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Abstract

We propose a method for visualizing genetic assignment data by characterizing the distri-
bution of genetic profiles for each candidate source population. This method enhances the
assignment method of Rannala & Mountain (1997) by calculating appropriate graph posi-
tions for individuals for which some genetic data are missing. An individual with missing
data is positioned in the distributions of genetic profiles for a population according to its esti-
mated quantile based on its available data. The quantiles of the genetic profile distribution for
each population are calculated by approximating the cumulative distribution function (CDF)
using the saddlepoint method, and then inverting the CDF to get the quantile function. The
saddlepoint method also provides a way to visualize assignment results calculated using the
leave-one-out procedure. We call the resulting plots GenePlots.

This newmethod offers an advance upon assignment software such as geneclass2, which
provides no visualization method, and is biologically more interpretable than the bar charts
provided by the software structure.

We show results from simulated data and apply the methods to microsatellite genotype
data from ship rats (Rattus rattus) captured on the Great Barrier Island archipelago, New
Zealand. The visualization method makes it straightforward to detect features of population
structure and to judge the discriminative power of the genetic data for assigning individuals
to source populations.

We then advance these techniques further by proposing methods for quantifying pop-
ulation genetic structure, and associated tests of significance. The measures we propose are
closely related toGenePlots, and enable visual features obvious from the plots to be expressed
more formally. One measure is the interloper detection probability: for two random genotypes
arising from populations A and B, the probability that the one from A has the better fit to A
and thus the genotype from B would be correctly identified as the ‘interloper’ in A. Another
measure is the correct assignment probability: this corresponds to the probability that a random
genotype arising from A would be correctly assigned to A rather than B.

Using permutation tests, we can test two populations for significant population structure.
These permutation tests are sensitive to subtle population structure, and are particularly use-
ful for eliciting asymmetric features of the populations being studied, e.g. where one popu-
lation has undergone extensive genetic drift but the other population has remained large
enough to retain greater genetic diversity. We illustrate the new methods using microsatel-
lite and SNP data, as well as simulation studies. We also compare the results with existing
measures of genetic diversity and differentiation.
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Chapter 1
Introduction

1.1 Population genetics concepts

Population genetics is the study of genetic variation within and among populations of organ-
isms. It can be applied to both plant and animal species, and to genetic data of any ploidy,
although we will only deal with diploid data here.

There are two common questions in population genetics. One question is whether there
is any evidence of population structure, defined as divisions between groups of organisms,
with preferential mixing within groups and reduced dispersal among groups. Population
structure can be basic, with just simple divisions, or there could bemore complex hierarchical
structure; and the divisions may be caused by behavioural patterns or, more commonly, by
geographical barriers that discourage or prevent dispersal. The divisions may be detected by
calculating various diversity measures (see Section 1.3) and testing them for significance, or
by using multivariate methods such as discriminant analysis, or via clustering methods such
as those used within the popular structure software (see Sections 1.2.2 and 1.2.3).

The other main question is whether individuals can be accurately assigned to the popu-
lations they originated from1. Assignment can be used to identify the source populations of
new individuals based on a reference sample from each of several candidate source popula-
tions. It can also be used to identify migrants within that reference sample, who originated
from populations different from those they were sampled in, or admixed individuals, who
have inherited genetic data from ancestors in more than one of the source populations.

Assignment involves two distinct stages: calculation of how well each individual fits to
each of the candidate source populations; and assignment of each individual to the most
appropriate source population, following a specific assignment protocol. The most common

1Individuals originate from population A if they were born in population A to at least one parent from pop-
ulation A, or were born in population B to two parents from population A.

1
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assignment protocol is best population assignment, which assigns individuals to the source pop-
ulation for which they have the best fit. The fit of an individual into a population is assessed
by how well-aligned the individual’s genotype is with those of individuals in the reference
sample from that population. The complication is that the reference sample of individuals
presumed to have originated from that population is itself subject to sampling variability.

Detection of population structure and assignment of individuals both attempt to deter-
mine the genetic patternswithin populations or clusters of individuals. These patterns are of-
ten expressed in terms of allele frequencies: the frequencies of different allele types within each
group, usually assessed at multiple points on the genome, known as loci. The data can come
from many different types of genetic markers, including but not limited to: allozymes; am-
plified fragment length polymorphisms (AFLPs); short tandem repeats (STRs), commonly
known as microsatellites; and single nucleotide polymorphisms (SNPs).

We use the termmeta-population throughout to refer to the overall set of populations stud-
ied, although it is also common in the literature to see the term “population” for the meta-
population and “subpopulation” for a single population.

1.2 Population genetics software

The current ecosystemof population genetics software programs is vast and still growing. Ex-
coffier & Heckel (2006) provided a “survival guide” to the available genetics software pack-
ages.

Since many of the programs have non-overlapping functionality, most ecological stud-
ies make use of several different programs to analyse their data. For example, Dussex et al.
(2016), whose genetic data we reassess in Section 3.5 using our ownmetholodogy, cite twelve
different software programs used in their study: GenAlEx 62 (Peakall & Smouse 2006); fstat
2.9.3 (Goudet, 19953); genepop 3.1d (Raymond & Rousset 1995); arlequin 3.1 (Excoffier &
Lischer 2010); structure 2.2 (Pritchard et al. 2000, Falush et al. 2003), structure harvester
(Earl & vonHoldt 2012); clumpp (Jakobsson & Rosenberg 2007); distruct (Rosenberg 2004);
the adegenet package (Jombart & Ahmed 2011) for the R language (R Core Team 2017);
bayesass (Wilson & Rannala 2003); geneclass2 (Piry et al. 2004); and diyabc v1.0.4 (Cornuet
et al. 2010), as well as other statistical and genetic analysis methods.

Here we discuss the various software packages according to the type of functionality they
provide. We begin with geneclass (Piry et al. 2004), which is closely related to our method-
ology, and structure, which is the most commonly used software for analysing population
structure.

2They cite Peakall & Smouse (2001) but the citation for GenAlEx 6 should be Peakall & Smouse (2006).
3The citation gives an incorrect year, 2001.
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1.2.1 geneclass

geneclass (Cornuet et al. 1999, Piry et al. 2004) is a commonly used program for genetic as-
signment of individuals. It implements the Bayesian assignmentmethod of Rannala &Moun-
tain (1997), aswell as the frequentistmethod of Paetkau et al. (1995) and the distancemethod
of Cornuet et al. (1999). Rannala &Mountain released their own software called immanc, but
it has been much less popular than geneclass.

Paetkau et al. (1995) propose a frequentist approach for assigning individuals. The
method calculates the fit of each individual to each candidate source population as the ex-
pected frequency of the individual’s genotype in that the source population, using the allele
frequencies observed in the reference sample. The individual is then assigned to the popula-
tion forwhich its genotype has the highest expected frequency. This is effectively amaximum-
likelihood method. Paetkau et al. modify the basic method by adding the alleles of each indi-
vidual’s genotype to the reference samples for all the populations they were not sampled in
before calculating the likelihoods. This reduces the bias produced by each individual’s alleles
being present in the population they were sampled in, and ensures that there are no candi-
date source populations that do not contain at least one copy of the individual’s alleles (the
null frequency problem). The method assumes randommating within each population, and
linkage equilibrium among all the loci.

Rannala & Mountain (1997) propose an alternative method for assigning individuals,
which estimates the posterior allele frequencies of the populations rather than using the ob-
served allele frequencies in the sample, before calculating the fit of individuals to popula-
tions. Further details of this method are given in Section 2.2.

The method of Rannala & Mountain (1997) is described as a “Bayesian” method by Cor-
nuet et al. (1999), but it has also been called a “partial Bayesian”method (see e.g.Manel et al.,
2002) because, like the Paetkau et al. (1995) method, it uses a likelihood calculation to assess
the fit of each individual to a population, given the estimated posterior allele frequencies in
the population. Unlike Paetkau et al., however, they do not suggest a maximum likelihood, or
best assignment, protocol, but rather recommend comparing the fit of an individual to differ-
ent populations as a likelihood ratio, and determine an appropriate threshold for assignment
using Monte Carlo simulations of genotypes.

Cornuet et al. (1999) describe the methods used in the first version of geneclass. This
includes themethods of Paetkau et al. (1995) and Rannala &Mountain (1997), but also a new
distance-based method. In this approach the fit of an individual to a population is calculated
using a measure such as one of Nei’s measures for population comparisons(Nei, 1987), and
by treating the individual as a sample population of its own, described by its two alleles at
each locus.

Cornuet et al. (1999) also introduce a new assignment protocol. They first calculate the
fit of the individual to each population, relative to typical genotypes from those populations.
These “typical genotypes” are simulated based on either the observed allele frequencies in the
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reference sample from that population, or based on the posterior allele frequencies estimated
according to the method of Rannala & Mountain. For each population, Cornuet et al. then
calculate the percentage of simulated genotypes from that population whose fit to their own
population is lower than or equal to the fit of the target individual to the population, and
treat this is as a “probability that the individual belongs to the population”.

Cornuet et al. suggest the possibility of assigning the individual to the population for
which they have the highest “probability of belonging”, similar to the best assignment proto-
col of Paetkau et al. (1995), but the probabilities can also be used within a stricter exclusion
protocol, under which the individual is only assigned to a population if there is only one
population for which it has a fit above a given threshold (see Manel et al., 2002). If there
are multiple populations for which the individual has a fit above the threshold, or there are
no populations for which the individual has a fit above the threshold, then the individual is
not assigned to any population. Such a method allows for the possibility that there is insuffi-
cient genetic differentiation among populations to assign that individual conclusively, or the
possibility that the individual’s true source population was not among those sampled.

Paetkau et al. (2004) update the method of Paetkau et al. (1995) by using leave-one-out
to remove an individual from the population in which it was sampled, rather than adding
the individual’s genotype to all other sampled populations. They deal with null frequency
alleles by setting the frequency of those alleles to a small non-zero value.

Paetkau et al. (2004) calculate two scores for each individual and each population. One
is the likelihood Lh of the individual’s genotype arising in the population within which it
was sampled. The other is a test statistic Λ = Lh/Lmax, where Lmax is the maximum of the
individual’s likelihoods over all sampled populations. They then rank all the individuals by
Λ or by Lh, depending on whether all possible source populations are thought to have been
sampled, and treat any individuals with values below a threshold as migrants.

Paetkau et al. (2004) calculate the threshold for identifying migrants by simulating large
numbers of genotypes from the populations, either by drawing alleles at random from the
allele frequencies in each population and combining them into genotypes, or by simulating
breeding of individuals from the population reference samples, picking two parents at ran-
dom from the sample and combining half of the alleles from each parent. Paetkau et al. then
either treat the simulated genotypes from a population as a single large sample to calculate al-
lele frequencies for the population and calculate the likelihoods of the simulated individuals
based on those allele frequencies, or group the simulated individuals into subsets the same
size as the original population reference samples, and calculate allele frequencies and like-
lihoods within each subset before collating the likelihoods of all the subsets. The aim of the
latter procedure is to reflect the sampling uncertainty inherent in the finite reference sample
when establishing population quantiles.

Baudouin et al. (2004) propose an alternative prior for the population allele frequencies
than the one used by Rannala & Mountain: their alternative prior was originally proposed
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by Baudouin & Lebrun (2001). They also introduce the concept of assigning a group of new
individuals rather than assigning each separately.

geneclass2 (Piry et al. 2004) updates the first version of geneclass by incorporating
the prior of Baudouin & Lebrun as an option within the Rannala & Mountain assignment
method, and by adding the group-assignment option of Baudouin et al. (2004). geneclass2
calculates the Lh and Λ criteria defined by Paetkau et al. (2004), and an additional criterion,
which is the ratio of the individual’s likelihood in its own population to the maximum of its
likelihoods over all sampled populations excluding its own.

geneclass2 also calculates what they term as the “probability of belonging”, for each in-
dividual to each population, namely the quantile of the individual’s fit among the fit of in-
dividuals simulated according to the methods in Paetkau et al. (2004). Alternatively, if the
probability of belonging method is not used, the software instead calculates a score for each
individual and each population which is the ratio of the individual’s likelihood in that pop-
ulation to the sum of the likelihoods of the individual in all populations4.

1.2.2 structure and related packages

structure occupies the centre of a sub-ecosystemof its own, surrounded by various programs
that either carry out additional processing on the output of structure or extend its function-
ality for different scenarios such as those with high levels of inbreeding (e.g. InStruct: see
Gao et al., 2007).

1.2.2.1 Versions of structure

Pritchard et al. (2000) propose the first version of the structure methodology, with the pri-
mary purposes of assigning individuals to populations and detecting cryptic, or previously
unidentified, population structure, and determining which apparent population divisions
are spurious. To this end, the software uses Bayesian Markov Chain Monte Carlo (MCMC)
methods to iteratively reassign individuals to different clusters. The MCMC process alter-
nates between estimating the allele frequencies for a fixed cluster membership combination
and estimating the best cluster membership for a fixed set of allele frequencies within those
clusters.

The initial version assumes that each of the true populations is in linkage equilibrium
and Hardy-Weinberg equilibrium, and attempts to find a cluster membership combination
that minimises deviations from those equilibria within the clusters. The software does have
an optional correlated allele frequencies model, which allows for the allele frequencies to be
correlated across the clusters, because without that the software has a tendency to merge
clusters that have similar allele frequencies.

4See http://www1.montpellier.inra.fr/CBGP/software/GeneClass/GeneClass2/Help.pdf for a corrected
version of the score equation given in Piry et al (2004).

http://www1.montpellier.inra.fr/CBGP/software/GeneClass/GeneClass2/Help.pdf
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The initial version has twomodels: (a) the no-admixturemodel, in which each individual
is assumed to have ancestry from only one cluster; and (b) the admixture model, in which
each individual is allowed to have portions of its ancestry from multiple clusters. In the ad-
mixture model, the software outputs a vector q for each individual that gives the proportion
of the individual’s ancestry that comes from each cluster.

The initial version of structure also allows the user to incorporate a limited form of prior
population information by specifying the fixed value of a parameter, ν, that gives the prob-
ability of an individual being a recent immigrant to the sampling location it was found in.
Hubisz et al. (2009) stress that this feature is limited, and is mostly intended for the identifi-
cation of a few recent immigrants in the samples.

structure has many other detailed parameters and settings, some of which relate to the
MCMCmethod, such as the number of burn-in iterations, the number of final iterations, and
the number of replicate runs to use. Running replicate runs for each combination of settings
is recommended because the method, like all MCMC methods, is non-deterministic.

Falush et al. (2003) update the structuremethodology to allow for linkage disequilibrium
within admixed clusters, and to extend the software to work with any ploidy. Pritchard et
al. (2000) had assumed that the allele frequencies at a single locus in a single cluster were
drawn from a symmetric Dirichlet distribution parameterized by λ, with a separate value of
λ for each cluster. The admixture proportions for a single individual were also assumed to be
drawn from a symmetric Dirichlet distribution with the same parameter α for all clusters.

Falush et al. (2003) describe three forms of linkage disequilibrium (LD): (i) “mixture
LD”, caused by the fact that individuals who mostly have ancestry from a particular cluster
will have an excess of alleles that are common in that cluster; (ii) “admixture LD”, which is
the correlation between loci that are near to each other on the same chromosome; and (iii)
“background LD”. The method of Pritchard et al. (2000) accounted for mixture LD, whereas
the method of Falush et al. (2003) accounts for admixture LD by allowing the admixture
parameter α to vary among clusters, although they still ignore background LD.

The newer model assumes that the loci are divided into “chunks” that are near to each
other on the same chromosome and are inherited together, so that the vector of cluster mem-
bership along a single chromosome is aMarkovmodel, where the length of each chunk varies
randomly. This Markov model gives rise to a Hidden Markov Model for the observed geno-
type data.

Falush et al. (2003) note that the software will make better inferences if some of the data
from each individual is from unlinked or weakly linked genetic regions.

Although the model of Falush et al. (2003) does not account for background LD directly,
they found from simulations with two clusters that in cases where background LD was a
problem, structure tended to infer admixture across all individuals in both clusters, whereas
admixture LD tended to be asymmetrical, affecting some clusters much more than others.
For cases with more than two clusters and high levels of background LD, they found that
more admixture was inferred between closely related clusters, and so they concluded that
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admixture found between distantly related populations is unlikely to be due to background
LD.

Falush et al. (2007) extend structure further by providing a method that allows for am-
biguous ascertainment of genotypes in diploid data with dominant markers, or polyploid
data with dominant or co-dominant markers. The method infers the true genotypes given
the incomplete observations as well as the allele frequencies and admixture proportions.

Hubisz et al. (2009) extend structure by allowing the inclusion of sampling location pri-
ors, to give more weight to clustering outcomes that are correlated with the sampling loca-
tions. Previous versions of structure treated all possible cluster membership combinations
as equally likely and therefore any given specific combination was very unlikely. The new
method, in non-admixture mode, allows for non-equal probabilities of membership of differ-
ent clusters, and in admixture mode allows for non-equal admixture priors for the different
clusters.

Hubisz et al. (2009) designed the priors for the parameters of cluster membership so that
if the sampling location labels are strongly uncorrelated with the inferred ancestry propor-
tions then the sampling locations will not bias the results. They recommend the new model
for cases with limited data and weak or no signal of population structure. They do not incor-
porate geographical data, only the sampling location labels.

1.2.2.2 Choosing the best value ofK

structure runs theMCMCprocess for a fixed value ofK, the number of clusters, and does not
directly infer the value ofK. Instead, Pritchard et al. (2000) recommend running the process
for multiple candidate values of K and then selecting the best value of K. Much effort since
then has been focused on this problem of determining the true number of clusters.

Pritchard et al. (2000) offer a rough method of estimating the log-likelihood for the ob-
served genotypes givenK, and use that to obtain a posterior estimate forK. They emphasise
that this is an “ad hoc guide to whichmodels are most consistent with the data”, and note that
the posterior distribution of K seems to be more dependent on modelling assumptions and
choice of priors than the posterior distributions of the other parameters.

Falush et al. (2003) comment further on the difficulty of estimating K: “the number of
populations supported by the data may depend on how different one would expect the allele
frequencies in different populations to be a priori, which is often difficult to specify.”

Evanno et al. (2005) note that many studies chose K to maximise the log-likelihood
L(K) = logP(X |K), and that method evaluation studies had shown structure to be a good
tool for assigning individuals to populations, but had not tested the suitability of structure
for detecting the correct value ofK, especially in caseswith hierarchical population structure.

Evanno et al. tested structure using simulated dispersal scenarios with three types of
structure: simple island model, with dispersal between all pairs of populations; hierarchical
model, with preferential dispersal within groups of populations and with all groups linked
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to each other; and a “contact zone” model akin to the “stepping stone” model of Easypop
(Balloux, 2001), with dispersal only between adjacent populations and reduced dispersal
between the two central populations, marking the contact zone between otherwise isolated
groupings. They used Easypop to simulate microsatellite and amplified fragment length
polymorphism (AFLP) data at 100 loci, with 10 allele types at each locus with mutation rate
µ = 10−3. They used the admixture mode of structure with correlated allele frequencies
between populations.

Evanno et al. (2005) found that the log-likelihood L(K) did not tend to have a clear mode
at the correct value of K. They instead propose a new criterion, now commonly known as
the ∆K criterion of Evanno et al. (2005), which is calculated based on the second-order rate
of change of L(K) with respect to successive values of K. This new criterion tended to have
a clear peak at a value ofK correctly matching the higher-level population structure. For the
hierarchical model, the ∆K method correctly indicated the number of population groupings,
and for the contact zone model, the method correctly indicated that there were two popula-
tion groups.

1.2.2.3 structure output

The basic output of structure is the inferred clustermembership of each individual for the no-
admixture mode, or the inferred admixture proportions of each individual for the admixture
model. Although these proportions are not the probabilities of membership of the clusters
for the individual, they are often used as such (see e.g. Manel et al., 2002).

The other main output of structure in admixture mode is a bar chart showing the admix-
ture proportions of each individual, coloured by cluster. This may be an implementation of
the method used in the distruct software (Rosenberg, 2004), although that program is also
used alongside structure in many studies. Figure 1.1 shows an example of this display.

Figure 1.1: Example of a structure bar plot of ship rats captured on Kaikoura Island, the Broken
Islands and Aotea, New Zealand, between 2005 and 2008. The red bars correspond to cluster 1, the
green bars to cluster 2 and the blue bars to cluster 3. See Chapter 2 for a detailed discussion of this
case study.
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Additional software packages have been developed tomake the output of structuremore
useful or more configurable. clumpp (Jakobsson & Rosenberg 2007) aims to collate the results
of multiple replicate runs from clustering software such as structure and deal with the issue
of permutation of cluster labels between different replicate runs. clumpak (Kopelman et al.
2015) groups replicate runs into subsets with similar outcomes that may indicate different
modes in the space of possible solutions. structure plot takes the output of structure or
clumpp and provides an interactive interface for editing the resulting bar plots. Earl & von-
Holdt (2012) created structure harvester to collate structure results, visualize likelihoods
forK, calculate Evanno’s ∆K criterion, and reformat data for programs such as clumpp and
distruct. ObStruct (Gayevskiy et al. 2014) processes output from structure, InStruct or BAPS
(Corander et al., 2003 and 2004) and aims primarily to assess how the inferred cluster mem-
bership relates to a factor of interest encoded as the population labels of the individuals.

Many other packages exist to run structure in batch mode or parallelize it.

1.2.2.4 Further developments

Kalinowski (2011) assesses the ability of structure to identify, from a large number of pop-
ulations, a smaller number of clusters representing the major divisions within the species,
and argues that the clusters identified by structure do not fit well with the evolutionary his-
tory of the species. Kalinowski demonstrates, via simulations, that the structure clusters can
be strongly influenced by sample size variation and by the relative amount of differentia-
tion among the populations. Kalinowski also reanalysed human genetic data used in studies
by Rosenberg et al. (2005) and Tishkoff et al. (2009) and disputes the conclusions they had
drawn from structure analyses.

Lawson et al. (2012) note that structure and similarmethods treat loci individually, with-
out incorporating information about the relative positions of the loci in the genome. They in-
troduce two new software programs, ChromoPainter and finestructure, for biallelic genomic
data. finestructure is intended as an improvement on structure and another software pro-
gram, admixture (Alexander et al. 2009, Alexander & Lange 2011).

ChromoPainter “paints” stretches of each individual’s genome to indicate which of the
other individuals in the sample is the nearest neighbour for each stretch, and produces a
coancestry matrix showing, for each individual, what proportions of its genome have each
other individual as its nearest neighbour.

finestructure uses this coancestry matrix to perform model-based inference akin to the
structure methods, or non-model-based inference akin to principal components analysis
(PCA). The authors recommend using it not to find major splits between populations, but
rather to find finer subdivisions. Lawson et al. (2012) comment that finestructure performs
better than structure for large numbers of clusters (K > 10).

Lawson et al. (2018) criticise the way that structure is commonly applied to detect popu-
lation structure, in particular the apparent tendency to assume that the estimated value ofK
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is correct and that each of the inferred clusters corresponds to a non-admixed ancestral pop-
ulation, ignoring the possibility of admixture within or relationships between ancestral pop-
ulations. Lawson et al. (2018) simulated three scenarios that all produce similar structure
output: (i) one population was formed by recent admixture of the other three populations;
(ii) one population was formed by admixture between one of the other populations and an
unsampled “ghost” population; and (iii) two of the populations became separated and one
of them underwent a strong recent bottleneck event. Lawson et al. introduce a new software
program called badmixture that assesses whether scenario (i), recent admixture, is the most
plausible scenario for the given dataset. They also show that the results of both structure
and admixture (Alexander et al. 2009, Alexander & Lange 2011) are very strongly affected
by sample size.

1.2.3 Other assignment and clustering software

Other software for assignment and clustering includes whichrun (Banks & Eichert 2000),
for assigning individuals to populations, and oncor (Anderson et al. 2008, Kalinowski et al.
2008), commonly used for mixed stock analysis.

Partition (Dawson & Belkhir 2001) uses MCMC methods to partition the sample into
groups of individuals, rather than attempting to infer the proportions of populations in a
mixture. BayesAss (Wilson & Rannala 2003) uses MCMCmethods to estimate rates of recent
immigration, individual ancestries and other parameters of the population structure.

baps 2.1 (Corander et al., 2003 and 2004) provides a similar clusteringmethod to structure
except that it directly estimates the number of clusters. Further modules were added in later
versions of baps, including the optional incorporation of spatial data (Corander et al., 2008).

1.2.4 Multi-purpose software

There are several multi-purpose packages that can be used to calculate various diversitymea-
sures, carry out significance tests, check for deviations fromHardy-Weinberg equilibriumand
estimate population parameters.

An early popular package was biosys-1 (Swofford & Selander, 1981), which was later re-
placed in popularity by genetix (Belkhir et al. 1996-2004), genepop (Raymond&Rousset 1995,
and Rousset 2008) and fstat (Goudet 1995).

Later popular packages include GenAlEx 6.5 (Peakall & Smouse, 2006 and 2012) and
Arlequin 3.5 (Excoffier & Lischer 2010). Arlequin implemented the analysis of molecular
variance (AMOVA) method introduced by Excoffier et al. (1992) (see Section 1.3.3).

adegenet (Jombart & Ahmed 2011) is a general-purpose package for the R language, but
focuses onmultivariate analyses of genetic data, particularly using the Discriminant Analysis
of Principal Components (DAPC) method (Jombart et al. 2010) (see Appendix E).

There are more recent software packages for calculating newer diversity measures such
asG′ST and Jost’sD (see Section 1.3), including genodive (Meirmans & Van Tienderen 2004),
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smogd5 (Crawford, 2010), and the SpadeR (Chao et al. 2015), diveRsity (Keenan et al. 2013),
DEMEtics (Gerlach et al. 2013) and mmod (Winter 2012) packages for the R language (R Core
Team 2017).

Easypop (Balloux 2001) is a small, fast program for simulating populations with different
types of simple or hierarchical structure and different levels of migration and mutation.

5The software package is available at https://github.com/ngcrawford/SMOGD but lacks a user guide.

https://github.com/ngcrawford/SMOGD
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1.3 Classical measures of population differentiation

As well as the methods of genetic assignment and clustering described in Section 1.2, genetic
differentiation measures based on the classical Wright-Fisher model of population genetics
(Wright 1951) have proliferated in recent years, leading to much disagreement about which
measures should be used to assess population structure in different scenarios and using dif-
ferent genetic markers.

Here, we give a brief survey of measures in common use, and the numerous adjust-
ments and disagreements that they have spawned. Our aim is to give a flavour of the con-
text in which we propose our alternative approach to measuring population differentiation
in Chapter 3, which is motivated by the visualizations we derive in Chapter 2. We will not
explore the measures below further, except to use them for discussion and comparison in
Sections 3.9 and 4.2.

1.3.1 FST

Wright (1951) initially proposedFST, and the other F-statisticsFIS andFIT, defined for biallelic
loci. Weir & Cockerham (1984) propose the methodmost commonly used for estimating FST,
for which they use the notation θ after establishing its equivalence to FST. They also describe
corresponding estimates for f and F , equivalent to FIS and FIT.

Weir & Cockerham split up the variance of the frequency of an allele into the variance
among populations, the variance among individuals within populations, and the variance
among gametes within individuals, called a, b and c. They then define

θ =
E(a)

E(a) + E(b) + E(c)
,

where E(x) is the expectation of quantity x, and they define F and f similarly. Estimates for
θ, f and F are calculated using the components of the observed variance.

Holsinger & Weir (2009), in their summary of methods for estimating FST, describe
the Weir & Cockerham (1984) method as “method-of-moments” analysis, carried out via
ANOVA for allele frequencies. The initial definitions of F̂ , θ̂ and f̂ in Weir & Cockerham
(1984) are for a single biallelic locus. Estimates for multiallelic loci are obtained using a
weighted average over the alleles, and similarly the estimate for multiple loci is obtained
using a weighted average over loci.

TheWeir & Cockerhammethod assumes equal-sized populations, descended from a sin-
gle ancestral population in Hardy-Weinberg equilibrium and linkage equilibrium. Sample
sizes are not required to be equal, but population sizes are required to be equal because the
derivation involves expected values of f , θ andF andwould givemultiple expected values for
unequal population sizes. The expectations are taken over all possible replicate populations
and all possible samples from those populations, thus accounting for both genetic sampling
uncertainty and statistical sampling uncertainty.
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Weir &Cockerham (1984) andHolsinger &Weir (2009) distinguish between genetic sam-
pling from generation to generation within populations, and statistical sampling caused by
taking samples smaller than the populations. Genetic sampling uncertainty leads from the
fact that most single finite generations in the population will not have allele frequencies that
exactlymatch the underlying allele frequencies in the population. The authors distinguish be-
tween these two forms of sampling uncertainty because only statistical sampling uncertainty
can be reduced, by taking larger samples from the population, whereas genetic sampling
causes inherent and unavoidable uncertainty.

Weir & Cockerham comment that already by 1984 the earlier studies that used FST were
inconsistent in their documentation of the calculations used and the assumptions required.
They also argue that Nei & Chesser (1983) do not account for replication over replicate pop-
ulations. However, most studies using or citing FST use the method of Weir & Cockerham
without meeting the assumptions of equal population size and absence of mutation. Many
studies, and software such as GenAlEx 6.5 (Peakall & Smouse, 2006 and 2012) calculate FST

for pairs of populations, which contradicts the assumption in Weir & Cockerham of a con-
stant value of FST across all populations. Weir & Hill (2002) extended Weir & Cockerham’s
method to obtain estimates for FST that vary between the populations, but in many studies it
is unclear whether Weir & Hill’s method is the one used.

Alongside the method-of-moments process of using ANOVA calculations to estimate F-
statistics, Holsinger & Weir (2009) describe alternative methods involving maximum like-
lihood or Bayesian methods, including the methods of Weir & Hill (2002). Maximum like-
lihood methods for estimating F-statistics require specification of a likelihood model that
describes how the allele frequencies vary among populations, and multinomial distributions
for genotypes sampled from the populations. Bayesian methods for estimating F-statistics
combine the likelihood model with prior distributions, often uniform, for θ and f and the
allele frequencies.

Again, these maximum likelihood and Bayesian methods are for single loci but are ex-
tended to multiple loci by assuming equal θ and f over all loci and that “genotype counts
are sampled independently across loci and populations” (Holsinger &Weir 2009). Holsinger
& Weir (2009) suggest that Bayesian and method-of-moments estimates of FST will only be
similar for large numbers of populations (>10) and sufficient average numbers of individuals
per population (>20).

Gaggiotti & Foll (2010) complain that Holsinger and Weir only discuss overall estimates
of FST for a set of populations, and recommend Balding (2003) for a more detailed discussion
of FST methods, including a method for calculating FST separately for each population, which
Gaggiotti & Foll prefer to calculating FST pairwise across populations.

Despite its ubiquity, therefore, there is only limited consensus about how FST should be
defined or estimated and how it should be used, although the majority of studies using FST

appear to use the form proposed by Weir & Cockerham (1984).
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FSTAT (Goudet 1995) and Genepop (Raymond & Rousset 1995) both calculate FST using
code developed by Goudet from FORTRAN code in Weir (1990) which follows the method
of Weir and Cockerham (1984). Arlequin 3.5 (Excoffier & Lischer 2010) is not clear about
the details of FST estimation but cites both Weir and Cockerham (1984) and Slatkin’s (1995)
adjustedmethod for estimating FST withmicrosatellite data. GenAlEx 6.5 (Peakall & Smouse,
2006 and 2012), which has become one of the most popular general software packages for
population genetics, describes in Tutorial 1 a manual calculation for FST akin to Nei’s (1987)
method, but also offers AMOVA analysis including FST estimates6.

1.3.2 Nei’s GST and DST

Nei (1977) defines FST for a single locus as

FST =
HT −HS

HT

whereHT is the total heterozygosity of the meta-population andHS is the within-population
heterozygosity averaged over all populations. Under the appropriate conceptual Wright-
Fishermodel, this is equivalent to the previous definitions for a single biallelic locus; however,
its generalization to multiple alleles and loci differs from that of Weir & Cockerham (1984).
Nei (1973, 1987) therefore names his multiallelic analogue GST, to distinguish it from other
concepts of FST, although many authors use FST and GST interchangeably.

Nei (1973) begins by defining the “gene identity” in population r at a single locus:

Jr =
∑
i

p2ri, (1.1)

where pri is the sample frequency of the ith allele in population r. He also defines the gene
identity in the total population:

JT =
∑
i

p2·i, (1.2)

where p2·i is the weighted average frequency of allele i over all populations. Nei names these
quantities gene identity because they give the probabilities of gene identity of two randomly
chosen genes, either from population r or from the meta-population. He also defines corre-
sponding quantitiesHr = 1− Jr andHT = 1− JT , which he calls gene diversity because the
commonly-used term “heterozygosity” is “not appropriate for a nonrandommating popula-
tion”.

Nei defines DST as the difference between the average gene identity within populations,
JS and the gene identity in the meta-population, JT:

DST = JS − JT

=
1

K

∑
r

Jr − JT,

6GenAlEx guides and tutorials refer for details to a separate document titled “Appendix 1”, which does not
appear to be available on the GenAlEx website http://biology-assets.anu.edu.au/GenAlEx/Welcome.html.

http://biology-assets.anu.edu.au/GenAlEx/Welcome.html
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where K is the number of populations. Thus DST is a multiallelic calculation of HT − HS

because JT represents 1−HT and JS represents 1−HS. Nei then defines

GST = DST/HT.

Nei also defines bias-corrected versions ofHS,HT,GST andDST estimators (Nei 1978, and
Nei & Chesser 1983). Nei & Roychoudhury (1974) considers the inter- and intra-locus vari-
ability of the heterozygosity.

Holsinger & Weir (2009) suggest that, unlike estimates of FST, which are designed to ac-
count for genetic sampling, Nei’s GST is only concerned with the actual population allele
counts observed in a generation, rather than the underlying allele frequencies. Similarly, Bald-
ing (2003) describes Nei’s estimates for FST, GST and DST as “descriptive statistics, dealing
with the observed data rather than inferring from them.”

1.3.3 ΦST and RST

FST treats all allele types equally anddoes not use the information that some allele typesmight
be more similar than others, in the sense that it is easier for some types of mutations to occur
than others. The aim of ΦST (Excoffier et al. 1992) and RST (Slatkin 1995) is to exploit this
information by using a measure of distance between allele types. ΦST does this for haplotype
data. Analysis of molecular variation (AMOVA, Excoffier et al. 1992) derives the hierarchy of
variances within and between populations, based on the sums of squared distances between
pairs of individuals, and constructs ΦST as a corresponding analogue of FST.

Microsatellite markers, or “short tandem repeats” (STRs) were also considered problem-
atic for estimating FST. Microsatellite allele types are defined by their sequence length and
are often considered to follow a stepwise mutation model, in which each mutation adds or
subtracts a small number of repeats, and therefore alleles are more likely to mutate into al-
lele types of similar length than those of very different lengths. Slatkin (1995) introduced the
measureRST specifically for microsatellite markers, to accommodate their stepwise mutation
patterns. However, it has been suggested (Holsinger & Weir 2009) that estimates of RST may
be unreliable unless a very large number of loci are used, andBalloux&Lugon-Moulin (2002)
argue that no actual markers have been found that follow a stepwise mutation pattern.

1.3.4 Standardized forms of FST and other measures

Estimates of FST using biallelic markers, for which FST was originally defined, vary between 0
and 1: they reach 0 when the populations have exactly the same allele frequencies as each
other, and 1 when the populations have totally different alleles from each other. Several
studies, in particular Charlesworth (1998,) Hedrick (1999), Hedrick (2005) and Meirmans
& Hedrick (2011), have demonstrated that estimates of FST for multiallelic markers do not
exhibit the same behaviour.
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In particular, using Nei’s definitions of FST, the range of values taken by FST is heavily
dependent on the value of the mean within-population heterozygosity HS. As HS increases,
the maximum possible value of FST decreases so that for HS = 0.9, for example, FST = 0.1

would indicate maximal differentiation with no alleles shared among the populations.
For this reason,FST is very commonly standardized asF ′ST by dividingFST by itsmaximum

possible value for the given heterozygosity. However, there are alternative standardization
approaches.

Nei (1987) defined a standardized form of GST. He defined

D′ST = (HT −HS)
K

K − 1

whereK is the number of populations in the meta-population, and from this he obtained

H ′T = (HT −HS)
K

K − 1
+HS

and
G′ST(Nei) =

H ′T −HS

H ′T
=
K(HT −HS)

KHT −HS
.

Hedrick (2005) defined a different standardized form of GST similar to the typical stan-
dardization of FST:

G′ST(Hedrick) =
GST

GST(max)
(1.3)

where
GST(max) =

HT(max) −HS

HT(max)
.

HT(max) is the maximum heterozygosity in the total meta-population given the observed
heterozygosity within populations:

HT(max) =
1

K
(K − 1 +HS). (1.4)

Meirmans (2006) defined a standardized form of ΦST,

Φ′ST = ΦST/ΦST(max).

This adjusts for the high levels of within-population variance for highly polymorphic mark-
ers. The calculations for estimating ΦST(max) depend on the population model, mainly on
whether there is only simple structure or a hierarchical structure with groupings of popula-
tions within the meta-population. Then AMOVAmethods used to calculate ΦST are extended
to obtain ΦST(max) and Φ′ST.

Meirmans & Hedrick (2011) define a further standardization of GST, based on the fact
that the maximum possible value of Nei’s G′ST is 1−HS. They define

G′′ST =
G′

ST(Nei)
G′

ST(Nei,max)
=

K(HT −HS)

(KHT −HS)(1−HS)
.

Meirmans &Hedrick (2011), in the appendix, provide a useful summary of the standardized
forms of GST. They consider G′′ST and Φ′ST to be estimates of F ′ST, i.e. standardized estimates of
FST.
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1.3.5 Jost’s D and Dest

AlongsideG′ST andG′′ST there is another alternative measure of differentiation, defined by Jost
(2008). Jost pointed out that the dependency of GST and FST on HS was not a consequence
of statistical sampling, but holds true even when the actual population allele frequencies are
used in the calculations.

Jost also argued that Nei’s differentiation estimateDST is not independent ofHS and thus
the total heterozygosity HT cannot simply be additively partitioned into DST and HS. More-
over, GST may be unsuitable as a measure of differentiation for highly polymorphic loci, and
under some conditionsGST decreases as the amount of differentiation between allele frequen-
cies in the populations increases.

Finally, Jost considered it a misconception to equate heterozygosity with the “intuitive
concept of diversity as actually used by geneticists, ecologists, and other scientists,” because
there are scenarios in which the populations share no alleles but the value of HS is still close
to the value of HT, and thus the estimates of measures such as GST would be low.

Jost’s definition of fully differentiated populations is populations that share no alleles,
and his measure D is developed from the idea that if populations share no alleles, then the
overall diversity of the meta-population should be the sum of the diversities of the individ-
ual populations. Jost defines the gene identity as in Nei (1973), given in (1.1), and likewise
defines JS as the gene identity averaged over all populations r and JT as the meta-population
gene identity in (1.2). From these he obtains∆ST, the effective number of distinct populations:

∆ST =
JS
JT
,

and then scales ∆ST to obtain a relative measure of differentiation,D, that ranges from 0 to 1.
Jost also definesDest, a “nearly unbiased” estimator ofD, which is constructed using Nei

and Chesser’s (1983) unbiased estimators of HT and HS:

Dest =
HT_est −HS_est

1−HS_est

K

K − 1

1.3.6 Comparisons of GST and D

Following Jost (2008) there has beenmuch discussion in the literature about the variousmer-
its and flaws of GST and D.

Heller & Siegismund (2009) evaluated GST and Dest using a meta-analysis of 34 earlier
genetic studies on 43 species, published in Molecular Ecology. They calculated GST and Dest
for each, though they used a slightly different version of unbiased estimator for HT than the
one used in Jost (2008). They confirmed that GST tends to underestimate the level of differ-
entiation and overall they support Jost’s findings aboutGST and recommend the use of either
G′ST or Dest.

Ryman & Leimar (2009) argued in favour of GST, showing that D is not independent
of HS as claimed by Jost (2008), and that D is also more strongly affected by the mutation
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rate than GST is. They demonstrated this using simulations with varying mutation rates and
simulations with varying HS and fixed mutation rate, and showed that D takes longer to
reach its equilibrium value than GST. Their conclusion was that D “cannot be interpreted
exclusively in terms of basic population genetics quantities such as population size and gene
flow” because it confounds these with mutation rate.

In response to Heller & Siegismund (2009) and Ryman & Leimar (2009), Jost (2009) ar-
gued thatGST is not logically consistent, unlikeD.He provided a counterexample to Ryman&
Leimar (2009) in which a set of populations with nomigration between them have a constant
valueD = 1 butGST decreases over time as mutations increase the value ofHS. Jost dismisses
the complaint aboutD taking a long time to reach equilibrium, commenting that “D, likeGST,
cannot be used to estimate any parameters of the finite island model unless the populations
are in equilibrium” but thatD is nonetheless useful as a measure of differentiation and, over
short timescales, can also be used as a genetic distance.

Gerlach et al. (2010) developed the DEMEticspackage for theR language as part of an eval-
uation ofGST andD. They simulated 2 populations, starting from full differentiation with no
migration, and gradually increased the level of migration. They found thatD always took the
value 1 when the populations shared no alleles, but the maximum value of GST was affected
by the number of alleles per population. They constructed simulation cases with different
values of GST but the same value of D, and cases with the same value of GST but different
values of D. They also found cases with negative values of Dest. Finally, they found that the
results of significance tests on the bias-corrected form ofGST were sometimes conclusive even
for very low values of bias-corrected GST, but bias-corrected Dest was still more useful as it
displayed a wider range of values.

Meirmans&Hedrick (2011) commented thatmutation affects all the existingmeasures of
differentiation, and that even measures that attempt to account for mutation such as ΦST and
RST are still only applicable in cases where the mutation patterns actually match the model
used. They also commented that F ′ST is generally affected by population size and migration
rate, whereas D is affected by the migration rate and the number of populations. They pro-
vided an example with fixation of alleles in the populations to demonstrate that FST and F ′ST
are better for assessing demographic events, whereas D is better for measuring the actual
differentiation in allele frequencies. They considered G′′ST to be an estimator for F ′ST.

Further contributions to the discussion came from Leng & Zhang (2011) and Alcala et al.
(2014).

Whitlock (2011) argued in favour of FST rather than G′ST or D, particularly when using a
coalescent approach to estimate FST as a description of the relative time to the most recent
common ancestor (Slatkin 1995). In scenarios with high migration and low mutation FST or
GST may be more suitable thanG′ST orD, because the former are less affected by heterozygos-
itywhen there is lowmutation andG′ST andDmayoverestimate the amount of differentiation.
In scenarios with low migration and high mutation the coalescent estimate of FST may still
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be more suitable than G′ST or D because those two measures are dominated by the effects of
mutation.

Whitlock argued that FST estimates a quantity of direct biological interest, unlikeG′ST and
D, particularly since Jost defines D and Dest as single-locus measures, without providing
a method of averaging over loci. We note that three packages for the R language, diveRsity
(Keenan et al. 2013), DEMEtics (Gerlach et al. 2013) and mmod (Winter 2012), each use different
methods of calculating the global value of D. G′ST, G′′ST and D can also be calculated using
software such as RecodeData (Meirmans 2006), SMOGD (Crawford 2010), and GenAlEx 6.5
(Peakall & Smouse, 2006 and 2012).

1.4 Thesis aims

The aim of this thesis is to provide new methodology focused on the interpretability of the
output. We propose a new framework that, for the first time, produces visualizations that are
closely linked to numeric measures and subsequent inference. Using this framework, we can
reveal fine details of population structure not shown by any of the existingmethods. The orig-
inal motivation for the new methodology was to elicit the source of invasive individuals on
sanctuary islands, but we found the same methods to be informative about genetic structure
in a much wider range of scenarios.

The material in Chapter 2 and Appendices A–G has been published in Biometrics as
McMillan & Fewster (2017) and supplementarymaterials. In the future, we intend to publish
an abridged form of the material in Chapter 3.





Chapter 2
Visualizations for genetic assignment analyses
using the saddlepoint approximation method

2.1 Introduction

Genetic assignment methods compare genetic data from individual animals to genetic pro-
files of reference samples from multiple candidate source populations, to determine the ap-
propriate source population, if any, for a given animal. The methods can also be used to anal-
yse the reference samples themselves, to assess the amount of genetic overlap or separation
between the populations.

Since their inception in the 1990s, genetic assignment techniques have served many pur-
poses in ecology, biology and conservation. They have often been used to detect underlying
population structure (e.g. Bergl and Vigilant 2007, Underwood et al. 2007). Berry et al. (2004)
used assignment methods to estimate patterns of dispersal, while Taylor et al. (2006) used
assignment to detect hybridisation. Genetic assignment has also been used for a range of
forensic analyses, from detecting fishing competition fraud (Primmer et al., 2000) to detect-
ing illegal translocations (Frantz et al. 2006) and illegal poaching (Manel et al. 2002). The
same methods can help conserve endangered species by monitoring dispersal, or to assist
with the management and eradication of invasive pests (Rollins et al. 2009).

Genetic assignment studies typically involve examination of several polymorphic genetic
loci, usually microsatellites (Rannala and Mountain 1997, Fewster 2017). The basis of the
analysis is that separate populations have different allele frequencies at these loci. This is
partly due to genetic drift, whereby the randomness of mating changes the allele frequen-
cies in each generation; this has greater effect in small populations, where rare alleles may
disappear after only a few generations. Additionally, populations may be subject to founder
effects, whereby individuals with some alleles that are rare in the wider community form a

21
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new population in which those alleles become common. Founder effects are especially rele-
vant in studies of invasive species.

Populations are therefore characterized in genetic terms by their allele frequencies, which
can be estimated by sampling from the populations. We can then compare the alleles of an
individual animal to the allele frequencies in each of the populations, and combine those
results over multiple loci. From this we obtain measures of fit for the animal with respect to
each of the populations.

Ideally, one would then visualize the overall genetic structure, for example using scatter-
plots of the measures of fit with axes showing the degree of similarity to each population,
where each point represents an individual animal (Paetkau et al. 2004). However, there is a
fundamental difficulty with plotting these measures of fit, because some sampled individ-
uals will be missing data at one or more loci. In the dataset we describe below, 2.6% of the
locus records are missing. The measures for different animals will therefore be on different
scales, preventing them from being plotted together. In this paper we propose methodology
to address this difficulty.

In the absence of established methods for plotting measures of fit, other representations
of assignment results have been used. The popular software program structure (Pritchard
et al. 2000) performs assignment, and, under the admixture option, displays genetic struc-
ture as bar charts. These charts have one bar per individual, with portions of the bar colored
differently to show the proportions of that individual’s genome estimated to originate from
the different populations. That is, the current set of individuals is assumed to be the result of
past mixing between the populations, and each individual is assumed to have components
of its genome that were inherited from those populations. However, this method of visual-
ization does not distinguish between an individual with a poor fit to all populations and an
individual with a good fit to all populations, because it expresses the individual’s profile as a
relative composition and does not display the individual’s absolutemeasures of fit. Addition-
ally, although structure is a useful tool for exposing cryptic genetic structure, the admixture
model may be hard to interpret in biological terms.

Another commonly-used genetic assignment program, geneclass2 (Piry et al. 2004) pro-
videsmeasures of fit for individualswith respect to each population, but does not provide any
visualization of the results; nor is there a common standard for reporting the results numer-
ically. Kotze et al. (2007) report the results of both the Bayesian and the frequentist analysis
options on a few individuals with unknown origins. Rollins et al. (2009) show detailed as-
signment results for the few individuals that were identified as dispersers (i.e. estimated to
havemigrated from their original population to a newpopulation) but not for other individu-
als, so calibration is lacking. Results from geneclass2 are typically shown as tables indicating
how many individuals were assigned to each population, but the absolute measures of fit
used for the assignment are not shown (e.g. Glover et al. 2009).

Other software packages do not perform genetic assignment, but calculate genetic dis-
tances and population diversity measures, and some of them provide visualizations of the
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genetic data for the purpose of interpreting population structure. Visualizationmethods used
include: factor analysis applied to rawmultilocus data, implemented in Genetix 4.05 (Belkhir
et al. 1996-2004: e.g. Taylor et al. 2006); and principal coordinate analysis (PCoA) of individ-
ual pairwise distance data, implemented in GenAlEx 6.05 (Peakall and Smouse 2012). The
adegenet package for R (Jombart and Ahmed 2011) performs principal component analy-
sis combined with discriminant analysis on the raw multilocus data. However, none of these
packages calculates the fit of an individual into candidate source populations.

Here we propose a method that enables us to visualize genetic population structure on
a scatterplot, in which each axis depicts the individual’s fit to the corresponding reference
population. We accommodate individuals with missing locus data by plotting them at the
quantiles of fit they attain in the reduced-locus data for the reference populations, corre-
sponding to the loci they possess. This involves characterizing the posterior distribution of fit
for each reference population, and all reduced-locus combinations, which we do by deriving
close approximations via the saddlepoint method.

We show that our visual assignment method creates compelling displays of underlying
population structure, such as the level of separation or overlap between populations, the ge-
netic spread of individuals in each population, and whether one population is a drifted ge-
netic subset of another. Visualization also shows clearly individual fit to each population, in-
cluding individuals from the reference samples that do not fit their own source populations,
and the best placements for query samples. Visualization is an important initial step in the
assignment process, indicating whether or not it is appropriate to assign individuals. If the
populations exhibit substantial overlap, this indicates that many individuals have a plausible
fit to multiple populations, and thus cannot be conclusively assigned to a single population.

An advantage of the saddlepoint method for characterizing distributions of genetic fit to
each population is that the quantiles of the distributions can be calculated accurately and
plotted on the same display as the assignment results. This displays the within-population
variance, and shows whether one population is a drifted genetic subset of another. These
quantiles can also be used as thresholds for assignment by exclusion. A further advantage
of the saddlepoint approximation method is that it enables assignment results produced un-
der the leave-one-out procedure to be plotted in the same way as standard results. We will
demonstrate the importance of using a leave-one-out approach when sample sizes are small.

2.2 Genetic Assignment

We now outline the established approach to genetic assignment analysis. The aim is to com-
pare an animal’s DNA profile to two or more candidate source populations, which we shall
hereafter refer to as reference populations. Reference populations are typically defined by their
location. Samples from each reference population are required to provide an estimate of the
allele frequencies for that population; we shall use the term reference samples to denote these
samples. The provenance of these samples is not thought to be in question, although this
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assumption is not critical because any anomalous reference samples will be exposed by our
graphicalmethod. Often, there is also a further set of sampleswhose provenance is unknown.
We use the term query samples for these additional animals. These samples do not contribute
to the estimates of allele frequencies for any reference populations.

The first step in the assignment process is to estimate allele frequencies in each reference
population.We then build a genetic profile for each reference population by examining the fit
of its own reference animals into their own population: some populations are tight-knit while
others are diverse and diffuse. We build a picture of genetic structure among populations by
similarly examining the fit of reference samples from other reference populations into each
target reference population. These steps require us to define a measure of genetic fit of an
individual into a population, which will be the log posterior genotype probability defined
below. Finally, if there are any query samples (animals to be assigned), we use the same
measure of genetic fit to examine their fit into each of the reference populations.

2.2.1 Estimating allele frequencies

Consider a single reference population R, and a single genetic locus Lwith k allele types la-
beled 1, 2, . . . , k. Let p = (p1, . . . , pk) be the frequencies of alleles 1, . . . , k in this population,
where 0 ≤ pi ≤ 1 for each i and

∑k
i=1 pi = 1. We aim to estimate p1, . . . , pk. In this de-

velopment we restrict to a single population R, but the number of available allele types k is
determined by pooling observations from all individuals in the reference and query samples.

Let X = (X1, . . . , Xk) be the observed allele counts at locus L for diploid reference ani-
mals 1, 2, . . . , nR from population R, where

∑k
i=1Xi = 2nR. The likelihood for obtaining the

observed allele counts at locus L, given population allele frequencies p, is gained from

X |p ∼Multinomial(2nR ;p).

The multinomial model involves an assumption that alleles are independent within geno-
types, which holds if the population is in Hardy-Weinberg equilibrium.

Themost common technique for estimating allele frequencies is the Bayesianmethod pro-
posed by Rannala and Mountain (1997) because it enables us to incorporate our uncertainty
in estimating pwhen subsequently measuring the genetic fit of animals into the population.
In particular, if Xi = 0 for some i, we do not wish to use the maximum-likelihood point es-
timate p̂i = 0 because this would automatically exclude population R as a source for any
animals possessing alleles that were unsampled in populationR, regardless of how small the
sample is. By using a Bayesian posterior for pi, we acknowledge the possibility that allele type
i is present but unsampled in population R, and the range of posterior values supported for
pi narrows according to the sample size nR.

The conjugate prior for p is the symmetric form of the Dirichlet distribution, which is a
multivariate generalization of the beta distribution, with density

f(p; τ) =
Γ(τk)

Γ(τ)k

k∏
i=1

pτ−1i , for p ∈ [0, 1]k;

k∑
i=1

pi = 1. (2.1)
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There are two commonly-used options for the choice of prior parameter τ : Rannala and
Mountain (1997) proposed τ = 1/k, while Baudouin and Lebrun (2001) proposed τ = 1.

The resulting posterior distribution for p conditional on the sampled alleles is a Dirichlet
distribution, given as

[p |X = x] ∼ Dirichlet(x1 + τ, x2 + τ, . . . , xk + τ), (2.2)

where we take the prior parameter τ to be either 1 or 1/k, and xj is the number of alleles of
type j observed among all reference samples from population R.

2.2.2 Log-genotype probability for a particular individual

We continue to consider reference population R and locus L. We aim to create a measure of
genetic fit of an individual I into population R.

The genotype for individual I at locus L is given by a = (a1, a2, . . . , ak) where each ai is
0, 1 or 2, indicating how many alleles of type i are included in its genotype, and

∑k
i=1 ai = 2.

A homozygous genotype will have ar = 2 for some value of r, and all other ai will be 0,
whereas a heterozygous genotype, with two different allele types, will have ar = as = 1 for
some r 6= s, and all other ai will be 0.

We measure the fit of individual I into population R at locus L by the posterior genotype
probability of I at locus L:

P(a |X = x) =

∫
p
P(a |p ; x)π(p |x)dp , (2.3)

where π(p |x) is the posterior density of allele frequencies for population R given by (2.2).
Now (a |p) ∼Multinomial(2,p), so themarginal posterior distribution of the single-locus

genotype a, given the reference allele frequencies x, is a Dirichlet-compound-multinomial
(DCM) distribution (see Fewster, 2017). The probability in (2.3) simplifies to:

P(a) =



(xr + τ)(xr + τ + 1)

(2nR + kτ)(2nR + kτ + 1)
ar = 2; aj = 0 for j 6= r;

2(xr + τ)(xs + τ)

(2nR + kτ)(2nR + kτ + 1)
ar = as = 1;
aj = 0 for j 6= r, s.

(2.4)

Here, we use the notation P(a) as shorthand for P(a |X = x), where X denotes the
reference alleles for populationR sampled at locus L. Different loci will have different values
of k, X , and possibly nR, due to individuals with missing data at some loci.

Under standard assignment methods, the same calculation is applied whether or not I is
one of the reference samples for populationR. However, under the leave-one-outmethod, if I
is a reference sample for R, the alleles from I are excluded from the allele counts (x1, . . . , xk)

for population R when calculating P(a) for individual I .
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The overall posterior probability that the multilocus genotype (a1,a2, . . . ,aNL) of indi-
vidual I could arise from reference populationR is calculated as the product of (2.4) over all
loci L = 1, 2, . . . , NL. Taking logs gives the log genotype probability (LGP) for individual I
in population R:

LGPRI =

NL∑
L=1

log{P(aL) }, (2.5)

where log{P(aL)} is given by (2.4) based on sampled allelesXL from populationR for each
locus L = 1, 2, . . . , NL. Adding the terms in (2.5) assumes independence among the loci.
As with the assumption of independence of alleles within genotypes, any non-independence
(termed linkage disequilibrium) is unlikely to cause problems unless it is extreme (Fewster,
2017). Assessment of the impact of linkage disequilibrium is provided in Appendix G.

The overall LGP given by (2.5), as defined in Piry et al. (2004), constitutes the measure of
fit of animal I into population R: it is the estimated log-probability of the multilocus geno-
type possessed by individual I arising in population R, in the sample space of all possible
multilocus genotypes from population R. This is not the same as the probability that indi-
vidual I originated in the specific population R out of all populations. A high LGP indicates
that the genotype of individual I has high probability of arising in populationR; that is, that
individual I has a good fit to population R.

The LGPs of individual I with respect to different populations can be compared to deter-
mine which population the individual has better fit to. If just two populations, R and S, are
being compared, then the difference between the LGPs is the log of the likelihood ratio for
the two populations. A potential assignment method would be to assign individual I to pop-
ulation R rather than population S if the log-likelihood ratio for R and S is above a certain
threshold; however, in some cases this would not be a suitable method (see Section 2.3).

We define the LGP distribution for populationR as being the posterior distribution of LGPs
for all possible multilocus genotypes arising from the posterior allele frequencies for popu-
lation R. For example, if population R comprises loci with only a few common allele types,
then any genotype drawn from the posterior allele frequencies for population R will tend to
have a high LGP, and the LGP distribution will be tightly focused around a high mean. By
contrast, if populationR is genetically diverse, with many common allele types at some or all
loci, then the LGP distribution will be centered lower, with greater variance.

2.3 Visualization of assignment results

We now outline our novel approach to assignment visualization. From (2.5) we see that a set
of individuals with complete data at all loci have LGPs that are comparable to each other; the
LGPs can thus be plotted without further adjustment. Figure 2.1, which we henceforth call a
GenePlot, shows individuals with complete data, sampled from two reference populations.
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Figure 2.1: GenePlot based on microsatellite data extracted from ship rats (Rattus rattus). Each point
represents an individual rat. Rats with missing data (i.e. data at fewer than 10 loci) are excluded.
The graph shows rats captured on Aotea (diamonds) and the Broken Islands (squares). The horizon-
tal axis shows the posterior log-probability of obtaining each individual’s genotype from the Broken
Islands population; the vertical axis shows the same, but with respect to the Aotea population. The
thick diagonal line shows equal probability with respect to Aotea and the Broken Islands. The ver-
tical dashed line shows the 100% percentile line, i.e. the maximum log-genotype probability, for the
Broken Islands population; the horizontal lines show the 0% and 100% percentile lines for the Aotea
population.

Each individual I is plotted at coordinates (LGPR1
I ,LGPR2

I ) for populations R1 and R2. Indi-
viduals are colored according to which population they were sampled from. We use base-10
logarithms to convey orders of magnitude. We use the Dirichlet prior in (2.1) with τ = 1/k.

The data in Figure 2.1 are from a study of invasive ship rats (Rattus rattus) in the Great
Barrier Island archipelago, New Zealand. Ship rats were captured between 2005 and 2008
on the main island (Aotea, 28500 ha) and the Broken Islands, which comprise four smaller
islands with total area 125 ha located about 300m from Aotea at closest approach. A map of
the sampling locations can be found in Appendix A.

The solid diagonal line in Figure 2.1 is the line of equal posterior probability for both
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reference populations; a point lying on that line has the same LGP with respect to both pop-
ulations. The thin diagonal lines indicate where the genotype probability (the inverse-log of
the LGP) for one population is 9 times greater than it is for the other population. The nar-
row range of these lines highlights the enormous variability in the LGP distributions, which
represent genotype probabilities that span many orders of magnitude. Figure 2.1 also shows
the 100% quantiles, and one of the 0% quantiles, of the posterior LGP distributions for the
populations: that is, the maximum and minimum possible LGPs for each population. The
other 0% quantile is so low it has been excluded from the plot. The maximum and minimum
are readily calculated from (2.4) for known x1, x2, . . . , xk (Appendix B).

Figure 2.1 can be used to assess population structure: it suggests that the Broken Islands
population may be a drifted genetic subset of the Aotea population. Most of the Broken Is-
lands rats have high LGPwith respect to the Aotea population (vertical coordinate), and thus
could plausibly have originated in the Aotea population, whereas very few of the Aotea rats
have high LGP with respect to the Broken Islands population (horizontal coordinate). This
property will become even more obvious with the addition of extra quantile lines requiring
the more detailed computations we describe in Section 2.4. The Aotea rats also have more
diverse LGP values with respect to both populations than the Broken Island rats, reflecting
a genetic profile of many more allele types in Aotea, many of which occur at low frequency.
Figure 2.1 can also be used for assignment using the commonmethod of choosing the popula-
tion for which the individual has the highest fit. By inspecting the position of each individual
relative to the diagonal lines we can assess which individuals have an LGP that is substan-
tially higher for one population than the other. A single Aotea-sampled rat on Figure 2.1 does
have high LGP with respect to the Broken Islands and is grouped with the Broken Islands
population; it might therefore have dispersed from the Broken Islands to Aotea. Significantly,
this rat was one of only seven rats sampled on the part of Aotea directly opposite the Broken
Islands: see Figure A.1 for a map of sampling locations. The display in Figure 2.1 is consistent
with the suggestion that the Broken Islands population was founded from Aotea, retaining
only a subset of the alleles in the larger Aotea population, and has then drifted relative to that
population.

Figure 2.1 also shows the shape and the range of the LGP distribution for each population,
and whether populations overlap or are genetically distinct.

By contrast with the graphical display in Figure 2.1, numeric or tabular displays of as-
signment results can be difficult to interpret. One approach to deal with the enormous span
of LGP values and the problem of missing data is to normalize the results. For example, in
geneclass2 (Piry et al., 2004) the percentage score for an individual I in population R1 is the
genotype probability (GP) for R1 as a percentage of the total GP over all populations: e.g.
100GPR1

I /(GPR1
I +GPR2

I ) for two populations. An example of the resulting tabular display is
shown in Table E.1. However, this leads to a loss of information: individuals with a good fit to
all populations and individuals with a poor fit to all populations are indistinguishable from
each other. Additionally, the tabular display does not provide the context of overall distribu-
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tion shape and variability shown in Figure 2.1. For example, any individual on the lower thin
diagonal line in Figure 2.1 satisfies GPR1

I = 9GPR2
I so is given a seemingly-conclusive score

of 90% in favour of populationR1, but it is clear that there are substantial portions of the line
for which this conclusion would be inappropriate, especially in the lower left where individ-
uals have poor fits to both populations, making it inappropriate to assign such individuals
by choosing the population for which they have the highest LGP.

We conclude that visualization of LGPs is preferable to a numeric display; it conveys both
the fit for specific individuals and the overall distribution for a population. However, we need
a way to display LGPs for missing-data individuals on the same scale as LGPs for complete-
data individuals. LGPs of missing-data individuals will appear artificially low compared
with those of complete-data individuals, since they are summed over fewer loci in (2.5), so
they cannot be displayed unadjusted on the same plot. We now derive a method to display
missing-data individuals using the quantiles of the LGP distribution. We can also use these
quantiles to assess the absolute fit of an individual within a population, rather than the typ-
ical practice of only comparing the individual’s fit among different populations.

2.4 Quantile method for plotting individuals with missing data

Let L = {1, 2, . . . , NL} be the full set of loci, and let LI ⊆ L be the loci available for individual
I . We define LGPRI = LGPRI (L) to be the desired LGP of individual I based on loci L in
population R. For an individual with missing data, i.e. LI ⊂ L, this LGP is unknown so we
need to estimate it. We define L̃GP

R

I to be our estimate of LGPRI .
We can calculate LGPRI (LI) based on the reduced loci LI , using the analog of (2.5) for LI .

We cannot simply rescale the LGP based on LI to fit the scale of L, because the loci that are
missing may have very different allele frequency patterns than LI . We want to include infor-
mation on those loci based on samples that have data at those loci, and we additionally wish
to preserve the ‘unusualness’ of individual I on the visual chart, so we aim to plot individual
I on the full-locus chart at the LGP quantiles that it attains in the reduced-locus distribution
based on loci LI . Therefore we need to characterize the posterior LGP distribution of pop-
ulation R for any set L∗ ⊆ L so that we can calculate the cumulative distribution function
(CDF) FL∗ of this distribution. We also need to calculate the quantile function QL = F−1L of
the full-locus distribution. Then our estimated coordinate for I in R based on LI is given by:

L̃GP
R

I = QL [FLI {LGP(LI) } ]. (2.6)

For example, if I lies at the 10% quantile of the reduced-locus distribution based on loci LI ,
we wish to plot it at the 10% quantile of the full-locus distribution based on L.

2.4.1 Characterizing the posterior LGP distribution

The multilocus posterior LGP in (2.5) is gained from the sum of NL discrete random vari-
ables corresponding to the NL single-locus posterior LGPs. Each of these is the logarithm of
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a Dirichlet compound multinomial (DCM) distribution, as in (2.4), that can be enumerated
in entirety. However, the multilocus LGP is the sum of theseNL random variables, whereNL

is typically 10 or more, so it is not feasible to enumerate the probability function as a con-
volution to gain FL and QL directly. The following sections focus on how we may calculate
approximations F̂L and Q̂L to these functions.

2.4.2 Simulation approximation method

It is straightforward to simulate from the multilocus posterior distribution of LGPs for popu-
lationR by drawing genotypes directly from the constituent single-locus DCM distributions.
From this we can obtain the empirical CDF and quantile functions.

The disadvantage of this method is that it becomes particularly inaccurate in the lower
tail of the distribution. One feature of the LGP distribution is that many populations have
a large number of alleles that occur with very low frequency (Rannala and Mountain, 1997;
Fewster, 2017). These low-frequency alleles lead tomultilocus LGPs spanningmany orders of
magnitude in the lower tail. This leads to high variabilitywhen estimating the lower quantiles
of the distribution. The 0% quantile for the Aotea population shown in Figure 2.1 is at about
-40, indicating that the minimum GP for the population is about 10−40 based on all sampled
alleles. We will show later that the 1% quantile for the same population is at about -15; thus
the lower 1% tail spans a range of about 1025.

Even a very large sample generated from the LGP distributionwill often fail to capture the
full extent of the distribution, so the simulation method can produce inaccurate estimates of
LGP for missing-data individuals, potentially overestimating their fit to each population. In
some datasets, we have found individuals whose calculated LGP is lower than the minimum
simulated LGP, despite simulating hundreds of thousands of genotypes. As an alternative to
approximation by simulation, we therefore seek an analytic approximation to the CDF FL∗
and the quantile function QL of the posterior LGP distributions.

2.4.3 Saddlepoint approximation method

The saddlepoint method was proposed by Daniels (1954), and its initial purpose was to ap-
proximate the probability density function (PDF) for the sum of identical distributions. Lu-
gannani and Rice (1980) proposed a related formula for approximating the cumulative dis-
tribution function (CDF) of a sum of distributions; their original purpose was to determine
tail probabilities, but the formula is accurate over the full range of the distribution.

The saddlepoint approximation formulas apply to any distributions, not just those com-
posed of sums, and havemany applications in statistics, including approximation of the boot-
strap distribution for a parameter estimate (Davison and Hinkley, 1988) and estimation of
marginal tail probabilities for inference about scalar parameters (DiCiccio et al., 1990). Here,
we use the Lugannani-Rice saddlepoint CDF approximation, following the exposition of But-
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ler (2007), to derive close approximations to FL∗ , the CDF of the posterior LGP distribution
based on loci L∗, for any subset of loci L∗ ⊆ L.

The saddlepoint approximation to the CDF of a randomvariable Y with knownmean µ =

EY is defined in terms of the cumulant generating function (CGF) of Y ,K(t) = log{M(t)} =

log
[
E{exp (tY )}

]
, whereM is themoment generating function. Derivatives ofK can be com-

puted in terms of derivatives ofM ; for example K ′′(t) = M ′′(t)/M(t)− {M ′(t)/M(t)}2. The
saddlepoint approximation to the CDF of Y is then:

F̂ (y) =


Φ(ŵ) + φ(ŵ)

(
1

ŵ
− 1

v̂

)
if y 6= µ,

1

2
+

K ′′′(0)

6
√

2πK ′′(0)3/2
if y = µ,

(2.7)

where Φ and φ are the Gaussian CDF and PDF, and where v̂ = ŝ
√
K ′′(ŝ),

ŵ = sign(ŝ)
√

2{ŝy −K(ŝ)} , (2.8)

and ŝ is the solution to the equation

K ′(ŝ) = y. (2.9)

The saddlepoint approximation is a local approximation to an expansion of the inversion
formula that links the PDF of a distribution to its CGF. The point ŝ is a saddlepoint because
when the integral approximation is converted into the complex plane, ŝ remains constant in
the imaginary direction, while also acting as a root in the real direction.

Equations (2.7) to (2.9) specify the saddlepoint approximation for the CDF of a continu-
ous distribution. The posterior LGP technically follows a discrete distribution; however, even
for small to moderate numbers of alleles and loci the number of possible genotypes is ex-
tremely large, so the support of the distribution becomes sufficiently dense that we can apply
the continuous form of the saddlepoint CDF approximation (2.7) without applying the cor-
rection factors required for discrete distributions.

No tuning is needed to apply the saddlepoint approximation. However, it is necessary to
invert K ′ at each required value of y in (2.9), to obtain the corresponding value for ŝ; this
incurs a small computational cost. Additionally, it is simple to solve (2.9) away from y = µ,
but near y = µ the function K ′ becomes extremely steep and the numerical solution ŝ can
become inaccurate. When compounded in the calculation of ŵ, this inaccuracy can lead to
numerical instability in the saddlepoint CDF approximation, producing values of F̂ outside
of the valid range [0, 1]. We found that numerical inaccuracy around the mean µ could be
reduced by replacing y withK ′(ŝ) in (2.8), giving

ŵ = sign(ŝ)
√

2{ŝK ′(ŝ)−K(ŝ)}. (2.10)

The inaccuracy caused by using (2.10) instead of (2.8) is negligible, particularly when com-
pared with the numerical instability that can arise from (2.8).
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Using this method gives F̂L∗ for any L∗ ⊆ L, as required in (2.6): see Appendix C for
details. The quantile function approximation Q̂L is found by inverting F̂L using standard
numerical root-finding methods.

2.4.4 Evaluation of the saddlepoint approximation

Figure 2.2 shows the application of the saddlepoint approximation to posterior LGP distribu-
tions for the ship rat data described above,with the addition of ship rats captured onKaikoura
Island during the same period. Kaikoura (530 ha) lies about 80m from Aotea at closest ap-
proach and 3 km north of the Broken Islands (Figure A.1). The saddlepoint approximation
to the CDF is compared with the empirical cumulative distribution function (ECDF) derived
by generating samples from the posterior LGP distribution as in Section 2.4.2.

The saddlepoint method, without any tuning, adapts to the different shapes of the distri-
butions for the three populations in Figure 2.2 and provides an accurate approximation over
the full range of each distribution. The closeness of fit is more visible on the PDF plot than
the CDF plot, since the cumulative nature of the CDF makes small inaccuracies less visible.
Rather than using the direct saddlepoint PDF approximation we show the derivative of the
CDF saddlepoint approximation, because only the CDF is used in our genetic charts.

The top row in Figure 2.3 shows the same saddlepoint approximation for the Broken Is-
lands LGP distribution, zoomed in to focus on the mean of the distribution. Also shown are
gamma and lognormal approximations to the distribution, based on matching the mean and
variance of the posterior LGP distribution to the gamma and lognormal mean and variance
respectively. The saddlepoint method produces a noticeably better approximation than the
gamma and lognormal distributions. Although it would be possible to find gamma and log-
normal distributions a different way by fitting the simulated distribution, determining the
appropriate parameters for those distributions would rely on the simulated samples so the
method is not adequate as an analytic replacement for approximation by simulation. The re-
sults for the Broken Islands in Figure 2.3 are typical of those we have seen in multiple other
data sets including ship rats and Atlantic salmon (Salmo salar).

We also tested the saddlepoint method extensively using simulated allele frequencies.We
tested different numbers of loci and different numbers of allele types per locus, running ten
replicates for each combination of parameters. For a given number of lociNL and amaximum
number of allele types per locus, k, we then reduced the number of alleles at some loci, keep-
ing TL ∼ Binomial(k, 1 − 1

k ) allele types at locus L, truncated at a minimum of TL = 2. We
randomly generated allele frequencies by generating individual frequencies from a Beta(0.5,
0.7) distribution and normalizing the frequencies at each locus.

As can be seen in the bottom row of Figure 2.3, as the number of loci drops and the av-
erage number of alleles per locus also drops, the distribution of log-genotype probabilities
becomes more ragged and more difficult to approximate. However, the example shown in
Figure 2.3 illustrates a worst-case scenario, since five loci is generally considered to be too



Quantile method for plotting individuals with missing data 33

−18 −16 −14 −12 −10 −8 −6 −4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Broken Islands SCDF vs. ECDF

Log10 genotype probabilities

C
D

F
Broken Islands SPDF vs. EPDF

Log10 genotype probabilities

D
en

si
ty

−18 −16 −14 −12 −10 −8 −6 −4

0.
00

0.
10

0.
20

0.
30

−20 −18 −16 −14 −12 −10 −8 −6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Kaikoura Island SCDF vs. ECDF

Log10 genotype probabilities

C
D

F

Kaikoura Island SPDF vs. EPDF

Log10 genotype probabilities

D
en

si
ty

−20 −18 −16 −14 −12 −10 −8 −6

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

−20 −18 −16 −14 −12 −10 −8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Aotea SCDF vs. ECDF

Log10 genotype probabilities

C
D

F

Aotea SPDF vs. EPDF

Log10 genotype probabilities

D
en

si
ty

−20 −18 −16 −14 −12 −10 −8

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Figure 2.2: Genetic distributions for three populations. The plots in the left column show the CDFs of
the multilocus LGP distributions. Wide, grey dashed lines show the empirical CDF based on 100,000
genotypes simulated from the population distribution (ECDF). Solid black lines show saddlepoint
approximations to the CDFs (SCDF). The ECDFs are hard to see due to the closeness of the approxi-
mations. The plots in the right column show the corresponding PDFs. The histograms show 100,000
log-genotype probabilities for genotypes simulated from the population distribution (EPDF). The
solid line shows the first derivative of the saddlepoint approximation to the CDF, which we denote
SPDF. The top row shows the distribution for ship rats (Rattus rattus) captured on the Broken Islands;
the middle row shows Kaikoura captures; the bottom row shows Aotea captures.
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Figure 2.3: CDFs and PDFs of the LGP distributions of two populations, zoomed in to focus on an
area around the mean. Details are as for Figure 2.2, with the addition of moment-based gamma and
lognormal approximations shown as dashed and dot-dashed lines on the right-hand plots. The top
row shows the distribution for ship rats captured on the Broken Islands. The bottom row shows the
distribution of a simulated population, defined by randomly generated allele frequencies. The simu-
lated data included 5 loci with between 2 and 5 allele types per locus.
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few for accurate population analysis. We note that even in this case, the saddlepoint method
provides a reasonably good approximation. As the number of loci increases, the distribution
rapidly becomes smoother, and the saddlepoint approximation becomes ever more accurate.

Appendix D describes the results of a numerical comparison between the saddlepoint
approximation (SCDF) and the empirical CDF based on simulations (ECDF), which shows
that the SCDF fits extremely well to the ECDF within the central range of the ECDF.

2.5 Applications

We now demonstrate how our approach of Sections 2.3 and 2.4 can be used both for visualiz-
ing population structure and performing assignment. Figures 2.4-2.6 show the same ship rat
data described above. The purpose of the analysis is to understand the dispersal patterns of
the invasive rats between islands in the archipelago, so as to inform eradication planning on
the smaller islands, and determine the origins of rats detected after eradication attempts.

Rats with missing data are shown in Figure 2.4 with asterisks. These rats constitute a
large minority of the samples, so it is important to include them on the charts, demanding
use of the quantile-approximation methods of Section 2.4. Calculations using the alterna-
tive simulation-based quantile approximations in Section 2.4.2 inflated the LGP estimates for
many of these missing-data rats, distorting the overall picture of population structure.

2.5.1 Visualization for two reference populations

Amajor advantage of the saddlepoint method is that it enables the accurate calculation of all
quantile lines for each population, using the function Q̂L described in Section 2.4. Figure 2.4
shows the 1% quantile lines for the Broken Islands, Kaikoura and Aotea populations. A com-
parison with Figure 2.1 indicates that there are at least 30 orders of magnitude between the
0% and 1% quantiles for the Broken Islands, and about 25 orders of magnitude between the
same quantiles for Aotea. Given the huge range covered by the lowest 1% of these two LGP
distributions, indicating a high level of skewness, it is clear that these quantiles provide a
useful tool in describing the shape of the genetic profile for each population.

The 1% quantile lines are powerful indicators of inter-population structure. The left plot
in Figure 2.4 shows that most Broken Islands rats lie between the 1% and 100% lines for both
the Broken Islands andAotea, and thus have a reasonable fit to both populations. By contrast,
all but one of the Aotea rats lie below the 1% line for the Broken Islands population; it is very
unlikely that a random Aotea rat would by chance possess only alleles found in the Broken
Islands population because the Aotea population contains many more allele types. This is a
clear example of drifted subsetting, where individuals from one population show good fits to
both reference populations but individuals from the other population only have reasonable fit
into their own sampling population. We can see from Figure 2.4 that the Broken Islands and
Aotea populations are easily distinguished genetically, and the Broken Islands population is a
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Figure 2.4: GenePlots based on microsatellite data extracted from ship rats. Each point represents
an individual rat. Rats marked with asterisks have missing data at one or more loci; rats with data at
fewer than 6 loci have been excluded. The left plot shows rats sampled from the Broken Islands and
Aotea between 2005 and 2008, and rats sampled in 2010 on the Broken Islands following an eradication
attempt on the Broken Islands. The right plot shows rats captured onAotea andKaikoura between 2005
and 2008. TheAotea samples are the same for both plots. The thick diagonal line shows equal posterior
genotype probability for both populations; the thin diagonal lines indicate that the probability is 9
times larger for one population than for the other. In both plots, the horizontal lines show the 1% and
100% quantile lines for the Aotea population. In the left plot, the vertical dashed lines show the 1% and
100% quantile lines for the Broken Islands population; in the right plot, the vertical dashed line shows
the 1% quantile line for the Kaikoura population. The rat marked with a circle in the left plot and the
rat markedwith a square in the right plot are marked in the structure, geneclass2 and adegenet dapc
results shown in Appendix E.

drifted subset of the Aotea population. The likely explanation is that the Broken Islands pop-
ulation was founded from the Aotea population, so the alleles of Broken Island rats are also
common in Aotea; but due to founder effects, isolation and genetic drift the Broken Islands
population has lost many of the alleles that are found in Aotea.

The left plot also shows rats sampled from the Broken Islands in 2010, the year after an
eradication attempt. All of them fit well with the Aotea profile, but not with the Broken Is-
lands profile.We can assign these rats using the exclusion principle, whereby an individual is
only assigned to a population if its fit to every other population is below a pre-defined thresh-
old. The quantile lines calculated using the saddlepoint method provide such a threshold,
highlighting another advantage of our methodology. Using the 1% quantile lines as thresh-
olds, it is clear that all of the post-eradication rats can be excluded from the Broken Islands
population. The graphical display gives compelling evidence that these rats were not sur-
vivors of the eradication attempt, but were most likely swimmers or hitch-hikers fromAotea.
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Similar events have occurred every year since 2010: a small number of rats have arrived an-
nually from Aotea, but have been eliminated before establishing a population.

The right plot in Figure 2.4 shows that samples from Kaikoura and Aotea up to 2008 were
not well separated in genetic terms. Several individuals sampled on either population could
plausibly have originated in the other population, and thus it would not be appropriate to
attempt to assign individuals to one of these two populations. We infer that the Kaikoura
and Aotea populations either separated only a short time earlier, or had ongoing dispersal.
The dispersal hypothesis has since been corroborated by Bagasra et al. (2016), who deposited
bait laced with Rhodamine B dye on Aotea. The dye was later detected in rats captured on
Kaikoura, thus giving direct evidence of rat mobility between the islands. An eradication
attempt on Kaikoura in 2008 failed to eliminate rats, and the population is now managed as
a controlled, low-density population rather than as a rat-free sanctuary.

We conclude that the levels of pre-eradication genetic separation from Aotea, as seen in
the Broken Islands andKaikouraGenePlots respectively,were predictive of the eventualman-
agement outcomes in each case. The link between genetic separation and true separation is
not entirely clear-cut, as not all dispersal leads to breeding for behavioral reasons. However,
the pre-eradication genetic separation on the charts does seem to be indicative of the level of
reinvasion experienced after eradication, so it is helpful in devising management strategies.

2.5.2 Visualization for multiple reference populations

Our method provides an intuitive visualization of population structure for two populations.
It can also be used to assess multiple populations. Two options for visualization are shown in
Figure 2.5. The top panel shows a GenePlot similar to the two-population case, but generated
by performing principal component analysis (PCA) on the multi-dimensional LGP results,
after applying the saddlepoint method to accommodate rats with missing data. The first two
principal components are the axes of the GenePlot. The lower panel of Figure 2.5 shows an
alternative multidimensional visualization represented as a set of bar charts. The multiple
bar chart can be more effective when assessing the specific results for each population or
the fit of a single individual with respect to the various populations, whereas the PCA plot is
more useful for understanding overall genetic structure such aswithin-population variability,
populations that overlap or are separate on the chart, and identifying anomalous individuals.

2.5.3 Comparison with structure, geneclass2 and dapc

The bar charts in Figure 2.5 differ from the bar charts in structure (Pritchard et al. 2000)
which display the proportions of each individual’s genotype estimated to have originated
from each population. By contrast, the bar charts in Figure 2.5 show the percentile of each
individual’s LGP fit in each population, based on the saddlepoint method, and therefore dis-
play an absolute rather than a relative measure of fit into each population. The advantage of
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Figure 2.5: Visualizations for multiple reference populations. Individuals are ship rats captured on
Kaikoura, the Broken Islands andAotea between 2005 and 2008. Ratswith data at fewer than 6 loci have
been excluded. The top plot is a GenePlot for multiple reference populations: the axes show the first
two principal components of the log-genotype probabilities with respect to the three populations. The
bottomplot is amulti-barGenePlot: one bar chart per population. Each bar chart shows all individuals,
and a single bar represents the percentile corresponding to that individual’s log-genotype probability
with respect to the given population. The bars are grouped according to the population from which
the rats were sampled. Individuals are vertically aligned among the three bar charts, and are sorted
according to their fit to their own population. The rat marked with a circle and the rat marked with a
square are marked in the structure, geneclass2 and adegenet dapc results shown in Appendix E.
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this approach is that it distinguishes between individuals who have low genotype probabili-
ties with respect to all candidate source populations, and individuals who have high proba-
bilities with respect to all populations. Appendix E shows how results for the same data are
reported by structure, geneclass2, and the dapc procedure from R package adegenet. The
rat marked with a circle in Figures 2.4 and 2.5 appears, in structure, to be well fitted to the
Broken Islands (cluster 1), but Figure 2.4 shows that the rat has a rather poor fit to the Broken
Islands. Under the exclusion assignment method with a threshold of 1%, this rat would be
excluded from both the Broken Islands and Aotea populations.

2.5.4 Leave-one-out

Our saddlepoint method can be used to calculate LGPs on a leave-one-out basis. In this ap-
proach, each individual’s alleles are excluded from the population itwas sampled frombefore
calculating the posterior distribution of allele frequencies and hence the LGP fit of that indi-
vidual into its own population. The leave-one-out approach can be necessary when sample
sizes are small because each individual’s alleles exert a large influence on the estimated al-
lele frequencies for the population. As a result, an individual’s fit into its own population is
inflated, and the reference populations appear more distinct than they should.

Figure 2.6 shows the difference between the standard method and the leave-one-out
method for the full samples of roughly 60 individuals from each of the Kaikoura and Aotea
populations, and for subsets of 10 individuals from each of those samples. We repeated the
process for different random subsets, with similar results in each case. The leave-one-out
method makes little difference when applied to the full samples, but for small subsets, the
standard method shows far more separation between the populations than does the leave-
one-out method. After observing the leave-one-out plot, we conclude there is too much pop-
ulation overlap to accurately assign new individuals to either population, based on those
samples.

The saddlepoint method for approximating quantiles allows the leave-one-out results to
be plotted on a GenePlot. The axes of the plot correspond to the population LGP distributions
based on the full samples from each population. The process for computing the plotted value
of an individual from a reference population is similar to the process for plotting a missing-
data individual. First we exclude the individual from the population it was sampled from,
and re-estimate the allele frequencies for that population. This gives us the leave-one-out dis-
tribution. We then calculate the individual’s LGP using that leave-one-out distribution, and
use the saddlepoint method to find the corresponding CDF value within the leave-one-out
distribution. Then we return to the full population distribution, with allele frequencies based
on all the samples including this individual, and calculate the corresponding quantile value
in that distribution. The individual is then plotted at that quantile value with respect to its
own population. This is similar to the method used for missing-data individuals, except that
here we are dealing with the leave-one-out distribution instead of the missing-data distri-
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Figure 2.6: Leave-one-out GenePlots using random subsets from samples of rats captured on Kaik-
oura and Aotea. Rats marked with asterisks have missing data at one or more loci; rats with data at
fewer than 6 loci have been excluded. The left column plots are standard GenePlots; the right-column
plots show the same data analysed using the leave-one-out method. The top plots show the full sam-
ples of sizes 60 and 57 respectively, and the bottom plots show GenePlots constructed using subsets
of 10 individuals from each sample. Using the leave-one-out method has a minor effect for the full
samples, but it has a pronounced effect when using small sample sizes.
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bution to calculate the raw LGP for a given individual. We recommend that leave-one-out
procedures should be used when sample sizes are below 20 individuals.

It should be noted that the leave-one-out plots in Chapter 3 use a slightly different form
of leave-one-out than the one used here and in McMillan & Fewster (2017). Please see Ap-
pendix H.5 for details.

2.5.5 Application to data from single nucleotide polymorphisms (SNPs)

Although our examples use microsatellite data, the same development applies to data from
SNPs, which are typically biallelic and may be genotyped at large numbers of loci. Examples
of GenePlots for simulated biallelic data at 1000 loci are provided in Appendix F.

2.6 Conclusions

Genetic assignment data have many uses in ecology, conservation biology, and forensics, but
they are complex to describe and interpret. Effective visualizations are pivotal to conveying
the information contained in the data. We have developed a new visualization based on dis-
playing the absolute genetic fit of each individual to each reference population. To achieve
this we derived a quantile-based display algorithm to handle individuals with missing data.
For quantile estimationwe invoked a saddlepoint approximation to the posterior distribution
of genetic fit within each reference population. This enabled us to estimate accurate quantiles
throughout the support of the distribution, and in particular to capture the enormous span
of the distribution’s lower tail, which can not be accurately modeled by simulation or by stan-
dard distributions such as the gamma and lognormal.

We have shown by simulation that the saddlepoint approximation performs extremely
well within the usual realm of genetic assignment analyses. Performance depends only upon
the number of loci in the study and the number of different allele types per locus; besides
these, the algorithms and conclusions are applicable to data from any diploid species. Saddle-
point approximations have been proved to attain a high level of accuracy. In our case, the sad-
dlepoint approximation is applied in an ideal scenario involving a sum of fully-enumerable
distributions, each with a known closed form for the cumulant generating function and its
derivatives. Once the adjustment in equation (2.10) is made, the saddlepoint approximation
is easy to code, computationally stable, and incurs a similar computational cost to the less
accurate simulation method.

We have shown that the visualization of absolute genetic fit offers a powerful tool for see-
ing population structure at a glance, including population overlap and separation, drifted
subsetting, and within-population variability. Existing visualizations and tabular reports fo-
cus on the relative fit of each individual to a selection of reference populations. These relative
measures lose valuable information about the absolute measures of fit, which might reveal
that an individual does not fit into any of the proposed reference populations, or fits well into



42 Visualizations for genetic assignment analyses

all of them. Use of absolute genetic fit avoids errors in individual assignment conclusions that
can arise from other commonly-used methods. Our visualization method can nonetheless be
used to assign individuals to the population for which they have the highest LGP, or for
the more conservative assignment process of excluding individuals from all populations for
which they have LGP below a given quantile threshold. Notwithstanding this, genetic data
are complex and it is standard practice in applied studies to use a variety of methods and
software to gain a holistic understanding of genetic structure. We believe that GenePlots will
prove a valuable additional tool in these studies.

An online interface for creating GenePlots is at
catchit.stat.auckland.ac.nz/shiny/geneplot/.
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Appendix A Map of Great Barrier Island

The data used to demonstrate the visualization method are from ship rats captured on the
large island of Aotea/Great Barrier Island, and on Kaikoura Island and the Broken Islands,
smaller landmasses off the coast of Aotea. Figure A.1 shows all the locations where samples
were captured. The three islands labeled as Motutaiko, Flat and Mahuki are the Broken Is-
lands and contribute 62 samples. Aotea samples used throughout the main text comprise the
58 samples from western Aotea, sampled at locations marked Fitzroy, Red Cliffs, and Main-
land. Sample sizes quoted in the text differ slightly from sample numbersmarked on themap
because some samples hadmissing data at five ormore loci andwere excluded from analyses.

Figure A.1: Rat sampling locations on the Great Barrier Island archipelago. Sample sizes are shown
in brackets.

43
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Appendix B Minimum and maximum of the LGP distribution

The distribution by which we characterize a population is the distribution of log-genotype
probabilities (LGPs) for all possible multilocus genotypes that may be drawn from the pos-
terior distribution of the allele frequencies for that population.

The posterior distribution of allele frequencies at a single locus is given by

p|x ∼ Dirichlet(x1 + τ, x2 + τ, . . . , xk + τ)

where xi is the observed frequency of allele i in the sample from population R and τ is
the parameter for the Dirichlet prior distribution of allele frequencies.

Given the posterior allele frequencies, we can calculate the minimum and maximum of
the LGP distribution. We initially calculate the maximum and minimum at each single locus
and define νi = xi + τ and N =

∑k
i=1 νi. For a single locus, the maximum possible LGP is

given by: 
log

[
ν1(ν1 + 1)

N(N + 1)

]
if ν1 + 1 ≥ 2ν2 ,

log

[
2ν1ν2

N(N + 1)

]
otherwise,

where ν1 is the largest of all the νi, and ν2 is the next largest (possibly equal).
The minimum possible LGP is given by:

log

[
2νkνk−1
N(N + 1)

]
if 2νk−1 ≤ νk + 1 ,

log

[
νk(νk + 1)

N(N + 1)

]
otherwise,

where νk is the smallest of all the νi, and νk−1 is the next smallest (possibly equal).
The maximum and minimum of the multilocus LGP distribution are found by summing

over all the loci.
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Appendix C Saddlepoint approximation as applied to the LGP
distribution

For a single locus L, any genotype aL arises with probability P(aL) given by equation (2.4).
Thus the single-locus LGP distribution acquires point mass P(aL) at value log{P(aL)} for
every genotypeaL. Recall that log{P(aL)} serves as ameasure of genetic fit andwe are aiming
to characterize the probability distribution of this measure.

Let Y L = log{P(aL)} be the random variable representing the single-locus LGP, and let
genotypes at locusL be indexed by g = 1, 2, . . . , kL(kL+1)/2 where kL is the number of allele
types at locus L. Write αg = P(aLg ) for each g. Then each genotype aLg contributes point mass
αg to value Y L = log(αg).

The moment generating function (MGF) for a random variable Z is given by:

M(t) = E(etZ) .

The MGF of the target LGP distribution at a single locus L is thus given by:

M(t) =
∑
y

P (Y L = y) exp(ty)

=
∑
g

αg exp(t logαg)

=
∑
g

αt+1
g .

Derivatives of the MGF are given by:

M (r)(t) =
∑
g

(logαg)
rαt+1

g .

The cumulant generating function (CGF) and its derivatives for a single locus can be cal-
culated accordingly. Since the CGF is the log of the MGF, and genotypes are assumed to be
independent across loci, the multilocus CGF,K, is the sum of the single locus CGFs, and the
derivatives are similarly defined.

The saddlepoint approximation to themultilocus LGPdistribution can then be calculated,
using a numerical method to find the root of the equation

K ′(ŝ) = y ,

where y is the value of the random variable Y representing the multilocus LGP at which we
wish to calculate FL∗(y).

Technically, the LGP distribution is discrete. However, in most cases it is well-
approximated by a continuous distribution, particularly when the number of distinct allele
types at each locus is higher than about 4, due to the large number of possible genotype prob-
abilities. The saddlepoint approximation is an approximation to the (undefined) continuous
distribution that, in turn, approximates the discrete target LGP distribution.
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Appendix D Evaluation of saddlepoint CDF and empirical CDF

We tested the saddlepoint distribution using many simulated populations. For a given sim-
ulated population P we calculated the SCDF and generated an ECDF based on 100,000 sim-
ulated genotypes, then calculated the values of both the ECDF and the SCDF at 1000 evenly
spaced points over the range of the ECDF.We then took the result sP to be the sum of squared
differences between the SCDF andECDF at those 1000 points. Since different sets of simulated
genotypes can produce different ECDFs for the same population, we repeated the procedure
10 times with different sets of simulated genotypes to obtain SP as the mean of sP over the
10 replicate ECDFs for population P . Thus SP is the mean sum of squared differences for a
single population with a single set of randomly simulated allele frequencies.

We then simulated many populations. Figure D.2 shows SP for populations generated
with NL = 2, . . . , 10, where the maximum number of allele types k ranges from 2 to 10, with
10 population replicates for each combination of k and NL constituting 10 different draws of
allele frequencies as described in the main text. Within each of those population replicates
we generated 10 replicate ECDFs as described above, and summarized the ECDF results as
SP for each population replicate. Figure D.2 illustrates that the SCDF provides a suitable
approximation to the LGP distribution for a population.
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Figure D.2: SCDF vs ECDF at 1000 points for simulated populations. The x-axis shows the number
of lociNL for each simulated population. The y-axis shows the discrepancy measure SP for each of 90
results at each value of NL, denoting 10 replicates for each setting of the maximum number of alleles
k = 2, . . . , 10.



48 Appendices for Chapter 2

Appendix E Comparison of GenePlot, structure, geneclass2 and
dapc

Weprovide a comparison of ourGenePlotmethodwith the popular software packages struc-
ture and geneclass2 by displaying the output of each program applied to the same dataset.
We also provide a comparison of GenePlot with the Discriminant Analysis of Principal Com-
ponents (dapc) functionality within the R package adegenet.

Figure E.3: structure bar plot of ship rats captured on Kaikoura Island, the Broken Islands and Aotea
between 2005 and 2008. The red bars correspond to cluster 1, the green bars to cluster 2 and the blue
bars to cluster 3. Individuals 1 to 60 were captured on the Broken Islands; individuals 61 to 120 were
captured on Kaikoura; individuals 121 to 177 were captured on Aotea. Cluster 1 mostly corresponds
to the Broken Islands samples.

We ran structure (Pritchard et al. 2000, Falush et al. 2003) with the admixture model and
without location priors. We used options without correlated allele frequencies, with 10,000
burn-in iterations and 10,000 final iterations. We tested the number of clusters, K, from 1
to 3, running 5 replicates for each value of K. The runs used consecutive random number
seeds starting at 1. We found K = 3 had the highest likelihood. Figure E.3 shows the results
for the run with the highest likelihood using K = 3. structure uses a clustering algorithm,
and without location priors it does not use any location data to assign samples to clusters;
instead, it allots each sample a fractional composition of the three estimated clusters. This
fractional composition is intended to indicate the estimated proportion of the individual’s
genome that originated in each of the three clusters, but it is commonly interpreted in studies
as the probability that the individual originated from each of the three clusters.
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The structure results in Figure E.3 indicate that there is one clearly-defined cluster, specif-
ically Cluster 1 in red, and two somewhat overlapping clusters depicted by green and blue.
The results do not reveal other information about genetic subsetting between clusters, or the
variance of genetic fit within a cluster.

The sample marked with a circle corresponds to the rat circled in Figures 2.4 and 2.5;
the sample marked with a square corresponds to the rat marked with a square in Fig-
ures 2.4 and 2.5. The circled rat stands out as somewhat anomalous in the GenePlots in Fig-
ures 2.4 and 2.5, but this is not apparent from the structure output in Figure E.3.

We ran geneclass2 (Piry et al. 2004) on the Kaikoura, Broken Islands and Aotea reference
samples, using the assign/exclude option for individuals,with assignment threshold 0.05.We
used the Rannala and Mountain (1997) Bayesian computation method, without the proba-
bility computation from Paetkau et al. (2004). geneclass2 uses the leave-one-out method by
default if no separate assignment samples are provided (query samples in our terminology),
because it assumes that the reference samples are to be assigned. Thus, to supply assignment
samples, we entered the reference samples again with renamed populations. This ensured
geneclass2 displayed results consistent with the GenePlot shown in Figure 2.5, which does
not display the leave-one-out method. Table E.1 shows a selection of the results to illustrate
the geneclass2 output; figures are quoted to the precision returned by geneclass2. The full
table (not shown) contains 177 rows. The rats marked with circle and square correspond to
the rats marked with circle and square in Figures 2.4 and 2.5. When a sample possesses the
full complement of 10 loci, the columns marked -log(L) correspond to the negative LGPs as
plotted on the GenePlots in Figure 2.4.

The “Assigned sample” column in the geneclass2 results shows the population in which
each sample was captured, renamed as Brok2, Kai2, and Aotea2 respectively to switch off
the leave-one-out option as described above. Some individuals have higher scores for popu-
lations they were not found in. For example, the rat marked with a square in Table E.1 was
found on Kaikoura. From Table E.1 there appears to be substantially stronger support for
Aotea than for Kaikoura. However, Figure 2.4 demonstrates that, seen in context, the rat has
a similar fit to both Aotea and Kaikoura, and lies within a region of high overlap between the
two populations; its origins can therefore not be determined conclusively. This underlines
the importance of viewing the absolute measure of fit shown in the GenePlot. Interpreting
only the relative fit to different populations, in the absence of the context displayed on the
GenePlot, can lead to misleading conclusions. The same rat is marked with a square on the
structure plot in Figure E.3. Although there is a strong mapping between Cluster 1 in the
structure output and rats sampled on the Broken Islands, there is no clear mapping between
Clusters 2 and 3 and the sampling locations of Kaikoura and Aotea. The rat marked with a
square exhibits a moderate signal of overlapping membership between Clusters 2 and 3.

We ran dapc (Jombart et al. 2010) from the R package adegenet (Jombart 2008, Jombart &
Ahmed 2011), a method that performs principal components analysis on raw diploid allele
counts, and then performs discriminant analysis on a reduced number of the principal com-
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Assigned rank score rank score rank score Brok Kai Aotea Nb.
sample 1 % 2 % 3 % -log(L) -log(L) -log(L) of loci
/Brok2 Brok 100 Kai 0 Aotea 0 8.041 15.224 17.351 10
/Brok2 Brok 99.999 Kai 0.001 Aotea 0 7.265 12.556 12.663 10
/Brok2 Brok 99.999 Kai 0.001 Aotea 0 6.636 11.58 14.787 10
/Brok2 Brok 99.2 Aotea 0.46 Kai 0.34 7.968 10.434 10.301 10
/Brok2◦ Brok 100 Aotea 0 Kai 0 12.765 25.858 22.818 10
/Kai2 � Aotea 72.848 Kai 27.151 Brok 0 15.391 10.52 10.091 10
/Kai2 Kai 88.056 Aotea 11.944 Brok 0 22.442 8.968 9.836 9
/Kai2 Kai 72.033 Aotea 27.967 Brok 0 26.611 11.079 11.49 10
/Aotea2 Aotea 99.796 Kai 0.204 Brok 0 23.98 15.336 12.647 10
/Aotea2 Aotea 99.649 Kai 0.351 Brok 0 27.841 17.888 15.435 10
/Aotea2 Aotea 99.963 Kai 0.037 Brok 0 20.609 14.641 11.205 8
/Aotea2 Kai 60.495 Aotea 39.505 Brok 0 27.868 14.034 14.219 10
/Aotea2 Brok 98.869 Aotea 1.13 Kai 0.001 8.199 13.399 10.141 10

Table E.1: Selected geneclass2 results for the Broken Islands, Kaikoura and Aotea populations. The
rank and score columns show the populations ordered by their corresponding scores for each indi-
vidual.

ponents. The input data format for dapc is a table with one row per individual, and columns
corresponding to every allele type at every locus. The cell values are 0, 1, or 2, corresponding
to the number of alleles of each type that the individual possesses. A principal components
analysis is performed on these allele-count variables with values 0, 1, and 2. The user then
selects howmany of these principal components to use for the subsequent discriminant anal-
ysis. We ran dapc on the combined data from Kaikoura Island, the Broken Islands and Aotea
using 50 principal components and two discriminant components. The number of principal
components used for the discriminant analysis should not be larger than the smallest refer-
ence sample; 50 is the default number of principal components. After the first two discrimi-
nant components the remaining discriminant components did not significantly improve the
results. Figure E.4 shows the probabilities of membership for each population and each rat,
and selected individuals are shown in Table E.2; Figure E.5 shows the scatter graph of the
first two discriminant components, with points labelled according to their original popula-
tion membership. As for the structure and geneclass2 results, two individuals are marked
with a circle and a square, corresponding to the two marked individuals in Figure 2.5; the
conclusions in Table E.2 for these two rats are almost identical to those from geneclass seen
in Table E.1.

Figure E.6, the default dapc plot when applied to only the two populations of Aotea and
the Broken Islands, uses only one discriminant component as the other components do not
significantly affect the result.We used only 30 principal components in the PCA stage as there
are fewer observations than in the combined dataset with Kaikoura Island.

The GenePlot method has several advantages over dapc. Figure E.5 shows the separation
of the Broken Islands population and the overlap of the Aotea and Kaikoura Island popula-
tions, similarly to Figure 2.5, but it is unclear what conclusions should be drawn about indi-
vidual rats. For example, the circled rat does not stand out relative to other Broken Island rats.
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Figure E.4: Populationmembership graph based on dapc results from adegenet of ship rats captured
on Kaikoura Island, the Broken Islands and the main island Aotea between 2005 and 2008. Individ-
uals 1 to 60 were captured on the Broken Islands; individuals 61 to 120 were captured on Kaikoura;
individuals 121 to 177 were captured on Aotea.

Figure E.5:Cluster plot based on dapc results from adegenet of ship rats captured onKaikoura Island,
the Broken Islands and the main island Aotea between 2005 and 2008. The red cluster, on the left,
comprises the rats found on the Broken Islands; the blue cluster comprises the rats found on Kaikoura
Island; the green cluster comprises the rats found on Aotea. 50 principal components were used at the
PCA stage of the dapc process.

Figure E.6 gives no indication of the Broken Islands population being a subset of the Aotea
population as was indicated by the GenePlot, Figure 2.4. The dapc plots are also cryptic in
interpretation: even in Figure E.6 we cannot see absolute measures of fit, and dapc does not
provide quantile lines akin to those shown in Figure 2.4. The rat sampled on Aotea that was
shown in Figure 2.4 to be clustered with the Broken Islands population is not visible in Fig-
ures E.5 or E.6, so the procedure has failed to detect what was probably a direct migrant from
the Broken Islands to Aotea. dapc requires the user to choose the number of principal com-
ponents to use for the discriminant analysis, and this involves not only a loss of information
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ID Brok Kai Aotea
Bi39 0.999 0.000 0.001
Bi40 1.000 0.000 0.000
Bi41 1.000 0.000 0.000
Bi49 1.000 0.000 0.000
Bi50 1.000 0.000 0.000
Bi53 ◦ 1.000 0.000 0.000
Ki015 0.000 1.000 0.000
Ki016 0.001 0.953 0.046
Ki017 0.000 0.717 0.283
Ki018 � 0.000 0.235 0.765
Ki020 0.000 1.000 0.000
Ki021 0.000 0.060 0.940

Table E.2: Selected dapc results for the Broken Islands, Kaikoura and Aotea populations showing the
estimated probability of membership of each cluster.

Figure E.6: Cluster plot based on dapc results from adegenet of ship rats captured on the Broken
Islands and Aotea between 2005 and 2008. The left, red peak comprises the rats found on the Broken
Islands; the right, green peak comprises the rats found on Aotea. 30 principal components were used
at the PCA stage of the process.

but also a trade-off between increasing the power to detect cryptic population structure and
over-fitting the clusters so that the discriminant functions perform poorly on individuals. By
contrast, the GenePlot method has the same settings for every run and uses all the informa-
tion contained in the genetic data. Finally, for plots of two populations, the GenePlot method
also provides additional information about population structure by showing quantile lines
and by indicating whether one population is a subset of the other.
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E.1 Comparison of GenePlot and dapc with simulated data

We tested the classification accuracy for GenePlot against that of dapc from the adegenet

package using data simulated with Easypop (Balloux 2001). We ran 10 replicates of the hi-
erarchical stepping stone model with 2 groups of 6 populations each, all of size 100, using
randommating for 3000 generations,with amigration rate of 0.01within the groups and 0.001
between groups. We used 30 loci, 50 possible allelic states, 0.0001 mutation rate and free re-
combination between loci. Figure E.7 shows an example replicate in GenePlot (leave-one-out
mode) and Figure E.8 shows the same replicate after running dapc. Table E.3 shows the mis-
classification rate for individual assignments. All individualswere assigned to the population
for which they had the highest LGP or probability. In the case of missing-data individuals,
we used L̃GP

R

I as defined in Section 2.4 for the GenePlot assignment; we could alternatively
use LGPRI (LI) for such individuals. Misclassified individuals are any individuals assigned to
a population that is not their true population of origin. Although we favor assignment using
the exclusion method defined in the main text, this is not available in dapc, so we assigned all
individuals to their single ‘best’ population. Despite dapc being customized for classification,
as opposed to the GenePlot method which is focused on calculating absolute measures of fit,
Table E.3 shows that the GenePlot method produces a much lower classification error rate for
this scenario, some 3-20 times lower than that of dapc.

Additional assessment of dapc and GenePlot results from many scenario simulations
(as described in Appendix F) showed that whereas dapc often shows populations as well-
separated clusters, GenePlot gives a clearer view of when the populations are genuinely dis-
tinct and when they are poorly differentiated.

Replicate dapc errors GenePlot errors
Count Rate Count Rate

1 84 0.070 14 0.012
2 73 0.061 14 0.012
3 78 0.065 23 0.019
4 165 0.138 9 0.008
5 58 0.048 9 0.008
6 131 0.109 17 0.014
7 96 0.080 16 0.013
8 74 0.063 10 0.008
9 69 0.058 12 0.010
10 61 0.052 16 0.013

Table E.3: Misclassification results from dapc and GenePlot for 10 replicates of data gener-
ated in Easypop with the hierarchical stepping stones model, using 2 groups of 6 islands (12
populations in total) of 100 individuals each for 3000 generations, with a migration rate of
0.001 within groups and 0.01 between groups. GenePlot was run in leave-one-out mode. In-
dividuals are assigned to the population for which they have the highest probability or LGP.
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Figure E.7: GenePlot (leave-one-out mode) of data generated in Easypop with the hierarchical step-
ping stones model, using 2 groups of 6 islands (12 populations in total) of 100 individuals each for
3000 generations, with a migration rate of 0.01 within groups and 0.001 between groups.
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Figure E.8: Cluster plot based on dapc results from adegenet of data generated in Easypop with
the hierarchical stepping stones model, using 2 groups of 6 islands (12 populations in total) of 100
individuals each for 3000 generations, with a migration rate of 0.01 within groups and 0.001 between
groups.
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Appendix F SNPs

Although it was developed for microsatellite data, the GenePlot methodology and code
can be applied directly to data from biallelic loci such as single nucleotide polymorphisms
(SNPs), without requiring any adaptation of the algorithm.

Running GenePlot on SNPs may incur an increased computational cost due to the typ-
ically much higher numbers of loci involved. We tested an analysis of approximately 500
individuals with leave-one-out using 2000, 1000, 500, 250 and 125 SNP loci, and found that
the run time to compute the GenePlot results doubled as the number of loci doubled. With
125 loci the run time was about 1 minute, and with 2000 loci the run time was approximately
15 minutes on average. The computer used approximately 30% of the processing capacity of
an Intel i7 2.39GHz CPU and up to 2GB RAM.We therefore think that it is practically feasible
to run GenePlot on SNP data as well as microsatellite data.

Figure F.9 shows the saddlepoint and genotype simulation approximations to an example
distribution of simulated biallelic data from 1000 diploid loci. The distribution is extremely
smooth and the distribution is well-approximated by the saddlepoint PDF and CDF. There
is a minor discontinuity in the saddlepoint PDF at the mean of the distribution but, as seen
from the closeness of the saddlepoint and empirical CDFs, it is of negligible magnitude for
the CDF estimates used for visualization and assignment. Note that the SPDF is derived from
the SCDF, and is used only for diagnostic plots such as those in Figure F.9; it is not part of the
GenePlot procedure.

We tested GenePlot with two sets of simulated biallelic data, to represent SNPs. The first
set of simulations uses various scenarios in which populations split and merge, akin to the
scenarios used in Falush et al. 2003. The scenarios are shown in Figure F.10; the population
sizes are shown in Table F.4. In scenario H, the splitting of the larger population into two
populations of size NL and the merging of one of those populations with one of the smaller
populations happens instantaneously between Stage 1 and Stage 2.

Scenario Ancestral Stage 1 Stage 2
A NL+ NS NL and NS NL and NS

B NL+ 2NS NL, NS and NS NL, NS and NS

C NL+ 2NS NL+NS and NS NL, NS and NS

D NL+ 2NS NL and 2NS NL, NS and NS

E NL+ 2NS NL, NS and NS NL+NS and NS

F NL+ 2NS NL, NS and NS NL and 2NS

G NL+ 3NS NL, NS , NS and NS NL, NS and 2NS

H 2NL+ 2NS 2NL, NS and NS NL, NL+NS and NS

Table F.4: Population sizes for simulation scenarios shown in Figure F.10. NL and NS are the larger
and smaller population size parameters used in the simulations, and range from 100 to 10,000.

When simulating SNPdata for these scenarioswe tested population size parametersNS ∈
{100, 200, 500, 1000} and NL ∈ {100, 200, 500, 1000, 10000}, NL ≥ NS and took samples of
size 50 from each population to use in GenePlot. We used 1000 loci and simulated distinct
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Figure F.9: The left plot shows the CDF of an example multilocus LGP distribution with 1000 biallelic
loci. The wide grey line shows the empirical CDF based on 500,000 genotypes simulated from the
population distribution (ECDF). The solid black line shows the saddlepoint approximation to the
CDF (SCDF). The ECDF is hard to see due to the closeness of the approximations. The histogram in
the right plot shows 100,000 log-genotype probabilities for genotypes simulated from the population
distribution (EPDF) and the solid line shows the first derivative of the saddlepoint approximation
to the CDF, which we denote SPDF. The right plot is truncated to better show the central part of the
histogram.

Figure F.10: Scenarios for simulating population data, where at each stage the populations are bred
for ng generations. Thick lines show the larger populations, thin lines show the smaller populations.
The ancestral population is the size of all the final populations combined.

generations, each bred by selecting randomgametes from random individuals in the previous
generation.

We also simulated biallelic data in Easypop, producing 10 replicates of the island migra-
tion model with 6 populations each of size 100, using randommating andmigration rate 0.05
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for 3000 generations. We used 1000 loci, 2 possible allelic states, 0.0001 mutation rate and a
recombination rate of 0.1 between adjacent loci to simulate strong linkage.

Figure F.11 shows example GenePlots from these simulations. The GenePlots for the sce-
nario simulations used leave-one-out; the GenePlots for the Easypop simulations used the
standardmethod to reduce computational cost. The GenePlot construction is the same as that
for microsatellite data. The first two plots in Figure F.11, showing Scenario H with ng = 50,
show how much more distinct the final populations are if the large populations are reduced
in size, such that genetic drift and the merge of Pop 1b with Pop2 have a greater impact on
the genetic structure. The middle-left plot shows how reducing the number of generations
of breeding reduces the level of differentiation, even for the same population sizes, although
Pop 3 is still distinct from the other two populations. The results from Scenarios A to G have
similar interpretations to those from Scenario H.

The middle-right plot in Figure F.11 shows an example of the Easypop simulations. Al-
though the populations appear to be poorly differentiated in the first two principal compo-
nents, these do not explain a high proportion of the variance; more separation is exhibited in
lower principal components (not shown). The bottom two plots show that the populations
are well differentiated pairwise.
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Figure F.11: GenePlots based on simulated biallelic data to represent SNPs. The top two plots show
simulated data for two examples of Scenario H with ng=50; the top-left plot has NL=10000 and
NS=500; the top-right plot has NL=1000 and NS=500. The middle-left plot also shows an example
of Scenario H with NL=1000 and NS=500 and ng=10. The middle-right plot shows an Easypop sim-
ulation with 6 islands, each of size 100, bred for 1000 generations with a migration rate of 0.05 and
recombination rate between adjacent loci of 0.1. The bottom two plots show two pairs of populations
from the same Easypop simulation.
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Appendix G Linkage disequilibrium

The metholodogy underlying GenePlots involves an assumption that genotypes at different
loci are independent within individuals, in other words that there is negligible linkage dis-
equilibrium. To investigate the influence of linkage disequilibrium (LD) on our results, we
first estimated LD for the ship rat data from Kaikoura Island, the Broken Islands and Aotea;
Table G.5 shows that the estimates are low for all three populations. Here, ∆ is the compos-
ite disequilibrium measure defined in Schaid 2004 and Zaykin 2004; r2 is the mean of the
squared correlations over all locus pairs, as described below.

The correlation between a given pair of alleles A and B, at a given pair of loci 1 and 2, is
calculated with the genotype correction as defined in Zaykin (2004) and Schaid (2004):

rAB =
∆AB√

{pA(1− pA) +DA}{pB(1− pB) +DB}
,

where pA and pB are the estimated frequencies of allele A at locus 1 and allele B at locus 2
respectively. Here,DA = PAA−p2A is the difference between the observed and expected levels
of homozygotes of allele A, and similarly for DB . Define r212 for loci 1 and 2 to be the mean
of r2AB estimates over all allele pairs where allele A is from locus 1 and allele B is from locus
2. The overall mean LD estimate across all locus pairs, r2, is a weighted mean of r212 across
locus pairs, weighted by the number of allele types at each of the two loci.

Population r2 ∆
Combined 0.010 0.006
Kaikoura Island 0.019 0.010
Broken Islands 0.026 0.014
Aotea 0.023 0.011

Table G.5: Linkage disequilibrium estimates for data fromKaikoura Island, the Broken Islands, Aotea
and the combined populations.

We also calculated LD estimates for simulated data sets based on the scenarios in Fig-
ure F.10. The data sets for scenarios A to H do not include explicit genetic linkage, but they
do include LD from other sources: LD caused by variation in ancestry among individuals,
and “background LD” that occurs in all finite-sized populations due to sampling error dur-
ing random mating of each generation. We ran all eight scenarios for 10 loci, with 5 or 10
initial allele states in the ancestral population, where the population sizes tested were as for
the SNP simulations in Appendix F and with ng = 50. We ran 100 replicates of each set of
parameters. We tested whether LD affects misclassification rates by selecting a subgroup of
runs displaying the highest estimates of r2 and another subgroup of runs displaying the low-
est estimates of r2 from each set of replicate runs with the same parameters. Within each set
of replicate runs, we then randomly paired up runs from the high and low LD subgroups.
We used 10 pairs of runs for each scenario and each combination of NL and NS . For a given
run, we used the highest estimated r2 among populations in that simulation rather than the
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overall combined-population r2, because the GenePlot LGP calculations are conducted sep-
arately for each reference population. The misclassification rates were calculated using the
exclusion assignment method as described in the main text, using the 1% quantile LGP for
each population as the exclusion threshold. Figure G.12 shows the paired differences in LD
and differences in misclassification rate.

The concern regarding LD is that loci that are highly differentiating between two or more
populations may be correlated with each other, and combining the data from these loci as if
they were independent would overstate the level of population differentiation. The opposite
is also a risk: that correlation between low-differentiating loci would understate the level of
population differentation. However, Figure G.12 indicates that higher LD does not lead to
higher error rates, and in fact the parameter sets with the most varied levels of LD are also
the ones with the lowest error rates. The pairs with the lowest error rate differences typically
had error rates near zero for both of the paired runs.

Figure G.12: Linkage disequilibrium versus misclassification rate differences for pairs of runs with
high and low r2. Left plot shows paired differences; middle plot shows the low r2 runs; right plot
shows the high r2 runs.

Wealso tested LDwith the biallelic/SNPdata simulated in Easypopwith a recombination
rate of 0.1 between adjacent loci, instead of free recombination between all loci, to simulate
a high degree of linkage. Table G.6 shows the LD estimates r2 for the whole data set and
the largest population-level r2. The table also shows the misclassification results from the
Easypop SNP simulations, using three different assignment protocols. Using the protocol of
assigning an individual to the population for which it has the highest LGP, the misclassifi-
cation rates are around 6%. An alternative assignment protocol is the exclusion method that
is commonly used with GeneClass results (Manel et al. 2002), where the individual is only
assigned to a population if it has LGP below a given threshold for all the other populations.
This method is preferable to the method of choosing the highest LGP population because it
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does not assume that the true source population is among those studied, allowing for the
possibility of migrants from other unidentified populations. If the individual has LGP above
the threshold for more than one population it is not assigned, and is labelled as “NA”. The
thresholds chosen for exclusion were the 1% quantile LGPs for each population. The results
for misclassification errors under the exclusion method where “NA” is not counted as an er-
ror show that about 3% of individuals were misclassified after exclusion, and the results for
exclusion where “NA” is counted as an error show that approximately 40% of individuals
were not assigned. All other individuals were assigned correctly to their true source popula-
tion and had very low LGP with respect to the other populations. These results demonstrate
that even with a low recombination rate between adjacent loci, denoting high linkage, and a
exclusion threshold of 1%, the proportion of incorrectly labelled individuals is very low, and
the exclusion method can be used to avoid over-confident assignment where there is poor
differentiation between populations. The 1% quantile is a stringent threshold: a low thresh-
old increases the proportion of individuals who are not assigned because their LGP is higher
than the threshold for more than one population.

Replicate Overall Max pop. Choose highest LGP Exclusion Exclusion
r2 r2 NA is not an error NA is an error

Count Rate Count Rate Count Rate
1 0.00236 0.00848 31 0.052 12 0.020 274 0.457
2 0.00262 0.00892 28 0.047 13 0.022 168 0.280
3 0.00271 0.00876 35 0.058 25 0.042 181 0.302
4 0.00264 0.00900 43 0.072 23 0.038 209 0.348
5 0.00257 0.00927 47 0.078 26 0.043 273 0.455
6 0.00247 0.00926 32 0.053 18 0.030 267 0.445
7 0.00254 0.00911 40 0.067 15 0.025 262 0.437
8 0.00241 0.00886 36 0.060 10 0.017 318 0.530
9 0.00260 0.00905 37 0.062 19 0.032 269 0.448
10 0.00257 0.00924 36 0.060 17 0.028 236 0.393

Table G.6: LD estimates and misclassification results based on the GenePlot method under different
assignment protocols, for 10 replicates of data generated in Easypopwith the islandmigration model,
using 6 populations of 100 individuals each for 1000 generations, with a migration rate of 0.05 and a
recombination rate for adjacent loci of 0.1.



Chapter 3
Directional measures of population

differentiation

3.1 Introduction

Wepropose a new framework of genetic measures based on the distributions of log-genotype
probabilities, as introduced inMcMillan & Fewster (2017). We derive the methodology start-
ing from the genetic assignment method of Rannala &Mountain (1997), andwe consider the
differentiation between populations in terms of the fit of individuals to those populations.We
consider two populations to be highly differentiated if the individuals from each reference
population have a poor fit to the other population.We define fit in terms of the log-probability
of an individual’s genotype arising in the population, given the population’s estimated allele
frequencies.

We therefore consider differentiation as two related management questions. Firstly, are
the populations distinct enough that, given individuals from two different populations, we
would expect to accurately identify which came from each population? Secondly, are the
populations distinct enough that a single individual being assigned among the populations
is more likely to be assigned to its own population? Within this framework, differentiation
between populations may well be directional. If population A has only a restricted set of alle-
les and population B has a much wider selection of common alleles then individuals arising
from B are likely to have a poor fit to A, but individuals from A might have a good fit to B.
Such disparity between populations is not captured by existingmeasures such asFST (Wright,
1951), G′′ST (Meirmans & Hedrick, 2011) or Jost’s D (Jost, 2008).

Within the framework of log genotype probability, we can calculate numeric measures to
answer these questions, and also run permutation tests for significant population structure.
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Many existing studies test for population structure, using structure (Pritchard et al. 2000,
Hubisz et al. 2009), the AMOVA routine in software Arlequin (Excoffier & Lischer 2010), or
by running significance tests on FST and other diversity measures. Choosing the number of
inferred clusters, K, from structure, can be thought of as a test for differentiation, based on
whether the number of clusters is as large as the number of sampling locations, and it is cast
as a model selection exercise with the log-likelihood L(K) or the ∆K method of Evanno et
al. (2005) as the selection criterion. This is useful to test for population structure without
specifying pre-defined populations.

The finestructure software providesmore fine-grained clustering via a coancestrymatrix
(Lawson et al. 2012) and thus can bemore robust formodel selection using SNPdata. Lawson
et al. (2018) argue that the results of structure may be strongly affected by sample size, and
that finestructure ismore suitable than structure for large numbers of loci. Janes et al. (2017)
argue that structure and the ∆K method may be biased towards certain values ofK, and it
is not always clear how best to match up the inferred clusters to the sampling locations.

Given a predefined set of populations, the DAPC method from the adegenet R package
(Jombart et al. 2010) can be used to visualize the genetic data, and, like structure, can indicate
which populations overlap with each other. This method has the advantage of not using any
assumptions of Hardy-Weinberg equilibrium or linkage equilibrium, but the plots do not
correspond to any biological quantity, so they are often difficult to interpret.

Analysis ofmolecular variance (AMOVA) inArlequin, and existingmeasures such asFST,
G′′ST and Jost’sD, are used to test whether pre-defined populations are significantly separated.
However, as described in Section 1.3, there is still no consensus about which measures to
use for assessing population differentiation, because the behaviour of the existing measures
varies in different types of scenarios. Moreover, even when applied pairwise to populations,
these methods only give indicators of heterozygosity within and among populations, or of
the commonality of allele types. The measures we propose describe populations in terms of
the fit of individual genotypes, and are thus more easily interpretable and more applicable
to management scenarios.

When analysing pre-defined populations, no other existing framework offers visualiza-
tion combinedwith numeric measures, to allow users to understand and interpret the results
of the significance tests. We develop the first such framework here.

3.2 Distributions of log-genotype probabilities

McMillan & Fewster (2017) introduced GenePlots, which extend the methods of Rannala &
Mountain (1997) by visualizing the fit of individuals to candidate source populations. We
now generalize that method to consider the fit of overall populations to each other, and for-
malize this into a method of drawing inferences on population differentiation. We motivate
this method using a case study of invasive ship rats (Rattus rattus) in the Great Barrier Is-
land archipelago, New Zealand. Ship rats were captured between 2005 and 2008 on the main



3.2. Distributions of log-genotype probabilities 65

island Aotea (28500ha); on Kaikoura Island (530ha), which is 80m off the coast of Aotea at
closest approach; and on the Broken Islands, which comprise four islands with total area 125
ha, about 300m from Aotea and about 3km south of Kaikoura Island. A map of the sampling
locations can be found in Appendix A.

Figure 3.1 shows the GenePlot of Aotea against the Broken Islands, alongside two addi-
tional LGP distribution plots. The GenePlot, in which every point represents an individual
rat, shows the multilocus log-genotype probabilities (LGPs) of the sampled rats with respect
to the Broken Islands and Aotea. The LGPs were calculated using the leave-one-out method.
We use log base 10 rather than the natural log, and the Rannala &Mountain prior (see Chap-
ter 2 or McMillan & Fewster, 2017), for this and all other analyses in this chapter.

The plot shows clear separation between the populations, which fall into two clusters.
Apart from one rat sampled on Aotea which clusters with the rats sampled on the Broken
Islands, and which is a probable migrant, all the Aotea rats have a poor fit to the Broken
Islands, with LGPs to the left of the 1% percentile line in the Broken Islands population. The
rats sampled on the Broken Islands, by contrast, commonly have a good fit to Aotea as well
as to the Broken Islands.

Figure 3.1 also shows a set of plotted curves, which we call the LGP distribution plots.
These are shown along the x- and y-axes of the GenePlots, because they can be thought of as
cross-sections through theGenePlot parallel to those axes. These posterior probability density
curves show the fit of the overall populations to each other. They are based on the posterior
distributions of allele frequencies in the two populations, and thus capture not only the fit
of sampled individuals but also the fit of any potential genotypes that might arise in the
populations, as well as the uncertainty in estimating allele frequencies from sample data.
The LGP plots as well as the GenePlots use leave-one-out to reduce bias in the estimates.
Details of the definition and construction of these plots are in Appendix H.

We can see in Figure 3.1 that the overlap of the Broken Islands into the Aotea LGP distri-
bution, as shown on the left-hand side of the plot, is much greater than the overlap of Aotea
into the Broken Islands LGP distribution, as shown at the bottom of the plot. The disparity be-
tween the two LGP plots is indicative of the fact that the Broken Islands population was most
likely founded from the Aotea population, so that the alleles found in the Broken Islands are
also found in Aotea, but due to founder effects and genetic drift, many of the alleles on Aotea
are not found on the Broken Islands. The LGP plots show that if rats from the Broken Islands
population were sampled on Aotea they might well be presumed to be from Aotea, as they
are likely to have a reasonable fit to the Aotea population. By contrast, if rats from the Aotea
population were sampled on the Broken Islands it would very likely be obvious that they
were not from the Broken Islands. We call this situation drifted subsetting and we consider the
Broken Islands population to be a drifted genetic subset of the Aotea population.

Figure 3.2 shows the GenePlot and LGP distribution plots for rats sampled on Kaikoura
Island and Aotea. By contrast with the Broken Islands and Aotea samples, the Kaikoura and
Aotea samples aremuch closer together, andmany rats from both populations have a good fit
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Figure 3.1: GenePlot and LGP distribution plots based on microsatellite data extracted from ship rats
(Rattus rattus). Each point on the central plot represents an individual rat captured on the Broken
Islands (squares, n = 60) or Aotea (diamonds, n = 57). The main horizontal axes show the posterior
log-genotype probability (LGP) of each individual’s genotype within the Broken Islands population;
the main vertical axes show the same, but with respect to the Aotea population. The thick diagonal
line shows equal probability with respect to Aotea and the Broken Islands, and the fine diagonal lines
show 10 times higher probability for one population than the other. The vertical dashed lines show
the 1% and 100% percentile lines for the Broken Islands; the horizontal lines show the 1% and 100%
percentile lines for Aotea. The secondary plot to the left of themain plot shows the LGP distribution of
the Aotea population (dashed line) and the cross-population LGP distribution of the Broken Islands
population within the Aotea population (solid line). The secondary plot below the main plot shows
the LGP distribution of the Broken Islands population (dashed line) and the cross-population LGP
distribution of the Aotea population within the Broken Islands population (solid line). The LGPs and
the dashed curves were calculated using the leave-one-out method.
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to both populations, as indicated by their high LGPswith respect to both populations. Despite
the level of overlap between the populations, there is still a certain amount of population
structure visible. Most of the individuals from Aotea are on the left-hand side of the thick
diagonal line, showing that they have a higher fit to Aotea than to Kaikoura, and similarly
most of the Kaikoura rats have a higher fit to Kaikoura than to Aotea.

Again, the accompanying LGP plots show this in terms of the overall populations and not
just the observed individuals. The overlap of Kaikoura into Aotea (shown in the left-hand
LGP plot) is higher than the overlap of the Broken Islands into Aotea in Figure 3.1, and the
overlap of Aotea into Kaikoura is far higher than the overlap of Aotea into the Broken Islands
in Figure 3.1.

3.3 Numeric measures of population structure

We can use the LGP distributions of the populations to construct numeric measures of pop-
ulation structure. The first of these we call the overlap area. This is the area of the overlap
between the two curves in either of the subsidiary plots in Figure 3.1 which show the proba-
bility density functions (PDFs) of the LGP distributions for the populations. This is a visual
measure, corresponding directly with what can be seen on the plots.

The overlap area in the bottom plot in Figure 3.1 compares the Aotea population with the
baseline Broken Islands population. Let f̆(x) be the saddlepoint approximation to the PDF of
the leave-one-out LGP distribution for the Broken Islands population, shown as the yellow
dashed line in the bottom part of Figure 3.1. Let ξ̂(x) be the saddlepoint approximation to
the PDF of the cross-population LGP distribution of Aotea within the Broken Islands, which
is the solid blue curve in Figure 3.1, and represents the distribution of how well genotypes
arising from Aotea would fit into the Broken Islands population. (See Appendix H for the
formal definitions of f̆ and ξ̂.) Then the overlap area with baseline Broken Islands is:∫

min(ξ̂(x), f̆(x)) dx.

The overlap area with respect to Aotea is similar, but uses the curves defined in the left
LGP distribution plot in Figure 3.1 which compares the Broken Islands population with the
baseline Aotea population. Let ğ(x) be the saddlepoint approximation to the leave-one-out
PDF of the LGP distribution of the Aotea population, shown as the blue dashed line in the
left-hand part of Figure 3.1. Let ζ̂(x) be the saddlepoint approximation to the PDF of the
cross-population LGP distribution of the Broken Islands within Aotea, shown as the solid
yellow curve in Figure 3.1. Then the overlap area with baseline Aotea is:∫

min(ζ̂(x), ğ(x)) dx.

We calculate the overlap area using the saddlepoint approximation, as in McMillan and Few-
ster (2017). Full details are in Appendix H. Overlap area takes values between 0 and 1. A low
overlap area signals high separation between the populations.
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Figure 3.2: GenePlot and LGP distribution plots based on microsatellite data extracted from ship rats
(Rattus rattus). Details as in Figure 3.1, for samples from Kaikoura Island (n = 60) and Aotea (n =
57).
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The leave-one-out overlap areawith respect to the Broken Islands baseline is 0.020 and the
leave-one-out overlap area with respect to the Aotea baseline is 0.533. This indicates that in-
dividuals fromAotea would not fit well into the Broken Islands population, but some Broken
Islands individuals would fit well into the Aotea population.

The overlap area is intuitive in terms of its visualization, but suffers from not having a
clear probabilistic interpretation. Moreover, it is a similarity index for which a value of 1 in-
dicates low differentiation between populations, unlike existing measures of differentiation
for which a value of 1 indicates high differentiation between populations. Therefore we also
provide alternative measures connected to the LGP distributions, which have direct proba-
bilistic interpretations.

The second measure we call the interloper detection probability. The interloper detection
probability in population A is the probability that for two genotypes randomly arising from
populations A and B, the genotype arising from A is the one with the better fit to A. A high
interloper detection probability would indicate high separation of population A from popu-
lation B.

As an analogy, we consider the possibility of a Dutch child and an English child taking an
English language test. The interloper detection probability is the probability that the English
child would score higher on the English language test than the Dutch child, so that the Dutch
child is correctly detected as the “interloper” in the English population.

We can also calculate the interloper detection probability with respect to population B,
which in the analogywould correspond to the probability of a randomly selectedDutch child
scoring higher on a Dutch language test than a randomly selected English child.

Given the extent of English teaching in Dutch schools and the lack of Dutch teaching in
English schools, wewould expect the latter probability to be higher than the former. Similarly,
in two populations we would expect the interloper detection probability to differ for the two
populations.

We calculate these probabilities using the probability density functions (PDFs) and cu-
mulative distribution functions (CDFs) of the LGP distributions for the populations. Let ξ̂(x)

be the saddlepoint approximation to the PDF of the cross-population LGP distribution of
Aotea within the Broken Islands as before. Let F̆ (x) be the saddlepoint approximation to the
CDF of the leave-one-out LGP distribution of the Broken Islands population, which is the
cumulative integral of the yellow dashed curve in Figure 3.1. Then the interloper detection
probability in the Broken Islands is:

1−
∫
ξ̂(x)F̆ (x) dx.

This corresponds to the probability that a random draw from the yellow dashed PDF curve
at the bottom of Figure 3.1 exceeds a random draw from the blue solid curve. We calculate
the interloper detection probabilities using the saddlepoint approximation, as in McMillan
and Fewster (2017). Full details are in Appendix H.
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The interloper detection probability in Aotea is similar. ζ̂(x) is the saddlepoint approx-
imation to the PDF of the cross-population LGP distribution of the Broken Islands within
Aotea, as before. and Ğ(x) is the saddlepoint approximation to the CDF of the leave-one-out
LGP distribution of the Aotea population, which is the cumulative integral of the blue dashed
curve in Figure 3.1. Then the interloper detection probability in Aotea is:

1−
∫
ζ̂(x)Ğ(x)dx.

The Aotea leave-one-out interloper detection probability with respect to the Broken Is-
lands is 0.999 and the Broken Islands leave-one-out interloper detection probability with re-
spect to Aotea is 0.809. Similarly to the overlap areas, these indicate that in most cases we
would correctly identify which of two individuals found in the Broken Islands was in its
home population, butwewould not always correctly identifywhich of two individuals found
in Aotea was in its home population.

The third measure we call the correct assignment probability. This is the probability that a
genotype randomly arising from population A will have a better fit to population A than to
population B, so that under assignment to the best fit population it would be assigned to pop-
ulation A. Once again, high values of the correct assignment probability indicate substantial
genetic differentiation between the populations.

The analogy for this would be the probability that an English child would score higher
on the English language test than the Dutch language test. The corresponding correct assign-
ment probability for the Dutch populationwould be the probability that a Dutch child would
score higher on the Dutch language test than the English language test. For the interloper
detection probability we considered two hypothetical individuals and calculated the prob-
ability of correctly discerning which individual had originated in the given population; by
contrast for the correct assignment probability we are considering one hypothetical individ-
ual and calculating the probability of correctly discerning which population the individual
originated in.

We calculate the correct assignment probabilities by generating the distributions corre-
sponding to the difference of the LGPs for the two populations. We use leave-one-out to cal-
culate the individual’s probability with respect to its own population, to avoid bias caused
by the presence of the individual’s alleles within the observed sample. For every possible
genotype arising in the Broken Islands, given its posterior allele frequencies, we calculate the
genotype’s leave-one-out LGP with respect to the Broken Islands and subtract its LGP with
respect to Aotea. We then distribute all these LGP differences according to the probabilities
of the genotypes arising in the Broken Islands population, using the saddlepoint approxima-
tion as usual. Finding the PDF of the difference in LGPs for each genotype ensures we take
into account the dependence between the LGPs of a single genotype with respect to the two
populations.

We perform a similar process for the Aotea population. Figure 3.3 shows the resulting
LGP difference distributions for the Broken Islands and Aotea.
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In Figure 3.3(a) the value of 0 on the x-axis, for example, corresponds to genotypes that
would have equal LGP with respect to the Broken Islands and Aotea, and the height of the
curve gives the associated probability density of such genotypes arising on the Broken Is-
lands. The correct assignment probability in the Broken Islands is the area under the curve to
the right of 0 on the x-axis, which is the proportion of all genotypes arising from the Broken
Islands that have higher LGP with respect to the Broken Islands than with respect to Aotea.
The correct assignment probability for Aotea is the area under the curve in Figure 3.3(b) to
the right of 0 on the x-axis.

The Broken Islands and Aotea LGP difference PDF curves both have most of their area
to the right of 0 on the x-axis, indicating that rats from either population will almost always
have a better fit to the population they originated from. On the GenePlot, this corresponds
to individuals being placed on the correct side of the central diagonal line. The leave-one-out
correct assignment probability for the Broken Islands is 0.997 and the leave-one-out correct
assignment probability for Aotea is also 0.997. These indicate that in almost all cases, indi-
viduals from each population would have a better fit to their own population and would be
correctly assigned if using the basic assignment protocol of assigning to the population for
which the individual has higher LGP. When using a more conservative assignment protocol,
some of the individuals may not be assigned to either population if they have similar fit to
both populations.

The correct assignment probability could also be calculated using a more conservative
assignment protocol. For example, because Figure 3.3 is on a log10 scale, the area to the right
of 2 on the x-axis would be the probability of a random individual from population A having
a genotype probability with respect to A that is 100 times higher than its genotype probability
with respect to population B. In this case, the leave-one-out correct assignment probability for
the Broken Islands would be the probability of a random individual from the Broken Islands
having a genotype probability for the Broken Islands that is at least 100 times higher than its
genotype probability forAotea.Using thismore conservative protocol, the correct assignment
probability for the Broken Islands is 0.976 and the correct assignment probability for Aotea
is 0.984.

The numeric measures for the Kaikoura Island and Aotea populations show that there
is less separation between these populations than between the Broken Islands and Aotea
populations. The leave-one-out overlap area with respect to Kaikoura Island is 0.499 and the
leave-one-out overlap area with respect to Aotea is 0.883. The Aotea leave-one-out interloper
detection probability in Kaikoura Island is 0.828 and the Kaikoura Island leave-one-out inter-
loper detection probability in Aotea is 0.576, barely better than chance.

Figure 3.4 shows the LGP difference distributions for the Kaikoura Island and Aotea pop-
ulations. These two populations have less area to the right of 0 than the Broken Islands and
Aotea populations. This indicates that a non-negligible proportion of rats originating from
the posterior genotype distribution for Aotea would actually have a better fit to Kaikoura
than to Aotea, and similarly for the rats originating from Kaikoura. The correct assignment
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Figure 3.3: LGP difference distribution plots based on microsatellite data extracted from ship
rats (Rattus rattus) on the Broken Islands and Aotea. (a) Log-genotype probability with re-
spect to the Broken Islands minus log-genotype probability with respect to Aotea for all pos-
sible genotypes arising from the Aotea or Broken Islands populations, distributed according
to their probability of arising in the Broken Islands population. (b) Log-genotype probabil-
ity with respect to Aotea minus log-genotype probability with respect to the Broken Islands
for all possible genotypes arising from the Aotea or Broken Islands populations, distributed
according to their probability of arising in the Aotea population.
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probability for Kaikoura Island is 0.860 and the correct assignment probability for Aotea is
0.870.
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Figure 3.4: LGP difference distribution plots based on microsatellite data extracted from ship
rats (Rattus rattus) on Kaikoura Island and Aotea. (a) Log-genotype probability with respect
toKaikoura Islandminus log-genotype probabilitywith respect toAotea for all possible geno-
types arising from the Aotea or Kaikoura Island populations, distributed according to their
probability of arising in the Kaikoura Island population. (b) Log-genotype probability with
respect to Aotea minus log-genotype probability with respect to Kaikoura Island for all pos-
sible genotypes arising from the Aotea or Kaikoura Island populations, distributed according
to their probability of arising in the Aotea population.
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3.4 Permutation tests for population structure

Numeric measures of population differentiation allow us to use permutation tests to check
for significant population structure, by permuting the population labels in the dataset many
times and comparing the values calculated from those randomised datasets with the ob-
served value calculated from the original dataset. Under the null hypothesis of no genetic
separation, the population labels of the individuals are immaterial and any separation ob-
served in the numeric measures is due to chance alone.

Similar significance tests exist for measures such as FST (Excoffier et al 1992; Goudet 1995;
Goudet et al. 1996; Peakall and Smouse, 2006 and 2012).

If the observed value of genetic separation is larger than most of the randomised values
then we conclude that there is significant evidence of population structure. For example, if
we create 1000 randomised datasets and there are only 8 that have larger values of interloper
detection probability than the observed value of interloper detection probability, then the p-
value of 0.008 based on 1000 randomised values shows strong evidence of structure between
those two populations. For interloper detection probability and correct assignment probabil-
ity, which serve as measures of separation, the p-value is taken from the right tail of the null
distribution, whereas for overlap area, which is a measure of similarity, the p-value is taken
from the left tail of the null distribution.

When calculating the genetic measures for the randomised datasets, we keep using the
original population labels instead of using general names like ‘Group 1’ and ‘Group 2’. For
populations of different sizes this is equivalent to keeping the same name for the larger popu-
lation and the same name for the smaller population, and for equally sized populations this is
equivalent to randomising the population names. Leave-one-out LGP distributions are used
for all single-population computations in this section (see Appendix H for details).

Figure 3.5 shows the randomisation test results for the Broken Islands and Aotea popula-
tions. In each subplot, the histogram indicates the null distribution values obtained from the
randomised datasets, and the bold line shows the observed value from the original dataset.
We used 100 randomised datasets to reduce computational time. If we obtained results that
were less clear-cut,we could usemore randomisations to increase the precision of the p-value.
However, in Figure 3.5, 100 randomisations is sufficient to show a very clear result. The two
populations are significantly separated by every measure. For overlap area, where popula-
tion separation is indicated by low values, the observed measures are much lower than the
randomised values. For the two probabilistic measures, where population separation is indi-
cated by high values, the observed measures are much higher than the randomised values.
Permutation tests using FST, G′′ST and D were also significant (results not shown).

Figure 3.6 shows equivalent results for the Kaikoura Island and Aotea populations. Al-
though for these two populations the GenePlot showed the two populations interleaved, with
many individuals from each having a good fit to both populations, the randomisation test re-
sults show that there is still significant population structure present, although the observed
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Figure 3.5: Permutation test results based onmicrosatellite data extracted from ship rats (Rat-
tus rattus) on the Broken Islands (n = 60) and Aotea (n = 57). In each plot, the bold line
indicates the observed value and the histogram shows values obtained from 100 datasets in
which the population labels were randomly reassigned to all the rats. (a) Overlap area be-
tween Broken Islands LGP distribution and the cross-population LGP distribution of Aotea
within the Broken Islands. (b) Overlap area between Aotea LGP distribution and the cross-
population LGP distribution of the Broken Islands within Aotea. (c) Probability that for a
random pair of genotypes arising from the Broken Islands and the Aotea populations, the
one arising from the Broken Islands will have a better fit to the Broken Islands population.
(d) Probability that of those two genotypes, the one arising from Aotea will have a better
fit to the Aotea population. (e) Probability that a random genotype arising from the Broken
Islands will have a better fit to the Broken Islands population than to the Aotea population.
(f) Probability that a random genotype arising from Aotea will have a better fit to the Aotea
population than to the Broken Islands population. The single-population LGP distributions
were constructed using leave-one-out.
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Figure 3.6: Permutation test results based on microsatellite data extracted from ship rats (Rattus rat-
tus) on Kaikoura Island (n = 60) and Aotea (n = 57). Details as for Figure 3.5.
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measures show less separation than for the Broken Islands versus Aotea. The overlap area
and interloper detection probability are significant for Kaikoura but non-significant forAotea,
showing the directionality of the structure between these two populations.

3.5 Application to data from New Zealand fur seals
(Arctocephalus forsteri)

We apply our method using microsatellite data at 11 loci from New Zealand fur seals (Arcto-
cephalus forsteri), as described by Dussex et al. (2016). The authors of that study defined four
regions: NZNorth, NZ South, Subantarctic islands and Australia. It should be noted that NZ
North and NZ South do not correspond to the North and South Islands of New Zealand, but
rather are groupings of sampling locations off the coast of South Island, as well as one single
sampling location on North Island. The majority of the seals sampled were linked to the two
NewZealand regions, and Dussex et al. (2016) observedweak separation betweenNZNorth
and NZ South.

Figure 3.7 shows the GenePlot for the four regions identified by Dussex et al. (2016) and
Figure 3.8 shows themulti-bar GenePlot for the same four regions. BothGenePlots agreewith
the findings of Dussex et al. (2016) that the Australian region is the most distinct: the seals
from the Australian region have a poor fit to all other regions and the seals from the other
regions have a poor fit to the Australian region. The GenePlots also confirm the findings of
Dussex et al. (2016) that there is strong genetic similarity between both NZ regions and some
genetic similarity between the NZ regions and the Subantarctic region.

Wehenceforth investigate the two largest regions,NZNorth andNZSouth, inmore detail.
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Figure 3.7:GenePlot based onmicrosatellite data extracted fromNewZealand fur seals (Arctocephalus
forsteri) byDussex et al. (2016). Each point represents an individual seal from theNZNorth (n = 246),
NZ South (n = 98), Subantarctic (n = 13) and Australian (n = 26) regions identified by Dussex et
al. (2016). The axes show the first and second principal components of the log-genotype probabilities
with respect to the four regions. The LGPs were calculated using the leave-one-out method.
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Figure 3.8: GenePlot based on microsatellite data extracted from New Zealand fur seals (Arctocephalus forsteri) by Dussex et al. (2016). The multi-bar
GenePlot shows one bar chart per population and one bar for each seal from the NZ North (n = 246), NZ South (n = 98), Subantarctic (n = 13)
and Australian (n = 26) regions identified by Dussex et al. (2016). Each bar chart shows all individuals, and a single bar represents the percentile
corresponding to that individual’s log-genotype probability with respect to the given population. The bars are grouped according to the population
from which the rats were sampled. Individuals are vertically aligned among the four bar charts. The LGPs were calculated using leave-one-out.
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Figure 3.9 shows theGenePlot and corresponding LGPdistribution plots for theNZNorth
and South regions. This also confirms the findings of Dussex et al. that there is only weak sig-
nal of population structure between the two regions. However, there is more overlap between
the populationswith baselineNZ South (the left hand LGP distribution plot) thanwith base-
line NZNorth (the bottom LGP distribution plot), and the permutation test results shown in
Figure 3.10 indicate the same directional population structure.

The overlap area and interloper detection probability are non-significant for NZ South,
indicating that fur seals from NZ North colonies arriving in NZ South would be indistin-
guishable from seals originating in NZ South based on this evidence. However, the overlap
area and interloper detection probability are significant for NZ North, indicating that seals
from NZ South would be less well fitted to NZ North than seals originating in NZ North.

Dussex et al. (2016) used the software diyabc (Cornuet et al. 2010) to simulate recolo-
nization scenarios. They tested three main scenarios: (i) the Australian population and later
the Subantarctic population split from the NZ populations, then the NZ South population
was extirpated by commercial sealing and recently recolonized from the NZ North and Sub-
antarctic populations; (ii) the Australian population and later the Subantarctic populations
split from theNZpopulations, then both theNZNorth andNZ South populationswere extir-
pated by commercial sealing and recolonized from refugia on thewest coast of NewZealand;
(iii) the Australian population split from the Subantarctic andNZ populations, then the Sub-
antarctic and NZ North and NZ South populations all split and experienced no further bot-
tlenecks.

The authors also considered subscenarios of scenario (ii): (iia) NZ North and NZ South
were recolonized from refugia on the west coast of the NZ North region; (iib) NZ North and
NZ South were recolonized from refugia on the west coast of the NZ-South region; (iic) NZ
North and NZ South were recolonized from admixed refugia in the NZNorth and NZ South
regions.

Dussex et al. (2016) obtained an ambivalent result: the posterior probabilities of all the
scenarios (i), (iic) and (iii) were virtually zero, the posterior probability of scenario (iia) was
63% and the posterior probability of scenario (iib) was 37%.

Our result supports scenario (iib) more strongly than scenario (iia). The later-colonized
population is more likely to be susceptible to founder effects, so the source population for
colonization should possess alleles not found in the later-established population. So we ex-
pect the later-established population to fit well into the source population, but we would not
expect the source population to fit as well into the later-established population. Here, NZ
North fits well into NZ South, but NZ South does not fit so well into NZ North.

The overlap areas for baselines NZ North and South respectively are 0.744 and 0.984. The
interloper detection probabilities are 0.678 and 0.496. The correct assignment probabilities
are 0.791 and 0.655.

The observed correct assignment probabilities are lower than those found for the ship
rats but both are significant, confirming the existence of weak population structure. The re-
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sults from the overlap area and interloper detection tests yield the same conclusions; both
tests are geared towards measuring how well individuals from the comparison population
fit into the baseline population, as if we were comparing individuals from ‘home’ and ‘away’
sports teams. The correct assignment probability is higher than the interloper detection prob-
ability and is significant in both directions: this probability measures the preferential fit of a
genotype in its own ‘home’ population compared with the ‘away’ population.
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Figure 3.9: GenePlot and LGP distribution plots based on microsatellite data extracted from New
Zealand fur seals (Arctocephalus forsteri) by Dussex et al. (2016). Each point on the central plot repre-
sents an individual seal from the NZ North (n = 246) or NZ South (n = 98) populations identified
by Dussex et al. (2016). The main horizontal axes show the posterior log-genotype probability (LGP)
of obtaining each individual’s genotype from the NZ North population; the main vertical axes show
the same, but with respect to the NZ South population. The thick diagonal line shows equal prob-
ability with respect to NZ North and NZ South, and the fine diagonal lines show 10 times higher
probability for one population than the other. The vertical dashed line shows the 1% percentile line
for NZ North; the horizontal line shows the 1% percentile line for NZ South. The secondary plot to
the left of the main plot shows the LGP distribution of the NZ South population (dashed line) and
the cross-population LGP distribution of the NZ North population within the NZ South population
(solid line). The secondary plot below themain plot shows the LGP distribution of the NZNorth pop-
ulation (dashed line) and the cross-population LGP distribution of the NZ South population within
the NZ North population (solid line). The LGPs and the dashed curves were calculated using the
leave-one-out method.
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Figure 3.10: Permutation test results based on microsatellite data extracted from NZ fur seals (Arc-
tocephalus forsteri), in the NZ North (n = 246) and NZ South (n = 98) regions defined in Dussex et
al. (2016). In each plot, the bold line indicates the observed value and the histogram shows values
obtained from 100 datasets in which the population labels were randomly reassigned to all the seals.
(a) Overlap area between NZ North LGP distribution and NZ South LGP distribution with respect
to NZ North. (b) Overlap area between NZ South LGP distribution and NZ North LGP distribution
with respect to NZ South. (c) Probability that for a random pair of genotypes arising from NZ North
and the NZ South populations, the one arising from NZ North will have a better fit to the NZ North
population. (d) Probability that of those two genotypes, the one arising from NZ South will have a
better fit to the NZ South population. (e) Probability that a random genotype arising from NZ North
will have a better fit to the NZNorth population than to the NZ South population. (f) Probability that
a random genotype arising fromNZ Southwill have a better fit to theNZ South population than to the
NZNorth population. The single-population LGP distributionswere constructed using leave-one-out.
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3.6 Application to data from southern right whales (Eubalaena
australis)

Microsatellite data at 17 loci were obtained from southern right whales (Eubalaena australis).
Figure 3.11 shows the GenePlot of the six southern right whale populations identified in
Carroll et al. (2018). Five are nursing grounds in Argentina, South Africa, southwestern and
southeastern Australia, and New Zealand, and one is the migratory corridor near Australia.
Like the previous example of New Zealand fur seals, we deliberately selected this example
to trial our methods in a case where population structure is subtle and might or might not
exist.

Figure 3.11 shows that the Argentinian and South African populations overlap and the
Australian, New Zealand and Australian migratory corridor populations overlap, but there
is still visible structure between these two regions.

Figure 3.12 shows the GenePlot and LGP distribution plots for the southern right whale
nursing ground populations, pooled as the South Atlantic population (Argentina and South
Africa) and the Indo-Pacific population (southwestern Australia, southeastern Australia and
New Zealand). These groupings follow Carroll et al. (2018). This plot shows more clearly
that there is some population structure between these two regions, with the South Atlantic
whalesmostly found below the diagonal line and the Indo-Pacificwhalesmostly found above
the diagonal line.

The overlap areas for baselines South Atlantic and Indo-Pacific are 0.727 and 0.704 respec-
tively. The interloper detection probabilities are 0.690 and 0.705. The correct assignment prob-
abilities are 0.861 and 0.836. This indicates that there is some population structure present,
and that most of the time we would be able to distinguish between individuals from the two
populations or assign an individual to the correct population. Figure 3.13 shows the permu-
tation test results for these populations, which are all significant, confirming the evidence of
population structure.

Figure 3.14 shows the GenePlot and LGP distribution plots for the Argentinian and South
African populations. As hinted in Figure 3.11, they are strongly overlapping, though there is
less overlapwith baselineArgentina (bottomplot) thanwith baseline SouthAfrica (left-hand
plot). The overlap areas for Argentina and South Africa are 0.754 and 0.992 respectively. The
interloper detection probabilities are 0.668 and 0.499. The correct assignment probabilities are
0.689 and 0.655. This indicates that there is weak directional population structure between
these two populations. Figure 3.15 shows the permutation test results for these populations.
Argentina is significantly separated from South Africa, but South Africa is not significantly
separated from Argentina, and many whales from the Argentina population would fit well
into the South African population.
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Figure 3.11: GenePlot based on microsatellite data extracted from southern right whales (Eubalaena
australia) by Carroll et al. (2018). Each point represents an individual whale from the Argentina (n =
46), South Africa (n = 47), southwestern Australia (n = 17), southeastern Australia (n = 12) or
New Zealand (n =51) nursing grounds or the Australian migratory corridor (n =49) identified by
Carroll et al. (2018). The axes show the first and second principal components of the log-genotype
probabilities with respect to the six populations. The LGPs were calculated using the leave-one-out
method.
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Figure 3.12: GenePlot based on microsatellite data extracted from southern right whales (Eubalaena
australia) by Carroll et al. (2018). Each point on the central plot represents an individual whale from
the South Atlantic (n = 93) or Indo-Pacific (n =80) regions identified by Carroll et al. (2018). The
main horizontal axes show the posterior log-genotype probability (LGP) of obtaining each individ-
ual’s genotype from the South Atlantic population; the main vertical axes show the same, but with
respect to the Indo-Pacific population. The thick diagonal line shows equal probability with respect to
both populations, and the fine diagonal lines show 10 times higher probability for one population than
the other. The vertical dashed line shows the 1% percentile line for South Atlantic; the horizontal line
shows the 1% percentile line for Indo-Pacific. The secondary plot to the left of the main plot shows the
LGP distribution of the Indo-Pacific population (dashed line) and the cross-population LGP distribu-
tion of the South Atlantic population within the Indo-Pacific population (solid line). The secondary
plot below the main plot shows the LGP distribution of the South Atlantic population (dashed line)
and the cross-population LGP distribution of the Indo-Pacific population within the South Atlantic
population (solid line). The LGPs and the dashed curves were calculated using the leave-one-out
method.
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Figure 3.13: Permutation test results based on microsatellite data extracted from southern right
whales (Eubalaena australis), in the South Atlantic (n =93) and Indo-Pacific (n =80) regions described
in Carroll et al. (2018). In each plot, the bold line indicates the observed value and the histogram
shows values obtained from 100 datasets in which the population labels were randomly reassigned
to all the whales. (a) Overlap area between South Atlantic LGP distribution and LGP distribution of
Indo-Pacific with respect to South Atlantic. (b) Overlap area between Indo-Pacific LGP distribution
and LGP distribution of South Atlantic with respect to Indo-Pacific. (c) Probability that for a random
pair of genotypes arising from South Atlantic and the Indo-Pacific populations, the one arising from
South Atlantic will have a better fit to the South Atlantic population. (d) Probability that of those
two genotypes, the one arising from Indo-Pacific will have a better fit to the Indo-Pacific population.
(e) Probability that a random genotype arising from South Atlantic will have a better fit to the South
Atlantic population than to the Indo-Pacific population. (f) Probability that a random genotype aris-
ing from Indo-Pacific will have a better fit to the Indo-Pacific population than to the South Atlantic
population. The single-population LGP distributions were constructed using leave-one-out.
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Figure 3.14: GenePlot and LGP distribution plots based on microsatellite data extracted from south-
ern right whales (Eubalaena australis) by Carroll et al. (2018). Each point on the central plot represents
an individual whale from the Península Valdés, Argentina (n = 46) or South African (n = 47) nursing
ground populations identified by Carroll et al. (2018). Details as in Figure 3.12.
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Figure 3.15: Permutation test results based on microsatellite data extracted from southern right
whales (Eubalaena australis), in the Argentinian (n = 46) and South African (n = 47) nursing grounds
described in Carroll et al. (2018). Details as in Figure 3.13.



3.6. Application to data from southern right whales (Eubalaena australis) 91

For a further example, Figure 3.16 shows the GenePlot and LGP distribution plots for
southern right whale data at 13 microsatellite loci frommainland New Zealand published in
Carroll et al. (2011), Carroll et al. (2012) and Carroll et al. (2014), and from the Auckland
Islands described in Carroll et al. (2013).

Before 19th century whaling almost extirpated them, there was a large breeding popula-
tion of southern right whales around the southern coast of mainland New Zealand. The sub-
antarctic Auckland Islands population was a refugium during the whaling era, and is now
growing healthily (Carroll et al. 2013). Over the last few years a few southern right whales
have been sighted around the mainland New Zealand coast, very occasionally with calves.
Researchers are interested in whether these occasional sightings are sourced from the Auck-
land Islands population, potentially signalling a recolonization of mainland New Zealand
from the Auckland Islands population.

These two populations are fully overlapping, as anticipated. The overlap areas for the
Auckland Islands and Mainland NZ respectively are 0.941 and 0.849 respectively. The in-
terloper detection probabilities are 0.539 and 0.399. The correct assignment probabilities are
0.775 and 0.125.

The smaller magnitude of the correct assignment probability for Mainland NZ is most
likely due to the large disparity between the sample sizes of the two populations; as the larger
Auckland Islands sample encompasses a much higher level of genetic diversity, we would
expect most individuals from either population to have a better fit to the Auckland Islands
population than the mainland New Zealand population, even in the absence of any genetic
differentiation. This is confirmed by the location of the null distributions in Figure 3.17, which
shows the permutation test results for the Auckland Islands and Mainland NZ populations.
The null distribution for the correct assignment probability is located substantially lower for
Mainland NZ than it is for the Auckland Islands, and the observed correct assignment prob-
ability of 0.125 lies within the null distribution.

All six measures are non-significant for this data, implying that there is no evidence of
population separation by any measure. This is consistent with the hypothesis that Mainland
NZ whales are migrants from the Auckland Islands population or that the Mainland NZ
population was recently founded from the Auckland Islands population.
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Figure 3.16: GenePlot and LGP distribution plots based on microsatellite data extracted from south-
ern right whales (Eubalaena australis) (Carroll et al. 2011, 2012, 2013, 2014). Each point on the central
plot represents an individual whale from the Auckland Islands (n = 516) or Mainland New Zealand
(n = 41) populations. Details as in Figure 3.12.
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Figure 3.17: Permutation test results based on microsatellite data extracted from southern right
whales (Eubalaena australis), in the Auckland Islands (n = 516) and Mainland NZ (n = 41) popu-
lations (Carroll et al. 2011, 2012, 2013, 2014). Details as in Figure 3.13.
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3.7 Application to data from single nucleotide polymorphisms
(SNPs)

GenePlots and the probabilistic measures we propose can also be applied to large
numbers of single nucleotide polymorphism (SNP) loci as for microsatellites,
though with higher computational cost. We demonstrate this using SNPs from hu-
man genomes (The 1000 Genomes Consortium, 2015), with files downloaded from
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/.

We selected biallelic loci that were at least 1Mbps apart and with minor allele frequency
larger than 0.05. Then we removed any loci which were correlated with any other loci on the
same chromosome with r2 ≥ 0.1 and any loci which were correlated with 2 or more other
loci with r2 ≥ 0.05, where the correlations were calculated separately within each of the 5
super-populations (Americas, Europe, Africa, South Asia and East Asia). We then had 2317
remaining SNP loci for analysis. We used the VCFtools software (Danecek et al, 2011) to
extract the SNP loci and calculate r2.

We have used leave-one-out computations throughout, and note that it is even more im-
portant to use leave-one-out for large numbers of SNP loci than for small numbers of mi-
crosatellite loci, because as the number of loci increases, the effect of each observed genotype
on the sample increases, and even slight differences in the allele frequencies between the two
populations are enough to create the spurious appearance of separation between the popu-
lations when not using leave-one-out.

Figures 3.18 and 3.19 show the GenePlot of the five super-populations defined by The
1000 Genomes Consortium (2015). Two of the populations, African Caribbean in Barbados
(ACB) and People with African Ancestry in Southwest USA (ASW), may be labelled as be-
longing to either theAfrican orAmerican super-populations. Figure 3.18 shows them labelled
in the American super-population, and Figure 3.19 shows them labelled in the African super-
population.

We selected three pairs of populations to demonstrate our methodology with highly
overlapping and highly differentiated populations. Figure 3.20 shows the GenePlot of the
African populations excluding the ACB and ASW populations. The remaining populations
are Yoruba in Ibadan, Nigeria (YRI); Esan in Nigeria (ESN); Gambian in Western Division,
Mandinka (GWD); Mende in Sierra Leone (MSL); and Luhya in Webuye, Kenya (LWK). We
picked two of those populations which show very low levels of differentiation.

Figure 3.21 shows the GenePlot and LGP distribution plots for the Yoruba (YRI) and Esan
(ESN) populations from Nigeria, both within the African superpopulation. This is an ex-
ample of a pair of strongly overlapping populations, with almost entirely overlapping LGP
curves. The overlap areas with baselines Yoruba and Esan are 0.998 and 0.928 respectively.
The interloper detection probabilities are 0.498 and 0.551,which is close to the value of 0.5 that
we would get if we simply picked one of the two hypothetical individuals purely at random
each time. The correct assignment probabilities are 0.688 and 0.576.
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Figure 3.18: GenePlot based on SNP data from human genomes (The 1000 Genomes Consortium,
2015). Each point represents an individual from the African (n =504), American (n =504), European
(n =503), South Asian (n =489) or East Asian (n =504) super-populations, with individuals from
the Barbados (ACB) and African Ancestry US (ASW) populations labelled in the American super-
population. The axes show the first and second principal components of the log-genotype probabilities
with respect to the five populations. The LGPs were calculated using the leave-one-out method.
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Figure 3.19: GenePlot based on SNP data from human genomes (The 1000 Genomes Consortium,
2015). Each point represents an individual from the African (n =661), American (n =347), Euro-
pean (n =503), South Asian (n =489) or East Asian (n =504) super-populations, with individuals
from the Barbados (ACB) and African Ancestry US (ASW) populations labelled in the African super-
population. The axes show the first and second principal components of the log-genotype probabilities
with respect to the five populations. The LGPs were calculated using the leave-one-out method.
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Figure 3.20: GenePlot based on SNP data from human genomes (The 1000 Genomes Consortium,
2015). Each point represents an individual from the Yoruba in Ibadan, Nigeria (YRI, n = 108); Esan
in Nigeria (ESN, n = 99); Gambian inWestern Division, Mandinka (GWD, n = 113); Mende in Sierra
Leone (MSL, n = 85); or Luhya in Webuye, Kenya (LWK, n = 99) populations in the African super-
population, excluding individuals from the Barbados (ACB) and African Ancestry US (ASW) pop-
ulations. The axes show the first and second principal components of the log-genotype probabilities
with respect to the five populations. The LGPs were calculated using the leave-one-out method.
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Using a more conservative assignment protocol that assigns an individual only if their
genotype probability is 100 times higher in one population than the other, the correct assign-
ment probabilities for Yoruba and Esan respectively are 0.439 and 0.325. The fact that these
are so much lower than the best-fit assignment probabilities shows that many hypothetical
individuals from either population would not be assigned under the more conservative pro-
tocol, due to having a similar fit to both populations.

Figure 3.22 shows the GenePlot of the East Asian populations: Japanese in Tokyo, Japan
(JPT); Kinh in Ho Chi Minh City, Vietnam (KHV); Chinese Dai in Xishuangbanna, China
(CDX); Han Chinese in Beijing, China (CHB); and Southern Han Chinese (CHS). In gen-
eral we can see that these populations are more differentiated than the African populations
in Figure 3.20. We picked two pairs of these East Asian populations which show very high
amounts of differentiation.

Figure 3.23 shows the GenePlot and LGP distribution plots for the Japanese (JPT) and
Kinh Vietnamese (KHV) populations, both within the East Asian superpopulation, and Fig-
ure 3.24 shows the plots for the Japanese and Chinese Dai in Xishuangbanna (CDX) popula-
tions. These are examples of pairs of strongly separated populations.

The overlap areas for the Japanese and Kinh Vietnamese populations are 0.302 and 0.327
respectively. The interloper detection probabilities are 0.928 and 0.917. The correct assign-
ment probabilities are both 1.000. Even using themore conservative assignment protocol that
assigns an individual only if their genotype probability is 100 times higher in one population
than the other, the correct assignment probabilities for Japanese and Kinh Vietnamese re-
spectively are still both 1.000.

The overlap areas for the Japanese and Chinese Dai in Xishuangbanna populations are
0.232 and 0.224 respectively. The interloper detection probabilities are 0.954 and 0.957. The
correct assignment probabilities are both 1.000. Even using themore conservative assignment
protocol that assigns an individual only if their genotype probability is 100 times higher in
one population than the other, the correct assignment probabilities for Japanese and Chinese
Dai respectively are still both 1.000.

The overlap areas for these pairs of strongly separated populations are much higher than
the overlap area of Aotea within the Broken Islands in Figure 3.1. The overlap area here indi-
cates that the populations are genetically quite similar, but by taking 2317 SNPs we gain the
power to discriminate convincingly between them, as demonstrated by the interloper detec-
tion probabilities and correct assignment probabilities, which are all close to 1.

Figure 3.25 shows permutation test results for the Yoruba (YRI) and Esan (ESN) popu-
lations from Nigeria, the most strongly overlapping out of all pairs of populations. We used
500 permutations for this dataset, because some of the results for 100 permutations were
marginally significant. The overlap area probabilities are non-significant for both popula-
tions. The interloper detection probability is non-significant for YRI and weakly significant
for ESN. Both of the correct assignment probabilities are significant.
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Figure 3.21: GenePlot and LGP distribution plots based on SNP data from the 1000 Genomes Con-
sortium (2015). Each point on the central plot represents an individual from the Yoruba (YRI, n =
108) or Esan (ESN, n = 99) populations from Nigeria. The main horizontal axes show the posterior
log-genotype probability (LGP) of obtaining each individual’s genotype from the Yoruba population;
the main vertical axes show the same, but with respect to the Esan population. The thick diagonal line
shows equal probability with respect to both populations, and the fine diagonal lines show 10 times
higher probability for one population than the other. The vertical dashed line shows the 1% percentile
line for Yoruba; the horizontal line shows the 1% percentile line for Esan. The secondary plot to the
left of the main plot shows the LGP distribution of the Esan population (dashed line) and the cross-
population LGP distribution of the Yoruba population within the Esan population (solid line). The
secondary plot below the main plot shows the LGP distribution of the Yoruba population (dashed
line) and the cross-population LGP distribution of the Esan population within the Yoruba population
(solid line). The LGPs and the dashed curves were calculated using the leave-one-out method.
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Figure 3.22: GenePlot based on SNP data from human genomes (The 1000 Genomes Consortium,
2015). Each point represents an individual from Japanese in Tokyo, Japan (JPT, n = 104); Kinh in Ho
Chi Minh City, Vietnam (KHV, n = 99); Chinese Dai in Xishuangbanna, China (CDX, n = 93); Han
Chinese in Beijing, China (CHB, n = 103); and Southern Han Chinese (CHS, n = 105) populations
in the East Asian super-population. The axes show the first and second principal components of the
log-genotype probabilities with respect to the five populations. The LGPs were calculated using the
leave-one-out method.
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Figure 3.23: GenePlot and LGP distribution plots based on SNP data from the 1000 Genomes Con-
sortium (2015). Each point on the central plot represents an individual from the Japanese (JPT, n =
104) or Kinh Vietnamese (KHV, n = 99) populations. Details as in Figure 3.21.
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Figure 3.24: GenePlot and LGP distribution plots based on SNP data from the 1000 Genomes Con-
sortium (2015). Each point on the central plot represents an individual from the Japanese (JPT, n =
104) or Chinese Dai in Xishuangbanna (CDX, n = 93) populations. Details as in Figure 3.21.
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Figure 3.26 shows permutation test results for the Japanese (JPT) and Kinh Vietnamese
(KHV) populations, which are strongly separated with all measures showing significant re-
sults. Figure 3.27 shows similar results for the Japanese and Xishuangbanna Chinese Dai
(CDX) populations. These results were based on 100 permutations.
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Figure 3.25: Permutation test results based on SNP data from the 1000 Genomes Project, for the
Yoruba (YRI, n = 108) and Esan (ESN, n = 99) populations, both from Nigeria. The tests involved
500 permutations. In each plot, the bold line indicates the observed value and the histogram shows
values obtained from 100 datasets in which the population labels were randomly reassigned to all the
individuals. (a) Overlap area between Yoruba LGP distribution and LGP distribution of Esan with
respect to Yoruba. (b) Overlap area between Esan LGP distribution and LGP distribution of Yoruba
with respect to Esan. (c) Probability that for a random pair of genotypes arising from Yoruba and
the Esan populations, the one arising from Yoruba will have a better fit to the Yoruba population. (d)
Probability that of those two genotypes, the one arising from Esan will have a better fit to the Esan
population. (e) Probability that a random genotype arising from Yoruba will have a better fit to the
Yoruba population than to the Esan population. (f) Probability that a random genotype arising from
Esanwill have a better fit to the Esan population than to the Yoruba population. The single-population
LGP distributions were constructed using leave-one-out.
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Figure 3.26: Permutation test results based on SNP data from the 1000 Genomes Project, for the
Japanese (JPT, n = 104) and Kinh Vietnamese (KHV, n = 99) populations. Details as in Figure 3.25.
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Figure 3.27: Permutation test results based on SNP data from the 1000 Genomes Project, for the
Japanese (JPT, n = 104) and Chinese Dai in Xishuangbanna (CDX, n = 93) populations. Details as in
Figure 3.25.
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3.8 Simulation study using data from ship rats (Rattus rattus)
from Aotea

We ran a simulation study using rats from the Aotea ship rat (Rattus rattus) sample from
Section 3.2, to test the power of the newmeasures to distinguish between a source population
and a splinter population dominated by internal recruitment, compared with the case where
substantial ongoing migration occurs from the source into the splinter population.

3.8.1 Methods

We bred a new generation of 40 simulated rats from the Aotea ship rat (Rattus rattus) sample
(n = 57) by selecting 40 pairs of parent rats at random with replacement from the Aotea
sample. For each parent we selected one of their alleles at each locus at random, and for
any locus at which that parent rat had missing data we selected an allele from that locus at
random from the rats in the Aotea dataset that had data at that locus. We then combined the
alleles from both parents to form a new individual. The resulting population we labelled as
“Founded Population”.

For the initial generation we then compared all 40 of those rats with 40 sampled from the
Aotea dataset, which were labelled respectively as “Founded Sample” and “Original Sam-
ple”.

For further generations 1 to 3, we bred nB simulated rats from the entire previous gener-
ation of the Founded Population, and bred nI simulated rats directly from the original Aotea
dataset, and combined the nB “internally bred” rats and the nI “immigrant” rats into a new
generation of the Founded Population. Then we sampled 40 of that new generation and com-
pared it with a new sample of 40 from the Aotea dataset.

We replicated the process 3 times to assess the amount of sampling variability. Unless
otherwise marked, all the results shown are from replicate 1.

3.8.2 Results

Figures 3.28 and 3.29 show combined GenePlots and LGP distribution plots for one replicate
of a Founded Population with 20 internally bred individuals and 20 immigrants in each gen-
eration. Figure 3.28 shows samples from generation 1 and Figure 3.29 shows samples from
generation 3 of the Founded Population. There is a large amount of overlap in the LGP dis-
tribution plots for Figures 3.28 and 3.29.

Figures 3.30 and 3.31 show the permutation test results from the same samples as in Fig-
ures 3.28 and 3.29, which are all non-significant. We obtained similar results from the other 2
replicates. This implies that if half of the population in each generation are migrants then the
Founded Population will maintain sufficient genetic similarity with the original Aotea pop-
ulation for the two samples to be indistinguishable, even after three generations of internal
breeding and immigration.
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Figure 3.28: GenePlot and LGP distribution plots based on microsatellite data from 40 ship rats (Rat-
tus rattus) sampled on Aotea and 40 rats sampled from the Founded Population after 1 generation,
where the Founded Population was made up of 20 internally bred rats and 20 immigrant rats. Details
as in Figure 3.1.

We obtained similar results for a Founded population made up of 30 internally bred indi-
viduals and 10 immigrants in each generation; after 3 generations, the permutation tests all
returned non-significant results for all 3 replicate runs. All the permutation tests were based
on 100 randomisations.
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Figure 3.29: GenePlot and LGP distribution plots based on microsatellite data from 40 ship rats (Rat-
tus rattus) sampled on Aotea and 40 rats sampled from the Founded Population after 3 generations,
where the Founded Population was made up of 20 internally bred rats and 20 immigrant rats. Details
as in Figure 3.1.
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Figure 3.30: Permutation test results based on microsatellite data from 40 ship rats (Rattus rattus)
sampled on Aotea and 40 rats sampled from the Founded Population after 1 generation, where the
Founded Population was made up of 20 internally bred rats and 20 immigrant rats. Details as in Fig-
ure 3.5.
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Figure 3.31: Permutation test results based on microsatellite data from 40 ship rats (Rattus rattus)
sampled on Aotea and 40 rats sampled from the Founded Population after 3 generations, where the
Founded Population was made up of 20 internally bred rats and 20 immigrant rats. Details as in Fig-
ure 3.5.
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Figures 3.32 and 3.33 show combined GenePlots and LGP distribution plots for one repli-
cate of a Founded Population with 35 internally bred individuals and 5 immigrants in each
generation. Figure 3.32 shows samples fromgeneration 1 and Figure 3.33 shows samples from
generation 3 of the Founded Population.

After 1 generation, there is much less overlap between the single-population LGP distri-
bution of the Founded Population and the cross-population LGP distribution of the Original
sample into the Founded Population (the bottom plot in Figures 3.32 and 3.33) than was
seen in Figures 3.28 and 3.29. The sample from the Original (Aotea) population does not fit
as well into the Founded Population when there are fewer migrants arriving in the Founded
Population.

By contrast, there is still a large amount of overlap between the single-population LGP
distribution of theOriginal sample and the cross-population LGPdistribution of the Founded
Population into the Original sample (the bottom plot in Figures 3.32 and 3.33). This suggests
that the Founded Population is undergoing a small amount of genetic drift but the Founded
Population simulated rats would still fit well into the Original (Aotea) population.

Figures 3.34 and 3.35 show the permutation test results from the same samples as in Fig-
ures 3.32 and 3.33.

For generation 1, the results for the Founded Population are weakly significant (Fig-
ure 3.34). One of the other two replicate runs also had weakly significant results, and the
other had significant results for generation 1 of the Founded Population. For generation 3,
the results for the Founded Population are significant (Figure 3.35) and the other two repli-
cate runs had weakly significant results.

For generation 1 (Figure 3.34), the results for the Original (Aotea) population are non-
significant. For the other two replicate runs, the overlap area and interloper detection prob-
ability were non-significant and the correct assignment probability was weakly significant.
For generation 3 (Figure 3.35), the results for the Original (Aotea) population are similar to
those for generation 1: non-significant for overlap area and interloper detection probability,
and weakly significant or non-significant for correct assignment probability.

This implies that if 5 out of the population of 40 (12.5%) in each generation are migrants
then within two or three generations the overlap area and interloper detection probability
measures will be able to distinguish between the Founded Population and the original Aotea
population.
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Figure 3.32: GenePlot and LGP distribution plots based on microsatellite data from 40 ship rats (Rat-
tus rattus) sampled on Aotea and 40 rats sampled from the Founded Population after 1 generation,
where the Founded Population was made up of 35 internally bred rats and 5 immigrant rats. Details
as in Figure 3.1.
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Figure 3.33: GenePlot and LGP distribution plots based on microsatellite data from 40 ship rats (Rat-
tus rattus) sampled on Aotea and 40 rats sampled from the Founded Population after 3 generations,
where the Founded Population was made up of 35 internally bred rats and 5 immigrant rats. Details
as in Figure 3.1.
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Figure 3.34: Permutation test results based on microsatellite data from 40 ship rats (Rattus rattus)
sampled on Aotea and 40 rats sampled from the Founded Population after 1 generation, where the
Founded Population was made up of 35 internally bred rats and 5 immigrant rats. Details as in Fig-
ure 3.5.
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Figure 3.35: Permutation test results based on microsatellite data from 40 ship rats (Rattus rattus)
sampled on Aotea and 40 rats sampled from the Founded Population after 3 generations, where the
Founded Population was made up of 35 internally bred rats and 5 immigrant rats. Details as in Fig-
ure 3.5.
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Figures 3.36, 3.37, 3.38 and 3.39 show combined GenePlots and LGP distribution plots for
one replicate of a Founded Populationwith 39 internally bred individuals and 1 immigrant in
each generation. Figures 3.36 and 3.37 show samples from generation 1 for replicates 1 and 3.
Figure 3.38 shows samples from generation 2 and Figure 3.39 shows samples from generation
3 of the Founded Population.

Figure 3.36 shows more overlap in the bottom LGP distribution plot than was seen in Fig-
ures 3.32 and 3.33, but Figure 3.37 showsmore overlap than Figure 3.36. Figures 3.38 and 3.39
show similar amounts of overlap in the bottom LGP distribution plot to Figures 3.32 and 3.33.

As for Figures 3.32 and 3.33, the left LGP distribution plots in Figures 3.36 to 3.39, which
show the fit of typical Founded Population rats into the Original (Aotea) sample, still show
large amounts of overlap. This demonstrates the directionality of the scenario, where the
Founded population retains a good fit to the Original (Aotea) population whilst undergo-
ing genetic drift that makes the Original population an increasingly poor fit to the Founded
Population.

Figures 3.40 to 3.43 show the permutation test results from the same samples as in Fig-
ures 3.36 to 3.39.

For generation 1, the results for the Founded Population in replicate 1 are non-significant
(Figure 3.40) and the results for the Founded Population in replicate 3 are non-significant
for overlap area and weakly significant for interloper detection probability (Figure 3.41). The
remaining replicate hadnon-significant results for overlap area and interloper detection prob-
ability and weakly significant results for correct assignment probability.

For generation 2, the results for the Founded Population are significant for overlap area
and interloper detection probability (Figure 3.42) and thiswas the case for all three replicates.
The results for the Founded Population for correct assignment probability were significant
for one replicate, weakly significant for another replicate and non-significant for the third
replicate.

For generation 3, the results for the Founded Population were all weakly significant or
significant for all three replicates (Figure 3.43).

For the Original (Aotea) population, the overlap area and interloper detection probability
results were non-significant for all generations and all three replicates (Figures 3.40 to 3.43).
The correct assignment probability results for the Original (Aotea) population were non-
significant for generation 1 for all three replicates, and significant or weakly significant for
generations 2 and 3 for all three replicates.

This implies that if only one of each generation of 40 (2.5%) is an immigrant then within
two generations the overlap area and interloper detection probability measures will be able
to distinguish between the Founded Population and the original Aotea population.
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Figure 3.36: GenePlot and LGP distribution plots based on microsatellite data from 40 ship rats (Rat-
tus rattus) sampled on Aotea and 40 rats sampled from the Founded Population after 1 generation,
where the Founded Population was made up of 39 internally bred rats and 1 immigrant rat. Results
from replicate 1. Details as in Figure 3.1.
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Figure 3.37: GenePlot and LGP distribution plots based on microsatellite data from 40 ship rats (Rat-
tus rattus) sampled on Aotea and 40 rats sampled from the Founded Population after 1 generation,
where the Founded Population was made up of 39 internally bred rats and 1 immigrant rat. Results
from replicate 3. Details as in Figure 3.1.
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Figure 3.38: GenePlot and LGP distribution plots based on microsatellite data from 40 ship rats (Rat-
tus rattus) sampled on Aotea and 40 rats sampled from the Founded Population after 2 generations,
where the Founded Population was made up of 39 internally bred rats and 1 immigrant rat. Details
as in Figure 3.1.
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Figure 3.39: GenePlot and LGP distribution plots based on microsatellite data from 40 ship rats (Rat-
tus rattus) sampled on Aotea and 40 rats sampled from the Founded Population after 3 generations,
where the Founded Population was made up of 39 internally bred rats and 1 immigrant rat. Details
as in Figure 3.1.
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Figure 3.40: Permutation test results based on microsatellite data from 40 ship rats (Rattus rattus)
sampled on Aotea and 40 rats sampled from the Founded Population after 1 generation, where the
FoundedPopulationwasmade up of 39 internally bred rats and 1 immigrant rat. Results from replicate
1. Details as in Figure 3.5.
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Figure 3.41: Permutation test results based on microsatellite data from 40 ship rats (Rattus rattus)
sampled on Aotea and 40 rats sampled from the Founded Population after 1 generation, where the
FoundedPopulationwasmade up of 39 internally bred rats and 1 immigrant rat. Results from replicate
3. Details as in Figure 3.5.
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Figure 3.42: Permutation test results based on microsatellite data from 40 ship rats (Rattus rattus)
sampled on Aotea and 40 rats sampled from the Founded Population after 2 generations, where the
Founded Population was made up of 39 internally bred rats and 1 immigrant rat. Details as in Fig-
ure 3.5.
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Figure 3.43: Permutation test results based on microsatellite data from 40 ship rats (Rattus rattus)
sampled on Aotea and 40 rats sampled from the Founded Population after 3 generations, where the
Founded Population was made up of 39 internally bred rats and 1 immigrant rat. Details as in Fig-
ure 3.5.
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3.9 Discussion

The key benefit of our new methodology is that the new measures are closely linked to the
GenePlot visualization, greatly improving the interpretability of the results. The GenePlot
shows the assignment scores for the observed samples, allowing one to identify any individ-
uals who do not fit well with the rest of their sample. The LGP distribution plots provide
an overview of the populations after accounting for sampling uncertainty, and the numeric
measures summarize these findings, which can be tested for significance.

The new methodology is also distinct from existing measures such as FST, G′ST and Dest,
in that it is focused on practical applications of assignment.

FST, still the most widely used of the existing measures (see Section 1.3), can be inter-
preted in multiple ways. It has been used to detect loci under selection, and it is commonly
interpreted as a fixation index. It is also used as an indicator of gene flow, and can be used
to estimate migration rate. Standardization, in the form of alternative estimators such as G′ST
and ΦST, can be used to account for the effects of mutation when analysing FST. However, this
plethora of uses makes it more difficult to interpret FST in any particular scenario, because it
is affected by so many different factors.

D and Dest are separated from questions of fixation in order to make clearer statements
about the commonality of alleles between populations. But the major disadvantages ofD are
the lack of a natural global formulation (see Whitlock 2011, and Section 1.3), and its lack of
association with population size (Meirmans & Hedrick 2011).

Ourmeasures, overlap area, interloper detection probability and correct assignment prob-
ability, are affected by population size and therefore do reflect local drift, unlike D. And al-
though our measures do not, as Whitlock (2011) requested, give “similar results for all neu-
tral loci”, rather, we incorporate information from any neutral loci to assess the populations.
We could subselect loci that are particularly highly differentiating between populations, but
there is no need to do so within our framework, and indeed the choice of loci might produce
biased results when analysing additional samples in future.

Unlike existing measures that are mostly defined in terms of heterozygosity, our mea-
sures are defined in terms of genotypes. Rather than attempting to make direct inferences
about migration rates, we aim to determine whether the evidence of population structure
is clear enough to inform assignment or make decisions about the practical management of
populations.

Our measures are, as yet, only applicable to pairs of populations rather than a group
of multiple populations, unlike measures such as FST, G′ST and D. For pairs of populations,
however, those existing measures are all symmetric, giving only a single value for the two
populations, whereas our measures are asymmetric and directional, aiming to capture the
disparity that so often exists between populations. Our simulations in Section 3.8 show that
our methodology provides a powerful tool for inferring the direction of differentiation be-
tween the populations.
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A final comment on the three proposed measures is that the permutation results for the
overlap area and interloper detection probability are very often aligned with each other, so
although users should assess both measures, they can for the most part choose which to use.
The overlap area has a more intuitive visual interpretation, whereas the interloper detection
probability is designed to be conceptually easier to explain.

The correct assignment probability tends to have higher values than the interloper de-
tection probability for any given pair of populations, although not always. This tendency
reflects the fact that assigning of one individual to their own population rather than another
population is likely to be easier than distinguishing between a native and a migrant within a
given population. Returning to our analogy from Section 3.3, any Dutch child that is good at
English is likely to be even better at Dutch!

We conclude that our measures provide a useful complement and a distinct addition to
the set of existing diversity measures. FST will probably still be used for most studies, but
there are scenarios where it, and other symmetric measures, are not sufficient to capture the
complexity of the population structure. Our methodology offers greater interpretability and
a more nuanced understanding of population structure than any other existing measures.
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Appendix H Details of overlap area and probability measure
calculations

This section describes the calculation of overlap area, interloper detection probability and
correct assignment probability. The initial step is to calculate the posterior allele frequencies
for the candidate source populations R and S based on the observed genetic samples from
those populations, using the method of Rannala & Mountain (1997). From these we can ob-
tain the LGP distributions for each population and the cross-population LGP distributions.
As described in Section 2.2.2, we define the LGP distribution for population R as being the
posterior distribution of log-genotype probabilities (LGPs) for all possible multilocus geno-
types arising from the posterior allele frequencies for population R. In this context, the LGP
is interpreted as a measure of genetic fit.

As described in Appendix C, for a single population R and a single locus L, any geno-
type aL arises with probability PR(aL) given by equation (2.4). Thus the single-locus LGP
distribution acquires point mass PR(aL) at value log{PR(aL)} for every genotype aL. Recall
that log{PR(aL)} serves as a measure of genetic fit and we are aiming to characterize the
probability distribution of this quantity.

Let YL = log{PR(aL)} be the random variable representing the single-locus LGP for pop-
ulation R, and let genotypes at locus L be indexed by g = 1, 2, . . . , k(k + 1)/2 where k is
the number of allele types at locus L. Write αg = PR(aLg ) for each g. Then each genotype aLg
contributes point mass αg to value YL = log(αg).

The random variable Y =
∑

L YL has as its distribution the multilocus LGP distribution
for populationR. We can obtain the probability density function (PDF) f(y) and cumulative
distribution function (CDF) F (y) via the saddlepoint approximation method.

H.1 Saddlepoint CDF and PDF approximations

The saddlepoint approximation to a distribution is defined in terms of the cumulant gener-
ating function (CGF), which is the log of the moment generating function (MGF). Let ML

be the moment generating function for the single-locus distribution of YL and let KL be the
cumulant generating function for YL.

Since the CGF is the log of theMGF, and genotypes are assumed to be independent across
loci, the multilocus CGF, K, is the sum of the single locus CGFs, and the derivatives are
similarly defined (see Appendix C).

129
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As given in Section 2.4.3, the saddlepoint approximation to the CDF of YL is then:

F̂ (y) =


Φ(ŵ) + φ(ŵ)

(
1

ŵ
− 1

v̂

)
if y 6= µ,

1

2
+

K ′′′(0)

6
√

2πK ′′(0)3/2
if y = µ,

where Φ and φ are the Gaussian CDF and PDF, µ is the expected value of YL and v̂ =

ŝ
√
K ′′(ŝ),

ŵ = sign(ŝ)
√

2{ŝy −K(ŝ)} ,

and ŝ is the solution to the equation
K ′(ŝ) = y.

The saddlepoint approximation to the PDF is the original form of the saddlepoint approx-
imation developed by Daniels (1954), and is given by:

f̂(y) =
1√

2πK ′′(ŝ)
exp{K(ŝ)− ŝy}.

H.2 Single and cross-population LGP distributions

If populationR is the Broken Islands population, the PDF andCDF of themultilocus LGPdis-
tribution for population R are f(y) and F (y) corresponding to the bottom plot in Figure 3.1.
The PDF, f(y), is the curve shown by the dashed line, and F (y) is the cumulative integral of
that curve.

Now we define the cross-population LGP distribution for population S within the base-
line populationR. The posterior allele frequencies forR and S are based on the set of all allele
types that were sampled in at least one of R or S, so the set of possible genotypes is the same
for either population. For a single locus L, the genotypes are written as aLg .

At locus L, the cross-population LGP distribution within baseline population R has the
same values log(αg) = log{PR(aL)} as the single-population LGP distribution for R. How-
ever, in the cross-population distribution, the point mass at log(αg) is βg = PS(aLg ), the prob-
ability of finding genotype aLg in the comparison population S. Let this be the distribution of
variable ZL. Thus ZL describes, at locus L, the distribution of genetic fit to population R of
individuals arising from population S.

This definition leads naturally to the multilocus cross-population LGP distribution for S
within baseline population R, described by random variable Z =

∑
L ZL.

ZL has the single-locus moment generating function

M̃L(t) =
∑
z

P (ZL = z) exp(tz)

=
∑
g

βg exp(t logαg)

=
∑
g

βgα
t
g .
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Derivatives of the MGF are given by:

M̃
(r)
L (t) =

∑
g

βg(logαg)
rαtg .

From the moment generating function we can calculate the cumulant generating function
(CGF) as its logarithm. The CGF forZ is then the sumof the CGFs ofZL for all lociL.We then
obtain the PDF and CDF of the cross-population LGP distribution within baseline R, using
the saddlepoint method. We often refer to this as the LGP distribution of S into R, because it
describes the genetic fit of individuals arising from S within the baseline population R.

If we take populations R and S to be the Broken Islands and Aotea populations respec-
tively, the saddlepoint approximation to the PDF of the cross-population LGP distribution of
S (Aotea) within R (the Broken Islands) is the function ξ̂(z) given by the solid blue line in
the bottom LGP plot in Figure 3.1 and shown in Figure H.1.

Figure H.1: LGP distribution plot based on microsatellite data extracted from ship rats (Rattus rat-
tus) captured on the Broken Islands (n = 60) or on Aotea (n = 57). The dashed line shows the LGP
distribution of the Broken Islands population and the solid line shows the cross-population LGP dis-
tribution of the Aotea population within the Broken Islands population. The LGPs and the dashed
curves were calculated using the leave-one-out method.

H.3 Overlap area and interloper detection probability

Once we have the saddlepoint approximations f̂(y) and F̂ (y) to the PDF and CDF of the
LGP distribution for populationR, and the saddlepoint approximation ξ̂(z) to the PDF of the
cross-population LGP distribution of S within R, then we can calculate the overlap area and
interloper detection probabilities, defined as in Section 3.3. We start by normalizing f̂(y) and
ξ̂(z) to ensure that the distributions of Y and Z are proper probability distributions.

The overlap area for population S within baseline population R is

OS→R =

∫
min(ξ̂(y), f̂(y)) dy,
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and the interloper detection probability is

IS→R = 1−
∫
ξ̂(y)F̂ (y) dy.

We can integrate over y because the distributions for both Y and Z share the same support
values y =

∑
L log{PR(aL)}.

H.4 Correct assignment probability

For correct assignment probability in baseline population R, as described in Section 3.3, we
consider individuals arising from population R, and calculate the probability that their LGP
inR exceeds that inS: in otherwords, the probability that an individual arising fromRwould
be correctly assigned to R rather than S, using a best-fit assignment criterion.

We calculate the correct assignment probability by constructing the distribution of LGP
differences in populations R and S, for genotypes arising in R.

For a single locusL, the LGP difference for genotype aLg is the difference between the LGP
with respect to R and the LGP with respect to S:

logαg − log βg = log{PR(aL)} − log{PS(aL)}.

LetWL be the random variable describing the LGP difference distribution at locus L, for
genotypes arising from R. This distribution has point mass αg at value wL = logαg − log βg.

As in Section H.2, we can obtain the moment generating function for the distribution of
WL:

ḾL(t) =
∑
w

P (WL = w) exp(tw)

=
∑
g

αg exp{t(logαg − log βg)}

=
∑
g

αg

(
αtg
βtg

)
.

Again, we can use this to obtain the single-locus cumulant generating function forWL and
themultilocus cumulant generating function forW , and thus the saddlepoint approximations
to the CDF and PDF ofW , which we call Υ̂(w) and υ̂(w). Figure 3.3 (a) shows υ̂(w) when the
populations R and S correspond to the Broken Islands and Aotea populations.

For assignment under the protocol where each individual is assigned to the population
for which they have greater LGP, the correct assignment probability is calculated as the area
to the right of 0 on the horizontal axis of Figure 3.3:

CR:S = 1− Υ̂(0).

For more conservative assignment protocols, where individual I is only assigned to R if
LGPRI > LGPSI + λ, the correct assignment probability for R versus S would be

CR:S(λ) = 1− Υ̂(λ).
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H.5 Leave-one-out form of single-population LGP distributions

In practice we generally favour the leave-one-out mode to produce GenePlots and to thence-
forth calculate the overlap area, interloper detection probability and correct assignment prob-
ability measures.

When producing GenePlots in the leave-one-out mode, the LGP of any individual sam-
pled from one of the reference populations is calculated with respect to their population
of origin after temporarily removing that individual’s genotype from the reference sample
before calculating the posterior allele frequencies in that population. The purpose of this
process is to remove the artefactual effect that each individual in the reference sample has
on the resulting GenePlot. Without leave-one-out, an individual’s fit into its own population
is inflated, and the reference populations therefore appear more distinct than they should,
particularly when the sample sizes are small or the number of loci is very high. With leave-
one-out, each individual’s fit is assessedwith respect to the rest of the reference samplewhich
is considered to be independent of the individual.

For ourmeasures based on LGP distributions to accurately reflect the leave-one-out Gene-
Plots, we also need to use a similar leave-one-out process when calculating the LGP distri-
bution for each population. This is less straightforward than the leave-one-out process for
GenePlots, because the LGP distributions are based on all the possible multilocus genotypes
that could arise in the population, whereas GenePlots only plot results for sampled individ-
uals. We need to conceptualize an adjusted measure of genetic fit, the leave-one-out LGP. For
any multilocus genotype, observed or not, this corresponds to the LGP of that genotype with
respect to the adjusted posterior allele frequencies in the reference population, where the ad-
justed posterior is obtained by first removing the alleles corresponding to the target genotype
from the reference sample. Hypothetical multilocus genotypes are treated in the same way
as the genotypes of sampled individuals, in that their alleles are removed from the posterior
allele frequencies before calculating the genotype-specific LGP.

We calculate the leave-one-out LGP distribution for a single population R by calculating
adjusted genotype probabilities with respect to R for all possible genotypes that could arise
from population R.

For a single locus L with k distinct allele types, the genotype for individual I is a =

(a1, a2, . . . , ak) where each ai is 0, 1 or 2, indicating how many alleles of type i are included
in its genotype, and

∑k
i=1 ai = 2, as in Section 2.2.1.

The unadjusted posterior genotype probability for genotype awith respect to population
R, from (2.4), is:

P(aL) =



(xr + τ)(xr + τ + 1)

(2nR + kτ)(2nR + kτ + 1)
ar = 2; aj = 0 for j 6= r;

2(xr + τ)(xs + τ)

(2nR + kτ)(2nR + kτ + 1)
ar = as = 1;
aj = 0 for j 6= r, s;
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where nR is the number of observed individuals in the reference sample from population R,
xi are the observed counts of alleles in the reference sample, and τ is defined by the choice of
prior.

For leave-one-out LGP, we aim to remove the alleles corresponding to the genotype by
adjusting the values xi and nR as needed. However, some alleles might not have been ob-
served in the sample from this population. The posterior allele frequencies of these alleles
are only based on the prior without the addition of any observed data. Thus it might happen
that the reference sample does not contain sufficiently many of the target alleles to remove
the genotype in question, so a fix is required for these cases.

For homozygous genotypeswith ar = 2we therefore calculate the leave-one-out genotype
probability with respect to population R differently depending on how many alleles of type
ar are present in the reference sample:

P(aL)LOO =



(xr + τ − 2)(xr + τ − 1)

(2nR + kτ − 2)(2nR + kτ − 1)
xr ≥ 2;

(xr + τ − 1)(xr + τ)

(2nR + kτ − 1)(2nR + kτ)
xr = 1;

(xr + τ)(xr + τ + 1)

(2nR + kτ)(2nR + kτ + 1)
xr = 0.

(H.1)

The first expression, in the top row of (H.1), is the standard one, inwhich xr is replaced by
xr − 2 and nR is replaced by nR− 1. The second and third expressions progressively account
for a deficit of allele r in the reference sample by replacing xr wth xr − 1 and nR with nR− 1

2

if xr = 1, and making no replacements if xr = 0.
For heterozygous genotypes with ar = as = 1, we similarly calculate the leave-one-out

genotype probability depending on how many alleles of types ar and as are present in the
reference sample:

P(aL)LOO =



2(xr + τ − 1)(xs + τ − 1)

(2nR + kτ − 2)(2nR + kτ − 1)
xr, xs ≥ 1;

2(xr + τ)(xs + τ − 1)

(2nR + kτ − 1)(2nR + kτ)
xr = 0; xs ≥ 1;

2(xr + τ − 1)(xs + τ)

(2nR + kτ − 1)(2nR + kτ)
xr ≥ 1; xs = 0;

2(xr + τ)(xs + τ)

(2nR + kτ)(2nR + kτ + 1)
xr = xs = 0.

(H.2)

The leave-one-out LGP distribution for populationR has the same probability point mass
at genotype g as the standard LGP distribution for population R, namely αg = PR(aLg ) for
each g at locus L. The values for the leave-one-out LGP distribution are different, however,
from the values for the standard LGP distribution, and are given by the logs of the adjusted
genotype probabilities, log ᾰg = log{P(aL)LOO}. Thus, log ᾰg corresponds to a measure of
genetic fit of genotype g in population R, when it is assessed relative to an independent ref-
erence sample.
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The moment generating function for the leave-one-out LGP distribution is also slightly
different from that given in Appendix C. The MGF in Appendix C is simplified by the fact
that the values of the standard LGP distribution are equal to the logs of the point masses.
Let Z̆L be a random variable describing the leave-one-out LGP in population R at locus L,
for a genotype arising from populationR. For the leave-one-out distribution, the single-locus
MGF is given by:

M̆L(t) =
∑
z

P (ZL = z) exp(tz)

=
∑
g

αg exp(t log ᾰg)

=
∑
g

αg ᾰ
t
g .

Derivatives of the MGF are given by:

M̆
(r)
L (t) =

∑
g

αg(log ᾰg)
r ᾰtg .

Let Z̆ =
∑

L Z̆L be the random variable distributed according to themultilocus leave-one-out
LGP distribution for population R, and f̆(z) be the saddlepoint approximation to the PDF of
that distribution.

AlthoughMcMillan & Fewster (2017) converted the leave-one-out results back to the full-
population scale for plotting on the GenePlot, we do not use this procedure now and instead
treat the leave-one-out GenePlot as a representation of the leave-one-out LGP distribution de-
scribed here. Thus, individuals from reference populationR are plotted on the leave-one-out
GenePlot at their raw leave-one-out LGPvalue in populationR, based on equations (H.1) and
(H.2). These plotted leave-one-out LGP values for individuals sampled fromR can therefore
be viewed as a sample from the distribution of Z̆, represented by the approximate PDF f̆(z).

We no longer convert the individual leave-one-out LGPs back into the full-population
scale because that full-population scale is subject to self-referential bias, where the LGPs for
individualswithin their own population are biased upwards. This is described in SectionH.7,
and illustrated in Figures H.2(d), H.3(d) and H.4(c) and (d). As described in Section H.6,
we therefore use the leave-one-out form of the LGP distribution for the baseline population,
which corresponds to the dashed curves in the LGP plots alongside the central GenePlot,
because the leave-one-out form of the baseline population LGP distribution is comparable to
the cross-population LGP distribution. The central GenePlot needs to remain consistent with
the LGP distribution plots, and therefore we also use the raw individual leave-one-out LGPs
rather than converting back to the biased full-population scale.

H.6 Leave-one-out form of numeric measures

The leave-one-out forms of the overlap area, interloper detection probability and correct as-
signment probability are calculated by using the leave-one-out form for all calculations in-
volving only the baseline population R, and using the standard non-leave-one-out form for
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all calculations involving a comparison population S as well as baseline population R. This
means that all genotypes, whether from population R or S, are assessed with respect to an
independent reference sample. If there is genuinely no genetic difference between popula-
tions R and S, then for reference samples of approximately equal size the leave-one-out LGP
distribution ofRwill be approximately equivalent to the standard cross-population LGP dis-
tribution of S within R.

The leave-one-out form of the overlap area for population S within baseline R is

ŎS→R =

∫
min(ξ̂(y), f̆(y)) dy,

and the leave-one-out form of the interloper detection probability is

ĬS→R = 1−
∫
ξ̂(y)F̆ (y) dy,

where f̆(y) and F̆ (y) are saddlepoint approximations to the PDF and CDF of the leave-one-
out LGP distribution for population R, and ξ̂(y) is the saddlepoint approximation to ξ(y),
unchanged from previous sections.

In order to calculate the leave-one-out form of the correct assignment probability we first
need to construct the leave-one-out form of the distribution for WL, which has point mass
αg at value w̆L = log ᾰg − log βg. In other words, the point masses of the distribution are
unchanged, and the components of the values that relate to the comparison population S are
unchanged, but the components of the values that relate to the baseline populationR are the
adjusted leave-one-out forms. Then the correct assignment probability with threshold λ is

C̆R:S(λ) = 1− Ῠ(λ),

where Ῠ(w) is the saddlepoint approximation to the CDF of the leave-one-out distribution of
W̆ .

H.7 Simulation results for leave-one-out LGP distribution

We conducted simulations to test that the leave-one-out LGP distribution for a single popu-
lation R correctly reproduces the LGP distribution that is obtained when genotypes are as-
sessed relative to an independent reference sample.We considered populationsR and S with
identical allele frequencies at 2000 biallelic loci. Allele frequencies at each locus were drawn
from a Beta(1, 10) distribution, conditional on the minor allele frequency being at least 0.05.
We simulated reference samples of 50 individuals from each population, and drew posterior
samples of size 10000 from the single-population and cross-population LGP distributions,
variously under leave-one-out and non-leave-one-out protocols.

Figure H.2 shows boxplots and empirical density plots for the cross-population LGP dis-
tribution of S within R and the leave-one-out and standard LGP distributions for R. The
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Figure H.2: Cross-population LGP distribution of S within R with the leave-one-out and standard
LGP distributions for R. (a) Boxplot of 10000 posterior samples from each of the three distributions.
(b) Empirical density plot for samples from the cross-population LGP distribution of S within R.
(c) Empirical density plot for samples from the leave-one-out LGP distribution for R. (d) Empirical
density plot for samples from the standard LGP distribution for R.

overlap area measure is defined as the overlap area between the cross-population and single-
population distributions, and since the allele frequencies are identical in the two populations,
we expect the overlap area to be close to one. We see from Figure H.2 that the leave-one-out
form of the single-population distribution is the appropriate formulation for constructing the
overlap area measure. The leave-one-out form closely matches the cross-population distribu-
tion, whereas the the non-leave-one-out form is biased upwards, overestimating the LGPs of
individuals within their own population.

Figure H.3 shows boxplots and empirical density plots for the cross-population LGP dis-
tribution ofRwithin S and the leave-one-out and standard LGP distributions forR. The cor-
rect assignment probability measure is constructed by taking individuals from R and com-
paring their fit intoRwith their fit into S, and this can be thought of as a comparison between
the LGP distribution ofRwith the cross-population LGP distribution ofR into S, although in
practice we also account for correlation between the LGPs of a single individual with respect
to two populationsR and S by pairing the two results and evaluating the difference between
the LGPs for that individual. Since the allele frequencies are identical in the two populations,
we expect the cross-population and single-population distributions to be almost identical
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Figure H.3: Cross-population LGP distribution of R within S with the leave-one-out and standard
LGP distributions for R. (a) Boxplot of 10000 posterior samples from each of the three distributions.
(b) Empirical density plot for samples from the cross-population LGP distribution of R within S.
(c) Empirical density plot for samples from the leave-one-out LGP distribution for R. (d) Empirical
density plot for samples from the standard LGP distribution for R.

and differences between the LGPs to be close to 0. We see from Figure H.3 that the leave-one-
out form of the single-population is again the appropriate form for constructing the correct
assignment probability, as it closely matches the cross-population LGP distribution.

Figure H.4 shows QQ plots of the posterior samples. Panels (a) and (b) confirm an excel-
lent correspondence between the leave-one-out single-population distribution for population
R and both of the cross-population LGP distributions of S within R and Rwithin S. This in-
dicates that the leave-one-out LGP distribution for a single population R correctly mimics
the LGP distribution that is obtained when genotypes are compared against an independent
reference sample from a population with identical allele frequencies.

Panels (c) and (d) in Figure H.4 confirm that the non-leave-one-out LGP distribution for
population R differs considerably from the cross-population LGP distributions. This indi-
cates that the non-leave-one-out protocol is not suitable for inference on population differen-
tiation, because the two populations are drawn from identical allele frequencies and therefore
should have the same distribution. Thus it is important to use the leave-one-out protocol for
the single-population LGP distributions to remove this spurious separation.
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FigureH.4:QQ-plots for the cross-population LGPdistributions ofRwithinS andSwithinR against
the leave-one-out and standard LGP distributions forR, using 10000 posterior samples from each dis-
tribution. (a) Cross-population distribution of S within R against leave-one-out distribution for R.
(b) Cross-population distribution of R within S against leave-one-out distribution for R. (c) Cross-
population distribution of S within R against standard distribution for R. (d) Cross-population dis-
tribution of R within S against standard distribution for R.





Chapter 4
Simulation study

In Chapter 3 we introduced three new directional measures of population differentiation:
overlap area, interloper detection probability, and correct assignment probability. Here, we
calculate these measures in various scenarios to see how they vary with allele frequencies,
population size and other factors, and also compare them to existing measures such as G′ST
and Dest. We use purely simulated data, unlike Section 3.8, which used simulated rats bred
from a real dataset.

First we test the three measures using simulated genotypes generated directly from allele
frequencies, allowing us to control the allele frequencies precisely. We then test the measures
using data simulated in Easypop (Balloux 2001).

4.1 Benchmark cases

We assess the behaviour of the measures at both extremes of differentiation, when the popu-
lations have identical allele frequencies or have fully non-overlapping alleles. For populations
with identical allele frequencies, the overlap areas should be approximately 1 and the inter-
loper detection probabilities and correct assignment probabilities should be approximately
0.5 if samples sizes are equal, corresponding to an even chance of choosing between the two
populations. For populations with fully non-overlapping alleles, the overlap areas should be
approximately 0 and all the probabilities should be approximately 1.

We also test the behaviour of the measures for populations with similar but non-identical
allele frequencies, to assess how the measures change as the allele frequencies become more
differentiated.

At each locus we generated a set of genotypes directly from the allele frequencies of each
population, then we combined these over all loci, and calculated the measures based on the
resulting samples. In most of the scenarios, the finite sample sizes created variability from

141
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the stated allele frequencies. In the populations with fully non-overlapping alleles, the alleles
with zero frequency never occurred in the generated samples, so the samples always had
non-overlapping observed alleles.

Table 4.1 shows the parameter values tested, and Table 4.2 shows the allele frequencies
used to generate the populations in each scenario. All the populations generated were of size
10,000.

Parameter Values tested
Number of loci 10, 50, 100, 500
Sample size 100, 1000

Table 4.1: Parameter values used for testing the directionalmeasures overlap area, interloper detection
probability and correct assignment probability in benchmark cases.

Scenario Pop1 allele frequencies Pop2 allele frequencies
A.1 (0.5, 0.5) (0.5, 0.5)
A.2 (0.8, 0.2) (0.8, 0.2)
A.3 (0.4, 0.4, 0.05, 0.05, 0.05, 0.05) (0.4, 0.4, 0.05, 0.05, 0.05, 0.05)
A.4 8 alleles with equal frequency 8 alleles with equal frequency
B.1 (0.4, 0.4, 0.2, 0, 0, 0) (0, 0, 0, 0.2, 0.4, 0.4)
B.2 (0.25, 0.25, 0.25, 0.25, 0, 0, 0, 0) (0, 0, 0, 0, 0.25, 0.25, 0.25, 0.25)
B.3 (0.6, 0.4, 0, 0) (0, 0, 0.4, 0.6)
C.1 (0.6, 0.4) (0.55, 0.45)
C.2 (0.8, 0.2) (0.75, 0.25)
C.3 (0.8, 0.2) (0.7, 0.3)

Table 4.2: Allele frequencies used to generate simulated populations for testing the directional mea-
sures overlap area, interloper detection probability and correct assignment probability in benchmark
cases.

Figure 4.1 shows results from scenarios A.1 to A.4 in Table 4.2, for 10 replicates of 500 loci
and samples of size 100. These are all scenarios where the populations have identical under-
lying allele frequencies, although the actual allele frequencies in each replicate sample differ
due to sampling variation. As a result, the overlap area results are not all 1, although they
are within about 0.1 of 1, which is as close as we’d expect to see given the level of sampling
variability for samples of size 100.

The overlap areas for scenario A.1 are closer to 1 than the overlap areas for the other sce-
narios. Scenario A.1 has only two alleles at each locus, and they both have the same frequency,
and are thus equally common alleles. The other scenarios A.2 to A.4 have some common and
some rare alleles at each locus, and this more uneven distribution of allele frequencies in-
creases the effect of the sampling variation on the observed allele frequencies, and thus it is
easier to distinguish between the populations in scenarios A.2 to A.4 than in A.1.

The interloper detection probabilities and correct assignment probabilities shown in Fig-
ure 4.1 are approximately centred on 0.5, as expected. The results are between about 0.4 and
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0.6, which is also as expected, since for samples of size 100 we would expect the observed
allele frequencies to differ quite a lot from the true underlying allele frequencies, due to sam-
pling variability. For example, it would not be surprising to see observed allele frequencies
0.45 and 0.55 at a single locus, instead of 0.5 and 0.5, and that sampling variability is then
compounded over 500 loci.

Figure 4.2 shows similar results to Figure 4.1, but the sampling uncertainty has been re-
duced by taking samples of size 1000 instead of 100. The overlap areas are closer to 1 and less
variable than in Figure 4.1, and the interloper detection probabilities and correct assignment
probabilities are also closer to 0.5 and less variable than in Figure 4.1.

All the results for scenarios A.1 to A.4 were similar for 500 loci or for 10, 50 or 100 loci.
For scenarios B.1 to B.3, with samples of size 100 or 1000, the overlap areas were exactly 0

and the interloper detection probabilities and correct assignment probabilities were exactly
1. These scenarios correspond to populations with fully non-overlapping alleles.
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Figure 4.1: Directional measure results from benchmark scenarios A.1 to A.4, involving two popula-
tions with identical allele frequencies. Allele frequencies used to generate the populations are shown
in Table 4.2. 10 replicates were used with 500 loci and samples of size 100.
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Figure 4.2: Directional measure results from benchmark scenarios A.1 to A.4, involving two popula-
tions with identical allele frequencies. Allele frequencies used to generate the populations are shown
in Table 4.2. 10 replicates were used with 500 loci and samples of size 1000.
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Figure 4.3 shows results from scenarios C.1 to C.3, for 10 replicates of 500 loci and samples
of size 100. These are all scenarios where the populations have similar allele frequencies to
each other, although again the observed frequencies are subject to sampling variation.

For scenario C.1 the overlap areas for Pop1 are around 0.3 to 0.5, and the overlap areas for
Pop2 are around 0.7, and there is some variability in the results. The correct assignment prob-
abilities are all around 0.8 to 0.9, indicating that even a difference of 0.05 between the allele
frequencies in the two populations, over 500 loci, is enough to make the populations genet-
ically distinct to the extent that it is fairly easy to assign individuals from either population
correctly.

For scenario C.2 the overlap areas are around 0.1, and the correct assignment probabilities
are around 0.9, even though the difference between the allele frequencies is 0.05, the same
as for scenario C.1. This result is as we would expect: variance is proportional to p(1 − p)

for a binomial distribution with frequency p, and the allele frequencies are nearer to 0.5 in
scenario C.1 than in scenario C.2, and therefore we would expect to see greater tolerance of
small deviations of allele frequency from scenario C.1 than from scenario C.2. The same effect
presumably explains why overlap area within baseline Pop2 in scenario C.1 is higher than
overlap area within baseline Pop1, because Pop2 has allele frequencies closer to 0.5, which
creates greater tolerance to small deviations than in Pop1.

For scenario C.3 the allele frequencies differ more than in scenarios C.1 and C.2, and as
seen in Figure 4.3 the resulting overlap areas are around 0, and the correct assignment prob-
abilities are around 1, indicating that it has become even easier than in scenario C.2 to distin-
guish between the populations.

For all three scenarios C.1 to C.3 the interloper detection probabilities are extremely asym-
metric. For scenario C.1 the probability for Pop1 is around 0.8 to 0.9, and the probability for
Pop2 is around 0.3 to 0.4; for scenarios C.2 and C.3 the probability for Pop1 is close to 1 and
the probability for Pop2 is close to 0. This indicates that when two populations have simi-
lar allele frequencies and the same major allele, then a choice between two individuals as to
which has the best fit to either population will tend to favour those from the population with
the highermajor allele frequency, and this behaviour becomes stronger as themajor allele fre-
quency increases. The interloper detection probabilities within Pop2 are close to zero because
individuals from Pop1 would fit better into Pop2 than the individuals from Pop2 themselves.
In fact, the fit of Pop1 individuals into Pop2 is so much better that the cross-population LGP
distribution of Pop1 into Pop2 sits entirely above the LGP distribution of Pop2 itself, so that
the overlap areas within baseline Pop2 are also close to zero. Fortunately this counterintuitive
outcome is unlikely to occur in practice, as it is unlikely that one population would have the
higher major allele frequency across all loci.

We obtained similar results for samples of size 1000, although with less variability. How-
ever, the results for these scenarios are farmore affected by the number of loci than the results
of scenarios A.1 to A.4 and B.1 to B.3. Figure 4.4 shows the results of scenarios C.1 to C.3 for
10 replicates of 10 loci and samples of size 100. The results are less extreme and show far
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more variability than those in Figure 4.3. The overlap areas are much greater, the interloper
detection results are somewhat less asymmetric, and the correct assignment probabilities are
much lower than in Figure 4.3.
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Populations with similar allele frequencies
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Figure 4.3: Directional measure results from benchmark scenarios C.1 to C.3, involving two popula-
tions with similar allele frequencies. Allele frequencies used to generate the populations are shown in
Table 4.2. 10 replicates were used with 500 loci and samples of size 100.
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Figure 4.4: Directional measure results from benchmark scenarios C.1 to C.3, involving two popula-
tions with similar allele frequencies. Allele frequencies used to generate the populations are shown in
Table 4.2. 10 replicates were used with 10 loci and samples of size 100.



150 Chapter 4. Simulation study

We also tested one final benchmark scenario, in which Pop1 has frequencies (0.3, 0.3, 0.3,
0.1), three common alleles and one less common, and Pop2 has frequencies (0.8, 0.05, 0.05,
0.1), one very common allele and three rare alleles. Figure 4.5 shows the combined GenePlot
and LGP plot for one replicate from the simulations with 10 loci and samples of size 100. The
other replicates produced similar results.

Figure 4.5 shows the extremely directional nature of this scenario. Almost all of the simu-
lated individuals are above the 1% percentile line for Pop1, so they would have a reasonable
fit to Pop1, but only individuals from Pop2 are above the 1% line for Pop2. The overlap area
for Pop1 (0.471) ismuch higher than the overlap area for Pop2 (0.014), and similarly the inter-
loper detection probability for Pop1 (0.827) is lower than the interloper detection probability
for Pop2 (1.000). The correct assignment probabilities are 0.995 and 0.994 respectively, which
is reflected in the GenePlot which shows the samples separated on either side of the central
diagonal, apart from a single Pop2 individual which is on the Pop1 side.

The results for 50, 100 and 500 loci were more extreme, with the samples becoming more
separated as the number of loci increased, so that for 500 loci the overlap areas are both ap-
proximately 0 for all replicates, and the interloper detection and correct assignment proba-
bilities are all approximately 1 for all replicates.

Overall, this scenario illustrates that populations with a wider range of common alleles
will tend to have higher overlap areas and lower interloper detection probabilities than pop-
ulations with fewer common alleles. Thus these measures are indicators of diversity, not just
of differentiation, whereas the correct assignment probabilities are more directly targeted at
differentiation.
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Figure 4.5: GenePlot and LGP distribution plots for benchmark scenario with allele frequencies (0.3,
0.3, 0.3, 0.1) in Pop1 and (0.8, 0.05, 0.05, 0.1) in Pop2, for 10 loci and samples of size 100. One of 10
replicates is shown. Details as in Figure 3.1.
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4.2 Easypop simulations

We simulated a set of scenarios using Easypop (Balloux 2001) to assess the behaviour of the
three measures in scenarios that are more realistic than the benchmark cases in Section 4.1.

Most simulations used to test population geneticsmethods use scenarioswith equal-sized
populations, which is unrealistic. Since our measures can reveal additional information in
scenarioswith disparate populations, we ran simulations using three populations Pop1, Pop2
and Pop3, with sizes 1000, 500 and 100 respectively.

Table 4.3 shows the parameter values we used in Easypop version 2.0.1, and Table 4.4
shows the migration rate and number of generations used in each scenario. Details of these
settings are in the Easypop User Guide:
https://www.unil.ch/files/live/sites/dee/files/shared/softs/EASYPOP_201_userguide.pdf.

Parameter set Details
Mating scheme One sex, random mating
Migration scheme Island model
Loci 20, with free recombination and 20 allelic states
Mutation scheme KAMmodel*, with mutation rate µ = 0.0001
Variability of initial population Maximal
*The KAMmodel is a form of the infinite alleles model with a finite number of allelic states.

Table 4.3: Settings used for testing the directional measures overlap area, interloper detection proba-
bility and correct assignment probability in Easypop scenarios.

Scenario Migration ratem Number of generations
A 0.05 500
B 0.01 5000
C 0.01 2000
D 0.01 1000
E 0.005 5000
F 0.005 2000
G 0.005 1000
H 0.001 10000

Table 4.4:Migration rates andnumber of generations used for testing the directionalmeasures overlap
area, interloper detection probability and correct assignment probability in Easypop scenarios.

Scenarios A to H are expected to show approximately increasing levels of differentiation,
given the migration rates and number of generations for those scenarios. The initial popula-
tions have randomly allocated alleles, and therefore, for a given migration rate, connectivity
between the populations will increase over time as the populations gain alleles from immi-
grant individuals. Scenarios B, C and D have the same migration rate, but scenario B has a
longer run time than scenario C, measured as number of generations, so we would expect to

https://www.unil.ch/files/live/sites/dee/files/shared/softs/EASYPOP_201_userguide.pdf
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see higher connectivity in scenario B than scenario C, and scenario C has a longer run time
than scenario D, so we would expect to see higher connectivity in scenario C than scenario
D. A similar pattern holds for scenarios E, F and G.

After generating the data using Easypop, we took random samples of size 50 from each
population, and calculated the values of our three measures based on those samples.

We also calculated the values of existing measures Dest (Jost 2008) and G′ST for each sce-
nario. We calculatedDest and G′ST using the bias-corrected forms ofHS andHT, as proposed
by Nei (Nei & Chesser, 1983), and using Hedrick’s (2005) form of G′ST from (1.3):

G′ST =
GST

GST(max)
, (4.1)

where GST(max) is calculated using HT(max) from (1.4):

HT(max) =
1

K
(K − 1 +HS) , (4.2)

and K is the number of populations. We tested our single-locus Dest and G′ST calculations
against the diveRsity, DEMEtics, and mmod R packages, and calculated the global measures
by taking the arithmetic mean of each measure over all loci.

Figure 4.6 shows our three measures for Pop1 and Pop2, with sizes 1000 and 500, and
samples of size 50. As expected, the overlap areas show a decreasing trend from scenario
A to scenario H, although there is a large amount of variability. The overlap values range
from 0 to 1; the interloper detection probability values range from about 0.4 to 1; and the
correct assignment probability values also range from 0.4 to 1 but tend to be higher than the
interloper detection probability values.

We obtained similar results for Pop2 and Pop3 as for Pop1 and Pop2.
Figure 4.7 shows our three measures for Pop1 and Pop3, with sizes 1000 and 100, and

samples of size 50. The most notable differences between Figure 4.7 and Figure 4.6 are that in
Figure 4.7 the overlap areas for Pop1 only go as low as about 0.2, and the interloper detection
probabilities for Pop1 are more variable and tend to be somewhat lower than in Figure 4.6.
The measures for Pop2 are similar in Figure 4.6 and Figure 4.7. These results demonstrate
that our measures are sensitive to changes in population size.
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Pop1 vs. Pop2 Easypop Scenarios
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Figure 4.6: Directional measure results for populations Pop1 and Pop2 from Easypop scenarios. Sce-
nario details are shown in Table 4.4. 20 replicates were used for each scenario.
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Pop1 vs. Pop3 Easypop Scenarios
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Figure 4.7: Directional measure results for populations Pop1 and Pop3 from Easypop scenarios. Sce-
nario details are shown in Table 4.4. 20 replicates were used for each scenario.
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Figure 4.8 shows our three measures for Pop1 and Pop2, plotted against Dest. The Dest
values are below 0.2 in all cases, but the overlap area values range between 1 and 0. This
implies that the overlap area measure reaches its minimum value of 0 for populations that
may share some alleles, but also that the overlap area measure is more sensitive thanDest for
populations that are not highly differentiated. The overlap area measure shows approximate
negative correlation with Dest.

The interloper detection and correct assignment probabilities range from around 0.5 to
1, and are non-linearly correlated with Dest. The correct assignment probabilities tend to be
higher than the interloper detection probabilities, as we have observed with other datasets.
Both probabilistic measures reach their maximum values for fairly low levels of Dest. These
results suggest that the new measures may be less sensitive for assessing strongly separated
populations than classical measures, but more sensitive for populations that show low differ-
entiation according to classical measures. However, in practical situations the effective range
of Dest values would not be known, so a result of 0.1 or 0.2 would be hard to interpret for a
single case.

We obtained similar results for Pop2 and Pop3 plotted againstDest as for Pop1 and Pop2
plotted against Dest.

Figure 4.9 shows our threemeasures for Pop1 andPop3, plotted againstDest. These results
show weaker correlation with Dest than the results in Figure 4.8.

The overlap areas for Pop3 within baseline Pop1 in (a) of Figure 4.9 tend to be higher
than the overlap areas for Pop2 with baseline Pop1 in (a) of Figure 4.8. The corresponding
interloper detection probabilities in (b) tend to be lower in (c) of Figure 4.9 than in (c) of
Figure 4.8. The Dest values between Pop1 and Pop2 are similar to the Dest values between
Pop1 and Pop3.

These results confirm that Dest is not affected much by population size, as argued by
Meirmans & Hedrick (2011). We would expect Pop3, which is size 100, to have drifted more
than Pop2, which is size 500, and most measures of genetic differentiation would reflect this
and would show different patterns in Figure 4.8 compared with Figure 4.9. By contrast, the
patterns of Dest are the same in Figure 4.8 as in Figure 4.9. For most ecological applications,
it is useful to be able to detect differences in population size, and thus our measures, which
are sensitive to population size, should be more useful in a practical context.

Figure 4.9 also shows more asymmetry between the populations than Figure 4.8. In Fig-
ure 4.9, the overlap areas for baseline Pop3 in (b) tend to be lower than the overlap areas for
baseline Pop1 in (a), although the Dest values are exactly the same, since it is a symmetric
measure.

Figure 4.10 shows our three measures for Pop1 and Pop2, plotted against G′ST. The G′ST
values are below 0.35 in all cases, covering a wider range than theDest values, and our three
measures are more tightly associated withG′ST thanDest, although the relationships between
the probabilistic measures and G′ST are still nonlinear.
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(f) Correct Assign Probability for Pop2
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Figure 4.8: Directional measure results for populations Pop1 and Pop2 from Easypop scenarios, plot-
ted against Dest. Scenario details are shown in Table 4.4. 20 replicates were used for each scenario.
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Figure 4.9: Directional measure results for populations Pop1 and Pop3 from Easypop scenarios, plot-
ted against Dest. Scenario details are shown in Table 4.4. 20 replicates were used for each scenario.
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The comparison between (Pop1, Pop2) and (Pop1, Pop3) for G′ST was similar to the com-
parison forDest andwe drew similar conclusions. Again, we obtained similar results for Pop2
and Pop3 plotted against G′ST as for Pop1 and Pop2 plotted against G′ST.

We reran the measure calculations for samples of size 100 from the same simulated popu-
lations, and found that the results were very similar to those for samples of size 50, except that
the values of Dest were less variable, in general, and the lowest values of Dest were slightly
higher, with a minimum of about 0.01.

Finally, we reran three of the Easypop scenarios with three populations of size 100 and
compared them to the previous scenarios with populations of sizes 1000, 500 and 100. These
scenarios are shown in Table 4.5. The new scenarios J, L and N correspond to scenarios C, D
and G from Table 4.4.

Scenario Migration ratem Number of generations Population sizes
I 0.01 2000 (100, 100, 100)
J 0.01 2000 (1000, 500, 100)
K 0.01 1000 (100, 100, 100)
L 0.01 1000 (1000, 500, 100)
M 0.005 1000 (100, 100, 100)
N 0.005 1000 (1000, 500, 100)

Table 4.5:Migration rates andnumber of generations used for testing the directionalmeasures overlap
area, interloper detection probability and correct assignment probability in Easypop scenarios with
mixed sets of population sizes.

Figure 4.11 shows the results for Pop1 and Pop3, plotted against Dest. The results for
scenarios M andN in Figure 4.11 differ more than the results for scenarios I and J, or K and L,
as wewould expect, because the populations in scenariosM andN aremore isolated than the
populations in scenarios I and J, or K and L. For scenario N the overlap areas and interloper
detection probabilities for Pop1 are very different to the overlap areas and interloper detection
probabilities for Pop3. The same pattern is seen, to a lesser extent, in scenario L, and, to an
even lesser extent, for scenario J.

TheDest values for scenarios M and N differ less than the overlap areas or the interloper
detection probabilities. This again confirms that our measures are more sensitive to changes
in population size than Dest. This is appropriate because population size affects genetic di-
versity and the rate of genetic drift, and our measures aim to detect these features of the
population structure.

Figure 4.12 shows the results from plotting Pop1 and Pop3 against G′ST. The G′ST values
for scenario N are very different to the G′ST values for scenario M, and a similar, but weaker,
pattern is seen for scenarios L and K.G′ST therefore shows more sensitivity to population size
than Dest, but the overlap area and interloper detection probability measures pick up the
disparity between the sizes of populations Pop1 and Pop3 that cannot be shown usingG′ST or
Dest.
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(f) Correct Assign Probability for Pop2
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Figure 4.10: Directional measure results for populations Pop1 and Pop2 from Easypop scenarios,
plotted againstG′

ST. Scenario details are shown in Table 4.4. 20 replicates were used for each scenario.
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Figure 4.11:Directional measure results for populations Pop1 and Pop3 from Easypop scenarios with
mixed sets of population sizes, plotted against Dest. Scenario details are shown in Table 4.5. 20 repli-
cates were used for each scenario.
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Figure 4.12:Directional measure results for populations Pop1 and Pop3 from Easypop scenarios with
mixed sets of population sizes, plotted against G′

ST. Scenario details are shown in Table 4.5. 20 repli-
cates were used for each scenario.



Chapter 5
Conclusions

It is often said that “a picture is worth a thousand words”. That is not always the case — but
it is worth using one hundred words to explain a picture. The human brain processes images
in a distinctly different way than language, and thus, if we can combine a meaningful image
with appropriate explanatory words, we can provide information in a form that the reader
can understand in more ways than one. Typically, a plot is also more useful than a table of
numbers, for those numbers require more complex processing to elicit patterns that may be
seen at a glance from a suitable plot.

GeneClass2 is still a popular tool for assignment (e.g. Larson et al. 2014, Johnston et al.
2014, Benestan et al. 2015), but it does not provide any visualization of the results. We have
shown that our new method for visualizing log-genotype probabilities in GenePlots is valu-
able for correct interpretation of assignment results. We have demonstrated GenePlots based
on microsatellite and SNP data, and shown how they can illuminate new features of the data
that were not clear using existing methods.

We have also shown that LGP distributions are very unusual distributions, representing
up to hundreds of orders of magnitude depending on the number of loci, as well as being
extremely left-skewed. Our saddlepoint method creates an accurate approximation to this
distribution, even in the long left tail. This creates a fast, analytic computation of quantiles of
the LGP distribution, enabling us to plot all individuals in the same chart even if they have
missing data.

We have shown how this analytic approximation to the LGP distribution may be further
extended to compare the saddlepoint-PDFs of single-population and cross-population LGP
distributions, extending themethodology from an assignment technique into away to visual-
ize and quantify population structure. The leave-one-out form of the saddlepoint approxima-
tion accurately mimics the distribution obtained when all individuals are compared against
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an independent reference sample, removing the bias in single-population LGP distributions
that exaggerates the fit of individuals in the reference sample.

Ourmethodology combines powerful visualizationwith three numeric measures to sum-
marize the extent to which we can differentiate between the populations based on the avail-
able data. The overlap area measure corresponds to an intuitive visual aspect of the Gene-
Plots, and the interloper detection probability and correct assignment probability answer
practical questions about the data. All three measures reveal any directional structure that
exists in the data and can be used to test for evidence of such structure. Moreover, we have
shown that these three new measures are more sensitive for low-differentiated populations
than classical measures such as FST, G′ST and D. Much effort has gone into eliciting the ef-
fects of various population characteristics on FST,G′ST,D, and similar measures, because such
characteristics affect the range of values and subsequent interpretation of a particular value
obtained from those measures. Because our measures are based on probabilities that can be
described explicitly, our analyses do not rely upon such empirical investigations for a cor-
rect interpretation. The correct assignment probability and interloper detection probability
retain their meaning regardless of external population characteristics, and directly address
questions that are relevant to population management.

We have produced an online interface for producing GenePlots, which can be found at

catchit.stat.auckland.ac.nz/shiny/geneplot/

In future, we would like to extend this to incorporate the LGP distribution plots and numeric
measures, andwe intend to produce an R package to give users full control over the GenePlot
settings. Given the plethora of population genetics software tools available, it is critical for us
to provide new tools that smoothly complement existing ones, and to communicate clearly
to users how to interpret the results.

We intend to adapt the GenePlot methods to be able to combine data of different ploi-
dies, for example to be able to combine mitochondrial DNA haplotypes with microsatellite
genotypes within a single analysis. We would also like to find a form of the directional mea-
sures that can be applied to multiple populations, and a method for visualizing the pairwise
measures frommultiple populations on a single diagram. We would also seek to incorporate
information about the positions of the loci on the genome when analysing the data.
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