weakness and applications of the algorithms from chap-

ters 5, 6, and 7 are discussed. We also discuss the potential applications for the model

presented in chapter 4 for the cloud, internet cafes, educational institutions and businesses.

The offline integer program (Chapter 5), prebooking integer program (Chapter 6), greedy

online algorithm (Chapter 7), and competitive online algorithm (Chapter 7) each have their

own strengths and weaknesses. All four of these algorithms can be utilised in different ways

depending on what an internet cafe is trying to accomplish.

These algorithms are all designed to solve the resource allocation problem in a cloud-based

internet cafe. The offline integer program is designed to allocate resources for historical

demand. The prebooking integer program is designed for a system where users book in

advance for a seat in the internet cafe. The greedy and competitive algorithms are designed

to allocate resources to users as they arrive.

These algorithms have applications beyond a cloud-based internet cafe. In particular, they

can be applied to graphics-driven cloud applications such as GaaS. Additionally, there is

a business application for the cloud-based internet cafe model. A business’ workstations,

especially high-performance workstations, could be replaced with servers. This architecture

159

160

change offers a similar resource efficiency improvement as an internet cafe experiences when

switching to a cloud-based internet cafe. Applications that were limited to high-performance

workstations could now be accessed via thin-client machines throughout the business and

expensive upgrades only affect the (small number of) servers. Universities and schools could

similarly benefit in situations where computer labs have been specialised for specific classes.

Under a cloud-based model, a lab could supply classes with any computing power required.

8.1 Comparison

The four algorithms each have a different user demand profile and future information avail-

ability where they are best utilised. Table 8.1 shows the key differences between the different

algorithms concerning solution times, user information needed, and solution quality.

Table 8.1: Comparison of algorithm performance

Solve Time
(seconds)

Future User
Information

Solution Quality Solution Period

Offline 600 Perfect Optimal All users

Prebooking 120
Perfect up to
time horizon

98% Optimal
All users within
the time horizon

Greedy 1 None 94.9% Optimal Current user

Competitive 1 None 94.6% Optimal Current user

The offline IP is solved to find the optimal profit for the entire time period in a single 600

second solve. To do this, it requires full information for the entire time period. The offline

IP is useful for finding out what could have been done better using historical data. It can

also be used to calculate the number of servers which may be needed to supply a cloud-based

internet cafe.

The prebooking IP is solved to find the optimal profit within a time horizon taking 120

seconds to solve. This solve must occur multiple times to find a solution for the entire time

period. Over the entire time period the prebooking IP on average achieves 98% of the offline

optimal for problem instances considered in this thesis.

161

The greedy and competitive algorithms require no future information and solve every time

a new user arrives. Over the entire time period, the algorithms on average earn profits just

under 95% of the offline optimal for problem instances considered in this thesis.

The prebooking, greedy, and competitive algorithms are all useful for allocating resources in

an online setting within a cloud-based internet cafe. The prebooking algorithm can provision

partially into the future and can inform users in advance if they will receive a seat in the

internet cafe. In exchange, users must book in advance and are then informed later if they

have been accepted.

The greedy algorithm is simple and allocates users as they arrive. This algorithm matches

how a traditional internet cafe accepts users. The competitive algorithm offers a way to

allocate users as they arrive with the added ability to reject users under certain conditions.

The ability to reject is particularly powerful if there are many more users than resources

available, making the selection of the most profitable users more desirable.

8.2 Internet Cafe Application

The cloud-based internet cafe requires a hardware, and software setup with an algorithm to

allocate the resources.

The process of building a cloud-based internet cafe is described in chapter 3. The results of

this chapter indicate that the best hypervisor would be XenServer, with RemoteFX as the

remote desktop software. The virtual machines would run Windows 10 with the local thin

clients running Ubuntu. A software layer would need to be built to manage the creation of

VMs and connect users with their desired service.

The choice of algorithms for allocating server resources depends on the circumstances of the

internet cafe. If an internet cafe has a large number of walk-in users which do not often use

the full resources available in the internet cafe it is best to use the greedy algorithm. The

greedy algorithm will always accept users which, in this situation, is preferable to rejecting

162

users as all resources are not often utilised. This superior performance is shown in the results

presented in §7.3.1, where the greedy algorithm outperforms the competitive algorithm if the

internet cafe seldom uses all resources.

Similarly, if an internet cafe has a large number of walk-in users that often exceed the available

resources, then it is best to use the competitive algorithm. The competitive algorithm is best

because when resources are more scarce the ability to reject users in favour of a more profitable

user in the future is beneficial. This superior performance is shown in the results presented

in §7.3.2, where the competitive algorithm outperforms the greedy algorithm in situations

where the internet cafe has more users than available resources.

Alternatively, if an internet cafe has mostly repeat users with consistent arrival times, then the

prebooking system would be the best algorithm as these users would be able to consistently

book in advance. The prebooking system obtains the most profit of the three online algorithms

but requires the most information. Therefore this algorithm can only be used in a scenario

where this extra information can be easily obtained. Given internet cafes are generally more

successful when they have repeat customers [23], it is likely many internet cafes have consistent

demand from these repeat customers. This consistent demand can be used in a prebooking

system allowing the internet cafe to both plan for users and obtain greater profits.

An implemented system for a cloud-based internet cafe is likely to use a prebooking system

for repeat customers and allocate walk-in users separately. Placement of walk-in users on

the remaining server resources can be managed using either greedy or competitive strategies

depending on how busy the internet cafe is on average.

8.3 Graphics Driven Cloud Application

Given the cloud-based nature of the cloud-based internet cafe, a natural application for the

algorithms is the allocation of resources in a cloud with vGPUs. These graphics driven clouds

run graphics intensive applications including computational GPU services or GaaS.

163

In a cloud users arrive with “jobs” for the cloud to perform. These jobs consume a number

of resources for a period of time similar to users in an internet cafe. For graphics intensive

applications the network of the cloud must also be considered as a limited resource. All the

algorithms are capable of handling an additional resource in the resource set and, as such, it

is feasible that networking could be considering with minimal additional work.

If the cloud has graphics intensive jobs which repeat consistently such as daily solves of

problems or updates to calculations, then it would be beneficial to use the offline IP to

allocate these jobs optimally. If demand is uncertain between days but known by users in

advance, then the prebooking system could be utilised. On the other hand, uncertain demand

such as that experienced in a GaaS application would be best served by either the greedy

or competitive algorithms depending on the resource congestion. The competitive algorithm

would be best for highly congested clouds, and the greedy algorithm if the resources are not

limiting.

8.4 Business Application

A similar application to the cloud-based internet cafe is the cloud-based workstation. Cloud-

based workstations is a system which would replace all desktop workstation computers in a

business with VMs and thin clients.

As in an internet cafe, a business consists of many PCs which are used by staff on a daily basis.

Just like an internet cafe, these are often leased with most staff not utilising the full potential

of the PC. Additionally, some businesses may have particular high power workstations used

either by a specific staff member or shared by multiple staff. The staff must physically sit at

the computer to use this PC. The choice to have a small quantity of high power workstations

is often driven by the high cost to license specialist software. The cloud-based approach

allows a single instance of the software to run on a VM which any staff member can access

remotely from any desk.

164

A business is likely to have predictable demand as staff arrive and depart at consistent

times and request mostly consistent resources on a day to day basis. If demand is known,

then the offline IP would able to provide a solution to the resource allocation problem for

staff workstations. This consistency means a business could optimally utilise the available

resources. In addition, the business would be able to calculate the exact quantity of servers

needed for the business by using the offline IP.

The prebooking system would be beneficial for VMs running limited license software. Staff

members could book the VM in advance and receive confirmation on availability and have

resources allocated on a server for the task.

8.5 Education Application

The cloud-based internet cafe model also has applications in educational institutes in the

form of cloud-based computer labs. The cloud-based computer lab is a system in which

the functionality of all computers in computer labs inside an educational institute would be

replaced by functionality provided by VMs supplied from centralised servers.

In this model computer labs in a university would have no speciality and as such any class

could be taught in any computer lab. Typically with non cloud-based computer labs engineer-

ing classes need to be taught in engineering computer labs, which have the correct software

installed, while science classes require different labs and software. The cloud-based computer

labs would have sets of VMs for engineering classes, science classes, and other classes taken in

computer labs. These VMs could then be accessed from any physical computer lab within the

school or university. This flexibility allows the university to teach any class in any computer

lab and can allocate labs based on location or size relative to the students and staff rather

than by computing power or software installed.

The cloud-based computer lab problem would be solved using the offline IP because all

classes and their details are known in advance, so the VMs can be allocated using the offline

165

IP solution. Implementation of the cloud-based computer lab also involves a scheduling

optimisation problem of when and where to hold the computer labs. This problem needs

to be solved in order to remove any conflicts with other classes, to keep travel times to

and from the class low, and ensure the server resources are not over-allocated but also not

under-allocated.

The algorithms developed for cloud-based internet cafe resource allocation have shown very

similar performance on average in testing but each outperforms the others in specific test sets.

These results show specific situations that allow each algorithm to provide the best profits

and the consideration of other applications for a cloud-based model where those situations

occur.

8.6 Conclusion

This thesis has presented hardware and software setups for a cloud-based internet cafe and

four potential algorithms which can be used to allocate resources in different situations.

The core application presented in this thesis is the cloud-based internet cafe. However, this

research is also applicable to graphics driven clouds, cloud-based business workstations, and

cloud-based educational computer labs.

8.6.1 Key Outcomes

The key results of this thesis include the analysis of: 1) server performance for gaming; 2)

software options for remotely supplying games; and 3) algorithm development and testing for

cloud-based internet cafe resource allocation. Offline and online algorithms have been devel-

oped for efficiently allocating users and resources in different internet cafe demand scenarios.

One significant result is the evaluation of the performance of servers and software in a cloud

gaming system. In particular the performance of the new vGPU technology and related

software.

166

This thesis tested Nvidia GRID K1 and K2 cards, first generation hardware by Nvidia using

vGPU technology. The methodology developed could also be applied to the next generation

Nvidia Tesla GPUs. Extensive testing showed that the Nvidia GRID K1 card is only capable

of running the lowest requirement games, while the Nvidia GRID K2 card is capable of playing

all games as long as the settings are turned down. Testing also showed that adding more

CPUs to a VM increases the performance of games although not as significantly as changing

a VM from a K1 to K2 GPU.

When starting this research, Citrix XenServer was the only hypervisor to support vGPU

technology and was used for all tests in this thesis. The stability of XenServer vGPUs

improved significantly over the last few years from version 5.1 to 7. While Citrix XenDesktop

was able to manage VMs and supply stable remote desktop connections with vGPUs, it did

not support gaming. Instead, it was found that RemoteFX was able to provide a good quality

gaming experience, but still requires stable Linux client software.

Algorithms developed for offline resource allocation in a cloud-based internet cafe showed

that a cloud-based approach outperforms a traditional zoned internet cafe. Testing with the

offline integer program showed an improvement in profits of 4% from having flexible rather

than fixed zone sizes. The offline integer program also showed an improvement in resource

utilisation from 30% to 70%. The offline IP is the first offline algorithm to solve the VM

placement problem with the full complexity of vGPUs.

Algorithms were developed for usage in a cloud-based internet cafe. These online algorithms

included a prebooking system, a greedy, and a competitive algorithm.

The prebooking system is useful for allocation of regular users who know when they will

arrive in advance. It was shown that with the correct solve time limit, and time horizon the

prebooking algorithm can gain over 99% of the offline optimal profit. The number of hours

that users must book in advance to achieve the high percentage of offline optimal profit is

proportional to the average number of hours users stay.

167

The greedy algorithm is useful for inconsistent user demand which does not significantly

exceed the available server resources. The greedy strategies can achieve on average 95% of

the offline optimal profit over the test data sets. All three greedy strategies (first fit, fill first,

and fill last) have similar performance on average over all test data sets in this thesis. Greedy

algorithms have been used in both cloud scheduling and cloud gaming before [75], but this

thesis is the first to schedule VMs utilising vGPUs for cloud gaming.

The competitive algorithm is useful for inconsistent user demand which significantly exceeds

the available server resources. The aggressive competitive strategy can achieve 94.5% of the

offline optimal on average for all test data sets. The original competitive algorithm only

reached 85% of the offline optimal profit. For this reason, an aggressive tilt was added

making the competitive algorithm more willing to accept users and allowing it to achieve a

much higher percentage of the optimal profit. The improvements of the aggressive competitive

algorithm demonstrates a need to tune the competitive algorithms aggressiveness uniquely to

each specific problem instance. The competitive algorithm is a significant adaptation of an

existing phone routing problem adding a time axis and connected resources within servers.

The results give a competitive ratio for the online cloud-based internet cafe problem.

8.6.2 Future Work

Further work needs to be conducted including testing the latest vGPU hardware and testing

algorithms with real data from internet cafes. In addition, the entire system needs a wrapper

developed which allows resources to be automatically allocated and users to log in and access

the VMs easily. Once this is implemented, the system would need to be prototyped in an

actual internet cafe.

Newer Nvidia Tesla cards explicitly created for cloud gaming have been released during this

thesis. These likely offer significant performance improvements over the Nvidia GRID cards.

In particular, the Nvidia Tesla M60 is worth benchmarking as Nvidia claims to use this card

for their cloud gaming service.

168

While this thesis has built realistic data sets driven by surveys and data on games played, it

would be useful to build a real-world data set using internet cafe user demands. This dataset

would allow a more precise judgement on the applicability of algorithms to real internet cafes

especially if coupled with testing on the latest hardware.

In addition, a user interface (UI) and backend need to be developed which can take a users

request for a service and run it through one of the algorithms to accept or reject, and auto-

matically create VMs to supply the service. This UI should also act as a wrapper to allow

users to log in and connect to their VM within the internet cafe.

The final step in this process would be prototyping of a cloud-based internet cafe in a real

internet cafe.

8.6.3 Application

This thesis has presented the blue-print for a cloud-based internet cafe and algorithms for

such an internet cafe’s operation.

This cloud-based internet cafe replaces the typical computers used in an internet cafe with

thin clients which connect remotely to VMs provisioned on servers. These servers make

use of vGPU technology to add flexibility when supplying services to internet cafe users.

Current internet cafes have improved resource efficiency by splitting the internet cafe into

two zones. In a cloud-based internet cafe the services are divided into more (virtual) zones

to improve resource utilisation and hence the efficiency of purchased resources. This system

has the additional advantage of allowing users to access any service from any seat, allowing

the internet cafe to alter the quantity of each service being supplied at any time.

The algorithms presented have shown the ability to efficiently allocate resources for a cloud-

based internet cafe with different types of users to maximise the internet cafes profit. The

offline IP has provided a benchmark best performance for the cloud-based internet cafe re-

source allocation problem. The prebooking system is efficient for an internet cafe with repeat

169

users. The greedy algorithm is efficient for an internet cafe with walk-in users who rarely use

all seats in the internet cafe. The competitive algorithm is efficient for an internet cafe with

walk-in users who often exceed the number of seats in the internet cafe.

8.6.4 Research Questions

This thesis has answered the fundamental research questions for developing a cloud-based

internet cafe:

1. can cloud gaming be combined with internet cafes, to create a new system known as a

cloud-based internet cafe, which alleviates the inefficiencies of both internet cafes and

cloud gaming?

2. can optimisation algorithms provide methods for the efficient allocation of cloud re-

sources in a cloud-based internet cafe, particularly given the use of GPU resources?

In answer to these research questions:

1. this thesis has shown that cloud gaming can be combined with internet cafes to create

a cloud-based internet cafe using vGPU technology. vGPU technology was extensively

tested with virtualisation software options which demonstrated the viability of using

VMs with vGPUs to provide video games remotely. The combination of an offline

integer program developed to maximise the profit of a cloud-based internet cafe and

a test data set developed to produce typical internet cafe demand showed that the

cloud-based internet cafe model significantly improves resource efficiency and increases

profits.

2. algorithms were developed which placed users onto resources in an online manner equiv-

alent to the day to day operation of a cloud-based internet cafe. Three online strategies

have been developed and tested each showed the ability to exceed 90% of the profit

obtained by the offline optimal (with its proven resource efficiency) and hence, showing

170

that optimisation algorithms can provide methods for the efficient allocation of cloud

resources.

Overall, this thesis has presented a new paradigm for efficiently allocating cloud graphics re-

sources based on user demand. This new paradigm has considered the hardware and software

setup, and offline and online resource allocation algorithms. Extensive testing was carried

out on both the hardware and resource allocation algorithms using representative internet

cafe data sets. Results showed that a cloud-based internet cafe is feasible with the tested

hardware and software and that the developed algorithms were capable of efficiently allo-

cating resources including vGPU. These algorithms are unique in their ability to handle

vGPU resources which allows them to be used in a cloud-based internet cafe and the other

applications presented.

Appendix A

Configurations

Table A.1: K1 server configurations for test set 1

Configuration vGPU
Number
of Low
VMs

Number
of Medium
VMs

Number
of High
VMs

CPU
Usage

RAM
Usage

GPU
Usage

K1-1 K140 1 0 0 4 6 0.25
K1-2 K140 2 0 0 8 12 0.5
K1-3 K140 3 0 0 12 18 0.75
K1-4 K140 4 0 0 16 24 1
K1-5 K140 1 1 0 10 14 0.75
K1-6 K140 2 1 0 14 20 1
K1-7 K140 0 1 0 6 8 0.5
K1-8 K140 0 2 0 12 16 1

171

172

Table A.2: K2 server configurations for test set 2

Configuration vGPU
Number
of Low
VMs

Number
of Medium
VMs

Number
of High
VMs

CPU
Usage

RAM
Usage

GPU
Usage

K2-1 K220 1 0 0 4 6 0.125
K2-2 K220 2 0 0 8 12 0.25
K2-3 K220 3 0 0 12 18 0.375
K2-4 K220 4 0 0 16 24 0.5
K2-5 K220 5 0 0 20 30 0.625
K2-6 K220 6 0 0 24 36 0.75
K2-7 K220 7 0 0 28 42 0.875
K2-8 K220 8 0 0 32 48 1
K2-9 K220 1 1 0 10 14 0.375
K2-10 K220 2 1 0 14 20 0.5
K2-11 K220 3 1 0 18 26 0.625
K2-12 K220 4 1 0 22 32 0.75
K2-13 K220 5 1 0 26 38 0.875
K2-14 K220 6 1 0 30 44 1
K2-15 K220 1 2 0 16 22 0.625
K2-16 K220 2 2 0 20 28 0.75
K2-17 K220 3 2 0 24 34 0.875
K2-18 K220 4 2 0 28 40 1
K2-19 K220 1 3 0 22 30 0.875
K2-20 K220 2 3 0 26 36 1
K2-21 K220 0 1 0 6 8 0.25
K2-22 K220 0 2 0 12 16 0.5
K2-23 K220 0 3 0 18 24 0.75
K2-24 K220 0 4 0 24 32 1
K2-25 K240 1 0 1 12 14 0.625
K2-26 K240 2 0 1 16 20 0.75
K2-27 K240 3 0 1 20 26 0.875
K2-28 K240 4 0 1 24 32 1
K2-29 K240 0 1 1 14 16 0.75
K2-30 K240 0 2 1 20 24 1
K2-31 K240 1 1 1 18 22 0.875
K2-32 K240 2 1 1 22 28 1
K2-33 K240 0 0 1 8 8 0.5
K2-34 K240 0 0 2 16 16 1
K2-35 K240 1 0 0 4 6 0.125
K2-36 K240 2 0 0 8 12 0.25
K2-37 K240 3 0 0 12 18 0.375
K2-38 K240 4 0 0 16 24 0.5
K2-39 K240 1 1 0 10 14 0.375
K2-40 K240 2 1 0 14 20 0.5
K2-41 K240 0 1 0 6 8 0.25
K2-42 K240 0 2 0 12 16 0.5
K2-43 K240 0 3 0 18 24 0.75
K2-44 K240 0 4 0 24 32 1

Bibliography

[1] Niko Partners. China’s location of gameplay and games hardware report 2013, 2013.

[2] Anne Sofie Laegran and James Stewart. Nerdy, trendy or healthy? configuring the

internet café. New Media & Society, 5(3):357–377, 2003.

[3] Nina Wakeford. The embedding of local culture in global communication: independent

internet cafés in london. New Media & Society, 5(3):379–399, 2003.

[4] S. S. Alam, Z. Abdullah, and N. Ahsan. Cyber café usage in Malaysia: An exploratory

study. Journal of Internet Banking and Commerce, 14(1):1–13, 2009.

[5] Jennifer Burrell. Producing the Internet and Development: an ethnography of Internet

cafe use in Accra, Ghana. PhD thesis, The London School of Economics and Political

Science (LSE), 2012.

[6] Craig Glenday. Guinness World Records. Jim Pattison Group, 2008.

[7] Sony. PlayStation Now. https://www.playstation.com/en-us/explore/psnow/,

2015.

[8] NVIDIA. Cloud gaming - gaming as a service (GaaS) — Geforce Now. https://www.

nvidia.com/en-us/geforce/products/geforce-now/, 2017.

[9] LiquidSky. LiquidSky. https://www.liquidsky.com/, 2015.

[10] Amazon. Amazon web services. https://aws.amazon.com/, 2017.

173

https://www.playstation.com/en-us/explore/psnow/
https://www.nvidia.com/en-us/geforce/products/geforce-now/
https://www.nvidia.com/en-us/geforce/products/geforce-now/
https://www.liquidsky.com/
https://aws.amazon.com/

Bibliography 174

[11] Microsoft. Microsoft azure cloud computing platform & services. https://azure.

microsoft.com/en-us/, 2017.

[12] Google. Google docs - create and edit documents online, for free. https://www.google.

com/docs/about/, 2017.

[13] Netflix. Netflix. https://www.netflix.com/, 2017.

[14] Nelson Ruest and Danielle Ruest. Virtualization, A Beginner’s Guide. McGraw-Hill,

Inc., 2009.

[15] Charu Chaubal. The architecture of vmware esxi. VMware White Paper, 1(7), 2008.

[16] Citrix. Xenserver - server virtualization and consolidation - citrix - citrix. https:

//aws.amazon.com/, 2017.

[17] Anthony Velte and Toby Velte. Microsoft virtualization with Hyper-V. McGraw-Hill,

Inc., 2009.

[18] Irfan Habib. Virtualization with kvm. Linux Journal, 2008(166):8, 2008.

[19] Minxian Xu, Wenhong Tian, and Rajkumar Buyya. A survey on load balancing algo-

rithms for virtual machines placement in cloud computing. Concurrency and Compu-

tation: Practice and Experience, 29(12), 2017.

[20] Nvidia. NVIDIA GRID K1 and K2 graphics-accelerated virtual desktops

and applications. http://www.nvidia.com/content/cloud-computing/pdf/

nvidia-grid-datasheet-k1-k2.pdf, 2013.

[21] AMD. Professional gpus for servers. http://www.amd.com/en-us/products/

graphics/server, 2017.

[22] James Stewart. Cafematics: The cybercafe and the community. Community Informat-

ics, pages 320–338, 1999.

https://azure.microsoft.com/en-us/
https://azure.microsoft.com/en-us/
https://www.google.com/docs/about/
https://www.google.com/docs/about/
https://www.netflix.com/
https://aws.amazon.com/
https://aws.amazon.com/
http://www.nvidia.com/content/cloud-computing/pdf/nvidia-grid-datasheet-k1-k2.pdf
http://www.nvidia.com/content/cloud-computing/pdf/nvidia-grid-datasheet-k1-k2.pdf
http://www.amd.com/en-us/products/graphics/server
http://www.amd.com/en-us/products/graphics/server

Bibliography 175

[23] Stein Kristiansen, Bjørn Furuholt, and Fathul Wahid. Internet cafe entrepreneurs:

pioneers in information dissemination in indonesia. The International Journal of En-

trepreneurship and Innovation, 4(4):251–263, 2003.

[24] Stephen M. Mutula. Cyber caf industry in africa. Journal of Information Science, 29

(6):489–497, 2003. doi: 10.1177/0165551503296006. URL https://doi.org/10.1177/

0165551503296006.

[25] M. Gürol and T. Sevindik. Profile of Internet cafe users in Turkey. Telematics and

Informatics, 24(1):59–68, 2007.

[26] Aysegul Yolga Tahiroglu, Gonca G Celik, Mehtap Uzel, Neslihan Ozcan, and Ayse Avci.

Internet use among turkish adolescents. CyberPsychology & Behavior, 11(5):537–543,

2008.

[27] Syeda Hina Batool and Khalid Mahmood. Entertainment, communication or academic

use? a survey of internet cafe users in lahore, pakistan. Information Development, 26

(2):141–147, 2010.

[28] Jenna Burrell. Could connectivity replace mobility? an analysis of internet cafe use

patterns in accra, ghana. Mobile phones: The new talking drums of everyday Africa,

pages 151–169, 2009.

[29] P Lal, R Malhotra, C Ahuja, and GK Ingle. Internet use among medical students and

residents of a medical college of north india. Indian Journal of Community Medicine,

31(4):293–294, 2006.

[30] Peter G Mwesige. Cyber elites: A survey of internet café users in uganda. Telematics

and Informatics, 21(1):83–101, 2004.

[31] Hui Wang, Xiaolan Zhou, Ciyong Lu, Jie Wu, Xueqing Deng, and Lingyao Hong. Prob-

lematic internet use in high school students in guangdong province, china. PloS one, 6

(5):e19660, 2011.

https://doi.org/10.1177/0165551503296006
https://doi.org/10.1177/0165551503296006

Bibliography 176

[32] Bin Liang and Hong Lu. Internet development, censorship, and cyber crimes in china.

Journal of Contemporary Criminal Justice, 26(1):103–120, 2010.

[33] Esharenana E Adomi, Faith Sarah Omodeko, and Patience Uzezi Otolo. The use of

cybercafé at delta state university, abraka, nigeria. Library hi tech, 22(4):383–388, 2004.

[34] Sarah Lee. Private uses in public spaces: A study of an internet cafe. New Media &

Society, 1(3):331–350, 1999.

[35] Nina Wakeford. 11 gender and the landscapes of computing in an internet café. Virtual

geographies: Bodies, space and relations, page 178, 1999.

[36] Cormac Herley and Dinei Florencio. How to login from an internet café without wor-

rying about keyloggers. In Symp. on Usable Privacy and Security, 2006.

[37] Dwaine Clarke, Blaise Gassend, Thomas Kotwal, Matt Burnside, Marten Van Dijk,

Srinivas Devadas, and Ronald Rivest. The untrusted computer problem and camera-

based authentication. In International Conference on Pervasive Computing, pages 114–

124. Springer, 2002.

[38] AK Al-Ghamdi, SMA Abdelmalek AM Ashshi, H Faidah, H Shukri, and AA Jiman-

Fatani. Bacterial contamination of computer keyboards and mice, elevator buttons and

shopping carts. African Journal of Microbiology Research, 5(23):3998–4003, 2011.

[39] Wan-Kuen Jo and Young-Jun Seo. Indoor and outdoor bioaerosol levels at recreation

facilities, elementary schools, and homes. Chemosphere, 61(11):1570–1579, 2005.

[40] Yashpalsinh Jadeja and Kirit Modi. Cloud computing-concepts, architecture and chal-

lenges. In Computing, Electronics and Electrical Technologies (ICCEET), 2012 Inter-

national Conference on, pages 877–880. IEEE, 2012.

[41] David E Williams. Virtualization with Xen (tm): Including XenEnterprise, XenServer,

and XenExpress. Syngress, 2007.

Bibliography 177

[42] VMWare. Server virtualization software — vsphere — vmware. https://www.vmware.

com/products/vsphere.html, 2017.

[43] Microsoft. Microsoft management console - overview. https://www.citrix.com/

products/xenserver/, 2017.

[44] Daniel P. Berrang. Virtual machine manager home. https://virt-manager.org/,

2017.

[45] Omar Sefraoui, Mohammed Aissaoui, and Mohsine Eleuldj. Openstack: toward an

open-source solution for cloud computing. International Journal of Computer Applica-

tions, 55(3), 2012.

[46] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan J Jackson, Andy Zhou, Jarno Raja-

halme, Jesse Gross, Alex Wang, Joe Stringer, Pravin Shelar, et al. The design and

implementation of open vswitch. In NSDI, pages 117–130, 2015.

[47] Michael Nelson. Virtual machine migration, January 27 2009. US Patent 7,484,208.

[48] Hai Jin, Li Deng, Song Wu, Xuanhua Shi, and Xiaodong Pan. Live virtual machine

migration with adaptive, memory compression. In Cluster Computing and Workshops,

2009. CLUSTER’09. IEEE International Conference on, pages 1–10. IEEE, 2009.

[49] Timothy Wood, Prashant J Shenoy, Arun Venkataramani, Mazin S Yousif, et al. Black-

box and gray-box strategies for virtual machine migration. In NSDI, volume 7, pages

17–17, 2007.

[50] Michael Nelson, Beng-Hong Lim, Greg Hutchins, et al. Fast transparent migration

for virtual machines. In USENIX Annual technical conference, general track, pages

391–394, 2005.

[51] Garth A Gibson and Rodney Van Meter. Network attached storage architecture. Com-

munications of the ACM, 43(11):37–45, 2000.

https://www.vmware.com/products/vsphere.html
https://www.vmware.com/products/vsphere.html
https://www.citrix.com/products/xenserver/
https://www.citrix.com/products/xenserver/
https://virt-manager.org/

Bibliography 178

[52] Sage A Weil, Scott A Brandt, Ethan L Miller, Darrell DE Long, and Carlos Maltzahn.

Ceph: A scalable, high-performance distributed file system. In Proceedings of the 7th

symposium on Operating systems design and implementation, pages 307–320. USENIX

Association, 2006.

[53] Microsoft. Windows storage server overview. https://technet.microsoft.com/

en-us/library/jj643303(v=ws.11).aspx, 2017.

[54] Google. Google cloud computing, hosting services & apis — google cloud platform.

https://cloud.google.com/, 2017.

[55] Ang Li, Xiaowei Yang, Srikanth Kandula, and Ming Zhang. Cloudcmp: comparing

public cloud providers. In Proceedings of the 10th ACM SIGCOMM conference on

Internet measurement, pages 1–14. ACM, 2010.

[56] Sipat Triukose, Zhihua Wen, and Michael Rabinovich. Measuring a commercial content

delivery network. In Proceedings of the 20th international conference on World wide

web, pages 467–476. ACM, 2011.

[57] Daniel J Mendez, Mark D Riggins, Prasad Wagle, and Christine C Ying. System and

method for securely synchronizing multiple copies of a workspace element in a network,

July 4 2000. US Patent 6,085,192.

[58] Tom Henderson and Brendan Allen. Vmware view, citrix xendesktop win vdi software

shootout. Network World, 26:24–30, 2009.

[59] Citrix. Xenapp and xendesktop - virtual apps and desktops. https://www.citrix.

com/products/xenapp-xendesktop/, 2017.

[60] VMWare. Horizon 7 — virtual desktop infrastructure — vdi — vmware. https:

//www.vmware.com/products/horizon.html, 2017.

[61] Microsoft. Welcome to remote desktop services. https://docs.microsoft.com/

en-us/windows-server/remote/remote-desktop-services/welcome-to-rds, 2017.

https://technet.microsoft.com/en-us/library/jj643303(v=ws.11).aspx
https://technet.microsoft.com/en-us/library/jj643303(v=ws.11).aspx
https://cloud.google.com/
https://www.citrix.com/products/xenapp-xendesktop/
https://www.citrix.com/products/xenapp-xendesktop/
https://www.vmware.com/products/horizon.html
https://www.vmware.com/products/horizon.html
https://docs.microsoft.com/en-us/windows-server/remote/remote-desktop-services/welcome-to-rds
https://docs.microsoft.com/en-us/windows-server/remote/remote-desktop-services/welcome-to-rds

Bibliography 179

[62] Mason Woo, Jackie Neider, Tom Davis, and Dave Shreiner. OpenGL programming

guide: the official guide to learning OpenGL, version 1.2. Addison-Wesley Longman

Publishing Co., Inc., 1999.

[63] Kris Gray. Microsoft DirectX 9 programmable graphics pipeline. Microsoft Press, 2003.

[64] Microsoft. Microsoft remotefx. https://technet.microsoft.com/en-us/library/

ff817578(v=ws.10).aspx, 2017.

[65] Wei Cai, Min Chen, and Victor Leung. Toward gaming as a service. IEEE Internet

Computing, 18(3):12–18, 2014.

[66] Kuan-Ta Chen, Yu-Chun Chang, Po-Han Tseng, Chun-Ying Huang, and Chin-Laung

Lei. Measuring the latency of cloud gaming systems. In Proceedings of the 19th ACM

International Conference on Multimedia, pages 1269–1272, 2011.

[67] Chun-Ying Huang, Kuan-Ta Chen, De-Yu Chen, Hwai-Jung Hsu, and Cheng-Hsin Hsu.

GamingAnywhere: the first open source cloud gaming system. ACM Transactions

on Multimedia Computing, Communications, and Applications (TOMM), 10(1s):10:1–

10:25, 2014.

[68] NVIDIA. Cloud gaming - gaming as a service (GaaS) — NVIDIA GRID. http:

//www.nvidia.com/object/cloud-gaming.html, 2014.

[69] Dapeng Wu, Yiwei Thomas Hou, and Ya-Qin Zhang. Transporting real-time video over

the Internet: Challenges and approaches. Proceedings of the IEEE, 88(12):1855–1877,

2000.

[70] Sari Järvinen, Jukka-Pekka Laulajainen, Tiia Sutinen, and Sami Sallinen. QoS-Aware

real-time video encoding - how to improve the user experience of a gaming-on-demand

service. In Proceedings of the 3rd Annual IEEE Consumer Communications and Net-

working Conference (CCNC), volume 2, pages 994–997, 2006.

https://technet.microsoft.com/en-us/library/ff817578(v=ws.10).aspx
https://technet.microsoft.com/en-us/library/ff817578(v=ws.10).aspx
http://www.nvidia.com/object/cloud-gaming.html
http://www.nvidia.com/object/cloud-gaming.html

Bibliography 180

[71] Pedro Casas, Michael Seufert, Sebastian Egger, and Raimund Schatz. Quality of ex-

perience in remote virtual desktop services. In Proceedings of the 13th IFIP/IEEE

International Symposium on Integrated Network Management, pages 1352–1357, 2013.

[72] Chun-Ying Huang, De-Yu Chen, Cheng-Hsin Hsu, and Kuan-Ta Chen. GamingAny-

where: an open-source cloud gaming testbed. In Proceedings of the 21st ACM Interna-

tional Conference on Multimedia, pages 827–830, 2013.

[73] Zhengwei Qi, Jianguo Yao, Chao Zhang, Miao Yu, Zhizhou Yang, and Haibing Guan.

VGRIS: Virtualized GPU resource isolation and scheduling in cloud gaming. ACM

Transactions on Architecture and Code Optimization (TACO), 11(2):17:1–17:25, 2014.

[74] Chao Zhang, Jianguo Yao, Zhengwei Qi, Miao Yu, and Haibing Guan. vGASA: Adap-

tive scheduling algorithm of virtualized GPU resource in cloud gaming. IEEE Trans-

actions on Parallel and Distributed Systems, 25(11):3036–3045, 2014.

[75] Yusen Li, Xueyan Tang, and Wentong Cai. On dynamic bin packing for resource

allocation in the cloud. In Proceedings of the 26th ACM symposium on Parallelism in

algorithms and architectures, pages 2–11. ACM, 2014.

[76] Edward G. Coffman Jr., János Csirik, Gábor Galambos, Silvano Martello, and Daniele

Vigo. Bin Packing Approximation Algorithms: Survey and Classification, pages 455–

531. Springer New York, New York, NY, 2013. ISBN 978-1-4419-7997-1. doi: 10.1007/

978-1-4419-7997-1 35. URL https://doi.org/10.1007/978-1-4419-7997-1_35.

[77] Hans Kellerer, Ulrich Pferschy, and David Pisinger. Introduction to np-completeness

of knapsack problems. In Knapsack problems, pages 483–493. Springer, 2004.

[78] Edward G Coffman, Jr, Michael R Garey, and David S Johnson. Dynamic bin packing.

SIAM Journal on Computing, 12(2):227–258, 1983.

[79] William Leinberger, George Karypis, and Vipin Kumar. Multi-capacity bin packing

algorithms with applications to job scheduling under multiple constraints. In Parallel

https://doi.org/10.1007/978-1-4419-7997-1_35

Bibliography 181

Processing, 1999. Proceedings. 1999 International Conference on, pages 404–412. IEEE,

1999.

[80] Joseph Y Hui. Resource allocation for broadband networks. IEEE Journal on selected

areas in communications, 6(9):1598–1608, 1988.

[81] Peter Mell, Tim Grance, et al. The NIST definition of cloud computing. Computer

Security Division, Information Technology Laboratory, National Institute of Standards

and Technology Gaithersburg, 2011.

[82] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization. Wiley-

Interscience, New York, 1988.

[83] Richard E Bellman and Stuart E Dreyfus. Applied dynamic programming. Princeton

university press, 2015.

[84] Dimitri P Bertsekas, Dimitri P Bertsekas, Dimitri P Bertsekas, and Dimitri P Bertsekas.

Dynamic programming and optimal control, volume 1. Athena scientific Belmont, MA,

1995.

[85] Ragunathan Rajkumar, Chen Lee, John Lehoczky, and Dan Siewiorek. A resource

allocation model for qos management. In Real-Time Systems Symposium, 1997. Pro-

ceedings., The 18th IEEE, pages 298–307. IEEE, 1997.

[86] Sönke Hartmann. A competitive genetic algorithm for resource-constrained project

scheduling. Naval Research Logistics (NRL), 45(7):733–750, 1998.

[87] Frances Yao, Alan Demers, and Scott Shenker. A scheduling model for reduced cpu en-

ergy. In Foundations of Computer Science, 1995. Proceedings., 36th Annual Symposium

on, pages 374–382. IEEE, 1995.

[88] Alberto Colorni, Marco Dorigo, Vittorio Maniezzo, and Marco Trubian. Ant system for

job-shop scheduling. Belgian Journal of Operations Research, Statistics and Computer

Science, 34(1):39–53, 1994.

Bibliography 182

[89] XiaoShan He, XianHe Sun, and Gregor Von Laszewski. Qos guided min-min heuristic

for grid task scheduling. Journal of Computer Science and Technology, 18(4):442–451,

2003.

[90] George Dantzig. Linear programming and extensions. Princeton university press, 2016.

[91] John A Nelder and Roger Mead. A simplex method for function minimization. The

computer journal, 7(4):308–313, 1965.

[92] A. Schrijver. Theory of Linear and Integer Programming. John Wiley & Sons, Chich-

ester, 1998.

[93] Stuart Mitchell, Michael OSullivan, and Iain Dunning. Pulp: a linear programming

toolkit for python. The University of Auckland, Auckland, New Zealand, http://www.

optimization-online. org/DB FILE/2011/09/3178. pdf, 2011.

[94] Gurobi Optimization. Gurobi Optimizer. http://www.gurobi.com, 2015.

[95] Robin Lougee-Heimer. The common optimization interface for operations research:

Promoting open-source software in the operations research community. IBM Journal

of Research and Development, 47(1):57–66, 2003.

[96] Miles Lubin and Iain Dunning. Computing in operations research using julia. INFORMS

Journal on Computing, 27(2):238–248, 2015.

[97] IBM ILOG CPLEX. V12. 1: Users manual for cplex. International Business Machines

Corporation, 46(53):157, 2009.

[98] John Forrest and Robin Lougee-Heimer. Cbc user guide. In Emerging Theory, Methods,

and Applications, pages 257–277. INFORMS, 2005.

[99] Bernhard Meindl and Matthias Templ. Analysis of commercial and free and open source

solvers for linear optimization problems. Eurostat and Statistics Netherlands within the

project ESSnet on common tools and harmonised methodology for SDC in the ESS,

2012.

http://www.gurobi.com

Bibliography 183

[100] Sivadon Chaisiri, Bu-Sung Lee, and Dusit Niyato. Optimal virtual machine placement

across multiple cloud providers. In Services Computing Conference, 2009. APSCC 2009.

IEEE Asia-Pacific, pages 103–110. IEEE, 2009.

[101] Jing Xu and Jose AB Fortes. Multi-objective virtual machine placement in virtualized

data center environments. In Proceedings of the 2010 IEEE/ACM Int’l Conference

on Green Computing and Communications & Int’l Conference on Cyber, Physical and

Social Computing, pages 179–188. IEEE Computer Society, 2010.

[102] Weiwei Fang, Xiangmin Liang, Shengxin Li, Luca Chiaraviglio, and Naixue Xiong.

Vmplanner: Optimizing virtual machine placement and traffic flow routing to reduce

network power costs in cloud data centers. Computer Networks, 57(1):179–196, 2013.

[103] Fangzhe Chang, Jennifer Ren, and Ramesh Viswanathan. Optimal resource allocation

in clouds. In Cloud Computing (CLOUD), 2010 IEEE 3rd International Conference

on, pages 418–425. IEEE, 2010.

[104] A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cambridge

University Press, 2005.

[105] M. Y. Kovalyov, C.T. Ng, and T. C. E. Cheng. Fixed interval scheduling: Models, ap-

plications, computational complexity and algorithms. European Journal of Operational

Research (EJOR), 178(2):331–342, 2007.

[106] A. W. J. Kolen, J. K. Lenstra, C. Papadimitriou, and F. C. R. Spieksma. Interval

scheduling: A survey. Naval Research Logistics, 54:530–543, 2007.

[107] G. J. Woeginger. Online scheduling of jobs with fixed start and end times. Theoretical

Computer Science, 130(1):5–16, 1994.

[108] R. Canetti and S. Irani. Bounding the power of preemption in randomized scheduling.

SIAM Journal on Computing, 27(4):993–1015, 1998.

[109] L. Epstein and A. Levin. Improved randomized results for the interval selection problem.

Theoretical Computer Science, 411(34–36):3129–3135, 2010.

Bibliography 184

[110] S. P. Y. Fung, C. K. Poon, and F. Zheng. Online interval scheduling: Randomized and

multiprocessor cases. Journal of Combinatorial Optimization, 16(3):248–262, 2008.

[111] H. Miyazawa and T. Erlebach. An improved randomized online algorithm for a weighted

interval selection problem. Journal of Scheduling, 7(4):293–311, 2004.

[112] S. S. Seiden. Randomized online interval scheduling. Operations Research Letters, 22

(4-5):171–177, 1998.

[113] R. J. Lipton and A. Tomkins. Online interval scheduling. In Proceedings of the 5th

ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 302–311, 1994.

[114] M. Bender, C. Thielen, and S. Westphal. Online interval scheduling with bounded

number of failures. Journal of Scheduling (online first),, :1–15, 2017. doi: 10.1007/

s10951-016-0506-9.

[115] B. Awerbuch, Y. Azar, and S. Plotkin. Throughput-competitive on-line routing. In

Proceedings of the 34th Annual IEEE Symposium on the Foundations of Computer

Science (FOCS), pages 32–40, 1993.

[116] J. Aspnes, Y. Azar, , A. Fiat, S. A. Plotkin, and O. Waarts. On-line routing of virtual

circuits with applications to load balancing and machine scheduling. Journal of the

ACM, 44(3):486–504, 1997.

[117] Y. Azar, B. Kalyanasundaram, S. Plotkin, K. Pruhs, and O. Waarts. Online load

balancing of temporary tasks. In Proceedings of the 3rd Workshop on Algorithms and

Data Structures (WADS), volume 709 of LNCS, pages 119–130, 1993.

[118] T. Leighton, F. Makedon, S. Plotkin, C. Stein, É. Tardos, and S. Tragoudas. Fast

approximation algorithms for multicommodity flow problems. In Proceedings of the

23rd ACM Symposium on the Theory of Computing (STOC), pages 101–111, 1991.

[119] S. Plotkin and D. Shmoys É. Tardos. Fast approximation algorithms for fractional

packing and covering problems. In Proceedings of the 32nd Annual IEEE Symposium

on the Foundations of Computer Science (FOCS), pages 495–504, 1991.

Bibliography 185

[120] F. Shahrokhi and D. Matula. The maximum concurrent flow problem. Journal of the

ACM, 37(2):318–334, 1990.

[121] Thomas L. Casavant and Jon G. Kuhl. A taxonomy of scheduling in general-purpose

distributed computing systems. IEEE Transactions on Software Engineering, 14(2):

141–154, 1988.

[122] Michael Isard, Vijayan Prabhakaran, Jon Currey, Udi Wieder, Kunal Talwar, and An-

drew Goldberg. Quincy: Fair scheduling for distributed computing clusters. In Pro-

ceedings of the 22nd ACM Symposium on Operating Systems Principles (SOSP), pages

261–276, 2009.

[123] Carlee Joe-Wong, Soumya Sen, Tian Lan, and Mung Chiang. Multiresource alloca-

tion: Fairness-efficiency tradeoffs in a unifying framework. IEEE/ACM Transactions

on Networking, 21(6):1785–1798, 2013.

[124] Vijay Subramani, Rajkumar Kettimuthu, Srividya Srinivasan, and Ponnuswamy Sa-

dayappan. Distributed job scheduling on computational grids using multiple simulta-

neous requests. In Proceedings of the 11th IEEE International Symposium on High

Performance Distributed Computing (HPDC), pages 359–366, 2002.

[125] Zoltán Ádám Mann. Allocation of virtual machines in cloud data centersa survey of

problem models and optimization algorithms. ACM Computing Surveys (CSUR), 48

(1):11, 2015.

[126] Alireza Sadeghi Milani and Nima Jafari Navimipour. Load balancing mechanisms and

techniques in the cloud environments: Systematic literature review and future trends.

Journal of Network and Computer Applications, 71:86–98, 2016.

[127] Kevin Mills, James Filliben, and Christopher Dabrowski. Comparing vm-placement

algorithms for on-demand clouds. In Cloud Computing Technology and Science (Cloud-

Com), 2011 IEEE Third International Conference on, pages 91–98. IEEE, 2011.

Bibliography 186

[128] Abhishek Gupta, Laxmikant V Kale, Dejan Milojicic, Paolo Faraboschi, and Susanne M

Balle. Hpc-aware vm placement in infrastructure clouds. In Cloud Engineering (IC2E),

2013 IEEE International Conference on, pages 11–20. IEEE, 2013.

[129] Nicolo Maria Calcavecchia, Ofer Biran, Erez Hadad, and Yosef Moatti. Vm place-

ment strategies for cloud scenarios. In Cloud Computing (CLOUD), 2012 IEEE 5th

International Conference on, pages 852–859. IEEE, 2012.

[130] Chris Hyser, Bret McKee, Rob Gardner, and Brian J Watson. Autonomic virtual

machine placement in the data center. Hewlett Packard Laboratories, Tech. Rep. HPL-

2007-189, 189, 2007.

[131] William Leinberger, George Karypis, and Vipin Kumar. Multi-capacity bin packing

algorithms with applications to job scheduling under multiple constraints. In Parallel

Processing, 1999. Proceedings. 1999 International Conference on, pages 404–412. IEEE,

1999.

[132] Wei Cai, Ryan Shea, Chun-Ying Huang, Kuan-Ta Chen, Jiangchuan Liu, Victor CM

Leung, and Cheng-Hsin Hsu. A survey on cloud gaming: Future of computer games.

IEEE Access, 4:7605–7620, 2016.

[133] Yusen Li, Xueyan Tang, and Wentong Cai. Play request dispatching for efficient virtual

machine usage in cloud gaming. IEEE Transactions on Circuits and Systems for Video

Technology, 25(12):2052–2063, 2015.

[134] Hua-Jun Hong, De-Yu Chen, Chun-Ying Huang, Kuan-Ta Chen, and Cheng-Hsin Hsu.

Placing virtual machines to optimize cloud gaming experience. IEEE Transactions on

Cloud Computing, 3(1):42–53, 2015.

[135] David Finkel, Mark Claypool, Sam Jaffe, Thinh Nguyen, and Brendan Stephen. As-

signment of games to servers in the onlive cloud game system. In Network and Systems

Support for Games (NetGames), 2014 13th Annual Workshop on, pages 1–3. IEEE,

2014.

Bibliography 187

[136] Rubicon Communications. pfsense - world’s most trusted open source firewall. https:

//www.pfsense.org/, 2017.

[137] Klappenbach Michael. Understanding and optimizing video game frame rates. https:

//www.lifewire.com/optimizing-video-game-frame-rates-811784, 2018.

[138] Valve. Steam in-home streaming. http://store.steampowered.com/streaming/,

2017.

[139] Futuremark. 3DMark. http://www.3dmark.com/, 2015.

[140] AMD Raptr. Most played PC games: January 2015. http://caas.raptr.com/

most-played-pc-games-january-2015-new-year-same-games/, 2015.

[141] AMD Raptr. Most played PC games: November 2015. http://caas.raptr.com/

most-played-games-november-2015/, 2015.

[142] I. Hamling, M. O’Sullivan, C. Walker, and C. Thielen. Improving resource efficiency in

internet cafes by virtualization and optimal user allocation. In 2015 IEEE/ACM 8th

International Conference on Utility and Cloud Computing (UCC), pages 26–34, Dec

2015. doi: 10.1109/UCC.2015.17.

[143] George B Dantzig and Philip Wolfe. The decomposition algorithm for linear programs.

Econometrica: Journal of the Econometric Society, pages 767–778, 1961.

[144] Michael O’Sullivan, Qi-Shan Lim, Cameron Walker, Iain Dunning, and Stuart Mitchell.

Dippy: a simplified interface for advanced mixed-integer programming. 2012.

https://www.pfsense.org/
https://www.pfsense.org/
https://www.lifewire.com/optimizing-video-game-frame-rates-811784
https://www.lifewire.com/optimizing-video-game-frame-rates-811784
http://store.steampowered.com/streaming/
http://www.3dmark.com/
http://caas.raptr.com/most-played-pc-games-january-2015-new-year-same-games/
http://caas.raptr.com/most-played-pc-games-january-2015-new-year-same-games/
http://caas.raptr.com/most-played-games-november-2015/
http://caas.raptr.com/most-played-games-november-2015/

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Abbreviations
	Notation
	Co-Authorship Forms
	1 Introduction
	1.1 Motivation
	1.1.1 Internet Cafes
	1.1.2 Cloud Gaming

	1.2 Cloud-Based Internet Cafes
	1.2.1 Virtualisation
	1.2.2 Virtual GPUs
	1.2.3 Combining Cloud Gaming and Internet Cafes
	1.2.4 Optimisation
	1.2.5 Using Optimisation in Cloud-based Internet Cafes

	1.3 Thesis Outline
	1.4 Contribution

	2 Background
	2.1 Internet Cafes
	2.2 Virtualisation
	2.2.1 Building a Cloud
	2.2.2 Supplying Cloud Services
	2.2.3 Virtual Desktop Infrastructure
	2.2.4 Cloud Gaming
	2.2.5 Virtual GPUs (vGPUs)

	2.3 Resource Allocation in Cloud Computing
	2.3.1 Integer Programming
	2.3.2 Competitive Analysis of Online Algorithms
	2.3.3 Online Algorithms and Heuristics

	2.4 Literature Review
	2.4.1 Cloud VM Placement
	2.4.2 Cloud Gaming VM Placement

	3 Building a Cloud-Based Internet Cafe
	3.1 Hardware
	3.1.1 Servers
	3.1.2 GPU
	3.1.2.1 vGPUs

	3.1.3 Storage

	3.2 Hypervisors
	3.2.1 Citrix XenServer
	3.2.2 Other Hypervisors

	3.3 Remote Desktop
	3.3.1 Citrix XenDesktop
	3.3.2 RemoteFX
	3.3.3 Steam Streaming
	3.3.4 Other Remote Desktop Software

	3.4 Environment Testing
	3.4.1 Single Machine Testing
	3.4.2 Parallel Testing
	3.4.3 Summary

	4 Allocation Problem
	4.1 Problem Description
	4.2 Models
	4.2.1 Notation conventions
	4.2.2 Inputs
	4.2.2.1 Services
	4.2.2.2 Servers
	4.2.2.3 VMs

	4.2.3 Configurations
	4.2.3.1 Users

	4.2.4 Decisions
	4.2.5 Constraints
	4.2.6 Outputs

	4.3 Test Data Set
	4.3.1 First Test Set
	4.3.2 Services offered
	4.3.3 Server Inputs
	4.3.4 User Inputs
	4.3.5 Second Test Set
	4.3.6 Services offered
	4.3.6.1 Server Inputs
	4.3.6.2 User Inputs

	4.3.7 Generation Process
	4.3.8 Test Profiles Summary

	5 Offline Integer Program
	5.1 Initial Model
	5.1.1 Decision Variables
	5.1.2 Integer Program
	5.1.2.1 User constraints
	5.1.2.2 Server constraints
	5.1.2.3 Event constraints

	5.2 Efficiency Improvements
	5.2.1 Symmetry
	5.2.2 Memory Use

	5.3 Updated Model
	5.3.1 Decision Variables
	5.3.2 Integer Program
	5.3.2.1 User Constraints
	5.3.2.2 Supply Constraints

	5.4 Fixed Zone Model
	5.4.1 Decision Variable
	5.4.2 Integer Program

	5.5 Results
	5.5.1 Test Set One
	5.5.2 Test Set Two

	6 Prebooking Integer Program
	6.1 Model
	6.1.1 Batch Solver
	6.1.2 Model Definition
	6.1.2.1 Decision Variables
	6.1.2.2 Integer Program

	6.2 Results
	6.2.1 Time Horizon
	6.2.2 Solve Time
	6.2.3 Summary

	7 Online Algorithm
	7.1 Greedy Algorithms
	7.2 Competitive Algorithm
	7.2.1 Algorithm
	7.2.2 Proofs
	7.2.3 Grouped Users
	7.2.4 Aggressive Improvement

	7.3 Results
	7.3.1 Internet Cafe Size
	7.3.2 Stay Duration
	7.3.3 Comparison

	8 Discussion and Conclusion
	8.1 Comparison
	8.2 Internet Cafe Application
	8.3 Graphics Driven Cloud Application
	8.4 Business Application
	8.5 Education Application
	8.6 Conclusion
	8.6.1 Key Outcomes
	8.6.2 Future Work
	8.6.3 Application
	8.6.4 Research Questions

	A Configurations
	Bibliography

