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The minimal number of rooted subtree prune and regraft (rSPR) operations needed to transform one phylogenetic
tree into another one induces a metric on phylogenetic trees – the rSPR-distance. The rSPR-distance between two
phylogenetic trees T and T ′ can be characterised by a maximum agreement forest; a forest with a minimum number
of components that covers both T and T ′. The rSPR operation has recently been generalised to phylogenetic networks
with, among others, the subnetwork prune and regraft (SNPR) operation. Here, we introduce maximum agreement
graphs as an explicit representations of differences of two phylogenetic networks, thus generalising maximum agree-
ment forests. We show that maximum agreement graphs induce a metric on phylogenetic networks – the agreement
distance. While this metric does not characterise the distances induced by SNPR and other generalisations of rSPR,
we prove that it still bounds these distances with constant factors.
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1 Introduction
A phylogenetic tree is a tree with its leaves labelled by a set of taxa; for example a set of organisms, species
or languages (Semple and Steel, 2003; Dunn, 2014). Phylogenetic trees are used to visualise and study
the inferred evolutionary history of such taxa. A phylogenetic network is a graph with its leaves labelled
by a set of taxa, thus generalising a phylogenetic tree. While a phylogenetic tree models only bifurcating
events, a phylogenetic network can also model reticulation events like hybridisation, recombination and
horizontal gene transfer (Huson et al., 2010). The phylogenetic trees and networks considered here are all
rooted and binary, i.e., they are directed acyclic graphs and all their vertices except their roots and leaves
have degree three.

A tree rearrangement operation transforms one phylogenetic tree into another via a local graph-based
change. For example, the rooted subtree prune and regraft (rSPR) operation prunes (cuts) a subtree of a
phylogenetic tree and then regrafts (attaches) it to an edge of the remaining tree, resulting in another phy-
logenetic tree. See Figure 1 for an example. The minimal number of rSPR operations needed to transform
one phylogenetic tree into another defines the rSPR-distance, which is a metric on the set of phylogenetic
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2 Jonathan Klawitter

trees (Bordewich and Semple, 2005). The problem of computing the rSPR-distance of two phylogenetic
trees is known to be NP-hard, but fixed-parameter tractable in its natural parameter (Bordewich and Sem-
ple, 2005). Moreover, the rSPR-distance induces the notion of neighbourhoods and thus organises the set
of phylogenetic trees into a space. This is important in local search and MCMC algorithms that compute
optimal phylogenetic trees (Felsenstein, 2004; St. John, 2017).
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Fig. 1: An rSPR operation that transforms T into T ′ by first pruning the edge (u, 2) at u and then regrafting it to the
edge (x, y). This process suppresses the vertex u and creates a new vertex u′ that subdivides the edge (x, y).

An rSPR-sequence that transforms one tree into another tree describes a series of prunings. The subtrees
unchanged by the sequence form an agreement forest for these two trees. In other words, an agreement
forest is the set of trees on which the two trees “agree” upon and that if put together cover each tree.
See Figure 2 for an example. A maximum agreement forest (one that has a minimum number of trees)
for two phylogenetic trees characterises their rSPR-distance (Bordewich and Semple, 2005). This means
that in order to compute or reason about the rSPR-distance it suffices to consider one static structure, a
maximum agreement forest, instead of a shortest rSPR-sequence. The notion of maximum agreement
forests has proven to be the underpinning concept for almost all theoretical results as well as practical
algorithms that are related to computing the rSPR-distance (Bordewich and Semple, 2005; Bordewich
et al., 2008; Wu, 2009; Bonet and St. John, 2009; Whidden et al., 2013; Chen et al., 2015; Bordewich
et al., 2017b).
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Fig. 2: An rSPR-sequence of length two that transforms T into T ′, an agreement forest F for T and T ′, and on the
right how F covers T .

The rSPR operation was recently generalised to network rearrangement operations for phylogenetic
networks (Bordewich et al., 2017a; Gambette et al., 2017). These generalisations have been studied in
terms of computational complexity, shortest sequences and neighbourhoods (Bordewich et al., 2017a;
Gambette et al., 2017; Janssen et al., 2018; Francis et al., 2018; Klawitter, 2018; Klawitter and Linz,
2019). Like rSPR these operations allow pruning and regrafting of edges. They add extra operations
of adding and removing reticulations (vertices with in-degree two). It has to be distinguished whether
edges can be pruned at their head and tail or only at their tail, and whether networks can contain parallel
edges or not. Here, we allow parallel edges and consider the subnetwork prune and regraft (SNPR)
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operation by Bordewich et al. (2017a), which only allows pruning at the tail, and the prune and regraft
(PR) operation that also allows pruning at the head. Since computing the rSPR-distance between two
phylogenetic trees is NP-hard (Bordewich et al., 2017a), it is not surprising that computing the distance
of its generalisations is also NP-hard (Bordewich et al., 2017a; Gambette et al., 2017; Janssen et al.,
2018). The study of shortest SNPR-sequences and PR-sequences has identified further difficulties for the
computation of these distances (Klawitter and Linz, 2019). Together with the importance of agreement
forests for the rSPR-distance, this motivates the questions of whether agreement forests are generalisable
for rooted binary phylogenetic networks and, if so, whether they characterise the SNPR or PR-distance.

In this paper, we partially answer these two questions. First, with (maximum) agreement graphs we in-
troduce a generalisation of (maximum) agreement forests for rooted binary phylogenetic networks (Sec-
tion 3). Then we show that maximum agreement graphs induce a metric on phylogenetic networks,
which we call the agreement distance (Section 4). While maximal agreement forests characterise the
rSPR-distance, we show that this agreement distance does in general not equal the distance induced by a
generalisation of rSPR. On the upside, we prove that the agreement distance bounds the PR-distance and
the SNPR-distance from below naturally and from above with constant factors three and six, respectively
(Section 5). We end this paper with some concluding remarks (Section 6).

2 Preliminaries
This section contains the definitions of rooted binary phylogenetic networks and trees, of network rear-
rangement operations and of their induced metrics. The definition of an agreement graph is given in the
next section.

Phylogenetic networks and trees. Let X = {1, 2, . . . , n} be a finite set. A rooted binary phylogenetic
network N on X is a rooted directed acyclic graph with the vertices being

• the unique root labelled ρ with in-degree zero and out-degree one,

• leaves with in-degree one and out-degree zero bijectively labelled with X ,

• inner tree vertices with in-degree one and out-degree two, and

• reticulations with in-degree two and out-degree one.

The tree vertices of N are the union of the inner tree vertices, the leaves and the root. An edge e = (u, v)
is called a reticulation edge if v is a reticulation. Following Bordewich et al. (2017a), edges in N can be
in parallel, that is, two distinct edges join the same pair of vertices. For two vertices u and v in N , we
say that u is a parent of v and v is a child of u if there is an edge (u, v) in N . Similarly, we say that u is
an ancestor of v and v is a descendant of u if there is a directed path from u to v in N . An edge (u, v) is
an ancestor of an edge (x, y) and a vertex x if v = x or if v is an ancestor of x. In this case, (x, y) is a
descendant of (u, v) and v. Note that a vertex or an edge cannot be its own ancestor or descendant.

A rooted binary phylogenetic tree on X is a rooted binary phylogenetic network that has no reticula-
tions. To ease reading, we refer to a rooted binary phylogenetic network (resp. rooted binary phylogenetic
tree) on X simply as a phylogenetic network or network (resp. phylogenetic tree or tree). Furthermore,
letNn denote the set of all phylogenetic networks on X and let Tn denote the set of all phylogenetic trees
on X where n = |X|.
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PR and SNPR. Let N ∈ Nn with root ρ and let e = (u, v) be an edge of N . Then the prune and
regraft (PR) operation is an operation that transforms N into a phylogenetic network N ′ ∈ Nn in one of
the following four ways:

(PR0) If u is a tree vertex (and u 6= ρ), then delete e, suppress u, subdivide an edge that is not a
descendant of v with a new vertex u′, and add the edge (u′, v); or
if v is a reticulation, then delete e, suppress v, subdivide an edge that is not an ancestor of u with
a new vertex v′, and add the edge (u, v′).

(PR+) Subdivide (u, v) with a new vertex v′, subdivide an edge in the resulting graph that is not a
descendant of v′ with a new vertex u′, and add the edge (u′, v′).

(PR−) If u is a tree vertex and v is a reticulation, then delete e and suppress u and v.

As the name suggests, we understand a PR0 operation as the process of “pruning” the edge (u, v) and
then “regrafting” it to the subdivision of another edge. We say that the PR0 prunes (u, v) at u if u is the
vertex that gets suppressed and a new vertex u′ gets added. A PR0 operation that prunes an edge (u, v) at
its head vertex v (resp. tail vertex u) is called a head (tail) PR0 operation. Note that PR0 operations do not
change the number of reticulations, while PR− decreases it by one and PR+ increases it by one. These
operations are illustrated in Figure 3. Furthermore, note that the head and tail moves defined by Gambette
et al. (2017) (and further studied by Janssen et al. (2018)) conceptually equal head and tail PR0, but are
restricted to networks without parallel edges.
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Fig. 3: The phylogenetic network N2 (resp. N3) can be obtained from N1 (resp. N2) by the tail PR0 (resp. head
PR0) that prunes e and regrafts it to f (resp. f ′). The phylogenetic network N4 can be obtained from N3 with the
PR− that removes e. Each operation has its corresponding PR0 and PR+ operation, respectively, that reverses the
transformation.

The subnet prune and regraft (SNPR) operation by Bordewich et al. (2017a) equals the PR operation
without head PR0. That is, an edge (u, v) can only be pruned at u, but not at v. Further note that the PR
operation restricted to phylogenetic trees is the same as the well known rSPR operation. As Bordewich
et al. (2017a) and Gambette et al. (2017) have shown, the different types of PR operations are all reversible.
This means that for every PR0 (or SNPR0) that transforms N into N ′ there exists a PR0 (resp. SNPR0)
that transforms N ′ into N , and that for every PR+ there exists an inverse PR−.

Distances. Let N,N ′ ∈ Nn. A PR-sequence from N to N ′ is a sequence

σ = (N = N0, N1, N2, . . . , Nk = N ′)

of phylogenetic networks such that, for each i ∈ {1, 2, . . . , k}, Ni can be obtained from Ni−1 by a single
PR. The length of σ is k. The PR-distance dPR(N,N ′) between N and N ′ is the length of a shortest
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PR-sequence from N to N ′. The SNPR-distance is defined analogously. Bordewich et al. (2017a) have
shown that the SNPR-distance is a metric on Nn. By the definition of the PR operation and its relation
to the SNPR operation, it thus follows that the PR-distance is a metric on Nn. Moreover, when restricted
to Tn, the SNPR- and the PR-distance equal the analogously defined rSPR-distance (Bordewich et al.,
2017a).

3 Agreement graph
In this section, we define maximum agreement graphs for two phylogenetic networksN andN ′. The main
idea is to find a graph that can be obtained from both N and N ′ with a minimum number of prunings (as
defined below). Throughout this section, letN,N ′ ∈ Nn with r and r′ reticulations, respectively. Without
loss of generality, assume that r′ ≥ r and let l = r′− r be the difference of the number of reticulations of
N and N ′. Furthermore, we assume that a path in a directed graph is a directed path and contains at least
one edge.

Prunings and sprouts. In the last section, we have interpreted the pruning of an edge as half a step of a
PR0 operation (as the name prune and regraft suggests). We now extend this to a full operation that yields
a new graph. Let G be a directed graph. Let u be a vertex of G that is either labelled or has degree three.
Let (u, v) be an edge ofG. Then a pruning of (u, v) at u is the process of deleting (u, v) and adding a new
edge (ū, v), where ū is a new (unlabelled) vertex. If u is now an in-degree one, out-degree one vertex,
then suppress u. Note that a pruning does not remove a label from u. The definition for a pruning of the
edge (u, v) at v is analogous. We mostly apply a pruning to a phylogenetic network or a graph derived
from a phylogenetic network. Therefore, the restriction that u is either labelled or has degree three can be
understood as u being either the root ρ, a (labelled) leaf, or an internal vertex.

A sprout of G is an unlabelled degree one vertex of G. For example, applying a pruning to a phyloge-
netic network yields a graph with exactly one sprout. A t-sprout (resp. h-sprout) is a sprout that is the tail
(resp. head) of its incident edge.

Subdivisions and embeddings. Let G be a directed graph. An edge (u, v) of G is subdivided if (u, v)
is replaced by a path from u to v. Recall that we assume that a path is a directed path containing at least
one edge. A subdivision G∗ of G is a graph that can be obtained from G by subdividing edges of G. Note
that if G does not contain in-degree one, out-degree one vertices, then there exists a canonical mapping of
vertices of G to vertices of G∗ and of edges of G to paths of G∗.

Assume that G is connected. Then we say G has an embedding into N if there exists a subdivision G∗

of G that is a subgraph of N . Now assume that G has components C1, . . . , Ck. Then we say G has an
embedding into N if the components Ci of G, for i ∈ {1, . . . , k}, have embeddings into N to pairwise
edge-disjoint subgraphs of N . Note that these definitions imply that an embedding preserves the direction
of edges of G∗ into N and maps a labelled vertex of G∗ to a vertex of N with the same label.

Agreement embeddings. Let (u, v) be an edge of N with u either a labelled vertex, i.e., the root ρ, or
a degree-three vertex. Consider a graph G obtained from N by pruning (u, v) at u. Then G has exactly
one sprout ū, and n + 1 labelled vertices of which n are bijectively labelled by X and one with ρ. We
can distinguish three cases. If u is the labelled vertex ρ in N , then G contains an isolated labelled ρ, say,
ū′. If u is a reticulation in N , then G contains an in-degree two, out-degree zero vertex, say, ū′. If u is a
inner tree vertex in N , then u gets suppressed in the process of the pruning. In the first two cases, we get
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a canonical embedding of G into N that is a bijection of the edges of G to the edges of N and a surjection
of the vertices of G to the vertices of N . Only ū and ū′ of G get mapped to u of N . In the third case, we
obtain such an embedding for a subdivision of G (which reverses the suppression of u) into N . The case
for pruning (u, v) at v is similar. Together the three cases motivate the following definition.

Let G be a directed graph. We say G has an agreement embedding into N if there exists an embedding
of G into N with the following properties.

• An edge (ū, v̄) of G is mapped to a path from a vertex u to a vertex v of N such that ū is mapped
to u and v̄ is mapped to v.

• The edges of G are mapped to pairwise edge-disjoint paths of N that together cover all edges of N .

• At most two vertices ofG are mapped to the same vertex ofN . In this case, one of these two vertices
of G is a sprout and the other is either a labelled isolated vertex, or an in-degree two, out-degree
zero vertex, or an in-degree zero, out-degree two vertex.

• For each labelled vertex v of N , there exists exactly one vertex v̄ with the same label in G and v̄ is
mapped to v.

Note that if G has an agreement embedding into N , then G has n + 1 labelled vertices of which n are
bijectively labelled by X and one with ρ. Furthermore, note that to every inner tree vertex of N either a
tree vertex, or a t-sprout, or an h-sprout and an out-degree two, in-degree zero vertex of G gets mapped.
The situation is similar for reticulations, leafs and the root.

Lemma 3.1. Let G be a directed graph and N ∈ Nn.
Then G has an agreement embedding into N if and only if G can be obtained from N by a sequence of
prunings.

Proof: If G can be obtained from N by a sequence of prunings, then an agreement embedding of G into
N follows naturally. So assume that G has an agreement embedding into N . Then G can be constructed
from a sequence of prunings as follows. Assume that G contains a t-sprout ū. If ū is mapped to a vertex u
and the edge (ū, v̄) is mapped to the path from u to v in N , with w the child of u in this path, then prune
the edge (u,w) at u. This covers either of the cases of when ū is mapped to ρ, or to the same reticulation
to which a degree two vertex of G is mapped, or to a tree vertex of N that lies on a path to which an edge
of G is mapped. In either case, applying this pruning also either creates the isolated vertex ρ, a degree
two vertex, or suppresses a vertex, respectively. A pruning for an h-sprout works analogously. We can
find such a pruning for each sprout of G. Now consider the case where we have identified that we want to
prune the edge e = (u, v) at u and the edge f = (u,w) at w. Let p be the parent of u. If we now prune
e at u, then the edges f and (p, u) are removed when suppressing u and a new edge f ′ = (p, w) added.
In the resulting graph, we cannot prune f , but instead now want to prune f ′ at w. Further note that since
G has an agreement embedding into N , no two edges have to be pruned at the same vertex. Hence, we
can apply one pruning after the other on the edges identified in N or on the edges they get extended to by
preceding prunings. As noted, this does not only create the sprouts, but also the labelled, isolated vertices
and degree-two vertices and shrinks the path of N to which edges of G get mapped to edges. Hence, this
sequence of prunings results in G.
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Agreement graphs. Recall that we assume that N ′ has l more reticulations than N . Let G be a directed
graph with connected components S1, . . . , Sk and E1, . . . , El, such that the E1, . . . , El each consist of a
single directed edge. Then G is an agreement graph for N and N ′ if

• G without E1, . . . , El has an agreement embedding into N , and

• G has an agreement embedding into N ′.

For such an agreement graph, we refer to each Si as an agreement subgraph and to each Ej as a disagree-
ment edge. A maximum agreement graph G for N and N ′ is an agreement graph for N and N ′ with a
minimal number of sprouts. Figures 4 and 5 give two examples of maximum agreement graphs.

31 2
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N ′ G

3

ρ ρ S1

S2

4 4 21

ρ

4 31 2 21 3

ρ ρ

4 4

Fig. 4: A maximum agreement graph G for N and N ′ with its agreement embeddings into N and N ′ shown on the
right. Note that the agreement subgraph S2 consists of a labelled isolated vertex.
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ρ
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Fig. 5: A maximum agreement graph G for N and N ′ with its agreement embeddings into N and N ′ shown on the
right. Note that the disagreement edge E1 is only used for N ′.

An agreement forest F for two trees T and T ′ is an agreement graph for T and T ′ where each agree-
ment subgraph Si for i ∈ {2, . . . , k} is a phylogenetic tree with an unlabelled root and S1 is either a
phylogenetic tree (with the root labelled ρ) or an isolated vertex labelled ρ. Note that an agreement forest
F contains no h-sprouts and that thus in the respective agreement embeddings of F into T and T ′ a sprout
of F is mapped either to the root ρ or to a subdivision vertex of an edge of another agreement subgraph.
See again Figure 2 for an example. On the other hand, considering shortest PR-sequences between N and
N ′ in the examples in Figures 4 and 5 shows why in general in an agreement embedding of an agreement
graph G a sprout may have to be mapped to the same vertex as a labelled isolated vertex (ρ or a leaf of N
and N ′) or a non-suppressible degree-two vertex of G.

Before we show that maximum agreement graphs induce a metric on Nn, we establish further notation
and terminology to ease talking about agreement embeddings and agreement graphs. We use ē, f̄ , ū, v̄ if
we refer to edges or vertices of an agreement graph and e, f, u, v for edges and vertices of N or N ′. If we
use symbols like ū and u in the same context, then ū is usually mapped to u by the agreement embedding
under consideration.
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Let G = (VG, EG) be a graph with an agreement embedding into a network N = (VN , EN ). We say
a sprout ū ∈ VG is attached to ē ∈ EG in N if ū is mapped to a vertex u ∈ VN that is an internal vertex
of the path to which ē is mapped. Similarly, we say ū ∈ VG is attached to x̄ ∈ VG in N if ū and x̄ are
mapped to the same vertex x ∈ VN . We say an edge ē = (ū, v̄) ∈ EG is attached to f̄ ∈ EG inN if either
ū or v̄ is a sprout and attached to f̄ . Note that ē being attached to f̄ does not imply f̄ being attached to ē.
Considering the example in Figure 4 and the agreement embedding of G into N , note that one sprout is
attached to the incoming edge of leaf 2 in N and another sprout is attached to the isolated vertex labelled
3 in N .

Embedding changes. Note that a graph G may have several agreement embeddings into N or N ′. We
now describe how, in some cases, an agreement embedding can be changed into another one. For this,
let ū and v̄ be two t-sprouts of G with outgoing edges ē = (ū, w̄) and f̄ = (v̄, z̄), respectively, such that
ū is attached to f̄ in N . Let ē be mapped to the path P = (y, . . . , w) in N and let f̄ be mapped to the
path P ′ = (x, . . . , y, . . . , z) in N . Then an embedding change of G into N with respect to ū and v̄ is the
change of the embedding such that ē is mapped to the path (x, . . . , y, . . . , w) formed by a subpath of P ′

and the path P , and such that f̄ is mapped to the subpath (y, . . . , z) of P ′. See Figure 6 for an example.
The definition for h-sprouts is analogous.

x̄

ū

v̄
x̄

ū

v̄

z̄w̄ z̄w̄

Fig. 6: An embedding change with respect to ū and v̄.

We now use embedding changes to show that an agreement embedding of G into N ′ can be changed
into an agreement embedding with some nice properties.

Lemma 3.2. Let N,N ′ ∈ Nn with r and r′ > r reticulations, respectively. Let G be a maximum
agreement graph for N and N ′.
Then there exist an agreement embedding of G into N ′ such that

• no sprout of an agreement subgraph is attached to a disagreement edge, and

• at least one disagreement edge is not attached to any other disagreement edge, and

• a disagreement edge Ei of G may only be attached to a disagreement edge Ej of G if j < i.

Proof: Fix an agreement embedding of G into N ′. Assume that this embedding does not fulfill the first
property. Then let ū be a sprout of an agreement subgraph of G that is attached to a disagreement edge
(v̄, w̄) in N ′. Without loss of generality, assume that ū is a t-sprout. Apply an embedding change with
respect to ū and v̄. If v̄ was attached to another disagreement edge (x̄, ȳ) in N ′, then repeat this step with
ū and x̄. Otherwise ū is now attached to a vertex or an edge of an agreement subgraph. This process
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terminates since the vertex u to which ū gets mapped gets closer to the root in N ′ with every step. Note
that the embedding change of ū and v̄ may cause a sprout z̄ that was previously attached to (v̄, w̄) in N ′

to now be attached to the edge incident to ū in N ′. However, since this edge is an edge of an agreement
subgraph, this does not negatively effect the first property. Therefore, every sprout that was previously
attached to an edge of an agreement subgraph is still so after each step. Hence, each sprout ū of an
agreement subgraph can be handled after the other and without negatively affecting property three.

Next, assume that the current embedding fulfills the first, but not the third property. Let Ei = (ū, v̄) be
a disagreement edge of G, starting with Ei = E1. If ū and v̄ are each attached to a vertex or an edge of an
agreement subgraph or to a disagreement edge Ej with j < i in N ′, then proceed with Ei+1. Otherwise,
without loss of generality, assume that ū is attached to a disagreement edge Ej = (x̄, ȳ) with j > i.
Apply an embedding change with respect to ū and x̄. The same arguments as above show that eventually
ū is attached in N ′ in a good way. Since the embedding change does not affect a sprout of any Em

with m < i or of an agreement subgraph, this process does not affect the first property or the previously
handled disagreement edges. Therefore, each Ei can be handled after the other. Apply analogous steps,
if necessary, to v̄ before proceeding with Ei+1. The process terminates after Ei = El has been handled.
Finally, note that the third property implies the second.

Next, we show how to prune a particular edge of G such that the resulting graph is still an agreement
graph for N and N ′.

Lemma 3.3. Let N,N ′ ∈ Nn. Let G be an agreement graph for N and N ′. Let ē = (ū, v̄) be an edge of
G. Then G can be transformed into a graph G′ such that

• ū (or v̄) is a sprout in G′,

• G′ contains at most one sprout more than G, and

• G′ is an agreement graph for N and N ′.

Proof: We prove this for a t-sprout ū. The proof for an h-sprout works analogously. If ū is already a
sprout, then there is nothing to do. If ū is labelled ρ or ū has degree three, then obtain G′ by pruning
the edge ē at ū. So assume that ū is an in-degree zero, out-degree two vertex. Consider the agreement
embedding ofG intoN . Let ū be mapped to u inN . Since u has degree three inN , there is an h-sprout w̄
mapped to u in N . This and the following process are illustrated in Figure 7. Then identify w̄ with ū, i.e.,
regraft w̄ to ū, and then prune ē from ū. Let G′′ be the resulting graph. In the agreement embedding of
the resulting graph into N , the new sprout ū is now attached to an edge f̄ = (x̄, ȳ). To get w̄ back, restart
this case distinction with the goal to prune f̄ at ȳ. Note that this process terminates since the number
of degree two vertices in G′′ is one less than in G and thus at some point one of the first two cases has
to apply. Let G′ be the resulting graph when the process has terminated. Then G′ contains the sprout
ū with incident edge ē and contains at most one sprout more than G. That is because before the case
distinction got restarted, the sprout w̄ got removed first. Clearly, G′ has an agreement embedding into
N . If one of the first two cases applied, then it is also easy to show that G′ has an agreement embedding
into N ′. Otherwise, note that in the agreement embedding of G into N ′ an h-sprout w̄′ is attached to the
degree-two vertex ū. For the agreement embedding of G′ into N ′, this sprout w̄′ extends the same way as
w̄ got extended in the embedding into N (see again Figure 7).
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Fig. 7: For the proof of Lemma 3.3, how to prune the edge ē at a degree-two vertex ū. First, regraft w̄; second, prune
ē at ū; third, reobtain the sprout w̄.

4 Agreement distance
The importance of the notion of maximum agreement forests lies in the fact that it defines a metric on Tn
that equals the rSPR-distance. In this section, we show that maximum agreement graphs similarly induce
a metric on Nn. Furthermore, we prove that this metric, if restricted to Tn, also equals the rSPR-distance
and is thus NP-hard to compute.

Let N,N ′ ∈ Nn and let l be the difference in number of reticulations of N and N ′. Let G be a
maximum agreement graph for N and N ′ with l disagreement edges. Let s be the total number of sprouts
in the agreement subgraphs of G. Then define the agreement distance dAD of N and N ′ as

dAD(N,N ′) = s+ l.

This is well defined since l is fixed by N and N ′, and since s is minimal over all agreement graphs for N
and N ′ by the choice of G.

Theorem 4.1. The agreement distance dAD on Nn is a metric.

Proof: We have to show that dAD is symmetric, non-negative, that for all M,M ′ ∈ Nn dAD(M,M ′) = 0
if and only if M = M ′, and that dAD satisfies the triangle inequality. Let N , N ′, and l be as above. First
note that the agreement distance is symmetric and non-negative by definition. Second, if N = N ′, then
G = N is a maximum agreement graph for N and N ′ with zero sprouts and zero disagreement edges
and thus dAD(N,N) = 0. Now let G be a maximum agreement graph for N and N ′ with zero sprouts
and zero disagreement edges, i.e., dAD(N,N ′) = 0. Together with the fact that N and N ′ are internally
binary, this implies that every unlabelled vertex of N and N ′, respectively, gets covered by a degree three
vertex of G. Thus G has to consist of a single connected component and has an agreement embedding
into both N and N ′ without subdivisions. This in turn implies that N = G = N ′.

Next, we prove that the agreement distance satisfies the triangle inequality. For this letN,N ′, N ′′ ∈ Nn

with r, r′ and r′′ reticulations, respectively. With out loss of generality, assume that r ≤ r′′. Let G′ (resp.
G′′) be a maximum agreement graph for N and N ′ (resp. N ′ and N ′′) with s′ sprouts in its agreement
subgraphs and l′ disagreement edges (resp. s′′ and l′′). For the triangle inequality to hold, we have to
show that

dAD(N,N ′′) ≤ d = dAD(N,N ′) + dAD(N ′, N ′′) = s′ + s′′ + l′ + l′′.

For this, we construct an agreement graph G for N and N ′′ with s sprouts in its agreement subgraphs and
l disagreement edges such that s+ l ≤ d. Note that G does not have to be a maximum agreement graph.
Also note that l is fixed by N and N ′′. The main idea for the construction of G is to merge G′ and G′′ in
terms of the prunings they represent in N , N ′ and N ′′. Containing, so to say, sprouts from both G′ and
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G′′ and the right amount of disagreement edges, finding agreement embeddings of G into N and N ′′ will
become easy. We first consider the restricted cases of when N , N ′ and N ′′ either have the same number
of reticulations or only differ in the number of reticulations.
Case I – l′ = l′′ = 0. In this case, by Lemma 3.1 both G′ and G′′ can be obtained from N ′ by applying
s′ and s′′ prunings, respectively. We now apply all these prunings to N ′ to construct G in the following
way. Like in Lemma 3.1, we identify to which edges of N ′ this prunings correspond and whether they
prune at the tail or the head of the edge. Apply the s′ prunings of G′ to N ′ to obtain, of course, G′. Next,
to apply the s′′ prunings (in N ′) of G′′ to G′, we have to identify which edges to prune in G′.

Assume, without loss of generality, that we want to prune e = (u, v) at u in N ′. Further assume G′

contains an edge ē = (ū, ȳ) such that ū is mapped to u and ē to a path containing e. With Lemma 3.3
prune ē at ū and obtain a graph Ḡ. Note that Ḡ has an agreement embedding intoN andN ′. Next, assume
G′ contains an edge ē′ = (x̄, ȳ) such that ē′ is mapped to a path containing e and u as internal vertex.
Then, G′ contains a sprout w̄ that is mapped to u (and thus attached to ē′ inN ′). If w̄ is an h-sprout, prune
ē′ at x̄ with Lemma 3.3 and obtain a graph Ḡ. Note that Ḡ has an agreement embedding into N and N ′.
So assume otherwise, namely that w̄ is a t-sprout. Let w̄ have the incident edge (w̄, z̄). Subdivide ē′ with
a new vertex ū and identify w̄ with ū. Prune ē = (ū, ȳ) at ū and then use Lemma 3.3 to prune (x̄, z̄) at x̄ to
reobtain w̄. Let Ḡ be the resulting graph. Note that Ḡ has an agreement embedding intoN ′. Furthermore,
apply an embedding change with respect to ū and w̄ to see that G still has an agreement embedding into
N . Repeat this process (now using Ḡ instead of G′) for each of the s′′ sprouts of G′′. Let G be the
resulting graph, which by construction has an agreement embedding into N ′ and N . Furthermore, G has
at most s ≤ s′ + s′′ sprouts.

Lastly, we have to show that G has an agreement embedding into N ′′. Consider the agreement embed-
dings ofG andG′′ intoN ′. Let ū be a sprout ofG obtained for a sprout ū′′ ofG′′. If ū and ū′′ are mapped
to the same vertex u of N ′′, then it is straightforward to handle ū when obtaining the agreement embed-
ding of G into N ′′. On the other hand, ū could “reach beyond” u, that is, its incident edge is mapped to a
path containing u as internal vertex. This case might be reduced to the former with an embedding change
of G into N ′. Otherwise, we know that ū′′ is attached to a degree two vertex x̄′′ in N ′. Furthermore, there
is then also a sprout w̄′′ of G′′ that is attached to x̄ in the agreement embedding of G′′ into N ′′. Let w̄ be
the sprout of G obtained for the sprout w̄′′. Using the agreement embedding of G′′ into N ′′ to obtain the
agreement embedding of G into N ′′, we then let the sprout w̄ “reach beyond” x̄′′ in the same way as ū
does in the agreement embedding of G into N ′ (see also Figure 7). To conclude, note that with

s+ l = s ≤ s′ + s′′ = s′ + s′′ + l′ + l′′

the triangle inequality holds in this case.
Case II.a – s′ = s′′ = 0 and r < r′ < r′′. In this case, N ′ can be seen as N plus l′ reticulation edges and
N ′′ can be seen as N ′ plus l′′ reticulation edges. Thus, N ′′ can also be seen as N plus l′ + l′′ reticulation
edges. Therefore G consisting of N and l = l′ + l′′ disagreement edges is a desired agreement graph for
N and N ′′ showing that the triangle inequality holds in this case.
Case II.b – s′ = s′′ = 0 and r < r′ > r′′. Fix agreement embeddings of G′ and G′′ into N ′. Colour all
edges to which a disagreement edge of G′ is mapped orange and to which a disagreement edge of G′′ is
mapped green. Intuitively, edges that are now both green and orange inN ′ are neither inN nor inN ′′. We
now align the agreement embeddings of G′ (and G′′) such that a disagreement edge is mapped to either
edges that are all orange or all green-orange (resp. all green or all green-orange). Note that a disagreement
edge is mapped to a path that starts at a tree vertex and ends at a reticulation. Furthermore, if such a path
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contains an internal vertex v, then the sprout of another disagreement edge is mapped to v. Therefore,
to align the agreement embeddings as described above, we can apply a sequence of simple embedding
changes to the sprouts of disagreement edges as illustrated in Figure 8 (i) and (ii) (the rules for h-sprouts
and swapped colours are analogous). We can further align those disagreement edges ofG′ andG′′ that are
mapped to green-orange edges with rule (iii) in Figure 8. Now let k′ be the number disagreement edges
of G′ (and thus also of G′′) that are mapped to green-orange edges.

ū

ūv̄

v̄ ū

ūv̄

v̄

(i) (ii)

ū

v̄

v̄

ū
(iii)

Fig. 8: For Case II.b, embedding changes of G′′ (green) into N ′ with respect to ū and v̄ to align the embeddings of
disagreement edges of G′ (orange with dots) and G′′ in N ′.

Obtain a new N ′ from N ′ by removing all green-orange edges from N ′, obtain new G′ and G′′ from
G′ and G′′ by removing k′ disagreement edges. Note that G′′ has now k = l′′ − k′ disagreement edges.
Clearly, G′ (resp. G′′) has still an agreement embedding into N and N ′ (resp. N ′ and N ′′). Then, in
N ′, if a vertex is incident to an uncoloured edge e, an orange edge, and a green edge, then colour e red.
Such a colouring is illustrated in Figure 9. Next and as long as possible, while a vertex is incident to an
uncoloured edge e, a red edge and a green or orange edge, colour e red. Obtain S fromN ′ by removing all
coloured edges and suppressing in-degree one, out-degree one vertices. Removing the red edges prevents
S from having sprouts. Let G be the graph consisting of S and l disagreement edges and k = l′′ − k′
connected components Fi consisting of a single directed edge. We claim that G is an agreement graph for
N and N ′′.

1 2

N N ′

ρ ρ

3 4

N ′′

ρ ρ ρ

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

e

f
F1 E1

F1

G into N G into N ′′

Fig. 9: For Case II.b, N (resp. N ′′) can be obtained from N ′ by removing the orange (with dots) (resp. green) edges.
Embedding G into N , the agreement subgraph F1 has to cover not only the green edge, but also the red edges (e and
f ), which got removed from N ′ when obtaining G because a disagreement edge of both N and of N ′′ were incident
to them.

We construct an agreement embedding of G into N . The embedding of S into N is given by the
embeddings of S and N into N ′. Let Ei be a disagreement edge of G′′. Let P be the green path in N ′

that corresponds to Ei. If an edge of P caused the creation of a red edge e, extend P by e if possible, i.e.,
if P would still be a directed path. Next and as long as possible, if e caused another red edge e′, extend
P by e′ if possible. Then embed an Fi into N in the way that P is embedded onto N in the embedding
of N into N ′. The colours of the edges ensure that this is possible. See again Figure 9 for an example.
Furthermore, note that this construction eventually covers all green and red edges. Hence, we constructed
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an agreement embedding ofG intoN . Finding an agreement embedding ofG intoN ′′ works analogously
but also uses the disagreement edges of G besides the Fi. Since l = l′ − l′′, we get

s+ l = 2k + l ≤ 2l′′ + l = l′ + l′′,

and thus the triangle inequality also holds in this case.
Case II.c – s′ = s′′ = 0 and r > r′ < r′′. In this case, N and N ′′ can be obtained from N ′ by adding
l′ and l′′ = l + l′ reticulation edges, respectively. Consequently, N ′ together with l disagreement edges
and l′ further connected components that consists of a single directed edge gives an agreement graph for
N and N ′′. Since l = l′′ − l′, we get s+ l = 2l′ + l = l′ + l′′, and thus the triangle inequality also holds
in this case.
Case III.a – r ≤ r′ ≤ r′′. Assume agreement embeddings of G′ and G′′ with nice properties as in
Lemma 3.2. We now combine Case I and Case II.b to obtain G. Let H be the graph G′′ without its
disagreement edges. Note that H has an agreement embedding into N ′ and has s′′ sprouts. Like in Case
I, obtain a graph R from H by applying s′ prunings in the way the s′ sprouts of G′ are attached to vertices
in N ′. Note that R has an agreement embedding into N ′ and has at most s′ + s′′ sprouts. Then like in
Case II.b, obtain a graph S from R by removing all paths from R to which disagreement edges of G′ are
mapped. Again, handle conflicts between a sprout of a disagreement edge of G′ and a sprout of R like
the red edges in Case II.b. Now let G be the graph consisting of S and l = l′ + l′′ disagreement edges.
Note that S and thus G have at most s′ + s′′ sprouts (ignoring those in the disagreement edges). Hence,
s + l ≤ d. Constructing agreement embeddings of G works again by combining the mechanisms from
Case I and Case II.b.

The two cases for when r ≤ r′ ≥ r′′ and r ≥ r′ ≤ r′′ can be handled similarly to Case III.a together
with the ideas from Case II.b and Case II.c. We give a brief outline of how G can be constructed.
Case III.b – r ≤ r′ ≥ r′′. Let S be the graph obtained from N ′ by removing all paths to which the
disagreement edges of G′ and G′′ are mapped (like in Case II.b) and by applying the prunings of G′ and
G′′ in the way they embed into N ′ (like in Case I). Again, in this process we have to take care of cases
where two sprouts are mapped to the same vertex. Then the graphG consisting of S and k ≤ l′′ additional
directed edges and l disagreement edges is an agreement graph for N and N ′′ with at most s′ + s′′ + 2l′′

sprouts in agreement subgraphs and l = l′ − l′′ disagreement edges. Hence, s+ l ≤ d.
Case III.c – r ≥ r′ ≤ r′′. Let S be the graph obtained from N ′ by applying the prunings of G′ and G′′ in
the way they embed into N ′ (like in Case I). Then the graph G consisting of S and l′ additional directed
edges and l disagreement edges is an agreement graph for N and N ′′ with at most s′ + s′′ + 2l′ sprouts
in agreement subgraphs and l = l′′ − l′ disagreement edges. Hence, s+ l ≤ d.

This concludes the proof.

Next, we show that if we restrict the agreement distance to the space of phylogenetic trees, then it
equals the rSPR-distance.

Proposition 4.2. The agreement distance on Tn is equivalent to the rSPR-distance.

Proof: Let T, T ′ ∈ Tn. LetG be a maximum agreement graph for T and T ′ with components S1, . . . , Sm.
We distinguish whether G contains an h-sprout or not.

Assume G does not contain an h-sprout. Then G is a maximum agreement forest for T and T ′. There-
fore, dAD(T, T ′) = m − 1, that is, it equals the number of components of G minus one. Furthermore,
by removing sprouts and their incident edges from G we obtain a forest F that is a maximum agreement
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forest for T and T ′ under the definition of Bordewich and Semple (2005). Hence, the statement follows
from Theorem 2.1 by Bordewich and Semple (2005).

(a)

v̄
ū

(c)
ū′

ū′ ū
x̄

v̄v̄

x̄

v̄
ū

v̄

x̄

v̄

x̄

(b)

Fig. 10: How to convert h-sprouts from a maximum agreement graph G for two trees to t-sprouts for Proposition 4.2,
when the h-sprout ū is child of a degree two vertex (a), a degree-three vertex (b), or a t-sprout (c), respectively.

Now assume G contains k h-sprouts. We now show how to derive a maximum agreement graph G′ for
T and T ′ without h-sprouts. Assume that G contains an h-sprout ū that is a child of a degree two vertex
v̄. Note that in the agreement embedding of G into T and T ′ there is another h-sprout attached to v̄. Thus,
deleting (ū, v̄) from G creates a new t-sprout v̄ such that G is still a maximum agreement graph for T and
T ′ (see Figure 10 (a)). So assume thatG contains no such h-sprout. Hence,G contains k h-sprouts that are
adjacent to degree three vertices, to ρ or a t-sprout. Then since a tree does not contain reticulations, note
that G also contains k vertices with in-degree zero but out-degree either zero (a labelled leaf of T ) or two.
That is because in the agreement embedding of G into T and T ′ the k h-sprouts have to get mapped to
such k vertices. Let M be the set of those vertices. Now, firstly, remove from G the k h-sprouts and their
incident edges and suppress resulting degree two vertices. If this results in an unlabelled, isolated vertex,
remove it too. This does not create any new sprouts since by assumption no h-sprout was incident to a
degree two vertex. Secondly, add k edges connecting each vertex in M with a new t-sprout (see Figure 10
(b) and (c)). Let G′ be the resulting graph. Note that G′ contains either the same number of sprouts as G
or less if an h-sprout was adjacent to a t-sprout inG. (Note thatG was actually not a maximum agreement
graph if the latter case applies.) Figure 10 also shows how to derive the agreement embeddings of G′ into
T and T ′ from the agreement embeddings of G. Hence G′ is a maximum agreement graph for T and T ′

without h-sprouts and the claim follows from the previous case.

Bordewich and Semple (2005, Theorem 2.2) have shown that computing the rSPR-distance of two
phylogenetic trees is NP-hard. Together with Proposition 4.2 this implies the following corollary.

Corollary 4.3. Computing the agreement distance is NP-hard.

5 Bounds on rearrangement distances
After we have shown that the agreement distance equals the rSPR-distance on Tn, we now consider its
relation to the PR- and SNPR-distance onNn. We start on a positive note concerning the neighbourhoods
of a phylogenetic network under PR and the agreement distance.

Lemma 5.1. Let N,N ′ ∈ Nn. Then dAD(N,N ′) = 1 if and only if dPR(N,N ′) = 1.

Proof: Assume dPR(N,N ′) = 1. Depending on whether N ′ can be obtained from N by applying a PR0

or a PR+ operation, obtain a maximum agreement graph G by either mimicking the pruning or adding a
disagreement edge to N . In either case, it follows that dAD(N,N ′) = 1.

Now assume dAD(N,N ′) = 1 and letG be a maximum agreement graph forN andN ′. IfG contains a
disagreement edge, then it is easy to see that dPR(N,N ′) = 1. So assume G contains a single sprout ū. If
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ū is attached to a vertex x̄ of G in the agreement embedding into N , then it has to be attached to x̄ also in
the agreement embedding into N ′. However, then N = N ′, which is a contradiction to dAD(N,N ′) = 1.
If, on the other hand, ū is attached to an edge ofG in the agreement embedding intoN (and thus intoN ′),
then finding a PR0 that transforms N into N ′ is straightforward. It follows that dPR(N,N ′) = 1.

Consider the two networks N and N ′ shown in Figure 11. Observe that dPR(N,N ′) = 4, but that
dAD(N,N ′) = 3 (which can both be shown with an exhaustive search). Intuitively, the differences arises
from the fact that no PR0 can prune, from N or N ′, any of the three sprouts of the shown maximum
agreement graph G and regraft it without creating a directed cycle. Nor is there a shortest PR-sequence of
length three that uses PR+ and PR− operations. This shows that, in general, the agreement distance and
the PR-distance differ onNn. Since allowing only tail PR0 like SNPR does or not allowing parallel edges
increases the distance in general, it follows that the agreement distances also differs from the SNPR-
distance and distances of other generalisations of rSPR. Furthermore, there exist pairs of phylogenetic
networks with r ≥ 1 reticulations for which every shortest PR- or SNPR-sequence contains a phylogenetic
tree (Klawitter and Linz, 2019). This implies that along such a sequence reticulation edges get removed
and added again. Therefore, and even if the PR-distance (or SNPR-distance) and the agreement distance
would be the same for such a pair, an agreement graph can in general not fully model every shortest PR-
and SNPR-sequence. On the upside, however, we prove now that the agreement distance gives a lower
and upper bound for the PR-distance with constant factors. We start with the lower bound.

6
6

N N ′

43

2
1

1 2

5

5

3
4

6
4321
5

G

Fig. 11: Two phylogenetic networks N and N ′ with dPR(N,N ′) = 4, but dAD(N,N ′) = 3 as the maximum
agreement graph G shows.

Theorem 5.2. Let N,N ′ ∈ Nn. Then dAD(N,N ′) ≤ dPR(N,N ′).

Proof: Given N and N ′ with PR-distance d = dPR(N,N ′), we construct an agreement graph G of N
and N ′ with s sprouts in the agreement subgraphs and l disagreement edges such that s + l ≤ d. Let N
and N ′ have r and r′ reticulations, respectively. Without loss of generality, assume that r′ ≥ r and let
l = r′−r. The proof is now by induction on d. If d = 0, thenG = N is as desired. If d = 1, the statement
follows from Lemma 5.1. Now assume that for each pair of phylogenetic networks M,M ′ ∈ Nn with
PR-distance at most d′ < d for some arbitrary but fixed d > 1 there exists an agreement graph of M and
M ′ proving that dAD(M,M ′) ≤ d′.

Fix a PR-sequence of length d from N to N ′. Let N ′′ ∈ Nn be the network of that sequence such that
dPR(N,N ′′) = d− 1 and dPR(N ′′, N ′) = 1. By the induction hypothesis there exists an agreement graph
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G′ for N and N ′′ showing that dAD(N,N ′′) ≤ d − 1. We distinguish whether N ′ is obtained from N ′′

by a PR0, a PR+, or a PR− operation.
First, assume thatN ′ can be obtained fromN ′′ by pruning the edge e = (u, v) at u. AssumeG′ contains

an edge ē = (ū, ȳ) such that ū is mapped to u and ē to a path containing e. With Lemma 3.3 prune ē at ū
and obtain G. Then use the agreement embedding of G into N ′′ to obtain an agreement embedding of G
into N ′. Next, assume G′ contains an edge ē′ = (x̄, ȳ) such that ē′ is mapped to a path containing e and
u as internal vertex. Then, G′ contains a t-sprout w̄ that is mapped to u (and thus attached to ē′ in N ′′).
The vertex w̄ cannot be an h-sprout, because u is a tree vertex and the previous case does not apply. Let w̄
have the incident edge (w̄, z̄). Subdivide ē′ with a new vertex ū and identify w̄ with ū. Prune ē = (ū, ȳ)
at ū and then use Lemma 3.3 to prune (x̄, z̄) at x̄ to reobtain w̄. Let G be the resulting graph, which has
now an agreement embedding into N ′. Considering the embedding of G into N ′′, apply an embedding
change with respect to ū and w̄ to see that G still has an agreement embedding into N . In either case,
since G contains at most one sprout more than G′, it follows that dAD(N,N ′) ≤ dAD(N,N ′′) + 1 ≤ d.
The case where N ′ is obtained from N ′′ by pruning an h-sprout works analogously.

Second, assume that N ′ has been obtained from N ′′ by a PR− that removed the edge e = (u, v). Note
that then G′ contains l + 1 disagreement edges. Assume G′ contains a disagreement edge Ej = (x̄, ȳ)
that maps to a path P that contains e in the agreement embedding of G′ into N ′′. Note that u is a tree
vertex and v a reticulation. Therefore, if P contains u as internal vertex, then a t-sprout w̄ is attached to
Ej in N ′′ and is mapped to u. Apply an embedding change with regards to w̄ and x̄. Handle the case
where P contains v as internal vertex analogously. Then Ej is mapped precisely to e. Hence, obtain
G from G′ by removing Ej . The agreement embedding of G into N is then the same as of G′ and the
agreement embedding of G into N ′ is derived from that of G′ into N ′′ by removing Ej . Now assume
that e is not covered by a disagreement edge of G′. Let ē = (x̄, ȳ) be the edge of G′ that covers e. With
Lemma 3.3 prune ē at x̄ and ȳ such that the resulting graph G′′ has at most two sprouts more than G′ and
an agreement embedding into both N and N ′′. Consider ē now a disagreement edge of G′′ and consider
a disagreement edge of G′′ an agreement subgraph. Then apply the previous case to obtain G. In either
case, G contains one disagreement edge less and at most two sprouts more in its agreement subgraphs and
therefore dAD(N,N ′) ≤ dAD(N,N ′′) + 2− 1 ≤ d.

Lastly, assume N ′ has been obtained from N ′′ by a PR+. If l > 0, obtain G from G′ by adding
one disagreement edge. If l = 0, then G′ contains one disagreement edge. Thus obtain G from G′ by
considering this disagreement edge an agreement subgraph. In either case, it is straightforward to find
agreement embeddings of G into N and N ′. Since G contains either one disagreement edge more or two
sprouts more but one disagreement edge less, it follows again that dAD(N,N ′) ≤ d. This completes the
proof.

Let N,N ′ ∈ Nn with a maximum agreement graph G = (VG, EG). Fix agreement embeddings of G
into N and N ′ and assume that they fulfill the properties of Lemma 3.2. In the proof of the upper bound
we will construct a PR-sequence based on agreement embeddings of G along this sequence. To ease
talking about PR operations on networks along the sequence based on vertices and edges of G we define
the following terminology. Let ū ∈ VG be a t-sprout with outgoing edge ē = (ū, v̄) ∈ EG. Let e = (u, v)
be the first edge on the path in N to which ē is mapped. Pruning ū in N then means that the edge e gets
pruned at u. Regrafting ū to an edge f̄ ∈ EG in N then means that e gets regrafted to the edge f ∈ EN

that is the first edge on the path to which f̄ is mapped. Let x̄ be a indegree two, outdegree zero vertex
or the singleton labelled ρ of G. Regrafting ū to a vertex x̄ ∈ VG in N then means that e gets regrafted
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to the edge f ∈ EN that is the outgoing edge of the vertex x to which x̄ is mapped. The terminology
for h-sprouts is analogously defined. More precisely, the differences for an h-sprout ū are that the edge ē
is the incoming edge of ū, and that f is the last edge of the respective path to which f̄ is mapped or the
incoming edge of the tree vertex x.

We say a sprout ū is prunable (with respect to N ) if it is attached to an edge ē in N and unprunable if
it is attached to a vertex x̄ in N . Let ū be a sprout that is attached to an edge f̄ (or vertex x̄) in N ′. We
say the sprout ū is blocked if regrafting it to f̄ (or x̄) in N would create a directed cycle; otherwise we
call it unblocked. This implies that there is at least one sprout v̄ ∈ VG on the path from ū to f̄ (or x̄) in
the embedding of G into N . We call such a sprout v̄ blocking. See Figure 12 (a) and (b) for examples.

ū

v̄

x̄w̄

(a) (b)

ū
x̄

(c)

x̄

ȳ

(d)

ū1 ū2 ū3 ū3 ū1 ū2

into N ′into Nv̄

ū

Fig. 12: Embeddings of G into N (and N ′ in (d)). In (a), the sprout ū is prunable, but blocked by the blocking sprout
v̄ if ū is supposed to take the place of w̄. In (b), ū is unprunable, but unblocked. In (c), the disagreement edge (ū, v̄)
is not addable since ȳ is ancestor of x̄. In (d), the sprouts ū1, ū2, and ū3 form a replacing cycle.

Let Ei = (ū, v̄) be a disagreement edge and x̄ and ȳ be the vertices or edges to which ū and v̄,
respectively, are attached to in N ′. If x̄ or ȳ is a disagreement edge Ej , then Ei can not be added to N
before Ej . Furthermore, if ȳ is an ancestor of x̄ in the embedding into N , adding Ei to N would create
a directed cycle. Therefore we call a disagreement edge Ei = (ū, v̄) addable if ȳ is not an ancestor of
x̄ in N and neither x̄ nor ȳ is a disagreement edge. For example, the edge (ū, v̄) in Figure 12 (c) is not
addable.

If ū is a sprout attached to a vertex x̄ in N , then there is a sprout v̄ that is attached to x̄ in N ′. We say
that v̄ takes the place of ū. This allows us to define a replacing sequence (ū1, . . . , ūk) of sprouts such that
ūi takes the place of ūi+1 with regards to N and N ′. If furthermore ūk takes the place of ū1, then we call
it a replacing cycle. See Figure 12 (d) for an example. Note that in a replacing sequence the sprout ū1 can
be the sprout of a disagreement edge.

Theorem 5.3. Let N,N ′ ∈ Nn. Then dPR(N,N ′) ≤ 3 dAD(N,N ′).

Proof: Let N,N ′ ∈ Nn with r and r′ reticulations, respectively. Without loss of generality, assume that
r′ ≥ r and let l = r′ − r. Let G be a maximum agreement graph for N and N ′. Let S1, . . . , Sk be the
agreement subgraphs of G and E1, . . . , El be the disagreement edges of G. Fix agreement embeddings
of G into N and into N ′. For the embedding into N ′, assume that it fulfills the properties of Lemma 3.2.
That is, no sprout of an agreement subgraph Si is attached to a disagreement edge Ej , that at least one
disagreement edge (if one exists) is not attached to any other disagreement edge, and that Ei may be
attached to Ej only if j < i.

Let d = dAD(N,N ′). To prove the statement we show how to construct a PR-sequence

σ = (N = N0, N1, . . . , Nm = N ′)
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with m ≤ 3d. While G has an agreement embedding into N and N ′, it may not have an agreement
embedding for several Ni, i ∈ {1, . . . ,m − 1}. However, starting at N = N0, we preserve the mapping
of vertices and edges of G to vertices and paths of Ni−1 to Ni with each step. Furthermore, along the
sequence we map disagreement edges of G to newly added edges. In some cases, it is necessary to add
edges to Ni−1 to obtain Ni with a PR+ to which no disagreement edge will be mapped. We call such
edges shadow edges. From each Ni−1 to an Ni we only prune edges at a vertex in Ni to which a sprout
and its incident edge are mapped, or add a disagreement edge, or add or alter a shadow edge. We describe
any change of G, or of the embeddings of G into Ni or N ′ explicitly.

To keep track of the length m of σ, we credit every PR operation either to a sprout or to a disagreement
edge. When we obtain Nm = N ′, each sprout and each disagreement edge will have a credit of at most
three and, hence, m ≤ 3d. Now, assume σ has been constructed up to Ni−1.

To obtainNi we apply the first applicable case of those described below to a sprout or to a disagreement
edge. Overall the strategy is to first handle easy cases, that is prunable, unblocked sprouts (Case (A)
and (A’)) and addable disagreement edges (Case (B) and (B’)). Then Case (C), (C’) and (C”) handle
unprunable, unblocked sprouts. With Case (D) prunable, blocking sprouts are moved “aside” to make
them non-blocking and Case (D’) adds disagreement edges whose h-sprouts starts a replacing sequence
of h-sprouts. After exhaustively applying Case (D) and (D’), we can prove that there always exists a
prunable sprout (if any sprouts are left). A particular sprout (resp. disagreement edge) is subject of at
most one application of Case (D) (resp. (D’)) and one other case.
(A) Prunable, unblocked sprout to non-shadow edge. If there is a prunable, unblocked sprout ū in
Ni−1, then obtain Ni by pruning ū in Ni−1 and regrafting it to the edge f̄ or vertex x̄ to which ū is
attached in N ′. This step gives ū a credit of one operation. If ū is regrafted to a vertex x̄, let v̄ be the
sprout that is attached to x̄ in Ni (i.e., ū takes the place of v̄). Apply an embedding change of G into N
with respect to ū and v̄. This whole step is illustrated in Figure 13. Note that ū is now attached either to
the same edge f̄ or the same vertex x̄ in both Ni and N ′. Therefore, for the rest of the proof, fix ū to f̄ or
identify ū with x̄, respectively, in G. As a result, ū with a credit of only one is now not a sprout anymore
and thus not subject of another case.

ū
ē

v̄

PR0
ē

ū
ū

v̄

=
ē

x̄
v̄

x̄ x̄

Ni−1 Ni

Fig. 13: Illustration of Case (A) where a prunable unblocked sprout ū gets regrafted to a vertex x̄, and the subsequent
embedding change with regards to ū and v̄.

(B) Addable disagreement edge without shadow edge. If there exists an addable disagreement edge Ej

for Ni−1, then obtain Ni by adding Ej to Ni−1 with a PR+. This step gives Ej a credit of one operation.
If a sprout of Ej is attached to a vertex in N ′, then apply again embedding changes of G into Ni like in
Case (A). Note that Ej is now attached to the same vertices or edges in both Ni and N ′. Therefore, merge
the sprouts of Ej with the vertices or edges they are attached to in G. As a result, Ej with a credit of
only one is now no disagreement edge anymore, but an edge of an agreement subgraph Sj′ of G. It will
therefore not get any further credit.
(C) Sprout at root, add shadow edge. If there is an unprunable t-sprout v̄ attached to the root ρ in
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Ni−1, then there is another t-sprout ū that is attached to the root in N ′. Assume that ū is a sprout of a
disagreement edge (ū, w̄) in N ′, but that Case (B) does not apply. Then w̄ must be attached to another
disagreement edge in N ′. This however can be changed with embedding changes (like in Lemma 3.2)
such that (ū, w̄) becomes addable and Case (B) applies. Therefore assume ū is a sprout of an agreement
subgraph. Since Case (A) does not apply and the root is an ancestor of ū, it follows that ū is an unprunable,
but unblocked t-sprout in Ni−1. Let ȳ be the in-degree two, out-degree zero vertex to which ū is attached
in Ni−1. We now obtain Ni from Ni−1 by adding and attaching a shadow edge (w̄, z̄) from the outgoing
edge of ū to the incoming edge of leaf 1 with a PR+. After an embedding change of G into Ni with
respect to w̄ and ū, the sprout ū becomes prunable. Give ū a credit of one and apply Case (A) to obtain
Ni+1. In total, ū gets a credit of two and in Ni+1 and N ′ no sprout is attached to the root anymore. This
whole step is illustrated in Figure 15. As mentioned above, the embedding of G into Ni+1 does not cover
all edges anymore, since no edge is mapped to the shadow edge.
(C’) Sprout at leaf, add shadow edge. This case is analogous to Case (C) but for h-sprouts. Here, if
there is an unprunable h-sprout v̄ attached to a leaf l in Ni−1, then there is another unprunable, unblocked
h-sprout ū that takes the place of v̄. Then obtain Ni again by adding a shadow edge from the outgoing
edge of ρ to the incoming edge of ū. After applying an embedding change, obtain Ni+1 by pruning ū and
attaching it to the incoming edge f̄ of v̄. After another embedding change, merge ū with the leaf l. If
l = 1 and there is a shadow edge (w̄, z̄) attached to f̄ , then attach ū above z̄ to f̄ . This way, z̄ is attached
to the incoming edge of l = ū and not to the incoming edge of v̄ after the embedding change.
(A’) Prunable, unblocked sprout to shadow edge. If after the previous two cases, there is again a
prunable, unblocked sprout ū, apply Case (A) again. However, if in this process ū gets regrafted to a
shadow edge incident to the vertex x̄, then remove the shadow edge with a PR− after the embedding
change of Case (A). This results in a total credit of two for ū – one for the PR0 to move ū and one for the
PR−.
(B’) Addable disagreement edge with shadow edge. Similarly, if there is now an addable disagreement
edge Ej = (ū, v̄), apply Case (B) in the following way. Assume that v̄ of Ej is supposed to get regrafted
to a vertex ȳ with an incoming shadow edge f̄ = (w̄, z̄). Then apply a PR0 to Ni−1 to prune f̄ at w̄ and
regraft it where ū is supposed to be attached. Then again, if ū is supposed to be attached to a vertex x̄
with an outgoing shadow edge f̄ ′, remove f̄ ′ with a PR− operation after an embedding change. This step
is illustrated in Figure 14. The case where only ū is supposed to be attached to a vertex with an incident
shadow edge but not v̄ is handled analogously. If there is no shadow edge involved for either ū or v̄, then
Case (B) directly applies. In either case, the total credit for Ej is at most two.

1

x̄

ρ

ȳ

PR0

x̄

ȳ

PR−

x̄

ȳ

= x̄

ȳ
Ej

Ni−1 Ni Ni+1

1

Fig. 14: Illustration of Case (B’) with two shadow edges.

The next case is used to decrease the number of blocking sprouts.
(D) Blocked and blocking, but prunable sprout. Let ū be a prunable, blocked sprout that is blocking
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another sprout in Ni−1. Then obtain Ni from Ni−1 by pruning ū and regrafting it to the outgoing edge of
ρ if ū is a t-sprout, or to the incoming edge of leaf 1 otherwise. Note that ū is now not blocking any other
sprout in Ni. This step gives ū a credit of one. Later on, ū will get one or two more credit, depending on
whether Case (A) or (A’) will apply to it.
(D’) Non-addable disagreement edges attached to vertex. LetEj = (ū, v̄) be an non-addable disagree-
ment edge for which v̄ is attached to a vertex x̄ in N ′. That means that a replacing sequence of h-sprouts
starts with v̄ of Ej – we change this now. Obtain Ni from Ni−1 by adding an edge (ū, v̄) from the out-
going edge of ρ to the incoming edge of x̄. Identify Ej with this new edge and then, after an embedding
change, merge v̄ with x̄. The vertex ū is now a non-blocking and prunable, but blocked t-sprout with a
credit of one (just like the sprouts of Case (D)). Note that, after Case (D’) does not apply anymore, there
can be no replacing sequence of h-sprouts that starts with a sprout of a disagreement edge left. (We do not,
maybe even cannot, do the analogous for disagreement edges that start a replacing sequence of t-sprouts.)

Applying Case (A) or Case (A’) may now start with a sprout that has already a credit of one. However,
as in both cases the credit is increased by at most two, the credit will afterwards be at most three.

So far we have applied Case (A) and (B) until not further possible. Then Case (C) and (C’) are applied
at most once and n times, respectively. We then apply Cases (A), (A’), (B), (B’) as long as possible. If then
applicable we apply Case (D) or (D’) and repeat this loop. Next, we show that if neither of the previous
cases applies but there are still sprouts inNi−1 that there is then at least one unprunable, unblocked sprout
in Ni−1.
Existence of unblocked sprout. Assume that there exists a replacing cycle τ of, without loss of generality,
t-sprouts inNi−1. Then note that for a t-sprout to be blocked the vertex or edge it will be attached to has to
be a descendant. Since phylogenetic networks are acyclic, the sprouts in τ can not all replace a descendant.
Therefore one of the sprouts has to be an unblocked sprout.

Next, assume that there is no replacing cycle in Ni−1. If no unprunable t-sprout ū exists, then the
h-sprout with no ancestor h-sprout in Ni−1 is an unblocked sprout. So assume otherwise and let ū be
an unprunable t-sprout with no descendant t-sprout in Ni−1. If ū is unblocked, we are done; so assume
otherwise. This means that the vertex or edge to which ū is supposed to be regrafted is a descendant of ū in
Ni−1. Thus, by the choice of ū, it can only be blocked by an h-sprout v̄. Since Case (D) moved prunable,
blocking sprouts aside, v̄ has to be unprunable. If v̄ is unblocked, we are done; so assume otherwise.
Then there is a replacing sequence τ = (v̄1, . . . , v̄m) with v̄ = v̄i for some i ∈ {2, . . . ,m}. Note that
v̄1 is prunable since Case (D’) does not apply and since there are no replacing cycles anymore and thus
v̄ 6= v̄1. Since further Case (D) does not apply, v̄1 is also not a blocking sprout. Assuming that there is
no unblocked sprout in τ , we know that for every 1 ≤ j < i the h-sprouts v̄1 to v̄j are all descendants
of v̄j+1 to v̄i and thus also of ū. Since v̄1 is blocked, there has to be an unprunable h-sprout v̄′ blocking
v̄1. Note that v̄′ is a descendant of v̄2 and thus not in τ . The situation with v̄′ is now the same as with
v̄ and the chain of descendants of h-sprouts below ū contains now v̄ = v̄i, . . . , v̄2, v̄

′. Finally, we either
find an unprunable h-sprout in the replacing sequence τ ′ 6= τ that contains v̄′ or the chain of descendants
of h-sprouts below ū grows longer with h-sprouts v̄′2 and v̄′′. Since Ni−1 is finite this chain cannot grow
indefinitely and thus at some point we find an unblocked h-sprout.
(C”) Unprunable, unblocked sprout. If there is an unprunable, unblocked sprout ū in Ni−1 that is
attached to the edge f̄ or a vertex x̄ in N ′ that has no shadow edge attached in Ni−1, then use the same
procedure as in Case (C) or (C’) to obtain Ni and then Ni+1. This gives ū a credit of two, before it gets
merged with x̄ or f̄ . This step is illustrated in Figure 15.

If there is an unprunable, unblocked sprout ū in Ni−1 that is attached to a vertex x̄ in N ′ that has a
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ū v̄
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v̄ū v̄
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v̄= ū
v̄

=
PR+ PR0

ȳ ȳ ȳ

Ni−1 Ni Ni+1

1 1 1 1

Fig. 15: Illustration of Case (C) and Case (C”) where an unprunable, unblocked sprout ū is moved to the vertex x̄
with two PR operations and two embedding changes.

shadow edge attached in Ni−1, then apply the process shown in Figure 16 to obtain Ni and Ni+1. This
gives ū a credit of two, before it gets merged with x̄. Note that this moves the shadow edge from x̄ to the
vertex to which ū was attached to in Ni−1.

ū

1

PR0

ū =x̄ x̄ ū x̄
PR0

1

x̄
ū

Ni−1 Ni Ni+1

Fig. 16: Illustration of Case (C”) where an unprunable, unblocked sprout ū is moved to a vertex x̄ with an incident
shadow edge.

Since prunable sprouts cannot block after they got moved aside, since disagreement edges cannot block
either (by the properties of the agreement embedding intoN ′), and since the number of unprunable sprouts
is decreased stepwise, the whole process resolves all sprouts and disagreement edges. Hence, Nm = N ′.
Since every sprout and every disagreement edge got a credit of at most three, it follows that m ≤ 3d. This
concludes the proof.

We prove a relation between the PR-distance and the SNPR-distance.

Lemma 5.4. Let N,N ′ ∈ Nn. Then

dPR(N,N ′) ≤ dSNPR(N,N ′) ≤ 2 dPR(N,N ′).

Proof: The first inequality follows from the definitions of PR and SNPR. For the second inequality, let
d = dPR(N,N ′) and σ = (N = N0, N1, . . . , Nd = N ′) be a PR-sequence from N to N ′ of length d.
Then we can construct an SNPR-sequence σ∗ = (N = M0,M1, . . . ,Mk = N ′) with k ≤ 2d as follows.
Assume we have constructed σ∗ up to Mj−1 = Ni−1. Then, if Ni is obtained from Ni−1 by a tail PR0 or
a PR+ or a PR−, then apply the same operation to Mj−1 to obtain Mj . So assume, otherwise; i.e., Ni is
obtained from Ni−1 by a head PR0. Let e = (u, v) be the edge that gets pruned at v and f be the edge
that gets subdivided to regraft e. Obtain Mi from Mi−1 with the SNPR+ that subdivides e with a new
vertex u′, subdivides f with a new vertex v′, and adds the edge (u′, v′). Next, obtain Mi+1 from Mi by
removing (u′, v) and suppressing the resulting degree two vertices. Then clearly Mi+1 = Ni. Since at
most two SNPR operations are needed per PR, it follows that k ≤ 2d.

The following corollary is a direct consequence of Theorems 5.2 and 5.3 and Lemma 5.4.



22 Jonathan Klawitter

Corollary 5.5. Let N,N ′ ∈ Nn. Then

dAD(N,N ′) ≤ dSNPR(N,N ′) ≤ 6 dAD(N,N ′).

6 Concluding remarks
In this paper, we defined maximum agreement graphs for two rooted binary phylogenetic networks. Like
maximum agreement forests for trees, a maximum agreement graph models how the two networks agree
on subgraphs derived from a minimum number of prunings. If the two networks have different numbers of
reticulations, then agreement graphs also model how they disagree on that. Based on this, we defined the
agreement distance on phylogenetic networks. First, we showed that the agreement distance equals the
rSPR-distance when calculated for phylogenetic trees. For phylogenetic networks, the agreement distance
is a lower bound on the PR- and SNPR-distance. Furthermore, it bounds both the PR- and SNPR-distance
from above by a factor of at most three and six, respectively. These upper bounds might not be tight. For
example, for the PR-distance the bound might be closer to twice the agreement distance. This thought is
also motivated by the fact that the neighbourhoods of a network under PR and the agreement distance are
the same.

While the agreement distance is still NP-hard to compute, it avoids problems of shortest PR- or SNPR-
sequences as identified by Klawitter and Linz (2019). While for such a shortest sequence it might matter
at which step of the sequence a reticulation edge is added, an agreement graph has simply as many
disagreement edges as needed. Furthermore, while a sequence might traverse networks with more or less
reticulations than the start and target network, this is also irrelevant for agreement graphs. Moreover, the
SNPR-distance between two networks of a certain class, for example of tree-child networks, can differ if
considered in the space of Nn or just within this class, i.e., where the SNPR-sequence does not leave the
class. This is by definition not the case for the agreement distance. We therefore hope that it is easier to
find exact and approximation algorithms for the agreement distance than for the PR-distance, just as it has
been more fruitful to work with agreement forests than with shortest rSPR-sequences.

Beyond rooted binary phylogenetic networks it is interesting to see whether agreement graphs and the
agreement distance can be generalised to multifurcating phylogenetic networks or even to directed graphs
in general. For unrooted phylogenetic trees, Allen and Steel (2001) have shown that unrooted agreement
forests characterise the distance of the tree bisection and reconnection (TBR) operation. This imposes
the questions whether agreement graphs can also be defined for unrooted phylogenetic networks and how
they would relate to generalisations of the (unrooted) SPR and the TBR operation.
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