
Received: 00 Month 0000 Revised: 00 Month 0000 Accepted: 00 Month 0000
DOI: xxx/xxxx

REGULAR PAPER

Balancing Parallelization and Asynchronization in Event-Driven
ProgramswithOpenMP
Xing Fan | Oliver Sinnen | Nasser Giacaman

Parallel and Reconfigurable Computing Lab
Department of Electrical and Computer
Engineering, The University of Auckland, New
Zealand
Correspondence
Nasser Giacaman Email:
n.giacaman@auckland.ac.nz

Summary
OpenMP is a popular multiprocessing interface to parallelize different domains of applications.
A previously proposed extension has made it possible for OpenMP to speedup event-driven pro-
grams. There, a virtual target model extension is used to incrementally introduce asynchronous
execution into an OpenMP program. At the same time it allows a mixture of nested parallelism
with asynchronous processing. This new possibility raises the question how to use available
processors/threads, for parallelism or for asynchronous execution? To investigate the best com-
bination of asynchronization and parallelization, a performance model for measuring parallel
event-driven systems is proposed. Basedonqueue theory, the theoretical analysis discovers some
interesting facts in an event-driven system. Then experiments are conducted to study the best
practice of improving event-driven programs. and how to balance parallelism and asynchronous
execution. By comparing it with the OpenMP tasking model, the evaluations demonstrate the
effectiveness and flexibility of the virtual target model, which is able to achieve significantly
better parallel event-driven performance.
KEYWORDS:
OpenMP, event-driven, performancemodel, virtual target, concurrency

1 INTRODUCTION
A wide range of modern applications are developed based on the event-driven model, ranging from mobile applications, desktop applications and
web services. In general, these types of programs have an interactive nature, whichmeans their execution is non-deterministic, but rather depends
on the events or requests that arise during runtime.
In an event-driven framework, a particular thread is solely responsible for driving the event-loop, dispatching the events and calling the event-

relatedhandlers: theEventDispatchingThread (EDT). Bydefault, for a naive implementationwithout anymulti-threading applied, theEDTexecutes
all the queuedevent handlers in a sequentialmanner. Theproblememerges if the event handling functions are time-consuming, or registered events
suddenly burst within a short period of time. With such execution burdens, the EDT is unable to handle more upcoming events, thus leading to an
unresponsive application.
In order to achieve a high performing event-driven system, thewidely used solution is to offload computation requests to the background thread

pool. This approach enables the EDT to handlemultiple requests asynchronously, thereby the system’s handling ability is enhanced and the system’s
overall throughput increases. When considering to use OpenMP to parallelize event-driven programs, OpenMP task parallelism is the most suit-
able approach instead of using the traditional OpenMP worksharing constructs for and sections. Task parallelism has been an important part of
OpenMPprogrammingmodel, since its initial release of version 3.0 1. OpenMP task parallelism enables programmers to handle irregular and asym-
metrical parallelism problems that the traditional worksharing constructs could not solve. The evolution of theOpenMP specification has provided
increased flexibility and expressiveness with tasks, such as dependency handling 2 and task-generating loops 3.

2

Event Queue

Events

.
.
..
.
.

.
.
.

Asynchronous Processors

N1

N2

Np

N1

Parallel Processors

Na

N2

FIGURE 1 A parallel event dispatchingmodel that hasmultiple asynchronous processors and parallel processors.

However, OpenMP tasking is mainly for task parallelization and its asynchronization is only confined within the parallel region, which itself is
still synchronous. In comparison, an event-driven system demands that the computations be offloaded away from the EDT, hence cannot contain a
parallel region for that. In this regard, it is concurrency rather than task parallelism that needs to be addressed. UnfortunatelyOpenMPdoes not have
special constructs to deal with event-driven programming. Some efforts of using OpenMP for web services have been tried 4,5. The experiences
show that using traditional OpenMP directives to parallelize web service calls is possible, but it requires nontrivial programming efforts to achieve
high level performance.
To overcome this, the concept of virtual target 6 has been proposed as a complementary part for OpenMP to facilitate event-driven parallel

programming.Wehave verified this approach through our Java implementation ofOpenMP, knownasPyjama 7.With the proposedOpenMPexten-
sions, a single-threaded Java program is easily converted to a multi-threaded version, supporting both parallel and asynchronous execution. In
the virtual target approach, we enable concurrency (asynchronization), which detaches the control flow from the master thread, and offloads the
execution block from themaster thread to another asynchronous thread or thread pool.
Integrating parallelization and asynchronization for event-driven programming with such a construct raises interesting questions. There is no

widely used performance model relating to the parallelization of event-driven programs. As a consequence, it is not clear how code paralleliza-
tion influences the performance of an event-driven application. Figure 1 shows a situation that in an event-driven system, some processors are
distributed as asynchronous workers to offload computations for the event queue whereas some other processors are distributed to parallelize
some event handlers. As a consequence, an interesting question arises: if the event handlers have the potential to be parallelized, is it worthwhile
to parallelize the handler functions and howmany threads should be used in the parallelism? Since computational resources are usually limited, the
assignment of processors can strongly influence the performance. In this paper we attempt to address these questions with a performance model
and an experimental evaluation. An interesting fact outcome of this study is that parallelism is a more efficient way to increase the event-driven
performance than asynchronization, if the event handlers have the potential to be parallelized. The theoretical model can help programmers make
decisions on choosing the proper number of asynchronous workers to offload different event handlers to the background. At the same time, if the
event handler itself can be parallelized, the performancemodel is also useful to decide themost efficient parallelization scale.
In particular this paper presents the following contributions:
• Aperformancemodel for event-driven parallelization is proposed, derived froma queuing theorymodel.We illustrate and plot the influence
of model parameters on performance. This model gives a theoretical reference for the benchmarks.

• A conceptual comparison between the virtual target andOpenMP taskingmodels is presented.
• An experimental evaluation is conducted that demonstrates the effectiveness of using the virtual target concept for an event-driven frame-
work. It offersmore usability andflexibility compared to the traditionalOpenMP tasking concept. The observations from these experiments
give new insights into the interplay between asynchonization and parallelization.
– We demonstrate experimentally that the responsiveness of an interactive GUI application is significantly improved using the tool
LagHunter/LagAnalyzer 8 9 to analyze the latencies.

3
– Wedemonstrate that large reductions inmeanflow-time can be achieved in an event-driven application by tuning the number thread-
s/processors used for parallelism and asynchronization. The virtual target concept also allows to categorize different tasks, to be
submitted to different thread pools according to their sizes, which thereby further minimizes themean event handling flow time.

Parts of this workwere published in a preliminary version at IWOMP2017 10. In comparison, this paper presents a significantly extended andmore
detailedmathematical model, studies the implicationsmore thoroughly and has a significantly extended experimental evaluation.
The structure of this paper is as follows: Section ?? describes the theoretical background of parallelizing event-driven programs and amathemat-

icalmodel is presented to quantify the performance. Section ?? presents theOpenMP solutions to parallelize event-driven programs. In this section,
the virtual target solution is presented and the comparison with OpenMP tasking is provided to show the advantage of using virtual target model.
Section ?? presents the experiments performed and the results obtained, and it demonstrates the effectiveness of using the proposed programming
model and performancemodel. Related work is described in Section ??, before concluding in Section ??.

2 PERFORMANCEMEASUREMENTOF EVENTHANDLING EXECUTION
In an event-driven system, simply measuring speedup and execution time to evaluate the performance of parallelism is not appropriate because
events become available or are released at unknown times, which can be modeled stochastically. Hence we need some other measure to handle
events in a system. For this reason this section establish a performancemodel based on queue theory.

2.1 Flow time of event handling
Going by the standards of GUI frameworks, the proposed model assumes that only the EDT is responsible for dispatching the events, and an event
request queue is maintained by the EDT. The flow time tF measures the time span from the triggering of the event to the finish of its related event
handling. The notation tR measures the residual service time of the current event handler that is under processing. The queuing time tQ indicates
the handling function cannot process until all previous queued handling functions are complete. Afterwards, the service time tS is conducted for the
processing of this event handling.
Given an event binding e→ F in a system.When the event ehappens, its event handling functionF should be triggered. At the time the event e is

triggered, there are potentially unprocessed event handlers in the event queue, and the setF represents all queued event handlers at the triggering
point of e. The flow time tF of the event handling is the sum of three parts: the residual time tR of the event handler which is under processing at the
moment, the event e’s queuing time, and its handling functionF ’s execution time (service time) tS:

tF = tR + tQ + tS = tR +
∑
f∈F

tS(f) + tS

If no concurrency (asynchronization) is employed within the event handling function, the execution is solely executed by the EDT. As a con-
sequence, the EDT cannot respond to other events or requests during the time period tF. If tF is long enough, users will experience a degraded
usability.

2.2 Processing events in amulti-threaded environment
For an application in a multi-threaded system, two approaches to reduce the flow time tF of each event handling are possible. The first approach is
enabling the system to have multiple asynchronous workers to process the queued requests, then tQ is reduced. The second approach is to paral-
lelize the event handlers, which reduces their execution time in comparison to sequential execution, decreasing the service time tS and in turn the
tQ. Denote Na as the asynchronization scale, and Np as the parallelization scale. Ideally, assume the asynchronous workers do not suffer from any
performance degradation and increasing the number of asynchronousworks always getsNa speedup; in otherwords, the execution load of all event
handlers to be executed concurrently is ideally balanced across theNa workers. On the other hand, due to the typical nature of the handling func-
tions, it is often not that ideal speedup is achieved when parallelizing the event handlers. Therefore we define parallelization efficiency function as
ε(Np) = ηNp, in which the handling function gains ε(Np) speedup when using Np threads to parallelize this event handler. η is the parallelization
efficiency factor.

tF =
tR

ε′(Np)
+

∑
f∈F

tQ(f)

εf (Np)

N−1
a +

tS(F)

ε(Np)

4
Ideally, the handler execution can be totally offloaded to the background thread, but sometimes it is necessary for the EDT to handle some UI

updates exclusively. For example, in aGUI application, all GUI updatemanipulationsmust be executed by the EDT.Under this scenario, theflow time
in an event handler can be decomposed into two parts: the execution by the EDT and the execution by the asynchronous workers:

t′F = tUI | Tedt + tF | Tworker

Offloading effectively decreases the handling time of the EDT, because the EDT is only responsible for handlingUI related operations. Therefore,
the EDT hasmore idle time for the subsequent event handling, and the responsiveness of the application is improved. Under this circumstance, only
the operations that executed on background threads have the potential to be parallelized.

2.3 Modeling of the parallel event-driven system
Asmentioned, there is no widely used performancemodel relating to the parallelization of event-driven programs. As a consequence, it is not clear
how parallelization influences the performance of event-driven executions. An interesting question arises if the event handlers have the potential
to be parallelized. Every available thread (processor) in the system can be used to parallelize the event handlers, or alternatively it can be used as
an asynchronousworker towhere the EDT offloads computations. The partition of the available threads (processors) can significantly influence the
performance of the event-driven system.
Tomodel the parallel event-driven system, we employ the Kendall Notation that is used to describe queuing systems 11. An event-driven system

can be described as such a queuing system. Kendall proposed describing queuing models using three factors written A/S/c , where A denotes the
time between arrivals to the queue, S is the size of jobs and c is the number of servers at the node. As a default, we assume that this model has
unlimited capacity of the queue, and the queuing principle is First In First Out (FIFO).
• A: Arrival process

– M: Arrival process is governed by a Poisson Distribution
• S: Service time distribution

– M: The service time is exponentially distributed
– D: The service time is deterministic, which is a constant value

• c: Number of servers

2.3.1 Queuemodel with parallelism
Nowweextend theA/S/cmodel to integrate parallel executionof the jobs (event handlers).WedefineNa as the asynchronization scale of themulti-
core machine (corresponding to c), andNp as the parallelization scale of a multi-core machine. The maximum threads (processors) in this system is
NaNp. Then theA/S/cmodel is extended asA/S/Na/Np.
Because for themostof theevent-driven systems, everyevent comes independentlywitha specific arrival rate,which canbedescribedasPoisson

Process, suppose the arrivals of the event requests are governed by a Poisson Distribution 12, and the sequential handling times for the handlers
are exponentially distributed. In this parallel queue system, there areNa multiple asynchronous workers that can process the requests at the same
time, and there areNp parallel threads in a paralleled handling function. This model is described asM/M/Na/Np.
In order to better analyze the performance of this model, the factors related to this model are listed as below:
• λ is themean arrival rate of the requests/events.
• µ is themean sequential service rate; if themean sequential service time of the handlers isTseq, then µ = 1

Tseq
.

• Lq is themeanwaiting queue length.
• L is themean queue length, including the handlers in service.
• Wq is themeanwaiting time in the queue.
• W is themean flow time spent at the queue both of waiting and being serviced.
• Na is the asynchronization scale, which is the number of asynchronous workers in the queue system.

5
• Np is the parallelization scale, which is the number of parallel threads in event handler’s parallel region.

Utilization.Define the service utility as ρ, which presents the utilization of processors. Then:

ρ =
λ

µNaε(Np)
(1)

The utilization measures the occupation of the processors. If this value is too low, it means the incoming tasks do not create a high usage of the
computation resources. A good use of a parallel system is keeping the utilization of the processors under a relatively high usage.
Meanflow time (M/M/Na/Np).The averageflow timeW is the key factor to evaluate the performanceof the system. The theoretical calculation

of the mean flow time of each event handling can be calculated as follows, based on the traditional M/M/c queue model. Define ΠW to be the
probability that an event request has to wait. SoΠW is the sum of the probabilities this system contains i requests pi, where i > c:

ΠW = pc + pc+1 + pc+2 + ...

=
pc

1− ρ
=

(cρ)c

c!

(
(1− ρ)

c−1∑
n=0

(cρ)n

n!
+

(cρ)c

c!

)−1

Substitute cwithNa, then:

ΠW =
(Naρ)Na

Na!

(1− ρ)

Na−1∑
n=0

(Naρ)n

n!
+

(Naρ)Na

Na!

−1

(2)
Then themeanwaiting queue length Lq is:

Lq =

∞∑
n=0

npNa+n = ΠW ·
ρ

1− ρ
Then themean queue length L is:

L = Lq +
λ

µε(Np)
= ΠW ·

ρ

1− ρ
+

λ

µε(Np)

According to Little’s Law 13, the average waiting timeWq is:

Wq =
Lq

λ
= ΠW ·

1

1− ρ
·

1

µNaε(Np)

Then themean flow time ofW inM/M/Na/Np is 14:

WM/M/Na/Np
= Wq +

1

µε(Np)
= ΠW ·

1

1− ρ
·

1

µNaε(Np)
+

1

µε(Np)
(3)

Meanflowtime (M/D/Na/Np).Thenwecalculate themeanflowtimewhen the service time is deterministic. InQueueTheory, it is not difficult to
calculate exact answers for theM/D/c system, but the calculations aremore burdensome than for the correspondingM/M/c system 15. Therefore,
in order to get themean flow time forM/D/Na/Np, we apply the following approximation proposed in 16:

Lapp
M/D/c

=
1

2

[
1 + (1 + ρ)(c− 1)

√
4 + 5c− 2

16cρ

]
LM/M/c

Apply Little’s Law, and substitute c and ρ. We get themean flow time in (M/D/Na/Np):

WM/D/Na/Np
= Lapp

M/D/c
·

1

λ

=
1

2

[
1 + (1 +

λ

µNaε(Np)
)(Na − 1)

(
√

4 + 5Na − 2)µε(Np)

16λ

]
·WM/M/Na/Np

(4)

2.4 Discussion of themodel
2.4.1 Relationship between flow time and processor utility
According to equation 3, Figure 2 shows a plot of the relationship betweenW and ρ in theM/M/Na/Np andM/D/Na/Np model. IfNa andNp are
fixed values, it is easily found that the averageflow timeW increases rapidlywhenutilization ρ is above 80%. This leads to a dilemma that the system
cannot reach both very high utilization and high performance, i.e that is low average flow time. If the event arrival rate is known and fixed, even
though increasingNa andNp can reduce the mean request flow timeW, it is unwise to distribute very large number ofNa andNp since it causes a
low processor utilization. In practice, keeping the utilization ρ between 70% to 80% is considered a good operational level, without degradingmuch
performance.

6

0 20 40 60 80 100

0
5

10
15

20
25

30

Utilization ρ (%)

A
ve

ra
ge

 fl
ow

 ti
m

e
W

 (
s)

M M Na Np

M D Na Np

 µ =1, Na =1, Np =1, λ varies

0 20 40 60 80 100

0
5

10
15

20
25

30

Utilization ρ (%)

A
ve

ra
ge

 fl
ow

 ti
m

e
W

 (
s)

M M Na Np

M D Na Np

 λ =1, µ =1, Na =1, Np varies

FIGURE 2 The theoretical relationship between processor utilization ρ and themean event-handling flow timeW in an event-driven system.

Scale

A
ve

ra
ge

 fl
ow

 ti
m

e
(s

)

1 3 5 7 9 11 13 15

1
2

3
4

5

M M Na Np

 λ =0.8, µ =1

Asynchronization changes (Np = 1)
Parallelization changes (Na = 1)

Scale

A
ve

ra
ge

 fl
ow

 ti
m

e
(s

)

1 3 5 7 9 11 13 15

1
2

3
4

5

M D Na Np

 λ =0.8, µ =1

Asynchronization changes (Np = 1)
Parallelization changes (Na = 1)

FIGURE 3 The performance comparison betweenmerely increasing asynchronous scale or parallel scale (λ = 0.8, µ = 1).

2.4.2 Distribution of asynchronization and parallelization
In a system with a fixed number of processors, it is interesting to study what has a better impact on the average flow time: the number of asyn-
chronousworkers (Na) or the number of parallel works in an handling function(Np). Figure 3 and Figure 4 show the results when the total number
of processors is fixed as 16, how merely increasing Na or Np effects the average flow time (assume parallelism with idea speedup ε(Np) = Np). So
in this scenario where the event handlers are perfectly parallelizable, increasing the parallelization scale is a better choice to decrease the average
flow timeW.
Figure 5 studies this observation from a different perspective that accounts for real (non-ideal) parallelization speedups, i.e. ε(Np) < Np. In this

figure, the x-axis represents the number of threads that are used to parallelize the handling functions (Np), and the y-axis indicates the minimum
parallelization speedup ε(Np) needed to achieve the same average flow time as using the same number of processors for asynchronization instead
(i.e. as servers). The curve is only affected by ρ, and if the speedup is higher than a specific value, parallelization is always superior to asynchroniza-
tion. For example, inM/M/Na/Np with ρ = 80%, this speedup value is close to 5;Whereas inM/D/Na/Np when ρ = 80%, the minimum speedup
value is around 2.5.

7

Scale

A
ve

ra
ge

 fl
ow

 ti
m

e
(s

)

1 3 5 7 9 11 13 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

M M Na Np

 λ =10, µ =12

Asynchronization changes (Np = 1)
Parallelization changes (Na = 1)

Scale

A
ve

ra
ge

 fl
ow

 ti
m

e
(s

)

1 3 5 7 9 11 13 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

M D Na Np

 λ =10, µ =12

Asynchronization changes (Np = 1)
Parallelization changes (Na = 1)

FIGURE 4 The performance comparison betweenmerely increasing asynchronous scale or parallel scale (λ = 10, µ = 12).

0
1

2
3

4
5

Scale

S
pe

ed
up

 ε
(N

p)

1 3 5 7 9 11 13 15

M M Na Np

 ρ = 0.8
 ρ = 0.5

0.
0

1.
0

2.
0

3.
0

Scale

S
pe

ed
up

 ε
(N

p)

1 3 5 7 9 11 13 15

M D Na Np

 ρ = 0.8
 ρ = 0.5

FIGURE 5 Minimum speedups ε(Np) should be achieved that make the sameWwhen the scale are applied to asynchronization.

3 EVENT-DRIVENPARALLELIZATIONWITHOPENMPEXTENSION
After discussing the performance model for parallelized event-driven execution in the previous section, we now look at our proposed approach
to support such an execution with OpenMP. The extension is based on the virtual target concept 6. This approach is complementary to the stan-
dard OpenMP fork-join model and it enables code with a concurrent and asynchronous nature using OpenMP. By comparing this concept with the
OpenMP task constructs, we analyze the advantages for parallelizing event-driven programswith the virtual target concept.

3.1 Virtual Target
In order to offload computation from the current executing thread, the proposed syntax in Figure 6 is inspired by the target directive introduced
in the OpenMP 4.0 specification. The initial purpose of the target directive is to utilize available accelerators in addition to multi-core processors
in the system. The target directive offloads the computation of its code block to a specified accelerator, if a device clause is followed.

3.1.1 Directive syntax extensions
Virtual target. In line with the existing target directive, this extension of the target syntax introduces the concept of a virtual target. A virtual tar-
getmeans the computation is not offloaded to a real physical device. Instead, it is a software-level executor capable of asynchronously offloading
the target block from the threadwhich encounters this target directive. Conventionally, a device target has its ownmemory and data environment,

8

Name virtual_target_register() virtual_target_create()
Parameters tname:String tname:String, n:Integer
Description The threadwhich invokes this

function will be registered as a
virtual target named tname.

Creating a worker virtual target
withmaximum of n threads, and

its name is tname.
TABLE 1 Runtime functions to create virtual targets in Pyjama.

therefore the data mapping and synchronization are necessary between the host and the target. That is why normally some auxiliary constructs or
directives such as target data and target update are used when using target directives. In contrast, a virtual target still actually shares the same
memory that the host holds, so the data context remains the same when entering the target code block. Generally, a virtual target is a syntax-level
abstraction of a thread pool executor, such that the target block is asynchronously executed by the executor specified by the target-name. There-
fore, the newly introduced directives are compatible with existing OpenMP directives. With the combination of different directives, programmers
are able to express different forms of parallelization and concurrency logic.
Target block scheduling. By default, an encountering thread may not proceed past the target code block until it is finished by either the device

target or virtual target. While this is defying the asynchronous nature of the virtual target, it corresponds to the expected standard behavior of
other constructs inOpenMP. Amore flexible and expressive control flow of the encountering thread can be achieved by adopting the asynchronous-
property-clause. Using these clauses, a target block can be regarded as an asynchronous task. Figure 7 lists all the asynchronous properties a target
code block can have in the program. nowait has the expected behavior that the target code block is bypassed by the encountering thread. The same
is true for thename_as/waitoption, but theencountering thread canquerywait later for the completionof the target block. Lastly,await is likewait
for the encountering thread, but during the wait other event handlers are executed. A more detailed explanation of asynchronous-property-clause
can be found in 6.

Runtime Support. A virtual target is essentially a thread pool executor, or can be an event dispatching thread. Its lifecycle lasts throughout the
program. Conceptually, a virtual target represents a type of execution environment defining its thread affiliation (to ensure operations that are not
thread-safe are only executed by a specific thread), and scale (confine the number of threads of a thread pool) [this sentence is confusing, please
rewrite]. This design enables programmers to flexibly submit different code target blocks to different execution environments. Table 1 describes
the additional OpenMPAPIs provided for managing virtual targets, and implemented in the Pyjama runtime.

3.2 Comparing omp task and omp target virtual
The virtual target concept allows programmers to easily change the thread context, and submit the code blocks to a different thread pool, without
knowing any underlying implementation details. The salient advantage of using virtual targets is its compatibility with an event-driven framework.
Formost event-driven frameworks, only the interfaces of event handlers are exposed to the programmers, and programmers cannot directlymodify
the dispatching mechanism. Under this circumstance, using OpenMP task directives shows its disadvantage because a task is only active when it is
within a parallel region, but the programmers cannot use the parallel directive to parallelize the dispatching framework.
Listing 1 and Listing 2 show the two simple examples of using these approaches. The example of using OpenMP tasks forces the code change

onto the event loop, then asynchronization of the event handlers becomes possible. In contrast, for virtual targets, programmers can directly use
the target virtual directive inside event handlers to offload computations away from the event handling thread. Another distinction of these two
concepts is that with OpenMP tasks, the master thread is a part of the thread group. In comparison, with virtual targets, the master thread and
worker threads are explicitly distinguished. If the current thread is not a member thread of the virtual target’s thread pool, the target code block
will not be executed by the current thread.
Another salient difference between virtual target and OpenMP tasks is their runtime thread pool controls (Figure 8). With OpenMP tasks,

only one thread pool is managed to which all tasks are en-queued to a single queuing mechanism (whether it be work-sharing or work-stealing). In
contrast, more than one tasking queue mechanism can be managed in the virtual target programming model. Programmers can submit task code
blocks to different pools according to the properties (e.g. execution times). This is effective in boosting performance, which will be demonstrated in
Section 4.2.
A summary of the differences betweenOpenMP tasks and virtual target is listed in Table 2 .

9

Listing 1: The example of using OpenMP tasks.
void server(){

//#omp parallel
{

//#omp single
while(1)
{

//#omp task
event_handler1();
//#omp task
event_handler2();

}
}

}

Listing 2: The example of using virtual targets.
void event_handler1(){

//#omp target virtual(worker) await
compute_half1();

//#omp target virtual(edt) nowait
notify("Task half finished");

//#omp target virtual(worker) await
compute_half2();

//#omp target virtual(edt) nowait
notify("Task finished");

}

Distinction OpenMP Tasking Virtual Target
Objective Task parallelization Concurrency

Scenario used Task decomposition and parallelization Event-driven offloading and context switching
Effective region Only in parallel region Everywhere

Dependency handling Data dependency Control flow dependency
Task pool number Single Multiple

TABLE 2 Comparison betweenOpenMP tasking and target virtual.

4 EVALUATION
This sections presents a new evaluation of the parallelized event-driven programming approach using the virtual target extension for OpenMP. By
doing this,we reflect backon theperformancemodel developed in Section ??. In order to do thisweundertake twoexperiments.Thefirst experiment
evaluates how the responsiveness of the EDT is improved in aGUI application using the proposed approach. The second experiment shows how the
event handling flow times are reduced by using a customized combination of parallelization and asynchronization.

4.1 Responsiveness of the EDT
To study the responsiveness of the EDT, an interactive application was developed in Java called ParaImage 17, which is a desktop application for
image search and manipulation. This experiment is executed on a desktop system, which is equipped with Intel 3.40GHz i5-3570 CPU 4, and 8GB
RAM.
For a very good user experience, the programmer wants to make the GUI interface very responsive by offloading long running tasks to back-

ground threads. Many approaches are available, such as SwingWorker or SwingUtilities in standard Java. However, these approaches all require
substantial code refactoring and advanced knowledge 6. When doing this with OpenMP-like directives, the parallelization is virtually free and the
code logic remains sequential. To illustrate this, Listing 3 presents an event handling function that when a search button is clicked, the applica-
tion starts searching the images from the Internet according to the keyword. The implementation shows the sequential version augmented with

10

Listing 3: The search listener function implementation.
public void actionPerformed(ActionEvent e) {
if(e.getSource() == searchButton) {
String keyword = textField.getText();
int resPP = (Integer)spnResultsPerPage.getValue();
setCursor(Cursor.getPredefinedCursor(Cursor.WAIT_CURSOR));
//#omp target virtual(worker) name_as(search)
{
PhotoList list = PhotoInterface.search(keyword,resPP,currentOffset);
for (int i=0; i<list.size(); i++) {
PhotoInfo photo = list.get(i);
PhotoWithImage image = new PhotoWithImage(photo);
//#omp target virtual(edt) nowait
{
panel.progressBar.setValue(i / list.size() * 100);
panel.addToDisplay(image);
panel.updateUI();

}
}
//#omp target virtual(edt) nowait
{
progressBar.setValue(0);
thumbnailsPanel.updateUI();
setCursor(Cursor.getPredefinedCursor(Cursor.DEFAULT_CURSOR));

}
}

}

OpenMPdirectives (//#omp ...). If the code is compiled through thePyjama compiler, theOpenMPcommentswill be triggered and the executable
bytecodewill run in parallel, otherwise the directives are treated as comments and ignored.
In order to profile the latency of the graphical user interface, an instrumentation tool LagHunter 8 is used to trace the call stack of the EDT in

the runtime. The output of LagHunter is analyzed post-mortem with LagAlyzer 9, a latency profile analysis and visualization tool that is used to
characterize the noticeable lags from the tracing data.
To illustrate this, a searching scenario is taken as an example. ParaImage provides a search interface that users can retrieve images from the

Internet by inputting keywords and the thumbnails of the results appear in the display panel. When the feature is implemented in a sequential,
synchronous way, the users will experience an unresponsive interface until all the results are being retrieved. During this time, none of the buttons
or menus will respond. A quick asynchronization can be applied by adding proper virtual target directives into the sequential code, and partial
results in the form of thumbnails will be displayed as soon as they become available. Other GUI elements, such as cancel button, remain enabled.
Unlike the sequential, synchronous version, users are now able to cancel the remainder of the retrieval midway during the search.
Figure 9 shows the profiling visualization of the EDT in both the sequential and asynchronous versions. The horizontal axis shows time and

the vertical axis symbolizes the call-stack. The visualization traces the method call from the EDT and methods are categorized in different colors
according to their properties. Table3 explains thedetails. In the sequential implementation, thedispatching clearly covers largeparts of the lifetime
of the EDT. A click to the search button leads to a synchronous processing and the EDT remains unresponsive until the event handling is completed.
In contrast, in the asynchronous version, when the search button is triggered, the search is executed in the background because the execution is
offloaded to a virtual target. During this period of time, the EDT remains idle whichmeans the application remains responsive. Only necessary GUI
updates are executed in the EDT (which only the EDT is allowed to do) by asynchronously posting from the virtual targets to the EDT virtual target.
In this search scenario, after applying the OpenMP directives, the EDT idle rate increases from 74.5% to 91.0% compared to sequential version
(higher is better).
According to the Human-Computer Interaction study on the quantification of the user perceptual time, the human perceptible response time to

the GUI is above 100ms 18. By applying this threshold as the criterion, a Cumulative Latency Distribution 19 is given in Figure 10 for the analyzed
ParaImage. The x-axis shows the latency inmilliseconds, and the y-axis indicates howmanyuser requests are taking longer than the given xms in this
application. An ideal curve would be deep L-shaped. From the figure, it can be discovered that if the application is not made asynchronous, around
70 out of 170 user requests are longer than 100ms, which cause a noticeable bad user experience. After applying asynchronization using the virtual
target OpenMP directives, the result curve shows a nearly ideal shape, turning the application into a rich interactive style.

11

4.2 Performance of parallelized event-handling
In this section we evaluate the performance of a parallelized event-handling application. To do so we implemented a benchmark that simulates
the behavior of a computational server, which provides several web services. In this synthetic application, the services are the following realistic
computational kernels: Crypt, Monte Carlo, Series and Ray Tracer, which are selected from Java Grande ForumBenchmarks 20.
Every time a client requests a computation, the corresponding request data is sent via web socket. When the server receives a computation

request, it queues its related handler function until resources are available for execution. When completed, the related data is sent back to the
client. For simplicity, when an event handler is queued, it cannot be canceled from the queue.
This benchmark application was implemented in Java. The system environment for execution is a 64-core AMD Opteron Processor 6272 SMP

machine with 256GBmemory, and Java 1.8.0_101HotSpot 64-Bit Server VM.
The sequential running times of all computational kernels are initially measured. The random creation of requests is governed by a Poisson

Process, with specific parameters for each of the four kernel. The parameter values of each kernel are listed in Table 4 .
Weuse the notationPxAy in the presentation of the results, where x corresponds toNp, that is the number of threads used to parallelize a kernel;

and y corresponds toNa, that is the number of threads used as asynchronous workers. If y is specified as a list of four numbers (y1, y2, y3, y4) then
the asynchronous workers are separated into groups, where each number corresponds to the asynchronous workers for each of the four kernels.
Na is then given byNa = y1 + y2 + y3 + y4.

4.2.1 Adjust asynchronization to decrease queue time
In the first experiment, we do not use parallelism, but vary the asynchronization.We implemented the asynchronous versions in two differentways.
First, we use traditional OpenMP task directive to offload event handler executions to the parallel region thread pool OpenMP64,then there are
totally 64 asynchronous works are used (P1A64). We can use this approach here as we can adjust the EDT in our synthetic application (which is
not always possible, see discussion in Section 3.2). Second, we use virtual targets to offload different handlers to different virtual targets, and the
thread pool sizes are partitioned in two different ways (P1A(6,13,17,28) and P1A(4,3,10,7)).
Figure 11 compares the performance of the three approaches.
OpenMP64(P1A64): In this approach, a global OpenMP parallel region uses all processors in a single 64-thread task pool and each request is

executed as an OpenMP task. This implementation is achieved by using the traditional OpenMP tasking programming style (shown in Listing 1), in
which the parallel region starts at the application startup, and a single thread is responsible for submitting tasks. The performance is not as good as
expected. For three out of four kernels, the mean flow times are drastically longer than the kernel sequential running times (the mean flow time of
every kernel takes 122%, 276%, 215%, 191% of its sequential running time respectively, this is referred to as the mean stretch), which means each
handler is taking a long time queuing.
P1A(6,13,17,28):This approach is implementedaccording to thevirtual target concept,where four virtual targets areusedwithdifferent thread-

pool sizes. The total 64 asynchronousworkers aredistributed to four kernel handlers according to their sizes of sequential running times. Therefore,
every kernel handler gains the proportion of 9%, 20%, 27%, 44% of the total asynchronous workers. Under this distribution, the results show a
better performance than P1A64, although the total number of used threads does not change.
P1A(4,3,10,7): In this approach, in order to ensure the high utilization, the number of asynchronousworkers for each kernel handler is calculated

by Na = d λ
µρ
e (according to Equation 1 where ρ = 0.8). Therefore, a total number of 24 asynchronous workers are distributed to four kernel

handlers as A(4,3,10,7). The results show a very close performance comparing to P1A(6,12,18,28) but only 24 processors are used.
From this experiment, it can conclude that offloading event handling tasks based on their run times can effectively decrease the mean flow

times for handlers. Moreover, according to the performance model developed in Section ??, a succinct use of processors can be achieved without
significantly degrading the performance.

4.2.2 Using both asynchronization and parallelization to decrease flow time
We now repeat the previous experiments, but also adjust the parallelization, i.e. use more than a single thread for each kernel. The parallelization
of each kernel is done using the traditional OpenMP for directive. Themean flow time of each type of event handler can be further reduced, there-
fore increasing the throughput of the server. Figure 12 depicts the case where all event handlers share a common asynchronous thread pool and
each handler is parallelized with same number of threads. The results reveal that even with the same number of total processors, the different
distributions between Na and Np can drastically influence the performance and that the best average flow time depends on the application. For
example, we see that for the MonteCarlo kernel, P6A14 is the best distribution, whereas for Raytracer P16A4 is better. It is also clear that using
only asynchronisation (left) or only parallelism (right) are clear inferior solutions.

12
Then we try to redistribute the processors for a better performance. Comparing with the OpenMP tasking concept, virtual target enables

programmers to have a more flexible processor distribution among a group of handlers, and its fine-grained thread pool control has the poten-
tial to gain a better performance. As instructed by Section 2.4.2, increasing parallelization scale can achieve better performance than applying
asynchronization scale.
Figure 13 shows the speedups of the four kernels and the speedup threshold curve that parallelization is worthwhile when ρ = 80%. In this

figure, as long as the speedup of the kernel is higher than the speedup threshold, increasing the parallelization scale is more worthwhile than
increasing the asynchronization scale. As discussed in Section 2.4.2, in theM/D/Na/Np model with ρ = 80%, the speedup threshold for using par-
allelization rather than asynchronization is relatively low. For every kernel, if the kernel can be parallelized and the parallelism speedup is above 2.5,
using parallelization always outperforms asynchronization. As Figure 13 indicates the kernel Series and RayTracer have better parallelism scale,
allocatingmore processors to parallelelize these two kernels can lead to short average flow times.
Then the following strategy should be applied: Four virtual targets are used and each virtual target uses one asynchronous worker. This means

every type of kernel is offloaded to its unique asynchronous worker. The remaining threads, are distributed to parallelize the handlers. Figure 14
verifies this using the corresponding thread distribution.
P(6,13,17,28)A(1,1,1,1): For every event handler, only one asynchronous worker is assigned, the remaining threads (processors) are distributed

to parallelize event handlers. Comparing to the previous distribution shown in Section 4.2.1, the results show that the new distribution has a better
performance then the purely asynchronous distribution (left in Figure 14).
According to the speedups in Figure 13 , some kernels do not scale well with increasing Np, the performance is not improved (e.g. Crypt,

MonteCarlo).
P(4,3,10,7)A(1,1,1,1): Therefore, another distribution is tried. Figure 14 shows another distribution where a total of 24 processors are used.

Comparing to the previous distribution, using less threads actually further improves performance, in fact this distribution has the best performance
throughout the experiment.
The experiment demonstrates that the properties of the event model (e.g. arrival distribution, service/execution time distribution), and the

properties of the event handlers (e.g. sequential processing time, parallel scalability) are all factors that should be taken into consideration when
allocating processors to achieve a better performance.

5 RELATEDWORK
In this section we look at the directly and indirectly related work.

5.1 Queue Theory
Queue theory is a mathematical model to study the processing of requests in queues. This research was originally started by Erlang and he created
models to describe the Copenhagen telephone exchange system 21. In order to formally describe the property of the queue, Kendall Notation 11 is
widely used. Some basic models have been extensively researched such asM/M/1,M/D/1,M/G/1. As an extension, models with multiple servers
suchM/M/k andM/D/k also drew attention and have been investigated. Different keymetrics are used to evaluate the performance of the queue.
Some of the most important metrics are flow time, e.g. distribution / mean flow time, waiting time distribution / mean waiting time, and system
utilization.

5.2 Concurrency
Asynchronous programming is traditionally used in single-threaded applications to achieve cooperative multitasking 22. Unlike parallel program-
ming that createsmultiple threads, this programmingmodel employs a single background thread. As such, the purpose of introducing asynchroniza-
tion is not tomake the program run faster. Instead, it is usedwhen an event handling thread needs to wait for time-consuming computations or I/O.
In this manner, the thread can still progress since the control flow is switched to another task.
Libraries.Many languages provide build-in or extended library interfaces to support asynchronous programming. For example, C++11 provides

std::async, while Java provides the Future interface 23 building asynchronous computations. Java NIO libraries 24 provide non-blocking and asyn-
chronous I/O operations. Microsoft .NET provides three types of asynchronous programming patterns 25: (1) Asynchronous Programming Model
(APM); (2) Event-based Asynchronous Pattern (EAP); (3) Task-based Asynchronous Pattern (TAP).
Languages support. Unlike libraries, language-level support for asynchronization tends to require less code restructuring. Fischer et al. 26

proposed TaskJava, a backward-compatible extension to Java. By introducing new keywords (i.e. spawn, async, wait), TaskJava expresses the

13
complicated asynchronous logic control flow using intuitive sequential programming style. Similarly, the .NET framework also introduces paired
async/await keywords 27. New language designs also tend to support asynchronization. For example, P 28 is a domain-specific language for the
modeling of state machines, and all machines communicate via asynchronous events. Eve 29 is another parallel event-oriented language for
the development of high-performance I/O applications. Other language-level concepts such as the actor model 30,31 and co-routines 32 provide
variations to asynchronization.

5.3 Task-based Parallelism
The task-based parallelization model is usually implemented to overcome the performance issues of the threading model. A fixed thread pool sub-
stitutes preemptive thread-creation when a computational task is needed. The thread pool technique encapsulates the underlying threading and
scheduling 33 and provides interfaces for task submissions. Some languages support tasks at a language level, such as Cilk 34 and JCilk 35. In addition
to the actual parallelization, handling task dependencies and code restructuring is another challenge faced. Parallel Task 36, as a language extension
of Java, supports task creation and dependency handling. OoOJava 37 and DOJ 38 both introduce the task keyword to achieve out-of-order execu-
tion of the code blocks, with the support of automatic dependency analysis between tasks. Efforts also exist in introducing real-time guarantees to
OpenMP ? ? .
Apple’s Grand Central Dispatch (GCD) ? is a tasking system that combines queues with closures called blocks. Programmers explicitly enqueue

blocks into the main queue and into local and global queues they’ve created. The system schedules this enqueueing on the basis of the available
cores’ priorities. The twomajor differences between GCD and virtual target concepts are as follow:

1. Virtual targets enqueue code blocks using directives, which does not directly change the logic of the sequential code; In contrast, Apple
provides GCD as a library and programmers have to explicitly call the functions to achieve the code offloading;

2. GCD is a system-level support which manages the sharing of system resources among different applications. As a comparison, the purpose
of virtual target is used to facilitate the application and the application runtime is in charge of the executors, thread pools, event dispatching
thread, etc.

6 CONCLUSION
This paper studied how the performance of an event-driven system can be influenced by applying different parallelization and asynchronization
scales. A mathematical model based on queue theory was proposed to model the performance of event-driven programs. The theoretical analysis
reveals the fact that parallelism is very useful to reduce the mean flow time of the event handlers and threads/processors should be distributed
correspondingly if the event handlers have potential to be efficiently parallelized. The mathematical analysis was confirmed by the experimental
evaluations, in which the program is implemented employing a previously proposed OpenMP virtual target extension. The experiments also show
the advantage of the virtual target concept because it endows programmerswith theflexibility to tune the performance according to the properties
of event handlers. Futurework involves an extension of the performancemodel to consider the architectural details such as hyper-threading, turbo-
boost and I/O-heavy operations. The relationship between parallelization scale and asynchronization scale can also be further studied, exploring
the solution to dynamically maximize the event-driven performance in a parallel system.

References
1. Ayguade E., Copty N., Duran A., et al. The Design of OpenMP Tasks. IEEE Transactions on Parallel and Distributed Systems. 2009;20(3):404-418.
2. Duran Alejandro, Perez Josep M., Ayguadé Eduard, Badia Rosa M., Labarta Jesus. Extending the OpenMP Tasking Model to Allow Dependent
Tasks:111–122. Berlin, Heidelberg: Springer Berlin Heidelberg 2008.

3. Teruel Xavier, Klemm Michael, Li Kelvin, Martorell Xavier, Olivier Stephen L., Terboven Christian. A Proposal for Task-Generating Loops in
OpenMP:1–14. Berlin, Heidelberg: Springer Berlin Heidelberg 2013.

4. Balart Jairo, Duran Alejandro, Gonzàlez Marc, Martorell Xavier, Ayguadé Eduard, Labarta Jesús. Experiences Parallelizing a Web Server with
OpenMP:191–202. Berlin, Heidelberg: Springer Berlin Heidelberg 2008.

5. Salva Sébastien, Delamare Clément, Bastoul Cédric. Web Service Call Parallelization Using OpenMP:185–194. Berlin, Heidelberg: Springer
Berlin Heidelberg 2008.

14
6. Fan X., SinnenO., GiacamanN.. Towards an Event-Driven ProgrammingModel for OpenMP. In: :240-249; 2016.
7. Vikas , Giacaman Nasser, Sinnen Oliver. Multiprocessing with GUI-awareness using OpenMP-like directives in Java. Parallel Computing.
2013;(accepted for publication).

8. Jovic Milan, Adamoli Andrea, Hauswirth Matthias. Catch Me if You Can: Performance Bug Detection in the Wild. In: OOPSLA ’11:155–
170ACM; 2011; NewYork, NY, USA.

9. Adamoli A., JovicM., HauswirthM.. LagAlyzer: A latency profile analysis and visualization tool. In: :13-22; 2010.
10. Fan Xing, Sinnen Oliver, Giacaman Nasser. Asynchronous OpenMP Tasking with Easy Thread Context Switching and Pool Control:217–230.

Cham: Springer International Publishing 2017.
11. Kendall David G. Stochastic processes occurring in the theory of queues and their analysis by the method of the imbeddedMarkov chain. The

Annals of Mathematical Statistics. 1953;:338–354.
12. Haight Frank Avery. Handbook of the Poisson distribution. 1967;.
13. Little JohnDC. A proof for the queuing formula: L= λW.Operations research. 1961;9(3):383–387.
14. Braband Jens.Waiting time distributions forM/M/N processor sharing queues. Stochastic Models. 1994;10(3):533–548.
15. Tijms Henk. New and old results for theM/D/c queue. {AEU} - International Journal of Electronics and Communications. 2006;60(2):125 - 130.
16. Cosmetatos George P.. Some Approximate Equilibrium Results for theMulti-Server Queue (M/G/r)*. Journal of the Operational Research Society.

1976;27(3):615–620.
17. Nicolau Peter.Using Parallel Task for Parallelising an Object-Oriented Desktop Application. 2013.
18. Jovic Milan, Hauswirth Matthias. Measuring the performance of interactive applications with listener latency profiling. In: :137–146ACM;

2008.
19. Jovic Milan, Adamoli Andrea, Zaparanuks Dmitrijs, HauswirthMatthias. Automating Performance Testing of Interactive Java Applications. In:

AST ’10:8–15ACM; 2010; NewYork, NY, USA.
20. Bull J Mark, Smith Lorna A, Westhead Martin D, Henty David S, Davey Robert A. A benchmark suite for high performance Java. Concurrency -

Practice and Experience. 2000;12(6):375–388.
21. Allen Arnold O. Probability, statistics, and queueing theory. Academic Press; 2014.
22. Engelschall Ralf S.. Portable Multithreading: The Signal Stack Trick for User-space Thread Creation. In: ATEC ’00:20–20USENIX Association;

2000; Berkeley, CA, USA.
23. Oracle . Java 7 Future Interface Available at: http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/Future.html2016.
24. Oracle . Java I/O, NIO, andNIO.2 Available at: http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/Future.html2016.
25. Microsoft . Asynchronous Programming Patterns Available at: https://msdn.microsoft.com/en-us/library/jj152938%28v=vs.110%29.

aspx2016.
26. Fischer Jeffrey, Majumdar Rupak,Millstein Todd. Tasks: language support for event-driven programming. In: :134–143ACM; 2007.
27. Okur Semih, Hartveld David L, Dig Danny, Deursen Arie van. A study and toolkit for asynchronous programming in C#. In: :1117–1127ACM;

2014.
28. Desai Ankush, Gupta Vivek, Jackson Ethan, Qadeer Shaz, Rajamani Sriram, ZuffereyDamien. P: safe asynchronous event-driven programming.

ACM SIGPLANNotices. 2013;48(6):321–332.
29. Fonseca Alcides, Rafael João, Cabral Bruno. Eve: A Parallel Event-Driven Programming Language. In: :170–181Springer; 2014.

http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/Future.html
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/Future.html
https://msdn.microsoft.com/en-us/library/jj152938%28v=vs.110%29.aspx
https://msdn.microsoft.com/en-us/library/jj152938%28v=vs.110%29.aspx

15
30. Hewitt Carl, Bishop Peter, Steiger Richard. A universal modular actor formalism for artificial intelligence. In: :235–245Morgan Kaufmann

Publishers Inc.; 1973.
31. Haller Philipp, Odersky Martin. Scala actors: Unifying thread-based and event-based programming. Theoretical Computer Science.

2009;410(2):202–220.
32. DeMoura Ana Lúcia, Rodriguez Noemi, Ierusalimschy Roberto. Coroutines in lua. Journal of Universal Computer Science. 2004;10(7):910–925.
33. Rudolph Larry, Slivkin-Allalouf Miriam, Upfal Eli. A Simple Load Balancing Scheme for Task Allocation in Parallel Machines. In: SPAA ’91:237–

245ACM; 1991; NewYork, NY, USA.
34. Frigo Matteo, Leiserson Charles E., Randall Keith H.. The Implementation of the Cilk-5 Multithreaded Language. In: PLDI ’98:212–223ACM;

1998; NewYork, NY, USA.
35. Danaher John S., Lee I.-Ting Angelina, Leiserson Charles E.. Programming with exceptions in JCilk. Science of Computer Programming.

2006;63(2):147 - 171. Special issue on synchronization and concurrency in object-oriented languages.
36. GiacamanN., SinnenO.. Task Parallelism for Object Oriented Programs. In: :13-18; 2008.
37. Jenista James Christopher, Eom Yong hun, Demsky Brian Charles. OoOJava: Software Out-of-order Execution. In: PPoPP ’11:57–68ACM;

2011; NewYork, NY, USA.
38. Yang Stephen, Jenista James C, Demsky Brian, others . DOJ: Dynamically parallelizing object-oriented programs. In: :85–96ACM; 2012.

16

//#omp target virtual(name-tag) [clause[[,]clause]...]
structured-block

clause:
data-handling-clause
asynchronous-property-clause

where data-handling-clause is one of the following:
firstprivate(list) shared(list)

where asynchronous-property-clause is one of the following:
nowait name_as(name-tag) await

FIGURE 6 Extended target directive.

default (wait) nowait name_as/wait await

target virtual

Target Blockwait

target virtual nowait

Target Block

Finish

target virtual name as(t)

wait(t)

Target Block

Finish

target virtual await

Unrelated
Handler

Processing
Target Block

Finish

FIGURE 7 Different asynchronousmodes, by using different asynchronous-property-clauses.

OpenMP task construct

OpenMP task construct

taskwait

OpenMP
Task Pool

finish

(a)

virtual target(A) name as(t)

virtual target(B) name as(t)

taskwait(t)

Virtual Target
Task Pool A

Virtual Target
Task Pool B

submit

submit

Finish Finish

(b)

FIGURE 8 The demonstration of OpenMP tasking (a) and virtual target (b).

(a) EDT profiling in sequential version.

(b) EDT profiling in the asynchronous version, implemented by virtual target directives.

FIGURE 9 The EDT execution profiling on the searching scenario.

17

Name Description Color
Dispatch EDT is busy on dispatching events Red
Modal EDT is handling amodal window Orange
Listener EDT is handling an event listener synchronously Pink

Asynchronous call Handling of an event posted asynchronously from other thread Green
Paint Graphics rendering operation Blue

TABLE 3 Interval types and their represent colors.

0 50 100 150 200 250

0
50

10
0

15
0

Latency (ms)

U
se

r
re

qu
es

t c
ou

nt

Sequential version
OpenMP version

FIGURE 10 Cumulative Latency Distributions.

Computational kernel Tseq λ µ(1
Tseq

)

Crypt 177ms 10 5.65
MonteCarlo 496ms 4 2.02
Series 779ms 10 1.28

RayTracer 1175ms 4 0.85

TABLE 4 Computational kernels and their arrival rates and sequential service rates.

Crypt MonteCarlo Series RayTracer

A
ve

ra
ge

 fl
ow

 ti
m

e
(m

s)

0
50

0
15

00
25

00

OpenMP64(P1A64)
P1A(6,13,17,28)
P1A(4,3,10,7)

FIGURE 11 Themean flow times (ms) of four kernels implemented by three different asynchronization scale distributions.

18

OpenMP64 P2A32 P4A16 P6A14 P8A8 P14A6 P16A4 P32A2 P64A1

A
ve

ra
ge

 fl
ow

 ti
m

e
(m

s)

0
300
600
900

1200
1500
1800
2100
2400
2700
3000

0

2

4

6

8

10

12

14

16

C
or

e
nu

m
be

r

Crypt MonteCarlo Series RayTracerNp

Na

FIGURE 12 64-processor distribution and its mean flow time (ms), categorized by different kernel handlers.

0
5

10
15

No. of threads

S
pe

ed
up

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

 ε(Np) threshold when ρ = 0.8
Crypt
MonteCarlo
Series
RayTacer

FIGURE 13 Parallel speedup of four kernels and theminimum speedup threshold for ρ = 0.8.

P(1,1,1,1)A(6,13,17,28) P(6,13,17,28)A(1,1,1,1)

A
ve

ra
ge

 fl
ow

 ti
m

e
(m

s)

0

300

600

900

1200

1500

1800 Crypt
MonteCarlo
Series
RayTracer

FIGURE14 Performance comparisonof two typesof distributionbetweenasynchronization andparallelizationwith total amountof 64processors.

19

P(1,1,1,1)A(4,3,10,7) P(4,3,10,7)A(1,1,1,1)

A
ve

ra
ge

 fl
ow

 ti
m

e
(m

s)

0

300

600

900

1200

1500

1800 Crypt
MonteCarlo
Series
RayTracer

FIGURE15 Performance comparisonof two typesof distributionbetweenasynchronization andparallelizationwith total amountof 24processors.

	Balancing Parallelization and Asynchronization in Event-Driven Programs with OpenMP
	Abstract
	Introduction
	Performance measurement of event handling execution
	Flow time of event handling
	Processing events in a multi-threaded environment
	Modeling of the parallel event-driven system
	Queue model with parallelism

	Discussion of the model
	Relationship between flow time and processor utility
	Distribution of asynchronization and parallelization

	Event-driven parallelization with OpenMP extension
	Virtual Target
	Directive syntax extensions

	Comparing omp task and omp target virtual

	Evaluation
	Responsiveness of the EDT
	Performance of parallelized event-handling
	Adjust asynchronization to decrease queue time
	Using both asynchronization and parallelization to decrease flow time

	Related Work
	Queue Theory
	Concurrency
	Task-based Parallelism

	Conclusion
	References

