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Abstract 

Magnetic polymer composites (MPC) are shape-changing materials capable of wireless actuation. There 

is growing interest in MPC for biomedical and robotic applications because it removes the need for on-

board power systems and electronics. Finite element (FE) methods provide a powerful platform to 

design and simulate MPC-driven devices. However, the accuracy of previously reported FE MPC 

models using magnetic body force methods is unknown given the lack of experimental validation. 

In this paper, a new finite element model for a soft-magnetic soft diaphragm actuator is proposed and 

experimentally validated. Here, the geometrical and electrical properties of the electromagnet were 

explicitly modeled. A comparative study was conducted to validate three well known magneto-

mechanical coupling approaches; Maxwell stress tensor and the Kelvin magnetization force, with and 

without the surface force contribution. In addition, a new method for estimating the nonlinear soft-

magnetic properties of MPC was also presented. 

Experimental validation revealed the Kelvin magnetization force with surface force contribution 

resulted in greater simulation accuracy. Using this method, diaphragm deflection was simulated with 

an RMS error of less than 0.2 mm and a mean absolute error (relative to maximum displacement) well 

below 10 %, showing good agreement across all recorded trials.  

The versatility of the proposed model supports many use cases, ranging from lab-on-a-chip to 

implantable drug delivery. The generalizable nature of this work also provides the potential for 

translation to other deformation modes and MPC actuator configurations. 
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1. Introduction 

Magnetic polymer composites, or MPC, is an emerging class of functional material for biomedical and 

robotic applications [1]–[3]. MPC, also referred to as magneto-active polymers [4], [5], magpol [1], [6], 

ferrogel [7], [8] or magnetorheological elastomers [9], [10], undergo shape change in the presence of 

an external magnetic field. They comprise of a soft polymer matrix with embedded magnetic 

microparticles. Induced particle interaction forces deform the polymer structure when a magnetic field 

is applied. Utilizing the wireless capabilities of this flexible transducer may give rise to inherently safer 

implantable devices and innovative soft robotics that do not require on-board power systems and 

electronics. Applications of interest include artificial muscle [11], [12], small-scale robotics [3], [13], 

[14] and drug delivery [15]–[18], to name a few.  

MPC modeling is of growing interest due to the challenges posed by the material’s nonlinear behavior 

[19]. As a tool for design and simulation, MPC modeling would enable the rapid development and 

exploration of novel applications that aim to take advantage of its wireless actuation, fast response and 

high strain characteristics. Numerous researchers have proposed different methods of modeling MPC, 

ranging from simple 1-DOF models [20], [21], to continuum-based finite element approaches [22]–[33]. 

Finite element (FE) modeling is a powerful simulation tool that allows users to model and analyze 

complex physical systems across multiple physics domains. Recently, a FE framework for modeling 

hard-magnetic soft materials using magnetic Cauchy stresses was presented [31]. This work, along with 

similar magnetic Cauchy stress methods [34], have shown promise in this field. Another, more 

commonly applied, method of modeling magnetically-induced mechanical deformation are magnetic 

body forces, e.g. the Maxwell stress tensor [35]. Previously reported FE approaches utilizing magnetic 

body forces have investigated the coupled magneto-mechanical behavior of MPC in, for example, 

cantilever [22] and peristaltic pump configurations [26], [27], [36]. However, the accuracy of these 

models remain unknown due to a lack of supporting experimental data. Despite the rising interest in 

MPC, there is currently no universally accepted FE framework to model deformation. Further 

experimental analysis is required to shed light on this topic.  

MPC actuation performance is partly defined by its magnetic properties. It is common to assume MPC 

to be a linear magnetic material [37]. Numerous methods in existing literature have detailed how to 

calculate the relative magnetic permeability of composite materials, either analytically using the 

Bruggeman or Maxwell-Garnett formula [38], or through coupled finite element approaches [37]. 

However, the relative permeability of ferromagnetic, or soft-magnetic, materials is not constant and is 

nonlinearly related to the applied magnetic field. Unlike paramagnetic materials, ferromagnetic 

materials have microscopic magnetic domains that align, in parallel, to the external magnetic field. This 

internal magnetization increases magnetic flux density. Magnetic saturation, the field strength at which 

all domains are aligned, is a property of ferromagnetic (and ferrimagnetic) materials, and its effect 

cannot be modeled by a single magnetic permeability constant.  



Electromagnet design, i.e. geometry and coil properties, also play a vital role in the performance of 

MPC systems. These two properties greatly affect the strength and shape of the generated magnetic 

field. With systematic design, an electromagnet can provide the necessary flexibility for an MPC system 

to adapt to ever changing real world conditions. To date, existing studies rarely account for the 

electromagnet [27], [28]. The inclusion of this component would allow the overall system to be 

optimized to specific applications with respect to geometrical and performance constraints, and may be 

achieved using topology-based optimization techniques or simply, model-guided iterative design. 

This paper presents a finite element modeling approach for a soft-magnetic MPC diaphragm actuator. 

This system is of interest due to its versatility as a decoupled wireless actuator [39]. Potential 

applications for this soft-magnetic diaphragm actuator include implantable drug delivery pumping, lab-

on-chip microfluidic mixing, or as a compliant force transducer for cell manipulation. Diaphragm 

deformation as a result of the magneto-mechanical interaction between MPC and the inhomogeneous 

magnetic field generated by an electromagnet is modeled using magnetic body forces. An investigation 

into the shape deflection of several diaphragm actuators, under different loading conditions, was carried 

out both experimentally and in simulation to validate the proposed approach. A comparative study of 

three magneto-mechanical coupling methods (Maxwell stress tensor and Kelvin magnetization force, 

with and without the surface contribution), was conducted. A coupled FE approach is also presented to 

determine the nonlinear soft-magnetic properties of MPC.   

The main contribution of this work is the proposal and experimental validation of a new FE approach 

to model soft-magnetic soft diaphragm deformation. The generalizable nature of this work shows 

potential for translation into alternative deformation modes for soft-magnetic material actuators, and 

may also provide a general framework for others going forward. In addition, the insights gleaned from 

this study provide a stepping stone for this work to be extended and applied in the development of novel 

biomedical and robotic MPC applications.  

 
This paper is structured as follows. In Section 2, an overview of the nonlinear field equations, 

constitutive equations and magneto-mechanical coupling methods are presented. The implementation 

of the continuum-based modeling approach is outlined in Section 3. The comparative study of the three 

coupling methods and overall validation of the FE approach is provided in Section 4. The paper 

concludes with a discussion of the results in Section 5 and brief remarks in Section 6.   

 

2. Theory 

2.1. Electromagnetic constitutive laws and field theory 



The kinematics of deformable continua and the basic principles of continuum mechanics are already 

well established in literature and will be not be covered here [35], [40]. A brief overview of the 

constitutive laws and equations relating to electromagnetism are provided for context. 

 
In the presence of an external magnetic field, a ferromagnetic material will become magnetized. The 

following constitutive relationship describes this induced magnetic flux density, 𝑩, for ferromagnetic 

materials, 

 

𝑩 = 𝜇0(𝑯 + 𝑴) (1) 

 
This behavior is generally characterized by a magnetization curve measured using vibrating sample 

magnetometry. This process measures the magnetization, 𝑴, of a material when exposed to an external 

magnetic field, 𝑯. For ferromagnetic materials, this curve can be approximated by a sigmoid function 

[41]. Note, hysteretic effects in MPC are considered negligible due to the low mass fraction of magnetic 

particles [42]. The magnetization (MH) curve for MPC can be expressed as follows, 

𝑀 = 𝑀∞𝑡𝑎𝑛ℎ(𝑘𝐻) (2) 

 
Where, 𝑀∞ is the saturation magnetization (A/m) and 𝑘 is the rate of magnetization.  

A magnetic field can be described classically using Maxwell’s equations. Assuming the electric field is 

negligible and the system is quasi-static (i.e. change in electric flux density over time is zero), the 

magnetic field and its interactions can be defined by the following two expressions, 

∇ × 𝑯 = 𝑱𝒆 (3) 

∇ ∙ 𝑩 = 0 (4) 

 

Where Eq. (3) is Ampere’s Law, where 𝑱𝒆 is the external current density generated by the electromagnet, 

and Eq. (4) is Gauss’ Law for Magnetism.  

 
When energized, the electromagnet applies an external current density in the direction of the coil 

windings. This current density can be approximated using the following expression,  

𝑱𝒆 =
𝑁𝐼𝑐𝑜𝑖𝑙

𝐴
 (5) 

Where 𝑁 is the number of coil turns, 𝐼𝑐𝑜𝑖𝑙 is the coil current, and 𝐴 is the cross sectional area of the coil. 

 
2.2. Finite hyperelasticity theory 

Strain energy density functions are often employed to describe the stress response of non-linear elastic 

materials e.g. rubber, biological tissue. Here, the Ogden model is used to model the macroscopic 

mechanical behavior of MPC [43]. The postulated strain energy function, derived by Ogden, is a 



function of the principal stretches,𝜆1−3, and is expressed below. Similar to other rubber-like materials, 

MPC is assumed to be 3rd order, isotropic and incompressible i.e. 𝜆1𝜆2𝜆3 = 1 [40]. Note, 𝜇𝑝 are the 

shear moduli and 𝛼𝑝 are dimensionless constants. 

 

𝜓 = 𝜓(𝜆1, 𝜆2, 𝜆3) = ∑
𝜇𝑝

𝛼𝑝

𝑁

𝑝=1

(𝜆1

𝛼𝑝 + 𝜆2

𝛼𝑝 + 𝜆3

𝛼𝑝 − 3) (6) 

Where, 

𝑁 = 3, 𝑎𝑛𝑑 𝑝 = 1, … , 𝑁 

 

 
2.3. Magneto-mechanical coupling 

In literature, the two most common magnetic body force, or magneto-mechanical coupling methods are 

the Maxwell stress tensor and Kelvin magnetization force. The latter is more commonly used for 

ferrohydrodynamics [44], [45]. In this paper, both are implemented to validate each approach as it is 

not known which will perform better.  

2.3.1. Maxwell Stress Tensor 

The Maxwell stress tensor is given by the following expression [46], where 𝐵 is the flux density, 𝜇0 is 

the magnetic permeability of free space and 𝛿𝑖𝑗 is the kronecker delta. The indices i and j refer to the 

coordinate directions. 

𝑻𝑀𝑎𝑥𝑤𝑒𝑙𝑙 = 𝜇0
−1(𝐵𝑖𝐵𝑗 −

1

2
𝐵2𝛿𝑖𝑗) (7) 

 

The resultant force on a body is found by integrating the Maxwell stress tensor over its surface, S, and 

is given by the following expression,  

𝐹𝑀𝑎𝑥𝑤𝑒𝑙𝑙 = ∮ 𝑻𝑀𝑎𝑥𝑤𝑒𝑙𝑙

𝑆

𝑑𝐴 (8) 

2.3.2. Kelvin Magnetization Force 

The magnetizable filler material in MPC can be thought of as microscopic dipoles that experience an 

electromagnetic force when an external magnetic field gradient is applied. This force can be calculated 

using the Kelvin formulation [47]. The total force acting on a magnetizable material can be described 

by the summation of the body and surface contributions, 

𝐹𝐾𝑒𝑙𝑣𝑖𝑛 = 𝐹𝐾𝑒𝑙𝑣𝑖𝑛,𝑣𝑜𝑙𝑢𝑚𝑒 + 𝐹𝐾𝑒𝑙𝑣𝑖𝑛,𝑠𝑢𝑟𝑓𝑎𝑐𝑒 (9) 

Where, 



𝐹𝐾𝑒𝑙𝑣𝑖𝑛,𝑣𝑜𝑙𝑢𝑚𝑒 = ∫ 𝜇0(𝑴. ∇)𝑯𝑑𝑉

𝑉

 (10) 

 

𝐹𝐾𝑒𝑙𝑣𝑖𝑛,𝑠𝑢𝑟𝑓𝑎𝑐𝑒 = ∮
𝜇0

2
𝑆

(𝑴𝒏𝒐𝒓𝒎)2𝑑𝐴 (11) 

 

Where, 𝑴 is the magnetization of the body, 𝑴𝒏𝒐𝒓𝒎 is the magnetization normal to the surface, and 𝑯 

is the external magnetic field. Note, previous MPC literature have ignored the surface contribution. The 

influence of this term will be explored in this paper. 

Expanding the convective operator, the volumetric component of the Kelvin force (or body force 

density), with respect to a cylindrical coordinate frame, can be expressed as follows; assuming the 

azimuthal force in the diaphragm actuator can be ignored (due to axial symmetry), 

[
𝑓𝐾𝑒𝑙𝑣𝑖𝑛,𝑟

𝑓𝐾𝑒𝑙𝑣𝑖𝑛,𝑧
] = [

𝜇0(𝑀𝑟

𝜕𝐻𝑟

𝜕𝑟
+ 𝑀𝑧

𝜕𝐻𝑟

𝜕𝑧
)

𝜇0(𝑀𝑟

𝜕𝐻𝑧

𝜕𝑟
+ 𝑀𝑧

𝜕𝐻𝑧

𝜕𝑧
)

] (12) 

 

Herein, the Kelvin magnetization force without surface contribution, with surface contribution, and 

Maxwell stress tensor will be referred to as K1, K2 and K3, respectively. 

 
3. Finite element implementation 

The configuration of the soft-magnetic soft diaphragm actuator was proposed in previous work [21]. 

This decoupled system consists of a clamped, pre-tensioned magnetic diaphragm that is wirelessly 

actuated by an electromagnet. When the electromagnet is energized, the magneto-mechanical 

interaction between the inhomogeneous magnetic field and magnetic microparticles cause the 

diaphragm to deflect. The diaphragm is pre-tensioned to provide an elastic restoring force when the 

field is removed. Nonlinearities arise because the resultant magnetic forces are a function of not only 

field gradient, but also diaphragm deformation [21]. In this study, diaphragm deformation was assumed 

to be symmetrical about the z axis (azimuthal symmetry), thus a 2D axisymmetric approximation was 

considered sufficient to simulate the system. An overview of the actuator and 2D axisymmetric 

representation of the system is illustrated in Figure 1. The finite element model was implemented in 

COMSOL Multiphysics 5.3 (COMSOL Inc., Sweden).  



The MPC diaphragm was modeled as a hyperelastic material (3rd order Ogden material model). The 

ferromagnetic properties of the diaphragm (and electromagnet core) were defined by the following 

constitutive relationship, characterized by the material’s HB curve, which is derived from the 

magnetization curve, 

|𝑯| = 𝑓(|𝑩|) (13) 

 

The Kelvin magnetization force and resultant force due to the Maxwell stress tensor were applied as 

magnetic body loads on the diaphragm. The surface contribution of the Kelvin force was applied as a 

boundary load. Gravitational forces were also accounted for. The diaphragm was pre-tensioned by 

applying a prescribed displacement at the outer edge. Here, Green-Lagrange strain was used to model 

geometric nonlinearities due to hyperelastic material deformation. 

An unstructured mesh grid with triangular 3-node elements allowed for a finer resolution at the 

boundaries of the diaphragm whilst minimizing computation time. An infinite element domain was 

applied to the outer air domain boundary to account for the far magnetic field region. To prevent mesh 

distortion and improve accuracy, a moving mesh was also applied to the geometry surrounding the 

 

Figure 1: The proposed actuator configuration; the electromagnet is located below the magnetic diaphragm. 

When the electromagnet is energized, the diaphragm deflects downwards. It is assumed deformation is 

axisymmetric. The geometry of the 2D axisymmetric model for the system is also illustrated. The 

electromagnet is modeled as a homogenized multi-turn coil and the diaphragm as a hyperelastic material. A 

prescribed displacement (highlighted in green) applies a pre-strain to the diaphragm. A snapshot of the 

deformed geometry is also illustrated for reference.  

 



diaphragm using the arbitrary Lagrangian-Eulerian method. Winslow mesh smoothing was applied to 

these elements undergoing free deformation [48]. Lastly, a mesh refinement study was conducted to 

ensure the solutions reached convergence. The resulting maximum element size for the diaphragm and 

neighboring air domain elements was set to 0.3 mm.  

In total, six actuator configurations were modeled; two diaphragms (45 and 60 mm diameter) with three 

electromagnets (Magnet Schultz Ltd, UK) of increasing size, summarized in Table 1. The mean (SD) 

number of domain and boundary elements for the 45 and 60 mm diaphragm configurations were 3362 

(38) and 319 (3), and 4182 (54) and 365 (2), respectively. The damped Newton method was utilized to 

solve this time-varying, nonlinear multiphysics problem [49]. 

 
4. Model Validation 

4.1. Electromagnet characterization 

Firstly, to validate the FE electromagnet models, the flux density along the top surface of each 

electromagnet was measured. The coil current was fixed at 0.40 A, 0.80 A and 0.85 A for EM1, EM2 

and EM3, respectively. A gauss meter (Model GM2, AlphaLab Inc., USA) was used to measure the 

flux density, 𝐵𝑧, along a single axis, at 4 mm intervals and once at the center. The internal geometry 

and coil properties were determined by taking the cross section of each device. 

The simulated flux density along the top surface of EM3 is provided in Figure 2 as a representative 

example. The simulated flux closely emulates the experimental measurements for each electromagnet. 

The root mean square error (RMSE) for EM1, EM2 and EM3 was 0.0034, 0.0062 and 0.0072 T, 

respectively. 

4.2. Material fabrication  

MPC is composed of a polymer matrix and magnetic filler. In this study, the two constituents were 

silicone rubber (Ecoflex 00-30, Smooth-On, USA) and a soft-magnetic filler (Synthetic Fe3O4, Inoxia 

Ltd, UK). The following fabrication process was adapted from previous work [21]. Here, the mass 

fraction of magnetic filler was 20 wt%. To begin, the uncured silicone and powdered magnetic filler 

were thoroughly mixed using a planetary mixer (Mazerustar KK-50S, Kurabo, Japan). The composite 

TABLE I 

ELECTROMAGNET MODELS 

Electromagnet Model Outer Diameter (mm) Core Diameter (mm) 

EM1 GMHX30 30 14 

EM2 GMHX40 40 19 

EM3 GMHX50 50 24 

 



was cast into a mold and degassed in a vacuum chamber for 10 minutes to remove trapped air. The 

samples were left to cure in an oven, at 80°C, for one hour. The thickness of each sample was 1.5 mm. 

Once cured, the samples were pre-strained to 10%. In this study, two MPC diaphragm diameters of 

interest were tested to investigate the effect of changing sample geometry on model accuracy. The 

diameter of each diaphragm, once pre-tensioned, was 45 and 60 mm.  

4.3 Material characterization 

The mechanical and nonlinear magnetic properties of the MPC material were identified using a 

combined modeling approach (experiments and simulation).  

4.3.1. Mechanical properties  

 

Figure 2: Representative example of the simulated vs measured flux density, 𝐵𝑧, along the top surface for 

EM3 

 

 

Figure 3: Hyperelastic curve fitting, Ogden model vs experimental stress-strain data for the 20 wt% MPC 

material 

 TABLE 2 

FITTED HYPERELASTIC (OGDEN) MODEL PARAMETERS 

Constant Value (MPa) Constant Value 

𝜇1 -0.194  𝛼1 2.19 

𝜇2 0.180 𝛼2 2.44 

𝜇3 4.23 x 10-2 𝛼3 0.207 

 



To determine the stress-strain relationship of MPC, uniaxial tensile testing was carried out in 

accordance with ASTM-D412 [50]. The material was tested using an Instron 5567 (Illinois Tool Works 

Inc., MA, USA). The ‘Test Method A: Dumbbell Straight Section Specimens’ protocol was followed 

with an applied strain rate of 500 mm/min. Test samples were fabricated using Die C, with a material 

thickness of 3 mm. A nonlinear least squares solver was used to fit the hyperelastic parameters to the 

recorded test data (Abaqus curve fitting tool, Dassault Systèmes, France).  

 

The stress-strain relationship and fitted hyperelastic model for the MPC material is presented in Figure 

3. It is evident the gradient of the stress-strain relationship is not constant (as with linear-elastic 

materials) and thus supports the assumption that the MPC material is hyperelastic. The fitted material 

constants for the 3rd order Ogden model are provided in Table 2. 

4.3.2. Magnetic properties  

Existing methods to estimate the magnetic properties, namely relative permeability, include, the 

Maxwell-Garnett mixing rule or induction measurements with a combined finite element approach. 

Here, an alternative FE modeling approach to characterize the magnetic properties of MPC is presented. 

The following parameter identification process utilizes displacement data and FE analysis. 

The magnetic properties, 𝑀∞ and 𝑘, for the 45 and 60 mm samples were optimized by minimizing the 

sum of squares between simulated and measured maximum diaphragm displacement. For this, time-

varying ramp data was used; the experimental protocol is outlined in Section 4.4. Ideally, the magnetic 

properties for the 45 and 60 mm samples should be identical because the mass fraction of magnetic 

filler is kept constant. To evaluate if model overfitting was also present, data from only one 

electromagnet configuration, i.e. EM2, was used for optimization. If overfitting is present, there will be 

greater relative error between the experimental and simulated results for both EM1 and EM3.        

The MH curve parameters were optimized using each coupling method (K1, K2, K3), for each 

diaphragm diameter (45 and 60 mm). The effect of assuming linear versus nonlinear magnetic 

properties was also investigated. A representative example of the optimized displacement plots is 

provided in Figure 4. The simulations are in good agreement with the measured displacement, for all 

coupling methods, when nonlinear magnetic properties are assumed. The RMS errors are summarized 

in Table 3. In all cases, the RMS error was approximately three times greater when linear magnetic 

properties were assumed. These results support the notion that MPC should be modeled as a nonlinear 

magnetic material.  

The optimized magnetic parameters are presented in Figure 5. 𝑀∞ and 𝑘, are similar for both the 45 

and 60 mm samples when using the Kelvin magnetization force, with (K1) and without (K2) the surface 

contribution. The optimized magnetic permeability (𝜇𝑟) was also similar for both samples when using 



K1 and K2. For 𝑀∞ and 𝑘, the magnitude of the estimated parameters for the 60 mm sample were 

noticeably greater when using K3.  

4.4. Surface deflection analysis 

To validate the proposed FE modeling approach, the surface deflection of each diaphragm actuator was 

measured. A single surface measurement (i.e. center displacement) is not sufficient to evaluate the 

model’s performance, especially when shape is of interest. Here, multiple measurements were taken to 

 

Figure 4: Representative example of diaphragm displacement at P1 for the 60 mm diameter, EM2 

configuration, following optimization of a) nonlinear (MH) and b) linear (constant relative permeability) 

magnetic properties. Note, K1, K2 and K3 are the Kelvin magnetization force (without surface contribution), 

with surface contribution, and Maxwell stress tensor methods, respectively.  

TABLE 3 

SUMMARY OF ERROR FOR OPTIMIZED TRIALS 

Method Diaphragm (mm) 
RMSE (mm) 

Nonlinear Linear 

𝐾1 45 0.0059 0.0162 

 60 0.0141 0.0446 

𝐾2 45 0.0054 0.0161 

 60 0.0122 0.0424 

𝐾3 45 0.0054 0.0161 

 60 0.0134 0.0537 

 



understand how electromagnet (and diaphragm) geometry affects diaphragm deformation. The system 

is also subjected to varying magnetic fields (spatial, magnitude) to assess model generalizability.  

In this study, three electromagnets of varying size were used to validate the FE modeling approach 

(EM1, EM2, and EM3). The voltage applied across each electromagnet was limited to 20, 20 and 25 V, 

respectively. The resulting maximum flux density, 𝐵𝑧 , was 0.12, 0.15 and 0.21 T, respectively. 

Diaphragm surface deflection was measured at six discrete points using a scanning laser Doppler 

vibrometer (PSV-500, Polytec GmbH, Walbronn, Germany). The displacement at each point was 

sampled at 1 kHz. Due to azimuthal symmetry, diaphragm deflection could be reconstructed from these 

six points, aptly named P1 – P6. An overview of the experimental setup is illustrated in Figure 6. When 

energized, the diaphragm deflects down, towards the electromagnet. The gap distance i.e. distance 

between the bottom surface of the diaphragm and top surface of the electromagnet, was set to 5 mm. 

This distance, determined by referring to previously published work [21], allowed for relatively large 

diaphragm deflection without impacting the electromagnet.  

Three trials were conducted on each diaphragm-electromagnet configuration. For each trial, the 

electromagnet was energized with a different input signal; ramp, 1 Hz sinusoid and 2 Hz sinusoid. The 

duration of the trials were 3, 5 and 5 seconds, respectively.  

This study also investigated the accuracy of the three magneto-mechanical coupling methods (K1, K2, 

K3). Each trial was simulated using the respective nonlinear magnetic and mechanical material 

properties derived in Section 4.3. A representative example of the simulation vs experimental results is 

illustrated in Figure 7. The experimental and simulated maximum displacement for each configuration, 

recorded during the ramp trials, is summarized in Table 4. The RMS error and mean absolute error 

(MAE) was calculated for individual measurement points (P1 – P6), for each trial. These results are 

collated and presented in Figure 8. In general, maximum displacement occurred at P1 (the center of 

each diaphragm). Displacement increased with increasing field strength, regardless of diaphragm 

diameter. Model accuracy also appears to be independent of diaphragm diameter, highlighted by similar 

 

Figure 5: The optimized magnetic properties for the 20 wt% MPC material; a) Magnetic saturation, 𝑀∞, and 

b) rate of magnetization, 𝑘 , are nonlinear magnetic properties. For completeness, the optimized relative 

magnetic permeability (which assumes linear behavior) is also presented in c). Note, the upper and lower 

bounds for optimization are represented by the vertical axes.  

 



relative differences in Table 4, suggesting experimental-simulation discrepancies were mostly 

influenced by the applied coupling method. 

In summary, K2 had the lowest mean RMS error across all six points, across all trials. The RMS error, 

for all points, was below 0.2 mm for both K1 and K2. MAE, relative to maximum measured 

displacement, was less than 10% for both K1 and K2. As expected, all three coupling methods are 

capable of simulating the system response with low error following optimization (i.e. EM2 

configuration), evident in Figure 7 and Table 4. However, it can be observed that K3 has poorer shape 

deflection accuracy closer to the clamped edge of the diaphragm, clearly illustrated in Figure 7b.          

A true measure of model performance can be determined by cross validating against datasets not 

optimized for i.e. EM1 and EM3 configurations. At weaker magnetic field strengths (EM1), K1 tended 

to overestimate surface deflection. At greater magnetic field strengths (EM3), K1 underestimated 

surface deflection. The opposite was true for K3 in both cases. K2 was consistent across all datasets 

and, overall, was the best modeling approach. The low error across all trials for K2 also suggests the 

 

Figure 6: A laser Doppler vibrometer (LDV) measured the surface deflection of each magnetic diaphragm at 

six discrete points. Three trials were carried out for each diaphragm-electromagnet configuration. The 

electromagnet was energized with a different input waveform (ramp, 1 Hz sinusoid, 2 Hz sinusoid) for each 

trial. Waveforms generated by the LDV were amplified by an external power amplifier. In total, six actuator 

permutations were tested (two diaphragms and three electromagnets). The gap distance, i.e. distance between 

the top surface of the electromagnet and bottom surface of the diaphragm, was fixed at 5 mm. The EM3 

configuration for the 45 mm (top) and 60 mm (bottom) diaphragms are pictured to the right.   

 



proposed model is not overfit and corroborates the use of nonlinear magnetic properties for modeling 

MPC.   

 
5. Discussion 

In this paper, we have presented a finite element approach for modeling magnetic diaphragm 

deformation. Here, the physical geometry and coil properties of the electromagnet were modeled in 

conjunction with the mechanical and magnetic properties of the diaphragm. Three methods of coupling 

 

Figure 7: Representative example of the shape deflection plots (simulated vs experimental) for the 60 mm 

diaphragm. Surface deflection during the ramp trial, at different time steps, for the a) EM1, b) EM2 and c) 

EM3 configurations. The displacement of P1 (diaphragm center) during the 1 Hz sinusoidal trial for d) EM1, 

e) EM2, f) EM3, and 2 Hz sinusoidal trial for g) EM1, h) EM2 and i) EM3. Note, the magnetic properties were 

optimized using ramp trial data from a single point (P1), from the EM2 configuration. The maximum simulated 

displacement for the 60 mm diaphragm during each ramp trial is illustrated (top) for comparison.  

 



the magnetics and structural mechanics domains were investigated. While both Kelvin magnetization 

force methods adhered closely to experimental data, accounting for the surface contribution (K2) 

resulted in the lowest error, overall. The proposed approach offers a generalizable tool for accurate 

shape deformation modeling of soft-magnetic diaphragm materials. The insights gleaned regarding 

TABLE 4 
MAXIMUM DIAPHRAGM DISPLACEMENT FOR EACH CONFIGURATION 

Electromagnet 
Diaphragm 

(mm) 

Maximum Displacement – Relative Difference (%) 

Experimental (mm) K1 K2 K3 

EM1 45 0.476 +21.43 +17.23 -24.58 

 60 0.840 +22.02 +14.52 -19.52 

EM2* 45 0.725 +3.31 +4.00 +4.18 

 60 1.471 +1.70 +5.17 +4.89 

EM3 45 1.094 -6.95 +1.01 +60.24 

 60 2.756 -12.7 +2.36 +50.4 

*Optimized dataset 

 

Figure 8: A comparison of the a) RMS error and b) mean absolute error (% relative to measured maximum 

diaphragm displacement for each configuration) for each point across all trials (18 in total). 

 



magneto-mechanical coupling methods will be of interest to those simulating deformation of magnetic 

particle-loaded elastomers. 

Clamped MPC diaphragm deformation was the focus of this study. The lack of prior experimental 

validation of existing multiphysics approaches justify the analysis of this relatively simple configuration. 

Here, simulated shape deformation was validated using a comprehensive set of experimental data. In 

addition, the versatility of the presented diaphragm configuration also supports many use cases, ranging 

from, for example, lab-on-a-chip applications to implantable drug delivery. Because both MPC and 

electromagnet behavior was simulated, an interesting use for this model would be topology-based 

optimization, where geometrical (and/or power) constraints are imposed on the system design. When 

spatial constraints are present, the interaction between the electromagnet and soft-magnetic material is 

especially important because dipole magnetic fields obey the inverse cube law at large distances.      

It is common, in existing literature, to assume linear magnetic properties for MPC materials. In this 

paper, a universal approach to estimate the nonlinear magnetic properties of MPC was proposed. An 

isotropic soft-magnetic material was characterized using measured displacement data and finite element 

simulations. It was shown the constant relative permeability assumption led to increased error when 

simulating MPC deformation. Accounting for magnetization effects, such as magnetic saturation, 

resulted in improved model accuracy.  

Consistent magnetic parameters were estimated and low simulation errors were achieved when using 

the Kelvin magnetization force (with or without the surface force contribution). The same could not be 

said regarding the Maxwell stress tensor. There are numerous studies that have compared the Kelvin 

formula and Maxwell stress tensor [44], [51]–[53]. In general, each method predicts similar forces. The 

difference lies in how each force is calculated. The Maxwell method calculates the global force whereas 

the Kelvin formulation provides local body forces [47], [54]. In this study, the effects of this difference 

appear to become more pronounced at larger diaphragm deformations, and may explain why the error 

is greater when using the Maxwell stress tensor method. In addition, including the surface contribution 

for the Kelvin formula resulted in improved model accuracy. It is often assumed that surface forces are 

negligible and can be ignored, however, the reported findings indicate surface forces should be 

considered when modeling soft-magnetic soft material deformation. 

K2 was established as the best magneto-mechanical coupling method. Knowing this, it was observed 

that relative model accuracy improved when modeling larger electromagnets, highlighted in Table 4. 

Simulating geometrically larger coils led to lower relative differences, regardless of displacement. This 

observation may be explained by resistive heating. When energized for extended periods of time, 

electromagnet temperature and coil resistance increases. This ultimately leads to a degraded magnetic 

field. Smaller electromagnets may be more susceptible to thermal effects because there is less surface 



area to dissipate heat. Although efforts were taken to reduce resistive heating, by limiting trial length 

and implementing cool down periods, thermal effects were not accounted for in the proposed model.  

The accuracy of the hyperelastic material model can be further improved by using additional 

experimental data. For this study, only uniaxial tensile test data was utilized. It is suggested that biaxial 

and planar experimental data also be included to better capture the range of deformation modes 

experienced by the diaphragm. In addition, the strain rate applied during uniaxial testing, in accordance 

with ASTM-D412, may not reflect the strain rate experienced by the diaphragm during use. Due to 

viscoelasticity, the material’s stress-strain performance is also affected by strain rate. A more 

appropriate rate should be considered for future experiments. 

 
The effects of disturbances and non-magnetic loading conditions on actuator response and model 

accuracy were not investigated. This paper focused on diaphragm deformation as a result of magneto-

mechanical interaction. To better understand the force transduction capabilities of the soft-magnetic 

soft diaphragm actuator, future work should couple the proposed approach with, for example, 

computational fluid dynamics, to model realistic use cases, such as, diaphragm pumping. This work has 

also revealed that the Kelvin magnetization force (with surface force contribution) results in the greatest 

model accuracy. It is suggested that alternative deformation modes e.g. cantilever bending, also be 

investigated using this newly obtained insight into MPC modeling. 

 

6. Conclusions 

This paper presents a finite element approach for modeling soft deformation in ferromagnetic 

diaphragm systems. Surface deflection analysis was carried out to experimentally validate the model. 

An investigation into different magneto-mechanical coupling methods revealed the Kelvin 

magnetization force (with surface force contribution) provided the highest model accuracy. A new 

method for characterizing nonlinear magnetic properties of MPC was also proposed.  

The proposed finite element approach takes into account both the diaphragm and electromagnet. This 

presents a powerful simulation tool for MPC applications where strict geometrical and power 

constraints must be adhered to. In addition, this modeling approach opens up the opportunity for 

topological optimization of MPC-based systems. The proposed model can be expanded and coupled 

with, for example, computational fluid dynamics, to explore potential wireless force transduction 

applications. Future work should also explore alternative deformation modes e.g. cantilever bending, 

given the new insights on magneto-mechanical coupling methods.  
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