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Have potential clues to an effective gonorrhea vaccine been lurking in international

disease surveillance data for decades? While no clinically effective vaccines against

gonorrhea have been developed we present direct and indirect evidence that a vaccine

is not only possible, but may already exist. Experience from Cuba, New Zealand,

and Canada suggest that vaccines containing Group B Neisseria meningitides outer

membrane vesicles (OMV) developed to control type-specific meningococcal disease

may also prevent a significant proportion of gonorrhea. The mechanisms for this

phenomenon have not yet been elucidated but we present some strategies for unraveling

potential cross protective antigens and effector immune responses by exploiting stored

sera from clinical trials and individuals primed with a meningococcal group B OMV

vaccine (MeNZB). Elucidating these will contribute to the ongoing development of high

efficacy vaccine options for gonorrhea. While the vaccine used in New Zealand, where

the strongest empirical evidence has been gathered, is no longer available, the OMV has

been included in the multi component recombinant meningococcal vaccine 4CMenB

(Bexsero) which is now licensed and used in numerous countries. Several lines of

evidence suggest it has the potential to affect gonorrhea prevalence. A vaccine to control

gonorrhea does not need to be perfect and modeling supports that even a moderately

efficacious vaccine could make a significant impact in disease prevalence. Howmight we

use an off the shelf vaccine to reduce the burden of gonorrhea? What are some of the

potential societal barriers in a world where vaccine hesitancy is growing? We summarize

the evidence and consider some of the remaining questions.

Keywords: gonorrhea, OMV vaccine, MeNZB, Neisseria meningitides, Neisseria gonorrhoeae

LESSONS FROM N. MENINGITIDIS

UnlikeNeisseria meningitidis serogroups A, C,W, and Y, for which effective polysaccharide-protein
conjugate vaccines have been developed, serogroup B has required alternative strategies. This is
because of the poor immunogenicity of the group B capsular polysaccharide and its likely homology
to fetal neural tissue (1). The original solution to this problem was the development of group B
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strain specific vaccines based on the outer membrane vesicle
(OMV). These vaccines are based on the immunodominant
protein Porin A (PorA), which is highly variable across strains,
therefore their use has traditionally been considered restricted
to situations where disease is dominated by a single PorA strain
(2, 3). Reports on the duration of protection afforded by OMV
vaccines against meningococcal disease vary according to age
at vaccination and the target population, but serum bactericidal
activity (SBA), which is the correlate of protection, has typically
diminished among a significant proportion of vaccinees by 2
years, due to the waning of serum antibody (4).

While devastating, meningococcal disease is rare and
meningococcal vaccines rely on immunogenicity data as a
proxy for likely efficacy (5). This is because a randomized
efficacy trial powered to detect meningococcal disease cases
as a primary outcome would need in the order of 100,000
participants (6–8), rendering this approach unaffordable and
impractical. Fortunately the presence of SBA provides a correlate
of protection that can be used to estimate efficacy (5, 9, 10).

Estimating both the efficacy and effectiveness of
meningococcal vaccines directly is hindered by the low case
numbers. Both efficacy and effectiveness are generally estimated
by calculating the risk of disease among vaccinated and
unvaccinated persons and determining the percentage reduction
in risk among each group relative to each other. Because of the
low case numbers, and in the case of polysaccharide-protein-
based, the significant impact on carriage (11–13) associated
with meningococcal vaccines the estimates have wide confidence
intervals (14).

Ultimately the public health value of these vaccines is revealed
by real world experience and ecological observations on overall
incidence and prevalence of disease which indirectly supports the
vaccine impact. Where meningococcal vaccines are concerned
estimates of 70 or 80 percent efficacy may translate to much
higher effectiveness and near elimination of disease (12, 15–17).

Because the immunogenicity, efficacy, and effectiveness
of OMV vaccines has generally been considered limited in
terms of strain and type coverage compared with conjugate
vaccines, and they have not been as widely used with less data
published compared with their purer conjugated relations. While
immunogenicity of OMV vaccines generally predicts efficacy
(particularly for younger age groups) it may be less predictive
of effectiveness (5). Less explored too are the minor components
present in the OMV and their potential role in inducing not
only protection against homologous PorA types but heterologous
protection against a range of Neisseria. The traditional IgG
activated complement mechanism that has perhaps driven and
dominated the meningococcal vaccine field may miss a cocktail
of novel antigens with powerful adjuvant effects (18).

POTENTIAL IMPACT OF A
GONOCOCCAL VACCINE

An effective vaccine does not have to be a highly efficacious
vaccine. When the basic reproduction number of an infection
is low, and a vaccine affects transmission, then disease control

can be achieved with a vaccine that has moderate efficacy. While
vaccines are given to individuals to protect them against disease,
many vaccines also reduce transmission, thereby protecting the
broader community (19). Consideration of a vaccine’s effect on
carriage and transmission is a vital component of immunization
programme planning.

The basic reproduction number (R0) describes the maximal
potential for spread of an infection within a population. It
depends on the contact rate, the duration of the infectious
period and the probability that the contact between an infectious
person and a susceptible person leads to an infection (19). For
the most infectious diseases (measles and pertussis) a single
infectious individual entering a community of non-immune
individuals can infect a further (R0) 12–18 and 5–17 people,
respectively (20). Effective vaccines against these diseases need
to be highly efficacious and affect transmission in order to
successfully control or eliminate disease. They also need to
provide sustained immunity, or be given as regular boosters, and
be administered to 92–94% of the population (19).

In contrast, mumps has an R0 of around 4–7 and influenza
1.4–4. The proportion of the community that needs to be
immune to prevent transmission of these diseases is 75–85 and
30–75%, respectively (20). Estimates of R0 for gonorrhea are in
the order of 1.18–3.6 depending on the method used. The lower
estimates rely on the assumption of acquired immunity after
infection, the higher estimates do not assume complete acquired
immunity and are therefore likely to be more accurate (21).

Using an individual-based, epidemiological simulation model
the potential impact of a hypothetical gonorrhea vaccine was
modeled and the prevalence of gonorrhea in a heterosexual
population estimated using various assumptions of efficacy and
duration of protection. The individual-based approach applies
the dynamics of the probability that an individual is in a certain
state (susceptible, infected, recovered) as opposed to a static
network where an individual is in one of the states (22). In
this study it was assumed that there was no immunity following
resolution of natural infection. The modeling demonstrated that
a vaccine of moderate efficacy could have a significant impact
on the prevalence of gonorrhea if strategically implemented (23).
While encouraging it does, of course, depend on the availability
of a vaccine.

FROM ECOLOGICAL DATA TO EVIDENCE

The epidemiological evidence from Cuba, Brazil, and New
Zealand demonstrates that N. meningitidis OMV vaccines
are possibly able to provide some broader protection against
meningococcal disease (17, 24), particularly in older children and
adults (25). These observations led to the hypothesis that they
may affect a more distantly related bacterium. Examination of
surveillance data clearly show a marked decline in the incidence
of gonorrhea in Cuba following implementation of the VA-
MENGOCBC (Figure 1). The pattern of decline in incidence for
gonorrhea contrasts with syphilis and genital warts for which
incidences have remained the same (8). This phenomenon was
also observed in NZ, where a decline in reported gonorrhea cases
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FIGURE 1 | Morbidity of Neisseria pathogenic species in Cuba 1970–2007 (8).

FIGURE 2 | Reported gonorrhea rates in New Zealand 1998–2014, selected

sentinel regions (26). Arrows denote shifts from culture testing to NAAT testing.

during and shortly after use of the tailor made meningococcal
Group B OMV vaccine MeNZB is evident (Figure 2). Like Cuba,
no other sexually transmitted infections (STIs) described in
the national surveillance reports declined during that period
(26). While purely ecological, these observations suggested that
N. meningitidis OMV vaccines might offer cross protection
against gonorrhea.

This hypothesis was first tested in New Zealand where both
the MeNZB exposure and gonorrhea outcome data could be
linked in a retrospective case-control study. The demographic
details and vaccine status of 14,730 deidentified sexual health
clinic patients aged 15–30 years, who had been eligible to
receive the MeNZB vaccine, were determined via the linkage
to the country’s National Immunization Register and database
of demographic information. The outcomes of interest were
laboratory confirmed gonorrhea and, as a control, chlamydia.
The odds of disease outcomes in vaccinated and unvaccinated
patients were compared. Individuals who had received the
MeNZB vaccine were significantly less likely to be gonorrhea
cases than chlamydia controls, with an adjusted OR 0.69 (95% CI
0.61–0.79%); p< 0·0001. This translated to a vaccine effectiveness
estimate of 31% (95% CI 21–39) (27).

Following on from the case-control study a national cohort
study of gonorrhea hospitalizations was conducted. The eligible
cohort consisted of 1,143,897 individuals born 1984–1999
residing in New Zealand during 2004–2008 and therefore
eligible to receive the MeNZB vaccine during that time. In
this study administrative datasets of demographics, customs,
hospitalization, education, income tax, and immunization, were
linked using a national data collection called the National
Integrated Data Infrastructure. The primary outcome was
hospitalization with a primary diagnosis of gonorrhea. Using
Cox’s proportional hazards models with a Firth correction
for rare outcomes, estimates of hazard ratios were generated.
Vaccine effectiveness estimates were calculated as 1-Hazard Ratio
expressed as percent. After adjustment for gender, ethnicity
and deprivation, MeNZB vaccine effectiveness against gonorrhea
associated hospitalization was estimated to be 24% (95% CI 1–
42%) for the whole eligible cohort and 47% (95% CI 18–66) for
those vaccinated in adolescence and therefore most likely to be
at risk for gonorrhea during the follow-up period (28). While
limited by small numbers the findings supported the earlier
case-control study.

The MeNZB vaccine was developed to control a
meningococcal group B epidemic and it is no longer available.
However, the same OMV used in the MeNZB vaccine is
included in the new generation meningococcal group B 4CMenB
(Bexsero) vaccine. Bexsero also includes three recombinant
proteins that are conserved across N. meningitides [Neisserial
Heparin Binding Antigen (NHBA), factor H binding protein
(fHbp), and Neisseria Adhesion A (NadA)], two of which are
shared variably with Neisseria gonorrhoeae (N. gonorrhoeae)
(29). NHBA and fHbp, along with accessory fusion proteins
GNA1030 and GNA2091 in the formulation, are capable of
inducing immune responses against the gonococcus (30, 31).
If additional immunogenicity and cross protection is afforded
by this new generation vaccine, on account of the additional
antigens and synergistic combination, then the potential for
effectiveness is likely to be higher than that demonstrated by the
MeNZB vaccine.

A mass vaccination campaign in Quebec, Canada, using
Bexsero, provided an opportunity to observe a potential vaccine
effect on gonorrhea. In 2014 Bexsero was administered to
individuals aged 6-months to 20-years of age. Gonorrhea and
chlamydia notifications to public health authorities during
the pre-vaccination period and post-vaccination period (2006–
June 2017) were analyzed and the impact of the campaign
estimated by a Poisson regression model. Vaccine coverage
was 82% in the target group. There were 231 gonorrhea cases
reported among persons 14 years and older (IR: 8.4/100,000
person-years) in the region of the mass campaign during the
study period. A decrease in the number of cases and risk
among individuals 14–20 years was observed during the post-
vaccination period. In contrast, it increased in those 21 years
and older. As observed in both New Zealand and Cuba,
chlamydia infections increased among both the vaccinated
and unvaccinated age groups. The estimate of vaccination
impact was a risk reduction in gonorrhea of 59% (95% CI:
−22 to 84%; P = 0.1) (32). While the confidence intervals
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are wide and include “0” this is likely due to the low
study power.

Together the NZ, Cuban, and Canadian data suggest that we
likely already have a vaccine to hand, that if used strategically,
could impact on the prevalence of gonorrhea. But what are
the mechanisms?

STRATEGIES TO DEFINE THE
MECHANISMS OF CROSS-PROTECTION

The intriguing observation that vaccination with meningococcal
B OMVs confers a degree of protection to gonorrhea raises
some interesting questions about possible mechanisms of action.
Historically there have been some major confounders for
development of a gonococcal vaccine—earlier trials proved
unsuccessful, there are no defined correlates of protective
immunity and the optimum route of delivery is unknown. The
MeNZB data suggest it may be possible to elicit protective
immunity to gonococci with a parenteral vaccine and there is
now an opportunity to examine resources generated both from
the clinical trials of this vaccine and New Zealand’s large MeNZB
primed cohort for clues as to how this vaccine confers this effect.

The lack of known correlates of protective immunity is
a major stumbling block to identifying vaccine candidate
antigens or novel approaches for developing a gonococcal
vaccine. Population data show that prior exposure does not
protect individuals from re-infection (33) and human challenge
studies have demonstrated that recently infected individuals
remain susceptible to re-infection with the challenge strain
(34). Longitudinal studies of individuals regularly infected with
gonorrhea have proved invaluable in demonstrating how host
antibody mediated responses to selected antigens have been used
to subvert the immune response. Gonococci can be typed into
serovars on the basis of expression of variants of a major outer
membrane protein, porin (PorB). Both porB typing alone or in
combination with additional molecular analyses have shown that
por mutates in response to immunological pressure, suggesting
that the effective immunity to gonococci may develop, but is
confounded via a shifting of phenotype by the bacteria (35,
36). Development of an elevated antibody response to another
major outer membrane protein, reduction modifiable protein
(Rmp)/protein III, is associated with enhanced susceptibility to
infection (37). In vitro studies have shown that IgG antibodies
to Rmp prevent other potentially protective antibodies from
initiating bactericidal activity to gonococci (38). However,
individuals with high occupational exposure to gonococci do
eventually develop serovar-specific immunity (35), suggesting
a vaccine may ultimately be feasible (39). Experimental, self-
limiting infection of human subjects with gonococci results in
development of modest local and systemic specific antibody
responses, with a suggestion that serum antibody responses to
lipo-oligosaccharides (LOS) may confer a degree of protection
from re-infection (34).

Several prospective gonococcal vaccines have been tested in
humans without success. To date these attempts have included
parenteral administration of non-adjuvanted material including

partially lysed whole bacteria (40), pilin (41), and protein I/PorB,
a major porin/outer membrane protein [reviewed in (42)]. One
of the most promising pre-clinical vaccine candidates identified
to date is a highly conserved oligosaccharide epitope (2C7)
common to most gonococcal isolates—targeting this epitope
elicits sialylation-independent bactericidal activity in vitro and
leads to enhanced clearance of infection in mice (43, 44). Pre-
clinical evaluations suggest that gonococcal OMVs are also a
promising vaccine candidate (45–47) but they have not been
tested in humans. In contrast serogroup B N. meningitidis was
the first organism to be screened for meningococcal vaccine
candidate antigens using a sophisticated genomic-led approach
termed “reverse vaccinology,” which led to the selection of
the highly conserved vaccine candidate antigens incorporated
into Bexsero (48). Importantly though for full efficacy and
enhancement of coverage to a broader range of subserotypes
and better immunogenicity in younger age groups, this vaccine
still requires the addition of OMV from MeNZB, with porin A
considered to be a particularly important constituent (49, 50).

The OMVs are comprised of a complex mix of periplasmic,
cytoplasmic, and outer membrane proteins (51). The dominant
components include outer membrane proteins such as porin
A, porin B, Rmp, NspA, and the OpcA invasin which are
incorporated into vesicles in conjunction with lipopolysaccharide
[summarized in (52)]. An immuno-proteomics analysis of the
related Cuban meningococcal OMV vaccine suggests that the
antibody response is primarily targeted to these major antigens
(53). Population genomics has demonstrated the close genetic
relationship between N. meningitidis and N. gonorrhoeae (50)
suggesting OMVs are likely to be the source of numerous
conserved vaccine candidates, both protein and glycolipid.
Screening of gonococcal OMVs from multiple strains with
human anti-meningococcal sera would be an effective approach
to identify cross-reactive, conserved “human relevant” antigens.
Although this approach is likely to reveal multiple cross-reactive
antigens, some of which are unlikely to be suitable vaccine
candidates, selection of novel candidate antigens can be informed
and complemented by the rapid expansion of knowledge of
gonococcal biology. For example, conserved novel antigens of
importance for survival of the gonococcus have recently been
identified by quantitative proteomics, which has successfully
been applied to cell envelope and OMVs from multiple strains
of N. gonorrhoeae (54).

As N. gonorrhoeae is an exclusive human pathogen the
relevance of animal models, particularly non-primate models,
is contentious. Female mice can be transiently infected with N.
gonorrhoeae if they are pre-treated with estradiol and inoculated
during the pro-estrous phase (55), but lack important features
such as carcinoembryogenic antigen-related cell adhesion
molecules (CEACAM; CD66) on neutrophils and epithelial
cells, which are typically targeted by the gonococcal opacity
associated proteins (Opas) (56, 57). Gonorrhea infection in mice
does recapitulate several known features of human infection,
eliciting a polarized neutrophilic Th17 driven response and
production of pro-inflammatory cytokines (58–60). Conversely,
accelerated clearance of the infection is linked to a Th-1
driven immune response in mice, particularly the production
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of interferon-γ, in conjunction with the development of
both systemic and local IgG and A (45, 61–63). Of note,
vaginal vaccination with gonococcal OMVs delivered with
encapsulated IL-12 can elicit enduring protection to multiple
distinct gonococcal isolates (45) and intranasal administration
of gonococcal OMVs can expedite resolution of infection (46),
however it is not yet known whether parenteral vaccination
with either gonococcal or meningococcal OMVs can elicit a
comparable effect.

Although gonococci can infect other mucosal sites, the
most important site of entry is the genital mucosa. Unlike
other mucosal locations, the genitals lack inductive sites for
local antibody production and IgG (produced locally and
systemically), not IgA, is considered to be the most important
class of antibody (64). It has been traditionally accepted that
the optimal way of developing vaccine-elicited immunity to
mucosal pathogens is to immunize by the mucosal route,
preferably one which mimics the natural route of infection
(65). Accordingly there are several examples of highly effective
vaccines—most notably the live oral vaccine for poliomyelitis—
which are administered orally, although further refinements in
this arena have been stymied by the lack of safe, effective mucosal
adjuvants. More recently it has been proposed that parenteral
vaccines may be an equally feasible means of stimulating strong
and appropriate protective mucosal responses (66). Of particular
relevance to gonorrhea, the Human Papillomavirus (HPV)
vaccine is comprised of an adjuvanted preparation of virus-like
particles given intramuscularly, which results in the development
of enduring antibody responses in both systemic (serum) and
local (cervicovaginal) sites, with a strong correlation between
IgG levels in the two locations, supporting the possibility of
serum transudation or exudation into the genital mucosa (67).
Evidence from gonococcal vaccine studies in mice also indicate
that antibody responses—including systemic IgG responses—are
associated with protective immunity to gonococci, suggesting
serum antibody responses can reasonably be used as a correlate
of protection (45).

But how does MeNZB, which is reported to confer a
relatively short-lived period of protective immunity in infants
and toddlers (4, 68), confer cross-protective immunity to
gonococci for some years after vaccination? An elevated SBA
is the benchmark for verifying sustained protective immunity
to group B meningococci, but there may well be other aspects
of the vaccine initiated immune responses that are equally or
more important for development of immunity to gonococci.
Specific mucosal immune responses are likely to be necessary
for limiting the development—and ideally transmission—of
symptomatic gonorrhea infections. While the systemic antibody
responses elicited by MeNZB have been thoroughly examined,
there have been no long term studies on the development of the
mucosal antibodies in response to vaccination. An assessment
of adults shortly after vaccination showed either no change
or very modest increases in salivary antibody responses in
response to parenteral vaccination with the NorwegianMenBVac
(69) or MeNZB (70). Conversely, anti-meningococcal salivary
IgA responses were reported to increase with age and/or
meningococcal carriage (71), suggesting that an examination of

the long-term effects of vaccination in childhoodmay yield useful
information on whether nasopharyngeal acquisition and/or
carriage of commensal Neisseria can boost mucosal antibody
responses. Given the issue of rising rates of oral gonorrhea and
evidence of oral-genital transmission of infection (41), induction
of strong mucosal immune responses in both sites is likely to
be important.

Analysis of specific cellular responses in the tonsils suggest
that parenteral vaccination of adults with MeNZB results
in re-programming of the mucosal immune response to
meningococci in the nasopharynx (70). OMVs contain a
complex package of virulence factors, TLR agonists, and
other secreted or membrane associated components that
interact and modulate host immunity (72). Detergent extracted
MeNZB OMVs are reported to consistently contain ∼100
distinct proteins predominantly from the outer membrane
compartment (73) and although delivered with an adjuvant,
they are also intrinsically immunogenic. Perhaps OMVs from
mucosal pathogens such as Neisseria have the capacity to
stimulate homing and development of immune effector cells
at mucosal sites after parenteral immunization? This may
be important for eliciting strong mucosal immune responses
(66) as has recently been reported for the detoxified form of
heat-labile toxin (dmLT) (74) and linked to properties of the
adjuvant itself, rather than the route of administration. This
would be an interesting concept to explore further in mice
vaccinated parenterally or mucosally with OMVs; or translated
to humans through application of emerging technologies in
the immunogenomics and systems biology arena (75) with the
potential to provide vital information to support the utility of this
class of vaccines.

Human mucosa, particularly the oropharynx, is frequently
host to several different species of Neisseria. Genetic analyses
of both pathogenic and non-pathogenic Neisseria show they are
closely related, with evolutionary studies suggesting frequent
exchange of genetic material including virulence genes (76).
Notably, early exposure to commensals such as N. lactamica
may not only confer some degree of protection from N.
meningitidis, but could be an approach for identifying novel
vaccine candidate antigens (77). Carriage of non-pathogenic
Neisseria may also enhance the development of immunity
to Neisseria OMV vaccines (78). N. meningitidis and N.
gonorrhoeae are most closely related and primarily separated
from the remaining members of the genus by the presence
of additional virulence genes (76). The impact of vaccination
with meningococcal OMVs, which contain multiple highly
conserved antigens common to many Neisseria species, on
nasopharyngeal colonization has not yet been determined. A
genetic analysis of the additional antigens in Bexsero suggest
that this vaccine could impact non-target Neisseria species
as both NHBA and the additional fusion proteins GNA1030
and GNA2091 contained in Bexsero are highly conserved
across both pathogenic and commensal Neisseria, whereas
N. gonorrhoeae does not express NadA and this bacterium
contains only one of three possible variants of fHbp (79,
80). It has been suggested that NHBA could form the basis
of a putative gonococcal vaccine, but would likely require
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augmentation with additional conserved proteins to enhance
the effectiveness of such a vaccine (80). MeNZB anti-sera is
highly likely to be a useful source for identifying additional
highly conserved gonococcal immunogens. The utility of this
approach has been demonstrated in rabbits, which develop
cross-reactive antibodies to several strains of gonococci by
ELISA and western blot in response to vaccination with
MeNZB/Bexsero OMVs (31). Human MeNZB anti-sera will
almost certainly show a similar level of cross-reactivity, with
the potential complication of reactivity to antigens common to
commensal Neisseria species.

New Zealand currently has a large cohort of individuals
at or approaching the age of prime interest for studying the
long-term impact of the MeNZB vaccine. Notably there is an
opportunity to examine recall responses ∼10 years post-priming
in a population of adolescents and/or young adults, which is
a good match for the likely timing of administration of a
gonococcal vaccine and corresponds with the age groups at
greatest risk of contracting gonorrhea. The impact of boosting
these individuals with Bexsero (as the source of MeNZB OMVs)
on both local and systemic antibody responses as well as the
development of cellular immunity has the potential to provide
valuable data on the possible targets or mechanisms of cross-
reactive immunity. A large collection of sera also remains from
the original MeNZB clinical trials, which were commenced in
adults (81), followed by pre-teens (82), toddlers then infants
(83) with serum samples obtained prior to and at regular
intervals during vaccination. Untouched duplicate samples were
retained after the completion of these trials and can be accessed
for investigation of anti-gonococcal responses. Meningococcal
SBA titres were quantified as part of the MeNZB vaccine
development programme, which offers a unique opportunity
to not only determine whether MeNZB vaccination elicited a
bactericidal antibody response to gonococci in humans, but
also to ascertain whether this correlates with elevated anti-
meningococcal SBA titres.

A key question remains as to which approaches would
be the most appropriate for examining possible cross-reactive
immune responses to gonococci in these vaccinated individuals.
Induction of functional antibody responses such as complement-
mediated bacterial killing, inhibition of binding to reproductive
tract epithelial cells and stimulation of opsonophagocytosis
are generally considered to be suitable starting points. The
development of an increased serum bactericidal antibody (SBA)
response is the standard for determining the protective efficacy
of vaccines to meningococci (84–86) whilst the presence of
bactericidal antibodies to gonococci are frequently used as a likely
surrogate of protective immunity in pre-clinical studies (47, 87,
88). Cross-reactive bactericidal antibodies are, unsurprisingly,
likely to be directed to gonococcal lipopolysaccharides and
surface proteins (89). Therefore, analyzing SBA responses is a
valid starting point, although it will be important to incorporate
multiple gonococcal strains to confirm broad, cross-protective
bactericidal activity to gonococci. A limitation of the SBA is
that it requires use of bacteria that are resistant to complement-
mediated killing by normal serum, whereas serum sensitivity
is reported to be common in gonococci after in vitro culture

(90). Serum resistance can be induced by the use of additives
to sialylate LOS (91, 92) and screening of resistant phenotypes
is more likely to represent the low susceptibility to serum-
mediated killing seen in vivo. Enhanced opsonophagocytosis is
considered to be another likely correlate of protective immunity
to gonococci and this can readily be inferred by detection of
C3b deposition on the surface of the gonococci using flow
cytometry (93), as a pre-cursor to MAC-mediated lysis, and
corroborated by determining whether opsonophagocytic uptake
of gonococci by a neutrophil-like cell line, such as retinoic acid
differentiated HL-60 cells (94), is enhanced in the presence of
immune sera.

A critical step in the pathogenesis of N. gonorrhoeae is
adherence to target epithelial cells where initial adherence is
predominantly mediated by pili, followed by tight attachment to
CEACAM via expression of OpA. The interactions of gonococci
with human reproductive tract cell lines (95, 96) and primary
cultures (97) have been described and these model systems
can be used to establish whether introduction of sera from
MeNZB vaccinated individuals inhibits adherence or invasion
of gonococci. These sera can also be used to determine whether
there is a quantifiable increase in antibodies to gonococcal OMVs
or cell surface exposed antigens by ELISA or development of
cross-reactive antibodies to antigens conserved across multiple
isolates of N. gonorrheae using similar immunoproteomics
approaches to those applied to N. meningitidis (53, 98, 99).
Both approaches can be used to identify or validate potential
gonococcal vaccine candidates, in conjunction with pre-clinical
testing in in vivomodels.

There have been few studies on the development of cellular
immune responses to MeNZB (70) or other meningococcal
OMV vaccines in adults (100, 101). None have examined
early immune kinetics in naïve individuals, the development
of recall responses, or induction of responses to gonococcal
OMVs. The type of cellular response required to prevent
gonococcal infection in humans is unknown, but murine
studies link development of protective immunity with Th-
1 immune responses (45). An assessment of Th profiles
in response to stimulation with gonococcal antigens could
ascertain whether MeNZB vaccination causes a similar skewing
in humans.

Mining resources from New Zealand’s MeNZB vaccination
programme may be fruitful for identifying potential correlates
of immunity in human subjects. Ultimately a prospective clinical
trial or high quality observational study with a large cohort of
high risk individuals will be necessary to acquire a complete and
accurate picture of howwell a vaccine containingOMVs (or other
potential antigens) will perform in reducing rates of gonorrhea.

SOCIETAL AND POLICY ISSUES IN
GONOCOCCAL VACCINE DEPLOYMENT

Modeling has suggested that a vaccine with moderate protection
might have a significant effect on the burden of gonorrhea (23).
Considering Bexsero as a candidate intervention, how would we
best use it?
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While we do not yet know the mechanism of protection
induced by these OMV vaccines that has resulted in some
resistance to gonorrhea we might assume that it is not
long lasting based on experience with protection against
meningococcal disease as well as the waning observed in
the New Zealand case-control study (27). There are still
questions to be answered about the effectiveness of Bexsero. It
does appear broadly protective against meningococcal disease,
including against the hypervirulent Group W strain, which
is increasing in prevalence in some countries (102, 103).
However, to what extent this affects carriage in adolescents,
and duration of protection at the population level remain
to be demonstrated (103, 104). Therefore, in order to
optimize protection against gonorrhea such a vaccine would
need to be delivered prior to sexual debut and use of
boosters possibly maintained throughout the risk period. Early
adolescence also happens to coincide with a high risk period
for meningococcal disease. Administering a dose of Bexsero
during early adolescence in a population previously primed
in infancy, or two doses in a previously naive population,
might be a pragmatic strategy to reduce gonorrhea whilst
at the same time improving the community immunity to
meningococcal disease. If protection was demonstrated to wane
during the risk period a further dose could be considered to
maintain protection.

Even the most efficacious vaccine cannot prevent disease
if it is not used. Funding and policy aside perhaps the
greatest challenge facing immunization programmes today is
the growing presence of vaccine hesitancy (105, 106). The
dream of global measles and rubella elimination is unraveling
as a tide of trolls, bots, and organized opposition, facilitated
by social media, plays havoc with trust and confidence (107–
109). Vaccine coverage rates have dived in many countries and
measles resurgence is occurring among populations that had
previously achieved elimination status, such as the America’s
and some European countries (110). How might a gonorrhea
vaccine fair in this environment of growing public resistance
to vaccines?

If we consider the societal factors that might be relevant to
a vaccine against a disease that is largely sexually transmitted
then we need look no further than the experience with
the human papillomavirus (HPV) vaccines. The focus of the
original marketing of HPV vaccines was prevention of cervical
cancer as opposed to prevention of a sexually transmitted
infection (111, 112) however, skepticism about the vaccine
effectiveness and safety arose quickly from a variety of quarters
(113, 114). Even with the focus on cancer there has been
ongoing public outrage fed by organized lobby groups since
2007, when the first vaccine was licensed (115). After the
introduction of HPV vaccine there was a shift toward a
more conservative backing for the anti-vaccine movement.
Presumably this was because despite the vaccine being marketed
as an anti-cancer vaccine the fact that the virus is primarily
sexually transmitted invoked discomfort among those with
conservative and religious views about sex (116). Consequently
whilst some countries have delivered to over 70–80% of

the target population (117) others have fared less well with

some countries either failing to implement a programme,
or experiencing interruption to programs due to widespread
movements aimed at discrediting the vaccine (118). Some
countries have had their previously high coverage eroded to
below 30% (119).

Given the multiple challenges in marketing and delivering a
vaccine against a sexually transmitted infection across diverse
cultures there may be an argument for desexualizing it and
packaging it as a vaccine against Neisseria. However, efforts to
desexualize vaccines can backfire. Withholding information that
is seen to be less agreeable to the public can result in accusations
of paternalism (116). This will likely result in the erosion of
trust. How public health officials communicate the facts about a
gonorrhea vaccine across multi-cultural societies will likely have
an impact on acceptance.

Some societies have chosen to place HPV vaccine at the 9-
year age mark, other societies have elected to place it at the
12–13 year mark. While the 9-year mark might desexualize
the vaccine, the luxury of this choice is unlikely to be
an option for a gonorrhea vaccine. The HPV vaccine, like
the Hepatitis B vaccine, has a long duration of protection
(120). It is unlikely that a gonorrhea vaccine based on
current options will provide long-term protection, therefore
placement in a national immunization programme will need
to be at the age that provides highest immunity just before
sexual debut.

While research continues into gonorrhea vaccine antigen
discovery there is also a need for further data on the two
OMV-containing N. meningitidis vaccines currently available
(Bexsero and VA-MENGOCBC) that might have some utility if
deployed into a sexually active population. For example, further
knowledge about the effect of age and immunological experience
on the vaccine response, along with boosting responses in older
children, and adults who have been primed in infancy or early
childhood. Other outstanding questions include the number
of doses required to optimize responses to the gonococcus
both qualitatively and quantitatively, and the potential to
affect carriage.

Several lines of evidence suggest a vaccine that could
impact on the growing burden of gonorrhea already exists.
While the mechanisms are not yet understood, elucidating
these will contribute to the ongoing development of
high efficacy vaccine options for this disease. In order to
successfully deploy a vaccine that could impact on the
prevalence of gonorrhea the development of formulations
that target all pathogenic Neisseria species might be the
most socially acceptable, while also the most pragmatic
when considering implementation into already crowded
immunization schedules.
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