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Abstract—Needle-free jet injection allows delivery of liquid
drugs through the skin in the form of a narrow fluid jet traveling
at high speed, minimizing the risk of accidents. The use of a
controllable actuator to drive this process has many advantages,
but the voice coil actuators previously used are too large and
heavy for practical use with common injection volumes (1 mL).
We instead propose a compact slotless tubular linear permanent
magnet synchronous motor design for jet injection. The design
was determined by utilizing a semi-analytical electromagnetic
modeling technique to predict the performance of any given
motor design, an optimization scheme for the motor mass at a
given power dissipation, and an automated routine for estimating
cogging force using finite-element analysis. A prototype motor
was constructed, with a nominal mass of 322 g, a stroke of
80 mm, and a target operating power of 1.2 kW; experimental
data show that the motor constant is within 10% of the target,
and that the cogging force is in close agreement with the model.
Test ejection of water into a force sensor verified that the motor
is fit for needle-free injection. The design methodology explained
here shows the benefits to integrated design optimization of both
the actuator and the load, particularly in systems that drive fluid
pressure loads, and also opens the door to controllable injector
designs for larger volumes.

Index Terms—Drug delivery, design optimization, electrome-
chanical systems, actuators, linear permanent magnet syn-
chronous motor, magnetic fields.

I. INTRODUCTION

N eedle free jet injection (NFJI) is a safe and efficient
method of transdermal drug delivery, which can be

realized by forcing a fluid jet of 76µm − 360µm diameter
to penetrate the skin at a jet speed v which is typically
faster than 100 m/s [1]. Most commercially available jet
injectors are mechanically powered. This type of device offers
limited control over injection depth and jet velocity, which can
result in occasional bruising and other adverse effects. Recent
advances in direct-drive linear actuators have enabled the
realization of successful prototypes of electronically controlled
jet injectors [2], [3]. They introduced the advantage of superior
repeatability using real-time jet velocity control at a bandwidth
higher than 1 kHz [4].

The requirements for jet injectors powered by electric mo-
tors are demanding. Usability of handheld injectors is heavily
constrained by the motor mass, while the actuation profile
demands very high pulse force at near-stall velocity. So far,
existing prototypes have relatively heavy weights and large
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Fig. 1. Cut-away view of the optimized motor and jet injector design, showing
the bobbin and coil riding on linear plastic bearings along the magnet array,
as well as the supporting structure, piston, and drug ampoule.

sizes for small drug injection volumes. For instance, the voice
coil actuator described in [5] has a total mass of 300 g, but is
only able to drive an injection volume of up to 300µL.

There are reports on modeling and optimization approaches
for developing direct-drive linear motors for this role: voice
coil motors (VCMs) based on quasi-Halbach topology [5] and
slotless tubular linear permanent magnet synchronous motors
(LPMSMs) [6].

The scaling law for NFJI VCMs [5] states that, for a given
fixed electrical input power P , the required mass M grows
faster than the injection volume V , with M ∝ V 6/5. To
provide a 1 mL injection, then, a voice coil actuator of over
1 kg mass would be required, which is not practical for a
hand-held device. Thus, a new form of injection ampoule [7]
was conceived to break this scaling relationship by providing
different piston diameters for the two phases of NFJI [8];
however, this mechanical decoupling approach is inefficient
and has limited flexibility.

LPMSMs, on the other hand, are not subjected to the cou-
pling between motor stroke and performance seen in VCMs.
Significant power efficiency gains from using this type of
motor are possible, if the motor length can be long. However,
the hand-held nature of jet injection devices does not readily
allow for this trade-off.

In this paper, we describe a semi-analytical electromagnetic
model for slotless tubular LPMSMs, following from that
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Fig. 2. This schematic illustrates a tubular LPMSM with quasi-Halbach magnets, slotless windings, and a shortened exterior back-iron tube. The radii of
magnet, coil, and back are shown; the structure has periodicity with wavenumber k, wave length Lk , number of half coil poles NC and half magnet poles
NM . The arrows indicate direction of magnetization of magnets, while the characters label the coil phases.

presented in [6]. We then present an optimization scheme
for the motor mass at a given power dissipation and an
automated routine for estimating cogging force using finite-
element analysis (FEA). Using these methods, we constructed
and preliminarily tested an optimized and practical LPMSM
motor design for NFJI in [9]. Validation of this actuator for
NFJI will be introduced and discussed in this paper. Fig. 1
shows a render of the mechanical design concept for the
finalized motor configuration.

II. ELECTROMAGNETIC MODEL

Our modeling approach is outlined in [10] and employed
in [5], [6]: an analytical Fourier series solution was used to
solve Poisson’s equation in cylindrical coordinates directly.
This formulation provides a good tradeoff between accuracy
and computational efficiency. It computes faster compared to
FEA [11] or the standard integral formulation [12], [13] and
avoids the problems of numerical instability exhibited by other
explicit analytical solutions [14], [15].

Based on [5], we will study a slight variation of this
topology using a shorter exterior back-iron. In this approach,
the back-iron only covers the coil and travels along with it, as
shown in Fig. 2. The advantage of shortened back-iron over
using iron to cover the entire motor length is the reduction
in weight, which is an important objective in designing hand-
held devices. However, a moving-iron configuration introduces
cogging effects that can be problematic for smooth motion
control.

Ignoring resistance due to fluid viscosity, the actuator force
F and jet speed v have the following relation:

F =
π

8
ρv2D2 (1)

where ρ is the density of fluid being delivered and D is the
diameter of the piston cylinder. For linear permanent magnet
motors, the motor constant Km, measured in N/

√
W , is a

measure of force production efficiency that is independent of
the winding properties. We can combine these relationships

to find the power dissipation in the motor windings P for a
given ampoule volume V and length of piston travel Ls:

P =
ρ2V 2v4

4K2
mL

2
s

(2)

It was shown in [10] that Km ∝ K̂m

√
M , where K̂m is

a dimensionless parameter describing the internal magnetic
and electric geometry of the motor. Thus, neglecting material
properties, we can determine the overall scaling behavior of
motors for the needle free jet injection task:

P ∝ V 2v4

ML2
sK̂

2
m

(3)

Typically the application determines ρ, V , v, and Ls (or
D). Thus, either motor mass M must be fixed to search for
a motor with the optimum power consumption P , or P must
be fixed to find a motor with the optimum motor mass.

We analyzed a motor with repeat units of coil and magnet
of wavelength Lk, ratio of radial magnet length over a pair
of radial-axial magnet δ, coil length LC , magnet length LM ,
and arbitrary number of half coil poles NC and magnet poles
NM , as illustrated in Fig. 2. The motor is overhung if NC >
NM , and underhung if NM > NC . Previous research in [6]
points out that underhung motors offer superior efficiency to
overhung motors; thus, only underhung motors are considered
here. The length of the motor simplifies to:

Lmotor ≡ LM =
NM

2
· Lk (4)

The magnetization of permanent magnets can be represented
by a Fourier series where M̂rn and M̂zn are the dimensionless
radial and axial magnetizations, respectively, in odd harmonic
order:

M̂rn =
4Nseg
nπ2

sin

(
π

Nseg

)
sin

(
nπδ

2

)
(5)
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M̂zn = − 4

nπ2
cos

(
nπδ

2

)
(6)

Uniformly magnetized segments are used in place of each
radial magnet to approximate true radial magnetization. This
imperfection is also accounted for in the model by a method
of analyzing 3D effects in a segmented Halbach array [16].

Valid for idealized back-iron with constant permeability,
the solutions to Maxwell’s equations for this set of boundary
conditions can be described in terms of auxiliary functions Λν
based on the modified Struve function Lν(x), and the modified
Bessel functions Iν(x), and Kν(x):

Λν (x) ≡ π

2
(Iν (x)− Lν (x)) (7)

LI ≡ x (Λ1 (x) I0 (x)− Λ0 (x) I1 (x)) (8)

LK ≡ x (Λ1 (x) K0 (x) + Λ0 (x) K1 (x)) (9)

The force F can be found by determining a dimensionless
force constant F̂ . We compute F̂ by integrating the Lorentz
force over the coil:

F̂ = π
(
â1cb̂1m + â1mb̂1c

)
(10)

where â1m and b̂1m are the magnetic field coefficients gov-
erned by matching boundary conditions for the first harmonic,
and â1c and b̂1c are parameters controlled by the coil radii.
The force F can then be obtained from the dimensionless
force constant,

F =
2πBremJ1NM

k3
F̂ (11)

where J1 is the magnitude of the first harmonic of current
density. In a similar manner, power dissipation P and motor
mass M can also be non-dimensionalized:

P̂ =
π

2

[
(krci)

2 − (krco)
2
]

(12)

P =
2πNMJ

2
1

σk3
P̂ (13)

M =
2πNMσc

k3
M̂ (14)

M = Mcoil +Mmagnet +Miron (15)

M̂ = π

[
f + (1− f)

ρins
ρc

] [
(krco)

2 − (krci)
2
](NC

NM

)
+π

(
ρm
ρc

)[
(krmo)

2 − (krmi)
2
]

+π

(
ρf
ρc

)[
(krfo)

2 − (krfi)
2
](NC

NM

)
(16)

where f is copper volume fill factor, ρins is insulator
density, ρc is conductor density, ρm is magnet volumetric

density, and ρf is iron density. Note that in the description
of dimensionless mass M̂ the length of the back-iron follows
the length of the coil. However, back-iron length will need
to be adjusted to minimize end cogging effects, which will
slightly increase the total mass.

With the field solution for an infinitely permeable back-
iron anm, bnm, and the maximum allowed flux density Bsat
[5], the back-iron outer radii rfo can be constrained using the
relationship:

rfo =

√√√√rfi2 + rfi
Brem
Bsat

n∑
i=1

2 sin(nπ2 )

nk
Ψ (17)

Ψ = anmI1 (nkrfi) + bnmK1 (nkrfi) (18)

With σ as is the conductivity of the conductor, w as the
winding factor, and Nφ as the number of winding phases, the
dimensionless motor constant K̂m and the motor constant Km

can be obtained via:

w =
2Nφ
π

sin

(
π

2Nφ

)
(19)

Km = BremK̂m

√
σM

ρc
(20)

K̂m = wF̂

√
f

(NM

NC
)P̂ M̂

(21)

III. DESIGN & OPTIMIZATION

A. Requirements

Functionality and usability requirements were identified by
considering the use of a handheld device:

• The device needs to deliver V = 1 mL volume of fluid at
a peak jet speed of 200 m/s (200µm nozzle diameter);

• Theoretical peak power consumption P at the peak jet
speed to be less than 1.2 kW (the motor driver will
consume more to overcome friction)

• The total length of the device should not exceed 20 cm
(including the mechanical structure and ampoule);

• The motor must weigh less than 350 g

The target jet speed of 200 m/s was chosen to be adequate
to overcome viscous losses in drug injection orifices while
leading to practical (100 m/s to 150 m/s) injection veloci-
ties [1], while the power consumption of 1.2 kW is within the
capability of practical self-contained power sources and power
electronic drives. The duration of a typical injection is < 0.5 s,
so heat dissipation during an injection is of minimal concern.

The mechanical design concept required the Halbach mag-
net array to fit inside a thin tube of austenitic stainless
steel, which in turn, slides against plastic bearings. Due to
the availability of parts, we constrained rmo = 7.8 mm to
allow the use of thin stainless steel tubing of 16 mm outside
diameter. Furthermore, we chose to use standard precision
austenitic stainless steel rods to reduce the machining work

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TIA.2018.2880417

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



for the piston. Working back from the required volume V , the
minimum stroke length Ls is 140 mm, 80 mm, and 50 mm for
piston diameter or ampoule inner diameter of 3 mm, 4 mm,
and 5 mm, respectively.

B. Design optimization

Based upon our previous development of power systems for
jet injection [17], it was determined that the power electronics
could support 1200 W of nominal motor power, with adequate
margins, and with this new requirement, we focus on minimiz-
ing the mass of the motor that would meet all the requirements.
Since NM and NC were the only parameters subjected to
integer constraints, each pair of NM and NC was treated as
an independent non-linear optimization problem. In order to
find a solution for this mixed-integer optimization problem, we
used a method that can be divided into an outer optimization
loop and an inner optimization routine. Fig. 3 summarizes and
illustrates the optimization algorithm.

In a bird’s eye view, the outer optimization loop executes a
strategic repetition of the inner optimization routine. The inner
optimization routine searches for the most power-efficient
motor configuration at each given NMi, NCi, and Mi. The
inner optimization problem is convex, and readily converges
to a solution. The outer loop performs a grid search across
a localized region in the (NM , NC) space, repeated around
the optimum point until that optimum lies in the center of
the search grid. This approach overcomes an observed lack
of local convexity in terms of NM and NC , by using a larger
search grid than the scale of the non-convexity. This means that
the program can gradually approach the best combination of
NM and NC without getting stuck in numerous local minima.
The results discussed later in Section III-C and Fig. 4(b) proved
that is the case.

In the very first round, the outer optimization routine first
chooses an initial mass M0 = m0 and starts searching for
the most power efficient motor that it can possibly achieve
in the grid of (NM : 0 → 9) × (NC : 0 → 9).
Each execution of outer optimization loop runs at most a
hundred inner optimizations at a time in each grid search
of (NM :start → NM :start + 9)× (NC:start → NC:start + 9),
excluding overhung configurations (when NC ≥ NM ). After
each grid search, the outer optimization loop identifies the
most power efficient motor configuration so far to obtain
the period numbers NMβ , NCβ . The search stops once this
motor configuration with power consumption P is found to be
near enough to the desired power. If this motor configuration
has not met the power requirement, the next grid search
takes NMβ , NCβ as its new center for the next grid search
(NM :start = NMβ − 5, NC:start = NCβ − 5), and the Mi

set point in the outer optimization is increased by a small
amount (Mi = Mi−1 + small increment). In this approach,
the mass M allowed in the motor search is increasing, while
the power consumption P of motor configurations found by
inner optimization is decreasing to approach the desired power.

To get a realistic motor configuration, material properties,
design constants and constraints were introduced. A fill factor

TABLE I
SUMMARY OF MOTOR OPTIMIZATION CONSTANTS AND CONSTRAINTS

Parameter Description Values
V Maximum injection volume 1 mL

v Nominal jet speed 200 m/s

rco − rci Coil thickness ≥ 4 mm

rmo Fixed outer magnet array outer radius 7.8 mm

rmi Magnet array radius ≥ 2 mm

gapmc Magnet and coil fixed radial gap 1.3 mm

gapcf Coil and iron fixed radial gap 0.1 mm

Lk Period length ≥ 12 mm

δ Ratio of radial magnet over a period 1 > δ > 0

NM , NC Number of half magnet & coil phases ∈ N
NM −NC Underhung (> 0) or Overhung (< 0) > 0

M Motor mass ≤ 350 g

Ls/ds Stroke lengths and diameter sets 140 mm/ 3 mm

80 mm/ 4 mm

50 mm/ 5 mm

of 62 % was assumed for the copper conductor, and the back-
iron was selected to be made of plain 1018 carbon steel.
We chose to construct radial magnets from 4 segments and
used Bsat = 2 T to avoid saturation in the back-iron. The
back-iron thickness was calculated using 11 harmonics of the
magnetic field, while the force constant was calculated from
the first harmonic alone. We set the clearance gap between
the magnet and coil gapmc ≡ rci − rmo = 1.3 mm to
facilitate some rigidity for the bobbin shell, and the gap
between coil and back-iron gapcf ≡ rfi − rco = 0.1 mm to
increase ease of assembly. Table I summarizes the optimization
constraints for the desired motor configuration. To reduce
coupling between the radial dimensions, the thicknesses of
the coil tc = rco − rci and of the magnets tm = rmo − rmi
were used in the optimization, instead of rco and rmo. The
five parameters for optimization were Lk, rmi, tm, tc, and δ.
The parameters were also subjected to additional constraints:
a minimum copper thickness of Min(tc) = 4 mm to guarantee
the structural integrity of the bobbin, outer magnet radii
rmo = tm + rmi = 7.8 mm as noted above, a minimum
inner magnet radius Min(rmi) = 2 mm to allow for structural
support through the center of the magnet array, and minimum
period length Min(Lk) = 12 mm to make coil winding more
practical. Table I summarizes the motor optimization constants
and constraints.

The inner optimization routine uses constrained nonlinear
multi-variable optimization based on the interior point algo-
rithm (MATLAB Optimization Toolbox) to minimize power
dissipation P , calculated via (2), (20), and (21). Many inner
optimizations will be completed before the program can find
the suitable motor. Across the inner optimization rounds, the
following constraints are used:

• Design constants such as injection volume V , jet speed
v, gapmc, gapcf , stroke length Ls, and piston diameter
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Fig. 3. Summary of the top-level motor optimization algorithm and inner optimization routine. The algorithm uses motor specifications V , v, Ls, and
Pdesired to determine the motor parameters Lk , rmi, tm, tc, δ, NC , NM and motor massM at which all specifications are satisfied.

ds are fixed;
• Constraints on the optimization output parameters (Lk,
rmi, tm, tc, and δ) always apply;

• Variables such as NM , NC , and motor mass M are up
to the outer optimization loop to specify.

C. Selecting motor configuration

To see the effect of stroke length on the performance
that can be obtained, Fig. 4(a) plots Pmax against M for
three stroke lengths Ls = 50 mm/80 mm/140 mm, using

V = 1 mL, v = 200 m/s, Pmax = 1.2 kW and other
constraints. Although optimized motors with 140 mm stroke
can offer superior performance given the same motor massM ,
the overall motor lengthLmotor required was found to be
longer than 300 mm. This result agrees strongly with the
previous study in [7]: PMLSMs can be more efficient if
the motor length is allowed to be longer. However, with the
ergonomics of the final handheld device in mind, only motors
with Ls = 80 mm appear to be feasible within both the motor
mass and motor length limits stated in Section III-A.
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(a) Minimum M for given Pmax for different values of Ls

(b) NM vs. NC search map

Fig. 4. The (NM :start → NM :end)× (NC:start → NC:end) search map
for a motor with V = 1 mL, v = 200 m/s, Pmax = 1.2 kW, and Ls =
80 mm yields the least motor mass at NM = 9 and NC = 4 as shown in
(a); and plot of Pmax against M for different stroke length Ls under the
conditions V = 1 mL, v = 200 m/s, Pmax = 1.2 kW (b). The chosen
configuration for further cogging force optimization is labeled with a red star
in (a), and annotated in both graphs.

The global optimization for V = 1 mL, v = 200 m/s,
Pmax = 1.2 kW, and Ls = 80 mm and stated constraints
is an underhung motor with NC = 4, NM = 9, Lk = 32 mm,
rmi = 2 mm, rmo = 7.8 mm, rci = 9.1 mm, rco = 13.1 mm,
rfi = 13.2 mm, rfo = 13.93 mm, δ = 0.258 and M = 322 g.
The plot in Fig. 4(b) illustrates that, at NC = 4 at NM = 9,
the optimization algorithm found the most efficient motor
configuration based on the input constraints. Furthermore, it
appears to reach the optimization solution rather gradually and
exhibit a noticeable degree of field convexity, which agrees
with our assumption earlier.

Considering a motor with Ls = 80 mm acting upon a 1 mL
ampoule with an orifice diameter of 200µm to generate jet
velocity of 200 m/s, the motor is required to output 250 N at
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(a) Cogging force optimization setup

(b) Axisymmeic FEA model illustration

Fig. 5. Cogging force optimization with extended back-iron length Lf =
LC + λ, where λ is extra back-iron length, ∆ is motor axial position in (a);
and axisymmetric FEA model to work out cogging force for each Lf over
the range of ∆ = 0→ Ls with no applied current in (b).

a stroke velocity of 0.5 m/s. The analytical model estimates
the dimensionless motor constant K̂m to be 0.1107, while the
single coil pole/single magnet pole FEA model, similar to that
in [10], is in strong agreement with the computed K̂m(FEA) of
0.1149. Upon fulfilling all requirements and FEA validation,
this motor configuration was chosen for further cogging force
investigation before advancing to the final design.

D. Cogging force optimization

By design intention, the back-iron tube does not cover the
whole length of the Halbach magnet array. Thus, the motor
is prone to problems related to end effect cogging force such
as control instability. To reduce the magnitude of the cogging
force, an FEA setup as illustrated in Fig. 5(b) was used to
search for an alternative back-iron length that yields the least
peak to peak cogging force.

The cogging force optimization process was started by
creating a base ANSYS Mechanical APDL script that de-
scribes the motor configuration obtained from the previous
optimization. The model included additional parameterization
of sleeve length λ and coil position ∆ while excluding
the conductor and input current conditions, as illustrated in
Fig. 5(b). We created a Python automation script to collect
axial forces acting on the back-iron Fc, then changed λ and
∆ accordingly to repeatedly call the APDL batch process for
the same base script. The automation script split the job into
5-6 concurrent threads which called independent APDL batch
processes to fully exploit the available computing power.

The chosen motor configuration consists of four half-coil-
poles with the minimum back-iron length Lf = 64 mm.
The automation script swept for extra back-iron lengths of
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λ = 0 → 32 mm, with increment of dλ = 0.5 mm, over
the entire stroke length of ∆ = 0 → 80 mm, with increment
of d ∆ = 0.5 mm. We chose the back-iron tube length to be
Lf = 71 mm for having the least peak to peak cogging force
Max(FC)−Min(FC) = 4.07 N. The chosen back-iron length
of Lf = 71 mm reduces cogging force 71.5 % compared to the
minimal choice of Lf = LC = 64 mm, as shown in Fig. 6(a).
With a maximum FEA axisymmetric grid size of 0.5 mm, the
whole process took 14 hours on an Intel i7 - 4970 CPU.

(a) Searching for Lf which yields the least cogging

(b) Predicted FC at Lf = 71 mm (red) and Lf = 79 mm (black)

Fig. 6. Peak to peak cogging force Max(FC) − Min(FC) against iron
length λ = 64→ 96 mm, using the globally optimized motor configuration,
with each point collected by moving back-iron over the entire stroke length Ls

in (a); and comparison between the cogging force distributions of the worst-
case iron length Lf = 79 mm (black) and the chosen Lf = 71 mm (red) in
(b).

TABLE II
SUMMARY OF MOTOR DESIGN VALUES

Parameter Description Values
NM Number of half magnet-poles 9

NC Number of half coil-poles 4

rmi Magnet array inner radius 2 mm

rmo Magnet array outer radius 7.8 mm

rci Coil array inner radius 9.1 mm

rco Coil array outer radius 13.1 mm

rfi Iron tube inner radius 13.2 mm

rfo Iron tube outer radius 13.93 mm

δ Ratio of radial magnet vs. magnet pair 0.258

Lk Repeat length 64 mm

LM Magnet array total length 144 mm

LC Coil array total length 64 mm

Lf Iron tube length 71 mm

Ls Stroke length 80 mm

IV. CONSTRUCTION & EXPERIMENTAL VALIDATION

A. Motor construction

Based upon the results of these optimizations obtained in
Section III-C and summarized in Table II, we constructed a
prototype motor and jet injector structure presented in [9] and

(a) The bobbin with fully wound coil (left) & iron tube assembly (right)

(b) Full motor assembly without the ampoule

Fig. 7. Pictures showing progress of the device construction: the bobbin with
a fully wound coil, as well as the bobbin with coil and iron tube assembly (a);
and the full motor assembly without the NFJI ampoule and casing (b).
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Fig. 8. Measured phase voltage constant Ke against motor position for each
motor phase, determined over multiple passes at different velocities between
10 mm/s and 25 mm/s. There is a range in velocity because the coil was
moved by hand.

shown in Fig. 7. In this prototype, each phase coil was wound
using 180 turns of 28.5 AWG wire; four coils were joined in
series to form each phase, with a phase resistance of 11.6 Ω.
The back-iron was provided with a 2 mm slit to facilitate
electrical connection; narrow slits of this sort have been shown
to have negligible effect on motor performance, and may have
advantageous effects in reducing eddy currents [18]. In this
initial prototype, a back-iron length of 79 mm was chosen, so
as to explore the properties of a high-cogging-force regime,
as well as the optimal length of 71 mm.

The magnets (Grade N45SH, K&J Magnetics) were as-
sembled inside a stainless steel tube (16 mm outside diam-
eter), with the radial magnets provided as four uniformly-
magnetized segments. In addition to containing the repulsive
forces acting upon the radial magnet segments, this tube
also served as a bearing surface for polymer sleeve bearings
integrated into the ends of the bobbin.

The motor was integrated into an injector structure parallel
and adjacent to the drug ampoule, yielding a compact ar-
rangement. This configuration requires the motor bearings and
connecting structures to resist a moment, requiring the widely-
spaced bearings and the use of a thick force-transmitting
plate between the piston and the coil. A linear potentiometer
(Bourns PTB) was used for absolute motor position measure-
ment. As shown in Fig. 7(b), the motor and structure have a
mass of 605 g.

B. Motor constant measurement

The motor constant was evaluated by measurement of the
phase back-EMF during externally-induced motion plotted
on Fig. 8, with the phases connected in a wye topology.
A load cell (Futek LCM300, 250 lb. capacity) was used to
simultaneously determine the cogging force exhibited by the
prototype.

Fig. 9. Measured cogging force due to finite back-iron length, for a back-iron
length of 79 mm (red) and a length of 71 mm (black). Position is measured
relative to one end of the motor stroke.

The measured voltage constants for the three phases are
shown in Fig. 8. The relatively narrow radial magnets and
close proximity of iron yield a triangular flux waveform, with
minimal end effects; noise near the peaks is likely a result of
the relatively slow movement velocity employed (∼ 0.1 m/s).

Based upon these voltage constants and the phase resistance,
the motor constant is 6.6 N/

√
W, within 10 % of the design

value of 7.2 N/
√

W. This would correspond to an operating
power of 1.4 kW, rather than the design point of 1.2 kW. The
reduced performance seen in the prototype appears to be due
largely to a reduced winding fill factor from that which was
expected, and may be improved by improved winding and
interconnection technique.

C. Cogging force measurement

The measured cogging force is shown in Fig. 9, after
correcting for bearing friction of 4.2 N. The peak-to-peak
amplitude for the 79 mm back-iron is approximately 14 N, and
for the 71 mm back-iron is 4 N, in close agreement with the
predictions shown in Fig. 6(b). There is also good agreement
in the details of the cogging force waveform, with slight
differences near one end of the stroke.

D. Needle-free Jet Injection

The other key component in a practical injection system is
the power electronic drive, which needs to provide a burst of
high power for a short time from a compact package. We have
recently reported on such a system designed for a voice coil
actuator [17]. The newest iteration of the device was built to
be capable of three-phase drive to control the prototype motor
for NFJI.

To validate the practical performance of the motor in
performing needle-free jet injections, we inserted into it an
ampoule and orifice, and estimated the velocity of the jet
produced by directing it against a piezoelectric force sensor
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(a) Measured motor position (b) Jet velocity determined from force measurement (c) Three-phase current during the injection

Fig. 10. Measured piston position for a constant-voltage injection corresponding to a nominal power of 1.4kW (a); the jet velocity determined from the
force of the water jet acting upon the force sensor (b); and the current profile across the motor phases during the injection (c).
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Fig. 11. Experimental setup in which the motor ejects water onto a
piezoelectric force sensor, driven with constant motor input voltage

(model 208C01, PCB Piezotronics). By measuring the jet
velocity in this way, we eliminate any potential effects from
leakage or fluid compression. In Fig. 11, the experimental
setup comprises the fully assembled motor mounted on a
movable stage, with an aluminum ampoule filled with water
pointing at the force sensor, and the power system to drive the
motor (not shown here). Fig. 10 shows the results for a water
jet ejection onto the force sensor placed 15 mm away from
the tip of the nozzle. The controller applied a constant phase
voltage amplitude of 110 Vrms, corresponding to a nominal
power of 1.4 kW, for a period of 0.1 s. Based on the measured
travel distance of the motor piston, as shown in Fig. 10(a), the
average jet speed achieved was 134 m/s. This value is obtained
from the relationship between the piston tip velocity vpiston
and the water jet velocity vjet, assuming an incompressible
fluid and uniform plug flow:

vjet = vpiston
Apiston
Ajet

(22)

where Apiston, and Ajet are the cross sectional area of the
piston, and jet nozzle, in the same order. Furthermore, the
instantaneous forceFins measured by the piezoelectic force
sensor can be also translated to jet velocity vjet, given Ajet,
and known density of water ρwater, assuming a uniform plug
flow:

vjet =

√
Fins

ρwaterAjet
(23)

The average jet speed calculated from the force measure-
ment was slightly higher than the jet speed estimated by the
position profile, at 144 m/s. This is likely because the flow
exiting the nozzle does not have a uniform velocity profile,
which tends to increase the apparent jet speed obtained via
force measurement. These jet speeds are well within the range
of speeds useful in jet injection, and in line with other jet
speeds obtained with this nominal pressure [19].

Despite the use of an open-loop, constant-voltage-amplitude
control approach, the jet speed was relatively steady through-
out the stroke, and most variations observed correspond to
changes in the friction and cogging forces. The dip in velocity
near the beginning of the injection may be due to the fact that
during the loading process, an air bubble made its way into the
ampoule. When the bubble approaches the output nozzle, the
lack of fluid can cause sudden changes in velocity. Air bubbles
can only be avoided through careful filling procedures.

These results validate that the prototype motor is capable
delivering large volume needle free jet injection (up to 1 mL)
when given 1.4 kW of electrical power, close to the theoretical
design value of 1.2 kW. Improvements to the motor control
strategy will allow for further enhancements to injection
consistency and repeatability.

V. CONCLUSION

To summarize, we presented a semi-analytical solution for
the electromagnetic model of slotless tubular LPMSMs, an
efficient optimization scheme for the motor mass at a given
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power dissipation, as well as an automated routine for estimat-
ing cogging force using FEA. Utilizing these modeling and
optimization methodologies, we found a globally optimized
motor configuration for NFJI that is complemented by an
iron length that produces the minimal amount of cogging.
The motor was designed to deliver 1 mL NFJIs, at rated
motor speed of 0.5 m/s, rated force of 250 N, and rated
electrical power requirement of 1.2 kW. The optimized motor
configuration for these requirements is summarized in Table II.

The measured motor constant, peak-to-peak cogging force,
and bearing friction of the prototype motor constructed corre-
sponding to the optimized design were 6.6 N/

√
W, 4 N and

4.2 N, respectively. In a test injection provided with 1.4 kW of
electrical power, the prototype motor produced a 200µm thin
jet of water into a force sensor with an average jet velocity
of 134 m/s, well within the practical jet injection velocity
range [1]. Thereby, this prototype successfully demonstrated
the capability for large volume needle-free jet injection. Future
efforts will be aimed at improving the usability of the motor
hand piece by creating a complimentary power device that
is portable, and capable of powering multiple injections per
recharge. Alternative control algorithms can be explored to
improve the motor control performance. It is also worth
mentioning that it is possible for the prototype motor to
employ a compound ampoule similar to that reported in [7],
[20], making the device capable of delivering close to 4 mL of
liquid drug, and thus surpassing the volume needed for most
protein based formulations [4].

In conclusion, the design methodology described in this
work illustrates the benefits from considering the design of
the actuator and its load simultaneously; a motor designed to
fit an existing drug ampoule would exhibit significantly worse
performance. Any piston pressurizing a fluid and powered
by a LPMSM benefits from a reduction in diameter and
increase in stroke length for a constant swept volume, which
may prove useful in general fluid-handling, hydraulic, and
pneumatic systems. Similar benefits may be possible in the
design of actuated linkages, such as robot arms and powered
exoskeletons.
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