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Abstract

We give new results on the growth of the number of particles in a dyadic
branching Brownian motion which follow within a fixed distance of a path
f : [0,∞) → R. We show that it is possible to count the number of parti-
cles without rescaling the paths. Our results reveal that the number of particles
along certain paths can oscillate dramatically. The methods used are entirely
probabilistic, taking advantage of the spine technique developed by, amongst
others, Lyons et al [11], Kyprianou [8], and Hardy & Harris [4].

1 Introduction

The large-deviation properties of branching Brownian motion (BBM) have been
well studied: for example, see Lee [9] and Hardy & Harris [3] for results on
“difficult” paths which have a small probability of any particle following them,
and Git [2] for the almost-sure growth rate of the number of particles along
“easy” paths along which we see exponential growth in the number of particles.
To give these results, the paths of a BBM are rescaled onto the interval [0, 1],
echoing the approach of Schilder’s theorem for a single Brownian motion.

Here we consider a problem similar in theme to the more classical path large
deviations results of Git [2], but from a naive standpoint, in which we are given
a fixed function f : [0,∞) → R and we want to know how many particles in a
BBM follow uniformly close to this path – that is, within a fixed distance L of
f(t) for all times t ≥ 0. Clearly there is a positive probability that no particle
will achieve this (indeed, the very first particle could wander away from f before
it has the chance to give birth to another): in this event we say that the process
becomes extinct.

The intuition is that the growth of the population due to branching is in
constant competition with the “deaths” due to particles failing to follow the
function f . Thus a natural condition arises: if the gradient of f is too large,
then the process eventually dies out almost surely; otherwise we may condition
on non-extinction and give an almost sure result on the number of particles
along the path.

We take advantage of the now well-known spine technique to interpret the
change of measure given by a carefully chosen martingale. The change involves
forcing one particle (the spine) to stay within a tube of radius L about our func-
tion f for all time. We then use the spine decomposition (see [4]) which allows
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us to bound the growth of the system by looking at the births along the spine.
We use only this intuitive tool, along with integration by parts, to complete
the majority of the study – and emphasise that the results follow so smoothly
only because the appropriate choice of martingale allows the established spine
methods to do the work for us.

We mentioned earlier that our results are given conditional on non-extinction.
In fact, our proofs initially give results on the event that our particular mar-
tingale has a strictly positive limit. In Section 6 we turn to showing that these
events coincide to within a set of zero probability. The difficulties we face in
this section are inherent in the time-inhomogeneity of the problem, and standard
methods (analytic or probabilistic) cannot be applied. This fact is underlined
by the observation that we are essentially considering a one-dimensional branch-
ing diffusion with time-dependent drift, and asking how many particles remain
within a bounded domain.

Finally, we note that our methods could easily be extended to a wide range
of other branching diffusions. For simplicity, we consider only dyadic branching
Brownian motion, but other diffusions and other branching distributions (sub-
ject to standard supercriticality and “A logA” conditions) could be considered
– the spine techniques involved extend exactly as in the papers of Lyons et al
[7, 10, 11].

2 Main result

2.1 Initial definitions

We consider a branching Brownian motion starting with one particle at the
origin, whereby each particle moves independently and undergoes independent
dyadic branching at exponential rate r > 0. We let the set of particles alive at
time t be N(t), and for each particle u ∈ N(t) denote its position at time t by
Xu(t). This setup will be formalised later.

Fix a continuous function f : [0,∞)→ R. We say that f satisfies the usual
conditions if:

(1) f(0) = 0;

(2) f is twice continuously differentiable;

(3) limt→∞
1
t

∫ t
0
|f ′′(s)|ds = 0.

We assume unless otherwise stated that these conditions hold. After we obtain
our results it will be possible to relax them slightly using simple uniform approx-
imation arguments – see Section 7 – but for now the stronger conditions on f
will allow us to apply integration by parts theorems without any complications.

Fix L > 0 and let

S = S(f) := lim sup
t→∞

1
t

∫ t

0

f ′(s)2ds

and

S̃ = r − π2

8L2
− S

2
.
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Define
N̂(t) = {u ∈ N(t) : |Xu(s)− f(s)| < L ∀s ≤ t} ,

the set of particles that have stayed within distance L of the function f for all
times s ≤ t. We wish to study the number of particles in N̂(t) at large times.
Let

Υ = inf{t ≥ 0 : N̂(t) = ∅}.
We call Υ the extinction time for the process, and say that the process has
become extinct by time t if Υ ≤ t. When we talk about non-extinction, we
mean the event Υ =∞.

2.2 The main result

We now state our main result. Most of this article will be concerned with
proving this theorem.

Theorem 1. If S̃ < 0 or S̃ = −∞, then Υ < ∞ almost surely. On the other
hand, if S̃ > 0, then P(Υ = ∞) > 0 and almost surely on non-extinction we
have

lim sup
t→∞

1
t

log |N̂(t)| = r − π2

8L2
− lim inf

t→∞

1
2t

∫ t

0

f ′(s)2ds

and

lim inf
t→∞

1
t

log |N̂(t)| = r − π2

8L2
− lim sup

t→∞

1
2t

∫ t

0

f ′(s)2ds.

This theorem can be extended slightly to cover more general functions, and we
give some results in this direction in Section 7.

3 Examples

Example 1. Take f(t) = λt. If r < λ2

2 + π2

8L2 then we have extinction almost
surely; if r > λ2

2 + π2

8L2 then on non-extinction

lim
t→∞

1
t

log |N̂(t)| = r − π2

8L2
− λ2

2
.

For comparison, Git [2] gives a large deviations growth rate of r − λ2/2 along
such paths with λ2 < 2r, so we see an extra cost of π2/8L2 for insisting that
particles stay within a fixed distance L of f over the whole lifetime.

Example 2. Let f(t) = tβ , β ∈ (0, 1), or f(t) = log(t + 1). Provided that
r > π2

8L2 , on non-extinction we have

lim
t→∞

1
t

log |N̂(t)| = r − π2

8L2
.

Thus just as many particles follow these paths as the constant zero path. The
same applies to any function with S = 0 (provided that it satisfies the usual
conditions). [Note that when trying to apply our result to f(t) = tβ , we have
a small problem in that f ′(0) = ∞. We can however approximate f uniformly
with, for example, fε(t) = (t + ε)β − εβ . For each ε we get S(fε) = 0, and a
very simple limiting argument gives the desired result.]
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Example 3. Let f(t) =
√

2rt − ctβ , β ∈ (0, 1), or f(t) =
√

2rt − c log(t + 1).
Then S(f) = 2r so we have extinction almost surely for any L – and the same
applies to f(t) =

√
2t−g(t) for any g with S(g) = 0. This can be interpreted as

saying that no particles travel for all time along any path “close” to criticality,
and should be compared with the results of Bramson [1] on the speed of the
right-most particle.

Example 4. Let f(t) = λ(t+1) sin(log(t+1)). If r < λ2
√

5

(
1+
√

5
2

)
+ π2

8L2 then we

have extinction almost surely; if r > λ2
√

5

(
1+
√

5
2

)
+ π2

8L2 then, on non-extinction,
the number of particles alive at time t oscillates, with

lim inf
t→∞

1
t

log |N̂(t)| = r − π2

8L2
− λ2

√
5

(√
5 + 1
2

)

and

lim sup
t→∞

1
t

log |N̂(t)| = r − π2

8L2
− λ2

√
5

(√
5− 1
2

)
.

(Note the appearance of the golden ratio!)

The reason for this oscillation becomes clearer when we consider the following
simpler (but perhaps less natural) example.

Example 5. Define a continuous function f : [0,∞) → R by setting f(t) = 0
for t ∈ [0, 1] and

f ′(t) =
{

0 if 22k ≤ t < 22k+1 for some k ∈ {0, 1, 2, . . .}
1 if 22k+1 ≤ t < 22k+2 for some k ∈ {0, 1, 2, . . .} .

Then, provided that r > 1
3 + π2

8L2 , on non-extinction we have

lim inf
t→∞

1
t

log |N̂(t)| = r − π2

8L2
− 1

3

and

lim sup
t→∞

1
t

log |N̂(t)| = r − π2

8L2
− 1

6
.

The idea here is that the number of particles grows quickly when f ′(t) = 0, but
much more slowly when f ′(t) = 1 as the steep gradient means that particles
have to struggle to follow the path for a long time. As the size of the intervals
[2n, 2n+1] grows exponentially, the behaviour of the number of particles at time
t is dominated by the behaviour on the most recent such interval. [We note
that this choice of f is not twice differentiable; however, it can be uniformly
approximated by twice differentiable functions, and it is easily checked that our
results still hold.]

4 The spine setup

Consider a dyadic one-dimensional branching Brownian motion, branching at
rate r, with associated probability measures Px under which

4



• we begin with a root particle, ∅, at x;

• if a particle u is in the tree then all its ancestors, denoted {v : v < u}, are
also in the tree;

• each particle u has a lifetime σu, which is exponentially distributed with
parameter r, and a fission time Su =

∑
v≤u σv;

• at the fission time Su, u has disappeared and been replaced by two children
u0 and u1, which inherit the position of their parent;

• each particle u has a position Xu(t) ∈ R at each time t ∈ [Su − σu, Su);

• each particle u, while alive, moves according to a standard Brownian mo-
tion started from Xu(Su − σu).

For convenience, we extend the position of a particle u to all times t ∈ [0, Su),
to include the paths of all its ancestors:

Xu(t) := Xv(t) if v ≤ u and Sv − σv ≤ t < Sv.

We recall that we defined N(t) to be the set of particles alive at time t,

N(t) := {u : Su − σu ≤ t < Su},

and also that

N̂(t) := {u ∈ N(t) : |Xu(s)− f(s)| < L ∀s ≤ t} .

We choose from our BBM one distinguished line of descent or spine – that
is, a subset ξ of the tree such that ξ ∩ N(t) contains exactly one particle for
each t and if u ∈ ξ and v < u then v ∈ ξ. We make this choice as follows:

• the initial particle ∅ is in the spine;

• at the fission time of node u in the spine, the new spine particle is chosen
uniformly at random from the two children u0 and u1 of u.

We call the resulting probability measure (on the space of marked trees with
spines) P̃x. The full construction of P̃x can be found in [4].

4.1 Filtrations

We use three different filtrations, Ft, F̃t and Gt, to encapsulate different amounts
of information. We give descriptions of these filtrations here, but the reader is
referred to [4] for the full definitions.

• Ft contains the all the information about the marked tree up to time t.
However, it does not know which particle is the spine at any point.

• F̃t contains all the information about both the marked tree and the spine
up to time t.

• Gt contains just the spatial information about the spine up to time t; it
does not know anything about the rest of the tree.

We note that Ft ⊆ F̃t and Gt ⊆ F̃t, and also that P̃x is an extension of Px in
that Px = P̃x|F∞ .
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4.2 Martingales and a change of measure

Under P̃, the path of the spine (ξt, t ≥ 0) is simply a Brownian motion, and
thus we can apply Itô’s formula to see that

Vt := eπ
2t/8L2

cos
( π

2L
(ξt − f(t))

)
e

R t
0 f
′(s)dξs− 1

2

R t
0 f
′(s)2ds

is a Gt-martingale. By stopping the process at the first exit time of the spine
particle from the tube {(x, t) : |f(t)− x| < L}, we obtain also that

ζ(t) := eπ
2t/8L2

cos
( π

2L
(ξt − f(t))

)
e

R t
0 f
′(s)dξs− 1

2

R t
0 f
′(s)2ds

1{|f(s)−ξs|<L ∀s≤t}

is a Gt-martingale. We call this martingale ζ the single-particle martingale.

Definition 2. We define an F̃t-adapted martingale by

ζ̃(t) = 2|ξt| × e−rt × ζ(t),

where |ξt| denotes the generation of the spine at time t, |ξt| = |{v : v < ξt}|.
The proof that this process is an F̃t-martingale is given in [4].

We note that if f is an F̃t-measurable function then we can write:

f(t) =
∑
u∈Nt

fu(t)1ξt=u (1)

where each fu is Ft-measurable. It is also shown in [4] that if we define

Z(t) :=
∑

u∈N(t)

e−rtζu(t),

where ζu is the Ft-adapted process defined via the representation of ζ as in (1),
then

Z(t) = P̃[ζ̃(t)|Ft].

One may easily use this representation to show that Z is an Ft-martingale. This
martingale is the main object of interest, and we write it out in full:

Z(t) =
∑

u∈N̂(t)

e(π2/8L2−r)t cos
( π

2L
(Xu(t)− f(t))

)
e

R t
0 f
′(s)dXu(s)− 1

2

R t
0 f
′(s)2ds.

Definition 3. We define a new measure, Q̃x, via

dQ̃x

dP̃x

∣∣∣∣∣
F̃t

=
ζ̃(t)
ζ̃(0)

.

Also, for convenience, define Qx to be the projection of the measure Q̃ onto F∞;
then

dQx

dPx

∣∣∣∣
Ft

=
Z(t)
Z(0)

.

Lemma 4. Under Q̃x,
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• when at position x at time t the spine ξ moves as a Brownian motion with
drift

f ′(t)− π

2L
tan

( π
2L

(x− f(t))
)

;

• the fission times along the spine occur at an accelerated rate 2r;

• at the fission time of node v on the spine, the single spine particle is
replaced by two children, and the new spine particle is chosen uniformly
from the two children;

• the remaining child gives rise to an independent subtree, which is not part
of the spine and is determined by an independent copy of the original
measure P shifted to the position and time of creation.

Thus, under Q̃x, the spine remains within distance L of f(t) for all times t ≥ 0.
To see this explicitly, note that

Q̃x(ξt 6∈ N̂(t)) = P̃x
[
1{ξt 6∈N̂(t)}ζ̃(t)

]
= 0

by definition of ζ̃(t). All other particles, once born, move like independent
standard Brownian motions but – as under Px – we imagine them being “killed”
instantly upon leaving the tube of width 2L about f . In reality they are still
present in the system, but make no contribution to Z once they have left the
tube.

It is possible to show that the motion of the process ξt−f(t) has equilibrium
distribution

µ(dx) =
1
L

cos2
(πx

2L

)
1{x∈(−L,L)}dx,

although we will not need to use this property.

Remark. Note that N̂ , and hence Z and Q̃, depend upon the function f and
the constant L. Usually these will be implicit, but occasionally we shall write
N̂f,L, Zf,L and Q̃f,L to emphasise the choice of f and L in use at the time.

4.3 Spine tools

We now state the spine decomposition theorem, which will be a vital tool in our
investigation. It allows us to relate the growth of the whole process to just the
behaviour along the spine. For a proof the reader is again referred to [4].

Theorem 5 (Spine decomposition). We have the following decomposition of Z:

Q̃x[Z(t)|G∞] =
∫ t

0

2re−rsζ(s)ds+ e−rtζ(t).

The spine decomposition is usually used in conjunction with a result like the
following – a proof of a more general form of this lemma can be found in [12].

Lemma 6. Let Z(∞) = lim supZ(t). Then

Q� P ⇔ Z(∞) <∞ Q-a.s. ⇔ Q = Z(∞)P

and
Q ⊥ P ⇔ Z(∞) =∞ Q-a.s. ⇔ P[Z(∞)] = 0.
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Another extremely useful spine tool – also proved in [4] – is the many-to-one
theorem. A much more general version of this theorem is given in [4], but the
following version will be enough for our purposes.

Theorem 7 (Many-to-One). If f(t) is Gt-measurable for each t ≥ 0 with rep-
resentation (1), then

P[
∑

u∈N(t)

fu(t)] = ertP̃[f(t)].

We have one more lemma, a proof of which can be found in [6]. Although
this result is extremely simple – and essential to our study – we are not aware
of its presence in the literature before [6].

Lemma 8. For any t ∈ [0,∞] (note that infinity is included here), we have

Px(Z(t) > 0) = Qx

[
Z(0)
Z(t)

]
.

5 Almost sure growth along paths

5.1 Controlling the measure change

Before applying the tools that we have developed, we need the following short
lemma to keep the Girsanov part of our change of measure under control.

Lemma 9. For any u ∈ N̂(t), almost surely under both P̃x and Q̃x we have∣∣∣∣∫ t

0

f ′(s)dXu(s)−
∫ t

0

f ′(s)2ds

∣∣∣∣ ≤ 2L
∫ t

0

|f ′′(s)|ds+ 2L|f ′(0)|.

Proof. From the integration by parts formula for Itô calculus, we know that

f ′(t)Xu(t) = f ′(0)Xu(0) +
∫ t

0

f ′′(s)Xu(s)ds+
∫ t

0

f ′(s)dXu(s).

From ordinary integration by parts,∫ t

0

f ′(s)2ds = f ′(t)f(t)− f ′(0)f(0)−
∫ t

0

f(s)f ′′(s)ds.

We also note that, if u ∈ N̂(t) then |Xu(s)− f(s)| < L for all s ≤ t. Thus∣∣∣∣∫ t

0

f ′(s)dXu(s)−
∫ t

0

f ′(s)2ds

∣∣∣∣
≤ |f ′(t)(Xu(t)− f(t))− f ′(0)(Xu(0)− f(0))−

∫ t

0

f ′′(s)(Xu(s)− f(s))ds|

≤ 2L
∫ t

0

|f ′′(s)|ds+ 2L|f ′(0)|.

The above estimate motivates the following definition:

8



Definition 10. For p ∈ [0, 1) set

T (p) = inf{t :
∫ s

0
(r − π2

8L2 − 1
2f
′(u)2 − 2L|f ′′(u)|)du− 2L|f ′(0)| ≥ pS̃s ∀s ≥ t}.

We note that T (p) is deterministic and finite.

We are now ready to give our first real result, which tells us when our measure
change is well-behaved.

Proposition 11. Recall that Z(∞) := lim supt→∞ Z(t). If S̃ < 0 or S̃ = −∞,
then the process almost surely becomes extinct in finite time (and hence we have
Z(∞) = 0). Alternatively, if S̃ > 0 then P[Z(∞)] = 1.

Proof. Suppose first that S̃ ∈ [−∞, 0). Then r < S
2 + π2

8L2 so we may choose
L′ > L and finite S′ ≤ S such that

r <
S′

2
+

π2

8L′2
.

Let η = cos(πL/2L′) and S̃′ = r − π2/8L′2 − S′/2. Since L′ > L, we have

N̂f,L(t) 6= ∅ ⇒ Zf,L
′
(t) > 0.

Recall the extinction time Υ := inf{t ≥ 0 : N̂(t) = ∅}. Then

P(Υ =∞) = lim
t→∞

P(N̂f,L(t) 6= ∅)

= lim
t→∞

P

[
Zf,L

′
(t)

Zf,L′(t)
1{N̂f,L(t) 6=∅}

]

= lim
t→∞

Qf,L′
[

1
Zf,L′(t)

1{N̂f,L(t)6=∅}

]

≤ lim
t→∞

Qf,L′

 1{N̂f,L(t)6=∅}∑
u∈N̂f,L(t) ηe

( π2

8L′2
−r)t+

R t
0 f
′(s)dXu(s)− 1

2

R t
0 f
′(s)2ds

 .
If N̂f,L(t) 6= ∅ then there is at least one particle in N̂f,L(t): we may apply
Lemma 9 to its term in the denominator above to get

P(Υ =∞) ≤ lim
t→∞

1
η

Qf,L′
[

1

e( π2

8L′2
−r)t+ 1

2

R t
0 f
′(s)2ds−2L

R t
0 |f ′′(s)|ds−2L|f ′(0)|

]
≤ lim

t→∞

1
η

1
e−S̃′t+o(t)

= 0,

which proves our first claim.

Now suppose that S̃ > 0. We recall the spine decomposition:

Q̃[Z(t)|G∞] =
∫ t

0

2re−rsζ(s)ds+ e−rtζ(t).

Since, under Q̃, the spine is almost surely in N̂(t) for each t ≥ 0, we may use
Lemma 9 to bound both terms: for any p ∈ (0, 1) and t ≥ T (p),

e−rtζ(t) = e( π
2

8L2−r)t+
R t
0 f
′(s)dξs− 1

2

R t
0 f
′(s)2ds cos

( π
2L

(ξt − f(t))
)

≤ e−
R t
0 (r− π2

8L2− 1
2 f
′(s)2ds−2L|f ′′(s)|)ds+|f ′(0)| ≤ e−pS̃t

9



so that

Q̃[Z(t)|G∞] ≤
∫ T (p)

0

2re−rsζ(s)ds+
∫ t

T (p)

2re−pS̃sds+ e−pS̃t,

and thus lim inft→∞ Q̃[Z(t)|G∞] <∞ Q̃-almost surely. It is easily checked that
1/Z is a positive supermartingale under Q̃, and hence Z(t) converges Q̃-almost
surely to some (possibly infinite) limit. Thus, applying Fatou’s lemma, we get

Q̃[Z(∞)|G∞] ≤ lim inf
t→∞

Q̃[Z(t)|G∞] <∞.

We deduce that Z(∞) < ∞ Q̃-almost surely, and Lemma 6 then gives that
P[Z(∞)] = 1.

5.2 Almost sure growth

The two propositions in this section contain the meat of our results. Proposition
12 gives a lower bound on the number of particles in N̂(t) for large t, and
Proposition 13 an upper bound. The former holds only on the event that Z
has a positive limit; as mentioned in the introduction, this set coincides (up
to a null event) with the event that no particle manages to follow within L
of f , although we will not prove this fact until later. The proofs of our two
propositions are very simple, but we stress again that this is due to the careful
choice of martingale.

Proposition 12. Let Ω? be the set on which Z has a strictly positive limit,

Ω? :=
{

lim inf
t→∞

Z(t) > 0
}
.

Then almost surely on Ω? we have

lim inf
t→∞

1
t

log |N̂f,L(t)| ≥ r − π2

8L2
− lim sup

t→∞

1
2t

∫ t

0

f ′(s)2ds

and

lim sup
t→∞

1
t

log |N̂f,L(t)| ≥ r − π2

8L2
− lim inf

t→∞

1
2t

∫ t

0

f ′(s)2ds.

Proof. For any t ≥ 0, by Lemma 9, almost surely under P,

Z(t) =
∑

u∈N̂(t)

e(π2/8L2−r)t cos
( π

2L
(Xu(t)− f(t))

)
e

R t
0 f
′(s)dXu(s)− 1

2

R t
0 f
′(s)2ds

≤ |N̂(t)|e(π2/8L2−r)t+ 1
2

R t
0 f
′(s)2ds+2L

R t
0 |f
′′(s)|ds+2L|f ′(0)|.

Hence

1
t

log |N̂(t)| ≥ 1
t

logZ(t)+r− π2

8L2
− 1

2t

∫ t

0

f ′(s)2ds−2L
t

∫ t

0

|f ′′(s)|ds−2L
t
|f ′(0)|.

Now, on Ω? we have lim inft→∞ Z(t) > 0 and thus

lim inf
t→∞

1
t

logZ(t) ≥ 0.
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It is then a simple exercise, using that |N̂(t)| and Z(t) are càdlàg functions of
t, to show that

lim inf
t→∞

1
t

log |N̂(t)| ≥ r − π2

8L2
− lim sup

t→∞

1
2t

∫ t

0

f ′(s)2ds.

On the other hand, taking (deterministic) times tn →∞ such that

lim
n→∞

1
tn

∫ tn

0

f ′(s)2ds = lim inf
t→∞

1
t

∫ t

0

f ′(s)2ds

and running the same argument as above along the sequence tn, we get

lim sup
t→∞

1
t

log |N̂(t)| ≥ lim inf
n→∞

1
tn

log |N̂(tn)|

≥ r − π2

8L2
− lim sup

n→∞

1
2tn

∫ tn

0

f ′(s)2ds

= r − π2

8L2
− lim inf

t→∞

1
2t

∫ t

0

f ′(s)2ds.

Remark. Recall that under P, Z is a positive martingale so lim inft→∞ Z(t) =
Z(∞) P-almost surely. If S̃ > 0, then P[Z(∞)] = 1, so in this case Ω? occurs
with strictly positive probability.

Proposition 13. For any S ∈ [0,∞] and L > 0, P-almost surely we have

lim sup
t→∞

1
t

log |N̂f,L(t)| ≤ r − π2

8L2
− lim inf

t→∞

1
2t

∫ t

0

f ′(s)2ds

and

lim inf
t→∞

1
t

log |N̂f,L(t)| ≤ r − π2

8L2
− lim sup

t→∞

1
2t

∫ t

0

f ′(s)2ds.

Proof. Fix α > 1 and let ε = cos(π/2α). Since Zf,αL is a positive martingale
under P, we have Zf,αL(∞) < ∞ P-almost surely. This implies that, almost
surely,

lim sup
t→∞

1
t

logZf,αL(t) ≤ 0.

Now, almost surely under P,

Zf,αL(t) =
∑

u∈N̂f,αL(t)

e−rtζf,αLu (t) ≥
∑

u∈N̂f,L(t)

e−rtζf,αLu (t).

By the definition of ε above, for any u ∈ N̂f,L(t) the cosine term in ζf,αLu (t) is
at least ε (since the particle is within L of f(t) at time t). Applying Lemma 9
we see that

Zf,αL(t) ≥ |N̂f,L|e( π2

8α2L2−r)t · ε · e 1
2

R t
0 f
′(s)2ds−2L

R t
0 |f
′′(s)|ds−2L|f ′(0)|

and hence

1
t

log |N̂f,L(t)| ≤ 1
t

logZf,αL(t) + r − π2

8α2L2
+

1
t

log
1
ε

+
1
2t

∫ t

0

f ′(s)2ds− 2L
t

∫ t

0

|f ′′(s)|ds− 2L
t
|f ′(0)|.
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Thus (using that |N̂f,L(t)| and Zf,αL(t) are càdlàg functions of t) we may easily
show that

lim sup
t→∞

1
t

log |N̂f,L(t)| ≤ r − π2

8α2L2
− lim inf

t→∞

1
2t

∫ t

0

f ′(s)2ds.

Our first claim follows by letting α ↓ 1. Now, taking times sn →∞ such that

lim
n→∞

1
sn

∫ sn

0

f ′(s)2ds = lim sup
t→∞

1
t

∫ t

0

f ′(s)2ds

and running the same argument as above along the sequence sn, we get

lim inf
t→∞

1
t

log |N̂(t)| ≤ lim sup
n→∞

1
sn

log |N̂(sn)|

≤ r − π2

8L2
− lim inf

n→∞

1
2sn

∫ sn

0

f ′(s)2ds

= r − π2

8L2
− lim sup

t→∞

1
2t

∫ t

0

f ′(s)2ds.

6 Showing that Z(∞) = 0 agrees with extinction

We note that we have now established our main result except for one key point:
we have been working so far on the event {Z(∞) > 0}, rather than the event
of non-extinction of the process, {Υ =∞}. We turn now to showing that these
two events differ only on a set of zero probability.

The approach to proving this is often analytic, showing that P(Z(∞) > 0)
and P(non-extinction) satisfy the same differential equation with the same bound-
ary conditions, and then showing that any such solution to the equation is
unique. There is sometimes a probabilistic approach to such arguments: one
considers the product martingale

P (t) := P(Z(∞) = 0|Ft) =
∏

u∈N(t)

PXu(t)(Zu(∞) = 0).

On extinction, the limit of this process is clearly 1, and if we could show that on
non-extinction the limit is 0, then since P is a bounded non-negative martingale
we would have

P(extinction) = P[P (∞)] = P[P (0)] = P(Z(∞) = 0).

In [5], for example, we have killing of particles at the origin rather than on
the boundary of a tube – and it is shown that on non-extinction, at least one
particle escapes to infinity and its term in the product martingale tends to zero.
This is enough to complete the argument (although in [5] the authors favour the
analytic approach). In our case we are hampered by the fact that for a single
particle u the value of PXu(t)(Zu(∞) = 0) is bounded away from zero, and if
the particle is close to the edge of the tube, or even possibly in some places in
the interior the tube, then this probability takes values arbitrarily close to 1.

The time-inhomogeneity of our problem means that other standard methods
also fail. Our alternative approach is more direct: we show that if at least one

12



particle survives for a long time, then it will have many births in “good” areas
of the tube, and thus Z(∞) > 0 with high probability.

Recall that under P̃x, we start at time t = 0 with one particle at position
x (rather than at the origin) – and similarly for Q̃x. We now need some more
notation.

Definition 14. For t ∈ [0,∞) define

gt : [0,∞) → R
s 7→ f(s+ t)− f(t).

Now for α ∈ [0, 1), define

Uα = {(t, x) : Px−f(t)(Zgt,L(∞) > 0) ≥ α} ⊆ [0,∞)× R.

Finally, for any particle u and t ≥ 0, define

Iα(u; t) =
∫ t∧Su

0

1{Xu(s)∈Uα}ds;

Iα(u; t) is the time spent by particle u in the set Uα before t.

Figure 1: Approximation to a section of Uα for eight different values of α when
f(t) = sin(a tanh(t+ b)) + c for some constants a, b and c.

Our first lemma in this section establishes that for sufficiently small α, Uα –
which we think of as the good part of the tube – stretches to near the top and
bottom edges of the tube for almost S̃/r proportion of the time. To do this we
use the identity given in Lemma 8 combined with the spine decomposition.

Lemma 15. Fix δ ∈ (0, L) and β < 1. If S̃ > 0 then for sufficiently small
α > 0 and large T , we have∫ t

0

1{(s,x)∈Uα ∀x∈[−L+δ,L−δ]}ds ≥ β
S̃

r
t ∀t ≥ T.

Proof. Fix q ∈ (0, 1−β
2 ) and p ∈ (β + 2q, 1); we show that for α = qS̃ cos(πδ/2L)

2re2Lr
√

2/qS̃

and t ≥ T (p), we have∫ t

0

1{(s,x)∈Uα ∀x∈[−L+δ,L−δ]}ds ≥ (p− 2q)
S̃

r
t.

13



Let

Jt = inf
s≥t

∫ s

0

(
r − π2

8L2
− 1

2
f ′(u)2 − 2L|f ′′(u)| − qS̃

)
du,

and define two subsets, U and V , of [0,∞) by

U = {t ≥ 0 : Jt is increasing at t} and V =
{
t ≥ 0 : |f ′(t)| < r

√
2/qS̃

}
.

If J is increasing at t, then clearly for any s > 0∫ t+s

0

(r − π2

8L2
− 1

2
f ′(u)2 − 2L|f ′′(u)| − qS̃)du

>

∫ t

0

(r − π2

8L2
− 1

2
f ′(u)2 − 2L|f ′′(u)| − qS̃)du,

and hence ∫ t+s

t

(r − π2

8L2
− 1

2
f ′(u)2 − 2L|f ′′(u)|)du > qS̃s.

Thus if t ∈ U ∩ V then, as in Proposition 11, we can apply the spine decompo-
sition and Lemma 9 to get

Q̃x[Zgt,L(∞)|G∞] ≤
∫ ∞

0

2re( π
2

8L2−r)s+
R s
0 g
′
t(u)dξu− 1

2

R s
0 g
′
t(u)2duds

≤
∫ ∞

0

2re( π
2

8L2−r)s+ 1
2

R s
0 g
′
t(u)2du+2L

R s
0 |g
′′
t (u)|du+2L|g′t(0)|ds

=
∫ ∞

0

2re−
R t+s
t

(r− π2

8L2− 1
2 f
′(u)2−2L|f ′′(u)|)du+2L|f ′(t)|ds

≤ e2Lr
√

2/qS̃

∫ ∞
0

2re−qS̃udu =
2re2Lr

√
2/qS̃

qS̃
.

Using the identity from Lemma 8 together with Jensen’s inequality gives

Px(Zgt,L(∞) > 0) = Qx

[
Zgt,L(0)
Zgt,L(∞)

]
= Q̃x

[
Q̃x

[
1

Zgt,L(∞)

∣∣∣∣G∞]] cos(
πx

2L
)

≥ Q̃x

[
1

Q̃x[Zgt,L(∞)|G∞]

]
cos(

πx

2L
)

≥ qS̃

2re2Lr
√

2/qS̃
cos(

πx

2L
).

Thus we have shown that if t ∈ U ∩ V then Px(Zgt,L(∞) > 0) is large enough
for all x ∈ [−L+ δ, L− δ], and it now suffices to show that for t ≥ T (p),∫ t

0

1U∩V (s)ds ≥ (p− 2q)
S̃

r
t.

But if t ≥ T (p) then, since J increases at rate at most r,

(p− q)S̃t ≤ Jt ≤
∫ t

0

r1U (s)ds,

14



and (in fact whenever t ≥ T (0))

2rt ≥
∫ t

0

f ′(s)2ds ≥
∫ t

0

2r2

qS̃
1V c(s)ds;

hence for any t ≥ T (p)∫ t

0

1U∩V (s)ds ≥
∫ t

0

1U (s)ds−
∫ t

0

1V c(s)ds ≥ (p− q) S̃
r
t− q S̃

r
t = (p− 2q)

S̃

r
t

as required.

We now show that if a particle has remained in the tube for a long time,
then it is very likely to have spent a long time in Uα. The idea is that if Uα
stretches to within δ of the edge of the tube for a proportion of time, then in
order to stay out of Uα a particle must spend a long time in a tube of radius δ.
We give estimates for the time spent by Brownian motion in such a tube and
apply these to our problem via the many-to-one theorem (Theorem 7).

Lemma 16. Fix β < 1 and γ > 0. If S̃ > 0 then for sufficiently small α > 0
and large T , we have

P(∃u ∈ N̂(t) : Iα(u; t) < β
S̃

r
t) ≤ e−γt.

Proof. First we show that for any δ > 0 and k > 0,

P̃(
∫ t

0

1{ξs∈(−δ,δ)}ds > k) ≤ 3et/2−k/4δ.

Recall that under P̃, the spine’s motion is simply a Brownian motion. One may
check (by approximating with C2 functions and applying Itô’s formula) that,
setting

hδ(x) =
{
|x| if |x| ≥ δ
δ
2 + x2

2δ if |x| < δ

we have

hδ(ξt) =
δ

2
+
∫ t

0

h′δ(ξs)dξs +
1
2δ

∫ t

0

1{ξs∈(−δ,δ)}ds.

Also,
P̃[e−

R t
0 h
′
δ(ξs)dξs ] ≤ P̃[e−

R t
0 h
′
δ(ξs)dξs− 1

2

R t
0 h
′
δ(ξs)

2ds]et/2 ≤ et/2.
Thus

P̃(
∫ t

0

1{ξs∈(−δ,δ)}ds > k)

= P̃(hδ(ξt)−
δ

2
−
∫ t

0

h′δ(ξs)dξs >
k

2δ
)

≤ P̃(|ξt| −
∫ t

0

h′δ(ξs)dξs >
k

2δ
)

≤ P̃(ξt >
k

4δ
) + P̃(−ξt >

k

4δ
) + P̃(−

∫ t

0

h′δ(ξs)dξs >
k

4δ
)

≤ P̃[eξt ]e−k/4δ + P̃[e−ξt ]e−k/4δ + P̃[e−
R t
0 h
′
δ(ξs)dξs ]e−k/4δ

≤ 3et/2−k/4δ,
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establishing our first claim. Now, for any δ > 0, by Lemma 15 we may choose
α > 0 and T such that∫ t

0

1{(s,x)∈Uα ∀x∈[−L+δ,L−δ]}ds ≥ (
1 + β

2
)
S̃

r
t ∀t ≥ T.

Then if the spine particle is to have spent less than β S̃r t time in Uα (yet remained
within the tube of width L) then it must have spent at least (1−β

2 ) S̃r t within δ
of the edge of the tube (provided that t is large enough). That is, for t ≥ T ,

P̃(ξt ∈ N̂(t), Iα(ξt; t) < β
S̃

r
t)

≤ P̃(
∫ t

0

1{ξs∈(f(s)−L,f(s)−L+δ)∪(f(s)+L−δ,f(s)+L)}ds > (
1− β

2
)
S̃

r
t).

In fact, using the fact that if ξt ∈ N̂(t) then we may apply the Girsanov part of
our usual measure change and our usual estimate on it,

P̃(ξt ∈ N̂(t), Iα(ξt; t) < β
S̃

r
t)

≤ P̃
[

1{ξt∈N̂(t)}

e
R t
0 f
′(s)dξs− 1

2

R t
0 f
′(s)2ds

1{
R t
0 1{ξs∈(−L,−L+δ)∪(L−δ,L)}ds>( 1−β

2 ) S̃r t}

]
≤ e2L

R t
0 |f
′′(s)|ds+2L|f ′(0)|P̃(

∫ t

0

1{ξs∈(−L,−L+δ)∪(L−δ,L)}ds > (
1− β

2
)
S̃

r
t).

By the reflection and Markov properties of Brownian motion, we have

P̃(
∫ t

0

1{ξs∈(−L,−L+δ)∪(L−δ,L)}ds > (
1− β

2
)
S̃

r
t)

≤ 2P̃(
∫ t

0

1{ξs∈(−δ,δ)}ds > (
1− β

4
)
S̃

r
t).

Putting all of this together and using the estimate given in the first part of the
proof, we get

P̃(ξt ∈ N̂(t), Iα(ξt; t) < β
S̃

r
t) ≤ 2e2L

R t
0 |f
′′(s)|ds+2L|f ′(0)|.3e

t
2−( 1−β

4 ) S̃r t/4δ.

Finally, taking δ = (1−β)S̃
16r(r+γ+1) and using the fact that for t ≥ T (0) we have

e2L
R t
0 |f
′′(s)|ds+2L|f ′(0)| ≤ ert, we get

P̃(ξt ∈ N̂(t), Iα(ξt; t) < β
S̃

r
t) ≤ e−γt ∀t ≥ T ∨ T (0) ∨ 2 log 6.

Proposition 17. Recall that Υ is the extinction time for the process. If S̃ > 0
then

P(Υ =∞) = P(Z(∞) > 0).

Proof. We note that {Z(∞) > 0} ⊆ {Υ = ∞}, so it suffices to show that for
any ε > 0,

P(Υ =∞, Z(∞) = 0) < ε.
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To this end, fix ε > 0 and choose α small enough and T0 large enough that

P(∃u ∈ N̂(t) : Iα(u; t) <
S̃

2r
t) < ε/3 ∀t ≥ T0

(this is possible by Lemma 16). Choose an integer m large enough that (1 −
α)m < ε/3. Finally, choose T ≥ T0 large enough that

m−1∑
j=0

e−S̃T/2(S̃T/2)j

j!
< ε/3.

Then

P(Υ =∞, Z(∞) = 0) ≤ P(∃u ∈ N̂(T ), Z(∞) = 0)

< P(∃u ∈ N̂(T ), Iα(u;T ) ≥ S̃

2r
T, Z(∞) = 0) + ε/3.

Now, if a particle u has spent at least S̃
2rT time in Uα then (by the choice of T ,

since the births along u form a Poisson process of rate r) it has probability at
least (1− ε/3) of having at least m births whilst in Uα. Each of these particles
born within Uα launches an independent population from a point (t, x) ∈ Uα,
so that

Z(∞) ≥
∑
v<u

e−rSvZv(∞)1{(Sv,Xu(Sv))∈Uα}

where each Zv is a non-negative martingale on the interval [Sv,∞) with law
equal to that of Zgt started from x, and hence satisfying P(Zv(∞) > 0) ≥ α.
Thus

P(Υ =∞, Z(∞) = 0)

≤ P(∃u ∈ N̂(T ), Iα(u;T ) ≥ S̃

2r
T, Z(∞) = 0) + ε/3

≤ P
(
∃u ∈ N̂(T ),

{
u has had at least
m births within Uα

}
, Z(∞) = 0

)
+ 2ε/3

≤ (1− α)m + 2ε/3 < ε

which completes the proof.

We draw our results together as follows.

Proof of Theorem 1. All that remains is to combine Proposition 11 with
Propositions 12 and 13 to gain the desired growth bounds; Proposition 17 guar-
antees that we are working on the correct set.

7 Extending the class of functions

As we mentioned earlier, the usual conditions on the function f (specifically the
smoothness requirements) in Theorem 1 may be weakened by approximating
uniformly and checking that the relevant quantities converge as desired. To
see this, suppose that we have a function f which does not satisfy the usual
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conditions, but such that we have a sequence of functions fn : [0,∞)→ R, each
satisfying the usual conditions, converging uniformly to f . Let

S̄ := lim sup
n→∞

lim sup
t→∞

1
t

∫ t

0

f ′n(s)2ds

and

S := lim inf
n→∞

lim inf
t→∞

1
t

∫ t

0

f ′n(s)2ds.

Corollary 18. If r < S̄
2 + π2

8L2 , then Υ <∞ almost surely. On the other hand,
if r > S̄

2 + π2

8L2 , then P(Υ = ∞) > 0 and almost surely on non-extinction we
have

lim sup
t→∞

1
t

log |N̂f,L(t)| = r − π2

8L2
− 1

2
S

and

lim inf
t→∞

1
t

log |N̂f,L(t)| = r − π2

8L2
− 1

2
S̄.

Proof. This follows easily from Theorem 1 by letting

L̄n = L+ ||f − fn||∞ and Ln = L− ||f − fn||∞

and noting that for each n ≥ 1 and t ≥ 0,

(f(t)− L, f(t) + L) ⊆ (fn(t)− L̄n, fn(t) + L̄n)

and
(f(t)− L, f(t) + L) ⊇ (fn(t)− Ln, fn(t) + Ln).

Even with this extension to our theorem, however, there are some functions
that still escape our net: for example, f(t) = sin t is a particularly nice func-
tion that one might wish our theorem to cover. In fact, the following example
demonstrates that the usual growth rate cannot hold in all cases:

Example 6. Let
fδ(t) := δ sin(t/δ);

then as δ → 0, fδ converges uniformly to the zero function, f(t) ≡ 0. By
Theorem 1 we know that on survival,

lim
t→∞

1
t

log |N̂f,L(t)| = r − π2

8L2
.

However, if the result of Theorem 1 held for each fδ then by the same argument
as in Corollary 18 we would have (on survival)

lim
t→∞

1
t

log |N̂f,L(t)| = r − π2

8L2
− 1

4
.

Of course, fδ does not satisfy usual condition (3) and hence this contradiction
does not appear – it simply serves to highlight the fact that our result cannot
hold without some condition on the second derivative.
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Example 7. Another interesting example is given by letting

gδ(t) := sin(t/δ).

Again gδ does not satisfy usual condition (3) and we cannot apply Theorem
1. However, as δ → 0, the frequency of the oscillations increases while the
amplitude stays constant, and we expect that the number of particles staying
within L of gδ should be approximately equal to the number staying within L−1
of the constant zero function: that is, we expect for small δ

lim
t→∞

1
t

log |N̂gδ,L(t)| ≈ r − π2

8(L− 1)2
.

Figure 2: gδ(t) = sin(t/δ) for small δ > 0, L = 7

Motivated by examples 6 and 7, we hope to consider extensions of our result
in the future. However it is not clear whether almost sure values for the limsup
and liminf even exist in all cases.
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