
Possibilistic Keys

Nishita Balamuralikrishnac, Yingnan Jiangc, Henning Koehlera, Uwe Leckb, Sebastian Linkc,∗, Henri Praded

aSchool of Engineering & Advanced Technology, Massey University, New Zealand
bDepartment of Mathematics, The University of Flensburg, Germany

cDepartment of Computer Science, The University of Auckland, New Zealand
dIRIT, CNRS and Université de Toulouse III, France

Abstract

Possibility theory is applied to introduce and reason about the fundamental notion of a key for uncertain data. Uncer-
tainty is modeled qualitatively by assigning to tuples of data a degree of possibility with which they occur in a relation,
and assigning to keys a degree of certainty which says to which tuples the key applies. The associated implication
problem is characterized axiomatically and algorithmically. Using extremal combinatorics, we then characterize the
families of non-redundant possibilistic keys that attain maximum cardinality. In addition, we show how to compute
for any given set of possibilistic keys a possibilistic Armstrong relation, that is, a possibilistic relation that satisfies
every key in the given set and violates every possibilistic key not implied by the given set. We also establish an algo-
rithm for the discovery of all possibilistic keys that are satisfied by a given possibilistic relation. It is shown that the
computational complexity of computing possibilistic Armstrong relations is precisely exponential in the input, and
the decision variant of the discovery problem is NP-complete as well as W[2]-complete in the size of the possibilistic
key. Further applications of possibilistic keys in constraint maintenance, data cleaning, and query processing are il-
lustrated by examples. The computation of possibilistic Armstrong relations and discovery of possibilistic keys from
possibilistic relations have been implemented as prototypes. Extensive experiments with these prototypes provide
insight into the size of possibilistic Armstrong relations and the time to compute them, as well as the time it takes
to compute a cover of the possibilistic keys that hold on a possibilistic relation, and the time it takes to remove any
redundant possibilistic keys from this cover.

Keywords: Armstrong relation; Axiomatization; Constraint maintenance; Database; Extremal combinatorics;
Discovery; Implication; Key; Possibility theory; Uncertain Data

1. Introduction

Background. The notion of a key is fundamental for understanding the structure and semantics of data. For relational
databases, keys were already introduced in Codd’s seminal paper [8]. Here, a key is a set of attributes that holds
on a relation if there are no two different tuples in the relation that have matching values on all the attributes of the
key. Keys uniquely identify tuples of data, and have therefore significant applications in data processing, such as data
cleaning, integration, modeling, and retrieval.
Motivation. Relational databases were developed for applications with certain data, such as accounting, inventory
and payroll. Modern applications, such as information extraction, radio-frequency identification (RFID), scientific
data management, data cleaning, and financial risk assessment produce large volumes of uncertain data. Probabilistic
databases constitute a principled approach towards dealing with uncertainty in data. Suciu et al. emphasize that “the
main use of probabilities is to record the degree of uncertainty in the data and to rank the outputs to a query; in
some applications, the exact output probabilities matter less to the user than the ranking of the outputs” [60]. This

∗Corresponding author
Email addresses: h.koehler@massey.ac.nz (Henning Koehler), uwe.leck@uni-flensburg.de (Uwe Leck),

s.link@auckland.ac.nz (Sebastian Link), prade@irit.fr (Henri Prade)

Preprint submitted to Fuzzy Sets and Systems August 13, 2018

Table 1: A possibilistic relation and its nested chain of possible worlds

Possibilistic relation

zone time rfid object p-degree
Z0 10am H0 Grizzly α1
Z1 10am H1 Grizzly α1
Z1 12pm H2 Grizzly α1
Z3 1pm H2 Grizzly α1
Z3 1pm H3 Grizzly α2
Z3 3pm H3 Grizzly α3
Z4 3pm H3 Grizzly α4

Worlds of possibilistic relation

suggests that a qualitative approach to uncertainty, such as the one offered by possibility theory [15], can avoid the
high computational complexity in obtaining and processing probabilities, while guaranteeing the same qualitative
outcome. For instance, RFID is used to track movements of endangered species of animals, such as Grizzly Bears.
The scientists that gather the data keep track of which bear (identified by a unique RFID label) is recorded in which
zone at which time. The scientists are aware that sensor readings are not exact, and the quality of the readings may
affect their data analysis. The uncertainties result from various sources, including the quality of the rfid readers and
tags, the movements of the animals, and the fact that borders of the zones are not clearly defined. For their analysis,
they would like to distinguish between four different degrees of uncertainty and have therefore decided to assign one
of four degrees of possibility (p-degree) to each record. The assignment of the p-degrees to tuples can be understood
as a global function of many (unspecified) factors, or as a simple means to holistically aggregate the various levels
of uncertainty associated with the tuple into one score. Table 1 shows a possibilistic relation (p-relation), where each
tuple is associated with an element of a finite scale of p-degrees: α1 > . . . > αk+1. The top degree α1 is reserved for
tuples that are ‘fully possible’, the bottom degree αk+1 for tuples that are ‘impossible’ to occur. Intermediate degrees,
such as ‘quite possible’ (α2), ‘medium possible’ (α3), and ‘somewhat possible’ (α4) are used whenever some linguistic
interpretation is preferred.

For the data analysis, different queries may require recordings with different thresholds for data quality, as quan-
tified by the p-degrees. For example a query may be evaluated over all recordings that have a p-degree of at least
‘quite possible’. A fundamental question is then how data in recordings with a minimum p-degree can be accessed
efficiently. The primary mechanism for efficient data access are keys, as index structures defined on them enable us
to identify records uniquely. For our example, we observe that the p-degrees enable us to express keys with different
degrees of certainty. For example, to express that it is ‘somewhat possible’ that the same grizzly is in different zones
within an hour we declare the key {time,rfid} to be ‘quite certain’, stipulating that no two distinct tuples are at least
‘medium possible’ and have matching values on time and rfid. Similarly, to say that it is ‘quite possible’ that different
grizzlies are in the same zone at the same time we declare the key {zone,time} to be ‘somewhat certain’, stipulating
that no two distinct tuples are at least ‘quite possible’ and have matching values on zone and time. These examples
motivate the introduction and study of possibilistic keys (p-keys) as a fundamental notion for identifying records of
uncertain data.
Summary. Our article provides a comprehensive study of the new concept of possibilistic keys. The goal is to
establish fundamental results about core computational problems associated with possibilistic keys. These include the
implication problem, extremal problems, and the problems of computing Armstrong relations for sets of possibilistic
keys, and discovering all possibilistic keys that hold on a given p-relation. Solutions to these problems provide
computational support to reason about possibilistic keys, acquire possibilistic keys that are meaningful in a given
application domain, and estimate worst case scenarios for their maintenance. Detailed experiments complement
our theoretical analysis regarding the computational complexity of these problems. Primary application areas of
possibilistic keys are found in database design and data cleaning, which have been investigated in related work [35,
45]. A case study from web data extraction illustrates the use of possibility degrees in data integration as well as their

2

acquisition. In addition, we will also illustrate the applicability of possibilistic keys in constraint maintenance and
query processing.
Contributions. Our contributions can be described in detail as follows.

• First, we define a semantics for possibilistic keys. Here, uncertainty is modeled qualitatively by degrees of
possibility. The degrees bring forward a nested chain of possible worlds, with each being a classical relation
that has some degree of possibility. Smaller worlds are more possible and satisfy at least as many keys as any
of the worlds they are contained in. This “possible world” semantics is quite different from that used in the
context of probabilistic databases. Our possible worlds form a linear chain with the smallest world forming a
kernel that contains all tuples that are certain to occur, and adding tuples that become less possible whenever
less constraints are imposed. Classical relations form the special case of possibilistic relations with only two
degrees of possibility, that is, where k = 1. For example, the possible worlds of the p-relation from Table 1 are
shown in Figure 1. The key {time,rfid} is satisfied by r3 but not by r4, and {zone,time} is satisfied by r1 but not
by r2.

• We have conducted a use case study in web data extraction. The case study shows how p-degrees can naturally
quantify our confidence in data that is integrated from different sources, which p-keys are satisfied by such
possibilistic data, and how the possibilistic data can be summarised by a sample that consists of only 2% of the
tuples contained in the original p-relation but satisfies the same p-keys. The sample can be used by business
analysts to consolidate which p-keys are meaningful for the application domain.

• We then establish axiomatic and linear-time algorithmic characterizations for the implication problem of p-
keys. Our characterizations subsume the axiomatization and linear-time decision algorithm for the implication
of classical keys as the special case where k = 1.

• Subsequently, we illustrate the applicability of possibilistic keys in the areas of constraint maintenance, data
cleaning, and query processing. In constraint maintenance, our algorithm for deciding the implication problem
can be used to remove any redundant elements from the set of p-keys whose validity are maintained under
updates of possibilistic relations. In classical data cleaning, a minimal set of tuples is usually removed in order
to restore the consistency of a given relation with respect to a given set of keys. For possibilistic relations,
we minimally lower the degrees of possibility for tuples until consistency of a given possibilistic relation with
respect to a given set of p-keys is restored. In query processing, our possibilistic framework makes it possible
to rank query answers according to their associated degrees of possibility, and to utilize p-keys for optimizing a
given query.

• Using extremal combinatorics, we characterize the non-redundant families of p-keys that attain maximum car-
dinality. This shows how large sets of possibilistic keys may become, providing insight into the worst-case
complexity of modeling required. Families of non-redundant classical keys that attain maximum cardinality
were characterized by Sperner’s theorem, which is subsumed by our result for the special case where k = 1.

• Armstrong relations are data samples that exactly represent a given set of business rules. That is, they satisfy
the given set and violate all business rules that are not implied by the given set. As such, Armstrong relations
help business analysts with the acquisition of classical keys that are meaningful for a given application domain.
A possibilistic relation is said to be Armstrong for a given set Σ of p-keys if and only if for every p-key ϕ,
the possibilistic relation satisfies ϕ if and only if ϕ is implied by Σ. We establish structural and computational
characterizations of possibilistic Armstrong relations for sets of possibilistic keys. We characterize when a
given possibilistic relation is Armstrong for a given set of possibilistic keys. While the problem of finding a
possibilistic Armstrong relation is precisely exponential, we establish an algorithm that computes a possibilistic
Armstrong relation whose size is guaranteed to be at most quadratic in the size of a minimum-sized possibilistic
Armstrong relation. These results subsume the case of Armstrong relations for classical keys for k = 1.

• We then show that the complexity of deciding whether a given possibilistic relation satisfies some possibilistic
key with at most n attributes is both NP-complete and W[2]-complete in the size of the possibilistic key. It
is therefore very unlikely that tractable algorithms for the discovery of possibilistic keys can be found, even

3

when the size of the possibilistic keys are fixed. Using hypergraph transversals, we establish an algorithm that
computes a representation for the set of possibilistic keys that hold on a given possibilistic relation. Again,
the special case where k = 1 covers the discovery of classical keys from relations. While the computation
of Armstrong relations turns a set of possibilistic keys into a possibilistic relation that satisfies only those p-
keys that are implied by the given set, the discovery algorithm turns a given possibilistic relation into a set of
possibilistic keys that only implies those p-keys that hold on the given relation.

• The algorithms for computing possibilistic Armstrong relations and the discovery of possibilistic keys from
possibilistic relations have been implemented as prototypes. These prototypes transfer our findings into actual
tools that can help business analysts with the acquisition of meaningful possibilistic keys in practice.

• Finally, we have used the prototypes to conduct detailed experiments. For the computation of possibilistic
Armstrong relations, we measure the time it takes to compute them as well as their size. We show cases where
the size grows exponentially in the input, and other cases where the size grows logarithmically in the input.
For randomly created input sets, the output size and computation time each grow low-degree polynomial in
the number of given input attributes and for any fixed number of available possibility degrees, and each also
grow low-degree polynomial in the number of available possibility degrees and for any fixed number of input
attributes. For the discovery problem, we have applied our algorithm to six real-world data sets with varying
numbers of attributes and columns after they have been made possibilistic by randomly assigning available
possibility degrees to each of their tuples. We compare results for all applicable data sets under different null
marker semantics, that is, under null = null and under null , null. We also compare results between a
sequential and a parallel implementation of our algorithms.

Organization. The remainder of this article is organized as follows. In Section 2 we compare our work to previous
research, emphasizing the lack of a qualitative framework for data dependencies under uncertain data. In the same
section, we also briefly summarize the work on other classes of possibilistic data dependencies. Our possibilistic data
model and possibilistic keys are formally introduced in Section 3. The use case study about web data extraction is
presented in Section 4. Axiomatic and algorithmic characterizations of the associated implication problem are estab-
lished in Section 5. In Section 6, applications of possibilistic keys in constraint maintenance, data cleaning, and query
processing are illustrated by examples. Combinatorial results on the maximum cardinality of non-redundant families
of possibilistic keys are established in Section 7. Possibilistic Armstrong relations are investigated in Section 8, where
we also study the problem of discovering the set of possibilistic keys from a given possibilistic relation. The proto-
type systems for the computation of Armstrong relations and the discovery problem are briefly described in Section 9.
Section 10 presents and discussed our experimental results related to the the computation of Armstrong relations and
the discovery problem. Finally, Section 11 concludes and outlines future work.

2. Related Work

This section will elaborate on the wider context of work on uncertain data. We will start with the general trade-
offs between the use of probabilistic and possibilistic approaches, and highlight some recent work on constraints over
probabilistic databases. Subsequently, we will identify database design and data cleaning as the main target areas
of our possibilistic model in contrast to other possibilistic data models that target database queries. We will then
comment on recent related work on other classes of database constraints that are founded on the possibilistic model
we use. We will say how our contributions to possibilistic keys generalize previous findings for the special case
of keys over certain relations. Finally, we will detail how our current submission extends our conference article on
possibilistic keys.

2.1. Probabilistic databases

Probabilistic databases have received much interest [60] due to the need to deal with uncertain data. While
the many types of uncertainty information make it challenging for uncertain data to become first-class citizens in
commercial database systems, the benefits and applications of uncertain data are broad and deep. For example, the
METIS system is “an industrial prototype system for supporting real-time, actionable maritime situational awareness”.

4

It uses web harvesting, information extraction, and data integration to collect substantial data on ships, their routes,
and actions. The system represents the uncertainty in this data explicitly, and utilizes the information for reasoning
purposes with ProbLog. When coast guards notice ships in their waters, they ask queries of the following type to
METIS: “What is the probability of smuggling and how reliable is this assessment?”. Given there are more than
300,000 ships in the world and each of them creates a lot of data, this is quite an impressive achievement, and a good
motivator to conduct research on uncertain data.

Constraints present a key challenge here: “When the data is uncertain, constraints can be used to increase the
quality of the data, and hence they are an important tool in managing data with uncertainties” [9]. Suciu et al.
emphasize that “the main use of probabilities is to record the degree of uncertainty in the data and to rank the outputs
to a query; in some applications, the exact output probabilities matter less to the user than the ranking of the outputs”
[60]. This suggests that a qualitative approach to uncertainty, such as possibility theory [15], can avoid the high
computational complexity in obtaining and processing probabilities, while guaranteeing the same qualitative outcome.

Research on probabilistic databases has naturally focused on query processing, e.g. [3, 30]. Keys and cardinality
constraints on probabilistic databases have been studied in [7, 6, 29, 55, 56, 57]. Here, [7, 6, 55, 56, 57] study similar
problems for probabilistic keys and cardinality constraints that we investigate in this article for possibilistic keys.
Probabilistic and possibilistic keys complement one another and are incomparable: Probabilistic keys are based on
underlying probability distributions, and possibilistic keys are based on underlying possibility distributions. The use
of either probabilistic or possibilistic keys therefore depends on what kind of uncertainty information is available
and/or required. The paper [29] focuses on the use of probabilistic keys for query optimization.

2.2. Possibilistic data models and their target use cases

Similar to probabilistic databases, possibilistic approaches to uncertain data have mainly dealt with query lan-
guages. Queries are not the main subject of this article, so we refer the reader to a survey on fuzzy approaches to
database querying [65]. Nevertheless, we will now comment on various possibilistic data models, their expressive-
ness, and their main target areas. From the least to the most expressive, we can at least distinguish four possibilistic
models for uncertain data:

• databases with layered tuples

• tuples involving certainty-qualified attribute values

• tuples involving attribute values restricted by possibility distributions, and

• possibilistic c-tables.

Layered tuples. This is the data model we use here. The idea is just to provide a total ordering of the tuples in the
database according to the confidence we have in their truth. This is encoded by assigning a possibility degree with
each tuple. The result is a layered database: all the tuples having the same degree are in the same layer (and only
them). The tuples of highest possibility degree are also associated with the highest certainty degree, while tuples with
a smaller possibility degree are not certain at all. This means that any possible world contains all the tuples with the
highest possibility degree, while the other tuples may or may not be present in a particular possible world, see [44]
for details. Our model does not provide information about the uncertainty of specific attribute values. Consequently,
enforcing the p-degrees on tuples in situations where the degree of uncertainty is known for some attribute values
and can be quantified, we would loose some information. On the other hand, there may well be situations where
the sources of uncertainty are unclear, cannot be quantified adequately, or where this is not even desired. In this
model, the possibility degree of a tuple can be understood as a global function of many (unspecified) factors, or
as a simple means to holistically assess the degree of possibility we associate with a tuple. It is the quantity that
results from the combination of the uncertainty information present in the given set of attributes. A different way of
interpretation, which is closer to the quantification of p-degrees for a value of an attribute, is to take the minimum
p-degree associated with the values on the given attributes. This is a trade-off: if specific information (such as the
p-degree of an attribute value) is available, we may not be able to express it in less expressive models, but if specific
information is unavailable, then we can still express it in less expressive models. The trade-off can be viewed as a
generalization of the situation that is already apparent in databases with null markers: SQL permits only one type of

5

null marker, so we lose information whenever we know more about the kind of missing value (e.g. the value exists but
is unknown, or the value does not exist). The possibilistic grounding of this model was first presented in [44] where the
duality between p-degrees and c-degrees is pointed out and exploited, but the model has its roots in an early proposal
dealing with weighted tuple databases [31]. The possibilistic model has gained recent momentum in a series of articles
that highlight its applications in data modeling [21, 38], database design [45], and data cleaning [35]. In [44], a
new class of possibilistic functional dependencies was introduced, and the equivalence of their associated implication
problem to that of Horn clauses in possibilistic logic was proven. The main target area of this new class of possibilistic
functional dependencies was database schema design, since different degrees of data redundancy can be introduced
and different normal forms guarantee that no redundant data values of these degrees can occur in any instances of the
schemata that meet the normal form condition. This normalization framework for uncertain data has been reported
in [45]. Possibilistic keys form the important special case of possibilistic functional dependencies that represent the
sub-class of functional dependencies which do not case any form of data redundancy. Possibilistic keys were the first
class of database constraints introduced for the underlying possibilistic model [33]. The current article is an extended
version of [33]. Another important area of application for any form of constraints over this possibilistic model is data
cleaning. Here, the details can be found in [35]. Basically, the p-degrees of tuples provide a new view of cleaning dirty
data: Instead of viewing the data itself as dirty, we view the p-degrees associated with the data as dirty. The c-degrees
of constraints then provide guidelines for the cleaning of the p-degrees in the sense that the p-degrees must be lowered
minimally to restore consistency with respect to the given c-degrees of constraints. In [21, 38], the possibilistic model
was used to introduce a new class of possibilistic cardinality constraints. While keys stipulate that there cannot be two
different tuples with matching values on all the attributes of the key, cardinality constraints stipulate that there cannot
be b + 1 different tuples with matching values on all the attributes of the cardinality constraint. Keys therefore form
the important special case of cardinality constraints where b = 1.
Certainty-qualified attribute values. In this model [53], attribute values (or disjunctions thereof) are associated
with a c-degree (which is the lower bound of the value of a necessity function). This amounts to associating each
attribute value with a simplified type of possibility distribution restricting it. Different attributes in a tuple may have
different c-degrees associated with their respective values. This model has some advantages with respect to querying:
i) it constitutes a strong representation system for the whole relational algebra, ii) it does not require the use of any
lineage mechanism and the query complexity is close to the classical case, and iii) the approach seems more robust
with respect to small changes in the value of degrees than a probabilistic handling of uncertainty.
Attribute values restricted by general possibility distributions. In this full possibilistic model [5], any attribute
value can be represented by a possibility distribution. Moreover, representing the result of some relational operations
(in particular the join) in this model requires the expression of dependencies between candidate values of different
attributes in the same tuple, which leads to the use of nested relations. In [5], it is shown that this model is a strong
representation system for selection, projection and foreign-key join only. The handling of the other relational oper-
ations requires the use of a lineage mechanism as in the probabilistic approaches. This model makes it possible to
compute not only the more or less certain answers to a query (as in the previous model), but also the answers which
are only possible to some extent.
Possibilistic c-tables. This model is outlined in [54]. The possibilistic extension of c-tables preserves all the advan-
tages of classical c-tables (for expressing constraints linking attribute values) while the attribute values are restricted
by any kind of possibility distribution. This model generalizes the two previous ones. In fact, possibilistic c-tables,
similar to probabilistic c-tables, can be encompassed in the general setting of the semiring framework proposed by
Tannen et al. [20].

2.3. Extending results from keys over certain relations
The present article extends the conference version [33] in various directions. Firstly, a new section on extremal

combinatorics for possibilistic keys has been added. Here, we characterize which families of non-redundant possi-
bilistic keys attain maximum cardinality. The result can be used by data engineers to simulate scenarios where the
largest potential number of possibilistic keys must be maintained, and can therefore provide estimates into the worst-
case complexity of managing them. Secondly, we prove a new result that the discovery of possibilistic keys is both
NP-complete and W[2]-complete in the size of the possibilistic keys. Thirdly, we implemented our algorithms for
computing possibilistic Armstrong relations as well as for computing a cover for the set of possibilistic keys that hold
on a given possibilistic relation. The graphical user interfaces for these prototype systems are briefly summarized.

6

Fourthly, we used the prototype systems to conduct extensive experiments regarding the time it takes to compute the
outputs of both algorithms as well as the size of these outputs. The findings are also discussed in a new section.
Fifthly, we have provided full proofs for all our results. Sixthly, we have included a new result on the equivalence of
the finite and unrestricted implication problems for p-keys. Seventhly, we have also included the new application area
of constraint maintenance in the section on applications for p-keys. Eighthly, we have included a new section on a use
case for our possibilistic model and p-keys from web data integration. Finally, the presentation of our findings in [33]
has been substantially revised to add more algorithms, explanations, illustrations, and examples.

Our contributions extend results on keys from classical relations [43], covered by the special case of two possibility
degrees where k = 1. These include results on the implication problem [1, 11], Armstrong relations [2, 18, 24, 47, 63]
and the discovery of keys from relations [4, 28, 40, 48, 51, 52], as well as extremal combinatorics [10, 23, 34, 58].
Keys have also been considered in other data models, including incomplete relations [22, 34, 39, 37, 36, 25, 61, 64]
and XML data [26, 27]. Note that Armstrong relations are also an AI tool to acquire and reason about conditional
independencies [19, 50].

3. Possibilistic Keys

In this section we extend the classical relational model of data to model uncertain data qualitatively. Based on the
data model, we then introduce the notion of a possibilistic key, and illustrate it by examples.

A relation schema, denoted by R, is a finite non-empty set of attributes. Each attribute a ∈ R has a domain dom(a)
of values. A tuple t over R is an element of the Cartesian product

∏
a∈R dom(a) of the attributes’ domains. For X ⊆ R

we denote by t(X) the projection of t on X. A relation over R is a finite set r of tuples over R. As example we use the
relation schema Tracking with attributes zone, time, rfid, object from before. Tuples either belong or do not belong to
a relation. For example, we cannot express that we have less confidence for the Grizzly identified by rfid value H3 to
be in zone Z3 at 1pm than for the Grizzly identified by H2.

We model uncertain relations by assigning to each tuple some degree of possibility with which the tuple occurs in
a relation. Formally, we have a scale of possibility, that is, a finite strict linear order S = (S , <) with k + 1 elements,
denoted by α1 > · · · > αk > αk+1. The elements αi ∈ S are called possibility degrees, or p-degrees. The top p-degree
α1 is reserved for tuples that are ‘fully possible’ to occur in a relation, while the bottom p-degree αk+1 is reserved for
tuples that are ‘impossible’ to occur. Humans like to use simple scales in everyday life to communicate, compare, or
rank. Simple means to classify items qualitatively, rather than quantitatively by putting a precise value on it. Classical
relations use two p-degrees, that is k = 1.

A possibilistic relation schema (R,S), or p-relation schema, consists of a relation schema R and a possibility scale
S. A possibilistic relation, or p-relation, over (R,S) consists of a relation r over R, and a function Possr that assigns
to each tuple t ∈ r a p-degree Possr(t) ∈ S. Table 1 shows a p-relation over (Tracking,S = {α1, . . . , α5}).

P-relations enjoy a possible world semantics. For i = 1, . . . , k let ri consist of all tuples in r that have p-degree at
least αi, that is, ri = {t ∈ r | Possr(t) ≥ αi}. Indeed, we have r1 ⊆ r2 ⊆ · · · ⊆ rk. The possibility distribution πr for this
linear chain of possible worlds is defined by πr(ri) = αi. Note that rk+1 is not a possible world, since its possibility
π(rk+1) = αk+1 means ‘impossible’. Vice versa, the possibility Possr(t) of a tuple t ∈ r is the maximum possibility
max{αi | t ∈ ri} of a world to which t belongs. If t < rk, then Possr(t) = αk+1. Every tuple that is ‘fully possible’ occurs
in every possible world, and is therefore also ‘fully certain’. Hence, relations are a special case of uncertain relations.
Figure 1 shows the possible worlds r1 (r2 (r3 (r4 of the p-relation of Table 1.

We introduce possibilistic keys, or p-keys, as keys with some degree of certainty. As keys are fundamental to
applications with certain data, p-keys will serve a similar role for application with uncertain data. A key K ⊆ R is
satisfied by a relation r over R, denoted by |=r K, if there are no distinct tuples t, t′ ∈ r with matching values on all the
attributes in K. For example, the key {time, object} is not satisfied by any relation r1, . . . , r4. The key {zone, time} is
satisfied by r1, but not by r2. The key {zone, rfid} is satisfied by r2, but not by r3. The key {time, rfid} is satisfied by r3,
but not by r4. The key {zone, time, rfid} is satisfied by r4.

The p-degrees of tuples result in degrees of certainty with which keys hold. Since K1 = {zone, time, rfid} holds in
every possible world, it is fully certain to hold on r. As K2 = {time, rfid} is only violated in a somewhat possible world
r4, it is quite certain to hold on r. Since the smallest relation that violates K3 = {zone, rfid} is the medium possible
world r3, it is medium certain to hold on r. As the smallest relation that violates K4 = {zone, time} is the quite possible

7

Figure 1: Worlds of possibilistic relation and scope of keys

world r2, it is somewhat certain to hold on r. Since {time, object} is violated in the fully possible world r1, it is not
certain at all to hold on r. The scope of these keys, that is the largest possible world on which they hold, is illustrated
in Figure 1.

Similar to a scale S of p-degrees for tuples we use a scale ST of certainty degrees, or c-degrees, for keys. We use
subscripted versions of the Greek letter β to denote c-degrees. Formally, the correspondence between p-degrees in S
and the c-degrees in ST can be defined by the mapping αi 7→ βk+2−i for i = 1, . . . , k + 1. Hence, the marginal certainty
Cr(K) with which the key K holds on the uncertain relation r is either the top degree β1 if K is satisfied by rk, or the
minimum amongst the c-degrees βk+2−i that correspond to possible worlds ri in which K is violated, that is,

Cr(K) =

{
β1 , if rk satisfies K
min{βk+2−i |6|=ri K} , otherwise .

For the p-relation r from Table 1, we can observe from Figure 1 that the marginal certainty of K1 =

{zone, time, rfid} is Cr(K1) = β1, the marginal certainty of K2 = {time, rfid} is Cr(K2) = β2, the marginal certainty of
K3 = {zone, rfid} is Cr(K3) = β3, and the marginal certainty of K4 = {zone, time} is Cr(K4) = β4.

In the same way keys can ensure the integrity of entities in certain relations, possibilistic keys aim at ensuring the
integrity of entities in uncertain relations. More precisely, p-keys aim at ensuring the integrity of entities in some of
the possible worlds of uncertain relations. For this purpose, we empower p-keys to stipulate that the marginal certainty
by which they hold in some uncertain relation must meet a given minimum threshold. This aim is formalized by the
following definition.

Definition 1. Let (R,S) denote a p-relation schema. A possibilistic key (p-key) over (R,S) is an expression (K, β)
where K ⊆ R and β ∈ ST . A p-relation (r,Possr) over (R,S) satisfies the p-key (K, β) if and only if Cr(K) ≥ β.

In other words, a p-key (K, β) is violated by a p-relation r if and only if the marginal certainty Cr(K) by which the
key K holds in r is lower than the minimum c-degree β that has been specified. We illustrate the notion of a p-key on
our running example.

Example 2. The p-relation from Table 1 satisfies the p-key set Σ consisting of

• ({zone, time, rfid}, β1),

• ({time, rfid}, β2),

• ({zone, rfid}, β3), and

• ({zone, time}, β4).

It violates the p-key ({zone, rfid}, β2) since Cr({zone, rfid}) = β3 < β2.

8

4. A real-world example from web data integration

In this section we illustrate the application of our framework on a real-world example from Web data integration.
Here, basic information about the top-100 best-selling books was extracted from five online book sellers:

1. eBay book store1

2. Amazon book store2

3. book directory3

4. Barnes & Noble4

5. Easons5.

For our collection the tool Web Scraper6 was used on a Chrome extension plugin. It extracted the con-
tent from the same HTML tags from every book web page. The extracted results had many mistakes initially,
since not all books have the same details and the same HTML tags may also have different values. Errors were
fixed manually. In total, 344 tuples were extracted over the p-schema (Books, {α1, . . . , α5, α6}) with Books =

{title, author, pages, price, publisher}. For i = 1, . . . , 6, a tuple was assigned p-degree αi if and only if it was con-
tained in 6 − i of the data sets. The p-degree therefore denotes the possibility by which a book is listed in the top-100
of each book seller. From the resulting p-relation we then applied Algorithm 4 to discover the following set Σ of
p-keys that are satisfied by it.

• ({pages, title}, β1), ({price, title}, β1), ({publisher, title}, β1),

• ({title}, β2),

• ({pages}, β4), ({author, price}, β4), ({price, publisher}, β4), and

• ({publisher}, β5).

These p-keys may now be used for the optimization of any queries on the given data set. Note that this is true whether
the discovered p-key is meaningful for the given application domain, or not.

With the help of Algorithm 3 we then computed an Armstrong p-relation for the set Σ, and then looked manually
for tuples of the original p-relation that had same agree sets as those in the Armstrong p-relation. The benefit is
that the resulting Armstrong p-relation consists of real-world tuples and is a subset of the original p-relation. Such
Armstrong p-relations are known as informative Armstrong databases [49, 63]. Informative Armstrong databases may
be understood as semantic samples of the original database, since they represent the same set of constraints. Their big
advantage is that they are easier to understand by humans because of their smaller size. In our example, the resulting
informative Armstrong p-relation is shown in Table 2.

It consists of seven tuples, which is 2% of the number of tuples in the original p-relation. The sample may serve
different purposes. It can be understood as a semantic data profile of the given data set, and thus be used for testing
purposes, such as queries or updates. This provides data profiling with a different, more user-friendly, perspective of
the result set. Another application is business rule acquisition and data cleaning. The aim of business rule acquisition
is to identify those constraints which are meaningful in a given application domain. This is usually done with the
help of domain experts, who have commonly no knowledge of database constraints but can readily assess samples and
provide feedback. Given the sample above, for instance, a domain expert may spot that different books with the same
author and title occur in the list. If the original intention of the integration process was to not list multiple books with
the same author and title, then the sample would immediately alert domain experts to a violation of this constraint.
The feedback to the business analysts would then result in the specification of the p-key ({author, title}, β1). In turn,
such p-keys may guide data repairs.

1http://www.half.ebay.com/books-bestsellers
2https://www.amazon.com/best-sellers-books-Amazon/zgbs/books
3https://www.bookdepository.com/bestsellers
4http://www.barnesandnoble.com/b/books/_/N-1fZ29Z8q8
5http://www.easons.com/shop/c-bestselling-books
6http://webscraper.io/

9

title author pages publisher price p-degree
Harry Potter and the Cursed Child J. K. Rowling 352 Little Brown 19.19 α1

Harry Potter and the Philosopher’s Stone J. K. Rowling 256 Bloomsbury 37.32 α1
Harry Potter Box Set J. K. Rowling 3422 Bloomsbury 76.04 α2

Mockingjay Suzanne Collins 448 Scholastic 8.92 α2
Catching Fire Suzanne Collins 448 Scholastic 8.92 α3
End of Watch Stephen King 448 Scribner 24.65 α3
End of Watch Stephen King 496 Pocket Books 9.2 α5

Table 2: An informative Armstrong p-relation for the book p-relation

5. Reasoning Tools

The primary purpose of any class of data dependencies is the enforcement of data integrity. In the case of keys,
data integrity refers to entity integrity. Enforcing a set of keys on a relation means that any updates to the relation
should only be permitted when they result in a new relation that still satisfies all the keys in the given set. Validating
that the new relation does satisfy all the keys in the given set consumes time, which should be minimized in order
to progress data processing. As such, it is important that the given set of keys does not contain any redundant keys.
Here, a key σ is redundant in a given set Σ if and only if σ is implied by Σ − {σ}. Recall that a constraint σ is implied
by a constraint set Σ, written Σ |= ϕ, if and only if every relation that satisfies all the constraints in Σ also satisfies σ.
In other words, if a key σ is redundant in a given set Σ, then knowing that all the keys in Σ − {σ} are satisfied by the
new relation also guarantees us that σ is satisfied by the new relation: We do not need to validate that σ is satisfied by
the new relation. This means that the following implication problem is fundamental for the class of p-keys.

PROBLEM: Implication problem
INPUT: A set Σ ∪ {ϕ} of p-keys over p-relation schema (R,S)

OUTPUT: Yes, if Σ |= ϕ
No, otherwise

It is the aim of this section to establish axiomatic and algorithmic solutions to the implication problem of p-keys.
The solutions capture those for the notion of a classical key by the special case where the number of available p-degree
is two, that is, where k = 1. We will first introduce some more terminology and show that, for the class of p-keys, finite
and unrestricted implication problems coincide. Subsequently, we will establish a strong correspondence between the
implication problem for p-keys and that for classical keys. We will then utilize this correspondence to develop the
axiomatic and algorithmic solutions to the implication problem.

5.1. Finite and Unrestricted Implication Problems

So far, we have defined relations to be finite set of tuples. In theory, it would also be possible to allow infinite set
of tuples as p-relations. This results in two different notions of implication, which we define now. Let Σ ∪ {ϕ} denote
a set of p-keys over (R,S). We say Σ (finitely) implies ϕ, denoted by Σ |=(f) ϕ, if every (finite) p-relation (r,Possr)
over (R,S) that satisfies every p-key in Σ also satisfies ϕ. Consequently, for the unrestricted implication problem we
consider finite and infinite relations, while for the finite implication problem we restrict ourselves to finite relations
only. We use Σ∗(f) = {ϕ | Σ |=(f) ϕ} to denote the (finite) semantic closure of Σ. We will show now that finite and
unrestricted implication problem coincide for the class p-keys. That is, for any given set Σ ∪ {ϕ} of p-keys on any
given p-relation schema (R,S) it holds that Σ |= ϕ if and only if Σ |=(f) ϕ. In fact, we can show something stronger:
We show that the unrestricted implication problem coincides with the implication problem in two-tuple relations. The
latter problem is to decide for any given set Σ ∪ {ϕ} of p-keys on any given p-relation schema (R,S), whether Σ |=2 ϕ
holds, that is, whether every two-tuple p-relation over (R,S) that satisfies all the p-keys in Σ also satisfies ϕ. We will
now show that all three implication problems coincide for the class of p-keys.

Theorem 1. Let Σ ∪ {ϕ} denote a set of p-keys over p-relation schema (R,S). Then the following statements are
equivalent:

10

1. Σ |= ϕ,

2. Σ |= f ϕ, and

3. Σ |=2 ϕ.

Proof. Since every two-tuple p-relation over (R,S) is a finite p-relation, the following is straightforward: if Σ |= ϕ,
then Σ |= f ϕ, and if Σ |= f ϕ, then Σ |=2 ϕ. It remains to establish the opposite directions. For that purpose, it suffices to
show that if Σ |=2 ϕ, then Σ |= ϕ. We show the contraposition: if Σ |= ϕ does not hold, then Σ |=2 ϕ does also not hold.

Suppose Σ |= ϕ does not hold. Then there is some (possibly infinite) p-relation (r,Possr) over (R,S) such that
(r,Possr) satisfies Σ, but (r,Possr) violates ϕ = (K, βi). Since (r,Possr) violates ϕ, there is a smallest possible world
r j that violates K and where Cr(K) = βk+2− j < β. Since r j violates K, there must be two tuples t1, t2 ∈ r j such that
t1(K) =6 t2(K). Let (r′,Possr′) be the two-tuple p-relation over (R,S) where r′ = {t1, t2} and Possr′ (t1) = Possr(t1)
and Possr′ (t2) = Possr(t2). It follows immediately that for every (K′, β′) ∈ Σ, Cr′ (K′) ≥ Cr(K′) ≥ β′ holds. That is,
(r′,Possr′) satisfies all p-keys in Σ. Since (r′,Possr′) violates ϕ = (K, ϕ) it follows that Σ |=2 ϕ does not hold. This
completes the proof.

Theorem 1 allows us to speak about the implication problem for the class of p-keys. The following example shows
an instance of the implication problem on our running example.

Example 3. Let Σ be as in Example 2, and ϕ = ({zone, rfid, object}, β2). Then Σ does not imply ϕ as the following
p-relation witnesses:

zone time rfid object p-degree
Z0 10am H0 Grizzly α1
Z0 3pm H0 Grizzly α3

.

Notice that p-relation is a two-tuple relation.

5.2. The Magic of β-Cuts
For our axiomatic and algorithmic solutions to the implication problem for p-keys we will establish a strong

correspondence to the implication problem for classical keys. This is possible because of the sub-model property
of p-keys: Whenever a relation satisfies a key, then every sub-relation of the relation will also satisfy the key. A
fundamental notion is that of a β-cut, which we define now.

Definition 4. Let Σ denote a set of p-keys over p-relation schema (R,S) with |S| = k + 1, and let β ∈ ST denote a
c-degree where β > βk+1. Then Σβ = {K | (K, β′) ∈ Σ and β′ ≥ β} denotes the set of keys for which a p-key exists in Σ

whose c-degree is at least β. The key set Σβ is called the β-cut of the p-key set Σ.

We illustrate the definition of β-cuts on our running example.

Example 5. For the p-key set Σ = {(K1, β1), (K2, β2), (K3, β3), (K4, β4)} from Example 2, we obtain for i = 1, . . . , 4 the
following β-cuts Σβi =

⋃i
j=1{K j}.

The fundamental property of β-cuts is given by the following result.

Theorem 2. Let Σ ∪ {(K, β)} be a p-key set over (R,S) where β > βk+1. Then Σ |= (K, β) if and only if Σβ |= K.

Proof. Suppose (r,Possr) is some p-relation over (R,S) that satisfies Σ, but violates (K, β). In particular, Cr(K) < β
implies that there is some relation ri that violates K and where βk+2−i < β. Let K′ ∈ Σβ, where (K′, β′) ∈ Σ. Since r
satisfies (K, β′) ∈ Σ we have Cr(K′) ≥ β′ ≥ β. If ri violated K′, then β > βk+2−i ≥ Cr(K′) ≥ β, a contradiction. Hence,
ri satisfies Σβ and violates K.

Let r′ denote some relation that satisfies Σβ and violates K, w.l.o.g. r′ = {t, t′}. Let r be the p-relation over (R,S)
that consists of r′ and where Possr′ (t) = α1 and Possr′ (t′) = αi, such that βk+1−i = β. Then r violates (K, β) since
Cr(K) = βk+2−i, as ri = r′ is the smallest relation that violates K, and βk+2−i < βk+1−i = β. For (K′, β′) ∈ Σ we
distinguish two cases. If ri satisfies K′, then Cr(K′) = β1 ≥ β. If ri violates K′, then K′ < Σβ, i.e., β′ < β = βk+1−i.
Therefore, β′ ≤ βk+2−i = Cr(K′) as ri = r′ is the smallest relation that violates K′. We conclude that Cr(K′) ≥ β′.
Consequently, (r,Possr) is a p-relation that satisfies Σ and violates (K, β).

11

Table 3: Axiomatization K′ = {T ′,S′} of Keys and K = {T ,S,B,W} of Possibilistic Keys

R
(top, T ′)

K

K ∪ K′
(superkey, S′)

(R, β) (K, βk+1)
(top, T) (bottom, B)

(K, β)
(K ∪ K′, β)

(K, β)
(K, β′)

β′ ≤ β

(superkey, S) (weakening,W)

The following example illustrates an instance of the correspondence that Theorem 2 has established.

Example 6. Let Σ ∪ {ϕ} be as in Example 3. Theorem 2 says that Σβ2 does not imply ({zone, rfid, object}, β2). The
possible world r3 of the p-relation from Example 3:

zone time rfid object
Z0 10am H0 Grizzly
Z0 3pm H0 Grizzly

satisfies the key {time, rfid} that implies both keys in Σβ2 . However, r3 violates the key {zone, rfid, object}.

In the following subsections and sections we will make extensive use of Theorem 2.

5.3. Axiomatic Characterization
We determine the semantic closure by applying inference rules of the form

premise
conclusion

condition .

For a set R of inference rules let Σ `R ϕ denote the inference of ϕ from Σ by R. That is, there is some sequence
σ1, . . . , σn such that σn = ϕ and every σi is an element of Σ or is the conclusion that results from an application of
an inference rule in R to some premises in {σ1, . . . , σi−1}. Let Σ+

R
= {ϕ | Σ `R ϕ} be the syntactic closure of Σ under

inferences by R. R is sound (complete) if for every set Σ over every (R,S) we have Σ+
R
⊆ Σ∗ (Σ∗ ⊆ Σ+

R
). The (finite)

set R is a (finite) axiomatization if R is both sound and complete.
For the set K from Table 3 the attribute sets K,K′ are subsets of a given R, and β, β′ belong to a given ST . In

particular, βk+1 denotes the bottom certainty degree.

Theorem 3. The set K forms a finite axiomatization for the implication problem of p-keys.

Proof. We prove soundness first. For the soundness of the top-rule T we observe that every possible world is a
relation, which means there cannot be any possible world which contains two different tuples that have matching
values on all the attributes of the underlying relation schema R. In other words, R is always guaranteed to be a p-
key that holds with c-degree β1 and thus any c-degree. For the soundness of the bottom-rule B we observe that the
marginal c-degree of any key in any p-relation is at least βk+1. For the soundness of the superkey-rule S, let r be a
p-relation that satisfies (K, β). Then every possible world of r that satisfies the key K will also satisfy the superkey
K ∪ K′. Consequently, the marginal certainty of K ∪ K′ in r is at least as high as the marginal certainty of K in r.
Consequently, r will also satisfy (K ∪ K′, β). For the soundness of the weakening-rule W let r be a p-relation that
satisfies (K, β). That is, the marginal certainty Cr(K) of K in r is at least β. Consequently, the marginal certainty Cr(K)
of K in r is also at least β′ for every β′ such that β′ ≤ β. This shows the soundness of the inference rules.

For completeness, we apply Theorem 2 and the fact thatK ′ axiomatizes key implication. Let (R,S) be a p-relation
schema with |S| = k + 1, and Σ ∪ {(K, β)} a p-key set such that Σ |= (K, β). We show that Σ `K (K, β) holds.

For Σ |= (K, βk+1) we have Σ `K (K, βk+1) by applying B. Let now β < βk+1. From Σ |= (K, β) we conclude Σβ |= K
by Theorem 2. Since K′ is complete for key implication, Σβ `K′ K holds. Let Σ

β
β = {(K′, β) | K′ ∈ Σβ}. Thus, the

12

inference of K from Σβ using K ′ can be turned into an inference of (K, β) from Σ
β
β by K, simply by adding β to each

key in the inference. Hence, whenever T ′ or S′ is applied, one applies instead T or S, respectively. Consequently,
Σ
β
β `K (K, β). The definition of Σ

β
β ensures that every p-key in Σ

β
β can be inferred from Σ by applying W. Hence,

Σ
β
β `K (K, β) means that Σ `K (K, β).

We illustrate the use of the inference rules on our running example.

Example 7. Let Σ denote the p-key set from Example 2: ({zone, time, rfid}, β1), ({time, rfid}, β2), ({zone, rfid}, β3), and
({zone, time}, β4). Independent of the given Σ, the top-rule T allows us to infer ({zone, time, rfid, object}, β1), and
the bottom-rule B allows us to infer p-keys such as ({zone}, β5) or even (∅, β5). From ({time, rfid}, β2) we can infer
({time, rfid, object}, β2) by means of the superkey-rule S, and from the latter p-key we can infer ({time, rfid, object}, β4)
by application of the weakening-ruleW.

5.4. Algorithmic Characterization
The axiomatization K from the last subsection enables us to enumerate all p-keys implied by a p-key set Σ. In

practice, however, it often suffices to decide whether a given p-key ϕ is implied by Σ. Enumerating all implied p-keys
and checking whether ϕ is among them is neither efficient nor does it make good use of the input ϕ. We will now
establish an efficient procedure to decide the implication problem for p-keys. The procedure is based on the following
result which says that a p-key is implied by a p-key set if and only if it is trivial (i.e. contains all attributes or has
bottom c-degree) or there is some p-key in the p-key set whose attribute set is contained in that of the given p-key and
whose c-degree is higher than the c-degree of the given p-key.

Theorem 4. Let Σ ∪ {(K, β)} denote a set of p-keys over (R,S) with |S| = k + 1. Then Σ implies (K, β) if and only if
β = βk+1, or K = R, or there is some (K′, β′) ∈ Σ such that K′ ⊆ K and β′ ≥ β.

Proof. Theorem 2 shows for i = 1, . . . , k that Σ implies (K, βi) if and only if Σβ implies K. It is known from the
relational model of data [62] (or easy to observe from the axiomatization K′ of keys) that a key K is implied by a key
set Σβ if and only if K = R or there is some K′ ∈ Σβ such that K′ ⊆ K holds. From the definition of β-cuts it follows
that K′ ∈ Σβ, if (K′, β′) ∈ Σ for some β′ ≥ β. Consequently, the theorem holds for i = 1, . . . , k. Furthermore, Σ implies
(K, βk+1), so the theorem follows.

We apply Theorem 4 to our running example.

Example 8. Let Σ denote the p-key set from Example 2: ({zone, time, rfid}, β1), ({time, rfid}, β2), ({zone, rfid}, β3),
and ({zone, time}, β4). Independent of the given Σ we can use Theorem 4 to observe that p-keys such as
({zone, time, rfid, object}, β1), ({zone}, β5) or even (∅, β5) are implied. The p-key ({time, rfid, object}, β4) is implied by
Σ because the given p-key ({time, rfid}, β2) ∈ Σ meets the conditions of Theorem 4 that {time, rfid} ⊆ {time, rfid, object}
and β2 ≥ β4. In contrast, the p-key ({time, rfid, object}, β1) is not implied by Σ since β1 , βk+1 = β5, {time, rfid, object}
does not include zone, and there is no (K′, β′) ∈ Σ such that K′ ⊆ {time, rfid, object} and β′ ≥ β1.

Theorem 4 can be easily converted into an algorithm for deciding the implication problem of p-keys. The pseudo-
code for such an algorithm is given in Algorithm 1. The algorithm first checks if the p-key in question is trivial and,
if not, then goes through Σ to see if any member satisfies the remaining condition of Theorem 4 for implication. If no
member can be found, the p-key is not implied. It is immediate that this algorithm runs in linear time in the input.

Corollary 5. An instance Σ |= ϕ of the implication problem for p-keys can be decided in time O(||Σ ∪ {ϕ}||) where ||Σ||
denotes the total number of symbol occurrences in Σ.

This section has established axiomatic and algorithmic characterizations for the implication problem of possibilis-
tic keys. These will form the foundation for subsequent sections.

6. Applications of Possibilistic Keys

We use this section to outline some important applications of p-keys. This provides further motivation for the
study of their properties.

13

Algorithm 1 Implication

Input: Set Σ ∪ {(K, β)} of p-keys over p-relation schema (R,S) with |S| = k + 1
Output: Yes, if Σ |= (K, β), and No, otherwise

1: if K = R or β = βk+1 then
2: return true;
3: else
4: for all (K′, β′) ∈ Σ do
5: if K′ ⊆ K and β′ ≥ β then
6: return true;
7: return false;

Algorithm 2 Non-redundant Cover

Input: Set Σ of p-keys over p-relation schema (R,S)
Output: A non-redundant cover Σc ⊆ Σ

1: Σc ← Σ;
2: for all σ ∈ Σc do
3: if (Σc − {σ}) |= σ then
4: Σc ← (Σc − {σ});
5: return Σc;

6.1. Constraint Maintenance

As stated at the beginning of Section 5, the primary purpose of solving the implication problem for p-keys is to
minimize the time required for validating sets of p-keys against an updated p-relation. A set Σc of p-keys is called
a non-redundant cover of a given set Σ of p-keys if and only if Σ+

c = Σ+ and Σc does not contain any p-key that is
redundant. A p-key σ ∈ Σc is said to be redundant with respect to Σc if (Σc − {σ}) |= σ. It is therefore our aim to
compute a non-redundant cover for a given set of p-keys. This can be achieved by applying Algorithm 1 to check for
each given p-key σ ∈ Σ whether (Σ − {σ}) |= σ, and removing σ from Σ whenever that is the case. The pseudo-code
of this algorithm is given in Algorithm 2. Let |Σ| denote the cardinality of a given set Σ of p-keys, that is, the number
of its elements. Indeed, every set Σ of p-keys has a unique non-redundant cover, given by

Σc = {(K, β) ∈ Σ | K , R ∧ β < βk+1 ∧ ¬∃(K′, β′) ∈ Σ((K′ ⊂ K ∧ β′ ≤ β) ∨ (K′ ⊆ K ∧ β′ < β))} .

For that reason we can speak of the non-redundant cover.

Corollary 6. Algorithm 2 computes the non-redundant cover for a given set Σ of p-keys in time O(|Σ| × ||Σ||).

Proof. Algorithm 2 removes successively any redundant p-keys from the input Σ. All remaining members of Σc are
not redundant. The time bound is therefore a consequence of Corollary 5.

Algorithm 2 is non-deterministic due to the different orders in which redundant p-keys may be selected. However,
the algorithm is confluent, that is the result is guaranteed to be the unique non-redundant cover. We illustrate the
computation of the non-redundant cover on our running example.

Example 9. Let Σ denote the p-key set from Example 2: ({zone, time, rfid}, β1), ({time, rfid}, β2), ({zone, rfid}, β3), and
({zone, time}, β4). It is easily observed that none of the p-keys in Σ is implied by the subset of the remaining given
p-keys. In other words, none of the elements in Σ is redundant. Consequently, Σ is its own non-redundant cover.

6.2. Data Cleaning

In this subsection we illustrate an application of possibilistic keys to data cleaning. In [35], possibilistic data
cleaning was introduced. In classical data cleaning, a minimal sequence of update operations are applied to the data to
restore consistency with respect to given set of constraints. Possibilistic data cleaning offers a new view: It is not the

14

data that is considered to be dirty, but the p-degrees associated with the tuples. In this sense, the p-degrees of tuples
are changed minimally such that consistency with respect to the given set of possibilistic constraints is restored. This
section illustrates this new view on our running example with respect to the class of possibilistic keys. For details of
the algorithm we refer the interested reader to [35].

Given that the permitted update operations are limited to tuple deletions, the classical data cleaning problem with
respect to keys can be stated as follows: Given a relation r and a set Σ of keys, find a relation r′ ⊆ r of maximum
cardinality such that r′ satisfies Σ. For example, the relation r (without the two last columns)

r
zone time rfid object Possr Poss′r
Z3 1pm H2 Grizzly α1 α1
Z3 1pm H3 Grizzly α1 α2
Z3 3pm H3 Grizzly α1 α3
Z4 3pm H3 Grizzly α1 α4

violates the set Σ = {zt, zr, tr} of keys. Solutions to the classical data cleaning problem would be the relations r1
consisting of the first and third tuple, r2 consisting of the first and last tuple, and r3 consisting of the second and last
tuple. Each solution requires us to remove at least two tuples from the relation. In this sense, classical data cleaning
removes valuable information from the given relation.

We now consider possibilistic data cleaning as a means to minimize the removal of tuples from a p-relation. For
this purpose, we exploit the c-degrees of p-keys to “reduce” the given p-degrees of tuples such that all p-keys will be
satisfied.

Given two p-relations (r′,Possr′) and (r,Possr) we say that (r′,Possr′) is a p-subrelation of (r,Possr), denoted by
(r′,Possr′) ⊆p (r,Possr), if and only if r′i ⊆ ri for i = 1, . . . , k. The p-subset relationship is simply the partial order
of functions induced by the ordering on p-degrees, that is, (r′,Possr′) ⊆p (r,Possr) if and only if Possr′ (t) ≤ Possr(t)
holds for all tuples t. The p-cardinality of the p-relation (r,Possr) is the mapping C : αi 7→ |ri| for i = 1, . . . , k. We
compare p-cardinalities with respect to the lexicographical order, that is,

C1 <L C2 :⇔ ∃αi(C1(αi) < C2(αi) ∧ ∀α j < αi(C1(α j) = C2(α j)))

The possibilistic data cleaning problem is: Given a p-relation r and set Σ of p-keys, find a p-subrelation r′ ⊆p r of
maximal p-cardinality so that Σ holds on r′.

A point that might seem perhaps controversial in our problem definition is the use of the lexicographic order <L in
defining our target function to optimize. We chose this linearization of the natural partial order between p-cardinalities
over other candidates for several reasons. Firstly, leximin ordering is appropriate for accounting for the cardinality of
level-cuts [14]. Secondly, by maximizing |r′k | = |r

′|, the number of tuples completely “lost” during data cleaning is
minimized. Thirdly, it allows one to develop more efficient algorithms for computing it. For example, the p-relation
(r,Possr) violates the p-key set

Σ = {(zt, β4), (zr, β3), (tr, β2)}.

However, if we change the p-degree of the second tuple to α2, the p-degree of the third tuple to α3, and the p-degree
of the last tuple to α4, then the resulting p-relation (r,Poss′r) satisfies Σ. Note that none of the p-degrees had to be set
to the bottom degree α5. That is, every tuple in the cleaned p-relation (r,Poss′r) is at least somewhat possible to occur.

We refer the interested reader to [35] in which a fixed parameter-tractable algorithm has been established for the
possibilistic data cleaning problem.

6.3. Query Processing

We demonstrate the benefit of p-keys on query processing. Therefore, we add the attribute p-degree to the relation
schema Tracking with attributes zone, time, rfid, object.

Suppose we are interested in finding out which grizzly bears have been tracked in which zone, but we are only
interested in answers that come from ‘certain’ or ‘quite possible’ tuples in the database. A user might enter the
following SQL query:

15

SELECT DISTINCT zone, rfid, p-degree
FROM Tracking
WHERE p-degree = α1 OR p-degree = α2
ORDER BY p-degree ASC

zone rfid p-degree
Z0 H0 α1

Z1 H1 α1

Z1 H2 α1

Z3 H2 α1

Z3 H3 α2

which removes duplicate answers, and orders them with decreasing p-degree. When applied to the p-relation from
Table 1, the query returns the answers on the right.

Firstly, our framework allows users to ask such queries, since the p-degrees of tuples is available. Secondly,
answers can be ordered according to the p-degree, which is a huge benefit for users in terms of ranking outputs.
Thirdly, the example shows how our framework can be embedded with standard technology, here SQL. Finally, recall
our p-key ({zone, rfid}, β3) which holds on the set of tuples that have p-degree α1 or α2. Consequently, the query
answers satisfy the key {zone, rfid} and the DISTINCT clause becomes superfluous. A query optimizer, capable of
reasoning about p-keys, can remove the DISTINCT clause from the input query without affecting its output. This
optimization saves response time when answering queries, as duplicate elimination is an expensive operation and
therefore not executed by default in SQL databases. P-keys, and the ability to reason about them, have therefore direct
applications to query processing.

If we want to use the data model to physically store and manage data, an operational language is required to
evaluate queries. Despite being slightly out of scope, we are providing the basic definitions here for selection, projec-
tion, and join operations. For a p-relation (r,Possr) and X ⊆ R, we define the projection πX(r) = {t(X) | t ∈ r}
of r onto X, and PossπX (r) as PossπX (r)(t) = max{Possr(t′) | t′ ∈ r, t′(X) = t}. For a p-relation (r,Possr), at-
tribute A ∈ R, and constant c ∈ dom(A), we define the constant selection σA=c(r) = {t | t ∈ r, t(A) = c}, and
PossσA=c(r) as PossσA=c(r)(t) = Possr(t) for all t ∈ σA=c(r). For a p-relation (r,Possr), and attributes A, B ∈ R, we
define the attribute selection σA=B(r) = {t | t ∈ r, t(A) = t(B)}, and PossσA=B(r) as PossσA=B(r)(t) = Possr(t) for all
t ∈ σA=B(r). Finally, for p-relations (r,Possr) and (s,Posss) over p-schemata]r and]s and the same linear or-
ders of p-degrees, we define the join r ./ s = {t | ∃t′ ∈ r, t′′ ∈ s, t′(]r) = t(]r), t′′(]s) = t(]s)}, and Possr./s as
Possr./s(t) = min{Possr(t′),Posss(t′′) | t′ ∈ r, t′′ ∈ s, t′(]r) = t(]r), t′′(]s) = t(]s)} for all t ∈ r ./ s. Note that these
operators can also be defined by their possible worlds. That is, the ith possible world for each of these operations
is equal to the classical relational algebra operation applied to the ith possible world of its operands. In particular,
(πr)i = πri , (σA=c(r))i = σA=c(ri), (σA=B(r))i = σA=B(ri), and (r ./ s)i = ri ./ si.

7. Extremal Combinatorics for Possibilistic Keys

In this section we provide answers to fundamental questions concerning the maximum cardinality that non-
redundant families of p-keys with at most ` attributes can have, and which families attain this cardinality. The result
shows data engineers how large families of p-keys can potentially grow, which gives them insight into the complexity
of modeling required and clues for reducing this complexity. A characterization of non-redundant families enables us
to apply techniques from extremal set theory to answer our questions. The main result is interesting from a combina-
torial perspective itself, as it generalizes the famous theorem by Sperner [59].

We use the following notations: [n] = {1, 2, . . . , n} represents sets of attributes, 2[n] = {S : S ⊆ [n]} the powerset
of [n], and 2[n]

`
= {S : S ⊆ [n], |S | ≤ `} the elements of 2[n] with at most ` attributes. Recall from before that a set Σ

of constraints is non-redundant if for all σ ∈ Σ, σ is not implied by Σ − {σ}. For 0 ≤ ` < n and a set Σ ⊆ 2[n]
`
× [k]

of p-keys (K, i) where i ∈ [k] denotes the index of its c-degree βi, Σ is non-redundant if and only if Σ does not contain
two distinct elements (X, i) and (Y, j) with X ⊆ Y and i ≤ j.

The proof of the following theorem uses the properties that p(F) = {X | (X, i) ∈ F } is a k-Sperner family [17],
i.e. does not contain chains of length k + 1 and 2[n]

`
has the strong Sperner property w.r.t. set inclusion [32, 59], i.e.

the size of the largest k-Sperner family in 2[n]
`

is the sum of the min{k, ` + 1} largest of the binomial coefficients
(

n
i

)
,

i = 0, 1, . . . , `.

16

Figure 2: Case n = 4, k = 2, ` = 3

Theorem 7. Let n, `, k be integers with 0 ≤ ` < n and k ≥ 1, and let

G1 =
{
(X, i) ∈ 2[n] × [k] : |X| + i =

⌊
n+k+1

2

⌋}
,

G2 =
{
(X, i) ∈ 2[n] × [k] : |X| + i =

⌈
n+k+1

2

⌉}
,

H = {(X, i) ∈ 2[n] × [k] : |X| + i = ` + 1}.

Let F ⊆ 2[n]
`
× [k] such that F does not contain two distinct elements (X, i) and (Y, j) with X ⊆ Y and i ≤ j.

(i) If ` ≥ (n + k − 1)/2, then |F | ≤ |G1|, where equality holds if F ∈ {G1,G2}.

(ii) If ` < (n + k − 1)/2, then |F | ≤ |H|, where equality holds if F = H .

Proof. For F ∈ F let p(F) be its projection to 2[n]
`

, i.e., if F = (X, i), then p(F) = X. By the properties of F , the
mapping p : F 7→ 2[n] is a bijection. Hence, |p(F)| = |F |.

Assume that p(F) contains a chain of length k + 1, that is, there are distinct sets X1, . . . , Xk, Xk+1 ∈ p(F) with
X1 ⊂ X2 ⊂ · · · ⊂ Xk+1. By the pigeonhole principle, there must be distinct s, t ∈ [k + 1] such that p−1(Xs) = (Xs, i)
and p−1(Xt) = (Xt, i) for some i ∈ [k], contradicting the choice of F . Consequently, p(F) does not contain a chain of
length k + 1. In other words, p(F) is a k-Sperner family [17].

2[n]
`

has the strong Sperner property w.r.t. set inclusion, i.e., for any k the size of the largest k-Sperner family in
2[n]
`

is the sum of the min{k, ` + 1} largest of the binomial coefficients
(

n
i

)
, i = 0, 1, . . . , `. Clearly, |p(F)| = |F | attains

this maximum size if F = G1 or F = G2 when ` ≥ n+k−1
2 and if F = H when ` < n+k−1

2 .
To see that 2[n]

`
has the strong Sperner property, note that [59] proved that the poset (2[n],⊆) has the normalized

matching property. Such posets are called normal. We refer to Section 4.5 of Engel’s book for definition. Now
(2[n]
`
,⊆) as a rank-selected subposet of (2[n],⊆) is normal, too. (See Proposition 4.5.3 in [17].) Finally, normal posets

have the strong Sperner property [32].

From the above proof and the LYM inequality [17] it is easy to derive the following characterization of the extremal
F in Theorem 7.

(a) For n > ` ≥ (n + k − 1)/2, equality holds in Theorem 7(i) if and only if F ∈ {G1,G2}.

(b) For (n + k − 1)/2 > ` ≥ k − 1, equality holds in Theorem 7(ii) if and only if F = H .

(c) For k − 2 ≥ ` ≥ 0, equality in Theorem 7(ii) if and only if p(F) := {X | (X, i) ∈ F } = 2[n]
`

.

Note that the condition in (a) implies ` ≥ k, and the condition in (c) implies ` < (n + k − 1)/2 and p(H) = 2[n]
`

.
Figure 2 shows the case of n = 4 attributes, k = 2 c-degrees other than βk+1, and ` = 2 the maximum size of a key.

Unary/binary keys (marked red/green) have c-degree β2/β1, respectively.

17

Figure 3: Acquisition Framework for Possibilistic Keys

8. Acquisition Tools

New applications benefit from the ability of data engineers to acquire the p-keys that are semantically meaningful
in the domain of the application. For that purpose, data engineers communicate with domain experts. Unfortunately,
they have to overcome a communication problem which is caused by a mismatch in expertise. Indeed, data engineers
know database concepts but not the domain, while domain experts know the domain but not database concepts. It
is therefore helpful to translate the knowledge of the data engineers into a format that can be understood by the
domain experts. As humans learn a lot from good examples, the goal is to visualize the abstract set of p-keys that
data engineers currently perceive as meaningful in the form of a data sample. Here, the data sample should be
representative of the abstract p-key set. This means the data sample satisfies all the elements of the set, but violates
all the p-keys not implied by the abstract set. The intuitive idea is that domain experts will easily spot cases in which
actually meaningful p-keys are violated by the data sample, because they are incorrectly perceived as meaningless by
the data engineers. The notion of a representative data sample is also known as an Armstrong database in the research
literature.

In this section we will establish two major tools that help data engineers to effectively communicate with domain
experts. We follow the framework in Figure 3. We will first establish an algorithm that data engineers can use to
visualize abstract p-key sets Σ in the form of some Armstrong p-relation rΣ. This p-relation is then inspected jointly
with the domain experts. The domain experts may change rΣ or supply entirely new data samples to the engineers.
For that case we establish an algorithm that computes a non-redundant cover of the set of p-keys that hold in the data
sample. In subsequent sections we will describe prototypes that have implemented these algorithms, and report on
results we obtained by experimenting with these prototypes.

8.1. Structure and Computation of Armstrong relations for keys and Armstrong p-relations for p-keys
8.1.1. Keys and relations

We first recall the definition and results for Armstrong relations in the context of relations and keys [2, 47]. Here,
a relation r over relation schema R is Armstrong for a given set Σ of keys over R if and only if for every key K over
R it is true that r satisfies K if and only if K is implied by Σ. In this sense, the implication problem for any key by a
given key set Σ reduces to checking whether K holds on an Armstrong relation for Σ.

Example 10. Let Σ denote the p-key set from Example 2. Then a non-redundant cover of Σβ4 consists of the keys
{time, rfid}, {zone, rfid}, and {zone, time}. The relation r1 of Table 1 is an Armstrong relation for Σβ4 . It satisfies all the
given keys, and violates all keys that are not implied by Σβ4 . For example, the keys {time, object}, {zone, object}, and
{rfid, object} are violated by r1. In fact, these are the maximal keys (with respect to subset order) that are not implied
by Σβ4 , also known as anti-keys.

In the relational model, a given relation is Armstrong for a given key set if and only if the relation satisfies every
given key and violates every anti-key for the given key set. The computation of an Armstrong relation for a given
key set therefore involves the computation of the anti-keys for the given key set, followed by the insertion of a new
tuple for each anti-key that has matching values with the previous tuple on exactly those attributes that belong to the
anti-key. In Example 10, pairs of consecutive tuples have matching values on exactly those attributes that belong to
the anti-keys {time, object}, {zone, object}, and {rfid, object}.

18

8.1.2. P-Keys and p-relations
Our goal is now to extend these results to p-relations and p-keys. A p-relation (r,Possr) over (R,S) is Armstrong

for a p-key set Σ if and only if for all p-keys ϕ over (R,S), (r,Possr) satisfies ϕ if and only if Σ |= ϕ. Armstrong
p-relations therefore have the beautiful property that the maximum c-degree β by which a p-key (K, β) is implied by
Σ can ‘simply be read-off’ as the marginal certainty Cr(K) of K in any Armstrong p-relation (r,Possr) for Σ.

Example 11. Let Σ denote the p-key set from Example 2: ({zone, time, rfid}, β1), ({time, rfid}, β2), ({zone, rfid}, β3), and
({zone, time}, β4). Then the p-relation r in Table 1 is Armstrong for Σ. For example, the key {zone, time, object} has
marginal certainty Cr(zone, time, object) = β4, since the smallest possible world that violates this key is r2. Indeed,
β = β4 is the largest c-degree such that the p-key ({zone, time, object}, β) is implied by Σ.

Our first aim is to characterize the structure of Armstrong p-relations. We recall two notions from relational
databases. The agree set of two tuples t, t′ over R is the set ag(t, t′) = {a ∈ R | t(a) = t′(a)} of attributes on which t and
t′ have matching values. The agree set of a relation is the set ag(r) = {ag(t, t′) | t, t′ ∈ r ∧ t , t′}. Let Σ denote a set of
keys over relation schema R. An anti-key of R with respect to Σ is a subset A ⊆ R such that Σ does not imply the key
A over R and for all a ∈ R − A, Σ implies the key A ∪ {a} over R. We denote by Σ−1 the set of all anti-keys of R with
respect to Σ.

Example 12. Consider the possible world r4 of the p-relation r in Table 1. Then the set of agree sets of r4 consists of
{time, object}, {object}, {zone, object}, {rfid, object}, {zone, time, object}, {zone, rfid, object}, and {time, rfid, object}.

Let Σβ1 denote the β1-cut of the p-key set from Example 2, that is, Σβ1 = {zone, time, rfid}. Then the set Σ−1
β1

of
anti-keys consists of {zone, time, object}, {zone, rfid, object}, and {time, rfid, object}.

We will now characterize when a given p-relation is Armstrong with respect to a given set of p-keys. This is the
case precisely when every possible world rk+1−i of the given p-relation is an Armstrong relation for the βi-cut of the
given p-key set Σ.

Theorem 8. Let Σ denote a set of p-keys, and let (r,Possr) denote a p-relation over (R,S) with |S| = k + 1. Then
(r,Possr) is Armstrong for Σ if and only if for all i = 1, . . . , k, the relation rk+1−i is Armstrong for Σβi . That is, for all
i = 1, . . . , k, Σ−1

βi
⊆ ag(rk+1−i), and for all K ∈ Σβi and for all X ∈ ag(rk+1−i), K * X.

Proof. (r,Possr) is Armstrong for Σ if and only if for all i = 1, . . . , k, for all K ⊆ R, |=(r,Possr) (K, βi) iff Σ |= (K, βi).
However, |=(r,Possr) (K, βi) iff |=rk+1−i K, and Σ |= (K, βi) iff Σβi |= K. Therefore, (r,Possr) is Armstrong for Σ if and
only if for all i = 1, . . . , k, rk+1−i is an Armstrong relation for Σβi . The second statement follows straight from the
well-known result that a relation r is Armstrong for a set Σ of keys if and only if Σ−1 ⊆ ag(r) and for all K ∈ Σ and all
X ∈ ag(r), K * X [10].

We illustrate Theorem 8 on our running example.

Example 13. Let Σ denote the p-key set from Example 2: ({zone, time, rfid}, β1), ({time, rfid}, β2), ({zone, rfid}, β3),
and ({zone, time}, β4). Let r denote the p-relation from Table 1.

The agree sets of r1 consists of to, o, zo, and ro. The agree sets of r2 include those of r1 and zto. The agree sets
of r3 include those of r2 and zro. The agree sets of r4 include those of r3 and tro. The β-cuts Σβ of Σ and anti-key sets
Σ−1
β are (using the first letters of the attributes):

• Σβ1 = {ztr} and Σ−1
β1

= {zto, tro, zro}

• Σβ2 = {tr} and Σ−1
β2

= {zto, zro}

• Σβ3 = {tr, zr} and Σ−1
β3

= {zto, ro}, and

• Σβ4 = {tr, zr, zt} and Σ−1
β4

= {to, zo, ro} .

For r1 we can see that every anti-key in Σ−1
β4

is also an agree set of r1, and that no key in Σβ4 is contained in an
agree set of r1. Hence, r1 is Armstrong for Σβ4 . For r2 we can see that every anti-key in Σ−1

β3
is also an agree set of

19

r2, and that no key in Σβ3 is contained in an agree set of r2. Hence, r2 is Armstrong for Σβ3 . For r3 we can see that
every anti-key in Σ−1

β2
is also an agree set of r3, and that no key in Σβ2 is contained in an agree set of r3. Hence, r3 is

Armstrong for Σβ2 . For r4 we can see that every anti-key in Σ−1
β1

is also an agree set of r4, and that no key in Σβ1 is
contained in an agree set of r4. Hence, r4 is Armstrong for Σβ1 . We conclude, by Theorem 8, that r is an Armstrong
p-relation for Σ.

We can now use Theorem 8 to develop an algorithm that computes for a given p-key set Σ an Armstrong p-relation
for Σ. The pseudo-code of this algorithm is given as Algorithm 3. It computes for i = 1, . . . , k the sets Σ−1

βi
of anti-keys

incrementally. Starting with a tuple of p-degree α1, for i = k, . . . , 1, each A ∈ Σ−1
βi

is realized as an agree set by
introducing a tuple that agrees with the previous tuple on A and has p-degree αk+1−i, as long as A did not already occur
for some larger i. In fact, if A already occurred for some larger i, then the corresponding agree set has already been
realized.

Algorithm 3 Visualize

Input: P-key set Σ over p-relation schema (R, {β1, . . . , βk, βk+1})
Output: Armstrong p-relation (r,Possr) for Σ

1: Σ−1
0 ← {R − {a} | a ∈ R};

2: for i = 1, . . . , k do . Compute Σ−1
βi

incrementally
3: Σi ← {K | (K, β j) ∈ Σ and j ≤ i},
4: Σ−1

i ← AntiKeys(R,Σi,Σ
−1
i−1),

5: for all a ∈ R do
6: t0(a)← ca,0; . ca,i are fresh constants
7: j← 0; r ← {t0}; Possr(t0)← α1; Σ0 ← ∅;
8: for i = k downto 1 do
9: for all A ∈ Σ−1

i − Σ0 do
10: j← j + 1;
11: for all a ∈ R do . New tuple with agree set A
12: if a ∈ A then t j(a)← t j−1(a);
13: else t j(a)← ca, j;
14: Possr(t j)← αk+1−i; . and p-degree αk+1−i

15: r ← r ∪ {t j};
16: Σ0 ← Σ0 ∪ Σ−1

i ;

17: return (r,Possr);

Subroutine AntiKeys(R,Σ,Σ−1)
Input: R, Σ set of keys in Σi, Σ−1 set of anti-keys in Σ−1

i−1
Output: Σ−1 set of anti-keys for Σβi

18: for all K ∈ Σ, A ∈ Σ−1 with K ⊆ A do
19: Σ−1 ← (Σ−1 − {A}) ∪

⋃
a∈K{A − {a}};

20: Σ−1 ← {A | ∀B ∈ Σ−1 − {A}(A * B)};
21: return Σ−1;

We illustrate Algorithm 3 on our running example.

Example 14. We apply Algorithm 3 to the set Σ from Example 2. Using the first letters of each attribute we obtain

• Σ1 = {ztr} and Σ−1
β1

= {zto, tro, zro}

• Σ2 = {tr} and Σ−1
β2

= {zto, zro}

• Σ3 = {tr, zr} and Σ−1
β3

= {zto, ro}, and

20

• Σ4 = {tr, zr, zt} and Σ−1
β4

= {to, zo, ro} .

Anti-keys are underlined when they are realized as agree sets of tuples in the Armstrong p-relation:

zone time rfid object Poss. degree
cz,0 ct,0 cr,0 co,0 α1
cz,1 ct,0 cr,1 co,0 α1
cz,1 ct,2 cr,2 co,0 α1
cz,3 ct,3 cr,2 co,0 α1
cz,3 ct,3 cr,4 co,0 α2
cz,3 ct,5 cr,4 co,0 α3
cz,6 ct,5 cr,4 co,0 α4

Fitting substitution yields the p-relation from Table 1.

Finally, we derive some results regarding the space and time complexity of our algorithm. Here, an Armstrong
p-relation for Σ is said to be minimum-sized if and only if there is no Armstrong p-relation for Σ with fewer tuples.

Theorem 9. Algorithm 3 computes an Armstrong p-relation for Σ whose size is at most quadratic in that of a minimum-
sized Armstrong p-relation for Σ.

Proof. The soundness of Algorithm 3 follows from Theorem 8, which also shows that for Σ−1 =
⋃k

i=1 Σ−1
i we have

|Σ−1| ≤ ag(r) ≤
(
|r|
2

)
. The inequalities establish the lower bound in 1

2 ·
√

1 + 8 · |Σ−1| ≤ |r| ≤ |Σ−1| + 1. The upper
bound follows from Algorithm 3. Hence, the p-relation computed by Algorithm 3 is at most quadratic in the size of a
minimum-sized Armstrong p-relation for Σ.

Finding Armstrong p-relations is precisely exponential. That means that there is an algorithm for computing an
Armstrong p-relation whose running time is exponential in the size of Σ, and that there is some set Σ in which the
number of tuples in each minimum-sized Armstrong p-relation for Σ is exponential thus, an exponential amount of
time is required in this case simply to write down the p-relation.

Theorem 10. Finding an Armstrong p-relation for a p-key set Σ is precisely exponential in the size of Σ.

Proof. Algorithm 3 computes an Armstrong p-relation for Σ in time at most exponential in its size. Some p-key
sets Σ have only Armstrong p-relations with exponentially many tuples in the size of Σ. For R = {a1, . . . , a2n},
S = {α1, α2} and Σ = {({a1, a2}, β1), . . . , ({a2n−1, a2n}, β1)} with size 2 · n, Σ−1 consists of the 2n anti-keys

⋃n
j=1 X j

where X j ∈ {a2 j−1, a2 j}.

Armstrong p-relations for some other p-key sets Σ′ only require a number of tuples that is logarithmic in
the size of Σ′. Such a set Σ′ is given by the 2n p-keys (

⋃n
j=1 X j, β1) where X j ∈ {a2 j−1, a2 j}. In fact, Algo-

rithm 3 computes an Armstrong p-relation for Σ′ with n + 1 tuples. For n = 3, for example, we obtain the
eight p-keys ({a1, a3, a5}, β1), ({a1, a3, a6}, β1), ({a1, a4, a5}, β1), ({a1, a4, a6}, β1), ({a2, a3, a5}, β1), ({a2, a3, a6}, β1),
({a2, a4, a5}, β1), and ({a2, a4, a6}, β1). These result in the three anti-keys ({a1, a2, a3, a4}, β1), ({a1, a2, a5, a6}, β1), and
({a3, a4, a5, a6}, β1), which produces an Armstrong p-relation with 4 tuples.

It is our recommendation to use both representation of the constraints: the abstract set Σ and an Armstrong p-
relation for Σ. Later sections will discuss an implementation of Algorithm 3 and results we obtained from experiments
with the implementation.

8.2. Discovery
We are now addressing the discovery part of our acquisition framework illustrated in Figure 3. The problem is,

given a p-relation over some p-relation schema, compute a cover of the set of p-keys that hold on the p-relation. In
other words, given a p-relation we would like to compute a set Σ of p-keys for which the p-relation is Armstrong. This
problem was first introduced in [46] under the name dependency inference. It is also known as dependency mining
or constraint mining, and in recent times the problem is considered to be an important part of data profiling. We will
first show that the decision variant of this problem is both NP-complete and W[2]-complete in the size of the p-key,
thus illustrating that it is unlikely that there are tractable algorithms to solve this problem, even in case the size of the
p-key is fixed. Subsequently, we develop an algorithm based on hypergraph transversals.

21

8.2.1. The Computational Complexity of the Discovery Problem
Before we can state and prove the (parameterized) computational complexity of the p-key discovery problem, we

formally state its decision variant and recall some necessary definitions from the area of (paramterized) complexity
theory [12, 13].

The problem (Key, n) is to decide whether for a given relation r over relation schema R and a given positive integer
n there is some X ⊆ R of size |X| ≤ n such that r satisfies the key X. Note that (Key, n) does not depend upon asking
for a solution of size at most n as opposed to one of size exactly n, since adding attributes to a satisfied key X will
result in a satisfied key XY .

Similarly, the problem (p-Key, n) is to decide whether for a given p-relation (r,Possr) over p-relation schema
(R, {α1, . . . , αk+1}), a given c-degree βi with 1 ≤ i ≤ k, and a given positive integer n, there is some X ⊆ R of size
|X| ≤ n such that (r,Possr) satisfies the p-key (X, βi). Again, (p-Key, n) does not depend upon asking for a solution of
size at most n as opposed to one of size exactly n, since adding attributes to a satisfied p-key (X, βi) will result in a
satisfied p-key (XY, βi).

For an instance I of a decision problem and a parameter n ∈ N+, the pair (I, n) is an instance of the corresponding
parameterized problem. The running time of an algorithm is then considered not only in terms of the input size |I|
but also in terms of n. A parameterized problem is fixed-parameter tractable, that is, it belongs to the complexity
class FPT, if a given instance can be solved in time O(f (n)p(|I|)), where p is a polynomial while f is an arbitrary
computable function. We then also say that the algorithm runs in FPT-time.

Let P and P′ be two parameterized problems. A parameterized reduction from P to P′ is an algorithm running in
FPT-time that maps an instance (I, n) of P to an equivalent instance (I′, n′) of P′ such that the parameter n′ depends
only on the value of n (and not on |I|). Note that an (hypothetical) FPT-algorithm for P′ would also yield an FPT-
algorithm for P via this reduction. Hence, considering their parameterized complexity, P is at most as hard as P′,
which we denote by P ≤FPT P′. If conversely P′ ≤FPT P also holds, we say that P and P′ are FPT-equivalent.

The parameterized reduction leads to a hierarchy of complexity classes, the so-called W-hierarchy, by specify-
ing a complete problem for each class. To define the desired family of problems, we employ Boolean formulas in
propositional logic. Let ϕ be such a formula. A satisfying truth assignment for ϕ has Hamming weight n if exactly n
variables are set to true in this assignment; we also call the set of these n variables a solution for ϕ. The formula ϕ is
t-normalized if it can be written as a conjunction of disjunctions of conjunctions of disjunctions (and so on) of literals
with t − 1 alternations between conjunction and disjunction. Observe that a Boolean formula is 2-normalized if it is
in conjunctive normal form (CNF) and 3-normalized if it is a conjunction of subformulas in disjunctive normal form
(DNF).

The problem Weighted t-normalized Satisfiability is to decide for a given t-normalized formula ϕ and a positive
integer n whether ϕ has a weight n satisfying assignment; here n serves as the parameter. For any t ≥ 1, a parameterized
problem P is said to be in the complexity class W[t] in case P ≤FPT Weighted t-normalized Satisfiability.

The classes FPT ⊆ W[1] ⊆ W[2] ⊆ . . . form an ascending hierarchy and all inclusion are assumed to be proper,
which is however still unproven. The higher a problem ranks in the W-hierarchy, the lower the chances are generally
considered of finding an FPT-algorithm to solve it.

We are now in a position to state and prove our result about the computational complexity of the p-key discovery
problem.

Theorem 11. The problem p-Key is NP-complete, and W[2]-complete in the size of the p-key.

Proof. For the W[2]-completeness it suffices to show that (Key, k) ≤FPT (p-Key, k) ≤FPT (Key, k), since the result
follows then from the W[2]-completeness of (Key, k) in k [4].

For (Key, k) ≤FPT (p-Key, k) we assume an instance (r, k) of (Key, k) is given with r being a relation over relation
schema R. Now we simply transform r into a p-relation (r,Possr) over (R, {α1, α2}) by assigning the α1-degree to each
tuple t ∈ r, and assigning the α2-degree to each tuple t < r. Consequently, a k(X) over R with |X| ≤ k is satisfied by r
if and only if the p-key (k(X), β1) over (R, {α1, α2}) with |X| ≤ k is satisfied by (r,Possr). Note that the transformation
is the identity on k.

For (p-Key, k) ≤FPT (Key, k) we assume an instance ((r,Possr), βi, k) of (p-Key, k) is given with (r,Possr) being
a p-relation over p-relation schema (R, {α1, . . . , αk+1}) and 1 ≤ i ≤ k. Now we simply transform (r,Possr) into the
relation rk+1−i = {t ∈ r | Possr(t) ≤ αk+1−i} over R. Consequently, a p-key (k(X), βi) over (R, {α1, . . . , αk+1}) with

22

|X| ≤ k is satisfied by (r,Possr) if and only if the key k(X) over R with |X| ≤ k is satisfied by rk+1−i. Note that the
transformation is the identity on k.

The FPT-reductions show, in particular, that (Key, k) and (p-Key, k) are PTIME-equivalent, too. Since (Key, k) is
NP-complete [2], it follows that (p-Key, k) is NP-complete, too.

The experimental results from Section 10 regarding the discovery of p-keys should be viewed in light of Theo-
rem 11.

8.2.2. Algorithmic Solution
In the relational model, a key ensures that for each pair of distinct tuples there is some attribute of the key on which

the tuples have different values. A good strategy to discover all (minimal) keys is therefore to compute for all pairs of
distinct tuples their disagree set, that is, the set of attributes on which they have different values, and then compute all
minimal sets of attributes which intersect non-trivially with every disagree set. The latter problem is also known as
the hypergraph transversal problem [16], whose exact complexity is still open. We will now adopt this strategy to the
computation of all p-keys that hold on a given p-relation.

More formally, a hypergraph (V, E) consists of a vertex set V and a set E of subsets of V , called hyperedges. A
set T ⊆ V is a transversal of (V, E) if for all H ∈ E, T ∩ H , ∅ holds. A transversal T of (V, E) is minimal if there
is no transversal T ′ of (V, E) such that T ′ (T [16]. With this terminology, we can now explain the pseudo-code of
Algorithm 4, which computes a non-redundant cover for the set of p-keys that hold on the given p-relation. In lines
(1-4), Algorithm 4 computes, for i = 1, . . . , k, the minimal transversals of the hypergraph that has the underlying
attributes as vertex set and minimal disagree sets of tuples from world ri as hyperedges. These form a cover of the
set of minimal keys that hold on ri. The marginal certainty of those keys in the given p-relation is thus at least βk+1−i.
Line (5) takes the union of the p-keys that originate from the possible worlds. Finally, Theorem 4 is used to select
only those p-keys that are not implied by the other p-keys.

Algorithm 4 Discover

Input: (r, Possr) over (R, {β1, . . . , βk+1})
Output: Non-redundant cover Σ of the set of p-keys that are satisfied by (r, Possr)

1: for i = 1, . . . , k do
2: dis-ag(ri)← min{X ⊆ R | ∃t, t′ ∈ ri∀a ∈ R(t(a) , t′(a)↔ a ∈ X)};
3: Hi ← (R, dis-ag(ri));
4: Σi ← {(K, βk+1−i) | K ∈ Tr(Hi)};
5: Σ←

⋃k
i=1 Σi;

6: Σ← {(K, β) ∈ Σ | ¬∃(K′, β′) ∈ Σ(K′ ⊆ K ∧ β′ > β)};
7: return Σ;

We illustrate Algorithm 4 on our running example.

Example 15. We apply Algorithm 4 to the p-relation from Table 1. Using the first letters of each attribute we obtain

• dis-ag(r1) = {zr, tr, zt} and Σ1 = {(zr, β4), (tr, β4), (zt, β4)}

• dis-ag(r2) = {zt, r} and Σ2 = {(zr, β3), (tr, β3)}

• dis-ag(r3) = {t, r} and Σ3 = {(tr, β2)}, and

• dis-ag(r4) = {z, t, r} and Σ4 = {(ztr, β1)} .

A non-redundant cover Σ for the p-keys that hold on the p-relation consists of (ztr, β1), (tr, β2), (zr, β3), and (zt, β4).

Finally, we state the correctness and an upper bound of the time complexity of Algorithm 4.

Theorem 12. Algorithm 4 computes a non-redundant cover of the set of p-keys that are satisfied by the given p-relation
r in time O(m + n2) where m := |R|2 × |rk |

2 × |dis-ag(rk)| and n :=
∏

X∈dis-ag(rk) |X|.

23

Proof. The soundness follows from the result that the keys of a relation are the minimal transversals of the disagree
sets in the relation [10, 48], and Theorem 4. The collection dis-ag(ri) is computed in time O(m). The set of all
minimal transversals for the simple hypergraphHi is computed in time O(n2). Algorithm 4 can compute the minimal
hypergraphs incrementally with additional disagree sets discovered from tuples with lower p-degrees.

Subsequent sections will discuss an implementation of Algorithm 4 and results we obtained from experiments
with the implementation.

9. Prototype Systems for Visualization and Discovery

This section briefly introduces two graphical user interfaces that provide access to implementations of Algorithm 3
and Algorithm 4, respectively. Section 10 will discuss the results of various experiments with these interfaces. The
following section will discuss the outcomes of detailed experimental studies with the implementations of this section.

9.1. Possibilistic Armstrong relation tool

Figure 4 shows the GUI of our Possibilistic Armstrong Relation tool. It provides access for users to an implemen-
tation of Algorithm 3. The tool computes for an input set Σ of p-keys on a p-relation schema, an Armstrong p-relation
for Σ.

We briefly outline the steps, which are illustrated on our running example in Figure 4. In step 1 (top left of
Figure 4), the user enters the column names of the p-relation schema, the index of the bottom c-degree, together with
the column names of the c-degree of a new p-key. Pressing the ‘insert’ button shows in step 2 (top right of Figure 4)
the p-relation schema together with all the p-keys that have been entered so far. Pressing the ‘save’ button in step 2,
will invoke the execution of Algorithm 3, and produce several results.

Result 3 (bottom right of Figure 4) shows the corresponding Armstrong p-relation for the input set of p-keys from
step 2. Intermediate results of the computation are shown in the bottom left of Figure 4. These include the anti-keys
(Result 1) and the agree sets (Result 2).

The bottom right of Figure 5 shows the GUI after executing Algorithm 3 on our running example. The output
shows a p-relation that is Armstrong for the input, and has the same agree sets as our p-relation from Table 1.

9.2. Possibilistic key finder tool

Figure 5 shows the GUI of our Possibilistic Key Finder tool. It provides access for users to an implementation of
Algorithm 4. The tool computes for an input p-relation r a non-redundant cover for the set of p-keys that hold on r.

The input p-relation can be supplied in the form of a csv file (left of Figure 5), or entered manually (right of
Figure 5) in the GUI. In both cases, the input is expected to have a column called p degree which contains the index
of the p-degree for each tuple. If such a column is not present, the implementation will assume that the p-degree of
each tuple is β1. The GUI also contains an input field called ‘Maximum P Degree’. If no value is entered, then the
implementation will pick the lowest p-degree (the one with the highest index) associated with any tuple in the input
p-relation (and β1 in case that no column of name p degree exists). Using our notation from before, ‘Maximum P
Degree’ denotes the index k. It should be noted that k can be higher than any p-degree found in the input p-relation.

The bottom of the GUI displays several results. It shows the time taken to compute (a possibly redundant) cover
of the set of p-keys that hold on the input p-relation, the set of p-keys itself, the cardinality of this set, and the total
number of key attributes in this set. It then shows the time taken to convert the possibly redundant cover into a
non-redundant cover, the p-keys in the non-redundant cover, the cardinality of the non-redundant cover, and the total
number of key attributes in the non-redundant cover.

The right of Figure 5 shows the GUI after executing Algorithm 4 on our running example. The output shows
exactly the non-redundant cover that we have worked with throughout the article.

24

Figure 4: Graphical User Interface for Visualization

10. Experimental Results with Visualization and Discovery

This section will discuss the outcomes of detailed experimental studies we have conducted with the implementa-
tions of Algorithm 3 for the computation of Armstrong p-relations, and Algorithm 4 for the computation of the p-keys
that hold on a given p-relation. They provide some insight on the actual size of Armstrong p-relations and the time it
takes to compute them, as well as on the time to find the p-keys that hold on a given p-relation and the savings one
can achieve by computing non-redundant covers.

10.1. Visualization
We will first explain our experiments with the computation of Armstrong p-relations using Algorithm 3. Here we

distinguish between three different cases. Firstly, we will look at a worst-case in which the size of the output grows
exponential in the size of the input, and thus Algorithm 3 also takes exponential time. Secondly, we will look at a
good case in which the size of the output grows logarithmically in the size of the input. Finally, we will look at a
random case in which the input set of p-keys is randomly generated.

10.1.1. Exponential Case
The exponential case is taken from the proof of Theorem 10, where for positive integers n, R = {a1, . . . , a2n},

S = {α1, α2} and
Σ = {({a1, a2}, β1), . . . , ({a2n−1, a2n}, β1)}

forms the input of size 2 · n. The set Σ−1 consists of the 2n anti-keys
⋃n

j=1 X j where X j ∈ {a2 j−1, a2 j} for j = 1, . . . , n.
Figure 6 shows the size of the resulting Armstrong p-relations the case where n = 1, . . . , 10, as well as the times

(in ms) to compute them. For each the size and time, the actual experimental results are approximated (very closely)
by an exponential function.

10.1.2. Logarithmic Case
The logarithmic case is taken from the paragraph following Theorem 10, where for positive integers n, R =

{a1, . . . , a2n}, S = {α1, α2} and
Σ′ = {(∪n

j=1X j, β1) | X j ∈ {a2 j−1, a2 j}}

25

Figure 5: Possibilistic Key Finder Tool on csv file and direct input

forms the input with 2n p-keys. The set Σ−1 consists of the n anti-keys R − {a2 j−1, a2 j} for j = 1, . . . , n.
Figure 7 shows the size of the resulting Armstrong p-relations for the cases where n = 1, . . . , 10, as well as

the times (in ms) to compute them. For the size, the actual experimental results are approximated perfectly by a
logarithmic function. For the time, the experimental results are closely approximated by a quadratic function.

10.1.3. Average Case
The most interesting case may be the average-case behavior, that we mimicked by randomly creating for a given

number n = 2, . . . , 15 of attributes and a given bottom p-degree of k + 1 = 2, . . . , 20, 500 sets Σ of p-keys, and then
taking the average size (number of tuples) and time to compute an Armstrong p-relation for Σ by Algorithm 3. Each
of the input sets Σ contained up to n2 p-keys with two attributes on average. All experiments were conducted on an
Intel Core i7-4600U 2.10GHz machine that has 8GB of RAM.

We were interested in the impact of the given number of attributes as well as the given number of available
p-degrees for both measures, size and time. For that purpose, we display our results in two different figures.

Figure 8 shows the size and time in terms of the growing number of attributes, for different fixed numbers of
available p-degrees. The graphs suggest that both, the size of the output and the time to compute the output, grow
low-degree polynomial in the input.

Figure 9 shows the size and time in terms of the growing number of available p-degrees, for different fixed number
of given attributes. As before, the graphs suggest that both, the size of the output and the time to compute the output,
grow low-degree polynomial in the input.

10.2. Discovery

We will now discuss our experiments with the possibilistic key finder tool that implemented Algorithm 4. The
algorithm was applied to possibilistic variants of seven real-world data sets plus one synthetic data set, called fd-
reduced-30. The synthetic data set was generated with the dbtesma data generator [51, 52]. All the other data sets

26

Figure 6: Size of Armstrong p-relation, and time to compute it in exponential case

Figure 7: Size of Armstrong p-relation, and time to compute it in logarithmic case

have been obtained from the UCI Machine Learning Repository [42]. Table 4 shows the basic characteristics of the
various data sets. They comprise a reasonable range of column and row numbers. It should be pointed out here
that big data sets, with say 50 columns and 1 million rows, resist state-of-the-art data dependency mining algorithms
[51, 52]. As indicated previously, the data sets are not possibilistic, so they were made possibilistic by randomly
assigning values between 1 and k for each tuple in the data set. For our experiments, k was either 1, 5, 10, or 15. All
the experiments were performed on a Windows 7, 64 bit machine with four 3.30GHz processors, 8GB RAM, 930GB
hard disk and 64bit Java 7.0.

Apart from discussing various measures on the basis of the given data sets, we will also briefly discuss the seman-
tics that is associated with null marker occurrences, as well as a parallel approach towards the discovery of p-keys
from the data sets. Note that it is not our aim to judge the meaningfulness of the discovered keys. One cannot deter-
mine the meaningfulness of a constraint from whether it holds or does not hold on a given data set. Such judgement
would require domain expertise. In the possibilistic case, it is even more difficult to comment on the meaningfulness
since the concept of p-relations and p-constraints are new, so even domain expertise would not really be available.
Just like previous research [51, 52] we therefore focus on the performance of our discovery algorithms.

10.2.1. Results of Experiments with Given Data Sets
We will now present our findings of applying Algorithm 4 to the possibilistic variants of the given data sets.

Several of the data sets contained duplicate tuples, i.e. tuples which had matching values on all the underlying
attributes. In such cases, no key can exist, and we therefore only kept one of the tuples for which duplicate tuples
exist. The efficiency of the key finder tool is measured in terms of the computation time in seconds, the number of
p-keys found, and the total number of attributes that occur in the output. We provide these measures for each data
set, and each value of k = 1, 5, 10, and 15, and distinguish between the output (RC) derived directly from merging
the p-keys found in each possible world, and the non-redundant cover (NRC) derived from the previous output by
removing any redundant p-keys. For each data set, and for each value of k, the experiments were repeated 5 times and

27

Figure 8: Average Size of p-Armstrong relation with growing number of attributes and fixed p-degree

Figure 9: Average Size of p-Armstrong relation with growing p-degree and fixed number of attributes

28

Table 4: Basic Characteristics of Data Sets used in Discovery Experiments

Data set
Columns
(#)

Rows
(#)

iris 5 150
Abalone 9 4,177
Breast-Cancer 11 699
Adult 14 48842
Letter 17 20000
Hepatitis 20 155
Horse 27 368
fd-reduced-30 30 250000

Table 5: Efficiency Measures for Various Data Sets

Dataset k = 1 k = 5
time [s] p-keys (]) size time [s] p-keys (]) size

Iris RC 0.14 1 4 0.06 7.60 24.80
NRC 0.015 1 4 8.18 4.80 12.20

Breast-Cancer RC 0.58 2 10 0.59 14.40 47.20
NRC 0.01 2 10 2.53 11.20 38.20

Abalone RC 52.22 29 129 55.21 159.00 638.00
NRC 0.03 29 129 3.66 86.80 351.60

Adult RC 1791.53 2 20 1770.88 14.00 112.20
NRC 0.02 2 20 7.49 11.20 88.20

Letter RC 784.51 1 16 821.64 5.20 82.60
NRC 0.02 1 16 7.64 1.80 28.20

Hepatitis RC 3.04 104 499 10.14 592.60 2703.20
NRC 0.05 104 499 25.99 456.00 2149.00

Horse RC 1.73 53 248 27454.07 5534.75 29169.50
NRC 0.03 53 248 1787.38 5034.25 26812.50

fd-reduced-30 RC ML ML ML ML ML ML
NRC ML ML ML ML ML ML

the averages were computed for time taken, the number of p-keys discovered, and the size of the output, for RC and
NRC, respectively.

Table 5 shows all these measures for the k-values 1 and 5, and Table 6 shows the measures for the k-values of
10 and 15. The value ML refers to the event that the experiment exceeded the memory limit of 4GB. For the non-
redundant cover (RC), computation time refers to the time taken to compute the non-redundant cover (NRC) from the
redundant cover (RC).

The mining work the fastest on the smallest data set, Iris, which also has the least number of p-keys found. The
Abalone data set has significantly more rows than iris and breast-cancer. The values of k have limited impact on the
computation times for this data set. For the breast-cancer data set the computation time is faster than for abalone.
For this data set, the value of k does again not affect the computation time much. The adult data set more rows and
columns than the previous data sets. In this case, the computation time is also much higher than that on the previous
data sets. The value of k is seen to have a considerable effect on the efficiency. The letter data set has more columns
than the above mentioned data sets, but has only 20,000 rows while adult has 48,842 rows. For this data set, p-key
mining takes less time than that of the adult data set, even though there are more columns. The hepatitis data set has
considerably more columns (20) and few rows. In this case, the computation time increases proportionally with the
increases of k. The horse data set has a high number of columns (27) but few rows. In this case the computation
time increases substantially with increases in k. The synthetic data set fd-reduced-30 has a high number of rows and
columns. In this scenario, the algorithm does not return an output as the data set does not fit into memory.

Regarding our experiments we make the following observations. The algorithm performs well on data sets which

29

(a) Hepatitis Dataset

(b) Adult Dataset

(c) Letter Dataset

Figure 10: Comparison of Minimal Disagree Set Computation Times and Hypergraph Transversal Time for Various Data Sets

30

Table 6: Efficiency Measures for Various Data Sets

Dataset k=10 k=15
time [s] p-keys (]) size time [s] p-keys (]) size

Iris RC 0.06 15.80 50.40 0.06 25.80 76.40
NRC 4.98 6.40 17.80 7.94 8.00 20.60

Breast-Cancer RC 0.54 18.00 62.80 0.55 40.40 134.80
NRC 4.08 8.80 30.00 6.35 16.80 56.60

Abalone RC 55.39 329.60 1289.40 53.39 483.20 1870.20
NRC 8.38 115.00 448.00 11.87 134.60 512.80

Adult RC 1814.78 43.60 310.40 1805.73 72.40 470.40
NRC 7.08 33.20 226.80 9.80 51.60 316.60

Letter RC 808.21 14.80 217.20 801.67 32.80 435.40
NRC 6.48 7.00 92.80 4.02 21.00 246.80

Hepatitis RC 39.31 1472.40 7164.60 43.02 2194.00 10614.60
NRC 112.27 883.40 4501.20 190.08 1072.20 5360.80

Horse RC 36334.03 12138.20 64089.00 126486.77 24683.00 137663.20
NRC 8780.14 8629.40 46550.20 26126.39 12599.40 71332.00

fd-reduced-30 RC ML ML ML ML ML ML
NRC ML ML ML ML ML ML

have a modest number of rows or columns. Data sets that have a larger number of columns (eg. 30) and a larger
number of rows (eg. 250,000) are difficult to handle. The savings achieved by removing redundant p-keys can be
significant (and the larger data sets are the more savings will be made in terms of the time required to validate the
p-keys). In addition, the removal of redundant p-keys takes little time in comparison to the computation of the p-keys.
The time taken to remove redundant p-keys increases with the value of k. This can be attributed to the fact that the
number of p-keys increases as the value of k grows. For k = 1, the possibilistic relation corresponds to data coming
from a relational table and the p-key cover represents the minimal candidate keys of the corresponding relational table.
In this case there are no redundant p-keys. For data sets with more columns and few tuples, such as horse and hepatitis,
the performance degrades as the k value increases. This is attributed to the disagree sets being larger on average and
hence requiring more time to compute the hypergraph transversals. Figure 10a shows that for the hepatitis data set,
hypergraph transversal consumes more time than the time taken to obtain the minimal disagree sets. For data sets with
more columns and few rows, such as horse and hepatitis, the size of the cover is larger than that for data sets with few
columns and more rows, such as adult and letter. This may be attributed to the fact that with fewer tuples it takes more
columns to generate non-empty intersections for the participating larger disagree sets. For larger numbers of rows,
for example in the letter and adult data sets, it can be seen from Figure 10c and Figure 10b that the main contribution
to computation time comes from tuple comparisons during the computation of the disagree sets. As the value of k
increases, it is expected that the number of keys increase. This behavior is attributed to the increase in possible worlds
when k grows. The algorithm conforms to this behavior.

10.2.2. Null Semantics
The basis for our experiments were data sets from the real world. It is therefore natural for null markers, denoted

by null, to occur. For two tuples t and t′ with null marker occurrences in column a, two semantics are possible:
t[a] == t′[a] or t[a] , t′[a]. Since these semantics result in the discovery of different p-keys, the user can choose
which semantics is adopted by the implementation of our algorithm. The semantics where null == null results in
more p-keys, as shown in Figure 11.

10.2.3. Parallelization
So far, our experiments have been conducted with a sequential implementation of Algorithm 4. Here, the classical

key discovery algorithm is applied to each possible world, and the results are merged by assigning corresponding
c-degrees, and then removing any redundant p-keys from the result. As the possible worlds are nested, all tuples of
a smaller world are included in a bigger world. In particular, it is unnecessary to re-compute the disagree sets of
tuples for which this has already been done beforehand. As an alternative approach, one may apply the classical key

31

Figure 11: Impact of Null Semantics on Numbers of P-keys Discovered

Table 7: Number of P-keys and Size of Cover in Sequential and Parallel Approaches for Data Sets

Dataset k = 1 k = 5 k = 10 k = 15
p-keys (]) size p-keys (]) size p-keys (]) size p-keys (]) size

Iris Seq 1 4 7.6 24.8 15.8 50.4 25.8 76.4
Par 1 4 8.6 27.2 18.4 52.8 24.2 73.2

Abalone Seq 29 129 159 638 329.6 1289.4 483.2 1870.2
Par 29 129 158.2 633.2 313 1210.8 481.6 1883.2

Breast-Cancer Seq 2 10 14.4 47.2 18 62.8 40.4 134.8
Par 2 10 12.8 42.8 20.6 76 46 176

Letter Seq 1 16 5.20 82.60 14.80 217.20 32.80 435.40
Par 1 16 5 79.6 12.2 183 23.8 340.4

Hepatitis Seq 104 499 592.6 2703.2 1472.4 7164.6 2194 10614.6
Par 104 499 549.6 2483 1673.8 8170.6 2466.8 12357.6

32

discovery algorithm to the possible worlds in parallel. The disadvantage is that for each tuple pair that is contained
in several possible worlds, their disagree sets must be computed for each of these possible worlds. Table 7 shows
the average number of p-keys and the size of the redundant p-key cover on several data sets. These numbers deviate
slightly between the sequential and parallel approach, because of the different assignments of p-degrees to tuples. The
computation time for both approaches is compared in Figure 12.

For data sets with few rows and many columns, such as hepatitis, the computation time for the hypergraph transver-
sal is high in comparison to the time for computing minimal disagree sets, as shown in Figure 10a. In such cases, the
time taken for redundant disagree set computations is negligible compared to the hypergraph transversal times. Hence,
data sets with few rows but many columns show a better performance in the parallel approach. However, when the
value of k increases, then the the number of redundant disagree set computations increases as well, and will become a
bottleneck in the parallel approach. Indeed, Figure 12 shows for most data sets that the sequential approach becomes
more efficient than the parallel approach from a value of k = 5 onwards.

11. Conclusion and Future Work

Possibilistic keys have been introduced to efficiently identify tuples in uncertain data. Uncertainty is modeled
qualitatively by applying the AI framework of possibilistic logic to the fundamental database concept of keys. Tools
were established to efficiently reason about possibilistic keys, and applications of p-keys in constraint maintenance,
data cleaning, and query processing were outlined in detail. It was characterized which non-redundant families of
p-keys attain maximum cardinality, a result that enables data engineers to simulate data processing under heavily
constrained databases. Tools for the visualization of abstract sets of p-keys and for the discovery of p-keys from given
p-relations were established. Together, these two tools can be used by data engineers to help acquire the possibilistic
keys that are semantically meaningful for a given application domain. Visualization and discovery were implemented
in prototype systems, and detailed experimental results with both systems rounded off our theoretical findings on the
inherent exponential complexity of these problems.

There are different directions that warrant future research. While keys constitute the simplest yet most important
class of constraints, classes such as foreign keys and functional dependencies deserve particular attention as well. In
fact, possibilistic functional dependencies were introduced in [44] and their main application to relational database
schema design discussed in [45]. The class of foreign keys or, more generally, inclusion dependencies is an interesting
next target. Since these referential constraints are defined with respect to different relation schemata, different seman-
tics can be defined. On the basis of our algorithms for computing Armstrong p-relations and discovering p-keys, it
would be interesting to conduct empirical studies about the usefulness of our acquisition framework for the identifi-
cation of semantically meaningful p-keys. Another interesting application is consistent query answering [41]. Here,
a given data set may violate a given set of constraints. Instead of repairing the data set with some minimal effort,
consistent query answering only returns those answers that are present in all repairs. The possibilistic framework
is interesting because consistent query answers would be answers attributed with the minimum p-degree across all
repairs. Possibilistic data cleaning has already been mentioned as another application area, and first results have been
announced in [35]. It would be interesting to investigate possibilistic variants of data dependencies, in particular keys,
in other data models. For example, keys in SQL [34, 39, 40] or XML [26].

Acknowledgement

This research is supported by the Marsden Fund Council from New Zealand Government funding.

References

[1] W.W. Armstrong, Dependency structures of data base relationships, in: IFIP Congress, pp. 580–583.
[2] C. Beeri, M. Dowd, R. Fagin, R. Statman, On the structure of Armstrong relations for functional dependencies, J. ACM 31 (1984) 30–46.
[3] O. Benjelloun, A.D. Sarma, A.Y. Halevy, M. Theobald, J. Widom, Databases with uncertainty and lineage, VLDB J. 17 (2008) 243–264.
[4] T. Bläsius, T. Friedrich, M. Schirneck, The parameterized complexity of dependency detection in relational databases, in: 11th International

Symposium on Parameterized and Exact Computation, IPEC 2016, August 24-26, 2016, Aarhus, Denmark, pp. 6:1–6:13.

33

Figure 12: Sequential versus Parallel Approach

34

[5] P. Bosc, O. Pivert, About projection-selection-join queries addressed to possibilistic relational databases, IEEE Trans. Fuzzy Systems 13
(2005) 124–139.

[6] P. Brown, S. Link, Probabilistic keys for data quality management, in: Advanced Information Systems Engineering - 27th International
Conference, CAiSE 2015, Stockholm, Sweden, June 8-12, 2015, Proceedings, pp. 118–132.

[7] P. Brown, S. Link, Probabilistic keys, IEEE Trans. Knowl. Data Eng. 29 (2017) 670–682.
[8] E.F. Codd, A relational model of data for large shared data banks, Commun. ACM 13 (1970) 377–387.
[9] N.N. Dalvi, D. Suciu, Management of probabilistic data: foundations and challenges, in: PODS, pp. 1–12.

[10] J. Demetrovics, G.O.H. Katona, Extremal combinatorial problems of database models, in: MFDBS, pp. 99–127.
[11] J. Diederich, J. Milton, New methods and fast algorithms for database normalization, ACM Trans. Database Syst. 13 (1988) 339–365.
[12] R.G. Downey, M.R. Fellows, Parameterized Complexity, Monographs in Computer Science, Springer, 1999.
[13] R.G. Downey, M.R. Fellows, Fundamentals of Parameterized Complexity, Texts in Computer Science, Springer, 2013.
[14] D. Dubois, H. Fargier, H. Prade, Refinements of the maximin approach to decision-making in a fuzzy environment, Fuzzy Sets and Systems

81 (1996) 103–122.
[15] D. Dubois, H. Prade, Possibility theory, in: R.A. Meyers (Ed.), Computational Complexity, Springer New York, 2012, pp. 2240–2252.
[16] T. Eiter, G. Gottlob, Identifying the minimal transversals of a hypergraph and related problems, SIAM J. Comput. 24 (1995) 1278–1304.
[17] K. Engel, Sperner Theory, Cambridge Uni Press, 1997.
[18] R. Fagin, Horn clauses and database dependencies, J. ACM 29 (1982) 952–985.
[19] D. Geiger, A. Paz, J. Pearl, Axioms and algorithms for inferences involving probabilistic independence, Inf. Comput. 91 (1991) 128–141.
[20] T.J. Green, G. Karvounarakis, V. Tannen, Provenance semirings, in: Proceedings of the Twenty-Sixth ACM SIGACT-SIGMOD-SIGART

Symposium on Principles of Database Systems, June 11-13, 2007, Beijing, China, pp. 31–40.
[21] N. Hall, H. Köhler, S. Link, H. Prade, X. Zhou, Cardinality constraints on qualitatively uncertain data, Data Knowl. Eng. 99 (2015) 126–150.
[22] M. Hannula, S. Link, Automated reasoning about key sets, in: D. Galmiche, S. Schulz, R. Sebastiani (Eds.), Automated Reasoning - 9th

International Joint Conference, IJCAR 2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17, 2018,
Proceedings, volume 10900 of Lecture Notes in Computer Science, Springer, 2018, pp. 47–63.

[23] S. Hartmann, M. Kirchberg, H. Koehler, U. Leck, S. Link, Extremal combinatorics of SQL keys, in: A. Mashkoor, Q. Wang, B. Thalheim
(Eds.), Models: Concepts, Theory, Logic, Reasoning and Semantics - Essays Dedicated to Klaus-Dieter Schewe on the Occasion of his 60th
Birthday, College Publications, 2018, pp. 75–91.

[24] S. Hartmann, M. Kirchberg, S. Link, Design by example for SQL table definitions with functional dependencies, VLDB J. 21 (2012) 121–144.
[25] S. Hartmann, U. Leck, S. Link, On Codd families of keys over incomplete relations, Comput. J. 54 (2011) 1166–1180.
[26] S. Hartmann, S. Link, Efficient reasoning about a robust XML key fragment, ACM Trans. Database Syst. 34 (2009).
[27] S. Hartmann, S. Link, Numerical constraints on XML data, Inf. Comput. 208 (2010) 521–544.
[28] A. Heise, Jorge-Arnulfo, Quiane-Ruiz, Z. Abedjan, A. Jentzsch, F. Naumann, Scalable discovery of unique column combinations, PVLDB 7

(2013) 301–312.
[29] A.K. Jha, V. Rastogi, D. Suciu, Query evaluation with soft-key constraints, in: PODS, pp. 119–128.
[30] A.K. Jha, D. Suciu, Probabilistic databases with markoviews, PVLDB 5 (2012) 1160–1171.
[31] A. Kiss, λ-decomposition of fuzzy relational data, Annales Univ. Sci. Budapest. 12 (1991) 133–142.
[32] D. Kleitman, On an extremal property of antichains in partial orders. the lym property and some of its implications and applications, in:

J. Hall, M., J. Lint (Eds.), Combinatorics, volume 16 of NATO Advanced Study Institutes Series, Springer Netherlands, 1975, pp. 277–290.
[33] H. Köhler, U. Leck, S. Link, H. Prade, Logical foundations of possibilistic keys, in: Logics in Artificial Intelligence - 14th European

Conference, JELIA 2014, Funchal, Madeira, Portugal, September 24-26, 2014. Proceedings, pp. 181–195.
[34] H. Köhler, U. Leck, S. Link, X. Zhou, Possible and certain keys for SQL, VLDB J. 25 (2016) 571–596.
[35] H. Köhler, S. Link, Qualitative cleaning for uncertain data, in: Proceedings of the 25th ACM International on Conference on Information and

Knowledge Management, CIKM 2016, Indianapolis, Indiana, USA, October 24 - 28, 2016, pp. 2269–2274.
[36] H. Köhler, S. Link, SQL schema design: Foundations, normal forms, and normalization, in: Proceedings of the 2016 International Conference

on Management of Data, SIGMOD Conference 2016, San Francisco, CA, USA, June 26 - July 01, 2016, pp. 267–279.
[37] H. Köhler, S. Link, SQL schema design: foundations, normal forms, and normalization, Inf. Syst. 76 (2018) 88–113.
[38] H. Köhler, S. Link, H. Prade, X. Zhou, Cardinality constraints for uncertain data, in: Conceptual Modeling - 33rd International Conference,

ER 2014, Atlanta, GA, USA, October 27-29, 2014. Proceedings, pp. 108–121.
[39] H. Köhler, S. Link, X. Zhou, Possible and certain SQL keys, PVLDB 8 (2015) 1118–1129.
[40] H. Köhler, S. Link, X. Zhou, Discovering meaningful certain keys from incomplete and inconsistent relations, IEEE Data Eng. Bull. 39

(2016) 21–37.
[41] P. Koutris, J. Wijsen, Consistent query answering for primary keys, SIGMOD Record 45 (2016) 15–22.
[42] M. Lichman, UCI machine learning repository, 2013.
[43] S. Link, Old keys that open new doors, in: F. Ferrarotti, S. Woltran (Eds.), Foundations of Information and Knowledge Systems - 10th

International Symposium, FoIKS 2018, Budapest, Hungary, May 14-18, 2018, Proceedings, volume 10833 of Lecture Notes in Computer
Science, Springer, 2018, pp. 3–13.

[44] S. Link, H. Prade, Possibilistic functional dependencies and their relationship to possibility theory, IEEE Trans. Fuzzy Systems 24 (2016)
757–763.

[45] S. Link, H. Prade, Relational database schema design for uncertain data, in: Proceedings of the 25th ACM International on Conference on
Information and Knowledge Management, CIKM 2016, Indianapolis, Indiana, USA, October 24 - 28, 2016, pp. 1211–1220.

[46] H. Mannila, K. Räihä, Dependency inference, in: VLDB’87, Proceedings of 13th International Conference on Very Large Data Bases,
September 1-4, 1987, Brighton, England, pp. 155–158.

[47] H. Mannila, K.J. Räihä, Design by example: An application of Armstrong relations, J. Comput. Syst. Sci. 33 (1986) 126–141.
[48] H. Mannila, K.J. Räihä, Algorithms for inferring functional dependencies from relations, Data Knowl. Eng. 12 (1994) 83–99.
[49] F.D. Marchi, J. Petit, Semantic sampling of existing databases through informative Armstrong databases, Inf. Syst. 32 (2007) 446–457.

35

[50] M. Niepert, M. Gyssens, B. Sayrafi, D.V. Gucht, On the conditional independence implication problem: A lattice-theoretic approach, Artif.
Intell. 202 (2013) 29–51.

[51] T. Papenbrock, J. Ehrlich, J. Marten, T. Neubert, J. Rudolph, M. Schönberg, J. Zwiener, F. Naumann, Functional dependency discovery: An
experimental evaluation of seven algorithms, PVLDB 8 (2015) 1082–1093.

[52] T. Papenbrock, F. Naumann, A hybrid approach to functional dependency discovery, in: Proceedings of the 2016 International Conference on
Management of Data, SIGMOD Conference 2016, San Francisco, CA, USA, June 26 - July 01, 2016, pp. 821–833.

[53] O. Pivert, H. Prade, A certainty-based model for uncertain databases, IEEE Trans. Fuzzy Systems 23 (2015) 1181–1196.
[54] O. Pivert, H. Prade, Possibilistic conditional tables, in: M. Gyssens, G.R. Simari (Eds.), Foundations of Information and Knowledge Systems

- 9th International Symposium, FoIKS 2016, Linz, Austria, March 7-11, 2016. Proceedings, volume 9616 of Lecture Notes in Computer
Science, Springer, 2016, pp. 42–61.

[55] T. Roblot, M. Hannula, S. Link, Probabilistic cardinality constraints, VLDB J., https://doi.org/10.1007/s00778-018-0511-z, 2018.
[56] T. Roblot, S. Link, Probabilistic cardinality constraints, in: P. Johannesson, M. Lee, S.W. Liddle, A.L. Opdahl, O.P. López (Eds.), Conceptual

Modeling - 34th International Conference, ER 2015, Stockholm, Sweden, October 19-22, 2015, Proceedings, volume 9381 of Lecture Notes
in Computer Science, Springer, 2015, pp. 214–228.

[57] T.K. Roblot, S. Link, Urd: A data summarization tool for the acquisition of meaningful cardinality constraints with probabilistic intervals, in:
33rd IEEE International Conference on Data Engineering, ICDE 2017, San Diego, CA, USA, April 19-22, 2017, IEEE Computer Society,
2017, pp. 1379–1380.

[58] A. Sali, K.D. Schewe, Keys and Armstrong databases in trees with restructuring, Acta Cybern. 18 (2008) 529–556.
[59] E. Sperner, Ein Satz über Untermengen einer endlichen Menge, Math. Z. 27 (1928) 544–548.
[60] D. Suciu, D. Olteanu, C. Ré, C. Koch, Probabilistic Databases, Synthesis Lectures on Data Management, Morgan & Claypool Publishers,

2011.
[61] B. Thalheim, On semantic issues connected with keys in relational databases permitting null values, Elektronische Informationsverarbeitung

und Kybernetik 25 (1989) 11–20.
[62] B. Thalheim, Dependencies in relational databases, Teubner, 1991.
[63] Z. Wei, S. Link, DataProf: Semantic profiling for iterative data cleansing and business rule acquisition, in: G. Das, C.M. Jermaine, P.A.

Bernstein (Eds.), Proceedings of the 2018 International Conference on Management of Data, SIGMOD Conference 2018, Houston, TX,
USA, June 10-15, 2018, ACM, 2018, pp. 1793–1796.

[64] Z. Wei, S. Link, J. Liu, Contextual keys, in: H.C. Mayr, G. Guizzardi, H. Ma, O. Pastor (Eds.), Conceptual Modeling - 36th International
Conference, ER 2017, Valencia, Spain, November 6-9, 2017, Proceedings, volume 10650 of Lecture Notes in Computer Science, Springer,
2017, pp. 266–279.

[65] S. Zadrozny, G.D. Tré, R.M.M.D. Caluwe, J. Kacprzyk, An overview of fuzzy approaches to flexible database querying, in: Database
Technologies: Concepts, Methodologies, Tools, and Applications (4 Volumes), 2009, pp. 135–156.

36

