Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognize the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form and Deposit Licence.
Resuscitation and the Origins of Intensive Care/Critical Care Medicine

Ronald V Trubuhovich, ONZM
MB, ChB, BMedSc, BDS, [all UNZ]; MSc [Oxon]; FRCA, FANZCA, FCICM

Doctor of Medicine (MD)
Medical History
The University of Auckland
31 January 2019
Abstract

Intensive care medicine (ICM) has been an independent specialty in hospital practice since its foundation in late 1953 at the Kommune Hospital, Copenhagen. The person generally recognised for its inauguration was Dr Bjørn Ibsen, an anaesthetist in Copenhagen at that time. Denmark had suffered a severe epidemic of poliomyelitis, 1952-1953, in which treatment in Copenhagen of those seriously ill from it was conducted in its Blegdams Hospital. Ibsen first attended there following the epidemic’s earlier disastrous time, July-August 1952, in which 27 of 31 ill patients afflicted with poliomyelitis complications perished, despite the best efforts at that time of the Blegdams doctors. On 27th August Dr Ibsen demonstrated with a newly admitted, seriously ill patient, an anaesthetist’s way of compensating for impaired ventilatory function, ‘without machinery’.

After an introduction briefly outlining steps in resuscitation prior to the late nineteenth century, two major themes develop the presentation of the thesis. The first considers three innovators, Drs Joseph O’Dwyer, George Fell and William Northrup, selected as pioneers of fundamental treatment modes of ICM, which were necessary in the first instance for ensuring oxygenation through patency of the airway and adequacy of ventilation. The achievements of these doctors and of others such as surgeon Rudolph Matas, have, with passing of years, become less remembered for their contributions to ICM. It is appropriate to honour pioneers of such significance in the history and development of our specialty. The persistence of negative pressure ventilation (NPV) in treatment through the middle-1900s is assessed to include its undoubted assistance in treatment of the ventilatory deficiency in acute poliomyelitis, although its relative success did hold back the introduction of positive pressure ventilators. A late-1930s Australasian outbreak of poliomyelitis is considered for the usefulness of NPV respirators, as well as for the drawbacks. The claims of early ICM as a treatment mode in barbiturate intoxication in Scandinavia is examined.

The second theme that is developed concerns the Danish polio epidemic, 1952-1953, with special consideration for Dr Bjørn Ibsen’s role, particularly on August 27th 1952. Various aspects of articles written on the epidemic are examined to try to enable correct documentation of facts; while the case for Ibsen’s unit at the Kommune Hospital being considered the true ‘first intensive care unit in the world’ is debated.
Dedication

In loving memory of my parents
Volento Trbuhovich, 1893-1965, &
Violet Trbuhovich (née Cvitanovich), 1908-1975,
who sent me to St Peter’s College, Auckland
for the education they never had the chance for,
where my fascination with history was so much encouraged.
Acknowledgements
The laborious compiling and writing of this thesis would have been impossible without the close help, advice and generosity of highly valued friends. Starting with Philson librarians Anne Wilson and Jennifer Hobson with Patrick Graham and his team, aided as need was by Uma Chinni of Auckland University’s General Library, they have been so diligent throughout in securing copies for me from original material. For so many decades, my tremendously supportive wife Elizabeth has been a patient if severe guardian for the literacy of my papers on medical history and now for this thesis, showing immense patience and tolerance against my writing extravagances, in attempting to make the work of more understandable English. Katherine van Bysterveldt kindly made the first transitions for me from past medical history papers of mine in journals, to the university’s requirement of single column style. Katina Conomos and her husband, my nephew Simon Lear, have formed a masterly formatting team showing great skills and patience to secure best results to the university’s wishes. Their input has been an immense and time-consuming effort, generously given, but always patient, good humoured, and tolerant. Background support and encouragement has always been given by my fortunate-to-have supervisor Prof. Alan Merry, who along with Prof. Trevor Sherwin, has always been inspirational and completely helpful; as have my valued advisors, Professors Paul Moon and John Collins. Drs Preben Berthelsen and Louise Resnais-Sénélar have been especially informative, generous and helpful over Copenhagen and Ibsen, as was Prof. Ibsen himself when aging and unwell. My late friend Martin Wallace was truly supportive while among us. In a further list of names, to be thanked for their help and contribution to my achieving completion of this thesis I gratefully include the following:

Louise Alkjaer and the Ny Carlsberg Glyptotek, København;
Prof. Bruce Baguley, University of Auckland;
Richard Bailey, anaesthesiology historian, Sydney;
Jennifer Beinart, historian for Oxford’s Nuffield Dept of Anaesthetics (NDA);
Prof. Rinaldo Bellomo, helpful and generous editor-in-chief, Critical Care and Resuscitation;
Prof. Berndt Ehinger and the Southern Swedish Medical History Society;
Karen Bieterman, Director, Wood Library-Museum, American Society of Anesthesiologists, Schaumburg, Ill, USA;
Howard A Brody, Director, Institute for the Medical Humanities, University of Texas, Galveston;
Jonas Claesson of Umeå, Sweden, anaesthesiologist, historian friend and translator for me;
Geoff Clarke, inaugural Dean, Faculty of Intensive Care, ANZCA;
College of Physicians of Philadelphia;
Michael Cooper, historian, anaesthesiologist, of Sydney;
Prof. Anne Crowther, historian, of Glasgow;
Department of Critical Care Medicine, Auckland City Hospital (ACH) and Stephen Streat, Les Galler, Colin McArthur;
Prof. Alex Crampton Smith, of Oxford’s Nuffield Dept of Anaesthetics (NDA) (deceased 2010);
Alyson Dalby of the RACP’s History of Medicine Library, Sydney;
J T Demitz on line; for Professor Gosta von Reis;
Fiona Dorrell of Medical Photography (MedPhoto), ACH;
Treve Dromgool from MedPhoto, ACH;
Maryann Duffy of the MedPhoto Depts, Auckland District Health Board (ADHB);
Benita Dwyer, MedPhoto, ADHB;
Prof. Jan Eklund, anaesthesiologist, Stockholm;
Jonathon Ellison, MedPhoto, ACH;
Alice Ford-Smith, archival expert, London;
Alex Fraser, of Auckland, MedPhoto, ADHB;
Neville Gibbs, of Perth, past editor Anaesthesia and Intensive Care;
Prof. Sven Erik Gisvold, Trondheim anaesthesiologist and editor, *Acta Anaesth Scand*; Stephen J Greenberg, Coordinator, History of Medicine, NLM/NIH, Bethesda, MD; Prof. Bruce Hadden of Auckland, with his admirable MD thesis on New Zealand ophthalmology; Prof. Clive Hahn, Oxford’s NDA; Ole Haupt, photographer, Kobenhavn; Juliet Hawkins, Curator, Ernest and Marion Davis Library, Auckland; Megan Hicks, Powerhouse Museum, Sydney; Garth Huston jnr, anaesthesiologist, historian, San Diego; Jenny Jolley, ANZCA librarian, Melbourne; Prof. Bruce Hadden of Auckland, with his admirable MD thesis on New Zealand ophthalmology; Prof. Clive Hahn, Oxford’s NDA; Ole Haupt, photographer, Kobenhavn; Juliet Hawkins, Curator, Ernest and Marion Davis Library, Auckland; Megan Hicks, Powerhouse Museum, Sydney; Garth Huston jnr, anaesthesiologist, historian, San Diego; Jenny Jolley, ANZCA librarian, Melbourne; Gillian Hood, FCICMANZ, Nelson intensivist; Katie Hoy, Medical Photographer, ACH; Prof. Bjørn Ibsen, of Copenhagen (deceased 2007); James Judson, FCICMANZ, Auckland intensivist, Organ Donation NZ; Lancer from 1823 and the *British Medical Journal* from 1840, for providing ready access to remarkable obscurities; Kerrie Lawson, managing editor at *Crit Care Resusc*; Prof. Francisco López-Muñoz, pharmacologist & barbiturate expert, of Camila José Cala University, Madrid; Ross MacFarlane, Royal Society London; Prof. Sir Robert Macintosh, Oxford’s NDA (deceased, 1989). Ion Meyer and the Danish Medical Museion, Kobenhavn; Shanti Nararaja, ANZCA librarian, Melbourne; Tony Newson, anaesthesiologist and historian, ACH (retired); Lord Nuffield (deceased, 1963), my patron to Oxford’s NDA and University; Michael Obladen, neonatologist [retired], historian, Berlin; Jamie Page, copyright permissions specialist, American Heart Association; Venita Paul of Images, Wellcome Library, London; Philson librarians (Auckland), Sue Coggin, Rohini Subbian, Marianne Forbes, Frances Duff; Rebecca Gnamamuth; Arnetta Queen, Professional and Educational Division, Wolters Kluwer Health, Philadelphia, USA; Carolyn Rasmussen PhD, historian, University of Melbourne; Barbara Rossall-Wynne, archivist, Fairfield Hospital Historical Collection, Melbourne; Peter Safar (old friend, deceased 2003) anaesthesiologist and CPR historian author; John Severinghaus, eminent historian and physiologist, of Ross, CA, USA; Patrick Sim (deceased 2010) and the American Society of Anesthesiologists Wood Library-Museum; Puritan-Bennett Technical Services Team, Los Angeles: C-J Simmons, Warren Sanborn, Bob Ommen; Bryan Speed, Curator/Archivist of the Fairfield Hospital Historical Collection; Prof. Sir Keith Sykes, NDA Oxford, anaesthesiology-intensivist and historian; Nikki Lynn Thomas, Manuscripts Archivist, University of Texas at San Antonio, TX; Jeanette Thirlwell, Executive Editor, *Anaesthesia & Intensive Care*, and its History volumes; Matthew Trbuhovic of Dunedin, digital designer; Vernon van Heerden, so supportive, editor *Critical Care and Resuscitation*; Rod Westhorpe, ANZCA paediatric anaesthesiologist, editor, historian of Melbourne; David Wilkinson, FRCA for his experience and advice; Laura Wilson, B&B Permissions Department, Blackwell Publishing, Oxford, UK; Lindsay (Tub) Worthley, of Adelaide, foundation editor *Critical Care and Resuscitation*; YMCA of the USA, publishing, New York.
The uptake of oxygen by haemoglobin in the blood, from ambient air breathed into the lungs through a patent airway, and the continued pumping of blood by the heart in normal rhythm through the circulatory system to deliver that oxygen to organs and cells, is necessary for maintenance of life. In trying to track antecedents of Intensive or Critical Care Medicine, ICM/CCM, (the two terms interchangeable) the first historical references appear to be those for resuscitation. ICM’s true origins lay within the eighteenth century’s Age of Enlightenment.

It was only during the 1950s, however, that ICM/CCM emerged as a new and independent medical specialty. The foundation of this specialty is generally attributed to Danish anaesthesiologist Dr Bjørn Ibsen. At Copenhagen’s Blegdams Hospital for Communicable Diseases, during Denmark’s acute poliomyelitis epidemic of July 1952 to March 1953, Ibsen demonstrated, starting 27th August 1952, that anaesthesiologists could apply artificial ventilation of the lungs manually by a method commonplace enough in their workplace, but now compensating for the impaired ventilatory function, frequently lethal, among the epidemic’s sickest patients. Later, 21st December 1953 at Copenhagen’s Kommune Hospital, Ibsen’s first patient came by transfer from a medical ward to his newly established intensive care unit (ICU), a converted surgical recovery room, which now became a multidisciplinary or general ICU. Historically, as I discuss in this thesis, this was ‘the first intensive care unit in the world’, even if data from it was not published until 1958.

Intensive/Critical Care Medicine was inaugurated.

Consideration of ‘first in the world’ claims for Ibsen’s Kommune Hospital ICU brings attention to apparent errors, inaccuracies and myths, in current understanding and documentation of the history of ICM/CCM. I have used primary sources as far as possible.

Prior to Ibsen’s first ICU, there had been successful treatment at two institutions in Copenhagen for two discrete groupings of patients, critically ill. These were

1. Poisoned patients, especially those suffering from barbiturate overdosage.
 From October 1st, 1949, standardisation of treatment for patients with acute barbiturate[-etc] intoxication was centralised to a dedicated department at Copenhagen’s Bispebjerg Hospital, by psychiatrist Dr Carl Clemmesen, with documentation of improved outcome.

2. Paralysed poliomyelitis victims with breathing problems, as already mentioned.
 In mid-1952 during a severe epidemic of poliomyelitis, innovative treatment was introduced at Copenhagen’s Blegdams Hospital by Bjørn Ibsen for patients of epidemiologist chief H.C.A. Lassen, who were critically ill from acute respiratory and/or neurological failure. From August 27th, 1952, again in a specialised department, large scale employment of an anaesthetic, manual ventilation technique was conducted for patients with breathing failure. Its success was evidenced by the remarkable turnaround in mortality, better than halved.

In some minds these two events might be claimed as representing the start of ICM practice, notwithstanding the ‘limitation’ which Dr Ibsen had identified. He had pointed out, 1966, that the groups were each of ‘only one type of disease’. Such limitation would also apply to physician Dr Albert Bower’s prior, long-term treatment of similar polio
victims in Los Angeles, 1949, employing Drinker mechanical respirators, some of which were modified for use as a hybrid of intermittent negative plus positive pressure ventilation.

This thesis, submitted as deriving from a body of published work, considers aspects of the Copenhagen topic in depth. My interest has been to try to understand the nature, the antecedents and the sequelae of Ibsen’s master-stroke. This interest has led to a dozen years study of the historically relevant medical literature, bringing improved clarity on the 1952 polio epidemic, and (as indicated), questioning the veracity of some current beliefs. I have been curious to identify information on the beginnings of ICM, on those treatment methods used during the epidemic and afterwards in ICUs. Another aim was also to identify personnel who can be considered pioneers but are marginally acknowledged for that role, and to record their effort. Amongst other conclusions it has become clear that the topic has been relatively under-recorded and warranted further investigation and analysis. Several 19th-20th century innovators (especially Joseph O’Dwyer, George Fell, William Northrup; also John Forbes and Albert Bower) have not retained the reputation warranted by their pioneering methods. I include detailed examination of their roles and achievements to address this issue.
Table of contents

Abstract ... II
Dedication .. III
Acknowledgements ... IV
Preface .. VI
Table of contents .. VIII
Chapter overview ... IX

Introduction ... 1

19th century pioneering of intensive therapy in North America

- **Chapter 1:** Joseph O’Dwyer .. 8
- **Chapter 2:** George Edward Fell .. 30
- **Chapter 3:** The Fell-O’Dwyer apparatus and William P Northrup ... 58
- **Chapter 3 Supplement:** Early artificial ventilation: the mystery of ‘Truehead of Galveston’ 73

20th century artificial ventilation before the Danish poliomyelitis epidemic

- **Chapter 4:** Australasian Management of the ventilatory failure of acute poliomyelitis 83
- **Chapter 5:** On the very first, successful, long-term, large-scale use of IPPV; Albert Bower and V Ray Bennett: Los Angeles, 1948-1949 .. 100
- **Chapter 6:** Pioneering Intensive Care Medicine by the ‘Scandinavian Method’ of treatment for acute barbiturate poisoning ... 118

The Danish poliomyelitis epidemic, 1952-1953

- **Chapter 7:** August 27th 1952 at Copenhagen: ‘Bjørn Ibsen’s Day’ ... 136
- **Chapter 8:** Further commentary on Denmark’s 1952-1953 poliomyelitis epidemic 152
- **Chapter 9:** Bjørn Ibsen: commemorating his life, 1915-2007 ... 171

Conclusion .. 181

List of references ... 186
Chapter overview

The Introduction and Chapters of this doctorate thesis derive in part from original papers from their sole-author R V Trubuhovich, previously published in medical journals but now revised, corrected, enlarged, and entered. The relevant title and journal of a paper is entered after the brief description for each paragraph.

The Introduction provides a brief account, setting the scene for notable resuscitation events in especially the two centuries prior to Bjørn Ibsen's formal foundation of Intensive Care Medicine practice in Copenhagen's Kommune Hospital, late 1953. Some of this work was originally published in:

Chapters-1 and 2 provide detailed studies of pioneering of extended intralaryngeal/endotracheal intubation and of IPPV by the Americans: Joseph O'Dwyer, who successfully designed and employed intratracheal tubes for laryngeal diphtheria from 1882; and George Fell with ‘forced respiration’, which he employed from 1887 for life-threatening poisoning, by his system of intermittent positive pressure ventilation (IPPV) per facemask or tracheostomy tube. Earlier sporadic endotracheal intubation by Jean Bouchut, 1858, and Sir William Macewen, 1878, is also mentioned. See:

Chapter-3 is devoted to O'Dwyer’s combined Fell-O'Dwyer Apparatus, 1891, successfully used for neurological disasters by William Northrup, 1894. Overcoming the great ‘pneumothorax problem’ of an open-chest operation by rhythmic positive pressure inflation, allowing successful intrathoracic operations, had been achieved by Theodore Tuffier and Louis Hallion in France, 1896. Frederick Parham and Rudolph Matas, 1898, in the United States followed, employing Fell-O'Dwyer IPPV apparatus. The Great War delayed advances in anaesthesiology suitable for adaptation to intensive care. See:

A Supplement to Chapter-3, a digression perhaps, is devoted to resolving the mystery of the identity of a ‘Truehead of Galveston’ [United States], since his rhythmical inflating device for the apnoeic newborn would appear to have pioneered neonatal IPPV, around 1870 and onwards, even into the 20th century in central Europe. The actual person became revealed with as close to certainty as could be obtained. See:

Chapter-4 focuses on mechanical ‘negative’ pressure ventilating systems and the introduction of Philip Drinker’s ‘Iron Lung’, highly favoured especially in the United States, from 1928. The chapter highlights the important Australian role in the 1937 design, in Adelaide, and use of Both respirators (and also the Burstill, in Melbourne) for respiratory insufficiency from poliomyelitis. Use of the Both machine became widespread (British ‘Empire-wide’, owed to the munificence of Lord Nuffield), but perhaps delaying the development of IPPV machines. See:

Chapter-5 describes Albert Bower and V Ray Bennett’s introduction and large-scale use of the IPPV attachment to intermittent negative pressure ventilation (INPV) machines (‘respirators’) in the poliomyelitis epidemic in Los Angeles, 1949, thereby significantly reducing mortality for poliomyelitis patients there. See:

Chapter-6 describes the efforts of the medical trio who pioneered the Scandinavian treatment of acute barbiturate poisoning. By November 1945 from Copenhagen’s Bispebjerg Hospital, Aage Kirkegaard reported successful treatment of circulatory inadequacy from such poisoning, while in October 1949 Carl Clemmesen, of long experience in treating barbiturate intoxication, established a Poisoning Centre there for successful centralisation of management for the treatment, much of which he had applied for several decades. These measures at the Bispebjerg Hospital led to the (perhaps-second) intensive care unit (ICU), October 1949. Then, 1949-1950, Eric Nilsson at Lund introduced IPPV for management of ventilatory failure associated. See:

Chapter-7 recounts the events of ‘Bjørn Ibsen’s Day’, 27th August 1952, when he adapted a manual anaesthetic system for treating polio breathing failure, to markedly reduce the epidemic’s mortality rate from c.87% to c.11% in the last 18 polio patients seriously ill. See:

Chapter-8. A follow-on article presents an examination of statistics for the 1952-1953 Copenhagen polio epidemic to produce definitive figures from the variations in multiple official and semi-official reports. It is contended that the level of care provided for >300 seriously ill polio patients in their Blegdams Hospital areas qualifies as intensive care. See:
Chapter-9 is an extended summarising tribute to Dr Bjørn Ibsen, the recognised founder of Intensive Care Medicine as a medical specialty, based on an obituary notice I wrote for the journal *Critical Care and Resuscitation* in 2007. It recapitulates some of the data given concerning the 1952-1953 Danish polio epidemic. See:

Sincere gratitude is especially acknowledged here to the multiple managing editors of the international journals listed above, for ensuring over a decade that my papers which they were prepared to publish were rendered into an acceptable format and were ensured of accuracy.
Introduction

Intensive Care Medicine (ICM) has been an independent specialty in hospital practice since its foundation at the Kommune Hospital, Copenhagen, at the very end of 1953. The person generally recognised for that inauguration was anaesthesiologist, Dr Bjørn Ibsen, who had revolutionised management of ventilatory insufficiency at the Blegdams Hospital during the preceding Danish epidemic of poliomyelitis, 1952-1953. The first six Chapters of this thesis will, however, describe some earlier events, onwards from around 1870, of significance to ICM’s foundation. Chapters 7 to 9 will be concerned with aspects of the Copenhagen epidemic itself and their consequences. Intensive Care Medicine does at times consider its origin more remotely, starting with primitive resuscitation by the method of mouth to mouth rescue breathing in biblical times of the second millennium, BCE.

The first resuscitations are claimed to be those performed by Hebrew midwives during the Egyptian captivity (c.1300-1200 BCE) to revive apnoic neonates. However, it turns out that actual rescue breathing by the expired-air method was not explicitly described in the Old Testament book, Exodus-1, or in the context of the often cited rejuvenations by Elijah and Elisha in Kings Book-II. Instead, this belief seems to arise from nothing more than anecdote, embedded in a strong tradition, old, revered and long-held. One of my aims in research into the origins of my speciality, ICM, has been to examine received wisdom by verifying source references, and this example is just one that I have examined. The story of the history of ICM is remarkable, and my exploration into the work of those who sought to save the lives of people who were very ill, or indeed had just died, has left me with deep respect for their ingenuity, their persistence, and their courage.

The regulatory limits on word length for an MD thesis have led me to exclude several chapters that I originally intended to include. These preliminary chapters dealt with the very earliest origins for ICM, important for placing the more recent period of the history into context. Therefore, this Introduction offers a brief synopsis of the earlier period (I plan to publish a fuller account of the excluded chapters in a monograph). For Chapters 1 to 6, the thesis concentrates on the second part of the 19th century starting around 1870 (see Supplement to Chapter-3, Figure-5 concerning ‘Truehead’), until mid-20th century in Chapters 7 to 9, covering the poliomyelitis (polio) epidemic in Denmark, 1952-1953.

Regarding times before the thesis, we can note for this Introduction that the Greek and Roman civilisations did not have a custom of attempting the resuscitation of people who suffered cardiac or respiratory arrest. Their medical doctors had little knowledge of physiology, although they probably were better with anatomy. Nor did succeeding European nations foster this practice and although tracheotomy was not unknown, wariness left it seldom attempted. Galen of Pergamon (129-200/c.216 CE/AD), who taught that the left ventricle makes the innate heat to vitalise us, demonstrated that a dead animal’s lungs could be ventilated by blowing through a tube sutured into the larynx but he did not attempt medical rescue after the sudden death of humans.

A practice later known as ‘The Midwives’ Secret’, believed to have been continued throughout more than two millennia, is difficult to locate reliably documented. Many authors have used such an expression since pre-Renaissance times, yet little is known or recorded from those times about the actions of midwives for the non-breathing newborn (or for those stillborn).
In medieval Europe there were two principal reasons hindering development of resuscitation skills.4 The first was poor knowledge of anatomy generally and poorer practical understanding of human physiology - dissections of the human body were forbidden during one and a half millennia, CE. The second was the dominance of certain religious ideas. Resuscitation might have been seen as contrary to God’s will, and therefore as an unchristian and lawless act. Further, there might be uncertainty about a body’s being truly dead, without seeing some evidence of putrefaction;7 also, there was reluctance to touch a dead body because of fears of contagion, or of religious or judicial reprisals. So attempts to reverse sudden apparent death were not practised. But in the Middle East during the 11th century, polymath Ibn Sina (Avicenna), whose influence was pervasive for 500 years, did report on use of a gold or silver tube to intubate the larynx.8

In Renaissance times, Leonardo’s unpublished drawings of various human and animal organs corrected some errors of anatomy made by Galen. By 1543, Andreas Vesalius, with access to dead bodies eventually after centuries of prohibition, described restoring an experimental pig to life by blowing down a reed inserted into a tracheal opening.9 William Harvey, 1629,10 demonstrated circulation of the blood and understood the function of the heart. Robert Hooke showed, 1666,11 that the inflating air (delivered by bellows sutured into the trachea of a dog with its chest already opened) needed to be ‘fresh’ to resuscitate the animal, but this message appears not to have been widely taken up.11 There was a lack of communication between scientists of those times, who were slowly acquiring physiological knowledge, and the public at large.

By the 17th and 18th centuries there was widespread fear, especially in France, of premature interment, as JB Winslow detailed in 1740,7 furthering the need to ensure death absolute before burial.

Referring to times short of helpful documentation about resuscitation, an interesting comment has come from TF Dagi,12 1987. If resuscitation could sometimes reverse apparent death, one would expect obligation to attempt resuscitation as a civic duty.12(p359) But this was not the case, either for physicians or laymen, with the possible exception of ‘midwives, colliers and watermen’ all of whom apparently maintained a ‘venerable tradition of resuscitation’ long before it attracted any academic or scientific interest.

Without offering evidence, Sir Arthur Keith asserted too (in 1909), that ‘the laity had practised methods of resuscitation since time immemorial’.13(p746) Documentation of that is sparse.

In 17th century Europe Sebastian Weiss recorded the various methods for resuscitation he applied after apparent drowning (1620).14 These included stimulation by fumigation from tobacco smoke (a mode later reported as being used by the Natives in 161115). An occasional report from central Europe (\textit{e.g.}, by P Borelli16 or by G Grubel17) would indicate that the possibility of rescue efforts by the people was known. Then, the Age of Enlightenment fostered attitudes of concern for one’s fellow man, attitudes extending to rescue, especially after drowning, or by suffocation as with hanging. Georg Detharding18 was advising tracheotomy for rescue after drowning, 1714 (but until 1825 there were only 12 known survivals recorded after a tracheotomy). Then, in 1732, William Tossach19 re-introduced mouth to mouth resuscitation (which might have had occasional use previously), an event in the presence of ‘hundreds’. The method was encouraged by John Fothergill,20 who failed to inspire the London Royal Society, when he presented to this Society in 1745. Sir Arthur Keith stated ‘William Hunter spoke of mouth to mouth inflation as the method practised by the vulgar [\textit{i.e.}, the ‘common people’] to restore stillborn children’.13(p746)
Resuscitation was promoted in France with numerous methods such as attention to drying, warming and stimulation (following ‘Philantrope’ of Neuchatel, 1733), measures mostly regarded now as ineffectual. Rectal fumigation by tobacco smoke was favoured from 1740 in continental Europe. It and other vigorous irritative and resuscitative methods were strongly promoted from Paris, initially by JB Winslow, then René de Réaumur, both in 1740, and J-J Bruhier d’Ablaincourt, in 1742 and 1749, with royal endorsement. Great reliance was placed on the anticipated stimulation of the intestines promoting revival, with or without artificial ventilation by bellows or expired air ventilation [EAV] from mouth to mouth. Occasional intubation of the airway could be laryngeal or tracheal; venesection and/or bronchotomy when necessary, would require a surgeon. A 1746 booklet about treating the drowned by ‘a Physician’ – who was probably Rowland Jackson – has a useful summary to 1746 of resuscitation methods and history.

In Amsterdam 1767, the formation of the first Humane Society provided a lead that was then followed by a host of new similar societies in other countries and cities, including Paris in 1771 and London in 1774. Metropolitan riverside rescue stations were installed alongside the Seine, the Thames had eleven. (London’s recorded rescue Case No.1 was a successful revival by the Leyden jar method of electric shock.) However, despite the influence of Wm Coggan and Thos Hawes, the use of mouth to mouth resuscitation was diminishing, except by lay people, perhaps because it was all that they could try, although with fears of contagion. By the end of C18, inflating bellows (considered inferior to mouth to mouth resuscitation for expired air ventilation by John Fothergill, back in 1745) were officially endorsed in 1782 by the Royal Humane Society (RHS), which, early 19th century, completely abandoned mouth to mouth rescue breathing, the expired air being ‘poisonous and unfit to breathe.’ The discovery of oxygen and carbon dioxide had not led to increased resuscitation by this method. Notable names of the times include Monro Secundus 1774, Wm Cullen and Lord Cathcart 1774, John Hunter 1776 and Charles Kite, he who devised a complete system for resuscitation in 1787. Carl Rafn and John Herholdt provide a comprehensive survey until 1797 of much of the European experience. Samuel Tissot and Antoine Portal were effective enthusiasts in France. Astley Cooper (1768-1841) promoted artificial ventilation of a kind by abdominal compression/relaxation cycles.

For medical resuscitation of the newborn, Wm Smellie, 1762 and Benjamin Pugh, 1754, inflated the lungs by blowing down a small-tube, while François Chaussier 1806/7, used a laryngeal tube with bellows for inflating neonatal lungs. He advocated oxygen and he recognised that the tongue could obstruct the airway.

Early in the 19th century Benjamin Brodie’s studies on nicotine, 1811, led to abolition of the fumigation method with tobacco smoke. Brodie’s work at this time suggested that ‘artificial respiration’ would be of advantage for treatment of certain poisons which affect respiration. But the 19th century has a poor record for effective ventilatory resuscitation, with the virtual abandonment of IPPV once understanding of the primary need for ‘artificial respiration’ was lost (as next), apart from mid-century researchers like John Erichsen, who validated artificial ventilation (AV) and oxygen, 1845, or John Snow’s investigation of resuscitation.

To some degree the period 1830-1856 was a time of relative nihilism. Studies by JJ Leroy d’Étiolles 1826/29 and Francois Magendie 1829, resulted in abandonment of intubation and IPPV by bag inflation, and virtual loss of all forms of effective artificial ventilation, leaving only feeble methods for lung inflation, such as John Dalrymple’s version of long-bandage rolling, after Leroy’s method. Thus, there was no effective form of artificial ventilation in
use in Britain from 1837. Lay-person resuscitation was essentially active warming and drying, as was performed in the RHS Receiving House, Hyde Park.46 There were no instructions from the RHS for any form of artificial ventilation before 1856, when a perturbed Marshall Hall, surgeon,47 introduced immediate action with his Ready Method of negative pressure ventilation through back pressures and repeated turnings. He eradicated contemporary use of the supine position because of its obstruction of the airway. Some dissatisfaction with his method resulted in alternative methods being promoted, with arm-chest-body manoeuvring, but none as effective as ventilating by inflation with bellows or from mouth to mouth. Henry Silvester 1859, Benjamin Howard 1868, and later, Edward Sharpey-Schafer, 1902, Holger Nielsen 1932 and also Frank Eve, 1932 introduced their variants of NPV. Peter Karpovich can list these among 100 methods).

During this time mouth to mouth resuscitation was not abandoned by midwives, with startling results reported by Mrs Ann Newby in 1803,49 Mrs Wigden in 1817, and her daughter Mary Wigden in 1857.49 Thus in 1856 over 300 newborns were saved by that method at St George’s Hospital, London.50 Nevertheless, the basic problems for resuscitation in mid-19th century were the lack of technique for safe oro-laryngeal intubation and the lack of effective positive pressure ventilation [PPV], which had been virtually abandoned since the 1830s. Bouchet’s failure to establish the use of the oro-tracheal tube (OTT) in 1858 in France51,52 and Wm Macewan’s packing around an OTT53,54 for tongue surgery in Scotland, then Joseph O’Dwyer’s developing metal OTTs in the 1880s are discussed in Chapter-2.

The development of primitive negative pressure ventilation (NPV) machines included John Dalziel’s first tank, written of in Scotland, 1838, Alfred Jones’s iron lung in the United States in 1864, Ignez von Hauke’s cuirass in Austria in 1874, then Eugène Woillez’s spirophore in Paris in 1875, (all closely reported from original sources by CHM Woollam55) and other methods including Ferdinand Sauerbruch’s differential pressure chamber at Breslau, 1904.56 These were eventually followed in 1928 by the successful Drinker tank ventilator (see Chapters-4 and 5), and in Australia by the Both and the Burstall tank respirators, then the Burstall cuirass, in the later 1930s (see Chapter-4).

The circulation was now receiving some attention too, with James Blundell, 1825,57 first successfully transfusing a woman with postpartum haemorrhage with blood from her husband. Treatment for cholera was started (with some success) by William O’Shaughnessy68 using intravenous salts solution, 1832. Uptake of his principles was not widespread, however. At the 19th century’s end, FS Locke modified Ringer’s solution with 1% glucose.

Jonas Balassa 185859 made a simple tracheal stoma followed by chest compressions, successfully reviving within 15 minutes a woman said to be ‘lifeless’. After anaesthesia had been introduced, 1846, John Hill60 treated three patients in cardiac arrest from chloroform, by careful external closed chest cardiac massaging (CCCM), 1860-67. The later 19th century saw attempts at open chest cardiac massage (OCCM) particularly after cardiac arrests with chloroform. J McWilliam61 recognised ventricular fibrillation as such, 1885/1887. The successful mid-European König-Maass method of OCCM, 1883/1891, did not become established into C20. Elsewhere, despite some successful OCCM for arrests from chloroform possible during surgery, the first half of the 20th century could have such treatments only occasionally, since immediate, effective, open chest treatment was likely only during such surgery (or, although still less likely, in an environment of an operating theatre, very close to hand).
It can be noted that CCCM created little interest for surgeons dealing with a patient in cardiac arrest on the operating table, as they preferred the open method of intervention, which from their skills, they could attempt.

Later in 1958 the CCCM method with external cardiac massage (ECM) was rediscovered by Guy Knickerbocker. His method was confirmed through studies at Johns Hopkins Hospital, Baltimore, then achieved universal adoption for resuscitation.

Thereafter, Knickerbocker’s method survived, König’s did not.

Significant 19th century milestones in the re-introduction of intermittent positive pressure ventilation (IPPV)

The late 19th century list of important turning points comprises:

- 1885, Joseph O’Dwyer joined bellows to his own, personally invented tubes, for IPPV (Chapter-1).
- 1887, George Fell’s reliable IPPV system saved 28 people after narcotic poisoning, etc (Chapter-2).
- 1888, Joseph O’Dwyer devised the combination Apparatus (Chapter-3)
- 1894, William Northrup reported eight cases using the Fell-O’Dwyer apparatus (Chapter-3)
- 1898, Matas used the Fell-O’Dwyer apparatus for thoracic surgical anaesthesia. (Chapter-3)

Then by 1908 the Dräger Pulmotor, the first oxygen respiration device, became available and within the United States was widely used by firemen rescuers and life-savers. IPPV was seen at that time as possibly applicable for treating drowning, asphyxia, intoxications and poisonings, convulsions, certain cerebral events and cardiac arrest.

The first 20th century decades

Before the Great War, although anaesthetists had an interest in establishing PPV systems, multiple experimental PPV devices failed to become established. These are documented in the history section compiled by Wm Mushin, Leslie Rendell-Baker and others in their comprehensive book ‘Automatic Ventilation of the Lungs’. The United States preference was for insufflation techniques, however, rather than the PPV methods of Fell, O’Dwyer and Northrup, or machines derived from their principles. The Great War halted further progress with PPV. A historic curiosity, almost unnoticed during 1916, was that in Sweden KH Giertz had already advocated rhythmic insufflation AV for thoracic surgery.

The compressed air device of Robert Gesell and Joseph Erlanger (who were not anaesthetists), 1912/13, for ‘artificial respiration by either the usual or the insufflation method’ might be an instance of an alternative device sought to cope with ventilatory problems which, ultimately after some decades, intensive care staff attended to.

1930s, IPPV in anaesthesia

In the 1920s there was no long-term PPV outside the operating theatre, but the rapid advancements in the speciality of anaesthesia at this time led to increased use of IPPV among selected patients undergoing surgery. Magill & Rowbotham’s wide-bore endotracheal tube with ‘bag-squeezing’ systems for ether/cyclopropane apnoea in thoracic surgery was further developed by Guedel & Treweek, 1930-34, enabling IPPV if needed, for abdominal surgery; while in 1932 Gale & Waters developed a method of IPPV for thoracic surgery. So by the
early 1930s, anaesthesiologists had brought PPV to the OT for thoracic surgery, establishing bag-inflating techniques.

1930s-40s, Increasing use of IPPV
Obstetricians might breath into devices applied directly to the face of apnoeic neonates (Pierce MacKenzie, Edward Graber, FA Alexander and Chas Martin, Frank Rossiter [at Pittsburgh], 1942).

In the United States, outside the hospital, among those attending the suddenly apparently dead the first reliance in cities was principally on help from firemen. They were even called into hospitals – Claude Beck, he who in 1939 proposed ‘a resuscitation squad in our hospitals’, while an intern at Johns Hopkins (so possibly c.1923), was astounded at such dependency by a hospital (the tale is vividly recounted by David Leighninger). Lifeguards such as the US Coast Guard Service were also depended upon for rescues.

After establishing clearance of the airway, rescuers could apply AV (as ‘negative’ pressure ventilation) by the Schafer method, the United Kingdom preference, or the Silvester, in United States, while those with a Drager Pulmotor to hand after 1908, could try to establish PPV. For the American Medical Association, Bernard Ross early 1940s, found a 13.9% survival rate among 1633 victims, out of hospital and apnoeic at the start of treatment by trained life-saving crews.

While employment of IPPV by anaesthetists in the pre-World War II operating theatre was restricted, largely due to its need for deep anaesthesia by ether or cyclopropane which enabled open-chest thoracic surgery, there were efforts by non-anaesthetists over decades to devise positive pressure systems for use in certain conditions. Perhaps exemplified in WMcK Marriott’s five days successful use of Erlinger’s device, 1920, at the designer’s suggestion, for a patient with post-diphtheritic failure of respiratory musculature.

Notable others in the pre-history of Intensive Care Medicine included Walter Dandy, 1929/32, who demonstrated the benefits of concentrating neurosurgical patients post-operatively into a special care unit, with close supervision. ‘Two 2-bed rooms were used as a neurosurgical ICU with at least one specially trained nurse in constant attendance’.

Non-regular PPV efforts
Others employing non-regular PP ventilatory means were such as EP Poulton 1936, for treating the pulmonary oedema of left-heart failure with a primitive PP device; Alvan Barach during the late 1930s for attempts at applying 5cm-pressure nasal masks for medical patients with pneumonia and pulmonary oedema; Vladimir Negovskii (‘Father of Reanimatology’), 1941 in World War II (WW-2) Moscow, for learning from battlefield resuscitation attempts and primitive PPV & ICM measures; Massachusetts General Hospital staff, 1942, with an emergency-ICU for three weeks for survivors from the Cocoanut[sic] Grove Fire, ‘spurring innovations in burn care’; Lyman A Brewer, 1944, (in using AL Barach’s PP method) at Cassino in WW-2 for ‘traumatic wet lung’ in soldiers.

Anaesthesiologists and others further introducing IPPV into anaesthetic and resuscitation practice included (in the English-speaking world): Ralph Waters, Julius Comroe and Robert Dripps (both United States); Robert
Macintosh and Wm Mushin (United Kingdom), the Edgewood (United States) team (David Cooper, Bruce Dill, James Elam and Peter Safar), among many.

Progress in anaesthetic methods

Familiarity with IPPV during anaesthesia became routine after Cecil Gray’s 1946 introduction of d-tubocurarine to Britain (and Europe), enabling lighter anaesthesia than was previously needed to achieve comparable muscular relaxation. Obligatory and compensatory PPV was produced through repetitive, rhythmic, lung inflation by manual compression of the bag in the anaesthetic circuit.

Some harbingers of Intensive Care

Eventually, by 1949, Albert Bower & V Ray Bennett, (Chapter-5) transformed some NPV Drinker tank respirators to provide supplemental IPPV for polio. Also Carl Clemmesen’s 1949 provision of a psychiatric special care unit with introductory ICM, including Aage Kirkegaard’s fluid resuscitation, for barbiturate and other intoxications (Chapter-6) provided centralised treatment for barbiturate poisoning in Copenhagen.

In Chapters-7 to 9 I will describe in some detail the role of Bjørn Ibsen, an anaesthetist, in extending the skills of this speciality from the operating room to the wards, to treat ventilatory failure during the Copenhagen polio epidemic. Before the Danish polio epidemic of 1952-1953 there was no regular IPPV machine in regular use. Only towards the end of the epidemic were a few of them available in Denmark (the Engström, Lundi and the Bang, as in Chapter-7). The Engström was being further developed; it was not until 1958 that Ray Bennett’s Model BA-4 Anesthesia Ventilator was established.

To conclude

This introductory overview of the events and people antecedent to ICM, will now be followed by chapters comprising closely detailed accounts of specific identities and rescue activities, more immediately preceding the establishment of the ICM specialty at Copenhagen 1952-1953. These earlier preceding individuals who are hailed as pioneers, appear to suffer somewhat diminished notice in more recent times. They are selected here in acknowledgement of their individual roles and in the greatest respect of their achievements.
19th century pioneering of intensive therapy in North America

Chapter 1: Joseph O’Dwyer

‘Intubation... as perfected through the conscientious labors of the self-sacrificing Joseph O’Dwyer whose name stands with those of Semmelweis and Crede as the greatest benefactor of infant life.’

Fielding H Garrison (1929)\(^{114}\)\[p613\]
Chapter 1: Table of Contents

1.1 Introduction .. 10
1.2 A brief biography .. 10
1.3 J O’Dwyer and diphtheria .. 12
1.4 Causes of death in diphtheria ... 13
1.5 Development of intralaryngeal tubes and intubation ... 13
1.6 Evolution of J O’Dwyer’s intralaryngeal tube ... 14
1.6.1 The bi-valved spring-tube, or speculum ... 14
1.6.2 Clinical applications of the speculum ... 15
1.6.3 Plain tubes ... 16
1.6.4 Physical aspects of plain tubes ... 16
1.6.5 Clinical applications of plain tubes ... 17
1.6.6 Adult plain tubes .. 18
1.7 Further documented clinical applications .. 19
1.7.1 1880-1885: O’Dwyer’s experiments with intubation ... 19
1.7.2 1885-1886: O’Dwyer’s first 50 intubations in private practice 19
1.7.3 1886-1887: O’Dwyer’s next 50 intubations in private practice 20
1.7.4 1885-1889: reports to the Academy of Medicine of New York 20
1.7.5 1894: Northrup, O’Dwyer and the British Medical Association 21
1.7.6 1896: J O’Dwyer’s address to the American Pediatric Society 21
1.8 Problems associated with intubation and tubes ... 21
1.8.1 J O’Dwyer’s personal problems and difficulties .. 21
1.9 Declining need for intubation ... 22
1.9.1 Diphtheria antitoxin and immunising vaccine ... 22
1.9.2 Recognition for J O’Dwyer’s innovations ... 23
1.9.3 Widespread use of J O’Dwyer tubes, North America and Europe 23
1.10 Priority rights for intubation: Eugène Bouchut, William Macewen and Joseph O’Dwyer ... 24
1.11 Postscript, [2018] .. 24
Addendum-1. Further on Priority Rights for introducing intralaryngeal intubation 25
Addendum-2. O’Dwyer tubes in Australasia .. 28
1.1 Introduction
Joseph O’Dwyer, 1841-1898, was a distinguished New York medical figure who made important advances in treatment and was greatly admired for his personal qualities, both as a humanitarian and as a person with nobility of character. His progress can be followed through his publications,93-100 articles about him and eulogies from his numerous admirers. He has been described as ‘immortalised by intubation’.103 Within a decade of his death, he was revered by such statements as ‘the most godlike character I have ever seen in man’103 or ‘American medicine has no more shining light’.104

1.2 A brief biography
Joseph O’Dwyer102-104,109 (see Figure-1) was born on 12 October 1841 in Cleveland, Ohio, but spent his boyhood near London, Ontario. After two years under supervision, apprenticed to local medical practitioner ‘Dr Anderson’, he entered the College of Physicians and Surgeons in New York, graduating in 1866 at the age of 25. He then worked for two years as ‘sanitary superintendent’ at the New York City [Charity] Hospital on Blackwell’s Island, attracting notice for his attention to duty and efficiency.104 O’Dwyer then transferred to a general practice in New York with Dr Warren Schoonover.104 By 1872,102,105 he had gained appointment for the first of about 25 years on the medical staff of the Sisters of Charity New York Foundling Asylum (NYFA, see Figure-2), where he eventually became superintendent.104(p345) The NYFA’s dependents numbered around 1800, with 600-700 in-dwellers and around 1200 outliers, ‘wet-nursed or otherwise cared for outside’;100(p10) all were orphans or children of the poor without available medical care. O’Dwyer’s stable New York practice included attendance at ultimately over 3000 obstetrical deliveries102 ‘in poor surroundings’;103 but by devoting so much of his professional life to the medical care of NYFA children, his obstetrical commitment came to be displaced by attention to the special problems arising from their diphtheria.103

In the last decades of the 19th century, diphtheria was atypical among infectious diseases in that it was becoming more prevalent.107,111 O’Dwyer was appalled to see the way in which many children afflicted with diphtheria died at the NYFA, suffocated by a laryngeal pseudo-membrane (ex ‘Gk diphthera... skin, hide’ – Shorter Oxford English Dictionary, [SOED]). His efforts in devising methods to save them produced a satisfactory system of intralaryngeal intubation by the mid-1880s, and his retrospective article of 1896 illustrated the evolution of his intralaryngeal tubes (see Figure-3). Intervention became so successful, that by 1894 there was a recovery rate of around 40% among 1324 affected110 – but diphtheria, a ‘blood disease’112(p542-3) could still cause death in other ways, despite intubation.

By 1894, some physicians alleged that introducing calomel inhalations might produce a higher success rate than intubation.113 Also, intubation was needed less within a decade of the development of Emil von Behring’s antitoxin for diphtheria in 1890, available by 1894111,996(p481),114(p584) and then gradually adopted. O’Dwyer, later described as a pioneer ‘in use of diphtheria serum as a remedy’,106 welcomed antitoxin and promoted its acceptance by using it in the correct dose.104(p345-7)
The Sisters of Charity moved into the Foundling Asylum’s original small house at 17th East 12th Street on 11th Oct. 1868, then in November 1873 occupied the new institution, above, on 68th Street. With thanks to the New York Foundling Hospital.

O’Dwyer’s diagram entitled Tubes and instruments, illustrating the evolution of intubation without providing further identification. From above down are: his introducer; an alternative introducer; a row of successively developed tubes, the first four bi-valved, then “plain tubes” with progressive alterations in size and angulation of their heads; the remainder, also undesignated: an obturator; an extractor; and lowermost, a definitive O’Dwyer tube. With acknowledgement and thanks to the American Pediatric Society for this figure from Transactions of the American Pediatric Society 1896; 8:20.100

Figure-1: Joseph O’Dwyer (1841–1898)

Figure-2: The New York Foundling Asylum

Figure-3: Evolution of O’Dwyer’s intralaryngeal tubes
O’Dwyer also developed successful treatment for chronic laryngeal stenosis in adults, 1885. Then, in 1891, by using his airway intubating tubes in place of either the Fell face mask or the tracheotomy tube for delivering George Fell’s ‘Forced Respiration’, O’Dwyer widened the application of intermittent positive pressure ventilation (IPPV) beyond opiate and other poisoning, to include intracerebral disasters (as first reported by Dr William Perry Northrup in 1894), then intrathoracic surgery in 1899. The combination, generally called the Fell-O’Dwyer apparatus, came to include five sizes of interchangeable hollow tube-heads, the appropriately sized one of which would be threaded distally onto the short intubation tube, which was then wedged into the glottal gap, thereby enabling IPPV without a tracheotomy, and disposing of Fell’s need to have the trachea tied off above a tracheotomy stoma. By 1896, at age 57, O’Dwyer’s thoughts were turning to ‘the possibility of a mechanical method of treating pneumonia’, for which he had made ‘many clinical observations’ and ‘provided inflating apparatus for supplementing oxygen intake.’

O’Dwyer’s wife, Catherine Begg, his greatest supporter, had eight children, four surviving childhood. After her death in 1888, he slowly seemed to decline into mental and physical exhaustion. Then ‘In the first week of December [1897] thrombosis of certain cerebellar arteries took place and five weeks later death ensued from secondary meningitis’.

(In a few documents there are references to O’Dwyer as Joseph P O’Dwyer. To enquiry, April 2008, the College of Physicians of Philadelphia advised: ‘Joseph O’Dwyer, 1841-1898, the inventor of intubation, does not appear to have a middle name. There is also a Joseph Patrick O’Dwyer, 1869-1906.’)

1.3 J O’Dwyer and diphtheria
When O’Dwyer joined the staff of the ‘Foundling Hospital’ (a term Northrup used at times), ‘diphtheria of the larynx’ – then commonly known as ‘croup’ – was the leading cause of infant mortality, with a death rate of 40%-50%. As yet, toxoid inoculation and even antitoxin lay further ahead. For several years New York City had deaths from ‘croup’ annually numbering 700-1000 and still had very poor survival after around 200 tracheotomies. When a diphtheritic airway was acutely obstructed, tracheotomy was the only available treatment to relieve asphyxial suffocation but was resorted to only in desperation. One statistic (quoted without its source being identified) had the survival chances of victims with a tracheotomy, up to the age of 3-4 years, as only one in 10. Worse, from 1873 to 1880, tracheotomy performed in the NYFA’s own ‘croup room’ for diphtheria, did not save a single child from death. At best then, in allowing ‘the little sufferers to die easier’, tracheotomy provided in effect nothing more than what O’Dwyer later called ‘a justifiable form of euthanasia’. Yet by the mid-1880s, tracheotomy results much better than the NYFA’s drastic figures were being described by others; for example, in 1887 Charles Jennings claimed 17 recoveries after tracheotomy for 36 needing that.

In 1879, the airway tubes that O’Dwyer was trying to modify with the aim of ‘increasing the expulsive powers of the cough’, were still solely tracheostomy tubes. Their failure drove him to find a better treatment; later, he said the ‘complete failure with tracheotomy extending over a period of several years [1869-1880] was the real incentive to the work’. O’Dwyer, essentially a modest man, reflected in his later years that he had been able to successfully attack the problem only by learning and developing ‘systematic thinking... outside the beaten track... from the beginning to the end... without borrowed inspiration’. In 1880, he decided to try an artificial oro-laryngeal
‘channel through the larynx’ by designing metal tubes, about an inch long and placed below the glottis within the vestibule of the larynx, to completely tampon off the glottis.

Rudolph Matas referred to ‘O’Dwyer’s epoch-making observations (of an intralaryngeal tube) first published in January 1880’. He did not provide references for that, nor have I located any confirmatory paper. When O’Dwyer referred to 1880 in 1887, it was not about his publishing, but referring alone to his ‘operating’ and experiments. Thomas Keys followed Matas in 1945 with the same ‘1880’ for O’Dwyer’s publishing.

In 1882, William Northrup (1851-1935), then 10 years graduated, joined O’Dwyer as research co-worker at his own ‘cold corner’ of the NYFA’s autopsy room – ‘that lugubrious underground cell’. Until 1882-1883, O’Dwyer was unaware of the mid-19th century failure in France of proposals from Jean Antoine Eugène Bouchut (1818-1891) France for intralaryngeal intubation (see Addendum-1A). O’Dwyer’s writings indicate that his own intubations, ultimately successful, came from no flash-in-the-pan ‘discovery’, but prolonged, systematic, repeated investigation pursued over half a dozen years, combined with much practice on models and cadavers.

1.4 Causes of death in diphtheria
O’Dwyer’s interventions could be successful only when the airway obstruction to be relieved was confined principally to the larynx. Even despite intralaryngeal intubation, multiple factors could deny him success: pseudo-membrane formation in the airways beyond the larynx (fatally, at the bronchus, 57%; and 37% in the bronchioles), producing untreatable asphyxia; or slough, coughed up from below, and fatally blocking the airway passages or inserted tubes; and disasters occurring with the laryngeal tube itself – during introduction, extraction, or on accidental extubation. The toxaemia of diphtheria, with concomitant airway problems or without, could also be the cause of death.

1.5 Development of intralaryngeal tubes and intubation
O’Dwyer’s accounts clearly set out his struggles for clinical success over 1880-1885, with many heart-breaking failures, and they are supplemented by Northrup’s lucid chronological histories of his colleague’s progress. The writings of both indicate how much time O’Dwyer spent at the autopsy room to study airways for anatomical learning and to try out successive experimental designs and modifications, first of intralaryngeal springs, then later of tubes, long before making ‘live’ trials.

Initially, O’Dwyer’s devices rested solely within the larynx. He made numerous models, moulding putty into specimen larynxes, and tried multiple versions of various lengths, shapes, sizes and appendages; and, after his first successes, a whole succession of modifications in the size and shape of the heads of the tubes to enable swallowing for feeding. The number of tubes O’Dwyer must have had constructed and modified, before reaching satisfactory solutions to multiple problems, does seem amazing.

O’Dwyer started his clinical trials of intubation with a long ‘prostatic catheter introduced via the nostril’, but quickly discarded it, progressing to a small, simple, laryngeal ‘skeleton wired spring’ soon also found unsuitable. Various designs and lengths of ‘laryngeal spring or speculum’ followed, and a small bi-valved device which Northrup (O’Dwyer also) often referred to, not as a tube but still as a (laryngeal) ‘spring’. Initially, the various spring designs, also their introducers, were home-made by O’Dwyer’s valued helper, the mechanically gifted house physician, Dr
RE Chadbourne103 whose recognition seems to have gained documentation rather late. The ancillary equipment of introducer (especially), mouth-gag and extractor comprised essential equipment.

After three years of experimentation, O’Dwyer had moved on from bi-valved tubes, to trying ‘solid’ plain tubes, 1883, conducting ‘numerous experiments with an extensive range of successive modifications’.94 By then, he had expert instrument makers for his metallic designs which, from the beginning, represented a significant advance on Eugène Bouchut’s tubes in Paris, 1858 (cylindrical and short, ‘a little smaller than a common thimble’). O’Dwyer illustrated multiple changes,100[p20] and catalogued the tube-head changes.94[p685]

To effect intubation of a conscious child, O’Dwyer and Northrup needed to use a very careful technique, described first in 1885 by O’Dwyer,93 briefly by Northrup,126 then O’Dwyer96 in 1887, and in considerable detail in 1888 by Frank Waxham,127 whose remarkable book of the same year128 had 45 engravings of technique (Figure-4127). Gelfand’s article in Caduceus109 (a journal now defunct) has a series of historical drawings from the Dittrick Museum of Medical History, liberally illustrating O’Dwyer’s careful intubating techniques and instrumentation. The Waxham illustration shows a child blanketed and firmly held for intubation, i.e., without the benefit of anaesthesia.

Figure-4: Frank Waxham’s drawings of techniques 127

A. Child positioned for intubation, blanketed and firmly held.
B. O’Dwyer tube, held by an introducer, guided past the epiglottis.
C. Forefinger guiding the tube into the larynx.
D. Head-down position for feeding an intubated child.

*With acknowledgement and thanks to the British Medical Journal 1888 (29 Sep); ii: 716–719, for F E Waxham’s figures 7, 9, 10, 5, respectively.*127

1.6 Evolution of J O’Dwyer’s intralaryngeal tube

1.6.1 The bi-valved spring-tube, or speculum

O’Dwyer’s first tubes shaped for children, 1880, were metallic, bi-valved and ellipsoid front to back, with a narrow transverse diameter. The two ‘valves’ were held together until the introducer (designed to guide insertion being performed by finger-touch) was removed, when the valves sprang apart to grip the laryngeal walls.102 ‘A great deal of experiment was required to get the spring of the proper strength.’102 A loop of braided silk able ‘to run freely
through the eyelet of the tube126 was withdrawn only after the speculum was safely inserted (sometimes the silk was left attached, with the other end fitted around an ear97p36). An extractor could engage in the small slit in the tube's side. The length of the tube was at first a maximum of only 1.5 inches (3.8 cm), then extended to 1.75-3.0 inches (4.4-7.6 cm), with a tube-top 'rubber collar' or 'shoulder'100 of chloroform-softened gutta percha, 'applied layer after layer until a sufficient thickness was obtained'.100p11 It prevented the tube from slipping further down the trachea.

After three years, the bi-valved design was 'reluctantly given up as useless100p12' because, among its multiple flaws, O'Dwyer found swollen mucosa or pseudo-membrane progressively intruded between the separated blades into the airway, again 'obliterating the breathing space first obtained',100 and providing 'the greatest difficulty and one that proved insurmountable'.100 Soft tissue could also block the head's entry site into the tube, while similar intrusion into the slit for the extractor led to its being abandoned.

1.6.2 Clinical applications of the speculum

From an entry in the NYFA deaths book, the first intubation with a laryngeal spring/speculum was performed on 20 October 1882102 on a 4-year-old (awake) girl, relieving her asphyxia. However, later removal of the spring led to relapse of the asphyxia after eight hours, so tracheotomy was performed; but she died the following day from asphyxia caused by pseudo-membrane formation deeper into the lungs – 'to finest bronchioles'.102

O'Dwyer did not make much fuss of the November 1882 recovery of a tracheotomy patient, the first since the Hospital’s foundation back on 11th October 1869. Yet that was a real triumph, as every previous ‘operation’ at the NYFA had ended in total failure. He does not reveal to us how long the bi-valved tube was first in place, before the protracted wearing of a ‘secondary’100 (tracheostomy) cannula for six months, with two laryngeal operations,100 eventually enabling final extubation. As laryngeal intubations became more frequent, a policy was adopted that patients who survived initial intubation and were judged to be ‘the most hopeful’ subsequently received a secondary tracheotomy.100

Intubations on two further patients failed to prevent their deaths. O'Dwyer performed the NYFA’s third documented insertion of one under chloroform anaesthesia, 26 January 1883.100p12-13 Within 10 minutes the child had to be extubated to allow extraction of pseudo-membrane too wide for ejection through the spring’s lumen. 'Apparently dead',102 she was resuscitated by artificial respiration (type unspecified), then re-intubated with a larger spring, but extubated five hours later. Her condition immediately worsened, her mother refused to allow the tracheotomy then deemed essential, and the child died. (At this time, it was characteristic of these parents not to want tracheotomy or to give consent). Springs were then given up. Nevertheless, the self-retaining bi-valved tube, once inserted, had been ‘always retained and gave prompt but transient relief to the dyspnoea’.100p11 Later, in 1896, O'Dwyer assessed the situation at that stage: ‘Tracheotomy was bad, but intubation so far was worse because it interfered so seriously with feeding’.100p12 Understandably, such situations must have been exceedingly disheartening for O'Dwyer, his medical team, the nursing staff and the parents.

Contrary to widespread belief or expectation these intubations, importantly, did demonstrate that the human larynx would tolerate a tube without damage; and that air could enter the lungs and secretions exit.102 (Eugène Bouchut had previously demonstrated this, in 1858120,121).
1.6.3 Plain tubes

After three years of struggling with bivalve trials, O’Dwyer ‘concluded to try instead a [solid] tube of plain oval form’, at first small, ‘about one inch long’,93 again with an introducer. The new tube was ‘longer than the speculum, narrow, oval, or flattened laterally, having a collar (to rest on the vocal cord) at its upper end’.102 Insertion of the tube was aided by the leading rounded head of an obturator; and again, an attached loop of braided silk thread. A tube extractor, improved in the summer of 1886,100[p16] could engage in a small posterior slit on the tube’s top; and Waxham later invented a valuable laryngeal forceps.109[p29]

Do ‘let us bear in mind that the backward curve, the blunt rounded head of such odd shape, the knobbed lower end, with the thin-walled, laterally compressed upper end (of the tube) were the results of long painstaking study and experiment, measurements and casts, trials, of models changing and changing for six years’.102

Due credit must be given to O’Dwyer’s instrument makers. Earlier tubes were from his unnamed ‘little German’ craftsman,102 then H Keller of New York. Genuinely ‘O’Dwyer’ sets were provided by Geo Tiemann & Co, New York,126 while Chas Truax and Co, Chicago, manufactured Waxham’s modification of O’Dwyer tubes,128 ‘with rubber epiglottis’ – which O’Dwyer demonstrated94 (see Figure-5).

1.6.4 Physical aspects of plain tubes

Retention. An important spindle-shaped ‘retaining-swell’, finally evolved for the mid-tracheal part of the tube, proved best for retention (see Footnote-1).

Difficulty in feeding intubated patients.94 There was much concern over ensuring adequate nutrition. Eventually it was realised that despite various modifications to the tube-head ‘no artificial device could overcome the difficulty of swallowing... [although]... when a tube is worn in the larynx for several weeks the ability to swallow perfectly was acquired’.100[p16] With the tube’s head occupying the vestibule of the larynx, the epiglottis could close over it during swallowing.95 Eventually head-down feeding (or the Casselberry method of ‘swallowing uphill’102,113) was adopted100 (see Figure-4D).

Pressure ulcerations.100[p13] Also troublesome, these occurred especially at the base of the epiglottis and within the cricoid ring (apparently it was O’Dwyer who recognised that the cricoid had the narrowest calibre in the upper airway102). Extensive experimentation enabled progressive reduction of the calibre of the tube, so much so that ‘everyone marvelled’ it could still allow satisfactory breathing.102

Footnote-1. ‘Longer tubes reaching nearly to the bifurcation were kept in place better, but after a cough the long tube... had to be pushed back with the finger. A second shoulder* was then added to the tube, below the expansion or head at its upper extremity. This shoulder kept the tube from being repelled, but the abruptness of its upper border made extraction very difficult. The abrupt shoulder then gave way to a gradually tapering enlargement*... [and the tube]... when projected upward by coughing, will slip back into position by the pressure of the vocal bands on the sloping sides, aided by its weight. This retaining swell [at mid-tracheal position] is only made to hold the tubes loosely in the larynx, in order to permit of their easy expulsion in cases of sudden occlusion by masses of pseudo-membrane too large to pass through.’ *(My emphasis).
Tube properties. With diphtheritic *distal obstruction* found around the end of many small tubes after death, tube length was increased to within half an inch of the tracheal bifurcation – such tubes were ‘never expelled’.\(^{100}\) O’Dwyer started with (nickel-)steel tubes and obturators; the last modification was trying tubes made of ‘hard rubber’ (vulcanite), not metal, which proved best for the material of the tube-head, concerning incrustation and corrosion. It could be boiled for disinfection like metal.\(^{102}\) After initial imperfection, later models were highly refined wide short tubes.\(^{100\text{p.17-18}}\) (‘Loose membrane or foreign body tubes’\(^{112}\)). O’Dwyer developed short, very thin, metal tracheal tubes, three to four times wider than standard tubes, for extracting or breaking up a *pseudo-membrane*. These tubes, illustrated by Northrup\(^{113}\,[\text{fig-2}]\) were left in place for only a few hours at a time and ‘proved fairly successful in getting rid of false membrane when loose and not anchored below by extension into the bronchi’.\(^{100\text{p.18}}\)

![Figure-5: Truax set of 5 plain tubes](image)

FOR AGE

<table>
<thead>
<tr>
<th>Size</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-12</td>
<td>A commercial set of O’Dwyer “plain tubes”.</td>
</tr>
<tr>
<td>5-7</td>
<td></td>
</tr>
<tr>
<td>2-4</td>
<td></td>
</tr>
<tr>
<td>1-2</td>
<td></td>
</tr>
<tr>
<td>≤1 (≤2)</td>
<td></td>
</tr>
</tbody>
</table>

An introducer fitted into an O’Dwyer tube.

O’Dwyer’s scale to guide choice of tube by age.

(‘The third sized [tube] marked 3-4 on the scale, should be used between two and four years.’)

O’Dwyer ‘mouth and throat instruments’ showing a set of five tubes of graded sizes and an introducer, also the scale for choosing the tube for differing age ranges.\(^{96}\) Although catalogued as O’Dwyer tubes, they were from Truax & Co, Chicago, so may have been Waxham modifications.

1.6.5 Clinical applications of plain tubes

Northrup\(^{102\text{p.362}}\) quoted, 25\(^{\text{th}}\) April 1884, from the NYFA’s deaths book for the outcome of O’Dwyer’s first trial with a plain tube, supplied to an infant aged ‘2 months and twenty-four days’, with the breathing state relieved thereby to ‘fairly good’. The infant then accepted almost a pint of milk; with ease of breathing ‘retained until the child died sixteen hours later, free from any return of dyspnoea’\(^{100}\) – presumably succumbing to diphtheria toxicity. The first
mention of ‘tube’ is also made for that date in the same book.102 Paluel Flagg, closely liaising with a medical son of O’Dwyer’s, 1909 and 1934,108 states O’Dwyer ‘first applied the ‘oval tube’ on 23rd April 1884108 - one might expect on 24th April.102

O’Dwyer then dated his second patient to be relieved, a girl aged about four years, for 21st May 1884.100 She survived 67 hours of intubation, was extubated, but after a further five hours needed re-intubation – for which O’Dwyer had to administer chloroform to withdraw his (shielded) finger, leading him forthwith to construct a mouth-gag. After seven days she coughed the tube out, to become his first survivor with one of his plain tubes. O’Dwyer later hailed this success (rather than their 1882 survivor of intubation) as ‘the first recovery in the history of intubation, and was, therefore, a very important event’. Only after this triumph would O’Dwyer agree to consider operating on patients outside the hospital.103

The newly coined word \textit{intubation} ‘became associated with the operation’.102,362 None of the next seven children intubated with this kind of short tube survived.100 For a boy of four years, O’Dwyer’s third patient,93 one in whom dyspnoea returned after 24 hours followed by his death, the tube did not extend sufficiently into the trachea and its distal end ‘was found obstructed by a thick deposit of pseudo-membrane’.93

Use of a new tube, without a hole/niche for the extractor to engage, produced only one more survivor from five further patients, in December 1884, and that was after a boy managed 10 days of intubation amid repeated perils to the wearer.100 ‘Intubation was now looking up. It had two recoveries [= survivors] to its credit in five years and the prejudice against it was abating’.100

By 1885, with tubes long enough ‘to reach clear to the [tracheal] bifurcation’ placed in six patients, all had died. A further tube with a second retaining shoulder, below the cords for 10 patients, produced one survivor, ‘the third recovery since the beginning of the experiments’.100,14 These tubes were never expelled from the larynx.

Multiple further design changes to deal with serious problems of feeding, ulceration sites, tracheal casts of membrane, all took long periods of study and experimentation before O’Dwyer could publish two major series of 50 patients, 188796 and 1888,97 documented below.

\subsection*{1.6.6 Adult plain tubes}
O’Dwyer could later state100,18 ‘at this time [December 1885] there was no such thing as an adult intubation tube’ (Incorrectly, actually; see Addendum-1B,120-132 regarding William Macewen). But two years later, as in vol.iv of the Transactions of the 9th International Medical Congress, Washington, 1887,98 he presented an 1885 patient, an 1886 one, and ‘other cases’ of treatment of adult chronic (syphilitic) stenosis of the larynx. After much careful study and measurement, his first adult set was constructed in multiple sizes for a woman with such a narrowing; but none of these tubes would penetrate the stenotic scarring, even the largest of children’s tubes was inserted only with traumatic difficulty. After her first sequence of laryngeal intubation followed by later extubation, a process repeated eight times during 18 days altogether, he increased the spells with successive indwelling tubes of progressively increasing size, enabling lengthening intervals between periodic reinsertions; such that in 1894 he
could report (at Bristol in the United Kingdom, where WF Brook referred to his own five cases99(p1482)) that by then, her freedom from re-stenosis had lasted five years.

By June 1887, O’Dwyer had intubated another woman ‘over fifty times, leaving [the tube] in the larynx on several occasions as long as a week at a time’;94 another woman wore a tube continuously for over 10 months. ‘Other cases of chronic stenosis followed in quick succession. On the experience thus derived, the set of [10]99 adult tubes was constructed.’100(p18) Tubes were originally metal, then hard rubber,94 and were used later for the Fell-O’Dwyer apparatus for IPPV and anaesthesia (to be discussed in Chapter 3 of this North American series).

1.7 Further documented clinical applications
1.7.1 1880-1885: O’Dwyer’s experiments with intubation
O’Dwyer reported his agonising ‘experimental stage of intubation’, from January 1880 to December 1885,96(p557) (Despite naming his starting date as January 1880, he wrote in August 1885 that he ‘began experiments, almost five years ago’ – that is, not before August 1880.) During this whole initial period of ‘developing and perfecting the tubes and accessory instruments’,97 O’Dwyer reported96,97 ‘operating on’ 65 ‘desperate’ hospital patients, 60 of them in the NYFA, of whom only nine (<14%) survived. Some ‘without any marked cyanosis’ died with ‘evidence of toxaemia... for some time’;96 O’Dwyer also reveals records missing: ‘there is a break... extending from August 1883, to April, 1884, which I cannot account for’.100(p.12)

After his ‘third patient’ receiving a plain-tube insertion, referred to above, O’Dwyer admitted feeling obliged to present, then to publish (August 1885), his design of plain intubating cannulas, despite not wishing to do so without ‘a greater degree of perfection’ – as, with only one of three child patients surviving, and that notable success a single one after inventing ‘tube after tube’;133(p158) he assessed his work as still of ‘a purely experimental character’. Mushin and Rendell-Baker stated133(p.158) O’Dwyer’s work was ‘not recorded until a history of the Foundling Hospital was written in 1884’. Waxham later summarised his own parallel progress during 1885134 - see Footnote-2.

1.7.2 1885-1886: O’Dwyer’s first 50 intubations in private practice
Between 5th December 1885 and 6th December 1886, O’Dwyer performed 50 intubations in a full year’s private practice.96 Survivors totalled 12 (24%), with their tubes averaging 5.3 days \textit{in situ}. O’Dwyer supplied some specific case details, with the cause of death in 18 of the 38 considered an untreatable ‘extension of the membrane to the bronchi’ – although no autopsies were performed. O’Dwyer’s excellent, explicit paper clearly defines the skill needed for attempting intubation, and seven dangers he identified with that procedure; his own expertise becomes most evident. He emphasised that in his practice he had ‘\textit{never resorted to intubation until the symptoms of...}’

\textbf{Footnote-2.} Frank Waxham’s 1901 article in the Journal of the American Medical Association with fascinating reminiscences134 acknowledges ‘the courtesy’ of O’Dwyer with instruments for Waxham to attempt intubations, at a time when design of tubes was still ‘crude and primitive’. After first demonstrating a cadaveric intubation to the Chicago Medical Society, 20 March 1885, Waxham then made ‘live’ attempts, the first three patients (on 19th April, 23rd April and 16th July) did not survive; but following 5 days’ intubation from 15th September 1885 (less than 16 months after O’Dwyer’s first success), he had his own first success; then by November, four recoveries out of 11 intubations. This early parallel work by Waxham, 1885, appears barely recognised in the literature (apart from in Gifford, for instance107(p183)). His engrossing paper clearly details the hazards such pioneers worked amidst, being reviled, threatened, attacked and needing ‘to go armed’ when attending suffocated children.
laryngeal obstruction were so urgent as to plainly indicate impending suffocation, unless the child were relieved by operation'. For another dyspnoeic four he was called to, he held off ‘operating’ – and they survived.

Northrup analysed NYFA autopsies after laryngeal diphtheria, reporting 11th December 1886, 87 recorded deaths of which ‘In 56 the diphtheria began in the larynx’. By the next June, he reported there were 20 more deaths, all from laryngeal diphtheria.135[p.686]

1.7.3 1886-1887: O’Dwyer’s next 50 intubations in private practice

O’Dwyer reported his next 50 intubations in private patients, between 16 November (although possibly December) 1886 and 18 November 1887.97 These patients were ‘operated on’, usually in consultation, with three occasions when O’Dwyer alone performed the intubation. Tubes were maintained in situ for 12 hours to four days; the first 15 patients died (how daunting that must have been), but overall, 15 survived, giving a 30% success rate. O’Dwyer details two severe cases for whom he considered he could withhold intubation, who recovered after ‘an emetic of turpeth mineral’ with ‘bichloride of mercury’ (see Footnote-3A); for one of these, steam vapour also. He considered Hg\textsubscript{2}Cl\textsubscript{2} contributed in part to eight of 15 autumn patients recovering, and that its early use might obviate the need for intubation (see Footnote-3B). O’Dwyer presents clinical details of seven patients severely ill; of several accidents; and he details the third of three instances of complete obstruction of the tube by a large tracheal cast, resulting in sudden apnoeic death. Two ‘out of 173 cases so far’ had their coughed-out tube enter their stomach. This ‘analysis’ paper describes a Heimlich-type innovative manoeuvre for expelling intra-laryngo-tracheal material, when a tube prevents glottic closure.97

1.7.4 1885-1889: reports to the Academy of Medicine of New York

O’Dwyer and Northrup were frequent contributors to meetings of the Academy of Medicine of New York, with documentation (including discussions) in New York’s Medical Record and Medical Journal.

O’Dwyer’s expertise, and especially the intubation versus tracheotomy dilemma, attracted widespread interest, with commentators in the United States from as distant as California.

\textbf{Footnote-3 The alternative use of calomel for croup}

\textbf{A.} Nomenclature: O’Dwyer always describes ‘bichloride of mercury’; Northrup writes ‘calomel’ which is mercurous chloride, Hg\textsubscript{2}Cl\textsubscript{2}. Note, however, mercuric chloride, or [true] bichloride of mercury, HgCl\textsubscript{2}, is ‘corrosive sublimate’.

\textbf{B.} Calomel inhalations:113 re which Northrup saw ‘administered from a fumigating lamp in a closed “cribtent”. I felt ambivalent as to whether sufficient evidence was provided for real worth in laryngeal diphtheria. Its use was “first publicly advocated by Dr. JC Corbin, of Brooklyn, in 1881, was later taken up by Dr O’Dwyer in New York, and has steadily gained in favour”.’ Northrup told the British Medical Association in 1894 it allowed ‘better and speedier recovery’ when used after ‘operative procedure’, and quoted successful use in hundreds of patients; but he still cautioned that ‘Statistics have not accumulated sufficiently to frame a strong argument’. Later, 1904, Northrup was citing103 calomel for ‘promising early results for croup-laryngeal diphtheria. It was thought to reduce the mortality from 75 to 40 per cent’.
1.7.5 1894: Northrup, O’Dwyer and the British Medical Association

In July 1894, after almost a decade of treatment, Northrup and O’Dwyer presented their methods at the 62nd Annual Meeting of the British Medical Association in Bristol, United Kingdom. They spoke to the ‘Sections of Laryngology and Otology and Diseases of Children’ on laryngeal obstruction: Northrup on acute patients and O’Dwyer on chronic. Northrup reported the risk of inadvertently pushing down diphtheritic membrane during intubation and mentioned three occurrences during O’Dwyer’s first 209 cases. (There he also announced first use of the Fell-O’Dwyer apparatus, to be discussed in Chapter 3).

1.7.6 1896: J O’Dwyer’s address to the American Pediatric Society

On 25 May 1896, two years before his death, O’Dwyer provided a detailed retrospective on his entire ‘evolution of intubation’ in his presidential address to the 8th Annual Meeting of the American Pediatric Society. Although others previously had intubated the larynx on sporadic occasions (well described by William Macewen), O’Dwyer was the first to systematically develop a method he then used successfully on enough patients to establish its validity in the saving of lives.

1.8 Problems associated with intubation and tubes

O’Dwyer needed to perfect a ‘blind’ technique for intralaryngeal intubation of a conscious, terrified child, then ensure the tube’s maintenance in situ, usually needed for days. But other problems needed attention: determining optimal design for tubes and obtaining the best material for fabricating ‘tubage’; also those difficulties so well known in intensive care practice – keeping the tube’s lumen patent; having the airway below the cords sealed off to enable feeding without aspiration; foiling/preventing self-extubation, and ensuring retention of the tube while still enabling its ready removal; providing humidification; plus that feature specific to diphtheria – coping with obstructive membranes coughed into the tube from the trachea and beyond.

1.8.1 J O’Dwyer’s personal problems and difficulties

Craig Gelfand’s generously illustrated, fine account describing the many battles O’Dwyer faced makes an interesting read, as are Northrup’s two valedictions. O’Dwyer’s studies persisted with dogged tenacity despite disheartening clinical failures and heavy criticisms. Even when he could invoke his first few successes, he still found initial refusal to accept his new method of treatment, or worse, opposition, not only from many colleagues but also among some NYFA staff. From Sister Rosalie, and the ‘famed superior’, Sister Irene, came only support. To many it seemed that the insertion of his tubes was torturing children already suffering severely from their asphyxial disease and fearful of intubation. Some children were taken from the hospital to insalubrious homes to avoid it, and some ‘out-children were not returned to the hospital for treatment. Difficulties arose from strong professional scepticism or antagonism. Initially, experienced United States tracheotomists, such as Dr Charles Jennings (who emphasised the ‘personal equation’ factor) and Dr Max Stern, could present, with moderation, arguments for and against intubation, while seeing tracheotomy as equally or more effective. But Waxham, strongly advocating O’Dwyer’s methods, modified O’Dwyer’s tubes and reported his tube version as saving 269 lives after 1000 intubations.

O’Dwyer’s drive for intubating came from the absolute failure of tracheotomy at the NYFA, yet others were much more successful (see Footnote-4). Controversy also ensued in Australia (see Addendum-2), and...
Meantime, attempted intubations by many unskilled practitioners brought discredit to O'Dwyer's method, and blame for their failures reflected back onto O'Dwyer.103 Cheap, carelessly imitative tubes in America and Europe (some with 'horifying modifications')106 brought all the problems he had spent a decade struggling to circumvent. In the absence of a patent on O'Dwyer's tubes,102 Northrup was appalled to find (as Jeffreys Wood confirmed141) that – at O'Dwyer's request – he could simply pick up 'in London and different places samples of tubes that their best makers were selling, and tubes made from models sent out from New York with O'Dwyer's approval. They were a travesty. They embodied every vice.'102 Some doctors would rush to buy an instrument set and try to insert a tube without any of the training on cadavers needed to become experienced, 'they had all manner of accidents'.103 O'Dwyer had warned in 1887 that 'Intubation is apparently, but not really, a simple operation'. (In 1887117,p31 and again 1896,144,p136 Northrup appeared to discount this caution – certainly he failed to confirm it).

Patients outside the NYFA could be sent there for O'Dwyer's personal management. But when an intubated child died by asphyxia from extension of the diphtheritic pseudo-membrane peripherally into the bronchi and beyond, plenty of opponents were ready to blame the death on the tube or on O'Dwyer himself. The inexperienced had deaths during rough intubations, and also with extracting tubes, tubes could become obstructed. Accidents could happen with the tubes as may occur today. Nurses minding children's tubes became skilled, but they were not today's all-round trained intensive care nurses. One argument for advancing intubation over tracheotomy was that the former was more readily managed in a poor household! Thus, from Max Stern, 1887: ‘intubate poor patients when they cannot get good nursing' [for a tracheotomy].136 O'Dwyer's temperament made all setbacks personally devastating and debilitating, yet Gelfand considers him displaying 'a resilience and strength uncommon to most'.109(p2)

1.9 Declining need for intubation
1.9.1 Diphtheria antitoxin and immunising vaccine
Ironically, O'Dwyer's widest recognition, medical and lay, was eclipsed when the need for his tubes in diphtheria decreased or was even eliminated with improvements in the antitoxin. Diphtheria antitoxin, announced in Berlin, 1890, by Emil von Behring (1854-1917, medicine's first Nobel Prize winner, 1901) and Shibasaburo Kitasato,111 was taken up enthusiastically by O'Dwyer himself, once it became available (the supply came from horses). Pierre-Paul Émile Roux of Paris also developed effective diphtheria antitoxin independently and modified treatment, 1894.145 The antitoxin concentration in the first available doses was too low, at 50–100 antitoxin units, when 2000–3000 units were needed, causing many to repudiate it; but O'Dwyer persisted.104(p346) Antitoxin came to reduce the need for O'Dwyer tubes, even more so after Roux's nephew, Gaston, effected conversion of diphtheria toxin to toxoid, enabling development of immunising vaccine, followed by successful trials, 1924.111(p7)

\textbf{Footnote-4.} Charles Clubbe137(presenting his own recovery rate for 42.5% of 120 tracheotomies) quoted Konigsberg's Surgical Clinic, 1878-1882, for 49% recoveries from 123; H Rankin at Munich, for 63% of 54; and A Caselli, for 72% of 18. CG Jennings had 17 recoveries with 36 tracheotomies, none with 12 intubations.117 Waxham127 collated 1072 intubations in the United States, compared intubation versus tracheotomy by age groups, and found highest intubation recovery rate in under-2-year-olds, with 15.6% surviving, versus Max Stern’s 3% of under-2s surviving after tracheotomy.136 Stern advised intubation was always preferable for children aged under 3½ years. Previously, for example, in the 1860s 'English operators, unlike the French, continued to consider tracheotomy only as a last resort... until death from apnoea was imminent'.112(p544) Despite their exploring O'Dwyer's methods, in their hands 'results were not encouraging'.112(p547) Anne Hardy provides a masterly account.112
Waxham could document134 the recoveries in his own successive series of 100 intubated patients at 27, 34, 40, 38, 39 (so 178 of 500, or 35.6%); and then, with antitoxin additionally, mortality for the next 70 was four (or 6%). Distinguished ‘virtual founder’145,146 of American paediatrics, Abraham Jacobi (1830-1913) – O’Dwyer’s zealous convert to intubation – found that antitoxin use lowered the need for ‘operation’ (presumably intubation) in laryngeal diphtheria from 90% to less than 40%.112 [p548]

1.9.2 Recognition for J O’Dwyer’s innovations

Eventually, O’Dwyer came to receive full recognition and honour, initiated by Abraham Jacobi at the (New York) ‘State Medical Society, February, 1887’[FN-p363] and then wider afield within the United States, much of continental Europe, the United Kingdom (slowly there, much ‘due to the faulty construction of the instruments that are made in England, after the pattern of O’Dwyer’s earlier tubes’141[p177]), and Australia. The ovation O’Dwyer received at the IXth International Medical Congress, Washington, September 1887 (in such contrast to George Fell’s reception there147) was for his efforts in developing his intubation system.102 By 1894, at a Nuremberg research conference his intubating method could be credited with a recovery rate of around 40% for 1324 diphtheria patients.110 Two years later, he was President of the American Pediatric Society.100

1.9.3 Widespread use of J O’Dwyer tubes, North America and Europe

Reports of intubation used in diphtheria by other American clinicians were soon documented in later-1880s issues of New York medical journals. O’Dwyer’s influence continued into the 20th century, influencing intralaryngeal tubes for diphtheria, as documented,103,112 and awareness seemed worldwide. How long O’Dwyer’s own tubes continued in use for diphtheria is less obvious. Their employment has been usefully documented by Anne Hardy. They were widely used in North America (e.g., at Boston City Hospital, where, ‘by 1900, primary intubation had entirely replaced tracheotomy’ 112[p548]) and in European cities such as Zurich,107 Naples, Budapest, Munich and St Petersburg,103 also in Scandinavia.112 While in ‘unconvinced’112[p548] European countries such as Germany and Austro-Hungary, their usage was less until antitoxin ‘helped make intubation rather than tracheotomy the preferred practice in Europe’.112[p548] Meantime for England, tracheotomy had long ‘remained a continuing option’. Hardy also considers national medical cultures112[p551] when discussing the question: ‘Why did American physicians adopt intubation [for laryngeal diphtheria] so swiftly, the Europeans more slowly, and the English hardly at all?’ In the United States, O’Dwyer-type paediatric intubation sets were commercially available in 1920;109[fg,p28] and considerable use in diphtheria was documented in Melbourne in the mid-1920s143 (see Addendum-2).

For surgical anaesthesia, others used O’Dwyer’s design of a longer tube developed for IPPV,98 as will be discussed in Chapter 3. (The further detailed development into C20 of endotracheal tubes, with inflatable pilot cuffs, etc, is beyond the scope of this chapter but is neatly summarised in J Alfred Lee and Richard S Atkinson’s compilation \textit{A Synopsis of Anaesthesia}, eg., in the 5th edno of 1964 I have).

Eventually, during the 1920s, Ivan Magill (1888-1986) and Stanley Rowbotham (1890-1979), after using initially separate narrow tubes for inspiration and expiration, gradually developed a single-lumen, wide-bore, endotracheal tube for bi-directional gas flow, and it became the dominant form used for anaesthesia.148 The same principle of a wide-bore tube had been introduced in Germany two decades earlier, by Franz Kunz in 1901, but this was largely overlooked.148 Although O’Dwyer, supported by Northrup, was hailed for introducing his tubes into the intensive therapy of severe airway disease (‘croup and kindred diseases’99), he was also a pioneer in providing a means for
the efficient application of Fell’s ‘forced respiration’ principle in rescue IPPV. In the United States, others adapted this for anaesthetic IPPV. The Fell-O’Dwyer apparatus offered a workable solution for the great pneumothorax problem of thoracic surgery, as will be discussed in Chapter-3.

1.10 Priority rights for intubation: Eugène Bouchut, William Macewen and Joseph O’Dwyer

‘In science the credit goes to the man who convinces the world, not to the man to whom the idea first occurs.’

After the mid-19th century, these three pioneers (Bouchut, Macewen and O’Dwyer) each tackled the problem of diphtheritic acute stenosis of the larynx by ‘blindly’ using a finger technique to insert a tube into the larynx, perhaps trachea also. So the device O’Dwyer employed for his solution had been anticipated by two previous investigators (see Addendum-1) Although Eugène Bouchut demonstrated, 1858, that a child’s larynx could tolerate a metal tube for at least 2 days without damage to relieve acute laryngeal obstruction, he faced stern opposition, and, having lost his credibility, did not persist sufficiently to have his method accepted. And although Sir William Macewen at Glasgow successfully intubated the larynx for membranous croup in the 1870s, he did not publicise this achievement widely, or take steps to ensure its continuing uptake. He did intubate the adult larynx afterwards, using a skilled blind technique, but after three successes did not proceed further.

O’Dwyer, often acclaimed with phrases such as ‘immortalised by intubation’, and being one whose intubation success was considered his ‘undisputed monument’, has priority rights in terms of Francis Darwin’s yardstick – he firmly popularised the method. Unlike Bouchut and Macewen, he continued undaunted, despite years of failure and criticism, until his method became established. Fine commercial sets of O’Dwyer and O’Dwyer-type tubes were used worldwide (components other than solely the tubes were essential), and apparently his lessons ‘blessings’ applied even as late as the ‘great diphtheria epidemic in Central Europe in 1945/46’.

Macewen’s meticulous writings refer to 19th century, mid-European treatments by practitioners such as Friedrich Trendelenburg, Leopold Schröter and his pupil Wilhelm Hack, of chronic stenosis of the larynx, usually syphilitic and in adults, by dilatation with tubes. Following soon after, it was again O’Dwyer who effectively publicised his successful method of such treatment.

1.11 Postscript, [2018]

In the extensive reading of J O’Dwyer’s published papers necessary for the preparation of this article I do not recall seeing mention of the post-diphtheritic paralysis which can occur after the diphtheria has been thought no longer operative. This condition can affect intercostal muscles of respiration ‘further to embarrass the damaged heart’. Equipment of the times for positive pressure breathing may be required and W McKim Marriott described using that of R Gesell and J Erlanger, at the suggestion of Dr Erlanger. It provided support to an affected girl aged 10 years, as needed for her weakened breathing for much of five days, until the paralysis dissipated. The apparatus used had been described in Proceedings of the 26th Annual Meeting of the American Physiological Society, 1913.
Addendum-1. Further on Priority Rights for introducing intralaryngeal intubation

A. Jean Antoine Eugène Bouchut (1818-1891)

Figure-6: Jean Antoine Eugène Bouchut

Jean Antoine Eugène Bouchut, Parisian paediatrician and 1858 laryngeal intubator for diphtheritic obstruction of the airway.

In Paris on 14 September 1858 the young paediatric physician Eugène Bouchut, ‘prof.-agregé’, addressed the Academy of Medicine on his trials conducted with ‘a silver, truncated, hollow cone, a little smaller than a common thimble’ (18-24 mm long; 6-15 mm wide) with an introducer he placed it ‘on the point of a hollow sound’ into the larynx, first in a cadaver, then for two children ‘affected with diphtherite’. At the upper part of this tube there were a pair of rings, between which the vocal cords were supposed to rest and hold it in place (a tube is illustrated in Gelfand). An attached silk thread ‘hangs out of the mouth’. The tube dilated the airway, ‘to the great relief of the child’ from ‘paroxysms of suffocation’. After successful intubations in two diphtheritic children, one for 36 hours, the other for 42 hours, the cones were ‘subsequently removed with the greatest ease’. The first child (although ‘elle était guérie du croup’ did not survive the toxaemia and pneumonia. The Lancet of 2 October 1858, while regarding her death as a failure of Bouchut’s method (if she truly had been ‘cured’ of the croup problem, then surely the Lancet saw him unfairly?), did accept he had ‘proved’ his laryngeal cone could be tolerated and could relieve the ‘suffocation of diphtherite’ (see Footnote-5).

Bouchut advised his colleagues that adopting his cone for intubation in (acute) ‘laryngeal stenosis’ would avoid tracheotomy; but they wanted a committee to investigate his claim first. After two weeks of consideration the commission, with the renowned tracheotomy exponent Armand Trousseau (1801-1867) as secretary, reported that despite intubation having some virtues tracheotomy was decidedly the ‘principal’ option of choice. With Bouchut’s initiative ‘quickly suppressed by the French Academy of Medicine at the instigation of Trousseau’, the older operation [tracheotomy] continued to dominate in France.

Footnote-5: Nearly 30 years on, in New York’s Medical Record of 15 January 1887, an (anonymous) annotation on the early history of intubation of the larynx referred to the investigating committee’s report as delivered in Paris two weeks after September 14 1855 – a year Gelfand also quoted, which surely must be a typographic error for 1858, the year of Bouchut’s publication – other writers concur for 1858. The Rapport of the investigating committee’s decision, released in Paris at the end of September 1858, obviously reached London for publication in the 2 October Lancet (Paris and London had a telegraph link from 1852).
Further, in discussion following, Bouchut was ‘most virulently and ungenerously attacked’ by others, as was his character and honour. ‘His career was in fact almost ruined. By force of character and perseverance, however, M Bouchut has won a name in paediatrics’¹²⁴ Not until 1882-1883 did O’Dwyer learn of the earlier failure of Bouchut’s attempted promotion of intubations in Paris.

Macewen states that of Bouchut’s seven patients, five died and two were saved – but that was only by interposing a tracheotomy.¹²²[164],[104][338] It is not clearly stated whether these were patients of 1858; but when Bouchut reminisced in New York in 1887 concerning ‘three recoveries in ten [paediatric] cases’, he indicated that they were the 1858 cases.¹²⁵ O’Dwyer, always insisting on finding his own way uninfluenced, steadfastly refused to study Bouchut’s earlier tube. ‘All he knew was that the tube was like a thimble and was never pronounced a success.’¹⁰²

B. Sir William Macewen (1848-1924)¹²⁹

Figure 7: William Macewen

William Macewen, renowned surgeon who, early in his career, 1870s, intubated the trachea for diphtheritic ‘croup’.

With thanks to the Wellcome Library, London, for their courtesy.

William Macewen, famous surgeon and neurosurgeon, is also renowned for the four laryngeal intubations in Glasgow which he labelled Cases I to IV (the first three in 1878, the fourth before July 1880, and all thereby before O’Dwyer’s interventions), when he used orotracheal intubation for adults.

- **Case I**,¹²²,¹³⁰ he also packed off the pharynx for major oro-linguo-pharyngeal surgery: ‘to occlude Haemorrhage from Larynx, and for administration of Anaesthetic’, with postoperative extubation ‘when the haemorrhage had ceased and the patient regained consciousness’¹²²[p122]. He repeated this intubation similarly to successfully treat two other patients with acutely obstructed airways,¹²²,¹³⁰,¹³¹ after which Macewen recorded no further intubating attempts.

- **Case II**,¹²²,¹³⁰ concerning a man’s glottis burnt from a hot potato; the tube was *in situ* during 36 hours which included three intromissions, and was removed after 39 hours total.¹²²[p123]

- **Case III**,¹²²,¹³⁰ one of ‘acute oedema of the glottis following chronic laryngeal affection’; with the tube *in situ* for 30 of the 35 hours total time, with temporary removals made 12-hourly.¹²²[p123]
• **Case IV,** one of a further surgical candidate who had agreed to tube anaesthesia but who removed the pre-inserted tube before tube anaesthesia could start; then about 15 minutes after the house surgeon started a chloroform inhalation, died suddenly.122p163 Macewen’s documentation122 of each event in the *British Medical Journal* is very detailed; those in the *Glasgow Medical Journal*130,131 are brief. He also gave careful reference to Bouchut’s and others’ earlier efforts, and cited two patients ‘observed’ receiving P-J Desault’s nasotracheal intubations, [1790s-type], with one survivor. Macewen regretted that learning opportunities for others did not follow on these efforts. He also cited Dr Wilhelm Hack’s patient at Freiburg, November 1878, relieved after an hour’s *self*-intubation for acute on chronic ‘*oedema glottidis’*.122p164

Neither Macewen’s two papers reported to the Glasgow Pathological and Clinical Society in 1879 nor his fine two 1880 *British Medical Journal* articles mention diphtheria patients. But Dr CT James129 informs us as follows: first, it was earlier, when Macewen was Medical Superintendent of Glasgow’s Belvidere Fever Hospital and ‘faced with diphtheritic obstruction of the glottis’, that he ‘most probably formulated his ideas about laryngeal intubation as an alternative to tracheotomy’; and that 1870 was the year ‘when he was most active in this field’ of experimental work (preceding even O’Dwyer). Through the title *The surgical treatment of croup and diphtheria by the introduction of tubes into the trachea through the mouth,* with which the *British Medical Journal* very briefly reported on Macewen’s paper delivered to the International Medical Congress in London in 1881, there should be no doubt of his intubating earlier for diphtheritic laryngitis.

Unfortunately, however, case numbers are not supplied (as James says, ‘*The number of [Macewen’s] cases of diphtheria which were treated by intubation instead of tracheotomy is not known*’). Worse however, ambiguous interpretation is possible (see Footnote-6) – even to suggest that Macewen had performed the procedure only *once* for membranous croup. So, although Macewen’s 1881 London presentation may indicate he used intubation for that disorder in Glasgow, thereby also anticipating O’Dwyer,129p746 more detailed evidence would be welcome. And while Macewen does not appear to have persisted with treating infectious disease problems during his illustrious surgical career, neither does it seem his intubation writings122 refer back to his using intubation for croup. James’s article129 illustrates Macewen’s various tubes.

Footnote-6 Consider: ‘Dr Macewen related several cases in which he had introduced flexible [metallic, articulated] tubes into the trachea through the mouth, and gave details of one case of membranous croup in which their use had been attended by marked success. He showed a flexible silver tube, and some gum-elastic tubes; the latter he found the more satisfactory. Dr Robertson [of Glasgow] had seen some of Dr Macewen’s cases, and... had seen the fourth case and he found that the breathing took place freely through the tube’.132 Was this fourth case Macewen’s only one of croup, or was it the fourth case of all those he presented at London?p132
Addendum-2. O’Dwyer tubes in Australasia

Dr W Hacon, 1889 in New Zealand, in enthusiastic evaluation of his single laryngeal intubation for diphtheria, suggested O’Dwyer tubes. Yet in Australia the first publication at the same time as O’Dwyer-type intubation in diphtheria was proceeding, could be that from September 1890, featuring a Dr Hales with 38% success after 100 intubations - which Charles Clubbe deemed ‘a bad record’. In the same publication, Lennox Browne claimed ‘many successful cases’, and BJ Newmarch detailed his single case.

Controversy over treatment of diphtheritic obstruction continued between two surgeons – intubation protagonist Jefferis Turner at Brisbane Children’s Hospital, and Charles Clubbe at the Hospital for Sick Children (later the Royal Alexandra Hospital for Children), Sydney, favouring tracheotomy. At Sydney’s 1892 Intercolonial Medical Congress of Australasia, Clubbe presented recovery for 42.5% of 120 diphtheritic children needing tracheotomy, and Turner presented his seven recoveries among 19 intubated patients (but among the dozen deaths, each of his last seven patients died).

Figure-8: Nurses at the Royal Alexandra Hospital for Children, Sydney

Nurses at the Royal Alexandra Hospital for Children, Sydney, attending a child with an O’Dwyer tube. With thanks to Michael Cooper of the Australian and New Zealand College of Anaesthetists, for supplying the photo taken by an unnamed photographer. Year is unknown, early 20th century is likely.

Michael Cooper (historian, Australian and New Zealand College of Anaesthetists) wrote to me, 2007, ‘Turner is supposed to have used the O’Dwyer tubes but does not actually mention it in his article’ – but then, neither does
Clubbe name his tracheotomy tube – although I note in Turner’s report six possible indicators that he used O’Dwyer tubes.

Cooper advised: ‘There was quite a difference of opinion (and therefore practice) between the different states in Australia’. Some authors presented balanced viewpoints: ‘Intubation can always be followed by tracheotomy, if advisable’; ‘Tracheotomy and intubation should never be looked on as rivals, they are both very valuable operations’ (tracheotomy could provide valuable access for bronchial toileting). AJ Wood provides a thoughtful analysis.

Rod Westhorpe (historian, Australian and New Zealand College of Anaesthetists) cites FVG (Frank) Scholes at the Fairfield Hospital, Melbourne, reporting a series of patients with laryngeal diphtheritic obstruction being treated there in the 1920s still with O’Dwyer tubes. At the time of his book’s second edition in 1927, a series totalling 1127 patients had 16.3% non-survivors, compared with 58.7% deaths after 92 tracheotomies for the same condition. Scholes was taught the use of O’Dwyer tubes by Jefferis Turner, who was taught by O’Dwyer himself.
Chapter 2: George Edward Fell

‘It is no exaggeration to say that George Fell was the pioneer of long-term ventilatory assistance.’

Michael Goerig et al. 1987

19th century pioneering of intensive therapy in North America
Chapter 2: Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Introduction</td>
<td>32</td>
</tr>
<tr>
<td>2.2 George Fell: a brief biography</td>
<td>32</td>
</tr>
<tr>
<td>2.3 Details of Fell’s landmark IPPV case</td>
<td>34</td>
</tr>
<tr>
<td>2.3.1 The history of Fell’s Case-1</td>
<td>37</td>
</tr>
<tr>
<td>2.3.2 Presentation to conferences and documentation</td>
<td>37</td>
</tr>
<tr>
<td>2.3.3 George Fell’s conclusions</td>
<td>38</td>
</tr>
<tr>
<td>2.4 Further use of forced respiration</td>
<td>40</td>
</tr>
<tr>
<td>2.4.1 George Fell’s conclusions</td>
<td>41</td>
</tr>
<tr>
<td>2.5 Critical illnesses in Fell’s patients</td>
<td>42</td>
</tr>
<tr>
<td>2.6 Fell on intubation versus tracheotomy for forced respiration</td>
<td>44</td>
</tr>
<tr>
<td>2.6.1 Further on Fell’s opinion on face mask versus tracheotomy for forced respiration</td>
<td>45</td>
</tr>
<tr>
<td>2.6.2 Fell and mouth to mouth rescue breathing</td>
<td>47</td>
</tr>
<tr>
<td>2.7 Fell’s recruiting of collaborators, and his disappointments</td>
<td>47</td>
</tr>
<tr>
<td>2.8 Wider applications of the Fell method</td>
<td>48</td>
</tr>
<tr>
<td>2.9 Intracranial disasters and neurosurgery</td>
<td>49</td>
</tr>
<tr>
<td>2.10 Intrathoracic surgery</td>
<td>50</td>
</tr>
<tr>
<td>2.11 Fell and his priority rights</td>
<td>50</td>
</tr>
<tr>
<td>2.11.1 What followed for George Fell?</td>
<td>51</td>
</tr>
<tr>
<td>2.12 To summarise – primitive intensive care medicine</td>
<td>52</td>
</tr>
<tr>
<td>Addendum-1. Some George Fell aphorisms</td>
<td>54</td>
</tr>
<tr>
<td>Addendum-2. Some individual case histories of forced respiration</td>
<td>55</td>
</tr>
</tbody>
</table>
2.1 Introduction
The beginnings of intensive care medicine (ICM) during the early 1950s lay in meeting the need for ventilatory support in life-threatening impairment or loss of spontaneous breathing. The foundation of that service featured twin interventions: endotracheal intubation and IPPV (intermittent positive pressure ventilation). However, already well over half a century earlier during the 1880s, Joseph O'Dwyer and George Edward Fell identified the need to supply such interventions. They devised, introduced and further developed equipment for the purpose. That was three decades after Marshal Hall’s 1856 strictures against ‘forcing methods’ which used bellows for artificial ventilation, had led to these being virtually abandoned, while too often, various arm-chest manoeuvres used instead proved inadequate. After physician and engineer Dr George Fell of Buffalo, New York (1849-1918), failed to save the life of an opiate-poisoned patient using the popular Silvester resuscitation method, he resolved to try the artificial ventilation method of bellows and a tracheotomy which he had been employing in his animal laboratory. Following first success in a landmark case, 1887, he better adapted his apparatus for use in humans and was soon succeeding with further difficult challenges. However, his reports of successful rescues to prestigious Washington conferences met derision, 1887, and indifference, 1893 – although by the latter year he could detail 28 ‘human lives saved’, mostly after opiate poisoning. He also switched to using face masks in place of creating a tracheotomy as simpler, but found a few complications produced.

The quotation heading this paper certainly rings true, and we can acknowledge Fell and O'Dwyer as pioneers for anticipating the further development of IPPV. Although the invention of apparatus for intubation and for IPPV represented significant advances for anaesthesia, in the first instance these devices were designed for intensive therapy-type interventions on patients critically ill with life-threatening conditions.

Joseph O'Dwyer and George Fell have both been regarded as pioneers by other specialties: O'Dwyer by paediatricians and otolaryngologists; Fell by anaesthetists, especially thoracic anaesthetists, and therefore by thoracic surgeons. Their ICM credentials could be better recognised within our own specialty, and we could reclaim them as ICM heroes. Their individual and joint stories may have been told before, especially O'Dwyer’s, but apart from Fell’s own publications there appears to be limited writing on his work. Most texts of anaesthesia history make only perfunctory reference, if any, to either of them, with fuller attention only occasionally,153,154 usually in terms of that combination of apparatus bearing both their names (the Fell-O'Dwyer apparatus). I detail the pair’s struggles and successes in the use of their equipment for conditions we treat today in the intensive care unit. And there is a third man to be honoured, William Perry Northrup, O'Dwyer's enthusiastic supporter, who was involved in early use of the combination Fell-O'Dwyer apparatus for ICM-type cases.

This second tribute is devoted to George Fell and describes his landmark IPPV case in 1887,155 his other ‘forced respiration’ patients,156-166 his practice, and place in ICM history. His achievements are summarised in Box-1.

2.2 George Fell: a brief biography
George Fell (see Figure-1166) although born in Chippewa, Ontario, Canada, on 10 July 1849,168 initially qualified as an engineer at the University of Buffalo, New York. By age 20, he had ‘placed [the] first crib of the great Buffalo Breakwater’.168 A decade later he was an organiser of the first American Microscopical Congress, 1879, and a founding member of the American Society of Microscopists, then for nine years its first treasurer (noted as such by Science Aug.7th1880) and custodian. Besides working as assistant United States engineer on the Ontario-New
York State International Bridge at Buffalo (1879), he graduated in medicine ‘with highest honours’ \(^{168}\) from the University of Buffalo in February 1882; his thesis was the *Histology of aneurismal clots*. In 1884, he was elected to the Chair of Physiology and Microscopy at Niagara University (1885-1895). From his experiments with dogs which had developed apnoea from an excess of anaesthetic agents, he became ‘conversant’ \(^{155}[p 149]\) with a method of applying IPPV with household bellows through a tracheotomy. Fell came to call the procedure ‘forced respiration’ (FR), ‘to distinguish it from the ordinary methods of artificial respiration’ (AV). \(^{155}[p 147]\) From that experience with mammalian animals Fell considered that ‘if the respirations could be kept up by suitable means for a sufficient time to permit the elimination of the poison, life might be saved’ \(^{155}[p 149]\) – the ICM tactic now used, *inter alia*, for opiate overdosage in humans.

Box-1. Fell’s achievements in ‘forced respiration’

- Developed an apparatus for human forced respiration, based on eight years’ laboratory experience of animal vivisection.
- Demonstrated lives could be saved by forced respiration when conventional methods of artificial respiration had failed.
- Advocated meticulous care and attention to the apparatus, kept in full preparedness for emergencies.
- Advocated supplying treatment first on-site, because time would be lost in transfer to hospital. \(^{165}[p 171]\)
- Emphasised teamwork and utilised groups of colleagues and students for cases requiring prolonged treatment.
- Substituted a face cup or face mask to enable forced respiration without a tracheotomy to be used more readily by physicians and lay lifesavers.
- Advocated that every medical student in the country be required to possess the knowledge ‘to utilize the apparatus’. \(^{165}[p 170]\)
- Advocated use of forced respiration for breathing failure with a wider range of causes than opiate poisoning alone (e.g., for drowning, or asphyxias)
- Foresaw application of forced respiration for neurosurgery, and by ‘adaptation of etherisation to the technique’, in thoracic surgery.

Figure-1: Portrait of George Fell

Details of Fell’s first case on 23 July 1887, with its ‘saving of a human life’,155 represents a distinct advance. During the next 13 years, Fell documented in meticulous detail156-166 his clinical rationales, his apparatus, his successes and his progress with FR (using what he called ‘the Fell method’) for over 30 other patients, including some rescue efforts also reported by others (see Addenda1 and 2). Nonetheless, he suffered disappointing setbacks from severe criticism, and great derision on presenting his pioneering case, 7th September 1887 at the 9th International Medical Congress held in Washington, DC159[p326],[161[p342] By June 1891, although he could claim FR was ‘at last beginning to be noticed both on this and the other side of the Atlantic’ [i.e., Paris],161[p342] uptake in his own country was limited, yet apparently well enough known in Buffalo. From his account he was still highly frustrated by the time of the 1893 Pan-American Medical Congress, when presenting 28 case histories163A[p74].169169

Fell documented two spectacular cases, 1896,164 1899,165 but after then does not appear to feature again in medical literature until 1910, when he produced two articles,166 one of which was readily available. Eight years later, after several years of bad health Fell died, with the causes variously given as ‘of paralysis’,168 or ‘dilatation of the heart’.169 A medical obituary could claim, ‘\textit{He gave his [FR] discovery to the cause of humanity and has made nothing from his work}.’168

Besides his pioneering medical work, Fell also continued contributing to engineering projects, some amid controversy, and some of great financial value to government agencies. These are mentioned in his obituary in the \textit{Buffalo Medical Journal}168 (as the journal which featured his original medical triumph was renamed). Fell was also inventive. In 1888, a New York State ‘commission...asked Dr George Fell of Buffalo to redesign [Harold] Brown’s electric chair’, as yet unused.170 Because Fell’s interest was a humane one, he conducted the preliminary scientific, animal ‘vivisection experiments’ he considered necessary; and after the first punitive electrocution (of a condemned murderer, on 6th August 1890), a remark, ‘The man never suffered a bit of pain!’, was attributed to ‘George Fell, executioner’s assistan[t] to first electrocution’ (yet the botched, first application of electricity to the prisoner had needed repeating).171 His other accomplishments included the first ‘\textit{simple, inexpensive practical submarine life-preserver using a face mask},’168 one ‘\textit{whereby an individual may remain under water a considerable time without danger}’169.

\subsection*{2.3 Details of Fell’s landmark IPPV case}

In 1886 ‘opiates could be freely purchased by the public’.172 Three years later, Fell recorded that for ‘\textit{the many cases of morphine poisoning, reported almost daily through the press, from San Francisco to Portland, ME, in which it has been frequently stated that every means was taken to save life (except forced respiration)},’ physicians were starting to recognise that his FR could be life-saving. However, they ‘generally fail to be forearmed’.158[p317] Three years later, he declared that ‘the old methods [of artificial respiration] have failed’ for drowning as well as for narcotic poisoning.162[p130]

On 22 June 1886, Fell along with other physicians attended the attempted resuscitation of a man who had taken an overdose of morphine, for whom conventional measures, including ‘\textit{artificial respiration by Sylvester’s [sic] method},’ failed to prevent ‘the inevitable. At this time, I [Fell] felt keenly the inadequacy of the methods at our command, and then resolved, if opportunity ever offered, to make the operation... which... might have saved Mr Dyke’s life’.165[p147]
(Fell used ‘making an operation’ as his regular term for applying FR). He wrote157[p41] later that he made this resolution ‘then and there’, at the time of the failed resuscitation of Mr Dyke, and ‘thoroughly considered it, for fully a year’159[p326].

From his foundation Chair of Physiology and Microscopy in the Medical Department of Niagara University, over eight years,160[p180] Fell ‘many times157[p38] had practical experience with artificial ventilation for anesthetic-induced breathing failure in laboratory dogs, and also in FR for these dogs pre-terminaly, with ‘the thorax opened for exhibiting the thoracic viscera in action’157[p39-9]. The artificial ventilation on dogs was by an FR method taught there for 20 years,157[p38-9] but Fell observed he had ‘never heard it even hinted that a human life might be saved by the laboratory methods’160[p180] His department’s method of FR for animals required a simple fireside bellows, the nozzle of which was ligatured into the opening made in the trachea.157[p53] Fell wrote that in the laboratory he always used foot bellows.157[p55] Rubber tubing connected the bellows to a cumbersome and weighty ‘one piece’ unit, comprising a directional control valve and a large, brass tracheotomy tube160 (see Figure-2). The stopcock on the troublesome valve (illustrated in his 1910 article in Surgery Gynecology and Obstetrics;166 Figure-2A) had to be turned by hand for each inspiration and again for each expiration, making it very difficult to avoid wrenching the trachea with each twist.

Although Fell was ‘unable to find a case in which forced respiration has been used upon a human subject in opium poisoning’155[p148] he believed that FR could be used. ‘The prevailing opinion at that time was that the air vesicles of the lungs would not resist forcible mechanical measures in artificial respiration’164[p760] Fell attributed such dogma to the currently-held strictures of Marshall Hall, then ‘the highest accepted authority’,160[p180] to avoid ‘the use of ‘bellows or any forcing instrument’156[p352],174 (see Footnote-1). Although it appears he made no actual advanced preparations, Fell mulled over his ideas of intervention for a year.159[p326] Then on 23rd July 1887, he was called to a man, a near-alcoholic, deeply narcotised from opium poisoning. Fell’s successful management produced a landmark case in the history of IPPV and ICM: he later claimed that the application of FR ‘per tracheotomy in the treatment of narcotism from opium or morphia appears to be original with myself’157[p40] His success, after artificial respiration by others present had failed, demonstrated the possibility of saving a life by FR without the feared destruction of the ‘delicate vesicles of the lung’ (see Footnote-2).

\textbf{Footnote-1.} Fell appeared almost to resent the thrall in which others held Marshal Hall’s ideas for resuscitation; the feature he objected to particularly was the ‘special stress upon the inadvisability of using any ‘forcing’ measures or ‘instrument’157[p37]. The resultant use of various methods of artificial respiration was too often ineffectual, short-lived due to a rescuer’s exhaustion, or unsuitable for longer-term use (e.g., when needed for more than a day, not just many hours). Later, although the method of artificial respiration used – usually Silvester’s – was often ineffectual, Fell’s method received only limited acceptance, even after he had demonstrated that it did succeed. However, Hall had emphasised worthy points173 such as on-site immediacy and the prone posture for airway protection, and his method had saved lives.

\textbf{Footnote-2.} Fell, by directly quoting Horatio Wood (1841-1920) in one of his articles,156[p325] did concede that life had been saved by artificial respiration after poisoning. ‘In 1875 (Boston Medical Journal, Vol. xxii.) Dr. John Ellis Blake reported a case of aconite poisoning in which, although there was no pulse for over three hours, ‘life was saved by artificial respiration [not by FR], with the use of oxygen’. However, this must be an erroneous reference. Volume xxii is for 1839-1840, Aug-Feb, while the index of 1875’s volume xcii, Jan-Jun, has no aconite case nor any Dr JE Blake listed.
Fell frequently mentions the contrast between the passive FR patient, and the patient receiving manual artificial respiration, the latter being ‘tugged, squeezed, and rolled about, according to the method employed’.

Figure-2: Some of Fell’s apparatus for forced respiration (photographed by Fell personally)

A. Fell’s historic apparatus from his animal laboratory used in his landmark case of forced respiration, 1887.
B. Tracheotomy tube and airway-sealing tube rings.
C. Fell’s first ‘air cup or face mask’.
D. Fell’s endotracheal tube, a rubber tube loosely fitting into brass tubing (on the mid and right) compared with Joseph O’Dwyer’s intralaryngeal brass tube with a conical screw-on tip of steel or vulcanite (on the left).

From *Surg Gynec Obstet* 1910; 10: 578 (fig.11), 580 (fig.18), 577 (fig.3A), 580 (fig.16-7); with thanks to the American College of Surgeons.

Figure-3: Title Heading of George Fell’s Landmark Case-History

Original Communications.

FORCED RESPIRATION IN OPIUM POISONING—ITS POSSIBILITIES, AND THE APPARATUS BEST ADAPTED TO PRODUCE IT.

By GEO. L. FELL, M. D., F. R. M. S.,
Professor of Physiology and Microscopy, Medical Department of Niagara University, Fellow of the New York State Medical Association, President of the Buffalo Mornometal Club, Physician to Stewon of Charity Hospital, etc., Buffalo, N. Y.

Title heading of Fell’s article on his first use of forced respiration in the Buffalo Medical and Surgical Journal of November 1887; 28 (4):145. (The crossing-out mark which appears on repeat copies would appear to suggest a librarian has detected the volume number XXVIII is incorrect. My own librarian’s investigation showed this volume’s true number is 27 not 28 for issue 4 of Nov. 1887.). With thanks to Warren Publishers of Buffalo, New York.
2.3.1 The history of Fell’s Case

Fell and others attended ‘Mr PB’ about seven hours after the latter had ingested morphine (later estimated to be 20 grains [=1296 mg]) ‘and some chloral’. He first tried simple measures, including dressing the patient and forced-walking him in the cold air (a move also used for barbiturate poisoning, 1940-1950), then resorted to Silvester’s artificial respiration until he was too exhausted, and eventually gave up his efforts. With PB’s respiratory rate and pulse respectively at five and 200 per minute, the doctors declared him unable to survive, last rites were administered, and the death certificate started in anticipation. Fell left after about five hours in all, of care. Later, Professor (of Materia Medica) FR Campbell was called and found PB still alive, breathing once a minute, so had Fell wakened (after less than three hours’ sleep). When they noted the patient’s pupils at the near-final stage of the ‘dilatation of asphyxia’, Campbell observed, ‘We can do nothing more’.

Fell then offered to try the methods he knew from using them on dogs. He went to his nearby laboratory, returning with a ‘tracheal tube covered with dog hair and blood’, fresh from ‘electrical experiments [his electric chair ones?] on a dog... a few days before this’, which he cleaned. With further assistance now available he performed a low tracheotomy, during which (he later said) ‘I felt that I was making the operation upon a cadaver and worked accordingly; also ‘placing with the greatest difficulty’ a ligature around the trachea to seal off the upper airway from below. The patient was then very dusky, while Fell noted ‘no respiratory effort had been made for some time’. (One may wonder why the patient had not developed cardiac arrest after such apnoea but Fell is very firm about his patient’s clinical state).

When FR was established (only after difficulty), PB’s blood became ‘more arterial’, but no spontaneous breathing attempts were detected for at least 30 minutes; then ‘after about two hours work... natural respirations [gradually returned to] almost normal’. But the patient could not sustain them adequately because of the handicap to breathing from the small opening in the side of the valve (‘one-eighth by one-half inch or one and four-tenths by three-tenths mm’). ‘Only a small portion of the expired air could pass through it, so that a large percentage had to escape by the side of the canula’. Haemorrhaging from the stoma followed the patient’s restlessly moving about, but three soldiers living in the house restrained him. After 2.5 hours of FR, the ‘cumbersome’ tracheal tube of the respiratory apparatus was changed for an ‘ordinary’ tracheotomy tube (i.e., one with an inner cannula), and spontaneous breathing was allowed. The patient recovered, despite a relapse to breathing at a rate of six breaths per minute about 24 hours after the operation, and a bad attack of delirium tremens.

Fell’s account is detailed. He later wrote ‘...when I made my first operation it was with incomplete apparatus, and it was surprising on this account that I did not lose the case.’ Thus Fell ‘saved a life which [he] had thought there was no possibility of saving’.

His comment, ‘Had I failed it probably would have “settled” the question of forced respiration’ can bring to mind what could have happened to Bjørn Ibsen on 27th August 1952, if his intervention of tracheotomy and manual IPPV for a moribund girl with breathing inadequacy from poliomyelitis, had failed. (See Chapter-7).

2.3.2 Presentation to conferences and documentation

Within two months, Fell presented his case to an international audience in Washington (on 7th September 1887), ‘but received only humiliation’, which he described later in 1891 (See Footnote-3). Four months after this rescue,
November 1887, Fell had his case history published\(^{155}\) (see Figure-3), together with certain recommended changes necessary to repair the deficiencies of the animal apparatus. ‘The laboratory apparatus used at the time merely demonstrated the value and safety of the [FR] principle.’\(^{164}[p.760]\)

2.3.3 George Fell’s conclusions

From his successful treatment, Fell arrived at certain conclusions:\(^{155}[p.155-6]\)

- Improvements to his animal apparatus, especially to the valve, were needed for using it on humans - he had them set out clearly by December 1888.\(^{157}[p.660]\) Also:
 - Cold air could be warmed by passage through a vessel of heated water; and
 - A tracheal tube could be secured in place by annular corrugations or a rubber tampon.
- Pure oxygen is not necessary for breathing failure treated by FR (he later revoked this conclusion).
- Judgement is needed to prevent over-inflation of the lungs.
- The FR apparatus (without its air heater) can be fitted into a portable bag suitable for emergencies.
- Employing his apparatus with a tracheotomy offered, in his opinion, more positive results than it did with intubation of the larynx.
- FR should also be available for ‘almost all varieties of conditions in which artificial respiration has been used, and with the certainty that it will be a more potent means of saving life than the latter’.

Footnote-3 At the 1887 Washington Congress, being ‘acquainted with but very few individuals it was with the greatest difficulty that I had an opportunity to read my paper at all; and what was the most peculiar feature of the whole circumstance was, that, even among a class of men supposed to possess the highest medical knowledge, not any of them saw the point which presented in that first case of forced respiration, in which I breathed for a man two and one-half hours with a tube in his neck. They did not grasp that point. And I now make the statement, without fear of contradiction, that there was not a paper presented at the International Congress at Washington which had a farther reaching import, if to save a human life is desirable, than that little paper on ‘Opium Poisoning’, which I presented – a paper embodying in it demonstrations which would alter and advance one of the greatest medical practices of the day, a practice of wide application. It demonstrated what was not practically accepted in medicine before, that we could force air into the lungs for an almost unlimited period without danger to the delicate lung tissue...’

‘When I managed, however, to read my paper at Washington, they did me the kindness (sic) not to publish it in the proceedings.’ (One can wonder then, does FH Garrison’s citing\(^{179}[p.725]\) of ‘Fell: Tr. Internat. Med. Cong. Wash., 1887, I, 237’ refer simply to the agenda?). In the ‘brief discussion’ following Fell’s delivery, several physicians claimed to Fell that his FR treatment was not needed, or that Silvester’s artificial respiration would have accomplished as much.\(^{157}[p.37]\)

From discussions with organisers of the Congress, September 1887 Fell concluded: ‘After I had saved my third life [December 1887], however, by forced respiration, and the world could not question methods which were so positive in their demonstrations, and so undeniably original, there not being a similar case on record, it was evident my paper was either not carefully read, or the principal point conveyed by it was not grasped by the members of the committee.’\(^{158}[p.326-7]\)
Fell described his refurbished apparatus (see Figure-4), as covering all requirements for FR by ‘the most simple method possible’. The bellows, ‘with a rubber equalizer’ (as he had used with the animal bellows), allowed a ‘steady, instead of an interrupted or jerky column of air’; the air is ‘rhythmically presented’ with ‘proper periodic intermission’. The cumbersome air-control valve was replaced by a two-way valve ‘on the cornet-piston order’, which was opened or closed by the movement of the fingertip, offering ‘absolutely no interference with the auto-respiration’. With the valve, ‘the air can pass in and out of the lungs at all times, except during the forcible inspiration’. The stopcock of the valve now turned only one way. A new flexible connecting tube inserted between the valve and the tracheotomy tube precluded the previous wrenching on the trachea from the need to twist the stopcock twice for each full manoeuvre to have a breath to pass in and to pass out of the lung at all times.

An assistant could pump the bellows, worked by foot or hand power (‘anyone can’); the doctor would finger-control the valve for each insufflating breath, with (for example) two or three bellows movements both during the inspiration and during the expiration time. The ‘gearing’ measures to control the rate of breathing seem complicated (at least to this writer): for example, for FR Patient-5, Fell noted the ‘bellows working at the rate of 108 movements per minute, patient by this means receiving 21 respirations to the minute’.

Figure-4: Fell’s modification of his ‘forced respiration’ system for animals adapted for use with humans

A. Modified apparatus for ‘forced respiration’, comprising:
1. double bellows or air supply device;
2. air valves with oxygen and anaesthetic tubes;
3. air cup or face mask, intubation tube etc;
4. oxygen supply apparatus;
5. anaesthetic container;
6. rubber manometer;
7. three-way connections; and
8. Maelzel metronome.

B. Fell’s air valve, 1887.

From *Surg Gynec Obstet* 1910; 10: 577 (fig.1-9), 577 (figure-8A)

With thanks to the American College of Surgeons.
2.4 Further use of forced respiration

In the presence of four physicians on 10 December 1887,157 Fell for the first time163[FN] used ‘his’ apparatus (the animal set, now refined for use on humans) successfully for a ‘difficult case’ of laudanum poisoning; but only after refraining from intervention for as long as the others thought they could succeed with artificial respiration. ‘Time was [first] given to demonstrate beyond question the uselessness of the artificial respiration [as cyanosis continued], until it was feared the patient might succumb before the forced respirations could be applied’.156[p347-8] Bleeding blocking the tracheal tube with some aspirated necessitated a second ligature, around the trachea and tightened. ‘I was urged to discontinue the respirations on account of the case’s being considered hopeless.’ He did so at one stage, but ‘The man was not dead, and we had to keep it up’.157[p48] After such long hours of work (14.5 hours of FR), Fell suggested that electromotive power be substituted for hand power in future.

In documenting this patient, March 1888,156 Fell emphasised the curious dissociation of returning consciousness, from a respiratory drive which did not match it. Presumably to gain extra evidence for his artificial ventilation method, he labelled this FR patient – his second - as ‘Case 3’ of FR (see Footnote-4). Fell called for his apparatus to be used in cases of drowning,156[p349-FN] and then wrote ‘we shall find it a favourable field’ for use of FR, again that year.157[p64]

With the completion of treatment of Fell’s next overdose patient, his third successive difficult one, needing 24 hours of FR, January 1888, he had ‘saved three human lives after all the usual methods had failed’,157[p38] with ‘all successful under most adverse conditions’. He wrote that the efforts for his ‘second and third cases would surely have failed’ if he had not modified his original laboratory animal apparatus.161[p343] Fell estimated that the saving of the first three lives represented a $23,000 boon for the insurance companies.157[p50]

\textbf{Footnote-4. Forced respiration (FR) Case-2 (in Europe):} Fell cited a successful Viennese instance of FR, 21 September 1887, per tracheotomy for narcotic poisoning, soon reported in The Lancet of 15 October (within the section on ‘The Medical Societies’174[p776] and not found readily), then with more details in 1889 from Professor Boehm.158[p316] Fell later appeared delighted at the Austrian success of tracheotomy with FR; but without actually claiming credit for it, Fell did not hesitate to state157[p44] that the Vienna case occurred ‘after the reports of my first case (read before a section of the Medical Congress at Washington [that September]) had appeared in the medical journals’ – although Boehm did not mention either the Washington Congress or the Buffalo Medical Journal. Nor did Boehm write that he conducted the treatment himself, so possibly rescue of the patient was achieved through the action of some other person. For that time, it is not clear whether this FR rescue was a unique incident in Europe or whether FR practice was better known there. Certainly by June 1891 Fell could find ‘his’ FR being described in the reports of the Paris Academy of Medicine.161[p342] And by that year in the United States, ‘fourteen human lives which otherwise would have been sacrificed’ were ‘saved by several physicians who have utilised my methods’.160[p176]
2.4.1 George Fell’s conclusions

Fell’s professional report at the end of 1888, taking stock of his patients to date (aged 18 days to 80 years), set out principles and practicalities worthy of an early intensivist:

- The 10 essential principles he required for FR in man.
- The physical composition of his apparatus (see Footnote-5).
- The need for suitable timing for intervention with FR, which is something more than a last resort compared with artificial respiration.
- The emphasis on the need for preparedness of equipment and teamwork in using it
- The anticipated usefulness of FR for drowning (and almost all cases of asphyxia), if the opposition of the great majority of the medical fraternity to tracheotomy could be bypassed by oral intubation of the larynx or trachea. Fell carefully described the technique for intubation.
- The usefulness of FR in shock, demonstrated in his second and third applications of it. He implied that FR ‘may give us results in shock to be attained by no other means, or may serve as an accessory to other methods to overcoming this bane of surgical progress’. For his times, brave predictions indeed.

After publishing his initial two successes, Fell numbered and meticulously documented those subsequent FR patients of whom he had details, into successive grouping designated Patients 4-6 in December 1888, Patients 7-10 in 1889; Patients 11-22 in 1899 (by this time, with ‘the saving of fourteen human lives’); Patients 20-25 in 1892 (with now 19 lives saved); and from his presentation to the Pan-American Conference at Washington, 7 September 1893, Patients 1-28 (plus other doctors’ Patients 29-44) in 1894.

Over a spread of eight years, the journals featuring these case histories were progressively more prestigious: the hometown Buffalo Medical Journal was followed by the Transactions of the New York State Medical Association in 1888, 1889 and 1891, the Archives of Pediatrics in 1892, then the Journal of the American Medical Association in 1891 and 1892. Later came the Canada Medical Record in 1894, the Medical Record (Philadelphia, PA) in 1896, and Medical Examiner (NY) in 1899. Many of the publications appear to have excess material repeated from previous reporting, but often that would arise from articles being textual renditions of addresses delivered by Fell to societies.

Thus FR Patients 4-6 were published in December 1888, with Patients 1-3 recapitulated; and Patients 1-10 were repeated with Patient 15 in 1891.

Footnote-5. Fell’s FR apparatus now comprised:

- air-forcing apparatus, laboratory or hand or foot bellows, with a rubber equaliser;
- air-warming apparatus, per a water-containing copper vessel, and an alcohol heating-lamp;
- air-valve, now with a piston instead of a tap to inject a forced breath;
- tracheotomy tube and a set of sized, circumferential rings to seal off the upper airway;
- connecting rubber tubes allowing free movement and flexibility;
- Fell disposed of a second bellows being used for forced evacuation of the inflated lungs [as had been methods of John Hunter and others] as ‘a grave defect’, and he devised artificial lungs to study ventilation.
Fell's dismal failure to convince his international audience at Washington in 1887 has been referred to; he was much more reticent about the reception of his 1893 presentation in the same city, the text of which - in the Canada Medical Record 163A-C – was accompanied by his observation that ‘the majority of the members of the Congress appear to know very little regarding the work accomplished by the methods described.’163A[p74] He did receive a few appropriate questions and a recommendation from ‘the worthy president of this body’,163C[p127] but recorded that ‘No special recognition which has resulted in calling the method into general use has resulted’. In this article, Fell very fully describes the FR patients to date, Patients 1-28, with unhesitating recapitulation from earlier papers; he says he ‘reported in detail simply to silence all doubters’.163[p74] What he called ‘my method’ (first noted in 1891160[p181]), he changed to the ‘Fell method’ from 1893.

After 1894, Fell did not individually number the multiple patients in his next two articles: one from 1896,164 describing use of FR for instances of various anaesthetic overdosings (by ether, chloroform or nitrous oxide); the other in 1899.165 Each article contained a prolonged account of a spectacular and lengthy case. Perhaps the number of patients was becoming too unwieldy to describe each individually, as in May 1896 he wrote (without offering further evidence for the number), ‘some one hundred human lives, which would certainly have been sacrificed by the methods at the command of the profession at the time, have been saved [since December 10, 1887] through forced respiration. Most of these cases have been saved at my hands with few exceptions in the city of Buffalo’.164[p760] Fell referred to the ‘saving of a human life’ in all his articles, almost as if by rote, and although that may become mildly irritating it does make his point. By 1899, he claimed FR had ‘saved a few hundreds of human lives and is destined to save thousands’.165[p170]

Brief notes for some of the case histories (Patients 1-28) are shown in Appendices 1 and 2 (also see Footnote-6), together with accounts of the two remarkable cases of 1896 and 1899, respectively – remarkable considering their times and the level of medical knowledge then available for treating critical states. After a decade apparently without his writing further (see Appendices 1 and 2), what seems to be Fell’s last FR medical report appeared in 1910.166

2.5 Critical illnesses in Fell’s patients

The numbered FR patients referred to hereafter in this paragraph are described individually by Fell in reference 164 and Footnote-6 (also see Addenda-1 and 2). Most of Fell’s successes were with ‘cases of opium narcosis’,161[p346] and many patients had deteriorated to a truly desperate condition by the time Fell was called. Often, other medical attendants had quite written-off the patient’s chance of survival. Some patients had co-morbidity (in his reports, e.g., Patient-4 receiving FR), or were elderly (Patient-21, of 78 years; Patient-19 [with a HgCl₂ fatality], of 73 years; and Patient 5, of 80 years). All but one of the first 11 patients were poisoned by opium or its derivatives, and three of these (Patients-1, 7 fatally, and 9) had near-terminal dilatation of the pupils. Some patients had advanced ventilatory failure with breathing rates of 1-5 breaths per minute (and breathing was described as absent for Patient-1); another, Patient-22, had Cheyne-Stokes breathing; while cyanosis was common. Others had more than ventilatory problems, such as shock in the instance of Fell’s second success (Patient-3), haemorrhagic shock for Patient-4, some without detectable wrist pulses (Patients-4, 7, 10, 15, 17 and 22), while two patients were convulsing (Patients-6 and 21). Some of the problems resulted from lack of protection of the airway with the use of the face masks, and Fell described severe airway problems for Patients-8 and 21, both requiring ligatures to pull the tongue forward. Patient-18 had anuria, others oliguria.
The efforts of Fell and others at arousing the narcotised were those of the times:

- Emetics were given in the belief that vomiting would stimulate the ‘benumbed’ respiratory centre, where it was possible for the patient to swallow water and mustard with a teaspoon of salt. Otherwise hypodermic apomorphine could be tried.
- Gastric lavage (for Patient-5) then, where possible, gastric fluids (even food).
- Repeated enemas.
- Other agents dismissed nowadays (except the last of these) might also be used:
 - ‘Stimulants’ such as coffee (about one strong pint for Patient-20 after gastric lavage), strychnine, brandy, belladonna, atropia and digitalis.
 - ‘Faradisation’, applied by a helpful colleague for Patient-15 (after Fell had already rescued her), but unfortunately fatally.
 - Blood-letting for Patient-23. Fell regretted he had not provided this in Patient-21 who was a 78-year-old person who had taken an overdose of gum-opium, with ‘intense congestion of the encephalonic vessels’.
 - ‘Saline infusion by the transfusion method’ for shock (Patient-4), but that brought later complications.

Misadventure seems to have caused death in at least three patients: Patients 6 and 19 (both irremediable from the prescription errors of others), and Patient-15; but for Patients-18 and 21 death was probably ill-fortune. The numbering of FR patients as in Addendum-1 is Fell’s own.

An entry portal was provided for Fell’s FR system to supply oxygen (from a cylinder) into the apparatus when that was needed, but its use was specified only for Patient-18, and for the two patients who received several days of FR (also see Addendum-1 and 2): Dr Henry Williams, in a ‘desperate condition’; and Raymond Archer, on whom the ‘unquestioned practical demonstration of the value of the method’ was in evidence – although there was also the ‘unnerving’ complication of rupturing of the bellows during FR which he wrote required an [estimated] 525,000 ‘movements’. (Previously, ‘108 movements per minute... provided the patient 21 respirations to the minute’).

Fell reported that he was frequently questioned about lung complications, but he asserted: ‘in not one of the many cases [with FR supplied for between two and 78 hours] has any lung complication of any consequence been produced’ – presumably referring to survivors – since ‘no over-inflation of lungs is produced’.

Different complications occurred in Patients-18 and 21, as per Footnote-6.

Footnote-6. Fell’s 1894 article in the Canada Medical Record supplies details of 28 FR cases, which include nine from other rescuers (numbers 2, 12, 13, 14, 16, 20, 25, (?26 and 27); while brief notes are supplied on a further 16 (numbers 29-44) from Buffalo’s Fitch Accident Hospital. The article’s title includes ‘the saving of 28 lives’. The 28 FR cases and these 28 survivors are not synonymous, as casual reading might expect. Among the FR Cases 1-28, there were 19 survivors, and the title’s total of 28 can be arrived at only by adding the nine survivors from the Fitch series.
2.6 Fell on intubation versus tracheotomy for forced respiration

After Fell’s experience of his first six FR patients, it must have seemed obvious to him that a factor strongly deterring other physicians from following his treatment mode was that his method required a tracheotomy which, in those times many (understandably) would shrink from attempting, or would object to. ‘Where tracheotomy is necessary, owing to the objection of the great majority of the medical fraternity to cutting operations, it may not be generally used.’157[p64] He pointed out early (1888) that in ‘drowning [particularly] and many other cases’ tracheotomy need not be performed, and FR ‘may be applied by intubation of larynx or trachea’.157[p64] (This was still likely to be a difficult task for most doctors). He then set out clearly the technique of intubating, using a tracheal tube of flexible rubber, and also how to secure it, but did not indicate whether he had already done that himself.

After Patient-15 (March 1891), Fell declared that, based on his experience with a dozen living beings (they could hardly have been drowning victims only), he was not as yet recommending intubation because ‘there are many cases, in fact [I] have seen many, where it was not practicable owing to the difficulty of intubating the larynx’. And he stated his belief, based on Patient-15, that ‘in a long continued operation it is possible to breathe for the patient more easily and thoroughly by resorting to tracheotomy’.159[p329] This contradicted the statements of Professor Horatio Wood of Philadelphia when promoting Fell’s method to the Berlin International Medical Congress (25th August 1890).159[p325] There Wood insisted that if there was failure with the usually satisfactory face mask (which he described as ‘all that is necessary’ for artificial respiration – but only after he had switched to endorsing face masks instead of tracheotomy), then an intubation tube could replace it. Fell recognised the dangers of inflating the stomach and intestines when using a face mask (‘too great pressure will distend the oesophagus and inflate the stomach and intestines’ 163C[p125]) and soon experienced serious consequences of that for Patient-18.

After Fell’s first successful case, instead of continuing with his earlier ‘ligature about the trachea to prevent the air from passing up the throat [after the tracheotomy]’, he devised a ring157[p56] (in different sizes: ‘larger or smaller’ 161[p345]) to attach near to the tracheal end of the tracheotomy tube (Figure-3B). From its fitting firmly, the ring also aided retention of the tube, and helped prevent aspiration of stomach content, etc, into the lower airway – yet, fatally, such a ring did not stop aspiration in Fell’s FR Patient-18 (1891). Joseph O’Dwyer had promoted laryngeal intubation for FR,176 by replacing the tracheotomy tube of the Fell system with his own laryngeal tubes, thereby introducing the Fell-O’Dwyer apparatus, as will be described in Chapter-3 of this North American trilogy in medical history.

Among Fell’s objections to intubation, as promoted by O’Dwyer for FR in opiate poisoning, was that it ‘would prevent the imbibing of fluids, through which means we may most readily aid elimination of the poison’, whereas ‘tracheotomy offers more hope for our patient than intubation, as there is no interference with the passage of fluids to the stomach’.161[p347]

(Also it was advantageous against the danger of vomited material entering the larynx).

His viewpoint four years later was that:

\textit{Many lives have been saved by it [face mask or cup] without necessitating the operation of tracheotomy and its use has indicated that intubation is seldom needed, although its value [presumably, of intubation] must not be lost sight of in forced respiration as I intimated in my first writings upon the subject.}164[p760]
With his last publication of new case reports (1899), Fell was also backtracking on his earlier advocacy of intubation for drowning, as ‘the time lost in attempted intubation in drowning cases would make the operation [of intubation] impracticable’ – while the value of the face mask was ‘an hundred fold’ more.

Despite Fell’s arguments, the Fell-O’Dwyer apparatus became established, and Fell obviously came to accept it, since he himself designed a rubber tube for it in 1908 – one extending within the trachea and, as he saw it, less injurious than O’Dwyer’s brass tube with its attached vulcanite tip, which did not pass distally beyond the larynx (see Figure-2D). (But there seems to be no publication from Fell which mentions that he – or anyone else – used one of the Fell endotracheal tubes). By 1910, Fell was prepared to rate an intubation tube equally alongside a tracheotomy tube and an ‘air cup,’ as ‘all of positive value in forced respiration’.

In 1892, by detailing nine points of improvement for his method, Fell three times rebutted ‘Dr. John[sic] O’Dwyer of New York, [who] has given public utterance to the statement which Dr Wood first, and I think unwarrantably, urged’. Wood had indicated at the Berlin Congress, 1890, that ‘Dr Fell’s method... [was] identical with that practiced in the laboratories on lower animals’. Wood escaped lightly – by contrast with the unfortunately savaged O’Dwyer. Notwithstanding Wood’s remarks, Fell still wished ‘to again pay his respects [to him]’. But Fell seems to have missed picking up on O’Dwyer’s remarks repeated by his supporter, WP Northrup, in two of his publications, 1894 and 1896.

By 1893, Fell had changed his earlier opinions, now largely abandoning any form of solely-laryngeal intubation for FR, although he conceded that he had saved life by performing a tracheotomy ‘after the face mask has failed in one or two instances’ because of heavy opiate narcotisation. And ‘as to intubation, it may have its place in some cases of forced respiration, but to urge its value over the use of the face mask when the latter has accomplished so much, is unwarranted’.

2.6.1 Further on Fell’s opinion on face mask versus tracheotomy for forced respiration

When managing Patients-8 and 9, Fell noted that efficacious FR could be supplied – without a tracheotomy – through the tube (from his IPPV apparatus) being sealed into the mouth by closing the nostrils and compressing the mouth around the tube. This was first tried for a stillborn infant (Patient-8), then for an adult male (Patient-9). He saw the possibilities of oral FR by face mask, and first prepared one covering both mouth and nostrils (Figure 2C) to enable FR lasting four hours for Patient-11. Fell later revealed that originally the cup he called the face mask ‘may be made of tin or hard rubber with the edges which are applied to the face or body of wax, which, by heating, will make it conform to the surface of the body’ (see Figure-2C). His face mask system for FR thus came to comprise foot bellows, rubber tube, air control valve, further rubber tubing, then face mask (see Footnote-7).

Footnote-7. Regarding use of the face mask to inflate the lungs, Fell wrote: ‘For each three movements of bellows, press down piston of air valve, which permits the air to pass to the lungs, bulging out the cheeks, and produces an inspiration. If cyanosis does not pass away, make the inspiration a little longer. With the air valve you can absolutely control the outward or inward movement of the air, and by watching, if attempts at respiration should be made by the patient, you can materially assist them and change instantly from one to the other.’ Thus Fell’s FR form of intermittent positive pressure ventilation could convert to what today we could call ‘assisted ventilation’.
Following Fell’s first face mask patient (Patient-11), Dr CR Vanderburgh treated Patients-12-14 successfully with face masks, and Fell treated Patients-15,17-19,21,22,24 and 25.163 However, after Fell re-oxygenated Patient-17 by face mask for three hours, she relapsed to cyanosis, pulselessness and inertness, all of which then indicated to him ‘no hope’. That her condition then improved with FR ‘by tracheotomy over that [FR] produced by the face-mask, was evident’160[p185],163A[p84]. After using a face mask for 11 hours for his next rescue (Patient-18), the amount of air (and oxygen) forced by FR into ‘the stomach and bowels was so great as to markedly distend them, thus interfering to a certain extent with the inflation of the lungs’160[p186]. A tracheotomy then enabled ready inflation, so after the procedure he handed over further treatment to a colleague and students; the patient vomited forcefully, aspirated vomitus, and ‘the labor of 18 hours was lost’. After using an ‘easily applied’ face mask for Patient-19, he used a tracheotomy for the next patient; but in Patient-21 Fell admits ‘a mistake was made’: he kept persisting with a face mask despite airway difficulty requiring a ‘coarse’ tongue ligature, before resorting to tracheotomy, again after 11 hours, which proved a fatal delay.160[p188]

For his very next patient (Patient-22), who had Cheyne-Stokes breathing, Fell indomitably proclaimed ‘the face-mask demonstrated again its great value in a typically appropriate case’ and continued using it. He emphasised that he had demonstrated that FR by use of his face masks had saved many lives with ‘from two to ten hours work’ without a need for a tracheotomy165[p169] (see Figure-5).

Figure-5: Fell’s apparatus for inflating the lungs using a face mask

\textit{From Matas R. JAMA 1900; XXXIV: 1472 (fig 9). With thanks to the American Medical Association.}

With the hindsight from a 21st century perspective, one can wonder how aware Fell was of the increased risks associated with inflation using a face mask, with the airway left unprotected. Possibly he discounted them because a face mask ‘brings the operation [of FR] to that degree of simplicity that it may be readily utilized by physicians unwilling to make tracheotomy’163A[p83]. A few patients suffered typical consequences associated with use of a face mask without intubation: for example, as above,160[p186] having air forced into the stomach and intestines, with associated mortality – despite Fell’s attempt to prevent this by a kind of ‘reversed-Sellick’ manoeuvre (Fell quoted Agnew’s Surgery volume 3, page 88 as describing ‘the larynx pressed back against the oesophagus’157[p39]). One cannot tell in Fell’s personal cases how much his persisting without a tracheotomy was his sheer determination to be ‘right’, or how much was due to his wish to encourage other practitioners to perform FR by their being spared the need for tracheotomy. Although in multiple instances an obstructing tongue was managed by a ligature to pull it forward, there is no mention of jaw lift, or of lateral rather than supine positioning of the patient. Fell does state that extension of the neck was not a completely reliable solution, claiming his tongue ligature had corrected airway obstruction by the tongue in ‘the few cases’161[p348].
Fell developed genuine expertise in the FR method with a face mask, often for prolonged periods, enabling some impressive ‘saves’. He regretted choices that proved fatally unwise (Patients-15, 18 and 21). But adoption of his face mask would change a situation from one requiring an immediate tracheotomy on a moribund or dying patient while time was slipping away (with no lessening of the primary respiratory failure and hypoxia) to one where quickly starting FR using his face mask relieved the acute crisis, allowing a tracheotomy to be performed more safely.

2.6.2 Fell and mouth to mouth rescue breathing
Previously I doubted whether Fell was aware of mouth to mouth ventilation, but can now note that for ‘a case of stillbirth’ (Patient-8) he stated, ‘Previous to my arrival, the nurse had kept up the action of the heart by mouth to mouth insufflation. Cyanosis was extreme. As I did not wish to attempt tracheotomy, for a time I resorted to the same means. This not giving satisfactory results...’. He obtained an immediate change by employing FR through a tube sealed into the mouth, and the success alerted Fell to the possibility of FR without tracheotomy. Obviously, both nurse and doctor were familiar with the mouth to mouth method. (The ever-optimistic Fell even tried to resuscitate an asystolic stillborn baby, 18 June 1888. (p53) Fell makes no mention of mouth to mouth EAV in his 1910 list of methods of ‘artificial respiration’.

2.7 Fell’s recruiting of collaborators, and his disappointments
It is obvious from Fell’s writings that he did endeavour to spread his pioneering message. Once he achieved his own first five successes, he quickly advocated a practice that ‘The only safe rule is to make the attempt [at rescue]’. The case histories reveal that he could be called upon at any time to go to a patient needing ventilatory assistance (‘I have always been ready to aid and assist anyone disposed to utilize the method’), although after an overdose, the calls often came well after midnight. He was also prepared to lend his apparatus to experienced practitioners (‘in Buffalo my apparatus has always been at the disposal of physicians whom I considered capable of using it’). By the time of Patient-10 of 1889, the apparatus had become commercially available, with ‘manufacture...by a responsible firm’, and Fell tried to ensure that the apparatus available be ‘in the simplest manner’. After two years, he reported, ‘lives have been saved by several physicians who have used my methods’, although FR ‘has not yet come into use in [other] fields to which it is admirably adapted’.

Fell clearly spelled out that although there was ‘no impediment in the way of general adoption by the medical profession, no restriction on the manufacture of the apparatus by any instrument maker’, proper practice came ‘only by the skilful use of an apparatus specifically adapted in detail for use upon man, and through practical knowledge which it has taken [Fell] some years to become acquainted with’. He criticised most fully any kind of FR by ‘unskilled persons’ when the life of a human being hinged on it. What was needed was ‘careful attention to the details of practical import...not by slipshod methods which in the past have relegated this operation [FR] to oblivion and which methods some are now trying to revive’. He criticised Wood for advocating ‘cheaper apparatus with common bellows’, but did concede its use for an emergency (although ‘with a feeling of hesitancy’) if nothing else was available.

After the inspector of life-saving stations on the Great Lakes reported that when a tracheotomy was needed that was beyond the capabilities of their crews of professional rescuers, Fell advised that the option of the ‘face cup’
was now ‘the only method which should be used at these stations’, and that method ‘will accomplish more than the best methods of artificial respiration in use in the past’. He advocated ‘a ship’s crew [also being] taught to utilise this valuable method of saving lives’. And for further use, ‘even on the ice, or elsewhere’.

Effective use of any apparatus required it to be available beforehand, yet ‘physicians will generally fail to be forearmed, even if they have been forewarned’. Although he reported two years later that ‘lives have been saved by several physicians who have utilised my methods’, apparently that was for poisoning alone, not for other needs such as drowning, asphyxia or traumatic shock. And by 1891, he could muse that ‘with only 5 or 6 physicians of the 90,000 in this country prepared, as far as I know, to use this method, it would hardly do to... now retire on my laurels’. Lamenting how many saveable lives had been lost from the inertia of physicians, in 1899 he was still ruefully commenting, ‘That it [a rescue by FR] has not come into general use, can only be through the belief of medical practitioners that it will not accomplish all that I have claimed for it’, although ‘there is no impediment in the way of general adoption by the medical profession’. One solution Fell proposed, which evidently fell on deaf ears, was that every medical student in the country be required to know how to use the Fell apparatus.

Fell’s publications repeatedly indicate his disappointment at not being able to penetrate the bulwark of medical conservatism, scepticism, opposition and criticism (e.g., of FR as being ‘unnecessary, useless and unjustifiable’). Many contemporaries could have been put off by the opinionated forthrightness of his messages with such an inconvenient truth – that there were lives out there which could be saved, and were being let go because of timidity or lack of willingness to intervene. But what would have seemed worse – it must have produced outright fury among his readers – was his 1899 aggressive accusation of the ‘almost criminal negligence which has so fully taken possession of the medical profession regarding the value of the Fell method of forced respiration’. Further, a medical teacher was ‘committing a woeful sin of omission in turning out students disqualified to practice forced respiration as I have given it to the world’ - certainly strong criticisms. And while Fell knew that his method might seem sinful to those respecting Marshall Hall’s views, he declared, ‘So I am a medical sinner and a bad one, for I glory in my sin, which has now saved a few hundreds of human lives and is destined to save thousands’.

When Fell needed physical help with his own cases, he could call on his students – it seems he formed a band of dedicated assistants, both physicians and students. For his third patient his class of students aided him throughout the night, six students helped for the 1899 patient-Archer, ‘an army’ with Patient-18, while other doctors were often in attendance, to an extreme of a named 20 (plus his loyal team of six medical students) for his famous rescue of Dr Henry Williams, 1896. A dozen hours of FR treatment using a face mask must have been very tiring for the operator, and Fell recognised that this human labour, needing an ‘immense amount of manual energy’, should be supplemented for the physical task. So he had a ‘blower [which had the disadvantage of being noisy] for force purposes run by hand and crank power’. It seems he was not able to realise on his 1888 suggestion to substitute electromotive power for hand-power.

2.8 Wider applications of the Fell method
Fell repeatedly stressed the possible wider applications of his method. Already with the report of his second success, Patient-3, he was seeing the applicability of FR for drowning, and in late 1888 when reporting FR
Patients-1-6, he called for his apparatus to be so used; and predicted FR as the most reliable agent ‘in almost all cases of asphyxia, from whatever causes’.157[p64] From the usefulness demonstrated for shock in his second and third FR patients, he inferred FR ‘may give us results in shock to be attained by no other means, or may serve as an accessory to other methods of overcoming this bane of surgical progress’.157[p65] In 1891, after crediting FR with saving 15 lives, Fell was forecasting FR for ‘general use in cases of drowning, shock, the tiding over of critical cases, in asphyxia from whatever cause, as well as from narcotic poisons’.158[p330] As mentioned, it is not clear whether he ever was able to implement such uses himself. But meantime, Joseph O’Dwyer was developing early improvements on Fell’s original design to widen its applicability176 (Footnote-8).

In March 1896, in the discussion that followed Fell’s reporting the successful rescue in Buffalo of Dr Henry Williams – who required around 80 hours of FR for an opiate overdosage164 – he received strong medical support (and also a ‘commendation for his unwavering appreciation of the value of his work’) and the suggestion that the American Medical Association bring the attention of the United States Government ‘to the value of Dr Fell’s method as a life-saving appliance’.164[p763] It appears that, during a time of ‘unjust and unreasonable conservatism in a progressive age’, nothing worthwhile was taken up. But following the Williams report, Fell was advocating using FR for more venturesome possibilities he foresaw, ‘never before contemplated in surgical procedures, such as the opening up of the thoracic cavities under conditions we dare not consider [without FR]... and in conditions of shock, in drowning, and in many other contingencies’.164[p763] Note that this preceded Rudolph Matas’s epiphany, 1897, (‘thoracic surgery was on the eve of a revolutionary innovation’181[p1469],182[p97]) over the use of FR for intrathoracic surgery by the intralaryngeal route, to be elaborated on in Chapter-3.

2.9 Intracranial disasters and neurosurgery
In a further surgical field Fell had noted, without supplying the year for it, that London neurosurgeon Sir Victor Horsley (1857-1916) appreciated that with various intracranial disasters, the final common pathway to death is due to failure of respiration’, and ‘where death threatens from intracranial pressure[,] artificial respiration should be performed and the skull opened freely.164[p763] So in many instances it is as important to perform forced respiration as if the case were that of a drowning man.

Fell believed ‘that in many cases of brain surgery, altogether too little attention is given to support by artificial respiration’.

but now FR was available to open up new fields. He was at that time aware164[p763-FN] that Northrup had already applied IPPV for a neurosurgical patient, using the Fell-O’Dwyer apparatus, in 1894,177 but Fell in his writings never seems to have quoted Northrup’s 1896 series from Presbyterian Hospital of 10 critical interventions177,178 with FR, using the same system (see Footnote-8).

Footnote-8. By introducing laryngeal intubation instead of using either a tracheotomy or Fell’s face mask, Joseph O’Dwyer refined Fell’s original FR system into what he courteously named the ‘Fell-O’Dwyer apparatus’ (to be described in Chapter-3). The first documented case history177 of its use for a patient appears to be William P Northrup’s, 1894, followed the next year by a fuller description and illustration of the apparatus by James Voorhees.180 By 1910 at least, Fell had come to accept the Fell-O’Dwyer apparatus with apparent good grace, while still referring to it as ‘the so-called’.166[p574]
2.10 Intrathoracic surgery
In June 1899, Fell was still lamenting that FR’s ‘utility in association with surgical operations has yet to come, and surely will do so’. However, he must have felt satisfaction in learning that Frederick William Parham, 1856-1927, (after investigations by Rudolph Matas for him in May 1898) had already taken up advice to use the Fell method of IPPV, first on 6 August 1898, with the anaesthesia being provided for intrathoracic surgery. The apparatus was later modified by Matas himself, reported in 1900. First notification of Parham’s pioneering use of the Fell-O’Dwyer apparatus for this intrathoracic operation seems to have been in a footnote to an article just preceding Parham’s definitive account. Parham was most enthusiastic (also see Footnote-9):

the credit belongs to Dr Fell, of Buffalo, for giving to surgery an apparatus embodying in its practical evolution the principles so ardently urged by Fell and O’Dwyer. As far as I can see I am the first to demonstrate the value of this admirable apparatus... in maintaining the respiration during operations of this kind.

(It should be noted that Matas, as per Footnote-8, wrote a valuable historical survey which included careful detailing of the experimental work by French [and other] investigators during the 1890s, and earlier, on anaesthetic systems to enable safe intrathoracic surgery, by ‘insufflating the lung through an intralaryngeal tube’.

Parham wrote:

The assistance rendered me... was so striking that I can without hesitation indorse every word that has been said in its favour. Indeed, so imbued am I with its value that I believe no surgeon now would be justified in attempting thoracic resection without having the Fell-O’Dwyer apparatus to hand. I believe it will revolutionize this field of surgery, making possible operations in the chest that would otherwise be clearly too hazardous to be justified.

In discussion on Parham’s paper, W E Parker added, ‘I believe use of the Fell-O’Dwyer apparatus will do a great deal to advancing this line of [thoracic] surgery’.

2.11 Fell and his priority rights
Fell’s attitude (possibly a smug one) to Professor Boehm’s account of FR Patient-2 is already recounted in Footnote-3. When he felt he was not receiving due credit as the innovator of FR, he did not hesitate to write forcefully for medical pioneers, it is ‘unjust, unfair and unthankful that credit should be held from those who are entitled to it’. Fell could be read as being somewhat peeved with Dr Jean Baptiste Vincent

Footnote-9 Chloroform was administered by ‘the interne’ for Parham to remove a large chondrosarcoma extending from the clavicle to the sixth rib. After atmospheric pressure almost completely collapsed the exposed lung, and the patient showed profound shock, ‘Dr [J D] Bloom was requested to begin the use of the Fell-O’Dwyer apparatus. As soon as the tube was inserted and the apparatus working, the lung began to recover itself, and the man’s condition at once improved. The respiration was now admirably maintained, so the operation was proceeded with. The assistance rendered by the Fell-O’Dwyer apparatus was evident to all. Whenever there was any hitch in working the apparatus, the lung at once showed signs of collapsing, but when the apparatus was in working order, respiration was almost as regular as the normal breathing. I can imagine no better demonstration of the usefulness of this admirable device.

Postoperative fevers and abscesses delayed the patient’s successful hospital discharge until 7 November (i.e., in 4 months).
Laborde for recommending FR to The Paris Academy of Medicine (as in its Proceedings dated 2nd June 1891), without acknowledging ‘Fell’s Method’. Laborde had devised a face mask for treating chloroform narcosis, one ‘to all intents and purposes,’ similar to the one I [Fell] have been using for some years, and with which I have saved a number of lives’. Laborde’s announcement (wherein ‘Dr Laborde speaks of his invention as novel’) took place after reprints of Fell’s articles (from the Transactions of the New York State Medical Association) had been distributed at the Paris Exhibition of 1888 (but were ignored there by the United States Government’s medical representative, so Fell claimed). While at the Berlin Congress, 1890, Professor Horatio Wood had drawn attention to Fell’s face mask – which which Fell said he ‘had been using for two years previously’. ‘At that time they took no notice of my work, but appropriated it, utilised it, and now claim originality for methods which I long ago utilised and first recommended in practical shape to the medical world.’ It seems Fell did not allow for the possibility of coincidental discovery, if that could have been an explanation – perhaps ‘they’ had read Galen? – although he did concede later ‘It may be, however, that they did not see them’ [Fell’s publications, left at the Paris Exposition of 1888].

Fell asserts on multiple occasions that he could find no evidence of any other person treating opium narcosis by providing prolonged FR. Thus, from 1891:

> I looked up the home and foreign literature on the subject, Nothing was discovered which appeared to controvert the fact that I was justly entitled to the credit of being the first to systematically and practically solve the question of the value of forced respiration in the saving of a human life; or that I had demonstrated, as one physician puts it, “that air can be forced into the lungs without any damage to them”.

(But regarding the latter, had he not heard of, for instance, Charles Kite or James Curry, at least?) ‘To be denied the credit...of a method...in the saving of human life is what I could not and will not quietly submit to.’

Fell, who claimed, ‘I have probably had more systematic operations of forced respiration upon man than all the rest of the physicians of the world combined’, was also intensely patriotic: he described, ‘its practical introduction to the world from this side of the Atlantic’ and ‘in its success an entirely American idea’.

But although his apparatus met ‘all the requirements’ for FR in man, and ‘in the simplest manner’ for the future, he would ‘not question that different mechanical devices [after his] might not be successfully used’.

2.11.1 What followed for George Fell?

Before 1895, Fell’s publications had been either recapitulating in minute detail, or occasionally summarising, 28+ patients in which the Fell method had been used – but not every case he listed or described was one of his own. He produced two further articles before 1900, each including an extraordinary case of opiate poisoning: one, patient-13, in 1896 needed 73.5 hours of FR (my [RVT’s] calculation); Fell says ‘several long intervals’ within a time-span he gives of 83 hours); then another in 1899 needed ‘over seventy-eight hours’. After these, I can find no other medical publication of his until 1910. Although that 1910 article contains no new FR experience, Fell gives an historical, well-illustrated perspective on his introduction of FR in 1887, and of the validation of his equipment for FR in his early cases. He also places the Fell method (‘now termed by some the positive pressure method’) in the context of the other methods of his times for artificial ventilation. One may therefore wonder, did he actually stop his practice of FR in the new century, and, if so, why? From what I have read about Fell for this period, William Mushin and Leslie Rendell-Baker seem the only historians to comment. They alone make the
particular statement, ‘Though he retained his interest in microscopy he settled down in Buffalo as an ear, nose and throat surgeon’. His obituary notices mention illness, culminating in his death in 1918. The brief biographies available are unhelpful for describing these last six years.

An obvious inference is that, even after the evidence of the successes he defined so clearly in his case reports, in the face of an unequal struggle to establish acceptance of his method of treatment into wider emergency practice, it all proved too disheartening for him.

From 1887-1900, Fell was undaunted, pugnacious (if not aggressive), critical and even accusatory in his attacks on conventional attitudes to new ideas. His rallying cries for the adoption of FR, and his suggestion it be used for critical conditions other than overdoses, failed against the attitudes and conservatism, ‘prejudice or ignorance’, of his critics and the sceptics. He had offered a life-saving system; the world had largely ignored it. Perhaps after a dozen years of struggle and example, he just tossed in the medical towel. However, that would hardly accord with either the previous character or the spirit displayed by this man of vision, this pioneer (how many in desperation today would attempt a domiciliary tracheotomy, where that was unavoidable, for a convulsing neonate, just 18 days old, ‘without proper apparatus’?). His record does show continuing consultation in large projects in the engineering world; perhaps he just went back to a field where he was better accepted, one perhaps without the jealousies he says he found in medicine. Yet hardly so – because, as outlined in a brief obituary, this fiery spirit found plenty of opposition to his critical viewpoints concerning engineering controversies too, in 1903 and 1910.

After writing the above, I came across Fell’s second 1910 article published in a medical journal: seven JAMA pages concerning ‘The currents at the easterly end of Lake Erie and head of Niagara River. Their influence on the sanitation of the city of Buffalo, NY’. Fell had delivered the report that year at the American Medical Association Annual Session ‘in the Section on Preventive Medicine and Public Health’. Again, we can see Fell’s courage and confidence - bolstered by his ‘former experience as a hydrographic engineer’ – his opposition ‘in toto to the views of the great majority of our healing physicians’. The article concerned the risks of typhoid from epidemic debris brought by ‘spring freshets’ entering Lake Erie, whence the water supply of Buffalo City was drawn. (Again, this was all carried out ‘at considerable personal expense, which was never reimbursed’.) With his characteristic tenacity, he performed experiments (I cannot find the year) to validate his arguments, confounding his critics. His absence from recording clinical medicine is thus not surprising – and my admiration for all his achievements increases.

2.12 To summarise – primitive intensive care medicine

Fell’s activities, especially those of the first dozen years, warrant recognition for his pioneering role in ICM. He dealt with critically ill patients, some with severe multi-system disorders. To save their lives when conventional treatments had failed required an extraordinary intervention of skilled personal attention, at times in prolonged application (up to a maximum of around 80 hours of FR of one occasion recorded). Fell took on cases of indisputable severity at any hour of the day or night, stayed with his patients until too exhausted to continue, and developed teams to share the burden of hard physical work. He recorded case histories and their features carefully, published repeatedly and was generous in sharing his knowledge and equipment. He was always widening his vision, was desperate to teach his methods to others, and wanted the same messages taught in the curriculum of
every medical college. Ultimately, he failed to establish a system of rescue and to have his method widely adopted by professionals and trained paramedics, despite long striving for its universal uptake.

Fell improved a system used for laboratory animals, adapting it and making it safe for humans. But he also tried to simplify his equipment, with the aim of increasing its application. In the United States of his times, he seems to stand alone in finding an effective alternative to inadequate methods of ventilatory support by the then-current ‘artificial respiration’ from arm-chest manoeuvres. While he saw the need to prevent the unnecessary waste of human lives from opiate poisoning, he was determined to extend rescue to other, potentially remediable, life-threatening conditions. He foresaw other applications of his principles and methods, including ‘tiding over’ in critical conditions, such as traumatic shock, asphyxia or near-drowning; and for anaesthesia. He invoked principles of intensive care medicine that we are familiar with today. He advocated readiness of equipment for emergency intervention and action, and then for sustained continuation. It was only later that he came to see that his IPPV method would be useful in neurosurgery, and later again that it could help manage ‘the pneumothorax problem’ of intrathoracic surgery. Others took up Fell’s principles for these problems (set out in Addendum-1).

For all of Fell’s efforts and attempts to contribute to medical practice and publicise something new and worthwhile (as in Addendum-2), he generally met a stone-wall of resistance from the ranks of conservative medicine. Fell, however irascible and ‘prickly’, deserves to be remembered with admiration for his sterling efforts and his successes. His plea for recognition of his priority right for utilising IPPV in the saving of lives is warranted. It bears repeating a medical obituary claim,

He gave his [FR] discovery to the cause of humanity and has made nothing from his work.169

Surely, a ‘Pioneer Intensivist’.
Addendum-1. Some George Fell aphorisms

In his writings, Fell invoked principles of intensive care medicine, many of which we acknowledge today.

1888

- With suitable apparatus, keep up the respirations until all the poison could be eliminated.\(^{157}[p43]\)
- A physician was not justified in giving up until life became extinct.\(^{157}[p49]\) \(^{[?]}\)
- The surgeon who manipulates the valve is therefore responsible for any over-distension of the air vesicles.\(^{157}[p57]\)
- Forced respiration... [is] something more than a *dernier ressort* compared with artificial respiration.\(^{157}[p63]\)

1889

- The only safe rule is to make the attempt [at rescue] because it is difficult to state at what stage preceding death it will not prove valuable.\(^{158}[p318]\)
- He who would attempt to save human life by forced respiration must be supplied beforehand with suitable apparatus.\(^{158}[p317]\)

1891

- Never permit a human life to be sacrificed for want of FR when you can procure a rubber tube...face mask...bellows.\(^{160}[p183]\)
- Provision made to exhaust air from the lungs...complicates the apparatus, and...is not in accord with physiological conditions\(^{160}[p178-9]\) [and] very dangerous...in the hand of an average physician in an emergency case.\(^{163C}[p123]\)

1892

- In emergencies it is difficult to obtain proper apparatus [which]...must be supplied beforehand.\(^{162}[p131]\)
- ...give careful attention to the details of practical importance...not by slipshod methods.\(^{161}[p345]\)
- The life of the patient is not out of danger until the poison is eliminated from the system.\(^{161}[p346]\)

1894

- Medical opinion must be moulded so that it will be considered hazardous to attempt to save life without proper appliances being provided beforehand.\(^{163C}[p126]\)
Addendum-2. Some individual case histories of forced respiration

It may be obvious that Fell’s numbering system is retained for the FR cases as they are in his publications, because he included some FR patients who were not his own. To exclude them would produce confusion with numbering ‘his’ patients. The best general reference for the numbered patients is Fell’s own 1894 report in the Canada Medical Record,163 supplemented by his reports in the Transactions of the New York State Medical Association160 and the Archives of Pediatrics161.

The following are case numbers Fell assigned:

1: Showed that FR can inflate lungs to ‘save a life’, without causing damage to the lungs. Peri-tracheal ligation was performed.

3: (Fell’s second FR patient). After artificial respiration had failed for a ‘difficult’ case and even when Fell delayed FR to a late stage, and was ‘urged to discontinue’ as the patient was ‘considered hopeless’.157[46] FR prolonged for 14.5 hours was successful – ‘accomplished only through the new apparatus [Fell] had specially devised for use upon human beings’.164[760] The patient was very seriously ill for the next 3-4 days. Fell was already seeing indications for FR with the drowned.

4: With employment of a team of students and physicians to supply FR for 24 hours, and recovery achieved after the patient was first ‘already given up...to all appearances dead (so reported)’, and a coffin delivered. ‘A physician was not justified in giving up until life became extinct.’157[49] The patient had provided his own [suicidal] entrance wound for the tracheotomy tube.

As mentioned, Fell claimed that the saving of three lives (nos. 1, 3 and 4) saved insurance companies $23,000 in life policies.157[50]

5: FR for longer than 14 hours failed to save an 80-year-old man who had taken an opiate overdose. Fell was called to him at the local hospital.

6: FR per a tracheotomy to an infant aged 18 days failed after 4½ hours’ delay in calling for Fell’s assistance after an accidental massive morphine overdose (of 1 grain = 64.8 mg; circa 70x157[46] [or even 80x159[327] the infant’s dosage]. FR followed ‘occasional gasping breaths’,157[62] per a 1/8 inch (external) catheter, via a tracheotomy (and an increasing series of larger tubing back to the air valve) was called ‘hard work’ for 3½ hours. Death was by misadventure from ‘a physician of the homeopathic school’.

(A stillborn babe receiving FR per a ‘catheter in the trachea’ was undoubtedly dead 157[53]).

7: FR per a tracheotomy for a man (hospitalised) with opium ‘spasmodic respiration’, whose return of wrist pulses lasted only an hour before he suffered ‘final stoppage’ of cardiac action. Fell said158[318] ‘I waited too long’.

8: This case showed that FR without tracheotomy is possible, by using mouth to mouth inflation. FR supplied through a tube sealed off within the mouth of a stillborn (forceps delivery, a ‘ruptured brain’: a hopeless case), abandoned after 4-5 hours. The case indicated the need for ‘a suitable mouth-piece’.

9: ‘Dying’ opiated patient, with the dilated pupils of asphyxia, received successful preliminary FR inflation per a mouth tube, then tracheotomy and FR for 11 hours, with survival.

10: The same patient again, heavily opiated (2fl. oz. tinct. Opii [=591.5mg of morphine] plus 5-10 grains morphine [=324-648 mg]); tracheotomy for FR of 14 hours, recovered. Patient was certified.

Note: Regular FR for Cases 9 (11 hours), 10 (14 hours) and 11 (4 hours) was a success, while the patient in Cases-9 and 10 led to ‘preparation of the face mask’ covering mouth and nostrils, providing new options.
15: Morphine overdose; face mask proved superior to artificial respiration, nine hours’ successful FR, but the patient died after a colleague’s interfering attempts at faradisation. So death by misadventure, another’s mistake (not Fell’s). ‘I do not recommend as yet intubation because I think there are many cases, in fact I have seen many, where it is not practicable owing to the difficulty of intubating the larynx’.\(^{159}[p329]\) Fell predicted using FR would be useful for disaster conditions other than poisoning.\(^{159}[p329]\)

17: Morphine overdosage, 15 grains (=972 mg); after three hours of face mask FR, the woman’s state deteriorated to heart sounds being absent, so, at tracheotomy she was considered as being of ‘no hope’; but more effective FR (which was ‘evident’) enabled recovery after 12-14 hours total of FR.

18: With FR by face mask (10.5 hours); ligature needed for the obstructing tongue; serious gaseous distension of stomach and bowels; anuria; Fell’s first extended use of oxygen; then tracheotomy. But after FR totalling 18 hours’ work, the patient vomited, aspirated the vomitus, and died. Fell recommended ‘something other than manual labour’ for the amount of energy expended for FR.

19: Wrongly dispensed corrosive sublimate swallowed by a 73-year old; face mask FR enabled her to live two days, but death by misadventure, the mistake of another. An ‘excess amount of energy expended in respiring for a human being’ indicated the need for mechanical aid.

21: A woman aged 78 years with opium narcosis received FR for 11 hours per face mask; a ligature through tongue was needed, then tracheotomy, but suffered status convulsions, and died. Fell recognised his error of judgement in waiting too long before intervening with a tracheotomy.

22: Took morphine, 11 grains (=712.8 mg); Cheyne-Stokes breathing, almost in asystole before Fell arrived; FR by face mask for four hours was successful.

23: A prisoner with opium overdose had FR by face mask but was cyanosed for 30 minutes; recovered after four hours. Venesection performed. She died unexpectedly of heart failure, a few days later. Fell declared: ‘intense congestion of the encephalonic vessels’.

24: Laudanum overdose. Doctors at Fitch Hospital declared ‘no hope’ after 5½ hours of artificial respiration; the patient’s wife demanded Fell attend, so FR was brought in, the patient recovered; but stupor recurred for days at home due to a stove leaking natural gas; patient recovered rapidly when shifted. Fell insisted hospitals maintain their own equipment to treat by FR.

25: (1892, when ‘19 human lives have been saved by this [FR] method’).\(^{162}[p130]\) When two general practitioners could not use the FR apparatus on a man, ‘reported as hopeless’ after morphine overdose, Fell’s student nephew who was ‘ill’, did so successfully.\(^{162}[p130]\)

26: Subcutaneous morphine, total 2/3 grain (43.2 mg) for a woman’s colic. Cyanosis, so artificial respiration for 5½ hours, but cyanosis was so profound that Fell and the GP thought she would die before a tracheotomy; but she recovered after 5¼ hours’ FR.

27: Malnourished woman, opium poisoning, with respiratory rate of 3-4 per minute and cyanosis. Fell was unavailable, so ‘for ten mortal hours we used [his apparatus] continuously’ (or occasionally), with recovery.\(^{163}[p99]\)

28: 7-year-old boy with diphtheria and life ‘in immediate danger’ (dilating pupils). Tracheotomy, then FR on six to seven occasions, but tenacious membranous casts of tubes and trachea developed. Died after two days, of ‘exhaustion and heart failure’.

29 to 44: 16 patients of the Fitch Accident Hospital,\(^{163}[p,C]\) of whom Fell lists: seven poisoned with opium, three with cocaine, one with ‘carbonic oxide’ (CO), one with rat poison, one with ether narcosis, two with trauma, one drowned and one unspecified. Very brief notes on treatment are presented by Drs John
Parmenter and E L Ruffner. There were nine survivors; the seven deaths were from opium (three patients, with two after 'long lying', and one from heart failure), drowning, brain injury, uraemia (after CO), pneumonia ('injury from house falling on him').

- **Unnumbered** anaesthesia cases: with a need for FR after the agents ether, chloroform or nitrous oxide.

- **Unnumbered**: The remarkable 1896 case of Dr Henry J Williams. The method's most severe test, where, since 'the case was so desperate' from overdosing with multiple opiates, a tracheotomy tube quickly replaced the initial face mask for 'the necessary factor in the life of the patient', and oxygen was also supplied. For the three cycles of FR needed 'the apparatus was in constant use', during 73.5 (of 87) hours, often stormy. There were multiple alarms from failure of Fell's repeated efforts during that time to re-establish reliable spontaneous breathing. The treating team comprised more than 20 named physicians, plus medical students. FR 'speaks volumes for the perfect working of the simple apparatus'.

- **Unnumbered**: The remarkable 1898 case of Raymond Archer. At first, he was gasping at the rate of one breath per minute, cyanosed, almost pulseless, after 33 grains (=2,138 mg) of morphine. Archer survived 'over' 78 hours of FR at his home: first per a face mask for two hours, then per tracheotomy. Archer's was another case where during 'a tonic convulsion' the tracheal ring failed to prevent aspiration, mainly of water that had been placed in the stomach, but without disaster following.
19th century pioneering of intensive therapy in North America

Chapter 3: The Fell-O’Dwyer apparatus and William P Northrup

‘Too much credit cannot be given Dr Northrup for his persistent advocacy of this valuable apparatus, the invention of his lamented and ingenious colleague, O’Dwyer.’

Rudolph Matas

187[p97]
Chapter 3: Table of Contents

3.1 Introductory overview ..60
3.2 The transition ...60
3.3 Historical context of the introduction of the Fell-O'Dwyer apparatus63
 3.3.1 The vision of Rudolph Matas ..63
 3.3.2 ‘Insufflation anaesthesia’ techniques ...65
3.4 Clinical application of the Fell-O'Dwyer apparatus ..66
 3.4.1 Northrup's clinical series with the Fell-O'Dwyer apparatus67
 3.4.2 Further modifications to the Fell-O'Dwyer apparatus ..68
 3.4.3 Usage of Fell-O'Dwyer Apparatus by others ..68
 3.4.4 Other IPPV efforts for thoracic surgery ...69
3.5 Were Fell and O'Dwyer intensive therapy pioneers? ...71
3.6 In summary ...71
3.7 A final tribute to Joseph O'Dwyer ..72
3.1 Introductory overview

Two previous chapters have described the successful pioneering towards the latter part of the 19th century in North America of methods to treat impaired respiratory function in certain medical conditions. Joseph O’Dwyer designed, developed and successfully used his intralaryngeal tubes for treating airway obstruction, mostly in diphtheritic acute laryngitis. Meantime, to compensate for impaired breathing, particularly from opium intoxication, his contemporary, George Fell, had re-introduced ‘forced’ artificial ventilation by his own system, either through a somewhat unsatisfactory face mask or through a tracheostomy tube. O’Dwyer replaced Fell’s two delivery options with a longer oro-tracheal tube. After early experimental efforts by Drs O’Dwyer and William P Northrup, a combined system of intubation and artificial ventilation by intermittent positive pressure ventilation (IPPV) was then used on the initiative of surgeon Rudolph Matas, delivering both anaesthesia and lung inflations to enable safe and successful intrathoracic surgery, executed in the United States by F W Parham first. The combined system became known as the ‘Fell-O’Dwyer apparatus’, use of which widened, especially by Northrup to include treating apnoea from intracranial disasters. Although the apparatus was used beyond New York e.g., in New Orleans especially by J D Bloom for neonatal apnoea, it is difficult to find other specific references. Matas and Bloom improved O’Dwyer’s original system, but after Charles Elsberg’s clinical success of continuous insufflation anaesthesia for thoracic surgery, 1909, American anaesthetists came to prefer that system, thereby delaying the uptake of routine intermittent positive pressure ventilation by at least about three more decades.

3.2 The transition

At the American Pediatric Society’s 1891 meeting in Washington, DC, 23 September, Joseph O’Dwyer reported\(^{188[p33,34]}\) that for medical patients with various respiratory difficulties he had made ‘some experiments six or seven years ago at the New York Foundling Asylum [NYFA], using the laryngeal tube... through which air was forced into the lungs by means of [serial inflations of] a rubber bag’. In 1944, Paluel Flagg (1886-1970) later confirmed that this application ‘had been in use in the New York Foundling Hospital for six years, for some of the time when it was still in the experimental stage’. The years that O’Dwyer gave for supplying IPPV in this way, endorsed by Flagg\(^{188[p11-12]}\) preceded George Fell’s 1887 introduction of his Fell method for ‘forced respiration’ (equivalent to IPPV).\(^{190}\)

After his own early experiments with forced respiration, O’Dwyer was impressed by the results Professor Horatio Wood obtained in his animal laboratory from applying the Fell method,\(^{188[p32-33]}\) as Wood had presented them to the 1890 International Medical Congress in Berlin. Wood considered the Fell method ‘remarkable’, in contrast to the ‘inefficiency’ of resuscitation by ‘the Sylvester [sic] and similar methods’. By applying Fell’s method, Wood had reversed asystole and ‘apparent death’ from two minutes of apnoea after ether or chloroform (‘the heart had therefore ceased to beat’\(^{188[p33]}\)).

O’Dwyer designed a set of intralaryngeal tubes (dated by Rod Calverley\(^{191[p335]}\) as first happening in 1888) to replace the Fell system, apparently first announced by Northrup at Bristol, United Kingdom, 1894 (v.i.). At that time the system included either a tracheostomy tube or a face mask; and as above, O’Dwyer introduced the prototype of what later came to be called the Fell-O’Dwyer apparatus, to paediatricians in Washington, 1891. He first documented his improvements\(^{188}\) the following January, without illustrations (Footnote-1\(^{192-194}\)).
The first depiction of the apparatus (as Figure-1) seems to have been in an 1895 paper by James Voorhees, house physician at the Presbyterian Hospital in the City of New York (Figure-1). It shows a (now longer) intralaryngeal tube with a distal tip (head, i.e.), which O'Dwyer had described as ‘conical in shape... to tampon the larynx below the vocal cords, so that no air can return beside it’ – i.e., a seal was obtained without an inflatable cuff. (By contrast Fell had secured – and sealed off – his tube in the trachea, either by ‘annular corrugations or a rubber tampon’).

Figure-1: An early model of the Fell-O'Dwyer apparatus

The system comprises

i) inflating [foot]-bellows,

ii) tubing for delivering inflating air or gases to,

iii) the entry one of the two ports on,

iv) the metal intralaryngeal cannula (showing a conical, laterally grooved, detachable head to wedge in the glottis for an air-tight fit during inspiration), and

v) the exit port for the operator’s thumb-tip control of inspiratory-expiratory cycling.

A Tiemann’s commercial box of tubes and heads is also shown.

With acknowledgement and thanks to the Presbyterian Hospital, New York, for this figure from their medical and surgical reports for 1896, included within Dr Northrup’s paper (Chapter XII).

Footnote-1. As referred to in Part 1 of this series, O'Dwyer’s paper prompted a verbal onslaught from George Fell; perhaps from having the title’s word ‘improved’ preceding ‘method of artificial forcible respiration’. Fell, it would seem, saw this as a criticism, or, worse, as O'Dwyer taking over his apparatus. What seemed to annoy Fell particularly was O'Dwyer’s misunderstanding that ‘Dr Fell’s Method ... is identical with that practiced in the laboratories on lower animals’. Fell issued a comprehensive nine-point rebuttal of O'Dwyer's errors over the Fell system, emphasising that his own current system, improved for humans nearly 4 years earlier, was much superior to his initial animal apparatus which O'Dwyer had assumed Fell was still using. After 18 years, Fell was speaking more kindly of ‘Dr John [sic] O'Dwyer whose memory we revere’. (The courteous O'Dwyer appears never to have spoken of an ‘O'Dwyer-Fell’ apparatus).

Re nomenclature: On occasions, I have seen the term ‘Fell-O'Dwyer apparatus’ referring solely to an O'Dwyer intra-glottic tube, whereas the true Fell-O'Dwyer apparatus comprised an O'Dwyer tube plus connecting rubber tubing plus Fell inflating bellows.
O’Dwyer did not personally report further clinical use of IPPV, apart from a single instance of a patient apnoeic but conscious: ‘During the past winter [hence, either late 1890 or early 1891?], I tried the same instrument in one case with the bellows attached... for several hours’, as apparently the patient ‘lost the power to breathe for himself’.188[p34] O’Dwyer advocated his apparatus for medical, ventilatory purposes:

inspiratory muscles... rendered temporarily as useless,... puerperal and other forms [of] eclampsia, and also in acute pulmonary obstruction from various causes.

It had been for the latter that O’Dwyer made his NYFA experiments, 6-7 years earlier.188[p33-4] And he quoted Fell’s repeated demonstration of forced respiration ‘in a number of cases of opium poisoning successfully treated’.188[p32]

Although O’Dwyer’s tubes were designed for the apparatus he also recommended them as useful for control of the airway in certain surgical operations. So originally, the new tubes were not only, as Rudolph Matas [1860-1957] said,196[p1471] for non-surgical conditions but also ‘to prevent blood from entering the lower air-passages during operations in or about the mouth’.188[p34] William Northrup later reiterated this.197 (We can note that William MacEwen had also designed and used oro-laryngeal tubes for that purpose, 1878198,199[p167]200). O’Dwyer’s tubes were sufficiently wide-bore to be ‘at the same time affording a free passage for the air to and from the lungs’.188[p34] (See Footnote-2188,195,201,202). O’Dwyer himself did not document either delivery of an anaesthetic by his improved system, or IPPV under surgical anaesthesia by that system. However, Keyes noted that within two years of the description of the Fell-O’Dwyer apparatus, Karel Maydl in Prague had connected a Trendelenburg funnel to an O’Dwyer tube to modify it for ‘satisfactory’ oro-rhino-laryngeal anaesthesia.200[p65] Also, by 1896, Northrup stated that ‘An anaesthetic may be administered through the intubation tube’.197[p136]

By the time of his 1896 retrospective, O’Dwyer was advocating the Fell bellows as the ‘only... means of producing efficient and at the same time prolonged artificial respiration’ with the apparatus.202[p18] Surprisingly (and disappointingly), both Northrup’s memorial address after O’Dwyer’s death203 and his 1904 address to graduates on O’Dwyer,204 (together with – nearer our own time – C Gelfand in 1987205 and HR Wiedemann in 1992206), while concentrating on O’Dwyer’s struggles to establish satisfactory intralaryngeal intubation, do not appear to find room to mention the innovative Fell-O’Dwyer apparatus; or its application during anaesthesia; and that it was harm-free when used for 24 hours of IPPV201. Understandably perhaps, paediatric papers about O’Dwyer concentrate on his treatment for diphtheria.

Footnote-2. For the definitive Fell-O’Dwyer apparatus,188,195,201 O’Dwyer’s metallic, oral intubating attachment had several sizes of detachable conical tips. Figure-2 shows an adult commercial set of three nickel-plated steel tube heads and two vulcanite heads, and the tubes they were mounted onto. The laryngeal end was ‘curved on a right angle, tipped with a conical head’195[p128] (laterally) grooved ‘to allow the vocal cords to aid in holding them down’188[p32] and designed to be of the right size to wedge itself into the larynx and prevent air from returning between it and the laryngeal wall’.201 The conical tip was graduated, so that each one of O’Dwyer’s set of five heads would fit several size-variations of the larynx.202[p19] The conical shape of the head allowed the tube to wedge between the cords into the larynx, thereby sealing off the respiratory tract, enabling IPPV and preventing entry of blood, vomitus, etc, into the lungs.188 Two long tubes (one adult size, one paediatric)188 featured two ports proximally: one for entry of the inflating gas from a Fell system of bellows and rubber delivery tube; the other to be stopped intermittently by the thumb, which the operator could remove rhythmically, ‘to act as a valve’202 allowing intermittent exit of expired air. (Fell always emphasised the need to allow sufficient time for expiration).
The Presbyterian Hospital of New York 'was the first to own and make use of the apparatus'. O'Dwyer's colleague and admirer, William Perry Northrup, reported in 1894 on the first clinical use of the apparatus for one patient at that hospital. He added, 'This apparatus has been brought into play several times at the Presbyterian Hospital and at the Foundling Asylum'. It 'obviated the necessity of tracheotomy and removed the embarrassments of relaxed tongue and larynx'. O'Dwyer's paper of 1892 simply refers to the Fell-O'Dwyer apparatus being at the NYFA, without providing details. Voorhees 1895, while mentioning use of the apparatus for neurosurgical-type apnoea, documented two patients with severe morphine poisoning who survived through the use of the Fell-O'Dwyer apparatus.

Northrup reported these three patients, and five additional Presbyterian Hospital patients, in an 1896 case series, as described later.

3.3 Historical context of the introduction of the Fell-O'Dwyer apparatus

3.3.1 The vision of Rudolph Matas

During the last decade of the 19th century the oft-quoted admonition from Johannes Friedrich Dieffenbach (1792-1847) that the surgeon 'should halt at the pleura', was religiously observed until comparatively recent years by the vast majority of surgeons when attempting the extirpation of tumors of the thoracic parietes. But 'Thoracic surgery was on the eve of a revolutionary innovation; Matas noted much experimental work carried out, especially during the 1890s, principally by European surgeons (many French), on direct, intralaryngeal inflation of the lungs using positive pressure (other than by the 1891 Fell-O'Dwyer apparatus). He saw that such a manoeuvre could resolve the great 'pneumothorax problem', which was otherwise inevitable when surgeons opened the chest; and it 'would appear the same thought had occurred to those surgeons [listed by Matas, see Footnote-4] independently of each other and about the same time'.

Footnote-3. Paediatrician, physician, pathologist, William Perry Northrup (1851-1935) was born near Syracuse, New York, graduated in 1868 from the College of Physicians and Surgeons, practised in New York City, then became a pathologist at the New York Foundling Asylum where he came under the influence of Joseph O'Dwyer. Later he became an attending physician at the Presbyterian Hospital. He also features prominently in the other parts of this trilogy (Chapters 1 and 2). An obituary notice regretted that his 'important work concerning the value of fresh air... has been little heeded by the bulk of the profession'. He was summarised as 'a man of general culture, a teacher of Greek... a good physician, a wonderfully attractive lecturer, and teacher'. His renowned humour was exemplified when presenting himself for a Great War field-posting as 'Baby specialist, but I'll give up infantry and take to adultery'.

Footnote-4. The Matas papers supply us with many names, nowadays easily forgotten, of pioneers in intubation and lung inflation from the 18th century onwards. Matas acknowledged independent, experimental work (which was separate from the Fell-O'Dwyer apparatus) on direct intralaryngeal inflation of the lungs for the intrathoracic problem. Although this took place from 1896-1897 especially, it also went back at least to 1872. Matas cited successively Péan, 1872 (unsuccessfully); Lambotte; Délorme, 1897; Milton, 1897 (successfully, but only used for a goat); 'Tuffier, Quénou, with their associates Hallion and Longuet, and Doyen' Even in 1902, Matas could not see any safe, simple and reliable alternative to the Fell-O'Dwyer apparatus in Europe, except Doyen's - for which Matas stated (1902) no clinical use was documented.

When Northrup first described a clinical use of the Fell-Ó'Dwyer apparatus at Bristol, 1894, his further anticipation was that, while ‘In [peri-oral] surgery it is expected of course that the patient is capable of automatic [=spontaneous] respiration’, the Fell-Ó'Dwyer apparatus delivering an anaesthetic with intubation was also protective for the airway. Matas realised, in reading the 1896 report from New York’s Presbyterian Hospital on use of the apparatus, that it would enable intrathoracic surgery to proceed safely and effectively.
3.3.2 ‘Insufflation anaesthesia’ techniques

Because of the inadequacies of ‘insufflation anaesthesia’ techniques191,211,212 (see Footnote-5), this new IPPV option was most welcome, at a time when other solutions proposed involved manoeuvres more extreme.211 These included the differential pressure ventilating chamber that Willy Meyer was investigating and also Ferdinand Sauerbruch’s sub-atmospheric ‘pressure chamber’,213 which he had introduced in the new century; or the positive-pressure head-boxes of Brauer and others.213

Practical employment of the proposal from Matas215 enabled Frederick Parham to resect a chest wall sarcoma on 6 August 1898, in an operation both Matas196 and Parham215-217 described as revolutionary for thoracic surgery. They both emphasised their endorsement of Fell’s principle of IPPV, but of course its application was rendered considerably safer by O’Dwyer’s improvements. Yet it seems the Fell-O’Dwyer apparatus was not adopted in Europe (see Footnote-6211,212).

Matas196 found similarities to the Fell-O’Dwyer apparatus in Eugène Doyen’s experimental system, reported in 1897, but was inclined to think Doyen was unaware of O’Dwyer’s apparatus. In fact, it is Doyen’s ‘simple and reliable’ system that Matas196,197 describes as ‘the first finished model of an intubating and insufflating apparatus for the systematic application of this treatment as a preventive of pneumothorax’ [during thoracic surgery]. Apparently though, Matas considers it was not used on humans.187 In the 18th and 19th centuries, innovative suggestions often seemed to be published for their promotion, without the author having made his own prior clinical confirmation of them. Footnote-6211,213 also needs considering over international consultation.

Footnote-5. Re ‘Intralaryngeal insufflation’: One has to read carefully to see what each writer means by ‘insufflation’ (and contrast it with ‘inhalation’). In Matas’s time, the former word might be used in the broadest sense of getting a gas or powder into a body cavity, and he applied that expression’s action to the Fell-O’Dwyer apparatus, also to ‘tracheal insufflation with a bellows’. However, flow with the Fell-O’Dwyer apparatus was not continuous but intermittent, so it was really providing forced respiration (intermittent positive pressure ventilation). Matas’s phrase, 1900, may surprise some of us today, familiar with Mushin and Rendell-Baker’s6 careful, more specific delineation (first from 1953, then repeated by Mushin, in 1963212) of continuous flow, as below, which derived from developments in the method for insufflation, 1907-1910 (to be described later). American anaesthetists, 1910-1926214 then came to favour a continuous insufflation method rather than the struggling, parallel developments attempted for positive pressure ventilation213,214,215 - apart from with the proven Fell-O’Dwyer apparatus. Insufflation was described thus212: ‘a catheter, generally with a bore rather small compared with the trachea, is inserted down to the carina and a constant stream of gases blown through it, so that a pressure of about 10-20cm H\textsubscript{2}O is registered in the manometer on the apparatus. The gases escape to the exterior between the tube and the trachea’ [compare the Fell-O’Dwyer apparatus: expiratory gas returned via the wide intralaryngeal tube]. ‘In effect the conditions produced are those of positive pressure spontaneous breathing’ – although apnoea may almost develop. With the inevitable respiratory acidaemia, practice every 2-3 minutes was ‘to interrupt the flow... at regular intervals, and to allow the lungs to collapse’. (Also see reference 213, pages 67-77.)

Footnote-6. The communication lag that resulted in some medical advances made in one country (e.g., the United States) being unknown in another (e.g., Germany) is apparent from surgeon Ferdinand Sauerbruch (1875-1951) writing (exaggeratedly, as events proved) in his intriguing autobiography: ‘In 1902, not one doctor in the world knew how to operate with any hope of success through the chest wall... pneumothorax killed the patient immediately’.211212 The same applied to the lack of some European knowledge in the United States, such as the direct laryngoscope of Alfred Kirstein (1863-1922) in Berlin, invented in 1895 - a time when most surgeons (ignorant of O’Dwyer) shrank from attempting laryngeal intubation as impossibly difficult.213214

Using the anaesthetic technique of ‘one of us’ (so described by Tuffier and Hallion, in translation), with which they had ‘previously experimented in animals’, their technique produced ‘rhythmic inflation’ with bellows and a kind of positive end-expiratory pressure which they called operative ‘artificial respiration by insufflation’ (see Footnote-5).

This was before Parham’s 1898 thoracic operation using the Fell-O’Dwyer apparatus213 (and also before the intended mediastinal operation of Herbert Milton, MRCS[Eng], 25th January 1897 (in Cairo) who – for operating on his goat - was ready to apply IPPV per bellows via a tracheotomy; but neither intervention was needed209,210).

From a historical viewpoint, Matas196[p1375] regarded a rhythmical inflating device for neonates employed in Berlin, 1870 (and documented only in German216) by a ‘Dr Truehead’ (truly, it would seem, Dr Trueheart,217 who later returned to Galveston, Texas), was - in principle - a complicated anticipation of the Fell-O’Dwyer apparatus. Matas labelled the latter ‘the second American [IPPV] invention’ – as he regarded ‘Truehead’s’ system ‘entitled to precedence over [O’Dwyer’s]’. See discussion in the Supplement to Chapter-3.

It can be noted that in 1910, Fell asserted194 that his own endolaryngeal tube for the Fell-O’Dwyer apparatus was superior to O’Dwyer’s, which may indicate that Fell’s was available and possibly used in some places in the United States at that time. But I cannot find Fell’s design of his own tube for the apparatus, 1910,194(p580) documented elsewhere.

3.4 Clinical application of the Fell-O’Dwyer apparatus

O’Dwyer, while mentioning only a single, clinical, personal experience of using the Fell-O’Dwyer apparatus,188[p34] advocated its value for all forms of narcotic poisoning, by then ‘amply demonstrated by Dr Fell’; also for conditions involving ‘inspiratory muscle... rendered temporarily as useless, as if paralyzed by spasmodic contractions, such as strychnine poisoning, puerperal and other forms [of] eclampsia, and [as already noted] in acute pulmonary obstruction from various causes’188. With experience of attending 3000 obstetrical deliveries, O’Dwyer did not promote his IPPV system for apnoea in the newborn, as he considered mouth-to-mouth resuscitation ‘amply sufficient’ for that purpose.188[p34]

It was the Presbyterian Hospital of New York (if nowhere else there) which kept one Fell-O’Dwyer apparatus ready; and Northrup reported on its first clinical use there, to the 1894 annual meeting of the British Medical Association in Bristol, United Kingdom.201 He detailed the delivery of 25 hours of forced respiration (supplied by multiple hands – expert ones, such as O’Dwyer’s, and others’) for a woman suddenly apnoeic from presumed intracranial hypertension, attributable to a cerebral tumour. Forced respiration was stopped after 24 hours, leading to asystole 12 minutes later; but further IPPV – or to continue with the expression favoured then, ‘forced respiration’ – restored her heart beat until, an hour later, forced respiration was stopped because of her ‘absolutely grave’ prognosis (Footnote-7). But even in 1896 Northrup was erroneously repeating that ‘Dr Fell’s method is identical with that employed in laboratories’,197[p127]

Specific use of the Fell-O’Dwyer apparatus at the New York Foundling Asylum was not found documented.
3.4.1 Northrup’s clinical series with the Fell-O'Dwyer apparatus

In the *Medical and Surgical Reports of the Presbyterian Hospital in the City of New York* for 1896, Northrup reported the clinical application of the Fell-O’Dwyer apparatus there for the ‘first series of [eight adult] cases published’, headed by his single 1894 patient, already mentioned.\(^{197}\) The apparatus must have been readily available for that first use when the house physician, ‘*without any experience in intubation of any kind*’, performed it ‘*successfully and promptly*’, enabling him to supply forced respiration by the apparatus.

Northrup credits an ‘HP [or] HS’ with initiating the first seven interventions, and ‘Dr O’Dwyer himself’ re-inserted the tube into the eighth patient.\(^ {197}\) Further documentation of any other use of the apparatus at the Presbyterian Hospital appears lacking, which leaves one wondering how much further it was applied there – or in other places. Northrup appeared to be the strong advocate for its use in intracranial disasters, with O’Dwyer participating, for example for Patients I and VIII. Brief details of the eight patients are shown in Box-1.

<table>
<thead>
<tr>
<th>Box-1. Clinical applications of the Fell-O’Dwyer apparatus reported by William Northrup, 1896</th>
<th>197</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient-I.</td>
<td>Brain tumour, apnoea; 25 hours forced respiration, multiple rescuers; given up (O’Dwyer and Northrup attended).</td>
</tr>
<tr>
<td>Patient-II.</td>
<td>Acute opium poisoning, deep coma, apnoea; about 3 hours of forced respiration; recovered.</td>
</tr>
<tr>
<td>Patient-III.</td>
<td>Ditto, breathing (4 breaths/min), cyanotic; “not severe”, only 20 minutes of forced respiration; recovered.</td>
</tr>
<tr>
<td>Patient-IV.</td>
<td>Cerebral haemorrhage, coma; trephined, breathing (4 breaths/min); 1-1½ hours of forced respiration (abandoned?); died.</td>
</tr>
<tr>
<td>Patient-V.</td>
<td>Brain trauma, coma, moribund, breathing (4 breaths/min); 8 hours of forced respiration, but then became asystolic: died.</td>
</tr>
<tr>
<td>Patient-VI.</td>
<td>Cerebral haemorrhage, coma, apnoea, operated; 6 hours of forced respiration; died.</td>
</tr>
<tr>
<td>Patient-VII.</td>
<td>Acute morphine poisoning (12gr = 778 mg), breathing (4 breaths/min); intubated, 7¼ hours of forced respiration; recovered.</td>
</tr>
<tr>
<td>Patient-VIII.</td>
<td>Ditto (30gr = 1.94G), apnoeic, cyanosed; intubated twice for 9 hours total, forced respiration time not given; recovered.</td>
</tr>
</tbody>
</table>

Four patients survived, but they were ones with opiate overdose alone, and not cerebral catastrophes.

Voorhees described patients-VII and VIII having “*very bad ones [poisonings], almost in extremis*”.

Northrup noted for Patient-VII, “The stomach tube and laryngeal tube ... were in position and in use at the same time”; and for Patient-VIII, that it took an hour to get the stomach tube down the oesophagus, past the laryngeal tube.

Northrup concluded that the Fell-O’Dwyer apparatus:

- Is efficient for prolonged artificial forced respiration;
- Is especially suitable for opium overdose – here it ‘certainly saved three lives’;
- Prolongs life (temporarily) in cerebral disasters with apnoea;
- Offers great promise in ‘operation-theatres... [for] sudden failure of respiration’; and
- Is a tactile technique of intubation that can be successful without previous practice (and presumably, without a laryngoscope), (see Footnote-8, over).

Footnote-7. Flagg,\(^ {186p12}\) in later referring to presumably this same patient (identified by him as the one presented to the ‘British Medical Society’, 1894), might cause confusion by his statement ‘The patient recovered and lived for quite a period in good health under the care of Dr Flint’; whereas Northrup clearly described her, *if she was the same patient, having an autopsy after forced respiration was stopped.*
3.4.2 Further modifications to the Fell-O’Dwyer apparatus

While steadfastly maintaining the principles set forth for the forced respiration form of IPPV, first by Fell, then O’Dwyer, subsequent developers modified the pump and other components, rather than continuing with a form identical with O’Dwyer’s original Fell-O’Dwyer apparatus.

Thus:

- 1900, a modification by Matas enabled anaesthesia to be incorporated into IPPV when required (Figure-4): a sidearm to the cannula had a rubber tube and funnel attached for administering the anaesthetic agent. The handle was now ‘shaped like that of a pistol’ for better control. And a manometer enabled better control of inflating volumes.

- 1900, Dr J D Bloom’s ‘adaptation of the O’Dwyer intubating canula for intraglottic insufflation in the treatment of asphyxia neonatorum’ had ‘a syringe rubber bulb with a valve at its free end to permit the entrance of air’, illustrated by Matas (as his Figure-3).

- 1900-1902, Bloom’s modification of the original Fell-O’Dwyer apparatus had labour-saving additions (Figure-5), all illustrated by Matas (as his Figure-10) such as a long lever for compressing the bellows; an in-line air filter; also a source of oxygen for inflation in asphyxia.

- 1902, Matas and Bloom, with the aid of engineer Dr John Smyth, while retaining O’Dwyer’s intralaryngeal tubes, replaced the bellows which they considered inadequate, with an ‘experimental automatic respiratory apparatus’ because of ‘certain conditions met in surgery which differ radically from the conditions met in purely medical cases’. Matas described its use only on a dog or on a cadaver, not live patients. In fact, Anthony Dobell noted (correctly?) that Matas ‘apparently did not use the apparatus on patients himself’. (Matas is much revered in the United States, and William Osler spoke of him as ‘the father of vascular surgery’).

3.4.3 Usage of Fell-O’Dwyer Apparatus by others

It is unclear not only how widespread was use of the Fell-O’Dwyer apparatus, but also how much - or how little - unrecorded use was happening in the United States, where acute opium poisoning was not uncommon. Were others not treating that, or other respiratory insufficiency such as suffered by several of Northrup’s ‘neurosurgical-type’ patients, by any better method than arm and chest manoeuvres? Was Sir Victor Horsley’s advice not heeded for neurosurgery, or were Northrup’s case-example treatments not imitated by others? How much use for thoracic operations followed Parham’s initial operation? If Matas had not written, that Bloom first introduced the Fell-O’Dwyer apparatus to the Charity Hospital of New Orleans, we would hardly have known of its presumed use other than at New York or Buffalo, or by Matas and Parham elsewhere in New Orleans.

Concerning ‘acute opium-poisoning, for which [the Fell-O’Dwyer apparatus] is admirably adapted’ and ‘used thus far most extensively’, Matas stated it had ‘already saved several lives in the practice of [Bloom’s] Hospital’. And although LR Hutson and CA Vachon confirmed ‘For years the Fell-O’Dwyer intubating canula had been used for the treatments of nonsurgical opium narcosis and of acute obstructive laryngitis in diphtheria’, their further statement, ‘as well as in the resuscitation of drowning victims around the country’, needs confirmatory data.

Footnote-8. Voorhees had already claimed that his case reports showed ‘how easily the tube and bellows can be used’. This tube for the Fell-O’Dwyer apparatus was longer than the smaller O’Dwyer tube for diphtheria. O’Dwyer himself had expressed concerns over difficulties in intubating with the latter, in discussion at an 1887 New York meeting. (But Northrup, speaking after him, reminded the select audience that they had, as he had also, ‘in the aggregate used the tube several hundred times and had never met with untoward accidents’.)
Instead of favouring the Fell-O’Dwyer apparatus, United States anaesthetists preferred the continuous intratracheal insufflation, which is considered to have been introduced to anaesthesia, 1907, by ‘Barthélemy and Dufou de Nancy’ (Footnote-9), who documented it for a mandibular hemi-resection, even though its nature was ‘assisted respiration’ – nowadays called ‘ventilatory assist’. Yet NA Gillespie describes these innovators ‘apparently unaware of the work previously done in Scotland, Austria, Germany, and Holland’.

Usage of ‘continuous intratracheal insufflation’ flourished for thoracotomy, however, especially after the boost from its first successful clinical application on 20th February 1910 by Charles A Elsberg (1871-1948) (acting anaesthetist, subsequently neurosurgical pioneer), following on his own and others’ experimental work (Footnote-10). Elsberg’s electrically-powered, clinical apparatus, in readiness at the patient’s bedside, already had its first reported usage on (?)25th/26th December 1909: for a medical patient, a myasthenic woman suddenly totally apnoeic. When deemed ‘hopeless after six hours of continuous intratracheal insufflation’, she was allowed to die.

3.4.4 Other IPPV efforts for thoracic surgery

In the first decade of the new century, there were many other experimental efforts in the United States (also in Europe where, however, Sauerbruch’s influence dominated in the early decades) to produce a satisfactory IPPV system for thoracic surgery. This is well described in the authoritative and detailed accounts for the period from Mushin and Rendell-Baker. Innovative investigators before the Great War included L Brauer, S Robinson, FT Murphy, W Meyer, F Kuhn, H Brat and V Schmeiden, NW Green and HH Janeway, Läwen and Sievers, GM Dorrance, JH and AB Dräger, M Tiegel, F Lotsch, S Bunnell and H Morriston Davies.

Footnote-9. Even Barthélemy and Dufou’s original paper does not supply the forenames or initials of this pair. With each spontaneous breath of the patient, their endotracheal system allowed ventilatory assist, from squeezing a hand-bulb (‘La soufflerie était actionnée à chaque inspiration’) in circuit with a chloroform inhaler, thence to the endotracheal tube, to free the face area for surgery. So it was intermittent inflation, hardly insufflation but intermittent positive pressure ventilation, to maintain ‘A constant partial distension of the lungs’, interrupted every 2-3 minutes.

Footnote-10. In consecutive articles in the 1911 Annals of Surgery [52:23-9 and 30-3], acting anaesthetist Charles Elsberg (1871-1948), then surgeon Howard Lilienthal (1861-1946), claimed that their operation of 20th or 21st February 1910, employing Elsberg’s modification of the Meltzer-Auer animal apparatus, was ‘the first case of thoracotomy in a human being under [ether] anesthesia’ [for a ‘foul and septic’ lung abscess] by ‘continuous intratracheal insufflation of air (Meltzer)[sic]’, as Elsberg called it. By means of foot-bellows his apparatus blew an (occasionally interrupted) air and ether stream at 15 mmHg pressure through a tracheal catheter, of half the trachea’s diameter; the method was then used for other patients. Although Elsberg quoted his own and Alexis Carrel’s experimental groundwork for ‘the Meltzer method,’ and although other originators were even earlier, he acknowledged physiologist Samuel Meltzer (1851-1920) and his physician son-in-law John Auer (1875-1948) for their work on curarised animals, 1909. (Without any normal or artificial rhythmical respiratory movements, the lungs were kept in continuous inspiratory distension, interrupted every 2-3 minutes).
Figure-4: Matas’s modification of the Fell-O’Dwyer apparatus for anaesthesia

Matas added a cone with an on-off tap to enable passage of anaesthetic supplement into its delivery tube; also a pistol-shaped handle for easier control. When attached, bellows delivered inflating air, with or without anaesthetic gas.

With acknowledgement and thanks to the American Medical Association for this illustration from JAMA 1900 (9 Jun); 34: 1472, Figure 11.

Figure-5: Bloom’s modification of the Fell-O’Dwyer apparatus for anaesthesia

This model can inflate with oxygen. It also has a long lever to ease the exertion of compression of the bellows by foot (or hand), and a cylinder of filtering cotton in the circuit.

With acknowledgement and thanks to the American Medical Association for this illustration from JAMA 1900 [9 Jun]; 34: 1472, Figure 10.
3.5 Were Fell and O’Dwyer intensive therapy pioneers?

The answer needs to be ‘yes’ from both adult and paediatric standpoints. Both men produced appropriate instrumentation for their treatment by evolving methods, but for many years they had to battle disbelief, derision and opposition to establish their claims – Fell largely alone, O’Dwyer with the strong support of colleague and key player Northrup, and through the enthusiastic take-up of his methods by others, such as Frank Waxham.196[162], 218

3.6 In summary

Initially, George Fell adapted a system from the animal laboratory, proving to be clinically successful in saving lives by [re-]introducing positive pressure ventilation.190, 194, 225 He used it primarily for adults critically ill from opium poisoning, but also for a few cases of paediatric ventilatory failure, even in newborns. Fell strove valiantly by example, lectures and writings to popularise his successful Fell method. Chapter-2 documents his pioneering role. 192

Joseph O’Dwyer took Fell’s method and improved it by adapting his own airway tubes to it, increasing its safety, and widening its applications. The subsequent Fell-O’Dwyer apparatus further diversified the capabilities of that method by opening new fields in anaesthetic IPPV, most strikingly for thoracic surgery, and in rescue IPPV, such as for intracranial disasters.

What O’Dwyer is probably more famous for, however, is his dedication to the problem of children dying from obstruction of the larynx by diphtheritic pseudo-membranes, at a time when the only possible alternative treatment by tracheotomy still left a very high mortality rate. O’Dwyer pioneered intubation directly through the larynx, but his significant success with that deadly disease came only after almost a decade of painstaking research, developing and refining his personal method. Thus, where others had failed, O’Dwyer established the intensive care principle we use today of intubation for acute airway obstruction (such a relief for the fearful parents of O’Dwyer’s patients, because it avoided the surgery they dreaded was needed for tracheotomy. See Footnote-11). Yet, despite O’Dwyer being frequently described as ‘the inventor of intubation’ (e.g., by enthusiastic admirers such as JJ Walsh227), he was the re-introducer.

Although the ‘O’Dwyer principle’ was established for diphtheria, the development of diphtheria antitoxin, then toxoid, early in the 20th century much reduced the need for his instrumentation. However, according to the Dittrick Medical History Center, Cleveland, Ohio, his ‘intubation instruments did not disappear from the medical scene [in immunised communities] until the mid-20th Century’.206, 228

While Fell advocated the possibility of his own method for intrathoracic surgery,219 O’Dwyer’s invention and Northrup’s publications both showed Matas the practical way. This resulted in application of the Fell-O’Dwyer apparatus (although it had, as Matas put it, ‘originated in other sources’)196[1375] to prevent the problem of acute traumatic pneumothorax with open-chest surgery, unresolved hitherto, and allow safer chest operations.

Footnote 11. Rudolph Matas compiled an impressive list196[1373] of dedicated, earlier intubators, from John Hunter and Monro Secundus onwards, including especially the numerous 19th century neonatal interventionists who intubated apnoeic newborn, defying the strictures which were a reaction to the adverse findings of JJ Leroy d’Étiolles, F Magendie and A-M-C Duméril, 1827-1829.196[1373], 226[222]
3.7 A final tribute to Joseph O’Dwyer

Rudolph Matas summarised O’Dwyer’s place thus:

‘It is to O’Dwyer, therefore, that the greatest credit is due for establishing intubation in its present form, and it is due to his unswerving and indefatigable perseverance, patience and mechanical ingenuity that the present form of [Fell-O’Dwyer] apparatus has attained its marvellous efficiency’. And ‘by similarly transforming the tracheotomy canula of the [Fell] insufflating apparatus... for... opium narcosis he has opened a new chapter of still greater interest and promise than that which his previous achievements had brought to a close’.

(The meaning Matas implied for ‘insufflating’ was not the same as that of later anaesthesiologists).

A last tribute to O’Dwyer is appropriate for his outstanding personal qualities, which come through so readily in articles about him. Some are so adulatory as to seem hero-worshipping. Thus within a decade of his death he was revered by such statements as Northrup’s: ‘the most godlike character I have ever seen in man,’ and ‘American medicine has no more shining light’.

Again from Northrup is that ‘O’Dwyer left a memory among his colleagues of a purity of character, an uncompromising honesty and uprightness that was almost childlike’. So let Dr Northrup have the last words then: ‘...with this genius, there was all that goes to make a man’.
Chapter 3 Supplement: Early artificial ventilation: the mystery of ‘Truehead of Galveston’.

Was he Dr Charles William Trueheart?
3.8 Introduction

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.8</td>
<td>Introduction</td>
</tr>
<tr>
<td>3.8.1</td>
<td>‘Truehead of Galveston’</td>
</tr>
<tr>
<td>3.8.2</td>
<td>Dr Charles William Trueheart of Galveston</td>
</tr>
<tr>
<td>3.8.3</td>
<td>‘Herr Trueheard aus Galveston’</td>
</tr>
<tr>
<td>3.8.4</td>
<td>Trueheards in Texas</td>
</tr>
<tr>
<td>3.8.5</td>
<td>To summarise regarding the names</td>
</tr>
<tr>
<td>3.8.6</td>
<td>Pioneering intensive therapy?</td>
</tr>
<tr>
<td>3.8.7</td>
<td>In conclusion</td>
</tr>
</tbody>
</table>
3.8 Introduction

It seems surprising that medical literature from the United States has only a single source for a novel device for artificial ventilation in neonatal resuscitation. Dating from c.1870, its invention is attributed to ‘Dr Truehead of Galveston, Texas’. The mystery of such a silence arises from separate misspellings of the inventor’s name in the medical literature. I propose that he is correctly identified and named as Dr Charles William Trueheart (1837-1914), who was also of Galveston.

3.8.1 ‘Truehead of Galveston’

During an address to America’s Southern Surgical and Gynecological Association in late 1898, Rudolph Matas drew attention to a device enabling the supply of rhythmic artificial ventilation during resuscitation of the apnoeic newborn. He referred to documentation of the use and construction of the device by a ‘Dr Truehead of Galveston’ in the German literature on obstetrics, 28 years previously. Matas included this item of historical interest in his comprehensive 1900 article on ‘Intralaryngeal Insufflation’ in the Journal of the American Medical Association. See Figure-1. However, apart from repetition of the Matas phrase ‘Truehead of Galveston’, first in 1933 by eminent anaesthesiologists Ralph Waters, Emery Andrew Rovenstine and Arthur Guedel, then in 1945 by medical librarian-historian Thomas Keys, there appears to be no obvious medical record of any Dr Truehead, or any writings by such a person. In briefly referring to Truehead’s apparatus only by quotation from Matas, these later writers shed no further light on the identity of its inventor.

That absence of further comment about such a ventilator caused me to try to identify ‘Truehead’, but I could find no medical Trueheads recorded, either printed or on the Internet. Initially, librarians at the Philson (medical) Library, Auckland, were unable to locate the Truehead paper Matas had quoted. But on enquiry made to the Wood Library–Museum of Anesthesiology (in Schaumburg, Illinois), archivist Felicia Reilly suggested that ‘Dr Truehead might really be Dr Trueheart’ (see Figure-2). Internet search would reveal there are many Truehearts in Galveston and Texas – but no Trueheads.

3.8.2 Dr Charles William Trueheart of Galveston

Charles William Trueheart, born in Virginia on 27 February 1837, died in San Antonio, Texas, on 14 December 1914, was contemporary with any such True-‘head’, even to being in Berlin around 1870, the time Matas indicated Truehead was writing. Chas Trueheart is a notable figure in Texan history and, together with his older brother Henry Martyn Trueheart (1832-1914), was the subject of Edward B Williams’s 1995 publication Rebel brothers, the Civil War letters of the Truehearts (Figure-3). This book provides some information about CW Trueheart’s medical career.
The passage from probably the best known of the publications of Rudolf Matas, about a 'Dr Truehead of Galveston', wherein he cited a paper presented by Truehead at Berlin. Mistakenly, Matas dates the paper for 1869 not 1870. He translates the title of the 'Truehead' paper from its German as 'An apparatus for artificial respiration in asphyxia' and refers to the publishing journal as Transactions of the Berlin Obstetrical Society.

With acknowledgement and thanks to the American Medical Association.

Dr Charles Trueheart, 1837-1914, at sometime around 1866, when about aged 30 years.
During the American Civil War, Trueheart functioned both as a soldier and as a medical attendant, while an undergraduate then a graduate from March 1864 (see Footnote-1). The account from Williams continues into post-war times:\footnote{235[p216]}

‘For the next several years after returning to Galveston, Charles practiced medicine there. … [After his first wife’s death, 1867, the year after their marriage] Charles continued his medical education, first at Bellevue Medical College in New York, and then in Europe at Göttingen, Germany [for 6 months\footnote{236}]; then [he studied a year and a half\footnote{236} at] Vienna, Austria; and [a year\footnote{236} at] Berlin. In 1870-71 he served with the Germans during the Franco-Prussian War as a surgeon in their military hospitals. At the close of [that] war he returned to Galveston, where he resumed practice.’

In a personal communication, archivist Jodi Koste of Virginia Commonwealth University, Richmond, VA, advised (2008, pers. comm.) that in 1872 he [Chas Trueheart] published an article on “Conjunctivitis granulosa chronica treated by galvanization” that appeared in Medical Record (NY) 1872, volume 7, page 569. He listed himself as surgeon to “The Eye, The Throat, and Ear Department” of Galveston City Hospital.

\footnote{Footnote-1. Williams states\footnote{235} (pages 8-10) that Trueheart started medical studies in 1858-59, transferred to the University of Virginia in 1860, and served in a ‘University Volunteers’ military company from April/May 1861, until leaving university for private soldiering in a unit in the field, October 1861 (page xii). He participated in various campaigns, then was a hospital steward from September 1862 until the following September, before returning to Richmond to complete his medical training by March 1864. He was assigned as an assistant surgeon, 8th Alabama Volunteer Infantry Regiment. He transferred in December 1864 to the 1st regiment of Confederate Engineers to return to the war front, Petersburg VA. He surrendered with that unit at Appomattox, 9 April 1865, then three days later took part in the official surrender ceremony. Rick Cox reported in the North San Antonio Times. 11 March 1982 that reputedly, Charles ‘brought the first fever thermometer to the United States upon his return from Germany’ in 1871.\footnote{235[p216]}}
Later attainments in Trueheart’s medical career are outlined in the *Handbook of Texas on-line*, while EB Williams lists engineering accomplishments (reminding us of Dr George Fell similarly practising Activities which were non-medical). Stephen Greenberg of the United States National Institutes of Health’s National Library of Medicine (NLM/NIH) unearthed for me Trueheart’s ‘dozen or so articles, but none is in German, and none is concerned with artificial respiration’. The Texas Physicians Historical Biographical Database lists 23 Trueheart references, which include ten of his papers.)

At this stage, I had reached stalemate as, apart from exceptional geographic coincidences of time and place, there was no reliable indication that Trueheart was Matas’s Truehead, an innovator in intermittent positive pressure ventilation (IPPV) at Berlin around 1870.

3.8.3 ‘Herr Trueheard aus Galveston’

After considerable difficulty (because the author’s correct name was not as Matas provided, and also because a ‘Trueheard’ seemed associated with the published German article, see Figure-4 for the journal), the author’s name is first seen only in the fourth line of writing, a little down the article’s front page – as in Figure-5. University of Auckland librarians eventually located for me the article Matas quoted. Unless Trueheart spoke in German, the article would seem to be a German translation of the English text of a lecture given by a ‘Trueheard’ (named as such without fore-initials in the publication) to an obstetrical conference in Berlin on 26 June 1870 – a date three weeks before the outbreak of the Franco-Prussian War in which Trueheart served. At publication of the text of the lecture two years later, authorship in the journal was attributed not to Truehead, as recorded by Matas, but to ‘Trueheard aus Galveston’. Based on this, Stephen Greenberg from the NLM/NIH, Bethesda MD, further suggested that the ‘Truehead’ I was enquiring about should be Trueheard. Obviously, searching was needed beyond ‘Trueheart’ to locate Matas’s subject.

3.8.4 Trueheards in Texas

For seeking Trueheards at Galveston, the Internet (Google Scholar) supplied a lone entry: in the *Sam and Bess Woolford papers for 1834-1979*, held by the University of Texas Library. ‘Lone’ – except helpfully and one fortnight later, ANZCA librarian Jenny Jolley sent me another reference of the name Trueheard, from Michael Obladen’s article on the history of neonatal resuscitation coming coincidentally on-line, 9 July 2008. It was likely to be the first appearance of ‘Trueheard’ for many years. But when I saw that under ‘Woolford’ (on Google) were Trueheard forenames spelt as Henry Martyn – identical with those of Trueheart’s brother, even to the less common spelling of Martyn – it dawned on me that this Trueheard was likely to be a Trueheart. Attempts by archivist Nikki Lynn Thomas at the University of Texas to locate the Woolford file’s specific section were unproductive, and she believed ‘it is safe to assume that the Trueheard of the Woolford Tales is, in fact, Henry Martyn Trueheart, as there is only one Henry Martyn that I can find of any importance in Texas history’. So in the Berlin publication, ‘Trueheard aus Galveston’ actually seems likely to be a misspelling for ‘[C W] Trueheart’. Felicia Reilly’s original advice now appeared correct.

In personal communication to me, July 2008, Michael Obladen suggested that the name ‘Trueheard aus Galveston’ ‘probably was misspelled in the proceedings of the Society of Obstetrics and Gynecology, and afterwards Knapp and others copied the misspelling from there. But this explanation is purely speculative of course’. My own conviction is strengthened that the Berlin Trueheard is a misspelling of (CW) Trueheart, who neatly fits the minimal
life features known and attributable to Matas’s Truehead. It has always seemed to me to be too great a coincidence that a Dr Trueheard and a Dr Trueheart, both from Galveston, went to Germany and Berlin around 1869, where Trueheard showed a resuscitating machine (Figure-6).

Figure-4: A copy of the front page of the 1872 German medical journal

![Image of a copy of the front page of a German medical journal from 1872](image)

With acknowledgement and thanks to the Society.
Matas wrote 1898\(^{229}\), 1900\(^{231}\): “The rather complicated appliance was originally intended to insufflate air into the lungs by means of an intubating canula which was inserted into the glottis and larynx. There are at least two sizes of the intralaryngeal pieces, graded to suit the ages of the patients – chiefly newborn infants. The laryngeal piece is pyriform in shape, and is made to conform to the size and outline of the glottic orifice. It fits closely to the larynx, and its conical shape facilitates its tampon action. The mouthpiece is shaped like a curved catheter, and this is connected to a bellows which works on a vertical axis and automatically injects and aspirates air in and out of the trachea in a rhythmical fashion. As a true intubating canula and respiratory machine supplied by a bellows, it clearly anticipates – though it is a far more complicated way – the second American invention, with which we are familiarly acquainted as the Fell-O’Dwyer apparatus”.

With acknowledgement and thanks to the Society.

So, there is an 1872 article in German that documents a neonatal life-saving device, but, although a generously illustrated article, it provides minimal data on treatment. There are evidently no English-language articles that record its practical application. Michael Obladen’s recent article\(^{240}\) has an illustration of the device from a 1904 edition of Ludwig Knapp’s book,\(^{241}\) wherein it is pictured from Trueheard’s original paper. In a personal communication, July 2008, Obladen did doubt “… that Adolf Gusserow (Berlin Chair of Obstetrics from 1878 to 1904) used ‘Trueperson’s’ portable ventilator for neonates in his delivery room. [We communicated somewhat
irreverently, about ‘Trueperson’. With my apologies where due. He was not too keen towards technical advances, and when the 1896 industrial exhibition closed (to which he had loaned eight pre-term infants believed chanceless) he did not buy Lion’s incubators, despite the fact that six of the infants had survived. On the other hand, Ludwig Knapp’s textbook of 1898 (‘The apparent death of the neonate’) was so successful that a second edition appeared in 1904, both of them referring to ‘Trueheard’s’ respirator in text and figure. So I assume, the ventilator was used at least in ‘Deutsche Frauenklinik zu Prag’, where Knapp was professor and 1st assistant. Moreover, the device was manufactured by companies in two European capitals, Mattich in Berlin and Leiter in Vienna.’

3.8.5 To summarise regarding the names
To date the available evidence appears to suggest strongly that:

- Matas’s Truehead, in reality, was Charles William Trueheart.
- The Trueheard now deemed by me to be misspelt in the 1872 Berlin article illustrating a novel neonatal ventilator was not Trueheard but Trueheart.
- The Trueheard cited from the Berlin paper by Knapp in his 1904 book was Charles Trueheart.
- Henry Martyn Trueheard, said to be referred to in the Woolford papers at the University of Texas, was Henry Martyn Trueheart, Charles’s brother.

A possible sequence to provide a logical explanation of the three names is:

- Trueheart gave a talk in Berlin but its text, published after probable translation from an English text, had the final letter ‘t’ of his name changed in error to ‘d’.
- Another error arose when Matas quoted the article from the German text but omitted the final ‘r’ of Trueheard, giving the name Truehead (see Footnote-2).
- So Trueheard, correctly in my opinion, would need to be referred to as Trueheart, as will be employed hereafter.

3.8.6 Pioneering intensive therapy?
Matas regarded Trueheart’s ‘complicated’ IPPV device as an American first, as it ‘anticipates in principle almost all the essential characteristics of [O’Dwyer’s] latter but more simple appliance’. Whatever use it was put to in Europe, so far it appears that this invention was not taken back to the United States on Trueheart’s return to Galveston in 1871, nor does Matas mention its use in the United States. Yet, because the device featured in successive editions of Knapp’s textbook in Germany – one over 30 years after the initial description – and because at the time it was still being manufactured in at least two European countries, it seems to have been known and used. Even if Trueheart was not a pioneer in his own country of neonatal IPPV by tube-to-infant’s-mouth, he still qualifies through his device as a pioneer, seemingly without any recognition at that time, for introducing his mode

Footnote-2: In a comment to me, Dr Tony Newson, FANZCA, wrote (pers. comm., August 2008): ‘The copperplate script that was popular before typewriters were introduced made misspelling so common, and a good example is an ‘ed’ vs an ‘et’, especially when the ‘d’ is made with a flourish. [Christopher ‘QWERTY’ Sholes patented his typewriter in June 1868] Then of course, once an error gets into the system it just ‘keeps on keeping on’.

And he added further, ‘Another example of misspelling [was] from 1846 when “Medical” became misread as “Musical”. This must have been from typescript since the Spectator (London) referred to J H Bigelow addressing a paper on ether to a Boston musical Society (actually the Boston Society for the Advancement of Medicine and the Arts).’
of neonatal intensive therapy. He is entitled to rescue from such oblivion, and be honoured accordingly. Indeed, in
the history of IPPV devices, Matas wrote that he regarded Trueheart’s rhythmical inflating device for neonates as
‘entitled to precedence over [O’Dwyer’s]’.

An obvious difficulty is understanding why, after Trueheart’s return to Galveston, he appeared so uninformative
about his invention of a device with life-saving potential. Surely it would have been welcomed by the medical
fraternity? But, so far, it seems that the US medical literature is bereft of mention of the invention until Matas gave
his description (Figure-1).

3.8.7 In conclusion
Without having absolutely confirmatory evidence (a devastating Hurricane ‘Ike’, 13th-14th September 2008, ravaged
Galveston the day after I sent four separate enquiries there about Trueheart, with the destruction therefrom
precluding answers), there is of course conjecture in my contentions for which the evidence is inconclusive, but is,
perhaps, reasonably convincing.

Charles William Trueheart appears to ‘fit the bill’ satisfactorily for him to be acknowledged as the ‘Truehead of
Galveston’, who made a brief appearance in medical history as the deviser of an effective apparatus for neonatal
resuscitation at its time of the 1870s, preceding both the George Fell and the Fell-O’Dwyer apparatus, apparatus
which was manufactured and employed in Eastern Europe for several decades more.
Chapter 4: Australasian Management of the ventilatory failure of acute poliomyelitis

20th century artificial ventilation before the Danish poliomyelitis epidemic
Chapter 4: Table of Contents

4.1 Introduction ...85

4.2 Edward and Donald Both and Aubrey Burstall ..85
 4.2.1 Polio in the 20th century ..86
 4.2.2 The Drinker respirator ..86

4.3 Respirators in Australia ...87
 4.3.1 The Both team and their portable cabinet respirator24387
 4.3.2 Professor Aubrey Frederick Burstall ...88

4.4 Lord Nuffield and the Both Respirator ..91
 4.4.1 Non-polio use of negative pressure ventilation and the Both respirator92
 4.4.2 Demise of intermittent negative pressure ventilation94
 4.4.3 Afterthoughts ...94

4.5 Dr John A Forbes and Fairfield Hospital, Victoria ...95
 4.5.1 Treatment of polio at Fairfield, with mortality data246,24796
 4.5.2 John Forbes and negative versus positive pressure ventilation97
 4.5.3 INPV improvements and mortality rate ..97
 4.5.4 Early intensive care medicine in Australia: John Forbes and others98

4.6 In conclusion, regarding Dr John Forbes ..99

4.7 Postscript 2019 ...99
4.1 Introduction
Acute infectious poliomyelitis, or Heine-Medin disease, was first systematically described in Europe in 1840 by Jakob Heine,\(^\text{242}\) although the withered leg portrayed on an ancient Egyptian relief would suggest that the disease existed in antiquity (see Figure-1). Karl Oskar Medin’s study, completed in 1891, was the first documentation of an epidemic of polio, at Stockholm in 1887,\(^\text{242}\) while Australia’s first epidemic recorded as polio\(^\text{243}\) was at Port Lincoln, South Australia, in 1895 (Megan Hicks, Powerhouse Museum, Sydney, New South Wales, \textit{pers. comm.} 2006). During the first six decades of the 20\(^\text{th}\) century, successive epidemics swept through populations that lacked an acquired immunity, with the most severe later epidemics in the years 1937-1938, 1947-1948 and 1952-1953.\(^\text{242}\) The fifth last of New Zealand’s epidemics was in 1952-1953. Children were affected more often than adults, and ‘infantile paralysis’ became, in the commonly used newspaper phrase, ‘every parent’s greatest dread’. Before 1928, available methods were inadequate for supporting those with the paralytic breathing failure that can complicate polio, thereby putting those afflicted at high risk of death. Jean C Ross’s 1993 MA thesis (Canterbury University, UC Research Repository) covers ‘A History of Poliomyelitis in New Zealand’ with ample statistics (it is available online).

\textbf{Figure-1: The ‘Polio Stela’}

\begin{quote}
The ‘Stela of The Doorkeeper Roma to the (Syrian) Goddess Astarte’, from her sanctuary at Memphis, Egypt, considered to be from the XVIII Dynasty reign of Amenophis III, circa 1403-1365 BC, is now in the Ny Carlsberg Glyptotek, København (inventory # AEIN 134). The withered right leg is generally regarded as resulting from polio. Photographed by Ole Haupt, reproduced with permission of the Glyptotek.
\end{quote}

4.2 Edward and Donald Both and Aubrey Burstall
When Australia’s 1937 epidemic of poliomyelitis created an urgent need for extra ventilating machines to compensate for respiratory paralysis, Edward Both (the -o- in ‘Both’ as in ‘moth’) an innovative Adelaide biomedical engineer, invented a wooden cabinet respirator\(^\text{243,244}\) capable of being made relatively quickly in quantity, meeting the demand anticipated during an epidemic. His device, here called ‘the Both’, alleviated the problem at Adelaide’s Northfield Infectious Diseases Hospital and others, and in late 1938 was introduced into England when Both was visiting. Appreciating its merits, Lord Nuffield financed assembly-line production at the Morris motor works in Cowley, Oxford. Then, through the Nuffield Department of Anaesthetics in Oxford’s Radcliffe Infirmary, he had the Both distributed Commonwealth-wide, as a gift for treating ventilatory failure in polio – especially in children.
For the 1937 epidemic in Victoria, and to the design of Melbourne University's Professor of Engineering, Aubrey Burstall, nearly 200 of another wooden-cabinet respirator were ultimately built. Some were installed at the Acute Respiratory Unit of the Infectious Diseases Hospital at Fairfield, then others 'all over Australia'. By the early 1950s, however, the Both had replaced Fairfield Hospital's 'Burstall', which since 1937 had functioned as Victoria's favoured respirator. Dr John Forbes at Fairfield became the foremost Australian clinician for expertise with the Both.

Before the advent of intermittent positive pressure ventilation, the Both’s usefulness had seen it tried for ventilatory failure in some non-polio conditions, but uptake of that application was limited. Nonetheless, Nuffield’s philanthropy with the (Nuffield-)Both ultimately furthered progress along the 20th century pathway to intensive care medicine.

4.2.1 Polio in the 20th century
The medical literature on this topic may cause some surprises in that some Australian contributions to treatment seem to have been inadequately recognised, considering their importance in the history of both polio and intensive care medicine. These comprise first, the 1937 inventions by Edward Both and by the less well-known Aubrey Burstall of wooden cabinet (or ‘tank’) respirators for treating acute ventilatory failure from paralytic polio; and secondly, the clinical success achieved in the 1950s by Dr John Forbes and his team in using the Both tank to treat that complication of polio. That was in the Acute Respiratory Unit at the Queen’s Memorial Hospital for Infectious Diseases at Fairfield, Victoria. (The hospital – hereafter referred to as Fairfield Hospital – was founded in October 1904 and closed on 30th June 1996). Writing this chapter drew especially on articles in the March and December 2003 issues of The HaMMer (the Australian Health and Medicine Museums newsletter).

4.2.2 The Drinker respirator
At the Harvard School of Public Health in Boston in the United States, Phillip Drinker (1894-1972) and Louis Shaw, with help from Cecil Drinker, designed and built a truly effective ventilating machine: their ‘artificial respiration tank’ was a body-enclosing sheet-iron cabinet (with the patient’s head and neck protruding from the cabinet and sealed off from its interior), powered by an electric motor, which provided external, intermittent ‘negative’ (sub-atmospheric) pressure ventilation (INPV). The initial use of this first-ever practical INPV machine over 14-19 October 1928 extended the life of a dying child for 122 hours. Warren E Collins Inc., Boston, undertook full production of the Drinker(-Collins) respirator (as it was called then, not a ‘ventilator’), and an unknown reporter dubbed it the ‘iron lung’ (a term of usage which Mushin and Faux referred to sardonically in the Lancet of 25 Nov.1946). Although effective and life-saving, it was large, heavy (about 102 kg), cumbersome and expensive: in the United States, an adult machine cost about US$2000 in 1930 ($2000 to ‘land’ in Melbourne in 1936, £1500 sterling) while the cost in Europe in the mid-1950s was around £1500 sterling. Apparently the Emerson iron lung (from May 1931), subject of an acrimonious lawsuit over patent, was about half the Drinker’s price. Infant-sized machines were also made, although adult machines were used on children.

The 1937 polio epidemic reaching Australia brought a dire need for respirators. There were only ‘a few’ Drinkers in the country then, and they had to be sent to the United States for servicing. One had been imported to the Fairfield Hospital in 1936 to treat a patient with post-diphtheritic, bulbar-type paralysis.
4.3 Respirators in Australia
A notable, eminently practical 1937 invention from Adelaide, South Australia, provided a realistic alternative to the Drinker. This chapter now attempts to pay tribute to the designers and manufacturers, Edward Both (died 1987) and his brother Donald (died 2005), and to the later but probably foremost clinical user of their invention in Australia, Dr John Forbes (1920-1989) of Fairfield Hospital, Victoria. Lord Nuffield, William Morris (1877-1963), made an important contribution by ensuring manufacture and widespread availability of the Both respirator, free of charge, throughout ‘the Empire’ (United Kingdom and Dominions). The independent contributions of Aubrey Burstall (1902-1984) must also be recognised, although his cabinet respirator did not achieve the Both’s same Australia-wide use.

4.3.1 The Both team and their portable cabinet respirator
Biomedical engineer Edward (Ted) Both developed a medical equipment laboratory at Adelaide University in the 1930s. With his wife Eileen and brother Donald (see Figure-2), he formed Both Equipment Limited. During the 1937 polio epidemic, in response to requests from South Australian health authorities for an alternative to the Drinker, the brothers designed and constructed their cabinet respirator within a few weeks (see Figure-3). Although its cabinet was made of plywood, the Both respirator could not shake off the ‘iron lung’ nickname, used even by the Both brothers, it seems.

Figure-2: Edward, Eileen and Donald Both

Edward Both (left) with his wife Eileen and younger brother Donald, photographed at his home, 1987.
Photo reproduced with the kind permission of Dr Richard Bailey, FANZCA Dr Bailey.

The Both tank worked in much the same way as the Drinker but the incorporation of a bi-valved design, hinging upwards the top section of the tank, allowed temporary access to the patient’s body. ‘Working non-stop with the help of several other enthusiastic young men, the brothers produced sufficient machines to cope with the polio epidemic in South Australia.’ The GEC electrical motor to provide pressure changes was external to the cabinet, together with the compressor and bellows, and connected to it by a large flexible hose-pipe. This wooden ‘Both portable cabinet respirator’, as it was named, was considerably lighter than the Drinker, and its wheels made it mobile. It was quickly put into life-saving use at Adelaide’s Northfield Infectious Diseases Hospital (with a few also at the Royal Adelaide Hospital [Stephen Hagley, FCICM, Royal Adelaide Hospital, retired, pers. comm., 2001]).
Figure-3: The Both Cabinet Respirator

The ‘alligator’ design of the Both Portable Cabinet Respirator, in Auckland Hospital.
Courtesy of Alex Fraser and the hospital’s Department of Medical Photography.

and then was taken up in multiple hospitals and respiration units in other States (such as the Royal Alexandra Hospital for Children at Sydney’s Camperdown, NSW, and in Western Australia and New Zealand).

Megan Hicks has noted that the Both was the commonest of the various respirators based on the Drinker and able to be made quickly and relatively inexpensively. The original Both, costing around £100, was made only in Adelaide, but Both agencies were established later in Sydney and Melbourne (Richard Bailey, FANZCA, pers. comm., 2006). The respirator underwent various improvements and was also ‘copied in the workshops of several Australian hospitals; as was a “Nuffield-Both” at Prince Henry [‘Coast’] Hospital, NSW, in the 1940s’. In consequence, the Boths and facsimiles in Australian museums are not necessarily identical, as they could have been manufactured in different places at different times. Even in 2006 in Australia and New Zealand, a few individuals with residual ventilatory incapacity used their own Both at home, unwilling to exchange a trusted and reliable long-time friend for a modern machine. Thus in 2003, there were five in homes in Victoria and one in NSW. Such individuals were still partially dependent on their Both, for instance, during sleep or with respiratory infections.

4.3.2 Professor Aubrey Frederick Burstall

For the 1937 polio epidemic in Victoria, a different wooden cabinet respirator, the Burstall, (see Figure-4) was used at the Acute Respiratory Unit of Fairfield Hospital, under the direction of the unit’s 1932 founder, Dr Henry (Sandy) McLorinan. This was purpose-designed locally by Aubrey Burstall, and six respirators could be coupled to a Burstall pulsator unit (35 of which were eventually made) (see Footnote-1, over). Burstall cabinets were installed ‘for use all over Australia’. Burstall himself implies a total of nearly 200 at the end of 1937, but Bryan Speed’s count (see Footnote-2, over) does not indicate so many.
Later, towards the end of the epidemic (Christmas 1937), Burstall developed a simpler, neck-to-waistline ‘jacket respirator’, a hammer-out, 6lb (2.7kg), aluminium, thoracic cuirass for respiratory support at the convalescent stage of polio ventilatory paralysis (see Figure-5). This jacket had its initial clinical use in the first week of February 1938 at Melbourne’s Children’s Hospital, and then soon after at Fairfield. One Burstall cuirass could be connected to a pulsator, or many cuirasses to a cabinet respirator. The inventor documented the jacket’s ‘merits and demerits’. Burstall apparatus provided sterling service for Victoria, but unfortunately no examples appear to remain today. Despite the Burstall cuirass becoming a local success (it was also successful in England, as Prof RR Macintosh later mentioned in his renowned ‘Letter’ of ‘explanation’ to the British Medical Journal of January 14, 1939), it was through the Both’s ubiquity — as well as its intrinsic advantages — that it became the Commonwealth’s regular cabinet respirator, as will be further discussed regarding their numbers distributed.

Footnote-1. Biographical Note. [See Carolyn Rasmussen’s Increasing Momentum – Engineering at the University of Melbourne]. Aubrey Frederick Burstall (PhD, Cambridge), newly arrived from England to the Chair of Engineering at Melbourne University, rapidly developed his solutions for treating ventilatory failure in polio during 1937 – the year the University of Melbourne conferred on him a DSc, honoris causa. Burstall also designed gas producers for motor vehicles. His medical devices included ‘a tiny heat-regulated respirator’ for neonates at Royal Women’s Hospital, Melbourne, and an aspirator, while his Faculty supplied a ‘Crash Team’ for beach rescues. In 1946 Dean Burstall, after difficulties over challenging ‘the dominance of civil engineering’, returned to the United Kingdom to the chair of Mechanical and Marine Engineering at the University of Durham. His books include the highly rated 1963 History of Mechanical Engineering and the 1968 Simple Working Models of Historic Engines.

Footnote-2. Bryan Speed has determined that, at Fairfield Hospital’s Acute Respiratory Unit, ‘The initial six respirators increased to 23, with up to 47 patients having to ‘time share’. A further 36 ‘Burstall’ respirators were distributed to regional centres in Victoria. A total of 1,275 patients were treated. Most were less than 14 years old, 140 had respiratory paralysis, 106 required respirator treatment and 37 of these died.’ (Mortality rate was thus 35% among those ventilated).
Figure-5: Aubrey Burstall’s cuirass jacket respirator, from his original 1938 article.246

Reproduced with kind permission of the British Medical Journal.

Figure-6: Lord Nuffield and Professor RR Macintosh with the first Both respirator at Oxford.

The picture is reproduced with kind permission of the Nuffield Department of Anaesthetics [‘NDA’], courtesy of Professor Clive Hahn, from Jennifer Beinart’s The History of the Nuffield Department of Anaesthetics, Oxford, 1937-1987.

The photo is likely to be from the Oxford Times newspaper.

The upper of the two captions reads: ‘Lord Nuffield believes in trying out for himself everything his factory produces. A week after his decision to build 5,000 iron lungs, costing £98 each, Lord Nuffield personally took part in a test of the first unit’.
4.4 Lord Nuffield and the Both Respirator

In October 1938, the Professor of the Nuffield Department of Anaesthetics (NDA) at the (old) Radcliffe Infirmary, Oxford, was New Zealander Sir Robert Macintosh (1897-1989), who ensured that Lord Nuffield saw a film featuring a ‘child whose life was saved in one of the newly invented “lungs”’. Eileen Both described Nuffield as impressed with the Both’s ‘simplicity of operation and its design’. Accordingly, Robert Jackson’s biography of Nuffield has him, directly after viewing the film, wanting to know why more hospitals were not equipped with tanks. ‘Money’ was Macintosh’s simple answer. Commenting ‘it seems a dreadful state of affairs that children are dying because hospitals cannot get hold of iron lungs in time’, Nuffield then asked: ‘If every hospital throughout the Empire had a “lung”, is there a reasonable prospect of three lives being saved?’ To Macintosh’s reply, ‘Undoubtedly they would’, Nuffield responded: ‘Well, I will give instructions immediately for a thousand to be made’. Jennifer Beinart (now Stanton) states in her careful account that, after viewing the film, Lord Nuffield chanced a ‘few days later’ upon a newspaper headline ‘Iron Lung Arrives Too Late’ for a young patient who might have been saved. The accompanying article stated (possibly incorrectly) that there were only five iron lungs in all England. This led Nuffield to offering on 24 November 1938 ‘to make 5000 of them if necessary, at a cost of something like £500 000;’ Other doctors wanted Nuffield to be aware that further improvements could still be possible, but Nuffield was dismissive. The whole story has been clearly set out by Macintosh which Robert Jackson, 1964, does not reference in quoting Nuffield for his well-attested statement:

> If I had waited for the perfect car, I should be bankrupt now. We must get on with the best possible model available now and improve on it as we go along. It seems a pity to think that some of these respirators will be used as coal scuttles, but it is more tragic still to think of the possibility of a life being lost through the failure on my part to spend £25 or £30.

A London County Council medical officer called Nuffield’s providing iron lungs for ‘all and sundry’ the height of folly. But, trusting the advice of his friend Sir Robert, Nuffield himself laid out the line for mass production of the Boths in a corner of his Morris motor works in Cowley, Oxford. Until stopped by the war, production continued to supply every Commonwealth/Empire hospital still asking for Boths – and Jackson says ‘several thousands did so’. Jackson repeats the above cost (sterling) of a Both-Nuffield at ‘about £25 each’ (versus £100 each, £500 000; compare the £98 cited in the caption to Figure-6).

The NDA was to distribute the Both-Nuffield respirator. NDA Professor Alex Crampton Smith records

> in 1939 he [Nuffield] made the gift of a Both type ‘iron-lung’ to every hospital in the Commonwealth which asked for one... The Nuffield Department helped to distribute the respirators and by demonstrations and films gave instructions in their use.

Sir Frederick Menzies made initial sharp criticism complained of ‘a wanton waste of private benevolence’. but Macintosh was staunchly defensive against such opinion. By RE Smith’s later precise count, ‘at the end of March, 1939, there were in the British Isles, including the Services...965 Both machines’. (Smith also noted 30 Drinker machines and 43 Bragg-Paul respirators). At the end of 1939, the Nuffield Department could report that ‘just over 1600 respirators’ had been allocated throughout the Empire and ‘about 800 delivered’ (versus ‘just on 1800’, as Professor Peter Morris of the John Radcliffe Hospital Oxford assessed). Although Beinart stated in 1987 that, because the later Nuffield Department of Anaesthetics records of the total number of Both-Nuffield
respirators supplied have not survived, uncertainty existed over that number. Earlier in 1947 *The Lancet* reported definitively (anonymously) on the numbers distributed. In Australia, sometimes Boths, a proportion of them coming from Cowley, were called ‘Nuffields’ (see Footnote-3).

A later Notes and News report in *The Lancet* (2 August 1947; 250: 193), concerning where the Nuffield-Both respirators ‘were distributed approximately’ produced these figures: United Kingdom and the Services, 750; Canada, 347; Australia, 198; India and Burma, 183; South Africa, 46; Eire, 40; New Zealand, 33; Newfoundland, 14; British hospitals abroad, 10; and elsewhere in the British Empire, 134; total, 1755.

Significantly in the history of intensive care medicine, ‘at one stroke’ Nuffield’s foresight with ‘this equipment... forced physicians to treat actively patients developing respiratory failure’, Ted Both, Professor Macintosh, Lord Nuffield, certainly earned gratitude. As William Mushin contended, the Both respirator functioned well to compensate for polio-paralysed respiratory muscles and did ‘an enormous amount of good’. Mushin *et al.* saw the anaesthetists whom Nuffield caused to be involved as the natural operators for tank respirators:

> At one stroke a large section of the population working in British hospitals became familiar with this [Both] apparatus and, perhaps as importantly, Departments of Anaesthetics became recognised as the experts in its use and in the care of patients with acute respiratory difficulties.

The excellent results obtained in these units stimulated major hospitals in many centres to establish ‘respiratory units’.

None of the reliable positive pressure machines developed in Sweden since 1934 for artificial ventilation during anaesthesia had received a trial for the long-term artificial ventilation which polio victims might require. (And of course, intermittent positive pressure ventilation would also require satisfactory, cuffed intratracheal tubes.)

4.4.1 Non-polio use of negative pressure ventilation and the Both respirator

The 1928 Drinker iron lung represented a distinct advance over any existing machine providing respiratory assistance. Not surprisingly, “the application of the respirator to a wide range of conditions other than polio started almost as soon as the Drinker machine was invented”. Philip Drinker and colleagues listed its application in 80 patients by June 1930 (Table-1). In 1934, this machine enabled the survival of five out of eight diphtheria patients with diaphragmatic paralysis.

In the 1930s-1940s, innovators continued trying out mechanical NPV for numerous life-threatening disorders other than polio (Table-2).

The arrival of the Both provided a respirator which was, although at times inconvenient and for some perhaps claustrophobic, less complicated than the Drinker for nursing procedures, and much cheaper (Morris ‘Mini’ versus ‘Rolls-Royce’ comparisons have been heard). A year after the ‘Both-Nuffield’ was introduced to Oxford, Robert Macintosh was assessing it for preventing postoperative respiratory complications; then, William Mushin and Nancie Faux successfully used it in a trial with 24 patients ‘to reduce post-operative morbidity’. However,

Footnote-3. The Pioneer Park Museum in Griffith, NSW has pointed out that the museum’s ‘Both Bros... ‘alligator’ style respirator [purchased by the Griffith community], unlike the one donated by Lord Nuffield, which patients had to be slid in and out of,... has a lid that works on a counterweight. This system is said to be a lot more user-friendly.'
contemplating his attempts at postoperative, prophylactic negative pressure ventilation, Professor Macintosh commented ruefully: ‘The sound of iron lung was pretty sinister... The surgeons’ reputation could not stand for it’ (pers. comm., 1987).

Table 1: Patients treated by negative pressure respirators in the eastern United States

<table>
<thead>
<tr>
<th>Indication</th>
<th>28 October 1928 To June 1930</th>
<th>“After 2 years”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neonatal asphyxia</td>
<td>Limited success</td>
<td>>30</td>
</tr>
<tr>
<td>Polio respiratory failure</td>
<td>2 of 7 survived</td>
<td>100</td>
</tr>
<tr>
<td>Coal gas / carbon monoxide poisoning</td>
<td>9 of 17 recovered</td>
<td>50</td>
</tr>
<tr>
<td>Overdose</td>
<td>3 of 5 recovered</td>
<td></td>
</tr>
<tr>
<td>After scoliosis surgery</td>
<td>1 of 1 successful</td>
<td></td>
</tr>
<tr>
<td>Drowning</td>
<td>1 of 1 recovered</td>
<td>7</td>
</tr>
<tr>
<td>Alcoholic coma</td>
<td>3 of 8 recovered</td>
<td>10</td>
</tr>
<tr>
<td>Post-diphtheritic paralysis</td>
<td>–</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>80 (46 adults, 6 children, 28 infants)</td>
<td>>198</td>
</tr>
</tbody>
</table>

Table 2: Further applications of negative pressure ventilation to 1945 (Table based from AA Gilbertson, 1995).

<table>
<thead>
<tr>
<th>Year-1940s</th>
<th>Indication</th>
<th>Author</th>
<th>Reference Site</th>
</tr>
</thead>
<tbody>
<tr>
<td>1930-1940s</td>
<td>Poliomyelitis</td>
<td>Gilbertson A²⁶⁹</td>
<td>J Roy Soc Med 88: 459P-63P</td>
</tr>
<tr>
<td>1935,Jun22</td>
<td>Drinker respirator in diphth. diaphragm-palsy</td>
<td>Mitman M, Begg N²⁷¹</td>
<td>Lancet i:1438-40</td>
</tr>
<tr>
<td>1939,Apri22</td>
<td>Paraldehyde poisoning</td>
<td>Macintosh RR²⁶⁹</td>
<td>Br Med J i: 827</td>
</tr>
<tr>
<td>1940,Dec14</td>
<td>New Both use x2 in poor risk, abdominal surgery</td>
<td>Macintosh RR²⁷²</td>
<td>Lancet ii: 745-6</td>
</tr>
<tr>
<td>1942,28Feb</td>
<td>Diphth. diaphragm-palsy treated in Box respirator</td>
<td>Todesco J see²⁶⁹</td>
<td>Lancet ii: 261</td>
</tr>
<tr>
<td>1944,09Dec</td>
<td>Myasthenia gravis</td>
<td>Bates J see²⁶⁹</td>
<td>Lancet ii: 770</td>
</tr>
<tr>
<td>1945</td>
<td>Crush injury of chest</td>
<td>Hagen K see²⁶⁹</td>
<td>J Bone Joint Surg 27: 330-4</td>
</tr>
</tbody>
</table>

Still, the Both machine had sufficient, continuing, non-conventional use in the United Kingdom that a 1944 issue of The Lancet²⁷⁴ could have it that ‘in a little over five years the Both respirator, once described as a “white elephant”, has produced persuasive reports of its use both as a life-saver and as a valuable adjunct to physical medicine’, and also that ‘use of the [Both] respirator to combat respiratory depression of barbiturate poisoning may now be said to be routine’. But does the literature support such a claim? It would not seem to have been documented.

‘The Nuffield model [of the Both] was modified and improved in various ways over the years’,²⁴⁴ and infant models were devised – Nuffield’s original intention was ‘a gift primarily for children’.²⁵⁸ In the 1950s, various adaptations made to the Both were documented: for instance, in the United Kingdom the valuable modifications of RE Smith,²⁶⁷
the Ministry of Health especially,275 and others,276,277 and in Australia of John Forbes.248 At the Royal Adelaide Hospital, October 1938, Boths were also used, albeit rarely, for acute respiratory failure from (unspecified) causes other than polio, the last time probably in the early 1950s with attempted resuscitation of a drowned person (Dr Stephen Hagley, \textit{pers. comm.}, 2006).

4.4.2 Demise of intermittent negative pressure ventilation

Anaesthetist Bjørn Ibsen and colleagues, with H.C.A. Lassen, demonstrated at Blegdamshospitalet, 1952-1953 Copenhagen, that manual intermittent positive pressure ventilation (m-IPPV) was effective, safe and successful on a large scale and for long-term use.255,278,279 That led to the rapid development of multiple models of PP ventilators in Europe and the United Kingdom.268B However, in Australasia the Both had continuing use during the 1950s (much in the same way that the Drinker was being continued within the United States – where the other successful intermittent negative pressure ventilation (INPV) machines to become prominent in use in critical illnesses were the Emerson and Van Bergen respirators). The successful 1950s use of the Both at Melbourne’s Fairfield Hospital is examined later. Within the large nations of the British Commonwealth though, IPPV was supplanting INPV (per the Both) by 1960 for any intensive care-type application, if not necessarily for patients with chronic stage polio. But, until then, the Both machine had made a valuable life-saving contribution for nearly a quarter of a century in Australasia, the United Kingdom and elsewhere. Although several other inexpensive, quickly manufactured substitutes for the Drinker tank had been devised for INPV outside the United States (or at least in the Commonwealth), it was the respirator invented by Edward Both, OBE, which predominated.

4.4.3 Afterthoughts

Certainly Lord Nuffield’s benevolence saved many lives. Ultimately, it also furthered progress along the pathway to intensive care medicine, a benefit he hardly envisaged. But the thought does come, could the very availability of the Both respirator have inadvertently delayed both the introduction of positive pressure ventilation (PPV) into Australasia and the earlier promotion of intensive care medicine there? Australia and New Zealand received their supply of Boths just before the outbreak of World War II, and they were distributed to widely separated units, or stored centrally, in New Zealand for instance, at Wellington. They were soon called upon for employment during New Zealand’s polio epidemic in 1942 (there were 24 deaths in the country in 1943). Later, into the 1940s, exploratory attempts were made at Oxford to introduce the Both for some specific clinical applications post-operatively, but were abandoned.272,273 Although the Copenhagen demonstration of the efficacy of manual-IPPV in the Danish epidemic was reported in the medical literature just four months into its employment there,279 manual-IPPV was not taken up seriously in Australasia for half a dozen years, apart from a few isolated instances. Possibly the stores of available Boths, such a godsend when there were exceedingly few mechanical ventilators in Australasia, inhibited an exploratory, more aggressive swing to developing PPV. Perhaps not.

Meantime, in 1950s Europe, especially Scandinavia and the United Kingdom, innovative designers, motivated initially by fears of further polio epidemics (until 1961, after which the Salk and then the Sabin vaccines brought the disease largely under control in the Western world), pressed ahead with invention of various PPV machines.268A That venture had great spin-off in its application to non-polio conditions, especially tetanus. When the last polio epidemic arrived in Australasia in 1961 (see Footnote-4, over), the very limited number of PPV machines here ensured that the Boths, whatever their drawbacks, were undoubtedly saving lives. Jennifer Beinart discussed these issues, and questioned whether the Both was outdated in 1939.257[p45] But the way ahead was not shown
until 1952-1953, when Bjørn Ibsen did precisely that (it can be noted that Anthony Gilbertson boldly claimed “Intensive Care” did not start in 1952, it changed gear269).

4.5 Dr John A Forbes and Fairfield Hospital, Victoria

John Alan Forbes (1920-1989; see Figure 7), one of the wartime ‘Rats of Tobruk’, qualified in medicine after demobilisation and, after a spell as a patient at Fairfield Hospital282A from 1950,283 took up duties as senior medical officer and registrar in February 1953. He became deputy medical superintendent the following year and, by January 1955, was reporting on the recent polio experience of Fairfield’s respiratory unit, which had been under the overall supervision of Dr Henry (Sandy) McLorinan.248 In 1956-57, the unit was extensively refurbished and upgraded ‘to be used as a modern respirator ward’282D to ‘provide excellent facilities for all types of respirator patients’.282E When Dr McLorinan retired in 1961, Dr Forbes became medical superintendent. The tribute for the Royal Australasian College of Physicians (RACP) by Mr Ian McDonald (FRACS)283 states that Dr Forbes ‘literally transformed Fairfield Hospital from a receiving centre for communicable diseases to a major university teaching and research establishment with an international reputation’.

![Figure 7: Dr John Forbes, AM](image)

From the Fairfield Hospital Historical Collection, courtesy of Dr Bryan Speed, FANZCA.

Footnote 4. In New Zealand during the 1961 poliomyelitis epidemic, of the 304 cases admitted to Auckland Hospital, 85 went to its Infectious Diseases Unit and Acute Respiratory Unit. Sixteen of 17 bulbar and/or respiratory cases received intermittent positive pressure ventilation (with a tracheostomy) when intermittent negative pressure ventilation was not appropriate or was inadequate. A single death gave a 6.25% mortality rate for this group.280,281
Despite the successful outcomes achieved by Dr Forbes and his team in treating the respiratory insufficiency of polio by INPV, and his two 1950s publications describing this treatment, it is not mentioned in the tribute to Forbes by the Royal Australasian College of Physicians (RACP). Possibly this was because his heavy involvement in treating acute polio lasted only a few years, compared with his time dealing with other infectious diseases. The RACP's measure of this outstanding man lies with his notable achievements in the following decades. After his earlier years treating polio and other infectious diseases, he made developments in immunology and further research, later undertaking extensive philanthropic relief ventures in Ambon in Indonesia, and Vietnam. OldMedline lists about 35 articles with Forbes as sole or conjoint author. The clinical and research titles are spread widely, principally over infectious diseases, but also research and epidemiology.

4.5.1 Treatment of polio at Fairfield, with mortality data

Forbes' success between 1953 and 1956 in treating the breathing inadequacy of polio by artificial respiration (accompanied by tracheostomy in 28 of 71 patients) is impressive. For the 30 months from July 1954 to December 1956, 85 of the 295 patients with paralytic polio had respiratory or pharyngeal paralysis (including adults and children of both sexes). Of these 85, 39 were artificially ventilated by tank respirator, a third of them with a tracheostomy (17 others with pharyngeal paralysis were not ventilated). Mortality rate among the 39 patients receiving artificial respiration was 20.5% (whereas, for the 32 artificial respiration patients during the previous 12 months, the 11 deaths gave a rate of 34.4%). Of the eight deaths in 1954-56, four occurred rapidly in the acute stage (as also happened in Copenhagen, 1952) and four others were from severe, non-polio causes.

This death rate compares favourably with other NPV series, such as H.C.A. Lassen's 87.1% in a devastating first month of the 1952-1953 Danish epidemic. Dr R Bergman's reporting a mortality result for 1948 of 70% among 827 cases may reflect use of the Sahlin-Stille cuirass alone. In the 1952 New Zealand epidemic, the death rate of 'respiratory cases' was 36 out of 46, or 78.3%. (But how many who died did not receive negative pressure ventilation? Compare Southland, New Zealand: deaths in bulbar and/or respiratory cases were 11 of 57, giving a 19.3% mortality).

The Fairfield Annual Report, 1954-1955 (mid-year to mid-year) mentions the use of 'new chest respirators’, presumably Boths, to replace longstanding Burstalls, but the changeover date before 30th June 1955, is not stated. Forbes introduced many additional changes to his Boths, and placed considerable emphasis on the facility of a ‘mechanical cough’ mechanism (previously described in the United States by John Affeldt, 1954). After 2½-3 years’ experience of the ‘cough type [Both] iron lung’ which he described in detail, 1958, he could state that the ‘mechanical cough’, was followed by a ‘dramatic fall in mortality rate of acute cases.’ This had been noted earlier in the Medical Superintendent's Report, 1955.

Forbes made two further ventilatory improvements to his Boths: employing bellows of higher volume, and ‘a larger intra-tank positive-pressure phase’ for thoracic and abdominal compression during expiration.

In Forbes’ opinion, his multiple measures all helped to reduce the mortality rate from the 34.4% of the previous 12 months (1953-1954). Apart from respiratory care and tracheostomy, other general measures, such as nutritional needs, fluid balance, infection control, nursing care and physiotherapy, also received careful attention. Forbes considered that ‘chemotherapy’ (antibiotics) had an important role in his unit, but one not to be abused.
4.5.2 John Forbes and negative versus positive pressure ventilation

John Forbes stated his firm belief that he had demonstrated INPV with his Both ‘tank respirator’ to be preferable not only to use of cuirasses (this was indisputably so, as a cuirass had only 47%-61% of a tank’s efficiency286), but also to use of PPV, and it was easier for nurses than managing IPPV (which latter enabled better access to a patient’s body, however).248

He quoted the Lassen-Ibsen polio mortality at Copenhagen during the 1952-1953 Danish epidemic as 51.3% of 232 ‘ITPP’ (intra-tracheal positive pressure) cases. But such figures are not obvious in the reference that Forbes supplies. And he wrote of all patients having a tracheostomy at Copenhagen – actually 26287 did not have tracheostomies among H.C.A. Lassen’s 262 artificially ventilated Danish polio patients;288[p167] [or among 277255[p13] at Lassen’s other reference sites]. Also the Fairfield lesser mortality rate has to be considered in the light of the severity of the disease in Copenhagen, since Lassen had described the Danish epidemic as ‘by far the worst ever recorded in Europe’.288[p158]

Lassen did not supply virus typing (apart from 20 of his patients studied, who all had type-1255[p4]), but Forbes points out that in his own cases the cerebral lesions were worse when the causative polio virus was type-3 rather than type-1 or 2.248 Lassen did further classify the Danish cases, however, into six anatomico-clinical groups of differing severity.255,287 Recently, the Copenhagen end-mortality has been re-estimated287 as showing a death rate of only 11% among the last 18 patients, within a 41.7% overall epidemic mortality in patients whom Lassen classified as meeting his criteria for ‘life-threatening poliomyelitis’.255,288 Reassessing their Blegdam cases after the epidemic, Lassen referred to improving results ‘despite the constant severity of the cases throughout the whole epidemic period’,288[p158] so presumably such an assessment applied to the last 18 patients too.

4.5.3 INPV improvements and mortality rate

The Medical Superintendent’s Fairfield Report, 1956, claimed ‘this hospital with experience of all methods of artificial respiration considers that the tank type of respirator or iron lung is still the most efficient machine’.282D It would seem from the critical remarks John Forbes made about PPV that he distrusted it.248 If he was using PPV, he would expect a higher mortality rate, the employment of a higher tracheostomy rate with the consequent ‘inevitable tracheo-bronchitis’, and ‘unopposed intratracheal positive pressure’ producing problems of cuff trauma to the trachea and circulatory impairment. (In the early 1950s, there was widespread unease that IPPV unduly decreased venous return). As Forbes quoted247 Albert Bower’s 1954 textbook on treating acute polio at Los Angeles, presumably he knew about V Ray Bennett’s IPP respirator attachment for their INPV machines,289 although he never adopted it. But he did ‘maintain’ his patients ‘when out of the respirator’ by intratracheal PP oxygen.248 The Bennett attachment did bring significantly better results for Albert Bower’s team at Los Angeles (where in 1949, the mortality rate among 130 ‘respirator cases’ was 17%, compared with 62% in 1946 - but see Footnote-5289 regarding Bower’s superior resources); and was helpful for William O’Brien and associates292 at Reno, Nevada (mortality rate of ‘23.5%’ over three years in a critical group of 51 ventilated patients). John Affeldt286 at Hondo, California, invoking Bower, used a PP ‘attachment to the mouth or tracheostomy…[which]…greatly facilitated nursing care’.

97 | Chapter 4
In New Zealand around this time, ventilatory support from ‘tank respirators, cuirass respirators and positive pressure equipment’ was being advocated for respiratory centres which were to be established in the main hospitals. As well, ventilatory equipment was to be stored in a central pool at Wellington.293 Yet Christopher Woollams has pointed out263 that, as early as 1938 in Britain, the Medical Research Council Committee had recommended respirators be loaned out, as required, from depots best sited at regional centres,294 since ‘Both respirators were bulky and difficult to store’.263 But how well could such a system function to meet an immediate need - surely it could be expected to fall short?

4.5.4 Early intensive care medicine in Australia: John Forbes and others

The unit probably regarded as Australia’s first formal ICU - which is generally taken to be one using (at least) IPPV - was the one Victor Hercus had refurbished at Prince Henry Hospital, Sydney, 1961-1962.295 Claims could be made that before that pioneering, Forbes’s NPV respiratory unit at Fairfield legitimately came close for claiming ‘priority rights’ in Australia. Thus, the Fairfield ‘1955-1956’ Report282D states (but note that Fairfield Hospital Annual Reports for a specified year were dated only to 30 June, but ran from 1 July of the previous year) that ‘several severe tetanus patients have been successfully treated with relaxants and artificial respiration’ in a ‘cough type iron lung’;282F while the report of 1957 states that ‘in the last 15 cases of tetanus, there have been only three deaths’.292E Forbes’s 1958 article248 on his management of polio patients with ventilatory failure also specifies treating patients with ‘infective polineuritis’ (see also Footnote-6). Tracheotomy – but not endotracheal intubation – was readily performed by Dr John Forbes and his full-time assistant Dr Noel Bennett.290

For all these reasons it has been written that Forbes’s unit ‘must be credited as probably the first official ICU in Australia’296 (see also Footnote-7296,292 over). Properly however, such a term is reserved for PPV units. Before ‘true’ ICUs became established in Australasia around 1960, there were occasional activities in places warranting description as intensive care medicine. Thus, for treating tetanus: over July-October 1957, at the Royal Adelaide Hospital without a formalised ICU, nine patients of Maurice Sando and Graeme Marshall received curarisation and IPPV for controlling their tetanus, with five surviving.297 The same treatment had been provided earlier: by Patricia Wilson (1926-2015, became Mackay, OAM) in Melbourne in 1954 (pers. comm.,2001), and later by others298 there; by Dr I Schalit at the Royal Newcastle Hospital 1954-55;298 and Brian Dwyer in Sydney, 1956.300 It can be noted

Footnote-5. A comparison of resources: during the 1948-49 polio epidemic, the resources available to Bower’s Los Angeles unit enabled simultaneous treatment of patients with 42 Drinker-Collins mechanical ventilating units, many with a Bennett positive pressure attachment, while 25 had physiological cams installed. The 42 units were ‘in almost constant use’;288 providing intermittent positive pressure ventilation. Compare Copenhagen: the epidemic starting with H.C.A. Lassen having no Drinkers, only one Emerson tank and six cuirass respirators.255 The number of Both respirators available to Forbes would certainly be below Bower’s total number of Drinkers. In his 1961 visit to Fairfield, M Spence noted Forbes’ unit ‘equipped for the operation of 14 Tank (or Cabinet) respirators’.290 These numbers do conflict with those Spence later gave at an address to the Australian and New Zealand Intensive Care Society (NSW) in 1986;291 of ‘25-30 Boths, with 20 occupied by chronic polio patients’.

Footnote-6. Fairfield Annual Reports: the year’s table of ‘total number and principal diseases treated’, among which polio is prominent, has a large group (e.g., 2156 of 4405 admitted for ‘1953’) labelled ‘miscellaneous – including admission for General Division’. Tetanus is not separated out from this group until 1957, with seven cases;282E and ‘acute infective polineuritis’ not until 1958, with 15 cases.282F Fresh polio admissions taper off, 1955-60. Not until 1958 – and for that year alone – do the reports provide data on the total of polio paralytic cases (168), cases with respiratory or pharyngeal paralysis (53), cases requiring artificial respiration (22), and the mortality of paralytic cases (4 patients, 2.3%).
that Dr Patricia Mackay’s ANZCA Citation, 2000, mentions that she also treated head injuries, myasthenia gravis and polyneuritis. (without specifying what means were used, although respiratory support would be expected).301

4.6 In conclusion, regarding Dr John Forbes
Concerning success in treating paralytic polio in the 1940s to 1960s it seems, with the limited information available, that one cannot make valid comparisons between polio respiration units in different countries. However, it is not unknown in intensive care medicine for a unit such as John Forbes’s, with a team superbly led by an inspiring leader and with organised, enthusiastic, experienced staff (especially nursing staff) and ready medical back-up (Forbes lived on-site) to achieve results not to be expected with limited or inferior facilities and resources (Footnote-5). Forbes was ‘imaginative, quickly responding to new ideas and advances in medical science’.283 It should occasion no surprise then to be informed that ‘he treated patients with a wonderfully high and compassionate standard’ (Barbara Rossall-Wynne, Curator, Fairfield Hospital Historical Collection, Austin Health, Melbourne, pers. comm.2006).

4.7 Postscript 2019
It was only with the near-completion of this thesis that I stumbled upon the documentation by Prof. RR Macintosh of his interaction with Lord Nuffield leading to the latter’s generous gift of Both respirators to hospitals in the Commonwealth. This 1½ pages account appeared in the British Medical Journal of Jan.14th1939, buried in the section headed Correspondence but under the sub-heading ‘Mechanical Respirators’, of much interest at that time. I had never heard about it, either from ‘Prof Mac’ himself or from others, while I was in his Department of Anaesthetics at the Radcliffe Infirmary. This was such a surprise to me this I wrote to the two other New Zealand Nuffield Dominion Scholar doctors who had preceded me at the NDA, suggesting that surely, they were aware of this letter even if I was not. But like myself, although they were well familiar with the happenings, neither remembered ever seeing or hearing of the said letter. The wry comment of my friend Prof. Paul Moon, notable New Zealand historian, on this chance, fortunate for me, finding was, ‘What a lucky find at the last moment. Some sources simply refused to be discovered.’

Footnote-7. Re Forbes’s Acute Respiratory Unit: a first-hand assessment lies within Matt Spence’s extended and locally famous 1961 Report to the Department of Health in New Zealand, written following his close scrutiny of the world’s top [English-speaking] ICUs during a 5-month overseas study tour. Fairfield’s unit was the first overseas ICU that Spence saw, over a 6-day visit. Apart from some milder criticisms, Spence asserted ‘He [Forbes] has accumulated a vast experience in the management of respiratory inadequacy using tank respirators with a cough mechanism incorporated... The respiratory unit at Fairfield Hospital receives mainly poliomyelitis, polyneuritis and tetanus patients. Respiratory inadequacy due to neurological lesions and respiratory disease has been treated. They do not receive surgical cases. The Unit operates very efficiently and all concerned are proficient at their duties. This is primarily due to organisation and close supervision by Dr Forbes and Dr Bennett, the permanency of the nursing staff and physiotherapy staff and the enthusiastic assistance of the hospital engineer in maintaining and effecting improvements to equipment.’ Dr Spence later added myasthenia gravis to the above list of conditions treated at Fairfield – and more. In his notoriously opinionated address at the ANZICS 6th Continuing Education Meeting, Newcastle, March 1986 (see also Dr JA Judson’s criticism of it), he asserted, ‘Concentration of paralysing and convulsive diseases at Fairfield delayed the organisation of Intensive Care facilities in Melbourne Teaching and Acute Hospitals until the middle of 60’s era of traffic accidents’, etc.
20th century artificial ventilation before the Danish poliomyelitis epidemic

Chapter 5: On the very first, successful, long-term, large-scale use of IPPV;
Albert Bower and V Ray Bennett: Los Angeles, 1948-1949

‘Mechanical equipment plays a major role in caring for acute poliomyelitis patients with respiratory involvement. The purpose of this equipment is to keep as nearly normal as possible the physical and physiological environment for maintenance of life and recovery of the patient’. Albert Bower et al. (1950)302
Chapter 5: Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Introductory overview: the setting</td>
<td>102</td>
</tr>
<tr>
<td>5.2</td>
<td>Poliomyelitis at Los Angeles County Hospital, 1946-1948</td>
<td>102</td>
</tr>
<tr>
<td>5.2.1</td>
<td>The year 1946</td>
<td>103</td>
</tr>
<tr>
<td>5.2.2</td>
<td>The year 1947</td>
<td>103</td>
</tr>
<tr>
<td>5.2.3</td>
<td>The year 1948</td>
<td>105</td>
</tr>
<tr>
<td>5.2.4</td>
<td>Clinical studies to September 1948</td>
<td>105</td>
</tr>
<tr>
<td>5.3</td>
<td>Bennett achievements of newly designed equipment</td>
<td>105</td>
</tr>
<tr>
<td>5.3.1</td>
<td>The Bennett resuscitator: Bennett flow-sensitive positive pressure breathing unit (BFSPPBU)</td>
<td>105</td>
</tr>
<tr>
<td>5.3.2</td>
<td>The Bennett (intermittent) positive pressure respirator attachment (BPPRA)</td>
<td>105</td>
</tr>
<tr>
<td>5.3.3</td>
<td>Application of the BPPRA</td>
<td>109</td>
</tr>
<tr>
<td>5.3.4</td>
<td>The rotary cam</td>
<td>109</td>
</tr>
<tr>
<td>5.3.5</td>
<td>Outcomes with use of the BPPRA</td>
<td>110</td>
</tr>
<tr>
<td>5.4</td>
<td>The ventilation meter</td>
<td>110</td>
</tr>
<tr>
<td>5.5</td>
<td>Breadth of the changes at Los Angeles County Hospital</td>
<td>111</td>
</tr>
<tr>
<td>5.5.1</td>
<td>Studies and researches</td>
<td>112</td>
</tr>
<tr>
<td>5.5.2</td>
<td>Documentation from LACH principals</td>
<td>113</td>
</tr>
<tr>
<td>5.6</td>
<td>In comment</td>
<td>113</td>
</tr>
<tr>
<td>5.6.1</td>
<td>Some puzzles</td>
<td>114</td>
</tr>
<tr>
<td>5.7</td>
<td>In summary</td>
<td>115</td>
</tr>
<tr>
<td>Addendum-1</td>
<td>The equipment [^{302\text{[p561-82]};305\text{[p147-73]}]}\</td>
<td>116</td>
</tr>
<tr>
<td>Addendum-2</td>
<td>For physiological researches, Bower et al. used the following[^{304\text{[p688]}}]</td>
<td>117</td>
</tr>
</tbody>
</table>

Abbreviations used in this chapter include

- **LACH**: Los Angeles County[General] Hospital
- **AV**: Artificial ventilation
- **INPV**: Intermittent negative pressure ventilation
- **IPPV**: Intermittent positive pressure ventilation
- **IPPV**: Intra-tracheal positive pressure ventilation
- **BPPRA**: (Bennett) positive pressure respiratory attachment ['Bennett' is usually bracketed]
- **BFSPBPBU**: (Bennett) flow-sensitive positive pressure breathing
- **IPPB**: Intermittent positive pressure breathing

[^302][p561-82]:[305][p147-73]
[^304][p688]
5.1 Introductory overview: the setting

In 2003, anaesthetists Preben Berthelsen and Michael Cronqvist identified ‘the first intensive care unit in the world’ as Bjørn Ibsen’s 1953 multi-purpose intensive care unit at Kommunehospitalet (The Community Hospital) in Copenhagen. It used intermittent positive pressure ventilation (IPPV) for ventilatory failure. That conclusion by the two authors gave encouragement to determining whether Ibsen’s unit provided the very first successful use on a large scale of extended IPPV, documented in English and recorded in the medical literature. It required studying treatment provided in the United States during the preceding Los Angeles poliomyelitis (often hereafter, ‘polio’) epidemic of 1948-49, by the Communicable Diseases Service (see Footnote-1) of the Los Angeles County General Hospital (LACH, see Footnote-1B & 2, over) Boyle Heights, Eastern Los Angeles. Such treatment was under the care of physician Albert G Bower (Figure-1) with biomedical engineer V (for his unused ‘Vivian’) Ray Bennett (Figure-2), and their medical, nursing and supporting services teams.

An ‘unprecedented patient load for artificial ventilation at Los Angeles County Hospital (294 respirator cases) in 1948’ had arisen from a seasonal increase in poliomyelitis cases to near-epidemic proportions. Physician Albert Bower and his team had determined that respiratory acidosis was frequent in patients receiving intermittent ‘negative’ (sub-atmospheric) pressure ventilation (INPV). With Bower’s awareness of a previous high mortality rate during standard treatment of polio ventilatory failure using Drinker-Collins respirators, that finding led to multiple advances in equipment technology at LACH. Most important was the development by V Ray Bennett (see Footnote-1) of a positive-pressure respirator attachment (BPPRA), in use by September 1948 to convert an INPV machine, here the Drinker, into one also capable of supplying ‘intratracheal’ IPPV, supplementary to its NPV. That substantially augmented the total artificial ventilation (AV) delivered. Bower and Bennett, together with their team, used this attachment for 73 of 1949’s 130 ‘respirator cases’, to establish the first-ever, large-scale, long-term success of IPPV for respiratory failure in acute polio. In 1949, they demonstrated the superiority with IPPV supplemental to INPV alone, achieving a survival rate of 83.7% (108/129). This contrasted with the 21.1% survival rate in 1946 among the 38 patients ventilated that year.

A complete system of respiratory care was developed for polio victims at LACH, by 1950 with levels of treatment and expertise from Bower and Bennett distinctly higher than was currently set at other known polio respiration units. These preceded the well-documented developments in Copenhagen in the early 1950s (described in Chapters 7-9). Extensive experience was obtained in one hospital by a consistent medical staff, working as a team. Bower and Bennett deserve greater recognition of their pioneering merit than they currently receive in the written history of intensive care medicine. An attempt to show the justification for that is made herewith. Mention is made of improvements in equipment.

This chapter will describe some features of these pioneering achievements. Because its major interest is the treatment of acute ventilatory failure in the Los Angeles polio patients by AV, other acute aspects of their treatment of acutely ill, polio patients will not be pursued, unless they are relevant to the leading theme.

5.2 Poliomyelitis at Los Angeles County Hospital, 1946-1948

The Communicable Diseases Service of LACH provided a major receiving centre for patients with acute poliomyelitis. The basic respirator used there at that time was the Drinker-Collins cabinet respirator, a standard
'negative pressure' body-type tank; later, some Drinkers were supplied in large and in junior sizes. There was also at least one Emerson respirator.

5.2.1 The year 1946
Experience arising from the influx of patients proved salutary: Bower, Bennett et al. classified 48 of the 1284 acute polio admissions as 'respirator patients' (Footnote-1D). These 48 patients (including eight 'bulbar patients' who were not ventilated) suffered a mortality rate of 79%; among the 40 who were treated with INPV, 30 deaths still gave a mortality rate of 75%.

To what extent the AV treatment was apportioned between Drinker versus cuirass respirators is not recorded – the latter were mentioned, but without data. It is evident that tracheotomy was used freely when indicated, although, as Bower recognised later, probably not every time that it should have been.

Curarisation (per d-tubocurarine, as 'Intocostrin' [Squibb]) was first studied for polio patients at LACH on 17th August 1946, and was employed where needed to ensure synchronisation between patient and respirator. As well as what appears to have been exemplary respiratory therapy and treatment of complications, appropriate attention was paid to routine care, such as supporting circulatory status, ensuring adequate nutrition, and correcting biochemical abnormalities, especially of potassium ion.

5.2.2 The year 1947
Total admissions the next year at LACH eased to 402, but two-thirds of the 21 'respirator patients' still died (it was not stated how many of these received artificial ventilation). The deaths represented 4.1% of the LACH total year's polio patients, comparable with the 3.8% fatality rate for 1946.

Dr Bower and team member Dr Harold West later wrote, 1949, that they were convinced their treatment (with meticulous respiratory care, often with a tracheotomy) 'during 1946 and 1947... saved about 50% of patients of a type that previously died' [i.e., were requiring AV].

Footnote-1. Concerning nomenclature: There appears to be little consistency used by Albert Bower and others in the descriptive words naming the Los Angeles County Hospital department: whether Contagious versus Communicable; Service versus Unit; Disease versus Diseases. For instance, within the 1950 two-part principal paper, the first part is recorded as from the 'Contagious Diseases Service', the second from the 'Communicable Disease Service'. Elsewhere, for the same year 1950, it was the 'Communicable Disease Section'. The term 'Unit' does not seem used other than in the years 1949 and 1954 (confusing!).

A. The word 'General' appears to be incorporated within the LACH name only once, in reference 308.
B. Bower et al. usually write about the Bennett inventions with the name Bennett bracketed.
C. The Bower et al. term 'Resp. Patient', as used in their Table V, page 687 of reference 304, can confuse as to its precise meaning: whether to take it as meaning respirator or respiratory. His classification of 'Respirator Patients' included some non-ventilated (also see within this chapter, Footnote-2 and Table 1).
D. Bower et al. usually write about the Bennett inventions with the name Bennett bracketed.

Footnote-2. One notes that in Bower and Bennett's accounts, a patient's being classified as a 'respirator case' did not necessarily indicate artificial ventilation would be provided. Thus, although all the year 1749's 'Resp. Patients' were ventilated, 'adequate equipment was not available for all [1948] acute cases'.

103 | Chapter 5
Albert Bower, MD, was Clinical Professor of Medicine at the University of Southern California and Chief of Staff of the Communicable Disease Unit, Los Angeles County Hospital.

Reproduced with thanks to photographer Kourken and the National Library of Medicine, National Institutes of Health, Bethesda, MD, United States.

Figure-1: Albert G Bower

V Ray Bennett was Consulting Engineer, V Ray Bennett and Associates Inc, Los Angeles, CA, United States.

His photo is reproduced with kind permission of Blackwell Publishing, Oxford, United Kingdom.

Figure-2: V Ray Bennett
5.2.3 The year 1948
That year’s epidemic, ‘unprecedented in our experience as to the number and virulence of the cases’, gave a patient-load of 294 ‘respirator patients’, among the 3094 with acute polio. The high mortality expected to accompany the epidemic impelled director Bower, ‘dissatisfied with the performance and action of the standard tank-respirator, to devise additional equipment hitherto unavailable to meet the exigencies arising during the epidemic’.

5.2.4 Clinical studies to September 1948
Early in 1948, Bower et al. conducted a study of their patients, to reveal facts, ‘startling in their implications’. Acutely ill patients placed in INPV respirators could later be found in a state of profound respiratory acidosis (see Footnote-2); among 30 patients of the 294 respirator cases in 1948, for whom standard ventilatory measures for eliminating excess CO₂ had failed.

Further, Bower found that ‘In most cases with so-called respiratory center involvement,... it is remarkable how rapidly measures which provide a clear airway and adequate breathing can clearly show the error of this diagnosis’. Also, in a patient presenting either with convulsions or coma, ‘anoxia or pulmonary acidosis from too much retained CO₂... must be prevented or corrected to rule out encephalitis’. William Frank maintained ‘most so-called encephalitic signs disappear when respiratory inadequacy is corrected’ as I discussed further in 2004 and now in Chapter 8, and as others had. However, electro-encephalography indicated that clinically undetected encephalitis occurred more frequently than believed.

5.3 Bennett achievements of newly designed equipment
5.3.1 The Bennett resuscitator: Bennett flow-sensitive positive pressure breathing unit (BFSPPBU)
Multiple respiratory devices already invented by Ray Bennett were being used clinically. His mobile Bennett flow-sensitive positive pressure breathing unit (BFSPPBU), ‘in clinical use for several years prior’ to 1948, was a ‘completely developed instrument’, different from and an improvement upon, resuscitators available hitherto (see Figure-3).

It was used ‘extensively’ at LACH, mainly for respiratory emergencies or during tracheotomy, or for short-term relief. Two units were in constant service there in 1948 and later. Hurley Molley and Joseph Tomashefski, following experience with the MSA ‘Pneophore’ (for AV) from the mid-1940s, had switched to Bennett’s TV-2P, as in Figure-4 (they appreciated the valuable properties of the Bennett flow-sensitive cycling valve [which was easy to clean, so it did not stick; there was no rebreathing] and of the compensated pressure exhalation valve [rapidly removed, readily cleaned]) to deliver bronchodilators by intermittent positive pressure breathing for patients with chronic respiratory disease. Bennett’s resuscitator, the ‘BFSPPBU’, provided automatic cycling by pneumatic timing accumulators, but also allowed the patient to take control of breathing; it was run electrically from mains power (115 volts AC) or battery (24 volts); by hand pump or by high flow compressed gases (c. 15 L/min).

5.3.2 The Bennett (intermittent) positive pressure respirator attachment (BPPRA)
Bennett’s BFSPPBU resuscitator was needed to help meet the demand for AV at LACH during 1948. But it proved ‘less practical’ for prolonged IPPV than his later positive pressure (PP) attachment – even less than did negative
pressure ventilation (NPV) (see Bower, Clarence Dail). So as Elizabeth Austin noted, the BFSPPBU ‘was not used routinely for prolonged patient care’. At Dr H West’s request, Bennett and the collaborating medical engineering team ‘quickly accomplished’ an adaptation from the BFSPPBU known as the (Bennett) positive pressure respirator attachment (BPPRA), fitted as an accessory to the standard Drinker-Collins tank respirator to augment the minute volume delivered (see Figure-5 and Figure-6). It was powered by the motor of the NPV tank. PPV could be applied via a mask covering mouth and nose, or via Bower’s own newly devised tracheostomy adaptor. Bennett’s special exhalation valve was installed adjacent to the mask or tracheostomy connector. The bellows attachment (see Figure-5 and Figure-6) was ‘easily installed without stopping the respirator, requiring only a few minutes’. Bennett described it as ‘ingenious with its simplicity’.

In a regulated dual action, the BPPRA provided IPPV (together with humidification and, when required, oxygen and/or helium) down the intratracheal passage to supplement the respirator’s externally applied NPV. Bower called this the ‘combined pressure’ mode and saw it as ‘maintaining ventilation under almost any condition’.

It ensured a more effective ventilating volume than that from NPV alone, while allowing reduction in the INP used. Typically, a negative-pressure mode with a range of -21 to -27cmH\(_2\)O was reduced to -10 to -15cmH\(_2\)O for the combined mode; this increased the tidal volume.

For example, for Case 50, changing from the tank pressure of -18cmH\(_2\)O by negative pressure (NP), to a combined pressure difference of 18 (derived from +9 PP with -9 NP) produced a rise in tidal volume from 300 to 400 cc (mL); while a tidal volume of 450 cc followed [+18] PP alone.

For such needs as taking the patient out of the respirator, IPPV could completely replace INPV (thus, the ‘positive pressure’ mode) – but for short periods only, even though IPPV on its own could provide greater ventilation than NPV.

Certainly, the Drinker plus the BPPRA was in no way an IPPV machine in the way the 1951 Engström constant volume ventilator was, but a system of an INPV tank incorporating a device which, by delivery of a sustained pressure of gas [PP of 5-20cmH\(_2\)O], rather than a set volume, supplied supplemental IPPV ‘in exact synchronisation with the respirator’s cycle’ (per ‘positive pressure to the patient’s lungs during the respirator’s negative pressure phase, and complete release of pressure during the expiratory phase into atmosphere at zero pressure’).

In Tables VI-XII of Bower et al., they indicate the size of the PP and NP components making up their ‘Total Effective Pressure cmH\(_2\)O’ in the combined pressure mode. The ranges in the studies vary: examples listed for patients were (plus)15 with (minus)17 to make a ‘total effective pressure’ of 32cmH\(_2\)O; or +7 with -7 to give 14cmH\(_2\)O; or +10 with -16 to give 26cmH\(_2\)O. Because the tables cover only some of the patients studied, one cannot determine for the combined pressure mode how often AV was essentially INPV augmented by IPPV, or essentially IPPV to a maximum of 20cmH\(_2\)O augmented by INPV. (The authors do describe IPPV as providing more effective AV, so presumably, they would favour it).

The LACH experience appears to have been the first use of IPPV on a large scale, either as combined pressure or positive pressure alone.
The (Bennett) flow-sensitive positive pressure breathing unit featured the Bennett Model TV-2P respirator. Reproduced with due acknowledgement to Ray Wallace, Albert Bower and their early publishers302,304,306 the Los Angeles County Medical Association [for references 302 and 304]; and the Northwest Medical Publishing Association, Seattle, WA [for reference 306].

This apparatus was later incorporated into the (Bennett) flow-sensitive positive pressure breathing unit. Reproduced with special thanks to Bob Ommen, Dr Warren Sanborn and the Puritan-Bennett Corporation staff.
A diagrammatic layout of functional parts of the (Bennett) positive pressure respirator attachment, including the optional humidifier attachment.

Reproduced with due acknowledgement to V Ray Bennett and his earlier publishers.302,304,306 and many thanks to Warren Sanborn and Puritan-Bennett Corporation staff.

Figure-5: The (Bennett) positive pressure respirator attachment, BPPRA

Front view of the (Bennett) positive pressure respirator attachment mounted to a Drinker-Collins respirator.

Reproduced with due acknowledgement to V Ray Bennett, Albert Bower and their earlier publishers.302,304,306
5.3.3 Application of the BPPRA302,304-306

During October 1948 and throughout 1949, the LACH Service had use of 42 BPPRAs mounted on Drinker respirators. (I did not see it stated whether there were further Drinker respirators on site). With 79 of 1949's 130 'respirator patients' needing a respirator (and 89 a tracheostomy), the BPPRAs were 'in almost constant use'.302[p563] The authors do not state the relative frequency of employing the combined pressure mode to deliver AV, versus either positive pressure or negative pressure modes singly. The BPPRA was also used at other hospitals on the United States West Coast,302[p563] such as Rancho Los Amigos Hospital (Downey, Calif); and at Washoe Medical Center (Reno, Nevada) by William O'Brien and associates.305[p234]

The BPPRA was later developed for sole use without a conventional tank-type respirator, enabling a patient, if so able, to move around the bed.302[p572] But need was being foreseen to develop a 'completely new respirator design', post-epidemic.302[p582]

5.3.4 The rotary cam

Bennett adapted a rotary cam-actuation to 25 of the 42 Drinker machines, in place of the mechanism for shank-actuation with its fixed sine-wave flow pattern302[p567-8],305[p162] (Figure-7). The cam, able to produce almost any type of desired pressure pattern, was adapted for a slower steady rate of pressure rise and a longer flow during inspiration – nearer to the ideal. It allowed lower peak pressures (which are 'more physiologically desirable'), and an inspiratory flow pattern (which could be varied) providing inflation that was more uniform, for better alveolar aeration.305[p110]

\begin{figure}
\centering
\includegraphics[width=\textwidth]{cam_vs_crank.png}
\caption{The Rotary Cam}
\end{figure}

\textit{A diagrammatic comparison of the cam versus a crank for actuation of the Drinker-Collins respirator. Reproduced with due acknowledgement to V Ray Bennett, and his earlier publishers302,304,306 and many thanks to Warren Sanborn and the Puritan-Bennett Corporation staff.}
During expiration, the cam allowed sudden release of pressure against ambient air with a rapid expiratory flow followed by a somewhat prolonged pre-inspiratory phase, both operating to cardiovascular advantage.290p109 (Two cases of circulatory impairment were recorded, attributed to positive pressure effects304p691). When the BPPRA was used in a cam-actuated respirator, ‘greater advantages [were] obtained both in total ventilation and distribution of ventilation in the lungs’, compared with that from the crank-actuated respirator with its typical sine-wave pressure pattern.320p70 Thus Table-1 reveals greater ventilator efficiency in tidal air increase in the year with use of the cam – between 11\% and 43\%, on average 30\% – in a group of patients studied in immense detail304p708-710.

Table-1: Comparison of outcome 1949, inclusive*

<table>
<thead>
<tr>
<th>Year</th>
<th>Patient’s classification</th>
<th>Total cases</th>
<th>Survivors</th>
<th>Died</th>
</tr>
</thead>
<tbody>
<tr>
<td>1946</td>
<td>‘Respiratory’**</td>
<td>48</td>
<td>10 (21%)</td>
<td>38 (79%)</td>
</tr>
<tr>
<td>1946</td>
<td>Ventilated</td>
<td>38</td>
<td>8 (21%)</td>
<td>30 (79%)</td>
</tr>
<tr>
<td>1949</td>
<td>‘Respiratory’</td>
<td>130 (1 DOA)</td>
<td>108 (83%)</td>
<td>22 (17%)</td>
</tr>
<tr>
<td>1949</td>
<td>Ventilated</td>
<td>129</td>
<td>108 (84%)</td>
<td>21 (16%)</td>
</tr>
</tbody>
</table>

* Derived from Bower et al.304p687†
† DOA is Dead on Arrival
** Footnotes-1D and 2 herein p103

Many other equipment inventions or improvements were designed and employed for a complete system of safe respiratory care (listed in Addendum-1 and Addendum-2).

5.3.5 Outcomes with use of the BPPRA

The case-load of ‘respirator patients’ at LACH in 1948 was 294, and 130 in 1949. Use of the BPPRA after September 1948 ‘virtually eliminated pulmonary acidosis in our cases and diminished or dried up secretions’.306p264 Though some results from before October 1948 were available for the principal articles published,302,304 records were complete only for the succeeding year. By 1949, the AV from a combined (or a positive, or a negative) pressure ventilatory mode was ‘of significant clinical value for at least 130 acute respirator patients’, 82 of whom recovered to be completely free of a respirator. The 1949 death total among these was 22 – including one victim who was ‘dead on arrival’ – a 16.9\% case-fatality rate (which became 1.95\% among the total of 1128 polio patients admitted in 1949).

This 1949 mortality of 16.3\% contrasts with the 79\% for patients ventilated by INPV in 1946 (see Table-1), although Bower notes that ‘if actual 1946 respirator deaths only are used, the respirator mortality remains high [62\%]’ for ‘Resp Cases’.304p687.

Apart from its use for the acute respiratory failure of polio, the PPV apparatus provided adequate ventilation during respiratory failure emergencies, to take the patient out of the ventilator for nursing procedures, and for tracheotomy, medical treatments or transfer.

5.4 The ventilation meter

To assist a patient’s impaired breathing, the medical engineering team developed a comprehensive system of respiratory and safety devices; most of which are listed with some details in this chapter’s Addendum-1.
It appears that the tool used by Bower et al. which was key for the assessment and for successful and efficient control of patient ventilation, was the reliable Bennett ventilation meter: a positive-displacement type, with low resistance to flow and with low inertia characteristics. This enabled ‘actual breathing measurements in serial fashion’ of the volume of successive breaths or of vital capacity, at an accuracy always >95%, and usually >97%. It was used in comprehensive and detailed, progressive ventilation studies which reported ‘only a portion of the data obtained’; many early tests were discarded as unreliable, and only significant and accurate data from ‘extensive’ tests were documented.

Data from employment of the ventilatory meter:

- indicated when there was need for intervention with AV (the studies could ‘strongly point to the importance of early measures to stop the progressive drop in respiratory function’);
- revealed and validated the different modes of AV undertaken;
- testified to the degree of the meter’s own usefulness, and the reliance which came to be placed on it for ensuring effective AV; and
- contributed immensely to the dramatic fall in mortality rates.

Use of the meter enabled effective control of the AV being delivered.

Perhaps Bower et al. even underestimated how critical was the role of the ventilation meter. From study of their publications it seems that, in the overall clinical context, their ensuring such careful control - ‘ventilation must be determined (i.e., individualised) for each patient’ – helps explain a drop in respirator mortality. That reduction would seem greater than could happen solely from the changeover in AV methods to allow IPPV supplementation. By the time of publication of the LACH book, 1954, wider credit was given to use of the meter. The authors stated, ‘Only clinical judgement or blood studies can establish the correct ventilation requirement for each patient’ (‘adequate to maintain normal levels of CO\textsubscript{2} and O\textsubscript{2} in arterial blood’), not ventilating pressures or tidal volumes.

It is interesting to note the specialist team’s statement which in later experience could appear optimistic: ‘Maximum inspiration rather than maximum expiration was measured... to prevent contamination of the working parts of the meter when used on contagious cases’.

5.5 Breadth of the changes at Los Angeles County Hospital

For the management of polio patients, the documentation from LACH clearly demonstrates that all aspects associated with respiratory care were assessed completely, that the requirements for successful AV were determined, and that equipment redesigns were undertaken, achieved, and then applied clinically. It is admirable for how comprehensively the problem areas were identified in a complete working system, down to the smallest levels, (e.g., for locking-type electric cord plugs, safety guards over the power switch); then for total respiratory care, safeguarded to produce the best apparatus. Also for safety: ventilating apparatus was alarmed. Measures for the comfort of patients were also emphasised, such as eliminating vibration and noise. In this total re-think, attention to redesigning extended to all equipment either already in use (e.g., tracheostomy tubes, all suction apparatus, collars and mattresses) or hitherto not available; as well as to nursing practices (e.g., early regular suctioning of the respiratory tree).
Such meticulous attention to detail in an acute respiratory unit during the last years of the 1940s certainly pre-dated the care we prided ourselves on for intensive care medicine when ICUs were becoming more widely established a decade later. By 1954, Bower was again referring to his Communicable Diseases Unit305 – which was, by the team’s greatly improved results in 1949, recognisably a genuine Respiration Unit for acute polio, and deserves greater recognition (see Footnote-3).

5.5.1 Studies and researches304

In their studies, the Los Angeles team obtained ‘consistent and conclusive data’ from 77 respirator cases, to show ‘consistent and significant trends’.304 After carefully designing, constructing, then studying and researching the equipment in action, the authors documented ‘data obtained on 77 respirator cases’, and ‘ventilation tests... made on 222 patients’304,693 mostly from 1949, some from back to September 1948. Principally, the studies were concerned with measuring the effects of numerous factors on tidal air and vital capacity. They investigated the effect of different respirators, different modes of AV, combinations and pressures of AV, different levels of paralysis and pulmonary health, etc; the results occupied 16 pages of their 1950 Part-2 article,304 with 27 tables and seven graphs. For instance, they found that the effect of the Trendelenburg position ‘on the ventilation of respirator patients’ was to cause an average drop of 20% less effective ventilation, after 15 minutes.304pp704,712

These events took place a few years before the large-scale IPPV success of Ibsen and his team at Copenhagen, during Denmark’s 1952-1953 polio epidemic.309-311 There, the Danes applied IPPV manually by bag-ventilation to a number (possibly 277312) more than twice the number of patients machine-ventilated at Los Angeles in 1949. It does not seem well known that Bower et al., from the respirator cases they studied at LACH, achieved results comparable with those of Ibsen and his colleagues (throughout 1952-1953).310 Ibsen studied the LACH articles before 25-26 August 1952, so was aware of the Americans’ conclusions.310,311

\textbf{Footnote-3}. When Dr Matthew Spence of Auckland Hospital’s Acute Respiratory Unit appraised the unit in 1961, Dr AG Bower was no longer Chief of Staff. In criticism, Matt Spence noted 314 marked hyperventilation, uncuffed metal tracheotomy tubes, ‘no special respiratory regime[n]’, and was surprised that the type of artificial ventilation used for poliomyelitis, polyneuritis and tetanus was still ‘Combined Pressure’. (He noted curarisation was employed as needed.) There were about 20 tetanus cases annually, but ‘the mortality rate was disturbing at this hospital, reaching 70% in the last two years. The methods of treatment [of tetanus] are basically similar to those at the Department of Critical Care Medicine at Auckland Hospital except for the management of respiratory insufficiency’.314,483

\textbf{Footnote-4}. AG Bower (and his three co-authors) carefully acknowledged associates or colleagues: Drs J Affeldt, E Austin, A Chaney, C Dail, J Chudnoff, L Fisher, W Frank, J Huntsman, E Knouf, H West; and RN W Gerling, plus resident staff,302,304 also R Denton and S Cohen).305
The LACH findings indicated:\footnote{p688-92}

- Underventilation was not uncommon with INPV (30 instances among 294 respirator cases were detected in 1948,\footnote{p691} before extra IPPV was introduced); and underventilation allowed CO\textsubscript{2} to accumulate.
- INPV alone did not adequately ventilate some patients: they always had respiratory acidosis with INPV.
- From routinely using the ventilation meter in respirator patients, 1949, no instances of underventilation were detected.
- IPPV provided better AV than did INPV; and IPPV could augment INPV.
- Administration of O\textsubscript{2} to under-ventilated patients might correct cyanosis but did not diminish CO\textsubscript{2} accumulation.
- For an index of ventilatory adequacy, reliance on either elevated CO\textsubscript{2}-combining-power, or elevated venous plasma bicarbonate, was mistaken without a simultaneous pH. For these patients the elevations usually represented metabolic alkalosis compensatory for hypoventilation.

5.5.2 Documentation from LACH principals

Old Medline lists 35 articles with AG Bower himself as first author or co-author. (PubMed lists five 1949 infectious diseases papers, two of them concerning polio).

- Harold West's 1949 article with Bower\footnote{308} established their case for tracheotomy, when needed, and forecast their detailed respiratory care.
- Bower published his 1949 address to the Oregon State Medical Society, ‘A concept of poliomyelitis based on observations and treatment of 6000 cases in a four-year period, in three parts between February and April 1950’\footnote{306}.
- Part-3 of this chapter’s reference 306 provided concisely the first documentation of the changed ventilatory methods at LACH. Relevant to this chapter is Bower’s description of the process they worked through to achieve a solution regarding ventilation when tracheotomy alone did not correct respiratory problems.
- Albert Bower and V Ray Bennett, with colleagues John B Dillon and Bernard Axelrod (see Footnote-4, p.112) reported their findings at considerable length and in extensive detail in the two articles describing investigation of the care and treatment of poliomyelitis patients: Part-1 in October 1950\footnote{302} concerned the equipment they developed; and Part-2 in November 1950\footnote{304} concerned the case statistics for their clinical patients.
- By 1954, Bower, as editor, had the LACH methods summarised in the book *Diagnosis and treatment of the acute phase of poliomyelitis and its complications*.\footnote{305} He supplied only the first chapter (10 pages); numerous others contributed, including Elizabeth Austin (four chapters), and Clarence Dail and Seymour Cohen (two each). This was more of a how-to-do-it book and was short of detailed data on numbers of patients treated and their survival/mortality rates.

5.6 In comment

Despite such documentation, the Los Angeles success does not appear to have received the level of recognition warranted. Three of Bower’s articles were quoted by Howard Howe in the TM Rivers 1952 microbiology textbook.\footnote{315} Although H.C.A. Lassen cited one article of Bower *et al.* in both his 1955 World Health Organisation
Ibsen, eventually in 1966,318 then again in 1975,310 was generous in acknowledging his debt to Bower, although one might see his comment ‘This I consider pioneer work in intensive therapy but only related to one disease’.318[p279] mildly begrudging. But Bower appears ignored by L Rendell-Baker et al. in the historical section of the 1969 second edition of the authoritative book Automatic ventilation of the lungs from William Mushin et al., and is minimally referred to in the 1980 third edition316[p209] (‘Bennett and physicians used [his TV-2P respirator] to good effect during a polio epidemic in Los Angeles. Bennett pioneered in the use of IPP(V) for this and other acute and chronic respiratory problems’).

Two other authors who quote in textbooks the pair of articles by Bower, Bennett et al.302,304 (Gene Colice, 2005, in his reference 157 in a comprehensive documentation of the development of IPPV;320[p27] and E Trier Mørch minimally in the extended ‘History of mechanical ventilation’,321 with its 26 pages of references), do so, to mention Bennett’s apparatus without any recognition – as appears, on inspection – of the clinical triumph achieved at LACH. Ger Wackers311 (1994) finally provides the acknowledgement owed to Bower, Bennett et al, for their LACH success; and this century, these pioneers have been lauded in the journal Critical Care and Resuscitation.322 In Henning Pontoppidan’s 2003 history of the ICU at the Massachusetts General Hospital323 he emphasised the triumph of the LACH with its eventual 17% mortality rate for ‘1949’, as per this Chapter-5’s Table-1, p.110. Yet in total, there does seem relative obscurity for these pioneers.

5.6.1 Some puzzles

Why is the pioneering work of Bower, Bennett et al at LACH, which established such a strong case for PPV and preceded some of Ibsen’s comparable findings, not better recognised, and referenced in its historical context? Perhaps because the distribution of the relatively new journal was not yet wide enough – by the time papers from Bower and his co-workers were published in Annals of Western Medicine and Surgery, 1950, the journal had reached only volume-4.302,304 PubMed does not list it after October 1952. By contrast, Bower’s preceding revelatory article in Northwest Medicine306 (of which PubMed has no listing after March 1973) featured within a volume of high number (49). Probably it is unlikely that the mass of data they published302,304 would ever have been reported with detail so space-occupying (thereby expensively), in more highly profiled and widely circulated journals.

Footnote-5. At Blegdamshospitalet, Copenhagen, in July-August 1952,306 before Bjørn Ibsen revolutionised treatment there,310 a large proportion of the ventilatory early (Danish) deaths (87%) would surely have been prevented if H.C.A. Lassen had been aware of and acted upon Bower’s article311 (discussed in Chapters 7-9). But even when Ibsen – finally called in to a disastrous situation over 25-27th August 1952 – showed him Bower’s articles, a sceptical Lassen could not accept Bower’s conclusions, although fortunately he let Ibsen proceed.311 Ibsen had immediately recognised the flawed interpretations being made at the Blegdams Hospital concerning CO₂ content and metabolic alkalosis (see Chapter 7.2), over which he had come to the same diagnostic conclusion of respiratory acidosis as had Bower in 1948.310,311 At LACH, Bower had decided to try Bennett’s intermittent positive pressure as well as negative pressure ventilation. (Any positive pressure used hitherto at LACH had been either intra-tank,304[p707] applied during expiration; or hand-IPPV during anaesthesia for tracheotomy307). Bower’s rationale was that intratracheal positive pressure ventilation would ‘dry up secretions and remove excess CO₂’306[p264] (Bower records 1.5-2.7 litres of respiratory secretions aspirated per 24 hrs.) Any PPV apparatus available to them at that time was found inadequate: it ‘interfered with free expiration and reduced tidal ventilation and the removal of excess CO₂ from the lung’.306[p264]
Nor is it at all obvious that the articles of Bowers et al. were well known within the United States itself. It is therefore hardly surprising that news of Bower’s methods, as presented in his 1949 address to the Oregon State Medical Society, did not in that same year reach the ears of Ibsen, then a budding thoracic surgeon switched to training in anaesthesia in Boston. Returning to Denmark, Ibsen, ‘consultant to the largest medical library in Denmark’ discovered the LACH articles at Copenhagen: ‘Bower and Bennett I saw in the library’ (Bjørn Ibsen, pers. comm. 2003). Realising that the LACH team demonstrated benefits of IPPV for severe polio, Ibsen when back at Copenhagen and likely aware of the disaster of poliomyelitis treatment there, wrote directly to Bower requesting a copy of his papers be sent to him before suggesting to H.C.A. Lassen (in charge of treatment for the Blegdams Hospital’s polio patients in respiratory failure) that Bower’s methods were favourable. Although Lassen was unconvinced of the merits of the treatment, he did ‘allow’ Ibsen to go ahead with manual IPPV with a dramatic result, Ibsen always freely acknowledged his debt to Bower et al.

John Powell, FRCA, pointed out in his online website of entertaining memoirs that Bower et al. did not foresee that IPPV might actually replace tank respirators altogether. Perhaps lack of knowledge about the findings at Los Angeles played a role in the persistence with INPV (instead of changing to IPPV) in the United States for so long into the 1950s? By contrast, in Europe after the lead from Ibsen and his colleagues, IPPV was quickly adopted. The Danish epidemic was over by May 1953 while in the succeeding September, a polio victim was treated with IPPV at Oxford in the United Kingdom, with Radcliffe A & B respiration pumps by Alex Crampton Smith and JM Spalding, while another was treated at Ham Green, Bristol, United Kingdom, with James Macrae’s 1953 Clevedon respirator. Stockholm, ready for the epidemic of 1953 with Engström and other Swedish PP ventilators, achieved a 70% survival rate success among 89 respirator patients.

5.7 In summary
Greater acknowledgement should be made of the ventilatory achievements of Albert Bower and his teams in the Contagious Diseases Service at Los Angeles County General Hospital in the 1948-1949 polio epidemic. There, the first long-term, large-scale innovative use of IPPV supplementing INPV proved successful. Without diminishing the tremendous credit due to Bjørn Ibsen and his colleagues, the Los Angeles pioneering, although on a smaller scale than that which took place at Copenhagen in 1952-1953, did occur earlier. The marked reduction in mortality of LACH’s ventilated patients which was associated with the clinical expertise developed in the Service, together with the remarkable range of respiratory equipment and ICU-type equipment developed on-site, especially from the notable V. Ray Bennett, all testify to the excellence of the team, as can be seen in their documentation. Numerous studies, conducted in parallel with treatment, provided a scientific basis for the achievements.

Based on the documentation supplied from the LACH, these achievements place the LACH Contagious Diseases Service at the forefront of Respiration Units established at that time (although there does not appear to be any such claim obvious from LACH itself). And although the participants provided relatively complete documentation of their work, these virtues have not been widely recognised. The opportunity exists now to ensure that they are.
Addendum. The equipment 302\[p561-82\], 305\[p147-73\]

V Ray Bennett (now deceased) was already famous from World War II days for his BR-X2 resuscitator, which provided intermittent breaths of high pressure oxygen for pilots in unpressurised aircraft involved in high altitude research.\[319\] He developed a flow-sensitive valve for the resuscitator in 1944. His mobile BR-X2 resuscitator for emergency intermittent positive pressure ventilation of any degree required time-cycled use; for long term use, it was less practical than a respirator. After World War-II, Bennett’s attention to the problems of ventilated polio patients at Los Angeles County Hospital resulted in the following developments:

- The (Bennett) positive pressure respirator attachment (BPPRA), which was used with a mask, or with Bower’s adaptor to a tracheotomy tube.
- The humidifier attachment for the BPPRA, which supplied 80% relative humidity (but at room temperature).
- The respiratory ventilation meter which gave >95% accuracy and was used in all the 1949-1950 ventilatory studies.
- The (Bennett) flow-sensitive pressure breathing unit, which was in clinical use for several years before 1948.
- A physiological cam for the respirator, which increased ventilatory depth and patient comfort for a negative pressure lesser than that applied by a Drinker. It could be made to produce almost any pressure pattern.
- A mobile, motorised unit (a BPPRA unit in a cabinet), which was not flow-sensitive and provided fixed cycle intermittent positive pressure ventilation.\[302\[p572\] This was connected in ‘selected cases’ only (as it was unsuitable for long-term use), via a mask or preferably an adaptor to a tracheotomy tube.
- An oxygen cylinder warning signal device, which sounded at 10 minutes residual O_2.
- A respirator-pressure warning signal, which flashed red and was ‘designed to be as fool proof as possible’.
- An air-pressurising unit (electrical) to supply filtered air for the (Bennett) flow-sensitive pressure breathing unit.
- Other advances in instrumentation:
 - Improved respirator collar
 - Improved tracheotomy tubes, adaptors and accessories
 - Improved suctioning equipment
 - Positive pressure adaptor for patients due bronchoscopy
 - Oxygen catheter for tracheostomy tubes and new smaller-celled pulsating pneumatic respirator mattress.
- Multiple miscellaneous ‘developmental’ improvements in the respirator itself.\[302\[p582\]

(The Puritan Compressed Gas Corporation, [which originated in the Parker B Francis Company of 1913], acquired V Ray Bennett & Assoc., 1956, hence the name Puritan-Bennett Corporation).
Addendum-2. For physiological researches, Bower et al. used the following

- A femoral arterial line (indwelling) for sampling, which was usually performed in duplicate.
- Two laboratories which enabled cross-checking of results.
- Arterial O₂ saturation per (Van Slyke method of) vols% (with whole blood).
- Assessment of respiratory acidosis from:
 - pH per a Beckman meter; with
 - ‘CO₂ values’ by two different laboratory methods:
 i. (Van Slyke method of) total CO₂, or
 ii. after removal of CO₂ from plasma, back-titration to original pH gave bicarbonate vols % of plasma.

(This method of assessing respiratory acidosis anticipated the Blegdams method, post-27 August 1952. Before that H.C.A. Lassen was determining total CO₂ content alone, as the only pH electrodes available to him were too large for practical use until Poul Astrup soon acquired Radiometer’s pH mini-electrode.310,311)

By 1954, oximeters and infra-red analysers for CO₂ were being used.
20th century artificial ventilation before the Danish poliomyelitis epidemic

Chapter 6: Pioneering Intensive Care Medicine by the ‘Scandinavian Method’ of treatment for acute barbiturate poisoning
Chapter 6: Table of Contents

6.1 Introductory overview ..120
6.1.1 Mortality from barbiturates ...120
6.1.2 Manifestations of barbiturate intoxication ...121
6.2 Scandinavian pioneering in management ..121
6.2.1 Progression of earlier treatment methods for severe acute barbiturate intoxication122
6.2.2 Introduction of effective treatment for barbiturate-induced circulatory failure124
6.2.3 Regular respiratory measures ...125
6.3 Centralisation for treatment ..125
6.3.1 Centralisation improved survival ..126
6.4 Bispebjerg mortality for the period 1950-1953 ..126
6.4.1 Bispebjerg mortality for the period for 1952/3-1956 ..127
6.4.2 Some non-Danish treatment centres ...127
6.5 Utilising anaesthesiologic principles ..127
6.6 Indicators of early intensive therapy at Lund and Copenhagen ...129
6.6.1 At Lund ...129
6.6.2 At Copenhagen ..130
6.6.3 Respiratory insufficiency and ventilatory support ..131
6.6.4 Mid-1950s: a lingering attraction to stimulatory agents ...131
6.6.5 Reservations concerning Dr Clemmesen's employment of ventilatory support132
6.7 Conclusion ...133
Addendum: Details of treatment for barbiturate poisoning in Sweden after 1943, as documented from four units. ...134
6.1 Introductory overview

Between the 1920s and the mid-1950s barbiturates were the sedative-hypnotic agents most used in clinical practice. Their ready availability and narrow therapeutic margin accounted for disturbingly high rates of acute poisoning, whether suicidal or accidental. Until the late 1940s medical treatment of poisoning was relatively ineffective, with mortality subsequently high, not only from the effects of coma, respiratory depression and cardiovascular shock with renal impairment, but also during the 1930s-40s, from complications of the heavy use in treatment of analeptic stimulating agents. Incidence of barbiturate intoxication increased substantially following World War-II. This chapter details the development of what soon became known as the ‘Scandinavian Method’ of treatment, which contributed substantially to the earliest establishment of intensive care units and to the practice and methods of intensive care medicine.

Three medical names stand out for pioneering Scandinavian treatment. Successively,

- Aage Kirkegaard of Denmark, psychiatrist - for introducing effective anti-shock therapy with fluids;
- Eric Nilsson of Sweden, anaesthetist - for introducing anaesthesiologic principles, including manual-IPPV, into management;
- Carl Clemmesen of Denmark, psychiatrist - for introducing centralisation of seriously poisoned patients in a dedicated unit.

Clemmesen’s Intoxication Unit opened at the Bispebjerg Hospital, Copenhagen, 1st October 1949. Intensive Care Unit (ICU) pioneer Bjørn Ibsen suggested it was the initial ICU - while noting however, that it supplied Intensive Therapy for only one type of disorder (as would H.C.A. Lassen’s Blegdams Hospital unit for Denmark’s 1952-1953 polio epidemic). This is discussed in an Addendum to Chapter-8.

Treatment for barbiturate poisoning during the 1950s in some other Scandinavian hospitals will also be briefly considered, in the Addendum to this chapter.

6.1.1 Mortality from barbiturates

In 1903 Emil Fischer and Josef von Mering recognised the sedative/hypnotic properties of barbital (‘Veronal®’). They cautioned, however: ‘So far there have been no indications of adverse side-effects, but further research on this is recommended’. From the 1920s to the mid-1950s ‘practically the only drugs used as sedatives and hypnotics were barbiturates’. Such ready availability ensured the prominence of barbiturates in self-poisoning. Francisco López-Muñoz’s graph of deaths from barbiturate poisoning in England and Wales, 1905-1960 (per the Registrar-General’s Statistical Review and as illustrated by Figure-1), demonstrated that death in the early years of barbiturate usage resulted typically from ‘accidents’; whereas from the 1930s, suicide became the prime causative factor. Intoxication from barbiturates in Scandinavia after World War-II was ‘enormous’. Thus, annual barbiturate deaths at that time numbered ‘somewhat over 400’ in Denmark although ‘not fully 100’ in Sweden. In 2010 in the United States, barbiturates were designated ‘Still Drugs of Choice in Geriatric Suicide’.
6.1.2 Manifestations of barbiturate intoxication

Severe Barbiturate intoxication produces deep coma, with life-threatening complications. Such coma allows relaxation of tongue musculature causing airway obstruction, and it impairs protective laryngeal and tracheal reflexes, thereby leading to retained secretions, atelectasis and respiratory infection. ‘Respiration is affected early’, with hypoventilation – at worst, apnoea – producing hypoxaemia and respiratory acidosis. Barbiturate-induced dilatation of arterioles and venules with depression of myocardial contractility, can cause circulatory shock with renal impairment – all are potentially life-threatening. Meeting immediate ABC resuscitation needs becomes vital.

6.2 Scandinavian pioneering in management

The world-wide problem of acute barbiturate poisoning was well documented in Scandinavia from the early 1930s, especially from Copenhagen’s Community and Bispebjerg Hospitals, then from Copenhagen’s Rigshospital; later in Sweden from the University Hospital, Lund, followed by Southern and Karolinska Hospitals, Stockholm. This account recognises the pioneers who introduced effective treatment by what soon became known as the ‘Scandinavian Method’. Focus will be on Bispebjerg psychiatrist Dr Aage Kirkegaard’s contribution of anti-shock fluid therapy; on his psychiatrist colleague Dr Carl Clemmesen’s policy of ‘centralization’ at the Bispebjerg, also on his multiple detailed papers; and on Dr Eric Nilsson, anaesthetist of Lund, who was foremost in effectively introducing anaesthesiologic principles into treatment.
6.2.1 Progression of earlier treatment methods for severe acute barbiturate intoxication

Before specific attempts to counteract the effects of barbiturate poisoning, general hospital care during the 1920s-1930s involved supportive medical and nursing attention for the unconscious patient (positioning, turning, suctioning, hydration, etc). With severe intoxication, these limited measures proved inadequate or ineffective in controlling the life-threatening consequences for respiratory, cardiovascular, neurologic and renal/metabolic functions – with too many lives being lost.

Carl Clemmesen (see Figure-2) asserted that by 1930, Danish treatment was ‘anything but passive’. From long involvement in caring for poisoned patients, his relevant publications (following his first paper, 1932, at least 15 concerning barbiturates; with referenced herein, five in English, three in Danish) showed him initially continuing 1920s ‘energetic’ methods: ‘massive’ gastric lavage, followed by mild stimulation (e.g., ‘one ml camphor oil, coffeeine [sic], or digitalis alternately every second or third hour and... subcutaneous saline’). After dangers from lavage were demonstrated, only ‘emptying of the stomach by aspiration’ was occasionally undertaken. A futile gastric ‘charcoal period’ of treatment, also hazardous, lasted only 1940-1945.

Figure-2: Dr Carl Clemmesen

Within the period October 1928-June 1930, New York’s Bellevue Hospital pioneered respiratory compensation after barbital intoxication by INPV [intermittent negative pressure ventilation] employing a Drinker respirator, possibly with success – although the actual number of barbiturate cases was not stated.

At Copenhagen’s Kommunehospital, psychiatrist Max Schmidt, rationalizing that ‘it was natural and obvious to try this respirator in practise on patients with impending respiratory paralysis’, tested the INPV respirator of August Krogh (1874-1949, Denmark’s 1920 Nobel-laureate for ‘Physiology or Medicine’). In 1931 Schmidt ventilated...
four sedative-intoxicated patients at the Community Hospital. But outcomes were still fatal. Once INPV was abandoned it had no similar application recorded in Scandinavia until Kirkegaard’s 1944 efforts.

With lives still being lost, Clemmesen, who also was at Copenhagen’s Kommunehospital, reported investigating analeptics, first with large dose nikethamide/Coramine®, especially to stimulate the respiratory centre. Although transient lightening could occur, results were ‘not...revolutionary’. Thus, ‘out of 33 patients with severe poisoning due to sedatives, only 14 died’ (i.e., ‘only’ 42%).

With nikethamide providing no ready answer, many other stimulants were tried: various pentylenetetrazoles (e.g., Metrazol), geastimol, picrotoxin, etc. But whatever respiratory stimulation was achieved, all these agents could bring risks of convulsions, pulmonary aspiration, hyperthermia, etc. Clemmesen noted ‘The intensive central stimulatory therapy during this era did not reduce the mortality below 20 per cent’.

Yet psychiatrists battled on hopefully over about 15 years with analeptics. To limit the frequently fatal ‘cryptogenic hyperpyrexia’ induced by analeptics, their usage was gradually decreased, although it was only by 1949-1950 that they were formally declared ‘abandoned’.

Elsewhere in Denmark, traditional methods of gastric lavage and charcoal, neostigmine and fluid therapy continued, e.g., at University Medical Clinic, Aarhus. There, during treatment of 193 patients for barbiturate poisoning with total mortality at 20.7%, John Riishede conducted an analeptic trial, ‘1/11/46-1/6/49’: nikethamide for 61 patients initially, then amphetamine for the next 132. He established lower mortality with amphetamine: 9% died [=21% of ‘severe’ cases]; contrasting with nikethamide: 44% died [=63% of ‘severe’ cases]. Again, before their final abandonment during the late 1950s, some creeping re-introduction of less drastic stimulatory agents (‘never’ picrotoxin) was tried before their final abandonment in the late 1950s.

Concerning the airway, most clinicians outside the operating theatre [OT], such as psychiatrists, were probably unaware of the value of endotracheal intubation (until 16 November 1950, anaesthesia was without specialty status in Denmark; and perhaps pre-1946 in Sweden, since the first academic unit and the Swedish anaesthesia society, ‘Narkosläkarklubben’, were founded in 1946). In barbiturate poisoning, treatment with tracheotomy – either to protect lower airways or to access them – appears undocumented around this time.

In 1944-1945, Kirkegaard’s laboratory experiments to extend survival time endorsed combination of ‘artificial ventilation and fluid therapy’ for treating respiratory paresis in rats poisoned with barbiturates. Yet his 1944 employment of INPV solely by cuirass among 52 comatose non-randomized human patients produced only a limited number of survivors: three from 23 ventilated, compared with six from 29 treated along conventional lines and not ventilated.

Kirkegaard’s patients were treated with the respirator if one was available and if personnel who knew how to operate the apparatus were on duty... From the description of the way the respirator treatment was carried out, it is obvious that very few patients were in fact ventilated (pers. comm. Dr Preben Berthelsen, Nov. 2005).

Kirkegaard mentioned neither tracheotomy nor endotracheal tubes in his paper. He concluded that barbiturate deaths in humans were more commonly due to secondary circulatory shock than to the respiratory failure...
demonstrated among his rats. It can be noted that a 1944 Lancet Annotation reported the Both respirator as being employed ‘routinely’ for barbiturate poisoning in Britain – but I can find no documented evidence for that claim.

Figure-3: Dr Aage Kirkegaard

Dr Aage Kirkegaard (1914-1992), Copenhagen psychiatrist at the Bispebjerg Hospital, Copenhagen (and 1936 hockey Olympian). From the Medical Museion, Københavns Universitet, with thanks to Ion Meyer.

6.2.2 Introduction of effective treatment for barbiturate-induced circulatory failure

‘The dominant cause of (barbiturate) death before 1945 was peripheral circulatory failure’.331 Kirkegaard’s experimental work (with Georg Brun methods) established the effectiveness of ‘concentrated re-dissolved dry serum... [for this]... most serious complication’.335 Studying 16 deaths among ‘80 [Bispebjerg] patients severely poisoned’, he devised the ‘revolutionary’ introduction of effective treatment for circulatory shock and tissue anoxia.350,352

In November 1945, Kirkegaard presented to the Danish Psychiatric Society ‘a series of cases of severe barbituric acid poisoning which recovered after the shock had been treated with intravenous injections of this serum’.335,336 Clemmesen, whom Ibsen credits with initiating Kirkegaard into that work in 1943, declared such results ‘the first real progress’.336 In 1946, clinical outcomes at Bispebjerg Hospital were regarded as improved ‘greatly’ (without further elaboration); while countrywide, Denmark’s mortality with ‘barbiturate-etc’ agents (the term is explained in the next paragraph) fell: thus 24.5% in 1945 became 16.8% for 1947. Then, from 1948, Denmark’s ‘barbiturate-etc’ mortality was 13.7%, including Copenhagen’s (which was separated out for the first time) at 12.0%. See Clemmesen’s ‘Table-1’.335 Later, Clemmesen regretted that ‘the work was hesitant and the results minimal... [prior to adopting this]...right line’.335 Nilsson also acknowledged and consistently carried out, Kirkegaard’s effective anti-shock therapy, 1949-1950.

This historical review adopts the expression ‘Barbiturate-etc.’ to cover the sedative poisoning agents under discussion. In relevant Danish papers there can be imprecision or confusion in distinguishing what proportion is solely barbiturate [although not with Myschetzky, 1958, who tabled exact numbers comprising 72% of the
Bispebjerg ‘narcotic’ poisonings as being barbiturate]. Further, for Clemmesen's reduplicating of the Danish Department of Health’s numbers over the years 1945-1951, poisonings copied into his 1954 ‘Table'346 were titled by ‘barbiturates, morphine, etc.’, but in his 1959 ‘Table'335 the description was for ‘Narcotics, Morphine etc.’ At times titles of papers highlight ‘barbiturate’ while the text’s range of ‘hypnotic’ poisonings includes other sedatives, etc.354 This did not occur with Myschetzky,356 as mentioned above in this paragraph.

Table-1: Danish ‘Poisonings with Narcotics, Morphine, etc’ 1945-1957

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1945</td>
<td>802</td>
<td>96</td>
<td>1612</td>
<td>234</td>
<td>2414</td>
<td>330</td>
<td>12.0</td>
<td>14.5</td>
<td>24.5</td>
</tr>
<tr>
<td>1946</td>
<td>1041</td>
<td>63</td>
<td>1749</td>
<td>180</td>
<td>2790</td>
<td>243</td>
<td>6.1</td>
<td>10.3</td>
<td>8.7</td>
</tr>
<tr>
<td>1947</td>
<td>1288</td>
<td>48</td>
<td>1637</td>
<td>135</td>
<td>2925</td>
<td>183</td>
<td>3.7</td>
<td>8.2</td>
<td>6.3</td>
</tr>
<tr>
<td>1948</td>
<td>1276</td>
<td>21</td>
<td>1725</td>
<td>90</td>
<td>3001</td>
<td>111</td>
<td>1.6</td>
<td>5.2</td>
<td>3.7</td>
</tr>
<tr>
<td>1949</td>
<td>1115</td>
<td>25</td>
<td>1777</td>
<td>86</td>
<td>2892</td>
<td>111</td>
<td>2.2</td>
<td>4.8</td>
<td>3.8</td>
</tr>
<tr>
<td>1950</td>
<td>1799</td>
<td>37</td>
<td>2044</td>
<td>79</td>
<td>3834</td>
<td>110</td>
<td>2.1</td>
<td>3.9</td>
<td>3.0</td>
</tr>
<tr>
<td>1951</td>
<td>1807</td>
<td>41</td>
<td>2166</td>
<td>88</td>
<td>3973</td>
<td>129</td>
<td>2.3</td>
<td>4.1</td>
<td>3.2</td>
</tr>
<tr>
<td>1952</td>
<td>1913</td>
<td>32</td>
<td>2318</td>
<td>64</td>
<td>4231</td>
<td>96</td>
<td>1.7</td>
<td>2.8</td>
<td>2.3</td>
</tr>
<tr>
<td>1953</td>
<td>1837</td>
<td>20</td>
<td>2123</td>
<td>48</td>
<td>3960</td>
<td>68</td>
<td>1.1</td>
<td>2.3</td>
<td>1.7</td>
</tr>
<tr>
<td>1954</td>
<td>1942</td>
<td>25</td>
<td>2171</td>
<td>46</td>
<td>4113</td>
<td>71</td>
<td>1.3</td>
<td>2.1</td>
<td>1.7</td>
</tr>
</tbody>
</table>

335 Dr Carl Clemmesen duplicated in the Danish Medical Bulletin his Table335 above of Denmark’s Department of Health statistics* (compare: Clemmesen’s text using the wording, ‘cases of barbituric acid and morphine poisoning’335).

6.2.3 Regular respiratory measures

Clemmesen cited 1947 as the year for regular respiratory measures: ‘continuous oxygen therapy... with special attention [undefined] to keeping the air passages clear’.346,357 Initially, oxygen was administered with 4-or-5%CO\textsubscript{2} as carbogen; later oxygen alone was delivered, by mask, nasopharyngeal catheter or ‘hollow tongue depressor’.357 Toileting helped clearance of the airway. Dr Per Lous introduced daily bronchoscopies at the University Hospital [Rigshospitalet] at Copenhagen, for patients with pulmonary atelectasis and cyanosis after barbiturate intoxication.358 (Two patients were intubated with cuffed endotracheal tubes – but this was for short periods, only to measure the spontaneous ventilation). No clear evidence emerges to indicate use then in poisoning of either tracheotomy or endotracheal intubation. Later however, 1952-56, both were documented as options p.r.n., in Andrej Myschetzky’s phrasing, ‘unchanged principles of treatment for that period centralization for that period’356.

6.3 Centralisation for treatment

As already acknowledged, Kirkegaard’s 1945 anti-shock innovation was well established, and the importance of airway clearance and oxygen had been recognised in 1947. With Copenhagen’s treatment needs becoming more costly, also ‘exacting’,335 by 1947 Clemmesen [we336] was advocating the centralising of all serious barbiturate or
other intoxication patients for treatment. So a formalised Intoxication Centre was inaugurated within the Department of Psychiatry at Bispebjerg Hospital, 1st Oct. 1949.357

At the Clinic of Internal Medicine, University Hospital, Lund, April to September 1949, however, anaesthetist Eric Nilsson with physician Bendt Eyrich had already been defining and applying anaesthesiologic principles for treating barbiturate-intoxicated patients.359 The next year Nilsson transferred to (was ‘allowed... to stay’332c at) the Bispebjerg unit, introducing his ‘non-stimulating’ form of treatment for barbiturate poisoning during February to March and July to August 1950.332c That year barbiturate-etc. mortality was further reduced: Denmark’s fell to 6.3%, Copenhagen’s 3.7% [Table-1335]. By March 1951 Stockholm’s Southern Hospital [Södersjukhus] could claim to be ‘following’ the Nilsson/Eyrich treatment scheme.360

The Bispebjerg’s ‘Intoxication Centre’ was a 4-room/9-bed unit357,346 dedicated to centralisation for serious poisonings (until February 1971, when ‘the Poisoning Centre was moved to the acute medical ward’ at Bispebjerg Hospital361). Clemmesen and Bie quickly reported on the Centre (April 1950357), to demonstrate the advantages of standardised practice,335 for the Municipality and County of Copenhagen.336 Staffing had psychiatrists in charge, with departmental registrars and specially trained nurses.346 Anaesthetist Eric Nilsson attended part-1950;332c and as required, psychiatrists could call on anaesthetists ‘in particular’,336 also laryngologists362 and renal specialists.

All physicians and rescue services were ‘indoctrinated’363 towards getting seriously poisoned patients rapidly to the Intoxication Centre, wherever feasible. The criterion for admission was poisoning ‘so severe as to cause unconsciousness’.346 Once established, the Centre treated ‘approximately the severe half’335 of Copenhagen’s poisoned patients. (Copenhagen city’s population had then become c.1,200,000348. For the later period, 1952-56, c.30% of 1290 patients were unconscious for >24 hours.356

6.3.1 Centralisation improved survival

Following Centralisation, together with the measures employed by experienced staff (‘with Swedish input’364), a remarkable reduction in barbiturate and morphine mortality followed. Clemmesen could report 12 patients, aged 70-85 years, all recovering from what he described as ‘severe poisoning with barbiturates with unconsciousness for 24-144 hours’366 Requirement for ventilatory treatment was not specified.

The reduced mortality was demonstrated by Clemmesen’s tables, at first up to 1951,346 then to 1957.335 Despite ‘Capital’ (listed in Table-1, herein) annual admission rate rising over 1948-1957 from 802 to 1942 patients, Copenhagen’s 1948 mortality rate of 12.0% had fallen to 1.3% by 1957.335 Suspending heavy deployment of analeptic agents – at Nilsson’s advocacy – helped produce this result; that barbiturates then were currently shorter-acting, contributed.358,365 The Copenhagen Centre’s success was achieved through a ‘mainstay...of specially trained nurses’,361 providing expert nursing care, and physiotherapy.346

6.4 Bispebjerg mortality for the period 1950-1953

Bispebjerg psychiatrist Andrej Myschetzky’s analysis of serious barbiturate complications and mortality showed 109 deaths387 – without his supplying the admission total. About one-third each was attributed to respiratory and cardiac complications; about one-sixth each to renal complications and protracted shock (see Table-2, herein).
Myschetzky’s own ‘Table-2’367 reveals that the 33 who died suffered an unexplained ‘respiratory paralysis’ as ‘the most important addition to the actual cause of death’; while 58 had ‘pre-existing severe disability’.

Table-2: ‘Causes of Death in Acute Barbituric Acid Poisoning’ at Copenhagen Intoxication Centre, 1950-53.367

<table>
<thead>
<tr>
<th>Cause of Death</th>
<th>1950-53</th>
<th>1950</th>
<th>1951</th>
<th>1952</th>
<th>1953</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Respiratory*</td>
<td>c.⅓</td>
<td>15</td>
<td>4</td>
<td>5</td>
<td>11</td>
<td>35</td>
</tr>
<tr>
<td>Cardiovascular**</td>
<td>c.⅓</td>
<td>12</td>
<td>7</td>
<td>8</td>
<td>10</td>
<td>37</td>
</tr>
<tr>
<td>Renal</td>
<td>c.⅓</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>16</td>
</tr>
<tr>
<td>Protracted Shock</td>
<td>c.⅓</td>
<td>7</td>
<td>3</td>
<td>1</td>
<td>9</td>
<td>17</td>
</tr>
<tr>
<td>Other</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>Total no. of deaths</td>
<td>c.⅓</td>
<td>38</td>
<td>19</td>
<td>18</td>
<td>34</td>
<td>109</td>
</tr>
</tbody>
</table>

* per Aspiration: 4[11.4%]; atelectasis: 8[22.8%]; pneumonia: 23[65.7%] ─ but was ‘virulent’ during 1952-59.
** per Pulmonary oedema: 27[73.5%]; pulmonary embolism: 6[16.2%]; coronary occlusion: 4 [10.8%].

6.4.1 Bispebjerg mortality for the period for 1952/3-1956

Myschetzky asserted that ‘basic principles of treatment at the Centre remained unchanged throughout the entire period’.356 His careful study of details for 1952-1956 noted 3150 barbiturate patients, comprising 72.6% of the 4339 ‘narcotic’ total356 (which included 11% from carbon monoxide poisoning). Respiratory paralysis after barbiturates occurred in 61 patients, with death following in 29 (both numbers were included within a total of 43 ‘narcotic’ deaths among a total of 101 ‘paralysis’ patients). With opiates alone, however, death following breathing paralysis occurred in only one of 15 patients. Barbiturates accounted for 40% of deaths in those older than 60 years.356 But by this time newly available methods were being introduced: haemodialysis, noradrenaline, megimide, nalorphine, \textit{p.r.n.}354,356

6.4.2 Some non-Danish treatment centres

A similar centralizing unit in 1950s England, the North-East Metropolitan Regional Barbiturate Unit at Oldchurch Hospital, Romford, appears to be the British first,364 and effective treatment became well established in America.363 Locket and Angus’s 1952 report from Glasgow366 claimed complete recovery from barbiturate poisoning for a single patient after ‘artificial respiration was given for the first hour or so’; 83 others received entirely ‘conservative’ supportive care – two died, probably unavoidably. This chapter’s Addendum provides brief details of certain Swedish units, 1944-1959. Thus: a ‘special department [for] centralisation’, established 19th September 1955 at Södersjukhuset, Stockholm, was documented as not exclusively for intoxications.369

6.5 Utilising anaesthesiologic principles

In the early days of Intensive Care Medicine [ICM], noteworthy skills of an anaesthetist included endotracheal intubation plus IPPV and circulatory, thus renal, support. Outside the OT, barbiturate-poisoned patients presenting with airway problems, breathing inadequacy and circulatory depression became, thereby, prime candidates for the anaesthesiologist’s attention. At Lund, Eric Nilsson brought this innovation into the University Hospital’s Medical Division, 1949.332,359 The following February he took his skills to Copenhagen’s Intoxication Centre where uptake of Kirkegaard’s 1945 regimen of ‘adequate shock therapy’ for barbiturate-induced shock and renal impairment, plus oxygen and airway attention, had already improved outcomes.366,346
Alerted from the experience of anaesthesiologists with overdoses from anaesthetic agents, Nilsson emphasized the danger in barbiturate-induced coma of ‘a serious hypoxia in the cerebrum’,359 whether from airway obstruction, inadequate ventilation or areflexia (loss of cough). Also, that administering analeptics only worsened brain and other hypoxia. Hence urgency to prevent or correct hypoxia was paramount. At Lund, 1949, full respiratory care was prescribed.359,370 Airway patency, if not established by ‘tracheo-bronchial toilette’, necessitated naso/intra-tracheal intubation to facilitate clearance and to enable ‘An energetic or artificial respiration with pure oxygen through the air passage, which has been rendered safe.’359

![Figure 4: Dr Eric ['Nilla'] Nilsson](image)

\textit{Dr Eric ['Nilla'] Nilsson (1915-2008), Professor of Anaesthesiology at Lund, and Foundation Editor of Acta Anaesthesiologica Scandinavica.}

\textit{With thanks to the Southern Swedish Medical History Society and Prof. Berndt Ehinger.}

(It would appear that Nilsson was not using the term ‘artificial respiration’ solely for INPV/IPPV but also for oxygen alone, when directed into an endotracheal tube). Tracheotomy was performed as necessary,370 IPPV (manual, \textit{i.e.}) was unspecified. For ‘very shallow’ breathing, once airway integrity and oxygen supply were established and if the respiratory centre was ‘tentatively’ proven responsive to CO\textsubscript{2}, douches of CO\textsubscript{2}/air were pulsed once each hour (e.g., for three of Nilsson’s first four Lund patients) to ‘bring about a temporary hyperventilation’ - primarily for prevention of atelectasis.359 Table-3371-372 summarises evolution of the Scandinavian Method.
Table-3: Phases of Evolving Treatment for Barbiturate Poisoning (Additionally to general supportive care)

<table>
<thead>
<tr>
<th></th>
<th>Phases of Evolving Treatment for Barbiturate Poisoning (Additionally to general supportive care)</th>
</tr>
</thead>
</table>
| 1. | Attempted compensatory respiratory support by INPV
1931, Copenhagen: failure with Krogh respirator 342
1944, Copenhagen: failure with cuirass respirator 344 |
| 2. | 1932, Stimulation by high-dose nikethamide, then other analeptics 345 |
| 3. | Abandoning of unprofitable treatments:
1942, Gastric lavage 346
1944, Gastric instillation of carbon particles [after 5 years of efforts 335]
1949, Analactics 357 [after c.15+yrs - but not completely]
1950, Carbon dioxide applications: CO2-in-O2/air 332 |
| 4. | 1945, Anti-shock treatment with serum therapy 350 [Later: blood & dextran 357] |
| 5. | 1947, Oxygen therapy, initially as Carbogen 346 |
| 6. | 1947, Patency of the airway given ‘special emphasis’ 346*
toiletting, ‘even’ endotracheal intubation 346 |
| 7. | ‘Anaesthesiologic Principles’ introduced:
1949[Apr], Eric Nilsson’s methods 359 incl. intratracheal intubation p.r.n. 357
1950, ‘Daily co-operation’ of the Bispebjerg anaesthetists 335
1950, Waters-type technique 366 of artificial respiration for apnoea - opiates [possibly only?] initially 357 |
| 8. | Centralization Principle for treatment
1949[Oct], Carl Clemmesen’s Bispebjerg ‘Intoxication Unit’ 357 |
| 9. | Expedited elimination of barbiturate:
1951, Diuresis: forced/osmotic 339/Blood lavage 371
1952, Haemodialysis 372 |
| 10. | Vasoconstrictors for circulatory support:
pre-1955, weaker agents: ephedrine, amphetamine… 346
1955, 1July, effective agent: noradrenaline 364,366 |

* Prior to 1947 neither tracheostomy nor endotracheal intubation appear recorded for respiratory obstruction in barbiturate poisoning.

6.6 Indicators of early intensive therapy at Lund and Copenhagen

6.6.1 At Lund

It can be deduced that foremost, it was Eric Nilsson who inaugurated the Scandinavian Method of treatment at the University Hospital, Lund, with Case No.1 (leading a series of five), 18th April 1949: with no gastric lavage, no analeptics, but nasotracheal intubation and ‘toiletting’ of airways, oxygen, hourly hyperventilation ‘douches’ of CO2-and-air, and appropriate (Kirkegaard-type) fluid therapy.359 By taking his methods after these 1949 cases to Clemmesen’s newly established Intoxication Centre (over February to March and July to August, 1950), Nilsson thereby recruited 141 Bispebjerg barbiturate case-poisonings into his doctoral thesis study. Combined with a barbiturate total of 35 at Lund, ‘1/1/1949-31/10/1950’,332b these completed his thesis, published early 1951.

Nilsson’s thesis set the standard for the Scandinavian Method. Its Chapter-V also defined his principles, together with notes, some comprehensive, on the clinical details of the 87 barbiturate patients he classified as ‘severe’,

129 | Chapter 6
among 129 ‘unconscious’ (71 of them for >24hrs), within the total of 176 patients. Complications of poisoning were: peripheral circulatory collapse in 38 patients; ‘some few’ developed pulmonary oedema; five developed pneumonia (with a single death); serious renal complications affected three.332d

Among 176 total barbiturate admissions, deaths numbered three for a 1.7% mortality rate (or if including one never-unconscious patient who died from pulmonary embolism, 2.3% for ‘3+1’). Nilsson’s 87 patients whom he classified as ‘severe’ had a death rate of 3.4%, while mortality among those 71 who were unconscious >24 hours, was 4.2%.332d

In America rapid appreciation of Nilsson’s principles for respiratory management, as per his thesis, was evident in a Journal of the American Medical Association (JAMA) summarising editorial, Oct.1951.373

Nilsson considered that rather than physicians caring for severe poisoning, ‘it is only natural that [anaesthetists] are precisely those who should be more and more entrusted with looking after patients poisoned with narcotic or hypnotic drugs’ 332a – rather than those still seeking magical antidotes for reversing barbiturate respiratory paresis (and hopeful of an equivalent, nalorphine-type, mode?). From Nilsson’s thesis-caseload, patient No.24332f required two hours of active artificial ventilation (his single case-instance) for total apnoea induced by ‘barbiturate’ (blood level still 10.3mg% at 16 hours post-admission), possibly enhanced by morphine, with recovery following.332g Only ‘3+1’332 patients died but their observation charts on thesis pages 42 and 74-8 show that until death, spontaneous breathing continued throughout. Despite Nilsson’s claim elsewhere for ‘all attempts of therapy’,332h here his own words do not appear to indicate that ‘all’ interventions were employed to compensate for every breathing inadequacy.

Later in 1966 Nilsson was quite unequivocal about promoting scrupulous IPPV (mechanical), for patients with ‘insufficient respiration’370 from severe barbiturate poisoning. (He referred to Astrup’s micro-method and other blood gas determinations). Nyköping’s Jan Bergström, also in 1966, described intubation as needed for 173 [=20.2%] among his 856 comatose patients, without numbering the occasions for which IPPV was administered ‘if required.’362

6.6.2 At Copenhagen
The Bispebjerg Intoxication Centre, a dedicated unit for ‘treatment of suicides with hypnotic poisons’, with intense clinical observation and active multi-system interventions indicating nascent Intensive Care/Therapy, was soon reported on by Clemmesen and Bie, April 1950.357 Clemmesen provided details until 1952 in Danish,368 then from 1954346 in English,335,331,336 for the range of intensive support for poisoned patients, emphasizing full routine observations, laboratory monitoring, and attention to cerebral, circulatory, renal and respiratory systems (with emphasis on oxygen and airway care); plus prophylactic antibiotics.

Due to the ‘vital importance to forestall shock’ in barbiturate poisoning, Clemmesen advocated Kirkegaard-style circulatory support with blood products and infusion of dextran, etc.366 As presumably was happening at Lund Hospital, the development of a Department of Anaesthesia at Bispebjerg Hospital335 enabled its ‘daily co-operation’ with the newly established Intoxication Unit, described as proving of ‘great advantage’.
Arising from the Copenhagen Intoxication Centre’s organisation and its management of barbiturate poisoning patients, Bjørn Ibsen, 1966, generously lauded it as the first intensive therapy unit - although he noted, ‘only one type of disease was being treated’.355 (Ibsen’s own Intensive Therapy Unit, starting Dec. 1953, was nominated the first truly multisystem Intensive Therapy Unit374). Complications from a primary disorder such as severe barbiturate poisoning certainly would have needed and received further ITU-type care not available in conventional wards. Bispebjerg psychiatrist Asger Louw defined these measures explicitly, 1958,354 reinforcing viewpoints Clemmesen expressed many times.

(Around the same time, Gösta von Reis provided detailed Swedish language retrospectives from Stockholm’s Södersjukhuset’, 1957,369 1960375).

6.6.3 Respiratory insufficiency and ventilatory support
There were apparently some inadequacies in Clemmesen’s practice. While apnoea became recognised as needing immediate compensatory measures, active intervention for significant hypoventilation, and hypercarbia, seems to have developed more slowly. In April 1950 Clemmesen and Bie, while treating with oxygenation and intratracheal intubation according to Nilsson’s instructions,357 clearly stated (although they omitted this from the summary in English) that for frank respiratory paralysis, [manual-]‘artificial respiration should be given using a “to and fro aggregate” with pure oxygen’.357 Thus, for rescuing 10 apnoeic (among 29) morphinised patients in 1951 (all of whom survived), Clemmesen had nominated the ‘Waters [canister] system’;366 but in his English summary his naming of that specific tool was then replaced by the single word ‘treated’. That same year ‘five died from respiratory paresis’ among 19 deaths ‘from hypnotics’,366 without the agents identified and without the employment of artificial ventilation. (Among the other deaths, two occurred on admission, the remaining 12 from various causes). If barbiturates were involved here, were anaesthetists not? Clemmesen had declared that ‘In poisoning with barbiturates, respiratory paresis occurs much later, is much more serious but is fortunately rare’.366 While he had not documented any Bispebjerg barbiturate patient receiving this Blegdams Hospital type of manual-IPPV, his response to ‘hypnotic’-induced respiratory insufficiency, preceding frank apnoea, seems limited. Although ‘Respiration in poisoned [barbiturate?] patients was so severely weakened that it could not be recorded with a spirometer’ 335 and also when reporting similarly for solely barbiturate patients,336 Clemmesen again omitted describing compensatory intervention with artificial ventilation.

In 1954, at Copenhagen’s Blegdams Hospital, with 25 patients receiving oxygen treatment after narcotic poisoning, 45 analyses showed an alveolar pCO$_2$ >50mmHg in 70% of the cases.376 (Quantities assessed were ‘alveolar CO$_2$-tension [pCO$_2$], the arterial O$_2$-saturation, pH of the plasma, and the CO$_2$-combining power of the blood’). E. Asmussen and E. Larsen thereby ‘suggested that the therapy, in cases like these, should include artificial respiration to normalise the pCO$_2$.376 But using blood gas analysis in intoxications does not appear greatly reported in Scandinavian papers from the later-1950s and early-1960s, apart from Clemmesen and Nilsson.331

6.6.4 Mid-1950s: a lingering attraction to stimulatory agents
Almost four years after centralisation, although Clemmesen wrote that ordinarily, ‘stimulation has been abandoned’,346 he advised that only moderately stimulatory ‘geastimol or amphetamine may be indicated’.346 Although he acknowledged that such agents were ‘very seldom effective in severe [barbiturate] cases’,346 he reported success, notwithstanding. During Sep.1955-Apr.1956 he administered megimide/amiphenazole for seven
barbiturate patients with respiratory paralysis and total apnoea. These were ‘abolished and respiration permanently restored to normal during or shortly after the administration’:346 This does contrast with outcome earlier in 101 patients with ‘respiratory paralysis’, 1952-1956. Among these were (i) 61 poisoned with barbiturates alone, and 30 died; (ii) 16 more with barbiturates + morphone, etc, and five died.356 Again, was assistance sought from anaesthesiologists? Yet even in 1958, Myschetzky still discussed treatment at the Centre with megimide alone.356

Throughout the 1950s, after first announcing the abandoning of ‘dangerous’ analeptics, Clemmesen seemed reluctant to embrace the IPPV mode but appeared ever hopeful that moderately stimulating agents such as megimide would restore ventilatory function. This same attitude is evident with some colleagues (thus, Myschetzky, as in 1958356 - but not in 1964339), while not with others (Louw, 1958354). Only Clemmesen’s last paper, 1966,336 omits this recommendation, although even then he does not discuss ventilatory support. One may wonder, how much anaesthetist assistance was actually sought?

6.6.5 Reservations concerning Dr Clemmesen’s employment of ventilatory support

I confess difficulty in understanding Clemmesen’s seemingly limited recognition of pre-apnoeic consequences from hypoventilation due to barbiturates (contrast his adequately treating opiate apnoea346,357), or of its compensatory management by artificial ventilation. It can be noted that in Australia, early 1950, Norman James had advocated his self-designed ventilator’s suitability for IPPV usage in ‘severe...barbiturate poisoning’377 – but he did not document its actual employment. In the 1960s at Auckland Hospital’s ICU those seriously unconscious from barbiturate overdose received liberal circulatory and ventilatory support. (Note that about half of Ideström and von Reis’s patients, 1951, were not unconscious378). Possibly some Scandinavian intervention around early 1950s may have waited for the breathing to become obviously inadequate, before ventilatory support was employed. Compare the judiciously interventionist 1960s ICUs: (Matt Spence’s) at Auckland Hospital or as detailed by Barry Baker,379 at Royal Brisbane Hospital.

Despite Clemmesen’s detailed writings, there is difficulty pin-pointing the first occasion he employed manual-IPPV for barbiturate hypoventilation or apnoea. Before 1953, use would hardly have been with ventilators, and unlikely even then: ‘mechanical ventilators would have been in short supply or non-existent for use in wards, and anaesthetists may have been reluctant to lose them from operating theatres to the wards’ – B. Baker (pers. comm. 2013). So, for ‘very serious... but... rare’335 barbiturate apnoea, Clemmesen’s ‘most effective preparation’ for treatment, in 1959 was still megimide – after he characterised it as ‘not a genuine antidote’. He did not indicate employing the obvious alternative of ventilatory support, or furnish data, successful or otherwise. Although megimide was still favoured in his 1961 joint paper with Nilsson,331 its recommendation was followed immediately by the heading, ‘Artificial ventilation – A new approach to control’, which was ‘best by a mechanical ventilator’331 – possibly this was the co-author’s contribution? Although Clemmesen’s aim was ‘to maintain physiological conditions as far as at all likely during the period of unconsciousness’,346 no active intervention for barbiturate-induced hypoventilation was described. Clemmesen’s final paper, 1966,336 while omitting megimide, still provided no recommended ventilatory management beyond solely determining blood gas analysis (well available by that time) to provide ‘diagnostic aids’ if signs of failure develop. Meantime, ‘therapy must be directed against both the shock and pulmonary affection’.336
Willy Dam [earlier, a Bispebjerg anaesthetist], with James Eckenhoff of Philadelphia [PA], was quite forthright in endorsing ventilatory support for serious poisoning, 1956.363 Bispebjerg psychiatrist A. Louw wrote similarly, 1958: ‘In respiratory paresis, artificial respiration and insufflation of oxygen under positive pressure is employed’.354 By 1964 Myschetzky agreed: ‘Artificial mechanical ventilation in cases of respiratory insufficiency’ (also note his statement, ‘Central stimulants are never used’).339

6.7 Conclusion

In severe acute barbiturate intoxication, Eric Nilsson’s treatment with multisystem intensive care/therapy by the system commonly called the Scandinavian Method, first from Lund, 18th April 1949,359 then from his time at Copenhagen, first in February 1950,332 produced a decided reduction in mortality. The principles gained widespread acceptance, initially in Scandinavian centres. Carl Clemmesen’s initiative ‘from 1/10/1949357’ was of centralisation to a dedicated unit in Copenhagen providing special care for patients with multisystem complications of ‘barbiturate-etc.’ intoxications. This earned acknowledgement from the respected Bjørn Ibsen for early, if limited, intensive therapy.355 Yet Ibsen’s tribute overlooks recognition owed Nilsson’s prior employment of anaesthesiologic principles – which included manual-IPPV. While even earlier, 1945, Aage Kirkegaard’s success at Copenhagen from introducing effective anti-shock therapy, made a substantial contribution. So these three pioneers each merit esteem for effective innovations.

It is not completely clear who, around 1949-1950, successfully pioneered IPPV for respiratory insufficiency in barbiturate intoxication. Nilsson (with Bendt Eyrich), early 1949, advocated energetic artificial respiration, for treating ‘increasing respiratory paralysis’.359 Early among his large 1949-1950 thesis caseload, Nilsson listed his single example of barbiturate (plus morphine) apnoea, for which he supplied short-term manual-IPPV.332 In 1952 Clemmesen first documented manual-IPPV for the previous-year’s ten instances of opiate apnoea (after earlier advocating, April 1950, a Waters to-and-fro system for respiratory paralysis), but without specifying IPPV for either hypoventilation or apnoea from barbiturate poisoning.366 Norman James’s viewpoint, early 1950, also warrants recognition.377

Although legitimate claim for introducing IPPV as an intensive care mode of practice is not entirely certain, credit most likely goes to Eric Nilsson.
Addendum: Details of treatment for barbiturate poisoning in Sweden after 1943, as documented from four units.

The 1940s reviews from Medical Departments of two Stockholm hospitals reveal no descriptions of respiratory/cardiovascular treatment.

1944-1948, Stockholm’s Karolinska Sjukhuset with 83 barbiturate poisonings [six deaths = 7.2%]; among them, 31 = 37% ‘severe’ poisonings [six deaths = 19.3% of these ‘severe’]. Treatment was ‘Mainly analeptic’, no ventilatory assistance appears reported by LE Böttiger. See his reference’s Tables VI and VII.

1946-1950, with 350 patients at Stockholm’s Södersjukhuset, with near-half listed ‘unconscious’, 18 deaths = 5.1%. No treatment methods for ‘sufficiently ill’ patients are mentioned, in reporting by C-M Ideström and G von Reis.

1949, a study of 16 barbiturate patients at Södersjukhuset concentrated on barbiturate pharmacodynamics, without describing clinical treatment of respiratory or cardiovascular impairment.

March 1951, the Södersjukhus team could then claim to ‘follow’ Nilsson/Eyrich methods, specifying the vital components. Their respiratory control included ‘intubation, bronchial toilet, administration of oxygen and, when needed, artificial ventilation’. (The last was not stated as actually used).

Following early-1951 publication of Nilsson’s thesis, by the following December Ideström and von Reis had endorsed the March 1951 commitment from the Södersjukhus to acceptance of Nilsson’s treatment of poisonings: ‘a change to anaesthetic techniques has occurred’ (yet ‘stimulants should not be abandoned’). Circulatory support came via intravenous fluid and blood, and ephedrine p.r.n.

1950-1954 at Centrallasarett, Jönköpings, Birger Herner reported ‘improved [Bispebjerg] therapy’ limiting mortality to 3.5% among 118 acute barbiturate patients.

1949, Örebro Hospital’s Wilhelm Ohlsson, described his ‘blood lavage’ regimen of forced fluids and mercurial diuretics employed in medical ward treatment for about 30 poisoned patients annually (aiming to ‘eliminate poisoning to reduce the duration of unconsciousness’ particularly that from longer-acting barbiturates). While invoking Nilsson/Eyrich treatment, he had no IPPV available to prevent the single hypoventilation fatality.

1949-1953’s Karolinska survey showed: 173 barbiturate poisonings, deaths of 7 [=4.0%]; among which 71 [=41%] were moderately severe [seven deaths among 71=9.9%]. But ventilatory dysfunction was not mentioned.

While Clemmesen in Copenhagen was recommending megimide/amiphenazol, many Swedish physicians, continuing their apparent reluctance to abandon stimulants, sought agents which were more acceptable or else were alleged ‘antidotes’. Thus von Reis reported, 1956, (although with some hesitation) malyzol and fenamizol for 16 patients and the difficulties accompanying their employment. However, Nilsson’s influence was prevailing – von Reis had abandoned analeptics by 1957.
1955, LE Böttiger declared the Scandinavian Method of care for barbiturate intoxications with airway/oxygenation, anti-shock and infection prevention was ‘now’ being utilised, along with rejection of central analeptics (principally bemegride/amiphenazone). Later, and remarkably among the Karolinska’s 1954 to 1958 period, mortality was nil when there were 311 barbiturate poisonings (with 53% labelled as ‘severe or moderately’). For the limited period within 1st September 1955 to 31st May 1957, treatment included bemegride (with ‘valuable’ stimulation of respiration) as ‘adjuvant’ to a clear airway and anti-shock therapy, for 120 patients (16% severe, 41% moderately severe). With nil deaths this trial proved no ‘advantage’ either with or without bemegride.

LE Böttiger/J Östman advocated, p.r.n.: ‘If the respiration is not adequate when the air-way is free... [and if trying Bemegride]... to start respiration... is not successful, artificial respiration should be started’. [385]

By this time tracheotomy was often used earlier and tracheotomy in the United States for barbiturate poisoning appears first documented in three Bellevue (New York) patients, 1951. [386]

G.von Reis credited Clemmesen’s example for the establishment of the Södersjukhus unit, a unit following the Clemmesen and Nilsson guiding principles (which included tracheotomy p.r.n.). His account of treatment of barbiturate-intoxicated patients by the Scandinavian Method revealed, that to 1957, of the 470 then poisoned, six died, hence mortality rate was 1.3% (84 were comatose >1day). Respirator need for 17 apnoeic patients [3.6%] was mostly short-lived. Megimide was used, antibiotics administered. Nor-adrenaline provided useful vasoconstriction. [370,374,387]

Figure-5: Prof Gösta von Reis

Dr (1911-77), Asst Professor of Neurology 1951, Karolinska Institutet and a pioneer of intensive care in Sweden, at Södersjukhuset.

G von Reis’s fuller 1960 review provided an extended account of methods employed for c.250 annual barbiturate intoxications monitored. For the 1164 admitted over 11th September 1955 to 11th April 1960, 299 had coma >1day, 43 comas were >5-21 days. Apnoea occurred 98 times [8.4% of admissions], necessitating artificial ventilation, with ‘nurses partially replaced by medical students, serving as breathing assistants’. Tracheotomies numbered 82 (7%); fatalities 19 (1.6%), half from respiratory causes, four were embolic. [375]
The Danish poliomyelitis epidemic, 1952-1953

Chapter 7: August 27th 1952 at Copenhagen: ‘Bjørn Ibsen’s Day’
Chapter 7: Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Introduction</td>
<td>138</td>
</tr>
<tr>
<td>7.2 The group meeting at Blegdams Hospital, August 25th 1952</td>
<td>138</td>
</tr>
<tr>
<td>7.3 The landmark event at the Blegdams Hospital, August 27th 1952 (in brief)</td>
<td>139</td>
</tr>
<tr>
<td>7.4 Documentation of further events of 27th August 1952</td>
<td>140</td>
</tr>
<tr>
<td>7.5 Following events, August 27th-28th, 1952</td>
<td>140</td>
</tr>
<tr>
<td>7.6 Sequelae</td>
<td>143</td>
</tr>
<tr>
<td>7.7 Further considerations</td>
<td>143</td>
</tr>
<tr>
<td>7.7.1 Personalities</td>
<td>143</td>
</tr>
<tr>
<td>7.7.2 Documentation (in English)</td>
<td>144</td>
</tr>
<tr>
<td>7.7.3 The immediate significance of ‘Ibsen’s Day’</td>
<td>146</td>
</tr>
<tr>
<td>7.8 Sequelae to the 27th August event</td>
<td>146</td>
</tr>
<tr>
<td>7.8.1 For anaesthesiology</td>
<td>146</td>
</tr>
<tr>
<td>7.8.2 For intensive care medicine</td>
<td>147</td>
</tr>
<tr>
<td>7.8.3 For anaesthetists in intensive care medicine</td>
<td>147</td>
</tr>
<tr>
<td>7.9 In conclusion</td>
<td>148</td>
</tr>
<tr>
<td>Addendum-1: Comments regarding variable dating of Bjørn Ibsen’s demonstration of m-IPPV</td>
<td>149</td>
</tr>
<tr>
<td>Addendum-2: Correspondence received from Professor Ibsen</td>
<td>151</td>
</tr>
</tbody>
</table>
7.1 Introduction

An event well honoured in the history of Anaesthesia took place in Boston, MA, on 16th October 1846. It was at the Massachusetts General Hospital there that dentist William Thomas Green Morton, who was also studying medicine at the time, successfully demonstrated the use of ether for anaesthesia. This enabled the surgical operation for removal of a tumour from a patient’s jaw to proceed pain-free.

Another historic event for Anaesthesia producing significant consequences took place on Wednesday 27th August 1952 with Danish free-lance anaesthetist Bjørn Ibsen. This was at Copenhagen’s Blegdams Hospital, ‘The Blegdams Hospital’, during Denmark’s 1952-1953 epidemic of acute poliomyelitis (hereafter called ‘polio’). On that day — but see the Addendum — and in the face of considerable scepticism, Dr Ibsen demonstrated that he could provide an alternative treatment for the unprecedented number of patients throughout the month of August developing severe respiratory complications of their poliomyelitis. The death toll among them was catastrophic. Clinicians treating the victims by established methods were being overwhelmed by the numbers of critically ill patients. Ibsen achieved success by using a technique of ventilatory management which anaesthetists might employ at times in their regular work in the operating theatre (OT).

It was only in 1950 that Anaesthesiology had become recognised as a medical specialty in Denmark.

7.2 The group meeting at Blegdams Hospital, August 25th 1952

At the earnest suggestion of Dr Mogens Bjørneboe to the Blegdams hospital’s chief epidemiologist, Dr H.C.A. Lassen, Dr Ibsen, although ‘just an anaesthetist’, had been called in to join a consultation with representatives of medical specialties over ventilatory problems arising with the epidemic. (With the hierarchical system then in place at the hospital, personality difficulties are lucidly explained in Dr Preben Berthelson’s analysis of the career risks thereby possible for Bjørneboe). The ‘group meeting’ was held at the hospital on Monday, August 25th. It is noteworthy that in Ibsen’s 2006, last documented interview he acknowledged his full awareness that Bjørneboe, even ‘at the end of July, early August’, had already been considering the possibility of the bag-ventilation treatment he knew from his previous experience with Ibsen concerning an infant with tetanus earlier that year.

* [Concerning Reference 395, Dr Louise Reisner-Sénélar’s Resource pages are not numbered, so where they are referred to in this chapter they are entered in this manner of 395b[4th-p] for identifying the Resource page.]

Later in interview, Prof. Ibsen confirmed that in the same group he had explained to the group that the whole mystery lay in the fact that patients with shortness of breath lack oxygen. You eventually become cyanotic and get blue lips and fingernails. If you start treating the cyanosis only with oxygen through nasal catheter - which was quite common at that time – the consequence was that the patient did not ventilate enough, which eventually resulted in hypercapnia… with the corresponding symptoms. I pointed out to Lassen and his colleagues that the goal should be to normalise the level of the carbon dioxide and then maintain the level low.

After the group meeting, Ibsen made his own careful further investigations at the hospital, including studying autopsy findings on four recently dead polio patients. It became obvious to him that the treating clinicians did not
appreciate that many of the patients receiving artificial ventilation (AV) were dying as a result of inadequacy of the method of AV delivered to them to compensate for impaired breathing. And what the involved doctors firmly believed to be ‘metabolic alkalosis’, Ibsen recognised (on the basis of his own research experience with Dr HC Engell on patients intra-operatively) was a manifestation of carbon dioxide (CO₂) ‘accumulation’ (itself an index of underventilation), which worsened when doctors supplied supplemental oxygen to affected patients.389,390,391

7.3 The landmark event at the Blegdams Hospital, August 27th 1952 (in brief)

On the 27th, two mornings later, in an episode which became high drama as it unfolded389,390,396 Ibsen was presented with Vivi Ebert (whose name is in the public domain393,395,396), a hyperpyrexic girl of 12yrs admitted from her home the previous day, suffering acute polio, with four-limbs paralysis and desperately ill from the respiratory consequences of hypoventilation with atelectasis of the left lung. She was ‘drowning in her own secretions’ 388[p14] (actual pharyngeal paralysis does not appear mentioned). Lassen selected the young girl as a test patient for Ibsen, who was to be allowed ‘permission’ to try to rescue her 391[S119] ‘without the help of a respirator’.389[p23] (In describing events in later papers, Ibsen is usually brief400[p72] but in Lassen’s 1956 book on the epidemic, less so392[p14-15]).

Otolaryngologist Dr Falbe-Hansen (with thanks for pers. comm., Dr P Berthelsen, 2009) performed the prior tracheotomy operation first, for placement of a cuffed intratracheal tube,395b[4th-p] under local anaesthesia.395a[1st-p]

This procedure started from 11.15hrs (clock times are converted into 24hrs notation and for the following précis are taken freely from Online Resource-2395b). Ibsen remarked at ‘the loss of a lot of time’ during this operation. The hospital notes were entered closely thereafter, often every few minutes, and they detailed unequivocally the patient’s struggles and the difficulties for her treating doctors. Immediately after the tracheotomy her bronchi could not be aspirated satisfactorily and her own breathing, worsened by bronchospasm and her struggling, was inadequate; she required supplemental oxygen.

Ibsen took over treatment, by 12.10hrs supplying manual(m)-IPPV, although with difficulty, by ‘bagging’ her (with a Waters ‘to-and-fro’ CO₂ absorber system), together with 100% oxygen (the only options available were that or 80%). Improvement was temporary only, since stopping oxygen to aspirate her bronchi resulted in Vivi becoming desaturated with cyanosis, restlessness, jerking and, then by 12.57hrs she was unconscious. Hypertension (e.g., SBP of 150 mmHg) was also apparent. Despite ‘active support of her breathing’ starting again at 13.02hrs she was restless with struggling (‘spasms and agitation’), with her situation becoming desperate. Ibsen then started administering 100mg of thiopentone to her at 13.17hrs. Other doctors who had gathered to observe his ‘new’ method, thinking they had seen failure enough, had been beginning to disperse. But by gaining control with that agent, Ibsen could manually ventilate her adequately by the bag, to reverse her markedly adverse clinical signs. Observers drifting back were astonished, ‘incredulous’.

Ibsen reflected later on the control achieved by this treatment of her ventilation and agitation, ‘That I could save the patient’s life with such a simple method, was one of the most incredible moments of my life’.395b[5th-p]

There were further difficult times ahead for this patient but she survived, and eventually left hospital but with problems of ventilation for the rest of her shortened life.
7.4 Documentation of further events of 27th August 1952

From this stage onwards, and in a correction to a 2004 account in which I wrote as if Ibsen’s masterstroke with thiopentone and IPPV had ended the difficulties of managing Vivi’s breathing problems (and as can also be found similarly in some of the other accounts of this day), the following amplification is needed to try to supply the facts correctly and to demonstrate on-going difficulties. Dr Louise Reisner-Sénélar located, transcribed, then translated to English the hospital’s original clinical notes of that day’s happenings (many entries are difficult to read, as per Figure–1, some are in Ibsen’s own handwriting, even if not always signed). The results for hundreds of measurements made were entered. They are published in the public domain as Online Resources-1 and 2, which (together with a similar copy of case-note pages kindly sent to me by Dr Preben Berthelsen), reveal my own naivety in the assumptions which I made. These detailed hospital records (which, due to their brevity, that likely to be obligatory, may seem written a little cryptically at times) now make available the definitive story of the eventful further happenings of 27th August 1952. In details for the interview Dr Ibsen gave to Dr Reisner-Sénélar on 16th July, 2006, his recall of the event at interview is comparable, as reported in Online Resource-2.

A few brief selections from the available records follow.

Drs Preben Berthelsen and Michael Conqvist had interviewed Prof. Ibsen in 2002 and even though ‘in fact very forthcoming at that occasion’, (pers. comm. 2017) he was perhaps still a little less so than he managed for Dr Reisner-Sénélar in 2006, while I, a non-Dane bothering him by writing to him in 2003, when he proved to be ill (‘I have fallen and broken my back’, pers. comm. Apr. 2003), was rather late for him to give close attention (see this chapter’s Addendum-2, p.151).

7.5 Following events, August 27th-28th, 1952

When the patient was awake again at 13.38hrs, spontaneous breathing had re-started and for ‘1.45pm’, Ibsen then wrote in the clinical record of injecting another dose of ‘Pentothal’, 100mg; further doses were given p.r.n., (17.09…19.50…[?], v.i.)20.25 hrs,). Twice in the 2006 interview Ibsen referred to this intervention as administering Phenobarbital, not Pentothal (thiopentone). Thus, see Resource-2. ‘What was dramatic was when I administered 100mg Phenobarbital to a dying patient, I managed to ventilate her and eventually saved her’. The hospital notes, including one in his writing, confirm that it was not phenobarbital but ‘Pentothal’.

Even Ibsen’s successful strategy of anaesthetising with thiopentone a tracheotomised patient, Vivi, then supplying manual IPPV for remediying her immediate difficulties as described above, did not end that day’s problems. Multiple episodes of high concern or real difficulty can be seen recorded at intervals until the next morning. It would be easy to expect from some written accounts (including my own, previously) that after the first anaesthetising of Vivi and supplying m-IPPV, progress with ventilating and oxygenating her was straightforward. That proved not to be the case. Ibsen did have the benefit, and certainly with advantage for guidance, of being able to determine CO$_2$ levels with his Brinkman’s (prototype) Carbovisor, his research experience with which had made him knowledgeable about CO$_2$ levels. (Ibsen was able to demonstrate to physicians the effect of CO$_2$ in expired air ‘led through an indicator solution, 0.005% bromthymol blue’, with colour changing being controlled continuously by m-IPPV to differing levels). As well, he could obtain oxygen saturation of haemoglobin (SO$_2$) with a Millikan oximeter (a photo-electric ear attachment from World War-2 days), also measurements of pH and the bicarbonate level. During the 27th’s afternoon he recorded multiple occasions needing attention to desaturation, hypercarbia and hypertension.
Figure-1: Extracts from hospital records

Duplicates of pages of the hospital record of patient Vivi.
The lower one demonstrates the likely difficulty in deciphering correctly.
Some difficult-to-decipher observations on a scanned copy of the first two sheets of the original hospital recordings for that day, first provided in photocopy to Dr Berthelsen, have also been reproduced by Dr Reisner-Sénélar in her thesis. (with my thanks to both doctors). See Figure-1.

Some further details include the following:

During early afternoon (of August 27th 1952), at 14.18hrs Ibsen noted ‘a state of apnoea with almost controlled breathing’. (The times listed are all taken from Resource-2). Then at 16.26hrs, Vivi was eventually transferred back to a body-cuirass respirator, but at 16.30 and 16.40hrs was recorded ‘not in synchronisation with the respirator’, while at 16.55hrs extrasystoles were detected. Ibsen intervened with bag-ventilation once more for the signs of CO₂ accumulation, and again reversed her deterioration. When she relapsed yet again, with cyanosis (desaturation to 54% at 17.06hrs, which supplemental oxygen did improve), Pentothal 100mg was again given at 1709hrs, then, as it is written, ‘Phenol [?] 10mg’ at 18.18hrs, and ‘we go onto pressure ventilation with oxygen (+own breathing)’. Ibsen noted at 19.17hrs that the left lung was insufficiently ventilated by the cuirass respirator, causing this deterioration. Further Pentothal, 100mg, was ‘to allow blood gas sampling: pH 7.39’. Then ‘Removal of the respirator’ at 2002hrs, and m-IPPV instead was effected at 2012hrs. More Pentothal was used at ‘07.25pm’ (probably 20.25hrs was meant). The records state ‘spontaneous respiration’ at 23.30hrs, while ‘removal of the absorber at 00.12hr’ could indicate that m-IPPV was otherwise being continued intermittently overnight, when the SBP was (100mmHg up to) a maximum at 200mm. Supplementary oxygen was needed.

At 04.30hrs (Aug.28th) Ibsen’s handwriting recording SBP at 150mmHg showed he was still in attendance. ‘Temperature still stays high’ at 06.40hrs. The summary at that time was ‘The patient has been ventilated with atmospheric air and intermittent positive pressure… The patient’s condition is satisfactory’.

On Aug.28th, at an unspecified doctor’s early morning check-visit (the notes have only ‘B.J.’ entered as their author – but those are the first two letters of the Bjørneboe name) he/she could record that by then ‘the patient’s condition is satisfactory’. Then at 06.40hrs that morning, Vivi was ‘Perfectly calm, warm and dry, [being] ventilated with atmospheric air and intermittent positive pressure’.

Resource-1 then includes an assessment for Vivi’s next days:

In the following days the patient remained relatively stable, except for a further attempt to connect her to the respirator (the cuirass, i.e.). The attempt failed. The condition of the patient worsened immediately and the doctors had to turn back to manual positive pressure ventilation.

In brief, once that method of m-IPPV treatment was established satisfactorily for Vivi, it was continued thereafter and as it became possible, also supplied as needed for other patients in the hospital. And one day after Vivi’s episode, Poul Astrup obtained a small electrode from Radiometer enabling him to measure pH directly in blood from the patient.

Dr Berthelsen had advised that ‘Vivi Ebert remained a respiratory cripple the rest of her short life.’ (‘Until January 1953 she was manually ventilated 24/7’ then maintained in hospital for several years). ‘When I last interviewed Ibsen he did not mention having ever seen his “index patient” again. I am sure [he] would have… if he
had in fact met Vivi after their initial encounters during her many months of treatment at Blegdammen.’ She married, becoming Vivi Andersen but died in 1971 from sepsis and respiratory insufficiency (pers. comms, 2004).

7.6 Sequelae

Bjørn Ibsen’s demonstration established a new treatment for the respiratory (and some other) complications of polio by manual IPPV/tracheostomy. Lassen now ‘energetically dedicated’ himself to that method, it becoming immediately accepted at the Blegdams (of 500 beds), to which many of Denmark’s suspected polio cases were brought. Ibsen wrote that ‘after eight days a big organization was working’. Some patients in Denmark were being treated peripherally e.g., in Jylland (Jutland) at Skive County Hospital, where the Bang PPV machine was developed. Despite all the associated logistical difficulties arising principally from the sheer numbers requiring rescue treatment at Copenhagen, the Blegdam’s new method was used throughout the epidemic wherever it was available and required. At the epidemic’s height over 70 patients needed bag ventilation for 24 hours a day. The workforce, recruited continuously to supply manual ventilation, and of 1000 in the first months eventually comprised virtually all of Copenhagen’s medical students, and later in November dental students too and some nurses. In total c.1500 altogether applied treatment over 165,000 hours. The role for the students was more than squeezing the bag, but also monitoring equipment and assessing the patient. Anaesthesiologists (from all the Copenhagen hospitals and another ‘20-30’ from the World Health Organisation [WHO] training centre in Copenhagen) supervised their labours, and the patients received round-the-clock skilled nursing attention. The initial three months of this new system of treatment was estimated by H.C.A. Lassen to have saved 100 lives before Christmas, 1952.

Later in the epidemic, mechanical ventilators came to play a partial role (starting with Carl-Gunnar Engström’s single, volume-controlled ventilator, a ‘mechanical student’), but could be used less frequently than manual PPV was. There was a great boost to devising and development of new ventilators, as other countries became worried.

7.7 Further considerations

7.7.1 Personalities

H.C.A. Lassen, Bjørn Ibsen, and Poul Astrup are perhaps the best-known names of those involved in these aspects of the epidemic. Others include Erik Wainø Andersen, Mogens Bjørneboe, Frits Neukirch, J Pedersen, and T Søttrup (all in reference); but a magnificent team effort and organisation by H.C.A. Lassen, a masterful organiser of personnel (doctors, nurses, students and back-up), were essential to the ultimate success. Lassen was actually acknowledged as ‘dammed intelligent’ by a generous Ibsen to Berthelsen 2002 [pers. comm. 2017].

It is to Bjørn Ibsen particularly that acknowledgement and honour are due for the introduction of alternative methods of treatment leading to relatively successful management of the critically ill during the Danish epidemic. Ibsen himself continued contributing to the Blegdams ventilatory workforce.

(A side issue: how concentrated Ibsen’s own attendance and assistance was at the Blegdams after August 27th/28th Ibsen’s does not appear reported. But he certainly did attend after the first days. Concerning his continuing
contributions to the Blegdams after Aug. 27th, and concerning Geoffrey Spencer’s repeating the allegation at the Wellcome 42 Witnesses repeated in Wellcome no.42, booklet ‘History of British Intensive Care, 1950-c, 2000’ [‘It is claimed that Ibsen never returned to the polio unit’ after leaving following ‘setting up’ the test patient]), P Berthelsen confirmed to me (pers. comm. 2011), that Ibsen continued to be involved, and quoted Ibsen’s invoice to the Municipality of Copenhagen for 10,000 Kr., approx. £1,000, ‘for services rendered’).

The method of manual inflation of the lungs with an anaesthetic insufflating ‘bag’ had been used in the Operating Theatre (OT) by anaesthetists since before 1934,\(^4^{07}\) and had occasionally been employed in the treatment of critical illness.\(^4^{08}-4^{12}\) Recognition also needs to be given to the prior successful use of supplemental PPV in a polio epidemic,\(^4^{13},4^{14}\) the success of which was unfortunately not widely publicised or known. That was achieved at Los Angeles in 1948-1949 by Albert Bower, Ray Bennett, John Dillon and Bernard Axelrod whom Ibsen always acknowledged in his papers, e.g., in 1975.\(^3^{89}\) (Also, as in the sixth line in Prof. Ibsen’s first note on p.151, and again, in Chapter-8 of this thesis).

The above paragraphs include updating, in the light of Dr Reisner-Sénélar’s information from interviewing Prof Ibsen, 2006, as documented in her thesis\(^3^{95c}\) and in her Online Resource-2.\(^3^{96b}\) There is also Dr Preben Berthelsen’s 2014 powerful paper ‘on setting the record straight’,\(^3^{94}\) about treatment roles during the Copenhagen epidemic. Ibsen always appeared to downplay what he considered undue praise for his innovations, as pointed out by Berthelsen and Conqvist: it was ‘really not such a big deal’ in establishing the first true ICU at Copenhagen’s Kommunehospital in 1953;\(^3^{93}[p^{1192}]\) and his not reporting on that until after five years, and then in a local journal, which was not prominent.\(^4^{15}\) In the light of subsequent developments it was so, surely!

Certainly Prof. Ibsen showed personal awareness of the best means available, with correct appreciation of the biochemical background and its management, which could be used at that time to try to cope with the influx of polio patients with ventilatory insufficiency — when the currently available mechanical system of INPV treatment was ineffective in stopping patients with ventilatory failure from dying.

Ger Wackers emphasised the importance of Ibsen’s re-introducing tracheotomy to help control of retained secretions,\(^3^{90}[p^{425-6}]\) considering Lassen’s dismissal of it originally – Lassen had argued that previously in 1948-1950 all polio patients at the Blegdams ‘treated by tracheostomy and with respirators died, whereas treatment with respirators alone had a somewhat better prognosis’,\(^3^{90}[p^{47},Table-II]\)

The success of the change in treatment method also indicated that prior Blegdams clinicians did not appreciate the nature of the biochemical disturbance from worsening of CO\(_2\) accumulation, due to their misguided belief that the problem was that of metabolic alkalosis.

7.7.2 Documentation (in English)

After just over three months of the new treatment, Prof. H.C.A. Lassen, Chief Epidemiologist at the Blegdams provided a Preliminary Report to The Lancet of 3rd January 1953.\(^3^{88}\) It is not to Lassen’s credit that the journal’s editor needed to insist Lassen should not omit but must name Ibsen in the paper he was submitting.\(^3^{94}[p^{505}]\) Ibsen, as he later stated in a presentation to the Royal Society of Medicine, London, wrote more generously of ‘enthusiastic encouragement from Professor Lassen’.\(^4^{00}[p^{47}]\) In the [3Jan.1954] Lancet article’s single mention of
Ibsen, all that Lassen eventually stated was only ‘At this point we consulted our anaesthetist colleague, Dr B Ibsen, and on Aug. 27…’ This was after 27 among the 31 seriously ill had died.\cite{588,589} (Later in 1953 Lassen refused to support applications by Ibsen for promotion elsewhere, and explained himself thus: ‘battles are won by generals and not foot soldiers’ [as Ibsen ‘enlightened’ Berthelsen, 2002]\cite{566,550}).

Prof. Lassen wrote, 1955\cite{402} and edited, 1956,\cite{392} the two major retrospective accounts of many aspects of this epidemic. Whereas Lassen’s works provide multiple statistical data for the epidemic, Dr Ibsen’s writings have been concerned principally with events of that significant day, and arising out of it, the important consequences for Anaesthesiology and for Intensive Care Medicine. On 16th October 1953, Ibsen delivered an account of his own role to the Royal Society of Medicine in London, with his ‘… venture: to dare to speak up for the anaesthesiologist’s point of view’. This address was documented the following year, both in the Royal Society’s journal of January 1954\cite{400} and in the inaugural issue of the Danish Medical Bulletin in March 1954\cite{401} [which also contained Lassen’s own account given to The Royal Medico-Chirurgical Society of Glasgow on 23rd October 1953\cite{403}]; again in the 1956 book on the epidemic (which Lassen edited\cite{392}), and then again, with extra biographical detail supplied, in 1975.\cite{389} The latter description, and particularly Ger Wackers’ 1994 precise retelling, comprehensively and lucidly\cite{390} describe more fully the conversion of the 27th August event from seeming failure to the triumph it eventually became. The success was reinforced in the 1998 summary of events by John Severinghaus, Poul Astrup and John Murray,\cite{391} among others notable. Prof John West adds a further dimension in viewing the epidemic as providing extraordinary challenges in applied physiology. He commented ‘An important development was the translation of the new knowledge from departments of physiology to the clinical setting. In many respects, this period was therefore the beginning of modern clinical respiratory physiology.’\cite{416}

(Does that comment from Prof. West acknowledge Ibsen and Engell’s research adequately? Prof West refers to preceding recognition by HK Nielsen, 1946 in Ugeskr Læger, vol.108: of CO\(_2\) elevation causing severe respiratory acidosis).

In terms of documentation from original descriptions, Dr Reisner-Sénélar’s 2009 PhD thesis\cite{395c} for which she conducted an interview (in the Danish language) with an almost 91 years old Professor Ibsen on 16th July 2006, a year before his death, is a historical report that has singular value. She also had located ‘the original and unpublished patient [hospital] record of Vivi E. including a minute by minute transcription of the dramatic hours when Ibsen fought for Vivi’s life’.\cite{395}

(Dr Berthelsen had sought these earlier from the Public Archives at the Town Hall at Copenhagen but officials could not locate them for him then, as it appeared unknown to them that they were already loaned out \cite{pers.comm., 2006}.). Dr Reisner-Sénélar’s thesis, in German, has been available on the German State Library website but she generously sent me her own translation to English, \cite{pers.comm., 26/08/11}. However she did provide two on-line Resources for general attention. One is a very detailed bedside account of documentation for events of Aug.27-28th,\cite{395a} as excerpted for the description above, with medical comments on and numerous recordings made from the patient Vivi. The second\cite{395b} concerns her 2006 interview with Prof. Ibsen (‘a very impressive man... though very humble’ - pers.comm. 2011). These publications now make unique historical documents.

After all then, it is the more remarkable – despite the important consequences arising out of the occasion, both for Anaesthesiology and for Intensive Care Medicine – that the 50th anniversary itself of ‘Ibsen’s day’, and largely it
would seem of the whole epidemic, appeared to slip past relatively unmarked in the medical literature in English during 2002-2003. An acknowledgement of a 50th anniversary did appear in two medical specialty journals, the premier Acta Anaesthesiologica Scandinavica journal and the Australasian Critical Care and Resuscitation; plus, 'with the referral to '50 years ago', in the 2003 statement of the United Kingdom's Intensive Care Society on the 'Evolution of intensive care in the UK' from its origins at Copenhagen.

7.7.3 The immediate significance of 'Ibsen’s Day'
For the remainder of the epidemic, employment at the Blegdams of Ibsen’s (manual) method of m-IPPV – one also familiar to other anaesthetists there who became involved, and to anaesthetists elsewhere – made continuous, prolonged, controlled PPV on a large scale, a success in Europe for the first time. With some patients this m-IPPV was supplied for up to three months, occasionally even more. With the boost for development of improved mechanical ventilators, widespread adoption of their use in place of the m-IPPV method became the accepted means for controlling ventilatory failure. The commercial development of large numbers of effective machines for IPPV was accelerated in Europe, spurred on by the somewhat fearful anticipation (Mushin’s ‘winds of alarm’) of immediate, further outbreaks of polio there.

The advances in treatment learnt during this epidemic provided clear starting points for the Intensive Care Medicine which is being practised in 2018, close to seven decades later.

A new era in medical practice had begun.

7.8 Sequelae to the 27th August event
The following resulted from the methods of treatment employed during the epidemic and from the organisation of that treatment, all of which received wide publicity.

7.8.1 For anaesthesiology
The skills of anaesthetists extended beyond safe-guarding the adequacy of the airway and of ventilation, due to their understanding of and competence in the treatment of acute insufficiency of the circulation and of shock, and in resuscitation; with attention to fluid, electrolyte and acid-base balance, renal function, and nutrition. Around that time the field of acid-base analysis, essential for proper management of IPPV was rapidly developing, to be followed in a few years by electrometric pCO2 measurement (from Richard Stow in 1954, with improvements soon following on from John Severinghaus); then in a few years, polarographic pO2 measurement (from Leland Clark’s miniaturised O2 electrode in 1956). These advances, all fundamental to the practice of Intensive Care Medicine, were obviously important for Anaesthesia also.

Some anaesthetists were emboldened to move out of their workplace of the OT, taking their treatment methods with them to wider applications. This led to the evolution of a variant anaesthetist, at times a new ‘species’, the anaesthetist who became an intensivist. So, in a few years the roles anaesthetists undertook varied from those typically working only in conventional anaesthesia, to some sharing their time between OTs and intensive care units (ICUs), to a smaller number who became full-time clinicians dedicated solely to servicing ICUs. Some physicians also became intensivists.
7.8.2 For intensive care medicine

There were two major sequelae. First, the foundation was laid for what was eventually to become a new specialty. All previous brave efforts at providing various forms of Intensive Therapy had not yet established it as an accepted option of treatment for the critically ill. Secondly, a lead was given to the concept of the formal ICU (even if it was only one patient treated in the first ICU – at that time officially called the Anaesthesia Observation Unit – in 1953, from Dec. 9th), with dedicated nursing teams now being established. In his 1958 paper Ibsen was still referring to his ICU as ‘an Anaesthesiologic Observation Unit’). When ‘All patients with respiratory problems were collected in a special department’, with a multidisciplinary team on hand, the advantages soon became obvious at the Blegdams. Ibsen firmly advocated establishing such units.

Other consequence of the events of 27th August 1952 and its aftermath included the confirmation of PPV as the mode of artificial ventilation being demonstrably superior for reliability and effectiveness, and the death knell for NPV. Both factors ‘changed the approach to the technique of artificial respiration all over the world’.

7.8.3 For anaesthetists in intensive care medicine

Initially, anaesthetists were the natural group for the intensive care pioneers to have come from, but occasionally they were from a few other specialties. By the end of the 1950s, more anaesthetists (comprising only a small proportion of the anaesthetic community, however) were progressing along one of two alternative pathways into Intensive Care. These anaesthetists were likely to be working full-time in public hospital practice.

One stream was sharing their working time between both anaesthetic and intensive care workplaces, a system rapidly developed in Scandinavia, as well as other places in Europe, including the United Kingdom, and in North America. For the anaesthetist-intensivist (or physician-intensivist) practising in dual locations, Intensive Care Medicine became a superspecialty.

A clinical role shared between Anaesthesiology and another specialty, here Intensive Care Medicine, has been the tradition in Scandinavia; and the case for that was argued strongly in the journal Acta Anaesthesiologica Scandinavica. Generally, confining clinical activity to intensive care practice alone has not been the characteristic Scandinavian way.

Another stream was for practitioners from one primary specialty (typically Anaesthesiology) who were developing a commitment solely to what was becoming the specialty of Intensive Care Medicine. So the full-time intensivist was coming onto the scene, elsewhere in Europe (if not in Scandinavia or Britain), in North America (e.g., Pittsburgh, Winnipeg), and in Australia-New Zealand. From the beginning of the 1960s such a dedicated specialist was no longer a complete rarity, and formal ICUs were becoming established.

Trainees in Intensive Care Medicine today, when specialised training and qualification can be obtained in many countries, do not necessarily come to its practice with a prior qualification in another specialty. For more than a dozen years into the 21st century it has been possible to gain an intensive care qualification in Europe, and the United Kingdom. Training for what became the Australasian Fellowship in Intensive Care Medicine (now seen as FCICMANZ), started in the later 1970s. Currently, it requires an arduous six-year course, training in which can start on completion of one year of post-graduate general hospital appointments. The history of the formation and
institution of training and accreditation procedures, of the College of Intensive care Medicine (CICM) of Australia and New Zealand, 2009, has recently been reviewed in depth by Prof. AB Baker.428A

In Australasia (where there were 397 and 408 ICM endorsed trainees in 2017 and 2018 respectively), the number of practising specialist intensivists is still distributed inadequately. Outside the major metropolitan centres in Australasia there likely is reliance on anaesthetic and other specialist colleagues.

In 2018, in the climate of today’s educational and vocational opportunities, it is easy to overlook or forget the contribution that pioneering anaesthetists made to developing and establishing the new specialty. The history of this epidemic could be an eye-opener to today’s younger intensivists of just what Intensive Care Medicine owes to those founding anaesthetists. Thus, in the United States were such as Peter Safar and Henning Pontoppidan and in Toronto, Barrie Fairley, as well as others elsewhere. Anaesthetists, from their practice in the OT and from familiarity with resuscitation but often in the face of scepticism and even antagonism, brought basic skills in life-support, which were more than those of simply compensating for underventilation or inadequate airways or for treatment of circulatory shock. In consultation with other specialties when appropriate, they extended their involvement in other body systems of patients – whether such patients were medical, surgical (including post-traumatic), or paediatric (the pioneering Auckland experience of the first 40 years has been documented).429 For instance, just consider the developments over the last 60 years in the non-surgical aspects of therapy for cerebral trauma.430 Measures include those for elevated intracranial pressure, insurance of cerebral oxygenation and control of hypercarbia, etc.

7.9 In conclusion

On 27th August 1952, by Dr Bjørn Ibsen successfully taking outside the OT a simple anaesthetic method of manual artificial ventilation of the lungs, for the treatment of a critically ill polio patient, then having his methods employed successfully in the same hospital for a prolonged time on a large scale, he launched a therapeutic revolution. This was in association with his attention to circulatory support and other critical factors. That auspicious day was significant in the development of both Anaesthesia and Intensive Care Medicine.
Addendum: Comments regarding variable dating of Bjørn Ibsen’s demonstration of m-IPPV:

A. As can now be confirmed from the hospital records of patient Vivi Ebert, the date of Prof. Ibsen’s significant 1952 intervention was August 27th.

i) Dr Bjørn Ibsen himself does not appear to provide an exact, correct date in his papers. However, both for his retrospective of 1975 and for his 2006 interview, his long-term memory was mildly defective in this respect, where he stated (as recorded for Resource-2) that he was called in to a meeting of clinicians ‘on a Saturday’, with the decision then made that he was ‘to demonstrate [his] theory on the following Monday on a suitable patient’. The hospital records of the patient correctly confirm Monday instead of Ibsen’s Saturday, and August 27th 1952 to his 25th August. Ibsen goes straight on to describe the demonstration event (of two days later) in a way which could easily be misinterpreted as meaning it followed on the next day, or even the same day; whereas it was in fact at two days later, the 27th.

ii) Prof. H.C.A. Lassen has two principal sites at which he dates Bjorn Ibsen’s Day, (it, truly of August 27th 1952):
 a) His most quoted work, the Preliminary Report (Lancet of 3 January 1953) states correctly ‘on August 27th the first patient received the treatment’.
 b) He repeats this August 27th date in his treatise in the 1955 WHO publication on Poliomyelitis, where he states on p.158 ‘from 27 August an emergency method was introduced’. But at the last page, 209, he supplies a date of August 26th, (that actual day on which Vivi E. was admitted to hospital) for ‘when the first case was treated’. It must be allowed that this wording may be referring not to Ibsen’s IPPV the next day, but (unknown to me) to cuirass-NPV being supplied to Vivi upon her being admitted – if it ever was; it does not appear documented, that I have found. The cuirass respirator certainly was available for her in the treatment room on August 27th after Ibsen supplied m-IPPV, so possibly it was likely before, hence could have been also after her admission the day before, too, but that does not appear reported. Item ‘B. i) a)’ below does not support that suggestion.

iii) GL Wackers in his detailed, 1994 Acta Anaesthesiol Scand paper repeats a 27th August date, as it was in H.C.A. Lassen’s earlier leads, [see the previous item ‘A ii) a) and b)’], also papers of P Berthesen’s and of others.

B. In some sites this date appears other than the 27th August now given in this chapter, but as 26th August.

i) H.C.A. Lassen, revises to a date of 26th August in
 a) the first issue of the Danish Medical Bulletin, March 1954: 1: 7-9. ['The introduction of bag ventilation on August 26…'].
 b) his WHO publication [as above in item ‘A ii.b)’], on p.209 (?is it a typo slip, since on p.158 he had preferred August 27th).
 c) his 1956 book on the epidemic, Management of Life-Threatening Poliomyelitis (on p.xi, of Introductory Remarks) has ‘… and on August 26 the first patient was treated with the method which soon became our method of choice in patients with impairment…’.

149 | Chapter 7
ii) Other authors in the same 1956 book, all under Lassen’s editorship, give 26th August as the introductory date.
 a) F Neukirch and T Søttrup repeatedly state 26 August 1952 as the date for introduction of ‘New Methods of Treatment’ (p.147, and especially p.150)
 b) M. Bjørneboe et al. report, ‘… from 26 August 1952 the therapeutic regime was altered…’ (p.19).

iii) EW Andersen and B. Ibsen refer to ‘up to August 26’ (noted as such, since it is not ‘up to the 27th’).

iv) PB Astrup in his 1986 book with J.W Severinghaus, *The History of Blood gases, Acids and Bases*, stated (although he was an eye-witness to the morning’s event), the demonstration occurred ‘on the following day’, which would thereby need to be the one after the day on which B Ibsen was called in to the meeting of clinicians including Astrup (which took place on Monday 25th August).

v) JW Severinghaus, P Astrup, J Murray, in their otherwise admirable 1998 paper in *Am J Resp Crit Care Med*, firmly state a date of ‘the next day, 26 August’.

vi) Resource-1 within its first line has ‘The first patient that Ibsen treated with the new method on August 26th 1952’ - which Tuesday’s date was mistakenly written for one day earlier than that of the actual Wednesday event.

Finally, research by Dr Preben Berthelsen, Copenhagen anaesthesiologist, had unearthed a photocopy of the original hospital records for patient Vivi’s admission (a copy of which he kindly forwarded to the author). He reported (pers. comm.) ‘She was admitted on August 26th 1952 – and Ibsen treated her on August 27th’. So 27th August 1952 was always indisputable as the correct date for Bjørn Ibsen’s historic introduction into Denmark of a new method for treating acute respiratory failure from polio.
Addendum-2: Correspondence received from Professor Ibsen

Dear Ron Troukhorich!
Thank you for your letter.
I will be glad to see your book
Your questions:
1) I believe it is spreading the epidemic - bül
I am not sure.
2) Doctor Benavoli I now in the library.
3) There were many, but I don't remember who
Excuse my shortness. My right hand has been
paralyzed.

Kind regards
Byron Yea.

Dear Di Troukhorich!
Excuse much.
I give up.
I have fallen and broken my back.
Thank you for all your interest and kindness.

Sincerely
Bjorn Berg.
The Danish poliomyelitis epidemic, 1952-1953

Chapter 8: Further commentary on Denmark's 1952-1953 poliomyelitis epidemic.
Chapter 8: Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>Overview</td>
<td>154</td>
</tr>
<tr>
<td>8.2</td>
<td>The role of Dr. Bjørn Ibsen</td>
<td>154</td>
</tr>
<tr>
<td>8.2.1</td>
<td>Prof. Ibsen’s diagnosis</td>
<td>154</td>
</tr>
<tr>
<td>8.2.2</td>
<td>What was the basis for Bjørn Ibsen’s viewpoint?</td>
<td>155</td>
</tr>
<tr>
<td>8.2.3</td>
<td>Manual Intermittent positive pressure ventilation (m-IPPV)</td>
<td>155</td>
</tr>
<tr>
<td>8.2.4</td>
<td>Would the same success have been achieved with any other sick patient?</td>
<td>155</td>
</tr>
<tr>
<td>8.2.5</td>
<td>The severity of Vivi Ebert’s condition</td>
<td>155</td>
</tr>
<tr>
<td>8.2.6</td>
<td>The causes of mortality determined from autopsies of polio+ patients</td>
<td>156</td>
</tr>
<tr>
<td>8.2.7</td>
<td>Inference</td>
<td>157</td>
</tr>
<tr>
<td>8.3</td>
<td>Numbers for and features of the epidemic</td>
<td>158</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Danish/Copenhagen population numbers on Lassen’s Table-1</td>
<td>158</td>
</tr>
<tr>
<td>8.3.2</td>
<td>Numbers regarding ‘Serious Poliomyelitis’</td>
<td>158</td>
</tr>
<tr>
<td>8.3.3</td>
<td>Summary of the (varying) number of patients ‘requiring special treatment’</td>
<td>160</td>
</tr>
<tr>
<td>8.4</td>
<td>Regarding the time-span for the epidemic</td>
<td>161</td>
</tr>
<tr>
<td>8.5</td>
<td>Varying severity of illness among these polio+ patients:</td>
<td>161</td>
</tr>
<tr>
<td>8.6</td>
<td>Tracheotomy</td>
<td>162</td>
</tr>
<tr>
<td>8.7</td>
<td>Mortality during the epidemic</td>
<td>162</td>
</tr>
<tr>
<td>8.7.1</td>
<td>Overall mortality rate among the whole of the epidemic’s 345 (or 348) polio+ patients:</td>
<td>162</td>
</tr>
<tr>
<td>8.7.2</td>
<td>Mortality among successive cohorts of 50 admissions with polio+:</td>
<td>162</td>
</tr>
<tr>
<td>8.7.3</td>
<td>Mortality in the last patients of the epidemic</td>
<td>163</td>
</tr>
<tr>
<td>8.8</td>
<td>Difficulties from H.C.A. Lassen’s figures from 7 Dec.1952 until the ‘end of the epidemic’</td>
<td>163</td>
</tr>
<tr>
<td>8.9</td>
<td>Bravery of the Blegdams Staff</td>
<td>164</td>
</tr>
<tr>
<td>8.10</td>
<td>Some Folklore</td>
<td>164</td>
</tr>
<tr>
<td>8.11</td>
<td>Later communications with Dr Ibsen</td>
<td>164</td>
</tr>
<tr>
<td>8.12</td>
<td>A central mystery remains</td>
<td>165</td>
</tr>
<tr>
<td>Addendum:</td>
<td>Commentary on Professor Ibsen’s priority rights</td>
<td>166</td>
</tr>
</tbody>
</table>
8.1 Overview

In this chapter I consider in greater depth certain aspects of the 1952-1953 Copenhagen poliomyelitis epidemic already discussed in Chapter 7.

i) Dr Bjørn Ibsen’s method of treatment of the sickest patients at the Blegdams Hospital during the epidemic — although successful, it could have failed at the first demonstration.

ii) The roles played by ventilatory failure versus gross neurologic destruction in causing deaths, i.e., whether the cause of death in polio, as asserted at times, was inevitably ventilatory rather than on occasion, cerebral. With pharyngeal paralysis without that protection aided by tracheotomy, there also was respiratory cause of death from inhalation of pharyngeal fluids followed by infection.

iii) Varying statistics which need reconciling, and an attempt to do that from numbers printed concerning the epidemic’s seriously ill Copenhagen patients. This involves defining the dating of certain events, mortality among patients, and some other relevant factors.

The Blegdams Hospital concept of ‘life-threatening poliomyelitis’ (hereafter, polio+) will be revisited, along with epidemiologist Dr H.C.A. Lassen’s division of serious polio illness in 345 patients into six anatomico-clinical categories. Attention is drawn to the severity of assorted cerebral lesions demonstrated in 114 of the 115 autopsies conducted out of the 144 fatal cases. Despite an overall mortality rate of 41.6% among the epidemic’s sickest patients in Copenhagen’s Blegdams Hospital, lowest mortality rate of 11.1% has been identified for the 18 similar patients treated during the last months (they were hospitalised within the period 20th December 1952 to 2nd March 1953). Various sources for the minor discrepancies and conflicting numbers are noted.

The retrospective, valuable book on the epidemic, edited by Dr Lassen 1956, has been referred to freely throughout. Some folklore concerning aspects of management of patients during the epidemic will be mentioned.

In the light of research by Dr Preben Berthaelsen, anaesthetist and medical historian of Copenhagen, an essential correction has been ensured for dating ‘Bjørn Ibsen’s Day’ (correcting this current author’s acceptance and previous publication, on the basis of multiple other assertions of the date of 26th August 1952. Instead, the correct day was 27th). So initially, with choice of two dates available, I had ‘backed the wrong horse).

As in the preceding chapter, this commentary has been based principally on accounts in medical papers and books about the Danish polio epidemic. My understanding of events has been reinforced by personal communications, received from helpful Danish correspondents, especially Drs Preben Berthaelsen and Louise Reisner-Sélénar. Their advice and publications have proved enlightening.

8.2 The role of Dr. Bjørn Ibsen

8.2.1 Prof. Ibsen’s diagnosis

Bjørn Ibsen recognised that treating physicians held misunderstanding about CO₂ levels. In reference to Ibsen’s ‘anaesthetist’s viewpoint’ on the treatment of respiratory complications of poliomyelitis during the epidemic in Copenhagen, 1952, authors Drs Preben Berthaelsen and Michael Cronqvist had stated, 2004:

When Ibsen was consulted in August 1952... he almost immediately realized that polio patients died from respiratory insufficiency with carbon dioxide retention and not from an overwhelming virus infection of the brain as was generally believed by the epidemiologists.
But some deaths continued despite compensation being provided for inadequate breathing. Overwhelming viral infection would prove unable to be dismissed as a cause for some deaths.431[Page 7]

8.2.2 What was the basis for Bjørn Ibsen’s viewpoint?

Multiple factors were operative. In their earlier studies together on hypoventilation, anaesthetist BA Ibsen and thoracic surgeon HC Engell had already elicited the clinical signs of carbon dioxide accumulation, which by today’s understanding appeared poorly appreciated in Copenhagen at that time.434,436,437 Also, Ibsen explained that he was aware of papers by Albert Bower and V. Ray Bennett which he had discovered while medical advisor to the Copenhagen library, whereby he had access to ‘the largest medical library in Denmark’.434[Page 22] He wrote to Bower who sent him reprints. These papers had described improved survival in the polio epidemic at Los Angeles, 1948-1949, with treatment employing artificial ventilation (AV) boosted by additional positive pressure (as already described in Chapter-5). Ibsen brought the papers to a meeting of relevant doctors at Blegdams Hospital, called for Monday 25th August 1952; but the chief epidemiologist Prof. H.C.A. Lassen and his colleagues were dubious about the success shown in these American papers, they considered many patients had been ventilated even before they needed such treatment.434[Page 22]

After the meeting with the Blegdams doctors, Dr Ibsen made some investigations of his own at the Hospital434,436. Ibsen studied the autopsied lungs of four recently dead polio patients To him ‘the lungs [of one boy he studied] did not appear to be sufficiently atelectatic to make adequate ventilation impossible’.438

i) Ibsen also studied some of Lassen’s patients with respiratory paralysis (bulbar and/or spinal), who were receiving AV, six from a cuirass (all that were available), one other patient from the hospital’s single Emerson tank respirator (both kinds of machines supplied intermittent negative pressure ventilation, INPV),433[Page 37],431[Page xi],440[Page 158], together with studying their clinical records. Despite the AV provided, he found signs he recognized from his studies with Dr Engell as resulting from accumulation of CO₂.

ii) He appreciated that an elevated CO₂-content which had been documented for some patients was indicative of CO₂ retention, and not, as the epidemiologists considered, of metabolic alkalosis.

8.2.3 Manual Intermittent positive pressure ventilation (m-IPPV)

The concluding ‘Folklore’ section of this chapter (see section 8.10) notes that it is medical legend that on 27th August, a now desperate Lassen allowed (‘condescended to ask’)435[Page 1193] Bjørn Ibsen to demonstrate his proposed intervention to try to save a new patient ‘without the use of machinery’.434,436 After Ibsen’s impressive initial success, application of the methods which he introduced to other critically ill patients at the hospital resulted in the dawn of a new era in care of polio ‘respiratory’ patients.431-438

8.2.4 Would the same success have been achieved with any other sick patient?

Exploration of this question is helped by considering first the severity of the test-patient’s condition, and then the severity of the disease in fatal cases. Evidence for the latter comes from autopsy data, giving information for the most likely, ultimate ‘final authority’.431[Page 151-173]

8.2.5 The severity of Vivi Ebert’s condition

As it happened, the extremely sick girl chosen by Dr Lassen, a new patient by then hospitalised for one day, proved suitable, if difficult, for a critical demonstration. Lassen had classified those at Blegdams Hospital with ‘life-
threatening poliomyelitis’ (again, polio+) into six groups: A to F (as per Table-1431[7]). Ranking these groups in descending severity of their polio+ (as per group fatality rates) gave an order of F > E > D > A > C > B. What has been written regarding patient Vivi’s ventilatory inadequacy and 4-limbs paralysis434 would appear to place her in Group C (‘paralysis of respiratory muscles without encephalitis, cerebralia or pharyngeal paralysis’). But she had already suffered marked clinical deterioration in her breathing, so presented a stern test for Dr Ibsen.435

8.2.6 The causes of mortality determined from autopsies of polio+ patients

Autopsy findings and the tables of mortality in Lassen’s definitive book431[7,88,152] appear to confirm that

i) The survival of patients appeared dependent on how the clinico-anatomical features they presented with, best fitted the characteristics of one of Prof. Lassen’s six groupings. Clinical groupings are depicted in Table-1.431[7]

ii) Despite overall improved outcomes following the changes in treatment introduced on 27th August, some of the groups still had a high mortality rate. Among Groups A-F respectively, the mortality percentage rate was 39, 25, 32, 46, 63 and 85 (Table-1,431[7]).

iii) Destructive changes in some of the brains seen at autopsy were ‘particularly severe’ (Table-2,431[152]). Thus, cases 1-4 among the nine case studies which are detailed in a selective survey431[151-173] had medullary and/or hypothalamic necrosis and destruction, (presumably) drastic enough to account for death or to contribute largely to it – usually within a few days after admission. Lassen had described ‘severe encephalitis’, but mostly as affecting children,431[1,433[40]

iv) When the brains of >100 of the Blegdams 115 autopsied patients were examined for incidence of inflammatory and degenerative processes in various [cerebral] locations, the incidence of changes as displayed in the chapter’s Table-2,431[152] was with the highest in

pons-medulla > hypothalamus > mesencephalon > cerebral cortex.

The order for ‘particularly severe’ changes was however

pons-medulla > mesencephalon > hypothalamus > cerebral cortex.

Note from the numbers in the same Table-2, the changes in the pons-medulla were particularly severe for 114 of the 115.

v) Further, Drs J Pedersen and K Bjerre-Christensen’s own ‘Table X’431[80] recorded that some deaths were closely associated with, or resulted from, various complications or failures in organ systems, totalling 342 individual manifestations. The writers listed the range of causes with corresponding mortality percentages. (See this chapter’s Table-3431[80]). Surprisingly perhaps, the only respiratory cause of mortality identified on the list was ‘Pulmonary oedema’, in 29(=8%) of the 345 patients with mortality in 26(=93%) from that cause. So by these tables, after August 26/27th no deaths would seem purely ventilatory failure.

vi) Polio, a deadly disease for some patients, was lethal from causes originating from other than ‘unrelieved respiratory paralysis’. This is clearly documented (next page) by thesis Table-3,431[80]
Table-1

Main classification of the series: distribution and mortality.

<table>
<thead>
<tr>
<th>Group</th>
<th>Clinical groups</th>
<th>Principal site of anatomical lesion</th>
<th>Distribution No.</th>
<th>%</th>
<th>Deaths No.</th>
<th>Fatality rate %</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Polio-encephalitis</td>
<td>Encephalo-bulbar</td>
<td>75</td>
<td>22</td>
<td>29</td>
<td>39</td>
</tr>
<tr>
<td>B</td>
<td>Pharyngeal and/or laryngeal paralysis without encephalitis, cerebralia or spinal paralysis</td>
<td>Bulbar</td>
<td>12</td>
<td>4</td>
<td>3</td>
<td>25</td>
</tr>
<tr>
<td>C</td>
<td>Paralysis of respiratory muscles without encephalitis, cerebralia or pharyngeal paralysis</td>
<td>Spinal</td>
<td>157</td>
<td>45</td>
<td>50</td>
<td>32</td>
</tr>
<tr>
<td>D</td>
<td>Paralysis of respiratory muscles and pharynx or larynx without encephalitis or cerebralia</td>
<td>Spino-bulbar</td>
<td>28</td>
<td>8</td>
<td>13</td>
<td>46</td>
</tr>
<tr>
<td>E</td>
<td>Paralysis of respiratory muscles combined with cerebralia without pharyngeal paralysis</td>
<td>Spino-(bulbar-)cerebral</td>
<td>60</td>
<td>17</td>
<td>38</td>
<td>63</td>
</tr>
<tr>
<td>F</td>
<td>Paralysis of respiratory muscles and pharynx or larynx combined with cerebralia</td>
<td>Spino-bulbar-cerebral</td>
<td>13</td>
<td>4</td>
<td>11</td>
<td>85</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>345</td>
<td>100</td>
<td>144</td>
<td>42</td>
</tr>
</tbody>
</table>

Reproduced with permission from: Pedersen J, Bjørneboe M, Johnsen S et al., (Lassen, at p.7)

Table-2

Localization and severity of inflammatory and degenerative processes.

<table>
<thead>
<tr>
<th>No. of cases examined</th>
<th>Localization</th>
<th>No. of cases with inflammatory and degenerative processes</th>
<th>Particularly severe lesions</th>
</tr>
</thead>
<tbody>
<tr>
<td>105</td>
<td>Cerebral cortex</td>
<td>31</td>
<td>8</td>
</tr>
<tr>
<td>106</td>
<td>Hypothalamus</td>
<td>79</td>
<td>16</td>
</tr>
<tr>
<td>100</td>
<td>Mesencephalon</td>
<td>75</td>
<td>35</td>
</tr>
<tr>
<td>115</td>
<td>Pons, medulla oblongata</td>
<td>114</td>
<td>114</td>
</tr>
<tr>
<td>115</td>
<td>Spinal cord</td>
<td>115</td>
<td>115</td>
</tr>
<tr>
<td>42</td>
<td>Spinal ganglia</td>
<td>14</td>
<td>–</td>
</tr>
</tbody>
</table>

Reproduced with permission from: Vimtrup B, Christensen E, Schourup K, (Lassen, at p.152)

Table-3

Complications, incidence and relation to mortality. Cases = 345 patients, mortality = 42%.

<table>
<thead>
<tr>
<th>Complications</th>
<th>Incidence</th>
<th>Mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. of cases</td>
<td>%</td>
</tr>
<tr>
<td>Shock</td>
<td>134</td>
<td>39</td>
</tr>
<tr>
<td>Hyperpyrexia</td>
<td>66</td>
<td>19</td>
</tr>
<tr>
<td>Uraemia*</td>
<td>36</td>
<td>22</td>
</tr>
<tr>
<td>Pulmonary oedema</td>
<td>29</td>
<td>8</td>
</tr>
<tr>
<td>Paralytic ileus</td>
<td>112</td>
<td>32</td>
</tr>
<tr>
<td>Hypertension</td>
<td>65</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>442</td>
<td>100</td>
</tr>
</tbody>
</table>

* Only patients aged 15 years and older.

Reproduced with permission from: Pedersen J, Bjerre-Christensen K, (Lassen, at p.80)

8.2.7 Inference

One is left to conclude that it is fortunate Vivi’s life-threatening problem appears to have been essentially ventilatory, and not cerebral. Because the epidemiologists had not recognized that continuing accumulation of CO₂ was occurring despite AV by INPV, they had attributed many deaths to the overwhelmingly destructive effects of the polio virus on the brain. Autopsy findings indicate that the epidemiologists were certainly correct for occasions...
(how many, of the 115 patients of Table-1/Table-XXX[431p152] could have a cerebral cause of death, perhaps even all of them?). Although Ibsen’s new treatment essentially prevented death from ventilatory failure (although 8\% of ‘respiratory’ deaths due to other non-ventilatory causes, were listed as ‘pulmonary’ – perhaps infections?), overall mortality for 345 patients was declared at 42.7\%, as will be examined.

No denigration at all of Prof. Ibsen (and his colleagues) is implied. From August 27th his method of intervention for hypoventilation was markedly life-saving for many patients, beyond any dispute (overall improvement in mortality appears to have been 87-42=45\% in round figures, as will be elaborated further). The fortunate/unfortunate Vivi, however, never advanced out of a residual lesser disability.

Ger Wackers436 has pondered this sobering possibility: ‘What if the 12 year-old girl had died, despite the anaesthetist’s efforts? Would he (Ibsen) have been given a second chance?’

Polio, a deadly disease for some patients, could be lethal from causes originating from other than ‘unrelieved respiratory paralysis’. This is clearly documented next by Table-3, herein (= ‘Table-X’ [431p80])

8.3 Numbers for and features of the epidemic

8.3.1 Danish/Copenhagen population numbers on Lassen’s Table-1431[p1],[440]

Copenhagen’s population in 1952 was 1.2 million, or 27.9\% of Denmark’s total, which was 4.3 million.431[p1] The studies for 1952-1953 by Henry Hamtoft, the official statistician, revised the whole country’s total official number of polio victims up to 1 May 1953.441 In 1954 WA Andersen and B Ibsen439 gave the 1952 epidemic totals for the whole of Denmark as ‘5,722 cases notified’, 3,722 of which passed through Blegdams Hospital’,439 for which Lassen, 1956, could verify poliomyelitis for 2241.431[p1] Of these,1250 had ‘paralysis’, and 345 were requiring special treatment for the whole epidemic (here, taken to be until March 2nd).431[p1]

Lassen’s 1956 book, based on Hamtoft’s studies also,441 reduced Andersen and Ibsen’s 5772 all-of-Denmark polio patients to 5,676, with 2,450 of them being ‘paralyzed’ (=43.16\%).431[p1] Patients treated outside Copenhagen would have included a proportion of polio+ patients.

Polio deaths in Copenhagen, 1952, were approx. 60.7\% of the percentage rate in the rest of the country [at 8.2 vs 13.5\%431[p2] – also deduced from Lassen’s ‘Table-III’(after-Hamtoft)],431[p2] one which is less readily apparent. The Table’s death percentage rates are defined there per 100 paralytic cases.

Paralytic polio and mortality figures (in Lassen’s Tables II and III,431[p2] both based on the statistician’s) I also found ‘less readily apparent’. Mortality rate in four age groups is given ‘per 100 paralytic cases’ (thereby providing a ‘fatality rate per cent’).

8.3.2 Numbers regarding ‘Serious Poliomyelitis’

H.C.A. Lassen defining ‘serious’ poliomyelitis as manifesting ‘insufficiency of respiration or impairment of swallowing or both’,431[p1] became forced to recognise that those afflicted needed what came to be called ‘new methods of treatment’,431[p150] \textit{i.e.}, ‘tracheotomy, artificial respiration, postural drainage, or combinations of these’. Throughout the 1956 book431 the total of such Blegdams polio+ patients for the whole epidemic (which many took
as being until 2 March 1953) is usually given as or very close to 345, e.g., on p.4 (comparably, Neukirch and Søttrup listed 318 similar patients for Aug.26th-Mar.2nd, who together with 30 or 31 for Jul.7th-Aug.25th, made their total 349). ‘Special therapeutic measures’, as above, were required for 345 of the paralytic patients. 431[p3]

Lassen writes of the whole epidemic being between July 24 and [confusingly, what he always seemed to refer to as] ‘at the end of the year’ (i.e., end of 1952), for which he verified a diagnosis of poliomyelitis in 2241. Of these, 1235 [55.1%] suffered paralysis. 431[p3] A confirmed diagnosis of polio+ among 2241 would comprise 15.4%.

Early 1953, Lassen had reported polio+ patients numbering 316 of the 866 paralytic cases [=35.7%], 433[p37] ‘between July 24 and Dec 3’, 1952, (elsewhere in the same paper, the ‘point of reference’ was ‘Dec.6’). This represented ‘an enormous load’. The caption to the Lancet ‘Figure-2’ confirmed 316.

It is not clear if Lassen’s 31 ‘serious’ patients of ‘July24-Aug.25’ by his ‘Mortality-Rates’ Table ‘III’ [of whom 70% died within 3 days), were regarded as within the group for this treatment or not, as for those dates such treatment was then unknown to Lassen (although he was applying his own 5th treatment mode of ‘Postural drainage and stomach-tube’, etc). Were the 31 included in his 316 patients? They can hardly be added in without making the total polio+ number 348 patients by Dec.6th, 1952, when that is the approximate total for the entire epidemic (or at least until 2nd March 1953).

A calculation can be attempted for serious patients, quoting this Chapter’s Table-5,

<table>
<thead>
<tr>
<th>Period of admission</th>
<th>No. of cases</th>
<th>Died</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>From Aug.26 to Nov.6</td>
<td>250</td>
<td>50</td>
<td>20</td>
</tr>
<tr>
<td>From Nov.7 to Dec19</td>
<td>501</td>
<td>25</td>
<td>5</td>
</tr>
<tr>
<td>From Dec.20 to Mar.2</td>
<td>18</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>Total</td>
<td>=318</td>
<td></td>
<td></td>
</tr>
<tr>
<td>From Jul.24 to Aug.25</td>
<td>31</td>
<td>11</td>
<td>37</td>
</tr>
<tr>
<td>Total for the epidemic</td>
<td>=349</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[Perhaps ‘from the 26th August’ is meant to mean starting on the 27th. Otherwise why it is the 26th is not obvious]

Reproduced with permission from: Neukirch F, Søttrup T, (Lassen at p.150).

*Note; Usually 25th August is 26th and 26 died were 27.
Table 5
Mortality rates at different periods during the epidemic and their derivation.

<table>
<thead>
<tr>
<th>Dates</th>
<th>Thesis Ref.no.</th>
<th>Polio+ numbers</th>
<th>AV numbers</th>
<th>Deaths numbers</th>
<th>% of deaths</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 July – 6 December</td>
<td>433</td>
<td>312(^{[\text{ii}]}) below</td>
<td>?</td>
<td>134</td>
<td>42.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>([= 31 + 250 + 31])</td>
<td>([= 27 + 100 + 7])</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 July – 2 March</td>
<td>440</td>
<td>345 (pp. 164, 167)</td>
<td>262 (p. 167)</td>
<td>142 (p. 167)</td>
<td>41.2</td>
</tr>
<tr>
<td></td>
<td>431</td>
<td>345 (pp. 4, 11)</td>
<td>277 (p.13)</td>
<td>144 (pp. 7, 150)</td>
<td>41.7</td>
</tr>
<tr>
<td></td>
<td>431</td>
<td>349(^{[\text{ii}]}) below (p.150)</td>
<td>?</td>
<td>144 (p.150)</td>
<td>41.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>([= 30 +318])</td>
<td>?</td>
<td>([= 26 + 118])</td>
<td></td>
</tr>
</tbody>
</table>

Fractional numbers

<table>
<thead>
<tr>
<th>Dates</th>
<th>Thesis Ref.no.</th>
<th>Polio+ numbers</th>
<th>AV numbers</th>
<th>Deaths numbers</th>
<th>% of deaths</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 July - 25 August</td>
<td>433</td>
<td>31 (vs. 31 + 4)</td>
<td>31</td>
<td>27</td>
<td>87.1</td>
</tr>
<tr>
<td></td>
<td>431</td>
<td>30 (p.150)</td>
<td>30</td>
<td>26 (p.150)</td>
<td>86.7</td>
</tr>
<tr>
<td>26 August – 6 November</td>
<td>433</td>
<td>250 'great majority'</td>
<td>100</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>7 November – 6 December</td>
<td>433</td>
<td>([= 50 \times 5])</td>
<td>?</td>
<td>7</td>
<td>22.6</td>
</tr>
<tr>
<td>7 December – 'end'</td>
<td>431,433</td>
<td>33 vs. 29</td>
<td>?</td>
<td>10</td>
<td>30.3</td>
</tr>
<tr>
<td></td>
<td>431,433</td>
<td>([= 345-312 vs. 316])</td>
<td>?</td>
<td>([= 144-27-100-7])</td>
<td></td>
</tr>
<tr>
<td>7 November – 2 March</td>
<td>431</td>
<td>68 (p.150)</td>
<td>?</td>
<td>15 (p.150)</td>
<td>22.1</td>
</tr>
<tr>
<td></td>
<td>431,433</td>
<td>([= 50 + 18])</td>
<td>?</td>
<td>([= 13 + 2])</td>
<td></td>
</tr>
</tbody>
</table>

8.3.3 Summary of the (varying) number of patients 'requiring special treatment'

i) Prof. Lassen’s total of ‘316 patients’, Aug.26-Dec.3, has 250 from his Preliminary Report Table-III’s five periods (II-VI)\(^{[\text{p.388&Fig2}]\) to Nov.6, so is needing 66 more to make that total by Dec.3.

But Neukirch and Søttrup’s Table XXIX\(^{[\text{p150}]\) shows from Nov.7, 68 such patients not until Mar.2.

ii) In his 1955 World Health Organisation text, Lassen numbers 349 patients for the epidemic ‘till the end of the year’,\(^{[\text{p158}]\) but 345 in that article’s tables.\(^{[\text{p164,167}]\}

iii) EW Andersen supplies a number of 349 also, but for the whole period, Jul.7, 1952 to Mar.2, 1953.

iv) The various writers for the definitive 1956 book\(^{[\text{p.343}]\) have differing numbers for such patients, needing ‘special treatment’, even though Lassen was its editor.

 a. H.C.A. Lassen, referring to ‘Between July 24 and the end of the year’, quotes 345,\(^{[\text{p.ix}]\}
 b. J Pedersen et al. quote the same number, 345 ‘During…July7, 1952, to March 2, 1953’.\(^{[\text{p5}]\}
 c. J Pedersen and K Bierre-Christensen state 42% mortality for ‘345 cases’.\(^{[\text{p80}]\}
 d. F Neukirch and T Søttrup have 318 patients Aug.26 to Mar.2 (as at 01/01/1956).\(^{[\text{p150}]\}
 e. M Bjørneboe et al have the same number\(^{[\text{p19}]\) of ‘318 patients treated according to the new
therapeutic principles’, implying 349 patients for the total period (again, once the earlier 31 patients of July 24th to August 25th, as per Lassen’s original Lancet Table-III, [433][p40] are added on).

In summary, consistency is not exact, only close.

8.4 Regarding the time-span for the epidemic

i) H.C.A. Lassen has starting dates for supplying numbers from ‘the beginning of August’ [431] but also from July 24. [433]

He never writes of the epidemics ending other than at ‘the end of the year’ (which was 1952’s).

ii) For a number of treated patients identical to Lassen’s total of 345 in the 1956 book [431] (which Lassen stated to be only for a time-period from the beginning of August to the end of the year), an April 1954 paper by Andersen and Ibsen [439] described the treatment of patients as extending over a time starting earlier on July 7, and finishing later on March 2nd, 1953.

iii) For the same finish time of March 2nd, the last two papers in the above Item no. 8.3.3 iv) at d) and e), are concerned only with a period starting with the employment of (any) special measures, i.e., August 27th.

iv) H Hamtoft [441] of the Danish National Health Service has the epidemic starting with a few cases in June 1952 and ending by May 1st 1953.

v) Neukirch and Søttrup in their “Results’ chapter’s Table XXIX, [431][p150] end the ‘old’ treatment on August 25th with cases then numbering 30, deaths 26, and start the ‘new’ method on August 26th, ending March 2nd.

In summary of the starting date, again there is variability.

8.5 Varying severity of illness among these polio+ patients:

This topic, now expanded from my earlier writing, was reflected in

i) non-survival, vs. survival from the illness, for individual patients of groups A-F, as can be seen in the percentages of mortalities listed, see Table-1 herein, also thesis Item no. 8.2.6.v and thesis Table-3 for the high mortality from ‘Complications and Special Conditions, Chapter X’, [431][p80]

ii) Need for ventilatory assistance ± tracheostomy, versus the absence of need.

In the latter instance, less interventional measures alone (such as postural drainage, continuous gastric tube-suction, supportive measures such as nutrition, etc) apparently provided adequate treatment.

In 333 patients ‘one or more of the four criteria set up for respiratory failure’ were met; 12 others had ‘[impaired] deglutition without respiratory insufficiency’. [431][p5] ‘Within the first month a total of 277’ received AV, with 97 of these dying within the first week. [431][p13] Lassen reported that from 26th August to 6th December the ‘great majority’ of the Blegdams polio+ patients were ventilated. [433][p40] In a subgroup wherein all were ‘treated by tracheotomy and bag ventilation’, 70 patients or 46.7% died. But regarding the whole epidemic, Lassen elsewhere says ‘about 300 patients [were] subjected to manual bag ventilation’. [431][p60], [439][p164]

(After 3 years, 25 were still needing ventilatory support completely or for part of a day).
8.6 Tracheotomy

The number of polio+ patients with a tracheotomy was 267, of whom 112 or 41.9% died. Not every AV patient received a tracheotomy (26 did not); while not every tracheotomy patient was ventilated (31 were not).

T Søttrup set down carefully the indications used for when tracheotomy was (or was not) considered required.

Other complications have already been mentioned, as in this chapter’s Table-1.

8.7 Mortality during the epidemic

(See Table 4 and summarising Table 5).

Berthelsen and Cronqvist also stated: ‘In the following months [of the epidemic] mortality markedly decreased to approximately 25%’. Polio patients to whom this mortality of c.25% applied, came from the group of patients at the Blegdams specified as having ‘life-threatening poliomyelitis’, i.e., polio+.

8.7.1 Overall mortality rate among the whole of the epidemic’s 345 (or 348) polio+ patients:

Mortality became 41.7% (sometimes written as 42%) by the death of 144, see Table-4 herein, while those before ‘26 August’ make the percentage considerably weighted against success by the death of 27 (or 26) of 31 (or 30) patients, 87.1% mortality.

(With the changing [for some unrecognised reason] of the Aug.27th day to the 26th, as seen in this chapter’s Table-4 from Frits Neukirch and T Søttrup, deaths then become 41.4%).

Following the introduction of Prof. Ibsen’s new methods and their heroic employment, the earlier drastic mortality rate more than halved. H.C.A. Lassen provided an interim statistic from (after) ‘26 August’ until the next milestone date of 6th November, for all those treated by bag-ventilation/tracheotomy (first starting with patient Vivi on August 27). Again, it needs noting that these percentages refer only to those at Blegdams, worst affected, [42% of the 100 deaths occurred within 3 days not to all 2241 polio patients, for whom overall mortality, again, is calculable at 6.4%].

8.7.2 Mortality among successive cohorts of 50 admissions with polio+:

For the period 26th August to 6th November 1952, their reference dated 1st January 1956, F. Neukirch and T Søttrup updated the Lancet ‘Preliminary’ original percentage figures for the mortality %-rate of Lassen’s five cohorts of successive 50 patients (thus a total of 250 patients – with 100 dying), from percentages of 52, 48, 38, 26,36 to percentages of 50, 46, 44, 30, 36 (see thesis Table-4). (The dates of cases in the two Tables, Lassen’s vs Neukirch/Søttrup’s, do not match exactly – if insignificantly). A minor change in total mortality to Nov.6 also followed, reaching 103 (41.2%) compared with Lassen’s total given as 100 among the 250 patients (40%) in his 03/01/1953 Lancet Table III. But the overall trend was downwards, and for the next month, 6th November to 6th December, Lassen reported the mortality rate among the following 31 polio+ patients as being further reduced to a striking 23%, which must represent seven deaths (with which, strictly, the percentage becomes 22.6%).
By including to the date of December 19th for their last (sixth) cohort of 50, Neukirch and Søttrup (see Table-43[p150]) completed their documentation of this group with a mortality rate on 26%.

So with mortality eventually approaching the ‘approximately 25%’, this marked reduction entirely justifies the assertion quoted from Drs Berthelsen and Cronqvist435 of an end-mortality at 25%.431 That holds, as long as it is remembered that the figure is taken as that finally achieved with the total from after Prof. Ibsen’s methods were implemented, and not as the mortality rate of polio+ patients from the start of the epidemic.

8.7.3 Mortality in the last patients of the epidemic
From 26th August to 2nd March, Neukirch and Søttrup’s431[p150] total of polio+ patients was 318 with 118 deaths, making a 37% mortality within those dates. For their last cohort of 50 (from Nov.7th to Dec.19th), 13 died, i.e. mortality was 26.0%.

With their reference date at 1st January 1956, Neukirch and Søttrup431[147-150] listed only 18 more polio+ patients after 20th December 1952, until 2nd March 1953 – their end-date for the epidemic – with the death of two of these bringing that mortality down to a remarkably low end-rate of 11.1%. The absolute severity of disease is not documented; it possibly could have been milder by this time – but Lassen always spoke against such a suggestion, e.g., he had declared the ‘terrible weeks’ of the epidemic like ‘a state of war’,433[p50] ‘by far the worst ever recorded in Europe’,440[p158] worse than Minnesota’s in 1946 or New York’s in 1934, 1931, 1916 and, as he could later add, Sweden’s in 1953. Along with the accumulated experience which the clinicians and nurses had gained by that time, the death of only two polio+ patients certainly was an achievement to be celebrated, and it warrants recognition. The numbers involved (18 patients) were relatively small though. (Now, in 2018 I see that Neukirch and Søttrup had also arrived at that 11% mortality figure for the Dec20th-Mar2nd of their Table XXIX 431[p150]).

Even if all the new admissions are calculable at 37 patients, by counting backwards from 2nd March 1953 to (say) 6th December 1952, the final date of Lassen’s Preliminary Report433 (see the last lines of this chapter’s Table-5), then with eight dying, the mortality is 21.6%, still nearer to 20% than 25%.

The Danish achievement was truly remarkable.

8.8 Difficulties from H.C.A. Lassen’s figures from 7 Dec.1952 until the ‘end of the epidemic’
As already implied, there are problems in trying to derive some figures for this period from H.C.A. Lassen’s writings. His famous, ground-breaking Lancet 1953433 report (which, written for a January 3rd issue, must have been compiled under very trying circumstances with the epidemic still on-going, even if diminishing in the quantity of patients), details either 312 or 316 of such patients being admitted up until 6th December 1952:433 while the epidemic’s total with polio+ in the1956 book he edited is usually 345.431[p4&5] So his number of polio+ patients after 6th December until the end had to be either 33 (=345 minus 312) or 29 (=345 minus 316). As the death number total for the epidemic’s polio+ total was 144,431[p7] and from the data Lassen supplies indicates,433 the death number after 6th December can be deduced as being 10 (= [144 minus 27] & less [100 & minus 7] as per this thesis Table-5, p.160). This delivered a mortality rate among 33 or 29 patients for this period from Dec.7th as being either 30.3% or 34.5%, respectively; at least 8.7% higher than the 21.6% just quoted.
8.9 Bravery of the Blegdams Staff

The epidemic was powerful and one expects that many hospital staff (unaware for some, of possible immunity acquired naturally) were placing themselves at serious risk of becoming infected, particularly with the close contact in bag-ventilating of patients or in supplying their nursing needs. To my enquiry of friend Dr Hans Jørgen Clementsen, now a retired anaesthetist of Hillerød but a resident doctor during the epidemic, whose wife was a Blegdams nurse during the epidemic, he told me (pers. comm.) that none of the 1,400-1,500 students or doctors contracted the disease. In his Lancet paper[433][p40] Lassen made what may have been a 1952 guestimate for a number of c.1000 for ‘baggers’ ventilating the polio patients.

Dr Clementsen referred to Maag A., Polio-Smitteproblemer, Ugeskrift for Læger 1953; 115(32): 1212-1216, which is without an English summary. The title would translate to ‘Problems with the contagion of polio’.

8.10 Some Folklore

In discussing the Danish poliomyelitis epidemic of 1952-1953, one can occasionally detect a kind of folklore among latter day intensivists in Australasia. Some would seem to have a belief along the following lines: during a massive polio epidemic in Denmark in the early 1950s there were limited numbers of the customary tank respirators available to supply (negative pressure) AV for respiratory inadequacy. So anaesthetists replaced these by battalions of medical students supplying manual (positive pressure) AV. Thus the simple ventilatory problem was solved, and thereafter mortality from the disease was virtually abolished.

Worse, a 2003 published text declares: ‘There is an apocryphal story (my emphasis) about Scandinavian medical students taking turns to provide assisted ventilation to polio sufferers during an epidemic in Denmark in the 1950s’.442 So much then for documented facts. ‘During several weeks we had 40-70 patients in our hospital requiring continuous or intermittent bag ventilation. To do this we employed about 200 medical students daily. Their pay has been about 30s (shillings) for eight hours.’433[p39] Hardly apocryphal.

The true story has been clearly set out in journals by participants,431,433-4,438-40,445,467 as well as by reliable others435-437,446 and in a definitive book.431 Also, some of the statistics in this commentary highlight the naive scepticism of the above viewpoints.

8.11 Later communications with Dr Ibsen

In Feb.2002, Drs Preben Berthelsen and Cronqvist interviewed the great man, long retired, when his memory of distant events was not quite exact for completeness of information. So they made a request to Municipal Copenhagen Archives to see the appropriate clinical pages of the patient Vivi (by then deceased at 31 years old, in 1971) but were told records could not be found (subsequently it became obvious that the Vivi pages were actually lent out at that time, being worked on for a thesis). Meantime in April 2003, as a foreign stranger, I wrote a few questions for elucidation to Dr Ibsen to which he generously responded with apology, and a few short answers, advising he was not really up to being questioned now. Later in 2006 a further interview gained by Dr Reisner-Sélénar achieved historical value regarding Prof. Ibsen and the foundation of Intensive Care Medicine, since he provided an account of the events on August 27 and the day afterwards. Dr Reisner-Sélénar recorded him as his account was being spoken, then transcribed it into her thesis where it was augmented with information
from the original hospital recordings. All this material, now documented, is accessible on-line, as already mentioned in Chapter 7.

8.12 A central mystery remains

Did H.C.A. Lassen write 26th August in forgetfulness, instead of the 27th August 1952 date he wrote of originally in 1953433,443 and later440[p158] – or become ‘revisionist’ for some reason? His first dating for the 26th was in the Danish Medical Bulletin 1954,443 declaring in his paper ‘The introduction of bag ventilation on August 26...’ (not the date of the day he told the Royal Society of Medicine at London the previous year444); then similarly in his 1955 WHO monograph440[p209]; and he himself continuing with this in the 1956 definitive book on the epidemic,431[p.x] as did various contributors to it. Under Lassen’s editorship, they at times gave or were allowed 26th August as the introductory date. For examples in the book, F. Neukirch and T. Søttrup repeatedly supply 26th August 1952 as the date of introduction of ‘New Methods of Treatment’ (p.147, and especially p.150); while M. Bjørneboe et al. reported ‘...from 26 August 1952 the therapeutic regime was altered...’ (p. 19). Thereafter, apart from Preben Berthelsen or Ger Wackers,435 some other writers – such as active observer Poul Astrup, who, on the 27th morning like Prof. Lassen, was present at Bjørn Ibsen’s initial demonstration436,437 – followed the 26th August lead, until Preben Berthelsen’s successful confirmation of the 27th from hospital records, later confirmed by Dr Resnais-Sélénar, and now, can be seen unequivocally, by a Blegdams Hospital clinical record.

While I am aware this theme may be tiresome to readers, it is valuable for historical accuracy that the question of correct dating has been resolved, thanks to the tenacity of Dr Berthelsen. We owe him thanks.
Addendum: Commentary on Professor Ibsen’s priority rights

To debate which intensive care unit held prime place may seem a trivial pursuit; but the question has been considered before, perhaps with some equivocation, in a published opinion from Bjørn Ibsen himself, generally considered of course, to be the foremost pioneer of the new specialty. In terms of its historical contribution to the sequence of events culminating in a new medical area of specialisation, the first successful mass treatment of respiratory failure from polio in Europe was due to the organisation introduced by Bjørn Ibsen and H.C.A. Lassen at Blegdams Hospital, Copenhagen. This became what Ibsen himself described as a recognised intensive therapy unit (ITU). Writing in 1966, he stated

The second intensive therapy unit [or ITU, this at the Blegdams Hospital] was now in use in Denmark – the first being the one for barbiturate poisoning cases – but this one had the same limitation: only one type of disease was being treated.

445[p284]

Since then Drs Preben Berthelsen and Michael Conqvist have judged ‘the first intensive care unit in the world’ to be a different one in Copenhagen, another Ibsen developed at the end of 1953 at the Kommunehospital. As they do, I have some reservations over Prof Ibsen’s contention.

Ibsen’s statement, modest in terms of his own achievements, can be examined concerning these options.

1. A Clemmesen ICU or ITU at the Bispebjerg Hospital, Copenhagen?

Prof. Ibsen referred first to Carl Clemmesen’s dedicated unit at the Bispebjerg Hospital, opened on 1st October 1949 to centralise patients into a single area (as previously mentioned, a 4-room/9-bed unit357) for close observation and management after poisoning from barbiturates and (to lesser extent, as per Chapter-6) other agents. There was also a long continued attitude among the psychiatrists of reluctance to abandon trying new antagonists, for the hope of possibly effecting a nalorphine-type reversal of other intoxicating agents also, such as barbiturates. Although there can be no denying the dedication and care in Clemmesen’s unit, to me, it does not warrant Ibsen’s generous description of ‘first’ ITU, his unit does not hold such a place legitimately in my opinion.

Dr Clemmesen, essentially a psychiatrist with long experience in treating barbiturate poisoning, did not seem to reveal adequate recognition and treatment for airway and particularly ventilatory problems he saw after poisonings. Treating psychiatric doctors could call on anesthetists for intubating, or on otolaryngologists for tracheotomy; also physicians and others as deemed necessary. The incidence of oro-tracheal intubation at the Bispebjerg’s unit is indeterminate. While aware of tracheotomy as an option for airway defects, Clemmesen and colleagues did not favour it from its previous failure at the Bispebjerg to improve outcome after barbiturate intoxication.

For some never explained reason for such selectivity, Clemmesen saw IPPV as eminently applicable to respiratory depression from opiates but seldom to that from barbiturates. When IPPV was tried too late for the latter, he found it unhelpful. Dr Aage Kirkegaard, 1945, had already introduced intravenous blood volume repletion for shock from poisoning by intoxicating agents such as barbiturates.
The ability to upgrade Bispebjerg psychiatric treatment for poisoning by visiting Eric Nilsson, an anaesthesiologist successfully treating intoxications at Lund, seemed limited. Carl Clemmesen’s intoxication unit should not be regarded as the first ITU/ICU.

2. A Lassen ICU or ITU at the Blegdams Hospital, Copenhagen?

Ibsen’s nomination of the second ITU/ICU was the Blegdams area, three floors dedicated to treating polio+ patients. Ibsen remarked that the Blegdams ‘unit’ had the same activity shortfall comparable to Clemmesen’s, in that only one specific type of illness was being treated, presumably referring here to the respiratory depression of polio+ (for which Ibsen had been the prime introducer of effective treatment). Examination of Lassen’s 1956 book[392] shows that with these patients, much more than respiratory depression from the ‘one type of disease’ was involved. Good if limited evidence is available from certain chapters in Lassen’s book and remarkable enlightenment from the autopsies conducted on as many as 115 non-surviving polio+ patients (when all those dying numbered only three more, as per Table XXIX[431][p150]) among a total of 318 ‘seriously ill’ patients during Aug.26th-Mar2nd[392][p147]). All of these patients who died presumably needed prior intervention for a degree of airway and ventilatory deficiency. Thus 20-plus anaesthesiologists were in attendance for helping students ‘bagging’ patients. As Ibsen later phrased it:

‘For the first time in Denmark anaesthesiologists’ knowledge, technique, and equipment were used on a grand scale for other purposes than just for giving anesthesia.’[445][p283]

This echoes the remark made about Prof Ibsen, attributed to Sir Robert Macintosh, later reported by Prof. Ole Secher in his brief but lucid 1987 account of Ibsen and the Danish epidemic:

‘Bjorn you are the one who brought the anaesthetist out of the operating room.’[446][p432]

Tables and text in Lassen’s 1956 book reveal that systemic problems, often vital, were certainly more than solely ventilatory, but also had non-ventilatory causes affecting cerebral and other body systems (heart, lungs, gut or kidneys, also blood pressure and temperature, as is all evident from ‘Table-X’[sic][392][p80]. The order of incidence of the complications among 345 patients, with their mortality percentage (as from J Pedersen and K Bjeere-Christensen’s Table X)[392][p80] lists

Pulmonary oedema 93%, > Hyperpyrexia 91%, > Uraemia 78% (those below 15yrs excluded),
>Shock 67%, > paralytic ileus 44%, > Hypertension 42%, (‘Table-X’ 431[p80]).

Table-X also listed mortality – revealing incidence of widespread systemic effects of polio; as does B Vimtrup, E Christensen and K Schourup’s Table-XXXI for them in the brain and spinal cord.[392][p152]

The complications among 345 patients, with their mortality percentage, for

Shock, at 67%, > paralytic ileus, 44%, > Hyperpyrexia, 91%, > Hypertension, 42%, > Uraemia, 78% (again, excluding those below 15yrs), > Pulmonary oedema 93%,
(as from J Pedersen and K Bjeere-Christensen’s ‘Table-X’ 392[p80]).
Unfortunately, these 1956 Tables deal with mortality in these six groups only by total end-numbers and percentages, not by distinguishing the causes of death separated out within this 118 – or not even if they were ventilatory or non-ventilatory.

After August 26th, complications totalled 280 (single for some patients, multiple for others) among 345 patients. The effects were serious enough for mortality data to provide confirmation that such effects were life-threatening, in some they could ultimately be fatal. Thus, a mortality rate written at 67% occurred among 134 instances of circulatory shock was recorded for 39% of the 345 patients counted. The other figures for Table-X demonstrate that a full range of intensive care management was required for multiple serious disorders. By then, respiratory problems which were entirely ventilatory (and not due to causes such as bacterial infections), should not have made a large contribution to respiratory deaths, due to the availability of m-IPPV from August 27th.

The emphasis to be taken from the two paragraphs above is that there was ample non-respiratory serious illness in the patients of Lassen’s ‘ITU’, requiring intensive care-type attention. One would like to know also, for how many patients was death due to necrosis in significant brain regions. The autopsies define the location of sites with cerebral necrosis, not whether its effect was the cause of the mortality, in how many of them, among the 115 patients autopsied.

The mortality numbers given by J Pederson and K. Bjerre-Christensen’s Table can indeed indicate the severity of complications, i.e., the need for intensive care in support. That would appear sufficient to negate Ibsen’s description of this very large institution at the Blegdams as being only the second treating-ICU. The causes of initial referral and admission to Lassen’s ‘unit’ (I have not found Lassen’s own use of that word) were not multidisciplinary as it was in Ibsen’s Kommunehospital unit, but the polio patients had a high proportion of intensive care problems.

My conclusion is that serious problems in Lassen’s unit were not only medical but of an order warranting the description ‘intensive care’.

Autopsies secured after 114 deaths (of a total 118 reported 26th August to March 2nd) showed that for the interval Aug.26th-Dec.19th, there was a usually progressive reduction in mortality rates among six successive groups of 50 patients (so =300 total), from 50% mortality in the first group of 50, down to 26% in the sixth last group of 50.

Does this ‘unit’ of Lassen’s fit the description of an ITU, which term Ibsen assigned it? Lassen’s unit does not fall short for severity of illness or breadth of medical complications needing expert attention for treatments which were not ventilatory. Unfortunately, despite nine case histories being carefully detailed by B Vimtrup, E Christensen & K Schourup, it is still hard to elucidate the findings of their chapter, ‘Autopsy Findings’, for the 115 patients – apart from noting that ‘Particularly severe lesions’ were observed in the pons and medulla for 114 of the 115 autopsies examined (all these patients also had severe lesions in the spinal cord). Lassen asserted that – despite repeatedly referring to the epidemic lasting to ‘the end of the year’, thereby presumably omitting many of the last 18 patients – the epidemic was described by Lassen as of great severity throughout its entirety. Only two of the last 18, succumbed indicating less severe incidence among them of
brain lesions in vital regions. Compare the findings of Vimtrup et al of ‘particularly severe [brain] lesions’ in 114 of 318 (=35.8%) patients.

Preben Berthelsen commented about the last 18 patients, in a pers.comm. to the current writer, 2019, that a count among these last 18 admissions of ‘2 deaths, I guess, must be [=have been] caused by the cerebral lesions – in rounded figures 15%.’ But that does not approach the previous unequivocal mortality rate at 35.8% of the total. One is left with the conclusion that the 318 patients certainly formed a group of ICU-type patients needing care of vital functions. One can expect this care was supplied to the best of the abilities of the supporting doctors and nurses.

A latter-day ICU would have a Clinical Director, which role Lassen pursued, but it is perhaps surprising that he could have personally fulfilled the leading clinical role, when he was writing so much ‘new territory’ material (concepts, analysis, data gathering) contained in his Lancet report of 3rd Jan.1953. However, Ibsen could report that

To secure continuity in the treatment, conferences were held every single day for 2 hours in Professor Lassen’s office, where all problems were discussed by all those involved.

(Lassen was someone, according to Ibsen, 2002, [per P Berthelsen, pers. comm.], ‘actually damned intelligent’). Ole Secher stated 1987 ‘As chief of epidemiology it was Lassen who took the responsibility for the establishing of the treatment’. Which is then listed as including tracheostomy (early), m-IPPV, physiotherapy, etc, but without mentioning non-respiratory concerns.

This writer’s conclusion is that Lassen’s treatment organisation did partially fill a role of ‘first ICU’. In terms of later ICU models, Ibsen’s did so fully.

3. An Ibsen ICU at the Kommune Hospital, Copenhagen?

What was different about Ibsen’s regimen for his ICU at the Kommunehospital, compared with Lassen’s management at the Blegdams (or in comparison with ‘special care units’, known of especially in the United States after the early 1950s)? Ibsen’s training and experience, brought from basic anaesthesiology, increased the range of management he could offer. Initially, it was mainly trained anaesthesiologists in charge of newly established ICUs, (always with competent nursing support of medical staff) with their skills in detection and treatment of airway obstruction, ventilatory inadequacy and circulatory insufficiency involving central pump function of the heart, or the peripheral vasculature, and oxygenation of vital organs. As well, adequacy of renal function, acid-base balance, and nutritional needs were managed. Ibsen’s expectation of anaesthetists in ICUs was for them ‘to act as responsible physicians’. (In side comment one can note that Ibsen soon appreciated from French medical articles that adrenergic vasoconstrictors were not conducive to peripheral blood flow so he came to promote the use of vasodilating agents such as chlorpromazine).

As the Kommune unit’s clinician in charge, Ibsen was the leader who had the authority to determine admission to ‘his’ unit, aware of the treatment options he could supply, based on his assessment of needs. These would be managed more specifically than in a conventional medical or post-surgical special care area. One can note the
following well-known remarks of Ibsen on admissions to his unit. He requested that the referring doctor enter in the notes that the patient for whom he sought admission was moribund: 'if the patient recovered then that would be due to our treatment, and if he did not recover, our treatment would not be blamed.'

This writer accepts the contention of P Berthelsen and M Conqvist that Bjørn Ibsen’s unit at the Kommunehospital was ‘The first intensive care unit in the world, Copenhagen 1953’. I would add for emphasis the word ‘true’ or else ‘general’.

Ole Secher had previously stated, 1987,\[446]-[432]

‘...at the Kommunehospital... he established the first intensive care unit in a general hospital.’

After the single patient at end-1953, a total of 259 patients over the next four years were documented by July 1958,\[447] in the first paper in the medical literature coming from a general ITU, it being the founding one. That total comprised 121 patients with respiratory or circulatory insufficiency, 60 trauma patients, 34 with primary disease of heart or lungs, 19 with neurological disease and 25 others, mainly with poisoning.

Much of ‘finding the way’ with the earliest patients was from employing basic principles and learning from trial and error.
The Danish poliomyelitis epidemic, 1952-1953

Chapter 9: Table of Contents

9.1 Introduction ..173
9.2 Ibsen's early years ..173
9.3 Ibsen at the Blegdams Hospital, 1952-1953...174
9.4 Further documentation...176
9.5 An intensive care unit and intensive care medicine..176
9.6 Ibsen's priority rights ...177
9.7 Honours ..178
9.8 A 2009 conclusion ..178

Addendum. A Summary of Features of critically ill patients at the Blegdams Hospital during the Danish poliomyelitis epidemic, 1952-1953...179
9.1 Introduction
Intensivists, anaesthesiologists and other health professionals have regretted the death on 7 August, 2007 of Professor, dr. med. Bjørn Aage Ibsen, notable Danish pioneer of modern intensive care medicine, close to his 92nd birthday. Ibsen is generally recognised as ‘the father of intensive therapy as we know it today’\cite{448}. This claim arises from the combination of:

i) his remarkable improvements to the treatment of problems from acute paralytic poliomyelitis in the Copenhagen epidemic, 1952-1953;\cite{449,450} and

ii) the foundation of the ‘first intensive care unit in the world’, also in Copenhagen, in 1953.\cite{451}

The first of these achievements took place at The Blegdams Hospital (Blegdamshospitalet) for communicable diseases, the second at The Municipal Hospital (Kommunehospitalet), both in Copenhagen. In this chapter I will outline Ibsen’s life and expand on some of the material already presented in Chapters 7 and 8.

Figure 1: Bjørn Aage Ibsen

Prof. Bjørn Ibsen, with thanks to him

9.2 Ibsen’s early years
Ibsen was born on 30 August 1915 in Copenhagen and graduated in Medicine from the University there, in January 1940 (the Nazis invaded in April of that year). He began training in thoracic surgery, but when surgery was starting to seem a doubtful venture for him,\cite{452} decided to transfer to anaesthesia (thoracic surgery had made him aware of the necessary role anaesthetists played in the surgeons’ performances). At that time in Denmark, anaesthesia was not classified as an independent specialty and was considered low in the medical hierarchical order.\cite{453} Ibsen then for a year went to Professor H K (Harry) Beecher’s Department of Anaesthesia at the Massachusetts General Hospital in the United States as an assistant resident from 1 February 1949.\cite{452} Ibsen’s friend Dr John Zorab reported that the year-long course at that hospital provided Ibsen with ‘an excellent training’\cite{448}

Ibsen returned to Denmark in 1950, a year in which an enlightened 1950 report from a Danish ‘Second Commission’ recommended that hospitals establish departments of anaesthesia, whose staff ‘should care for the patients during the operation and postoperatively’.\cite{451} Ibsen spent 3 years at Copenhagen’s Rigshospital, free-
lancing as an anaesthetist. During that time, in 1951 he defended his thesis *Necrosis capitis femoris veri et fracturam pertroch antericam*, written when he still wanted to become a surgeon (Dr Preben G Berthelsen, anaesthetist, of Copenhagen, *pers. comm.*, 2009).

During a devastating poliomyelitis epidemic in Denmark, at the suggestion of Dr Mogens Bjørneboe, senior resident in the medical department (see Footnote-1), Ibsen was called in to a crisis meeting of doctors at the Blegdams on Monday, 25 August 1952, set up by head epidemiologist Professor H.C.A. Lassen. After careful study of patients, records and some relevant autopsies, Ibsen offered his suggestions to Lassen.449,452,453

9.3 Ibsen at the Blegdams Hospital, 1952-1953

The story of Lassen’s scepticism and the success of Ibsen in saving the life of Vivi Ebert has been covered in Chapter-7, with further commentary in Chapter-8.

Lassen was initially sceptical of the ideas and proposals offered by Ibsen – whom many other physicians at the time would have thought of as ‘a mere anaesthetist’.453 Ibsen not only pointed out some erroneous clinical interpretations made by the physicians, but he made recommendations which would be unwanted – of tracheotomy (at that time abandoned there for polio) and of artificial ventilation which he would provide, without machinery. At that time the few machines available (one Emerson tank respirator and six Kifa or Sahlin cuirass respirators450) – all supplied intermittent negative pressure ventilation (INPV). Functionally, these had proved inadequate for Lassen.452 Here was a man now, who had the vision to propose ventilating patients for their breathing failure, somehow without respirators. A sceptical Lassen reluctantly agreed (desperately or prudently?) to allow Ibsen a trial to show his capabilities with a moribund 12-year old, Vivi Ebert453,455 (her name has long been in the public domain), admitted the previous day. The treatment succeeded in relieving her respiratory distress, and she lived on until 1971, although she was an invalid after eventual discharge to home-care for her shortened life.

Ibsen himself wrote of receiving Lassen’s ‘enthusiastic encouragement’ to begin.449 After tracheotomy then some initial alarms, Ibsen’s successful management of the girl’s condition by manual, intermittent positive pressure ventilation (m-IPPV), with an anaesthetist’s inflating bag and a Waters ‘to-and-fro’ canister (packed with CO\textsubscript{2}-absorbing soda-lime) (here, reported in brief terms) spoke for itself, and Lassen became an enthusiastic supporter of the method and collaborator. They solved the manpower problem ‘in four days’,449,456 by recruiting in sufficient numbers, Copenhagen’s anaesthetists, medical students, and some other anaesthetists attending Copenhagen, to sustain the large team needed. ‘A big organisation [was] working after eight days.’449 The Blegdam was

Footnote-1.453 An anecdote with a certain charm may account for this. Ger Wackers, who consulted Ibsen when writing about the Ibsen therapeutic revolution, related that, in January 1950, Mrs Ibsen (Doris Kirsten Petersen, a trained nurse and mother of their four daughters) and physician Mogens Bjørneboe and his wife were together on the same trans-Atlantic ship returning from the United States to Denmark, with Mrs Ibsen explaining the kind of training her husband had been undertaking. Later in Copenhagen, June 1952, Bjørneboe had sought Ibsen’s help with a neonate with tetanus, for supplying not only anaesthesia, but curarisation and manual intermittent positive pressure ventilation through a tracheostomy tube. After three weeks the tiny patient died, but Bjørneboe found Ibsen’s alternative method of treatment much more impressive in controlling the tetanus than had ever been the case previously, when he was using sedation. Accordingly, Bjørneboe suggested to H.C.A. Lassen that an anaesthetist could have a solution for the Blegdam’s polio crisis. All credit to informed nursing wives. (Ibsen’s second wife Ingrid died in 1986).
overwhelmed with patients (as per the Addendum), and it was demanding work for everyone concerned, as Ibsen has described, but he was fortunate in having Lassen’s support and organisational skills for the immense effort needed over the next five months. The whole story was well detailed later by Ger Wackers in 1994 then more recently in 2003 from Prof. Ibsen directly, by Dr Louise Resnais-Sénélar, 2009.

Some positive consequences had flowed from the establishment of an international training centre in anaesthesiology in Copenhagen by the World Health Organization only two years earlier. Prestigious visiting instructors (whom Berthelsen & Conqvist listed from the United States, United Kingdom and elsewhere, provided the courses. So when the polio epidemic struck, there were ‘some 20–30 trainees‘ to help with the 1400-1500 students and the nurses (and also to gain experience), as well as local Danish anaesthetists, including some retired. Immunisation against poliomyelitis (inactivated virus 1955, oral vaccine 1961) was unknown then and was introduced only late that decade, before which contagion was still a real risk for these brave helpers).

In their publications during and after this devastating epidemic, Ibsen and Lassen demonstrated to the world the feasibility of successfully treating ventilatory failure in large numbers of polio patients by supplying manual IPPV, whether required for days, weeks or months; while at the same time reducing dramatically the mortality rate from its previously appalling level (see Addendum). Later, a few locally designed machines were constructed, (e.g., the Bang ventilator) and Dr Carl-Gunnar D Engström made his single prototype available at the Blegdams from autumn 1952. The effectiveness and reliability of IPPV, and the supremacy of the Swedish Engström ventilator, were established. Ibsen’s (and Lassen’s) well-publicised lessons were taken up in other parts of Europe, fearful of polio epidemics. Wider production of IPPV machines began, and polio patients with breathing problems were gathered into early respiration units. Ibsen’s achievements during the polio epidemic are summarised in Box-1.

Box 1: Ibsen and Copenhagen’s 1952–1953 polio epidemic

- Bjørn Ibsen, although acting out of accord with general understanding at the time, recognised the signs of CO₂ accumulation (learnt earlier from studies using a ‘Carbovisor’), resulting from underventilation (the ‘high total CO₂ content’ represented respiratory acidosis, not as the physicians considered, metabolic alkalosis), and distinguished them from what were thought to be ‘infectious’ consequences of poliomyelitis.
- He demonstrated the benefits of tracheotomy and manual intermittent positive pressure ventilation (m-IPPV) to effect a substantial decrease in mortality rate. He and his colleagues successfully developed a large-scale, organised system of treatment without mechanical ventilators, by utilising medical students to provide manual IPPV, when no more negative pressure (INPV) respirators were available.
- He demonstrated the superiority of large-scale, prolonged, manual IPPV over INPV, which it now replaced.
- By utilising pCO₂ estimations, derived by using Poul Astrup’s new methods of determination, Ibsen obtained an effective guide to optimal ventilatory control.
- He recognised and emphasised the importance of ventilatory intervention before complications such as shock or pulmonary oedema became established and significant.
- He recognised and emphasised the need for stabilisation of a patient before planned, secure inter-hospital transport by a retrieval team, in ambulance or plane, together with the benefit of medical staff going out from a central to a peripheral location for a sick patient. ‘Help should come to the patient, and not the patient to the help.’
9.4 Further documentation

The Copenhagen polio story can be read in its ample documentation by the principals, Ibsen and Lassen, while others, especially Ger Wackers and John Severinghaus and colleagues,460 then further, Prof. Ibsen himself again452 and Dr Berthelsen394 have shone more light on details; while at the 50th anniversary of the end of the epidemic and the foundation of our specialty, an Australasian journal acknowledged Ibsen.461 In recent years, ‘Bjørn Ibsen’s Day’ (27th August 1952, was the day he first applied IPPV to a patient with polio; see Footnote-2462,464-465) has been revisited in the Scandinavian anaesthesiological literature.455 The Professor also received fine tributes in English medical writing, from Richard Atkinson in 1997,463 and Ibsen’s friend John Zorab, 2003, in the regular series ‘The Resuscitation Greats’, featured in the journal Resuscitation in 2003.448 In this century, significant revelations have been contributed from their studies by Dr Louise Reisner-Sénélar464,465 from her interview with Prof. Ibsen, reported with clinical data in her 2009 thesis; then, in 2014 by Dr Preben Berthelsen,466 Copenhagen anaesthesiologist, from his retrospective look at the 1952 epidemic for ‘setting the record straight’.

9.5 An intensive care unit and intensive care medicine

In April 1953, Ibsen was appointed senior resident for anaesthesia to the Department of Surgery at the Kommunehospital, and undertook to determine the best post-operative fluid replacement therapy. This enabled him to take charge of the recovery room.451 His ‘vast experience gained in polio work’467 treating respiratory insufficiency at Blegdams had given him the notion of an intensive care unit for treating multiple critical conditions.452 He converted an existing observation and recovery unit to establish his own truly multidisciplinary intensive care unit (ICU). (‘Multidisciplinary’ here, in the sense of the conditions treated, now medical as well as postsurgical recovery and others, and not as referring to an excess of doctors from multiple specialties – the ICU was ‘his’ unit). Ibsen’s 1966 article467 describes its evolution from a previous recovery room to a true ‘ICU’, what he called his ‘intensive therapy unit’ or ITU (see Footnote-3 for the sequence).

Confirmation that Ibsen’s ‘own’ ICU at Kommunehospital was the world’s first comes from fine sleuthing of original records and the medical literature by Drs Preben G Berthelsen and Michael Cronqvist.451 (See Chapter-8) The unit’s first patient on 21st December 1953 was nonsurgical, Ibsen thereby started and established the practice of modern intensive care medicine467[p285],[468][p268] – although he was not using that term – starting ‘little by little’, with one patient at the end of 1953, 13 in 1954, and 120 by 1957.451[p1192]
The firm line he took over admissions can be seen in the conditions he established for entry to his ICU. He required a statement written by the referring doctor in the patient’s records that the patient was moribund before he or she would be admitted. ‘I wanted to make sure that if the patient recovered, it would be recognised to be due to our treatment, and that if he did not recover, our treatment would not be blamed.’452[p33]

By 1957, Ibsen was able to report467[p285-6] on his first four years of ICU experience, presenting the notion, ‘let us use the cooperation of anaesthetists who can form a pool of trained personnel and the respirator centers for treatment of any respiratory insufficiency’ from ‘all conditions’, ‘to stimulate further the development of intensive therapy units in general medicine and surgery’. Then a year later, when his department of anaesthesiology attained beds of its own, to publish details, in his ‘epoch making’451 article (written in Norwegian with anaesthetist, Tone Dahl Kvittengen [1911-2001]),469 of the treatment of 258 patients, of whom 165 were survivors. Its title translates from the Danish as The work in an anaesthesiologic observation unit – which was at the Kommunehospital. (Berthelsen and Cronqvist recently and conveniently provided us with a summary in English451). Eight years later, Ibsen listed, this time in English, the wide spectrum of conditions and their associated problems managed in his intensive therapy unit (ITU)467 Also in 1966, he described various ICU issues,467 such as aspects of leadership and anaesthetists’ direct responsibility for patient care in ICUs; control of bacteriological problems; air-conditioning and humidification; heat regulation and fluid therapy; and record-keeping. Reflecting on his unit’s ‘intensive therapy’ in a 2002 interview, he said, ‘What we did was just to use the principles and techniques, which served us so well in the operating theatre, also on patients with medical diseases’.451[p1190]

Ibsen enlarged on his intensive therapy experience in the 1975 supplement to the Acta Anaesthesiologica Scandinavica for his 60th birthday, entitled Personal experiences in Copenhagen during the past 25 years.452 That work provides an engaging and fascinating retrospective. At the first International Symposium on the History of Anaesthesia in 1982,470 he was still discussing the vasodilating ‘lytic cocktail’ for shock – he first used chlorpromazine in patients with shock in 1955,467 (His book Intensiv Shockterapi was published in 1969 – Preben Berthelsen advises). Zorab described how, with organisational changes impending at the Kommunehospital ‘about 1975’, Ibsen moved to exploring the field of chronic pain, to develop and make pain clinics the major interest in his final years of clinical work.448 His achievements in the foundation of intensive care are summarised, Box-2.

9.6 Ibsen’s priority rights

In relation to his priority rights as ‘father of intensive care’,448 Ibsen wrote generously of the contributions of others. He acknowledged repeatedly that ‘it was in the library’ that he had first read an account (from Los Angeles, by Albert Bower, V Ray Bennett and) colleagues472,473 of using positive pressure ventilation for polio. Not many others could have taken up that option, as the methods of Bower and colleagues were evidently not adopted elsewhere in the United States at the time, whereas propagandising of the merits of manual IPPV by Ibsen and Lassen produced immediate imitation. Ibsen wrote to the Americans asking for a copy of their article; and when the epidemic in Copenhagen was reaching crisis point, he tried to interest Lassen in the Bower and Bennett approach of supplying IPPV for the ventilatory problem.

In 1966, Ibsen referred back to Lassen’s polio unit thus: ’The second intensive therapy unit was now [1952] in use in Denmark – the first being the one for barbiturate poisoning cases – but this one had the same limitation: only one type of disease was being treated’ 467[p284] (see Footnote-4). He put his own multidisciplinary unit into
Perspective a page later: ‘The first intensive therapy unit not concerned with polio or barbiturate poisoning was inaugurated at the Kommune-hospital in Copenhagen August 1, 1953, combined with service from a conventional recovery room’. (Note that his ITU’s first patient was admitted on 21 December 1953.\(^{451}\))

Box-2: Ibsen and the foundation of intensive care medicine

- Ibsen revolutionised the management of respiratory insufficiency in acute poliomyelitis.
- He applied basic anaesthetic principles of care, to maintain the vital functions of critically ill patients.
- Originating from established respiration units, he suggested the notion of the intensive care unit for the critically ill, then in 1953 established Denmark’s first ICU at Copenhagen’s Kommune Hospital, where he was in charge of care of his own patients.
- He established working rules for safe practice during procedures, such as:
 - avoiding any period of anoxia;
 - preceding tracheotomy with endotracheal intubation;
 - assisting inadequate ventilation or performing IPPV and
 - treating shock with intravenous fluids or initially.
 - vasopressors, then vasodilators.\(^{449}\)
- In establishing the legitimacy of anaesthetists working in such sites (‘the anaesthetist came out of the operating room’\(^ {471}\)), he promoted the concept of the anaesthesiologist–intensivist. This led to the concept of the dedicated intensivist.
- He established the concept of intervention at the right time for patients whose condition is deteriorating.
- He developed the concept of organising safe transport to the ICU from outside and from distant hospitals, as well as intra-hospital.
- He established retrieval teams.

9.7 Honours

Ibsen received due honours in recognition of his outstanding contributions to medical practice. He was an honorary member of the Faculty of Anaesthetists of the Royal College of Surgeons (Dublin), the European Association for Intensive Care, the European Association for Resuscitation, the Danish Association of Anaesthetists, and the Scandinavian Society of Anaesthesia and Intensive Care (Dr Preben G Berthelsen, personal communication).

From 1 April 1954, Ibsen was Chief of the Department of Anaesthesiology at Kommunehospital and, from 1971, Professor of Anaesthesiology, University of Copenhagen.\(^ {451}\)

9.8 A 2009 conclusion

As the history of intensive care medicine grows longer, it catches up with the life spans of the pioneers. To name just two, Australasia’s Matt Spence died in 1992, and Peter Safar in 2003, but now the original pioneer of modern intensive care medicine finally joined them. We in Australasia regretted that, with our condolences to his family. Denmark and Scandinavia must be proud of Ibsen’s lifetime achievements (Box-3); many people owe their lives to the changes he introduced.

Footnote-4. Yes, but the type of polio disease required more than ‘limited’ management of hypercarbia and hypoxia by effective respiratory support. Other features of the disease included shock, ‘cerebralia’\(^ {454}\)[p\(^ {1064}\)] and devastating cerebral destruction,\(^ {450,462}\)

gastric atonia, paralytic ileus, pulmonary oedema, azotaemia and hyperthermia.\(^ {450,454}\)
Addendum. A Summary of Features of critically ill patients at the Blegdams Hospital during the Danish poliomyelitis epidemic, 1952-1953

The epidemic initially
- Europe’s worst epidemic ever, with over 3000 polio patients at the Blegdams Hospital – ‘a state of war’.457
- 4 July – 3 December 1952: 2722 polio admissions450,457 866 with paralysis, and 1856 without.457
- 7 July – 2 March 1953: 3722 (by then, many adults included) admitted with polio.456
- Regarding the epidemic being ‘devastating’, one can note Else K Tonnesen referring to it in retrospect, 2000, in the Danish medical journal Ugeskr Laeger with her viewpoint (in translation) that ‘from a global point of view it was a negligible affair’. But locally the epidemic was drastic, while the innovative treatment mode eventually became universalised.
- Lassen started treating ventilatory failure with one Emerson INPV ‘tank’ and six cuirass respirators.450
- From epidemic’s beginning to 26 August: 31 patients needed special treatment.457(Table 3) (compare 349 total for the whole epidemic.456).
- After around 6 first weeks of epidemic, 27 of 31 NPV patients, or 87%, died (19, or 70%, within 3 days of arrival450,457).
- 25 August 1952: Bjørn Ibsen attended a crisis meeting.449
- 27 August 1952: day of Ibsen’s first intervention.462

Staff organisation
- Three hospital floors, each with 35 patients (mostly in single rooms),449[p73] directed by a minimum of 40 assistant doctors trained in anaesthesia, from Copenhagen’s four largest hospitals, who each day provided special care throughout the full 24 hours, seriatim.456,474
- A senior anaesthetist gave the anaesthetic for tracheotomy and supervised the assistants who were guiding medical students ‘for the full period’.456
- Eventually around 1400 (or 1500453) students were mobilised to provide manual intermittent positive pressure ventilation (m-IPPV), for a total of 165 000 hours.453,451
- Six hundred trained nurses were needed.
- The students worked in 6-hour shifts (at times 8), with four shifts daily, until sufficient ‘mechanical students’

Box-3: Ibsen’s general achievements
- Founded the world’s first truly multidisciplinary intensive care unit.
- Laid the foundation of intensive care medicine (‘intensive therapy’).
- Established the superiority of positive pressure mechanical ventilation.
- Initially for acute poliomyelitis.
- Advocated early, preventive intervention in patients whose condition was deteriorating.
- Established the principles for safe transportation of the critically ill.
- Initiated vasodilator instead of vasopressor therapy in shock.
- Produced the first article (in Danish) on intensive therapy, 1958.
- Increased the reputation of anaesthesiologists.451
(i.e., ventilatory machines) became available to replace their services.453[p427-8]

- Close cooperation of all physicians (working 12-16 hours daily, for months), 2-hour daily meetings and numerous discussions.
- Over 4 months, there were 1500 emergency calls to otologists during the hours 19:00–07:00 alone.456
- Thirty-four physiotherapists attended during the epidemic.456[p788]

Patients and treatment

- **28 August – 3 September**: 335 admissions total (around 50 per day),450 with the epidemic peaking around 1 September.453[p427],457[p37-8]
- **26 August – 7 September**, 50 needed ‘special treatment’, (25 died).431[p150-TableXXX]
- During several weeks, 40–70 patients needed bag-ventilation from about 200 medical students, daily.457
- On one single day after the first 900 admissions, 75 patients were receiving manual IPPV,456 which required:
 - 250 medical students, 260 bedside nurses ‘from outside’456 and 27 workers, as required to change
 - 250 cylinders with 10 gallons (45.5 L) O\textsubscript{2}456 for IPPV, with O\textsubscript{2} and N\textsubscript{2} in a 50 : 50 ratio.456
- (30 shillings equivalent was paid for a medical student for 8 hours; or for a day’s mixed gases; or for a day’s soda-lime.457)
- Of total patients: critical, 349454,456; respiratory failure, 333; tracheotomy, around 267 (and 42% died); and ventillated, around 277 (and 42% died).455,462
- (Over 75 were brought in from localities outside the Blegdam’s usual area.457)
- Some patients needed bag-ventilation for over 3 months.

Mortality

- ‘A great proportion of the patients treated by tracheotomy and bag ventilation were in a very bad state on admission’.457 (4 were ‘DOA’.)
- **26 August – 6 November**: 250 needed tracheotomy and manual IPPV (100 died, including 5 admitted moribund, who died forthwith).457[p40]
- With the associated treatment, this reduction in mortality from 87% to 40% represented 100 lives being saved.457[Table-3]
- **26 August – 6 November**: 47% mortality rate for 150 consecutive patients treated by tracheotomy and manual IPPV.457
- **6 November – 6 December**: 31 admissions, death rate of 23%.457[p40]
- Overall, mortality decreased from 87% to 42%, but was down to 11% for the epidemic’s last 18 patients,450[TableXXX] despite ‘constant severity of the cases throughout the whole epidemic period’.454[p158]
- 25 never ventilator-free,13 needed IPPV for 24hrs daily.450

Other participants

As well as H.C.A. Lassen, Ibsen particularly acknowledged Poul Astrup, Mogens Bjørneboe, Erik Wainø Andersen and Frits Neukirch.

* Variations in numbers of polio patients are discussed in references 455, 461 and 462.
Conclusion
The focus of this thesis is on the foundation of my own medical specialty of Intensive/Critical Care Medicine, ICM/CCM. It contains two streams of particular interest to me, the first being a small, late 19th century group of people who, I feel strongly, warrant better recognition for their pioneering achievements in the history of that specialty. I wished to detail their contributions as originally documented, and for any misconceptions to be corrected as accurately as possible. These practitioners were followed in the first half of the 20th century by others who also warrant reassessment, to bring recognition of their contributions to ICM/CCM’s beginnings.

Primary sources have been used wherever feasible. I have been aided tremendously by generous and valuable support from my personal helpers at the University of Auckland’s Philson and General Libraries in locating papers and books, some of which have their own difficulties from being printed long ago or, on occasion, not written in English.

The second stream of interest concerns the treatment within, and outcome of, the Danish epidemic of poliomyelitis in 1952-1953 and the subsequent ‘first intensive care unit in the world’, and emergence thereby, at the end of 1953, of a new specialty called Intensive/Critical Care Medicine.

In the thesis, with the aid of accounts from principal participants, is a retelling of the story from Denmark, especially for August 27th 1952, which day in this context can be described as a landmark. It was the start of a new line of treatment for ventilatory failure in poliomyelitis, which had its origin in the anaesthetic world and in anaesthetists who, principally, were the first practitioners of ICM/CCM. The prime mover was Dr Bjørn Ibsen whose personal account of events was recorded just over 50 years later from an interview with him conducted by Dr Louise Resnais-Sénélar who generously made her PhD thesis, based on discussion with Dr Ibsen, 2006, available for me to see (discussed in Chapters-7 and 8).

Regarding the Introduction
The above main themes have been preceded by a short Introduction which scans some of the resuscitation events before Copenhagen’s 1952 crisis. Information from before the 18th century is sparse, perhaps non-existent apart from brief mention of mouth to mouth resuscitation for breathing difficulties, chiefly for newborns. From a few vague hints encountered one is left wondering if there could have been occasional resuscitation activity going on in 17th century times, especially in Central Europe. This was likely to have been after apparent drowning and more often than reported, or rarely documented, apart from by such as pastor Sebastian Weiss, 1620. The Introduction has referred to a few such episodes told and retold, with those of Petri Borelli and Georg Grübel being the 17th century’s best known.

A reflection on pioneers, 19th century and pre-1950
Certain pioneers are noted, all from the United States (Joseph O’Dwyer, George Fell, William Northrup, even Charles Trueheart) with the intention of honouring their extensive achievements. The courage displayed by physician Joseph O’Dwyer, in trying to achieve a satisfactory endo(-laryngo-)tracheal intubation system for children with respiratory diphtheria, was profoundly impressive. How daunting and depressing for everybody involved (parents, nursing attendants, intubating doctor) must have been those few years when every patient died (one can imagine the difficult conversations/consultations with parents). Perhaps as O’Dwyer expressed it for
death occurring during an operation, there was a little relief from ‘allowing the little sufferers to die easier. It was a justifiable form of euthanasia’. After success was eventually achieved, in 1885-86 still only 24% (of a group of 50) survived treatment. But following the arrival of antitoxin and later, active immunisation O’Dwyer’s methods became largely redundant for diphtheria. But he had re-established the credibility of intubation of the airway (which Charles Kite and others had secured in the later 1780s), virtually abandoned for its preservation of vital function.

George Fell, in the United States, a physician readily offended but always available when called on for assistance, worked tirelessly for more than a dozen years at resuscitation of victims. He strove to convince his fellow doctors that many lives could be saved if they would only try his methods, as he had shown with his IPPV system. His demonstrations over more than a dozen years, even when disheartened and in impaired health, should have been convincing. His rescues were well documented, as were those of O’Dwyer. The time he spent attending some patients (even up to >80 consecutive hours) is indicative of his convictions, determination, courage and dedication.

The Fell-O’Dwyer apparatus may have been somewhat cumbersome but it did work as required, enabling the first successful open-chest thoracic surgery in the United States, 1900, due to the foresight and tenacity of Rudolph Matas (after a different initiative had been successful in France, 1898). William Northrup was a tireless promoter trying to open new fields of application for IPPV with the apparatus. But it could not make headway, early 20th century, against the popularity of the insufflation method with anaesthetists in the United States. The apparatus gave the first hints of anaesthetic intervention also being helpful for some intracerebral disasters, and results might have been more productive if Sir Victor Horsley in Britain had been drawn in more closely and better supported. The key point regarding IPPV with the Fell-O’Dwyer apparatus being used for resuscitative as well as anaesthesiological purposes is that the innovators did lead the way in getting ICM modes viable, even if in the end, what method was chosen later was not the pioneers’ actual practice.

Charles Trueheart, described his novel apparatus in 1870, but thereafter, it seems, only in middle Europe was his new IPPV device and practice for neonates known and employed. He is acknowledged here only as a Supplement to Chapter-3 since, apparently, he never brought his apparatus with him back to his homeland’s Galveston, Texas. However the trail to run Charles ‘Trueheart’ to ground to determine his true identity proved a fascinating if protracted chase, impossible other than with librarians’ help received here in Auckland and also from Galveston).

Intermittent negative pressure respirators
The expensive INPV Drinker respirators, available since 1928/9 from the United States, were life-saving not only for respiratory depression in poliomyelitis but also when tried for a variety of life-threatening conditions (as set out in Table-2 of Chapter-4). Alternatives to them included the Both brothers’ effective INPV machine, with outer wooden (not steel) construction, and so, relatively cheaper. It was many times life-saving with its ready availability during a late-1930s polio outbreak in Australasia. Generous donations through Lord Nuffield made the Both respirator available in the British Commonwealth as needed, worldwide, 1755 in all. These included 33 to New Zealand, and the Both becoming established in suitable substitution for the Drinker respirator. Neither of these INPV machines, while fulfilling its function satisfactorily, allowed ready medical and nursing access to the subject’s whole body, nor provided reasonable bodily comfort for its subject. Both respirators inarguably delayed development of mechanical IPPV which from the early 1930s was being provided manually for thoracic surgery as
needed, in the western world (and was provided by some Scandinavian machines which still failed to establish the IPPV mode further afield). Profs RR Macintosh and WW Mushin at Oxford, United Kingdom, tried unsuccessfully to extend the range of INPV use post-operatively. **John Forbes** at Fairfield, Melbourne is an unsung hero, fulltime committed day or night, living on-site for years, perhaps overlooked now but an Australian hero, and lauded in one chapter (namely, 4).

Albert Bower's INPV Drinker respirators at the Los Angeles County Hospital substantially reduced the rate of mortality with severe poliomyelitis after their modification by **V Ray Bennett** (Los Angeles total mortality rate, 1949, was even better than achieved at the Blegdams). Unfortunately publication of good results from Los Angeles in a medical journal (which proved too modest to be high profile), especially with use made of the positive pressure supplementation, did not seem to have encouraged and recruited followers in other polio units (apart from Dr Bjørn Ibsen's discovery of documentation of the Los Angeles successes). This was still cumbersome machinery compared with the later, outside-the-body IPPV machines developed quickly in Europe after the lessons from the Copenhagen crisis. But Ray Bennett's great technical expertise and multiple respiratory inventions contributed to the American success and certainly helped reduce mortality where used. Bennett was markedly inventive and his quality respiratory and other products were widespread in the United States, also in aviation.

Carl Clemmesen with long-time dedication at improving outcome, showed foresight in housing together victims of certain poisonings or intoxications, usually barbiturate, for supervision and standardised treatment, 1949. Despite his commitment, in the face of what proved to be an overlong dependence on stimulating agents, poorer outcome ensued with barbiturate poisoning than with morphine poisoning which was treated with supportive manual-IPPV if necessary for apnoea, along with adequate employment of nalorphine antidote. Brief consideration of other Scandinavian units at that time, apart from the achievements of anaesthesiologist **Eric Nilsson** at Lund, show that the Copenhagen treatment experience with intoxications was not comparable with Nilsson's successes with the same problem. One is still left admiring Carl Clemmesen's valiant efforts. He may be remembered but his colleagues **Aage Kirkegaard** and Eric Nilsson are too overlooked for their positive successes in this field.

The Copenhagen Poliomyelitis Epidemic, 1952-1953

Chapters-7 and 8 are linked to the severe epidemic of poliomyelitis at Copenhagen in 1952-1953, and the subsequent emergence of a dedicated specialty, while Chapter 9, deriving from my obituary of Ibsen, is a repetitive summary honouring his work.

This period has proved a fertile field for investigation because of personalities, apart from misconceptions, errors and contradictions which have taken years of attempted unravelling for Chapter-8. The main trouble has been that H.C.A. Lassen's formal book on the epidemic had multiple authors' contributions under an editorship which has not ensured that date and numbers in successive chapters are matching successfully. There is disparity revealed for the start date and end time of the epidemic, the number of patients admitted, the number who died, the number who received a tracheotomy, the number receiving IPPV or not, the relationship of complications listed separately to the cause of death, the number dying from central nervous system destruction, the number dying from solely respiratory deficiency, etc. Statistical reporting has been available for me to quote from and compare when needed.
Denmark’s 1952-1953 epidemic was very large for a small country, also powerful and devastating. About equal proportions of victims were in Copenhagen and in the rest of the country. Those with the disease who were ‘seriously ill’ with life-threatening complications were gathered into a localised area of the Blegdams hospital for close attention. The devastation is characterised by 27 of this group dying, July 7th-August 25th (at other times July 24th-August 27th is quoted for the same figures). The essential feature for this thesis is that a new method of ventilatory compensation was provided for affected patients at the suggestion of Dr B Ibsen (fostered with Dr M Bjørneboe’s earlier recommendation to Ibsen, then H.C.A. Lassen), contrary to beliefs of the hospital’s clinicians involved. There was an overall reduction in mortality rate from 87% (before, for 30 patients until August 25th 1952) to 37% (after, for 318 patients until March 2nd 1953).

Ibsen’s transformation of treatment and increased survival therefrom, represented a major medical breakthrough. Credit for the method of treatment, known already in the anaesthetic world (and acquired by Ibsen during his year at HK Beecher’s department at the Massachusetts General Hospital, Boston, 1949) but not otherwise suggested to Copenhagen by any other anaesthetist, must go to the perspicacity of both Ibsen and Bjørneboe. Ibsen worked at the Blegdams during the epidemic from August 27th, but the details of his continuing working time are unknown to me although he was a known recipient of municipal earnings.

The initial demonstration day I have compared with the day of William TG Morton’s demonstration of anaesthesia for surgery at Boston, 16th October 1846. That launched anaesthesia as a (hospital) specialty, Ibsen set wheels in motion for the foundation of ICM. The medical system was hierarchical at the Blegdams, well defined later by Copenhagen anaesthetist Preben Berthelsen. Later in 1953, Lassen refused to support Ibsen for an academic posting at the Rigshospital, Ibsen stayed in Copenhagen (his good fortune, as it happened) but went to the Kommune Hospital 1st April 1953, where he was able to convert his anaesthesia/surgery recovery room (of 10 beds) into the first of modern style general intensive care units, with himself as independent chief. This inspired the formation of ICUs in other countries, initially alarmed at the prospect of a polio epidemic akin to Denmark’s.

Ibsen’s intensive care credentials became further apparent from his report on his new ICU (historically, the first paper from a formal ICU) in 1958. Thus he earned the appellation (as in John Zorab’s splendidly detailed short biography of Ibsen in The Resuscitation Greats), of ‘the father of intensive therapy as we know it today’. Intensive care activity started with units founded worldwide (including at Auckland, in 1959), following the lead from Ibsen.

A viewpoint from this century
ICM/CCM practice and units have progressively flourished worldwide since the 1950s, but differ today from those founded in the 1950s. Initially treatment for preserving vital function was based on basic principles and determining by trial and error what was an effective treatment, or appeared to be so, and what was not.

Personal experience of ICU directors and their dedicated staff made its contribution to general pooled knowledge. With the formal establishment of Colleges offering dedicated training and certification in ICM (thus for instance, a six years post-graduate course in Australasia) clinicians fully trained in the specialty provide treatment, and their research and knowledge is now recorded in dedicated journals.
Nowadays research into the validity of treatment processes is conducted with more general participation by units in carefully planned, randomised, double-blind, worldwide, multi-centred, numerically large, clinical trials (with thousands of subjects enrolled in accordance with strict criteria), statistically evaluated, seeking correct answers for treatments when current practices are uncertain or legitimately questioned.

We now stand on the shoulders of our pioneers and value and honour the contributions they made in having treatments started with results unknown or unproven. The work of self-sacrificing pioneers such as Björn Ibsen, J O’Dwyer, G Fell, among many, warrants being held in the highest esteem. However the development of this speciality is far from over. Even today, there are many areas where patients still die through lack of knowledge, effective treatments and appropriate technology. By examining the past, this thesis aims to emphasise such a viewpoint.
List of references
Introduction: References 1-92

22. Réaumur, R-A de. AVIS Pour donner des secours à ceux que l’on croit noyés. 1740, par ordre du Roi. Montpellier: Rochard 1740. [4pp].

25. ‘a PHYSICIAN’ [=Jackson R, prob.]. A Dissertation on drowning in which submersion commonly call’d drowning is shewn to be… To which is subjoined the proper measures for recovery and relief... With an Appendix containing some measures for those who hang themselves, and of children supposed to be born dead. London: Jacob Robinson 1746; p.45-46 [80pp]. Accessed 2018 at https://www.woodlibrarymuseum.org/library/pdf/Strecht.pdf

30. **Publication**: *A Letter to Lord Cathcart*. In: *Medical Tracts*, London, 1776; in 3 parts:
 a). Wm Cullen’s *Letter to Lord Cathcart*, pp1-27
33. Herholdt JD, Rafn CG. *An attempt at an historical survey of life-saving measures for drowning persons and information of the best means by which they can be brought back to life again*. Copenhagen: Tikiob/Seest, 1796. (113pp in English version [of original 88pp], translated by Hannah DW, Rousing A, Poulsen H [ed’], 1960). See Ref.59 for Peter Baskett’s biographies on these two authors, in *Resuscitation Greats* 2007; 60-65.
34. Tissot SAAD. i) *Secours pour les noyés*. Lausanne: Zimmerli 1761 (Jun), in: Drowning, Ch. XXVIII: Directions with respect to drowned persons, pp405-408. Also, Tissot, SA, [transl’d] Kirkpatrick J. *Advice to the people in general, with regard to their health: but...* [xxxii+608pp]. See Ch.XXVIII: Directions with respect to drowned people, p403-409. London: Becket & de Hondt, 1765.
36. Trubuhovich RV. History of mouth-to-mouth ventilation Part 3: the 19th to mid-20th centuries and “rediscovery”. Crit Care Resusc 2007(Jun); 9(2): 221-237, see this paper’s p.222 and its ref.27. PMID:17536996.
41. Erichsen JE. Experimental inquiry into the pathology and treatment of asphyxia being a report read at the fourteenth meeting of the British Association for the Advancement of Science. Edin Med Surg J 1845; 163: 1-56.

47. Hall M. Asphyxia, its rationale and its remedy. Lancet 1856(12Apr); 67(1702): 393-394.

54. Macewen W (reported on). A man… treated for oedema glottidis by the introduction of a tube into the trachea through the mouth. Glasgow Med J 1879; 11: 72-75.

Taw RI. Friedrich Maass: 100th anniversary of “new” CPR. Clin Cardiol 1991(Dec); 14: 1000-1002.

85. Waters RM. Simple methods for performing artificial respiration. JAMA 1943;123: 559-561.
86. Comroe JH Jr, Dripps RD. Artificial respiration. JAMA 1946; 130: 381-383.
89. Dill DB. Background on manual artificial respiration and mouth-to-mouth resuscitation. The Physiologist 1980; 23(3): 33-35.

Chapter 1: References 93-152
95. O'Dwyer J. (reported on). Intubation of the larynx. Med Rec 1887(10Sep); 32: 318.
96. O'Dwyer J. Fifty cases of croup in private practice treated by intubation of the larynx, with a description of method and of the dangers incident thereto. Med Rec 1887(29Oct); 32(no.18, issue 886): 557-561.
98. O'Dwyer J. An improved method of performing artificial forcible respiration. Arch Pediatr 1892(Jan); 9: 30-34.
102. Northrup WP. Memorial address on Joseph O’Dwyer, M.D. Med Rec 1898(12Mar); 53(no.11, issue 1427): 361-364.

103. Northrup WP. Joseph O’Dwyer, M.D. His method of work on intubation; the measure of his success; the interest of both to young graduates. Med Rec 1904(9 Apr); 65(no.15, issue 1744): 561-564.

117. Waxham FE, Jennings CG, Northrup WP, O’Dwyer J (reported on). Intubation of the larynx, its advantages and disadvantages, with statistics of the operation. Med Rec 1887(10Sep); 32: 318-319.

118. Matas R. Intralaryngeal insufflation. For the relief of acute surgical pneumothorax. Its history and methods with a description of the latest devices for this purpose.

Part 1. JAMA 1900(2Jun); 34: 1371-1375

Part 2. JAMA 1900(9Jun); 34: 1468-1473.

124. Annotation. The early history of intubation of the larynx. Med Rec 1887(15Jan); 31: p.73.

125. Bouchut E (reported). On tubage of the larynx in stricture and in the asphyxia of croup. Med Rec 1887(10Sep); 32: 318.

126. Northrup WP. Some points concerning intubation of the larynx. Med Rec 1887(1Jan); 31: 26-27.

131. Macewen W (reported). A man...treated for oedema glottidis by the introduction of a tube into the trachea through the mouth. Glasgow Med J 1879; 11: 72-75.

134. Waxham FE. Intubation of the larynx, with personal reminiscences. JAMA 1901(20Apr); 36: 1109-1110.

136. Stern MJ (reported). Intubation or tracheotomy. Med Rec 1887(17Sep); 32: 382.

139. Annotation. Drs Hales, Newmarch, Clubbe, Lennox Browne (reported on). Australasian Med Gaz (1889-)1890 (Sep); 9: 325-327.

144. Northrup WP. Apparatus for artificial forcible respiration. Medical and surgical reports of the Presbyterian Hospital, New York, 1896: chap.XII, 127-136.

147. Fell GE. Forced respiration. JAMA 1891(7Mar); 16(10): 325-330.

Chapter 2: References 153-186

159. Fell GE. Forced respiration. JAMA 1891(7Mar); 16(10): 325-330.

162. Fell GE. Additional evidences of the value of forced respiration (Fell method), in opium narcosis. Report of cases. JAMA 1892(30Jul); 19(5): 130-133.

164. Fell GE. The value of forced artificial respiration (Fell method) in saving human life in chloroform, ether, and nitrous-oxide narcosis, together with the account of a remarkable case in which it was used for four days and three nights upon a physician, resulting in saving his life. Med Rec 1896(30May); 53: 760-763.

173. **Hall M.** Asphyxia, its rationale and its remedy. Lancet 1856(12Apr); 67(1702): 393-394.

174. **The medical societies.** Lancet 1887(15Oct); 130(3346): 776.

176. **O’Dwyer J.** An improved method of performing artificial forcible respiration. Arch Ped 1892(Jan); 9: 30-34.

177. **Northrup WP.** Apparatus for prolonged forcible artificial respiration. Br Med J 1894(29Sep); ii(1761): 697-698.

181. **Matas R.** Intralaryngeal insufflation. For the relief of acute surgical pneumothorax. Its history and methods with a description of the latest devices for this purpose. Part 1. JAMA 1900(2Jun); 34:1371-5. Part 2. JAMA 1900(9Jun); 34: 1468-1473.

182. **Matas R.** Artificial respiration by direct intralaryngeal intubation with a modified O’Dwyer tube and a new graduated air-pump, in its application to medical and surgical practice. Am Med 1902(18Jan); 3: 92-103.

186. **Fell GE.** The currents at the easterly end of Lake Erie and head of Niagara River. Their influence on the sanitation of the city of Buffalo, NY. JAMA 1910(3Sep); 55: 828-834.

Chapter 3: References 187-228

187. **Matas R.** Artificial respiration by direct intralaryngeal intubation with a modified O’Dwyer tube and a new graduated air-pump, in its application to medical and surgical practice. Am Med 1902(18Jan); 3: 97-103.
188. O’Dwyer J. An improved method of performing artificial forcible respiration. Arch Pediatr 1892(Jan) 9: 30-34.
195. Voorhees JD. Two cases of morphine-poisoning treated principally by forced respiration. Med Rec 1895(30Nov); 48: 768-769.
197. Northrup WP. Apparatus for artificial forcible respiration. Medical and surgical reports of the Presbyterian Hospital in the City of New York. New York: Presbyterian Hospital 1896; chapter 12: 127-136.
203. Northrup WP. Memorial address on Joseph O’Dwyer, MD. Med Rec 1898(12Mar); 53(no.11, issue1427): 361-364.
204. Northrup WP. Joseph O’Dwyer, MD. His method of work in intubation; the measure of his success; the interest of both to young graduates. Med Rec 1904(9Apr); 65(no.15, issue1744): 561-564.

218. **Waxham FE, Jennings CG, Northrup WP, O’Dwyer J** (reported). Intubation of the larynx, its advantages and disadvantages, with statistics of the operation. Med Rec 1887(10Sep); 32: 318-319.

220. **Fell GE.** The value of artificial respiration (Fell method) in saving human life in chloroform, ether and nitrous-oxide narcosis, together with the account of a remarkable case in which it was used for four days and three nights upon a physician, resulting in saving his life. Med Rec 1896(30May); 53: 760-763.

221. **Barthélemy et Dufou Mm.** L’anesthésie dans la chirurgie de la face. La Press Médicale 1907(27Jul); 15 (no.60): 475-476.

Chapter 3 Supplement: References 229-239

235. Williams EB (ed’). Rebel brothers, the Civil War letters of the Truehearts. College Station, TX: Texas and A & M University Press 1995; [xv + 276 pp].

Chapter 4: References 242-301

243. Hicks M. Leader: the ‘iron lung’ in Australia. The HaMMer (Health and Medical Museums newsletter) 2003(Mar); 204:1.

244. Hicks M. The story of the ‘Both’ portable cabinet respirator. The HaMMer 2003(Mar); 24: 3-4.

245. Speed B. Tank ‘iron lung’ respirators at Fairfield Hospital, Victoria. The HaMMer 2003(Mar); 24: 5.

249. Fairfield Hospital Annual Report, 1952-1953; p22. (Courtesy of Dr Bryan Speed and Fairfield Hospital Historical Collection.)

260. Hicks M. Respirators at the Royal Alexandra Hospital for Children, NSW. The HaMMer 2003(Mar); 24: 7.

261. Hicks M, Cordia M, Sweet M. Respirators at Prince Henry Hospital Museum, NSW. The HaMMer 2003(Mar); 24: 8.

266A. Menzies F. Mechanical respirators [letter]. Br Med J 1939; i),(7Jan); 1(4070): 35. And ii),(14Jan); 1(4071): 85.

267. Smith RE. Modified Both respirator. Lancet, 1953. i),(4Apr); 261(6762): 674-676. ii),(26Sep); 262(6787): DOI: https://doi.org/10.1016/S0140-6736(53)90395-X

269A. Macintosh RR. Paraldehyde poisoning treated in a Both respirator. Br Med J 1939(22Apr); i: 827.

269C. Todesco J. Diphtheritic diaphragmatic paralysis treated in a box respirator. Lancet 1942(28Feb); 239(6183): 261

269D. Bates J, Kelleher WH. Mechanical respirators. 1944(9Dec); Lancet 244(6328): 770.

282. Fairfield Hospital Annual Reports. 1952-1953, including Medical Superintendent’s Reports. A.195[2-]3, p22; B. 195[3-]4, p22; C. 195[4-]5, p21; D. 195[5-]6, p21-2; E. 195[6-]7, pp5, 20, 23; F. 195[7-] 8, pp23, 25. (Courtesy of Dr Bryan Speed and Fairfield Hospital Historical Collection.)

200 | List of references

298. **Last PM, Nicholas J.** The treatment of tetanus by sedation, curarization and intratracheal positive-pressure artificial respiration, with report of a case. Med J Aust 1956(8Sep); 43(10): 373-375.[sometimes seen as 44(10) in error]

299. **Wiles V, Daffurn K.** *There’s a bird in my hand and a bear by the bed – I must be in ICU. The pivotal years of Australian critical care nursing* [425pp]. Sydney: Southwood Press, 2002; 139.

301. **Westhorpe RN.** Patricia Mackay – ANZCA Medal Citation. ANZCA Bull 2000(Jul); 9(2): 10.

Chapter 5: References 302-326

306. **Bower AG and associates.** A concept of poliomyelitis based on observations and treatment of 6,000 cases in a four-year period. Northwest Med 1950(Feb, Mar, Apr); 49(2-4): 103-107 (Part 1); 187-190 (Part 2); 261-6 (Part 3).

See same also as Ibsen B. Int Anesthesiol Clin 1999(Winter); 37(1): 1-14. PMID:10086280

Chapter 6: References 327-387
In this chapter those papers preceded by an asterisk, thus:*, are not accessible through Pubmed when listed on it;
Those papers ending with a double asterisk, thus,**, also, do not have an English summary;
Secondary titles of papers in brackets [...] are the English translation of European languages.

337. *Clemmesen C. Luminal préparater som suicidalmiddel [Luminal medicines as suicidal agents]. Ugeskr Læger 1932(12May); 94(19): 493-494.**

342. *Schmidt AF. Tilfælde af respirations-lammelse. Behandlede i Krogh’s respirator [Cases of respiratory insufficiency treated with the Krogh respirator]. Ugeskr Læger 1934(12Apr); 96(15): 406-410.**

345. *Clemmesen C. Om coraminbehandling af narkotiske forgiftninger [About coramine treatment of narcotic poisoning]. Ugeskr Læger 1933(14Dec); 95(50): 1329-1331.**

353. Annotation: Mechanical respirators. Lancet 1944(25Nov); 244[6326]: 695.

357. *Clemmesen C, Bie J. Centraliseret behandling af narkotiske forgiftninger [Centralization of treatment in hypnotic poisoning]. Ugeskr Læger 1950(13Apr); 112(15): 501-506, [with English summary; references are only within the paper’s text].

366. *Clemmesen C. De svære sovemiddelforgiftningers klinik [Clinical Aspects of severe poisoning with hypnotics]. Ugeskr Læger 1952(8May); 114(19): 593-598, [with English summary. Note: refs lie only within the paper’s text].

373. Editorial. Respiratory problems of barbiturate poisoning. JAMA 1951(27Oct); 147(9): 874.

375. *Von Reis G. Behandlingen av akuta förgiftningar med sömnmedel och narcotic Erfarenheter från Södersjukhusets intoxikationsavdelning [Treatment of acute poisonings with hypnotics and narcotics. Experiences in the department of poisonings of the Soedersjukhus]. Schola Postgraduata medica 1960; 2]. Sven Lakartidn 1960(17Jun); 57: 1885-1903.**

382. *Ohlsson W. Behandlingen av sömnmedelsförgiftning [Treatment of soporific poisoning]. _Sven Lakartidn 1951(23Feb); 48(8): 449-455.**

383. *Ohlsson W. Ytterligare synpunkter på behandlingen av sömnmedelsförgiftning [Further remarks on treatment of poisoning by somnifacients]. Sven Lakartidn 1951(13Apr); 48: 878-880.**

Chapter 7: References 388-430

398. Trubuhovich R. Was there a Danish precursor to the Fisher and Paykel humidifier? Anaesth Intensive Care 2009(July); 37(Suppl.1): 52-54.

426. Lindahl SGE. Future anaesthesiologists will be as much outside as inside operating theatres. Acta Anaesthesiol Scand 2000(Sep); 44(8): 906-909.

Chapter 8: References 431-447

Chapter 9: References 448-474

463. **Atkinson RS.** Bjørn Ibsen and his contribution to the start of intensive therapy as a part of the specialty of anaesthesia and intensive care. Curr Anaesth Crit Care 1997; 8: 184-186.

