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Abstract

In this project, microlensing events are modelled and analysed using a new methodology

employing the MultiNest algorithm. MultiNest is based on the principles of Bayesian in-

ference, which allows us to solve the model selection and parameter estimation problems

simultaneously. The focus is placed on the model selection problem since a Bayesian

based algorithm such as MultiNest allows us to shift the approach to model selection

from qualitative arguments to a quantitative quality factor.

The methodology is demonstrated by testing a finite-source point-lens model versus a

finite-source binary-lens model as well as testing for the presence of parallax effects.

This is done for a simulated synthetic event as proof of concept and for a real event,

OGLE-2011-BLG-0251.

Nested Sampling and its variant algorithms such as MultiNest have been tried and tested

in many fields of study. By demonstrating MultiNest on a real microlensing event, the

aim of this project is to provide an impetus for said algorithms to find their place in the

microlensing community as well.
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Chapter 1

Introduction

A complete modelling and analysis of data involves parameter estimation as well as

model selection. While there are many optimization methods that allow modellers to

find parameter estimates in a direct straightforward manner, model selection is often

left to ad hoc methods and qualitative arguments.

Microlensing modelling is a challenging problem due to the highly non-linear physics,

the large, multidimensional parameter space and the rough chi-square landscape ridden

with many hills and valleys. Furthermore, model selection is an important but difficult

task because it is not as simple as choosing the model that best fits the data as this can

lead to over-parameterised models. Occam’s Razor must be applied.

In microlensing modelling, parameter estimation is usually achieved using maximum

likelihood estimation or χ2 minimization methods. Model selection is achieved by com-

parison of the χ2 “goodness of fit”, with a qualitative application of Occam’s Razor, or

experimental and theoretical arguments from prior knowledge to inform the choice.

Bayesian based data modelling methods like Nested Sampling (NS) offer a straight-

forward way of performing parameter estimation and model selection simultaneously.

However, often parameter estimation is given prominence over model selection while

selecting the model with parameter estimates that give the best fit to the data.

In this project, the aim is to develop a methodology that applies Bayesian model se-

lection to microlensing modelling, using a version of the NS algorithm called MultiNest

(Feroz et al., 2009, 2013, Feroz and Hobson, 2008). In developing the methodology,

the MultiNest algorithm was integrated with an existing binary-lens microlensing mod-

elling code whereby light curve computations, hence the likelihood computations, were

GPU-accelerated (Ling, 2013).
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Chapter 1. Introduction 2

In Chapter 2 the theory of microlensing is discussed whereas in Chapter 3, the theory of

Bayesian data modelling as well the trends and gaps of data modelling in microlensing

are discussed. The specifically developed methodology and modelling strategy employing

the MultiNest algorithm and the GPU-accelerated code are described in Chapter 4. In

Chapter 5, the analysis of a synthetic event is presented and in Chapter 6, the analysis

of a real event, OGLE-2011-BLG-0251 (hereafter OB11-0251), is presented. Finally, a

brief discussion and the conclusions are outlined in Chapter 7.



Chapter 2

Gravitational Microlensing

Microlensing is an astronomical phenomenon that can be observed when a massive ob-

ject (the lens), a bright background object (the source star) and the observer become

sufficiently aligned. The lens could be a single massive dark object such as a free-floating

planet or a black-hole. It could also be multiple body systems, such as a star with a

planet or a stellar binary.

When the light from a background source star is deflected by the gravity of a foreground

lens system, multiple images are created due to the lensing effect. The multiple images

have a larger total solid angle than the unlensed source star image, but are unresolved

so that they appear as one image brighter than the unlensed source star image. Conse-

quently, since surface brightness is conserved while the image areas evolve in time, the

source star appears to brighten with time as the projected distance of closest approach

between the source and lens star decreases. A good introduction to microlensing can be

found in review articles by Bennett (2008), Dominik (2010), Gaudi (2010), Gould and

Loeb (1992), Rattenbury (2006) and references therein.

First proposed as a means of detecting dark matter (Paczynski, 1986), it has now become

a powerful technique for detecting exoplanets (Gould and Loeb, 1992, Mao and Paczyn-

ski, 1991). Microlensing is a powerful planet search technique, particularly well-suited,

and more sensitive than other techniques, to finding cool low-mass planets and planets

around distant or very dim stars. This is evidenced by the discovery of an exoplanet

only 3.3 times the mass of Earth (Bennett et al., 2008). Hence, it plays a significant role

in studying the statistical abundance of exoplanets in our Galaxy with properties similar

to the planets in our own Solar System, as well as for studying planet formation and

evolution. This makes gravitational microlensing an invaluable technique in the quest

for finding an Earth-like planet.

3



Chapter 2. Gravitational Microlensing 4

Lens

θE

Source star

u0u(t)

Figure 2.1: The Einstein ring represented in this figure with ring radius, θE , forms
when the source, lens and observer align perfectly and the images formed due to the
lensing effect merge together. The dashed lines represent the track of the source star as
it moves relative to the lens star where the u(t) denotes the projected distance between
the source star and the lens star at time, t. Thus u0 represents the projected distance

of closest approach of the source to the lens.

In the case of perfect alignment of the source, lens and observer, the images form a

ring-like structure known as the Einstein ring. This characteristic projected separation

between the source and the lens inside which microlensing becomes significant is called

the Einstein ring radius (represented in Figure 2.1). Given G, the gravitational constant,

the speed of light, c and lens mass, M , the angular Einstein radius is:

θE =

√
4GM

c2

(
DS −DL

DSDL

)
, (2.1)

where DS is the distance from the observer to the source and DL is the distance from

the observer to the lens.

2.1 Single Lens Microlensing

When the foreground lens system is a single massive object, point-source point-lens

(PSPL) approximation is assumed which considerably simplifies the geometrical deriva-

tion of single lens microlensing.
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Observer

θ β

α

αd
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Figure 2.2: This figure shows the standard microlensing geometry, where DS is the
distance from the observer to the source star and DL is the distance from the observer
to the lens star. When the light from a source star passes a foreground lens star with
mass, M , it is deflected by an angle derived by Einstein (1936) and represented in the
figure by αd = 4GM

c2rE
, where rE is the Einstein radius. The angular positions of the

source and the lens give the relationship, β = θ − α.

The basic geometry of a single lens microlensing system is presented in Figure 2.2 from

which the lens equation may be derived, briefly shown here. More detailed derivations

can be found in microlensing literature such as Bennett (2008) and Ling (2013).

From the relationship between the angular positions of the source and the lens stars,

and using small angle approximations, an equation of the following form can be derived:

β = θ − θ2E/θ. (2.2)

Normalizing this equation with the Einstein angle, θE so that β
θE

= u and θ
θE

= y, the

lens equation becomes:

u = y − y−1. (2.3)

Therefore, for a single lens microlensing event, a simple lens equation can be derived

geometrically, which can be inverted to find the image positions given the source position.

The inverted lens equation in this case is an easily solvable quadratic equation with two

image solutions to be found.
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Total magnification is then found by taking the ratio of the total area of the images to

the area of the source. It is represented by the equation:

A(u) =
u2 + 2

u
√
u2 + 4

, (2.4)

where u(t) is the projected distance (in Einstein radius units, θE) between the lens and

the source at time t and is given by:

u(t) =

√
u20 + (

t− t0
tE

)2. (2.5)

Therefore, the PSPL light curve can be parameterised with three parameters: the time at

which the source passes closest to the centre of mass of the binary lens (the time of peak

magnification), t0, the Einstein radius crossing time (the duration of the microlensing

event), tE and the minimum impact parameter, u0, which is the projected distance (in

Einstein radius units, θE) of closest approach of the source to the lens.

Hence, for a single lens event, the source star appears to brighten, reach a peak and

then fade away with respect to time giving it the characteristic bell-shaped light curve

(a function of brightness versus time), as shown in Figure 2.3. The light curve for

a typical microlensing event is well fit due to the PSPL approximation and the only

significant physical parameter is the Einstein time, tE .

The magnification (Equation 2.4) becomes infinite when the lens star, source star and

the observer become perfectly aligned (u(t) = 0). In reality, the finite size of the source

star breaks the infinity. The finite-source point-lens (FSPL) model can be described

with an additional parameter, ρ, the angular size of the source star, in units of θE . The

finite size of the source star affects the shape of the microlensing light curves by causing

features of the light curves such as the spikes and dips to appear washed out.

2.2 Multiple Lens Microlensing

Events leading to the discovery of exoplanets are represented by multiple lens microlens-

ing events. For such events different light curve phenomenologies can be observed with

their features affected by higher order effects such as parallax, orbital motion of the

binary lens system, the finite source size or even the limb darkening profile of the source

star. For example, the usual indication for a star-planet lens system is a dip or spike

near the peak of the light curve while finite source effects can cause this planetary signal

to appear washed out.
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Figure 2.3: Bell-shaped light curves characteristic of single lens microlensing are
shown here. Projected distances of closest approach of the source to the lens, u0 = 0.01

and 0.1 were used in generating these light curves, with normalised time, τ = t−t0
tE

.

Consequently, additional parameters are required to model the multiple lens microlensing

light curves. For example, a finite-source binary-lens (FSBL) model can be described

by 7 free parameters. The free parameters include t0, tE , u0, ρ, which are also used to

describe FSPL light curves. Additional parameters are: α which is the source trajectory

angle with respect to the lens components, d which is the projected separation between

the two mass components and q which is their mass ratio.

Limb darkening effect of the source star, whereby the centre of the star appears brighter

than the edge or limb of the star, can also affect the shape of microlensing light curves.

This effect can be described by two coefficients which can be allowed to be free param-

eters or fixed based on the standard limb darkening model based on the colour of the

source star (Gaudi et al., 2003).

Microlensing light curves can also exhibit the parallax effect due to the Earth’s orbit

around the Sun (Gould, 2000, 2004). Parallax can affect the alignment of the observer to

the source during a microlensing event thereby affecting the microlensing light curves,

inducing asymmetrical features. Hence, we also test for the presence or absence of

parallax in modelling the microlensing events in this paper. Two parameters are used to

describe parallax, πE,E and πE,N, which are the parallax in the East and North directions

respectively, in Einstein radius units. The magnitude of the parallax effect, πE is then
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given by,

πE =
√
π2E,E + π2E,N. (2.6)

With the introduction of additional parameters in multiple lens microlensing events,

the PSPL approximation breaks, and the underlying physics becomes highly non-linear.

For the purpose of modelling, the parameter space to be optimized is large, multidimen-

sional and multi-modal with lots of local minima appearing in its “goodness-of-fit” χ2

landscape.

For the single lens case, it is straightforward to invert the lens equation and find the

magnification with respect to time for a specific set of parameters. Unlike the single lens

event, there is no explicit expression for the amplification profile for the multiple lens

case. The magnification has to be computed by finding the locations of all the images

and summing their magnifications via non-analytical or semi-analytical techniques.

Generalisation of the lens equation for the single lens case gives the lens equation for

the multiple lens case. In complex notation, it is as follows:

w = z −
N∑
j=1

εj
z̄ − z̄m,j

(2.7)

where, εj is defined by the mass of the jth lens divided by the combined mass of all

lenses, z̄m,j are the complex positions of the lens masses whereas w and z are the complex

positions of the source and images respectively.

It is not as straightforward as the single-lens case to invert this equation and solve for the

image positions. In general N2 + 1 degree polynomial would need to be solved to arrive

at an analytical solution for the amplification profile of an N -lens system. A binary lens

system would require finding the solutions to a fifth degree polynomial while a triple

lens system would require a tenth degree polynomial and so on, which gets increasingly

computationally expensive.

It is possible to compute the magnification by solving the lens equation with its inverted

complex polynomial but the inverted lens equation can not be used to compute the finite

source radius. The lens equation is also undefined for caustic curves on the source plane.

Caustic curves are closed regions of theoretically infinite source star magnification (in

case of point-source approximation), which can be directly mapped from corresponding

critical curves on the lens plane.

With such huge mathematical and computational demands, microlensing modelling and

the determination of the lens system properties becomes a tremendously challenging

task and requires the use of unorthodox methods to accomplish.
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Numerical methods of modelling microlensing events addresses many of these problems.

The modelling code used in this research project that addresses these challenges was

developed by Ling (2013) and is discussed in Chapter 4.



Chapter 3

Data Modelling

3.1 Parameter Estimation Methods in Microlensing

Microlensing modelling (real-time and offline) is a non-trivial, difficult non-linear op-

timization problem ridden with many computational challenges. It requires a large

multidimensional parameter space to be explored and gives rise to degeneracies and a

highly multimodal posterior.

One of the most difficult optimization tasks is a non-linear modelling problem with a

multimodal posterior, that is, a parameter search space ridden with many optima or in

other words, a complex “goodness of fit”, χ2 topology with many hills and valleys.

In the case of a multimodal posterior that has an obvious single best estimate, finding

the global optima in a large multidimensional parameter space is a serious computa-

tional problem since there are many local optima throughout the posterior that the

optimization algorithm may get trapped in.

In the case of a multimodal posterior having many optima of comparable magnitude,

the question of which optima represents the best estimate model arises and model com-

parison becomes a significant problem.

As discussed in Gregory (2005), Sivia and Skilling (2006), the different optimization

methods have their merits but also meet with limitations when faced with the afore-

mentioned challenges.

10
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A brute force method of grid search, for instance, is conceptually simple and capa-

ble of dealing with multimodality but quickly becomes impractical for the multidimen-

sional problem beyond two parameters. It becomes computationally expensive and time-

consuming, even with a GPU-accelerated code and may even miss optima existing in

narrow valleys in between the grid points.

A local optimization method such as the Nelder and Meade downhill simplex (Press,

2007) works well for a multidimensional problem in case of a unimodal posterior whereas

it would be prone to getting trapped in the nearest local minima in case of a multimodal

problem. It can not switch easily between global exploration and local optimization.

The algorithm would need to perform jumps by providing several start values for one

parameter, for example. In addition, the starting values would need to be specified

carefully since it would not explore too far away from this point. Step sizes would also

need to be chosen carefully.

On the other hand, a global optimization algorithm based on random search techniques

such as genetic algorithms are capable of finding the global optimum in a multi-modal

and multidimensional parameter space but they may not be capable of homing in on the

peak of the optimum.

Although intelligent search strategies appear less frequently in microlensing literature,

they have indeed been studied for their potential strengths. For instance, a classical

genetic algorithm (Charbonneau, 1995) has been used in modelling binary lens events

(Kubas et al., 2005, Kubas, 2005). The genetic algorithm in these cases was followed by

gradient based techniques for final refinement of the parameter values.

Similarly, in their analysis of caustic crossing binary lens events, Kains et al. (2012,

2009) and Cassan et al. (2010) started their search scheme with a grid search, then used

a GA followed by refinement of the model by an Markov chain Monte Carlo (MCMC)

fit.

While the microlensing modelling community uses different combinations of optimization

methods, MCMC methods remain ubiquitously used in finding best-fit models with

numerical uncertainties.

However, even MCMC algorithms have their limitations, for example, simulated an-

nealing, an MCMC method may be successful in finding a dominant optimum with a

distinct underlying trend, it would not do a good job of finding dominant optima widely

separated by insignificant optima.
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Also, as mentioned in (Kains et al., 2009), a classical MCMC fitting scheme alone would

be unlikely to explore and locate minima in regions of parameter space far away from

the starting point.

However, while a combination of different optimization algorithms tailored specifically

to the microlensing problem may succeed in exploring the parameter space efficiently,

the above-mentioned methods offer no model comparison techniques except for the com-

parison of a “goodness of fit” measure combined with qualitative arguments to rule out

improbable scenarios.

3.2 The Model Selection Gap in Microlensing Methods

and Proposed Solution

A significant problem in microlensing modelling, in any modelling problem in fact, is

choosing rationally between alternative models. Given two or more models, the model

selection methodology should identify the model with the parameter estimates that

explains the data best, while penalizing overly-complex, over-parameterised models.

However, optimization methods used in microlensing modelling, are primarily designed

for finding the best-estimate parameters with numerical uncertainties. Parameter es-

timation is usually achieved using maximum likelihood estimation or χ2 minimization

methods. Model selection is achieved by comparison of the χ2 “goodness of fit”, with

a qualitative application of Occam’s Razor, or experimental and theoretical arguments

from prior knowledge to inform the choice. This approach of making choices between

alternative models is prevalent in microlensing modelling.

Some problems can be anticipated to arise from this approach. As Sivia and Skilling

(2006) point out, the model selection problem is not as simple as choosing the best

fitting model.

“Naively we might think that a choice between proposed alternatives can

be made on the basis of how well they fit the data. A little reflection soon

reveals a potential difficulty in that more complicated models, defined by

many parameters, will always be able to give better agreement with the

experimental measurements.”

There are cases whereby the microlensing community do not agree on the best-fit model;

there are alternative models proposed for the same event by different modellers or even

by the same modeller. Jaroszyñski et al. (2010) showcases many such alternative models
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of similar fit quality to anomalous microlensing events in the OGLE-III EWS database,

seasons 2006-2008.

There has also been at least one case of a published model retracted because a simpler

model of similar χ2 fit was found. Originally a model with a planetary mass ratio and

orbital motion was published for the event OGLE-2008-BLG-513. Later on, a static

binary star lens solution with a comparable χ2 value was found and since the latter is

the simpler of the two models, following Occam’s Razor it has been accepted as likely

to be the correct solution (Yee et al., 2011).

In (Kains et al., 2009) the global χ2 minimum found for OGLE-2007-BLG-472 (OB07-

472) identified a model with an extremely long timescale, tE ≈ 2000 days, which was

rejected through a qualitative discussion. In Kains et al. (2012) the authors re-analysed

OB07-472 with a Bayesian analysis including appropriate priors so that there was a

natural shift to a favourable model with tE ∼ 70 days, a more typical event timescale.

While the χ2 minimization method does not take into account the plausibility of physical

parameters, it is easy to avoid implausible physical parameter estimations by constrain-

ing Bayesian priors using prior knowledge of typical parameter values. In microlensing,

priors on physical parameters can be estimated from Galactic models or from empirical

distributions of the physical parameters obtained from a large number of observed events

(Cassan et al., 2010). In addition, calculation of the Bayesian evidence is a quantitative

approach to the model selection problem (Sivia and Skilling, 2006).

Hence, the Bayesian approach offers a much more powerful way of comparing models

by quantifying Occam’s Razor and automatically penalizing more complicated models

unless justified by the complexity of the data.

Furthermore, not only does the evidence value allow modellers to perform model selection

between alternative current models, as Skilling (2006) points out, the evidence value

allows models to be tested against any proposed alternatives, even future ones, without

having to re-do the current calculation.

Evidently, in microlensing modelling, as in many other fields of study, comparing models

is a serious matter whereby properties of exoplanet systems or stellar binary-lens systems

or double source star systems, for instance, have to be inferred from the observational

data.

The application of Bayesian data modelling is proposed as the solution to this gap

in model selection methodology. The following sections describe the Bayesian data

modelling theory and the optimization algorithm based on Bayesian theory, Nested
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Sampling (NS) and its modified version, MultiNest, which was implemented in this

research project.

3.3 Bayesian Data Modelling

A Bayesian approach to data modelling and analysis has been adopted in this project

and for an illustrative introduction and tutorial on this data analysis approach, the

reader is referred to Sivia and Skilling (2006).

Briefly stated, given a set of parameters for model M represented by parameter vector

X, measured data represented by data vector D, Bayes’ Theorem takes the form:

P (X|D,M) =
P (D|X,M)P (X,M)

P (D)
(3.1)

where the symbol ‘P (x|y)’ denotes a conditional probability of x given y. In the cases

of continuous rather than discrete set of probabilities, such as in this paper, it denotes

the probability distribution function (hereafter pdf).

In this equation, P (X,M) is termed the prior and is the probability that the proposed

set of parameter values is true before the data are observed. P (D|X,M), the likelihood,

is the probability of observing the data given that the model M and its parameters X

are true.

The denominator, P (D), is variously called the evidence, marginal likelihood or the

normalization constant and is the probability of the data (irrespective of parameter

values) given the model and is defined by:

P (D) =

∫
P (D|X,M)P (X,M)dX. (3.2)

Hereafter, the model evidence, P (D) is denoted by Z.

P (X|D,M), the posterior, is the probability of the model parameter values given the

observed data. Thus,

posterior =
likelihood× prior

evidence
. (3.3)

Bayes’ Theorem is a succinct statement of our state of knowledge before and after the

data and available information are taken into account. It makes data analysis simple

and straightforward by relating the posterior pdf to the likelihood. As Sivia and Skilling

(2006) state,
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“The power of Bayes’ theorem lies in the fact that it relates the quantity of

interest, the probability that the hypothesis is true given the data, to the

term we have a better chance of being able to assign, the probability that

we would have observed the measured data if the hypothesis was true.”

In the Bayesian approach to data analysis, there are two distinct requirements for a

complete analysis, parameter estimation and model selection. The posterior pdf allows

us to estimate the set of model parameters X whereas the evidence values allow us to

perform model selection.

The evidence value is an integration over the entire parameter space of the model hence

it can be thought of as a prior-weighted average of the likelihood. Therefore, it can be

said that while parameter estimation requires us to look at the location of the maxima

of the likelihood function, model selection requires the calculation of the average value

of the likelihood.

Generally, more complicated models with greater numbers of parameters offer better

agreement with data. Hence a complicated model might be favoured over a simpler

model by a “goodness of fit” criterion, even though it may not necessarily be the best

representative model. With the Bayesian approach to model selection, the gain in “good-

ness of fit” offered by a more complicated model is balanced against the cost of averaging

the likelihood over the larger parameter space of the more complicated model. Hence,

the Bayesian evidence penalizes the more complicated model. As a result, there is an

inbuilt quantitative implementation of Occam’s Razor in the Bayesian method.

For model comparison and selection, two approaches can be considered, as also outlined

in (Buchner et al., 2014). In the first approach, Bayes’ factor (K), the ratio of model

evidences can be computed and Jeffreys’ scale (Jeffreys, 1961) can then be used for the

interpretation of K, the Bayes factor. K > 100 is taken as ‘decisive’ evidence that M1 is

favoured over M2; 30−100 is taken as ‘very strong evidence’, 10−30 as ‘strong evidence’

and 3 − 10 as ‘substantial evidence’. These Bayes factors are equivalent to differences

of 4.3, 3.4, 2.3 and 1.1 respectively, when dealing with log-evidences, lnZ. When the

difference between the log-evidences of two models is below 1.1, the two models are

considered equally probable.

An alternative approach is that of comparing all the models simultaneously and selecting

the model with the highest evidence or log-evidence value. This is the approach of model

comparison and selection adopted in this research project, relying on Jeffreys’ scale for

pairwise interpretation where necessary.
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3.4 Overview of Nested Sampling and MultiNest

With the tremendous increase in the volume of astrophysical data in recent years,

Bayesian techniques have gained popularity with regards to making inferences on best-

estimate parameters and model comparisons. Refer to (Trotta, 2008) and (Ford and

Gregory, 2007) for a review of the applications of Bayesian parameter estimation and

model selection in cosmology and extrasolar planet searches respectively.

In the Bayesian inference approach, there is a clear distinction between parameter esti-

mation and model selection. With the computation of the Bayesian evidence value, there

is a straightforward model comparison strategy to be found in the Bayesian approach.

However, the traditional MCMC methods which are based on the Bayesian approach, are

designed primarily for the computation of their posterior distribution while ignoring the

Bayesian by-product - the Bayesian evidence. MCMC methods also become inefficient

in case of highly multimodal posteriors. In contrast, NS, a novel MCMC-type algorithm

put forth by Skilling (2004, 2006) is targeted at computing the Bayesian evidence with

posterior distributions as the by-product.

Unsurprisingly, NS has aroused a lot of attention resulting in a number of variant al-

gorithms. For instance, Feroz and Hobson (2008) developed the multimodal NS as an

efficient and robust alternative to MCMC for astronomical data analyses. Brewer et al.

(2011) found their new algorithm, Diffusive NS to be four times the accuracy compared

to the classic MCMC-based NS, for the same computational effort, “equivalent to a

factor of 16 speedup”, when run on a test problem.

NS has already found many successful applications. To name a few, it has been applied

to cosmological model selection (Mukherjee et al., 2006), to radial velocity data in test-

ing between models of multiplanet systems (Feroz et al., 2011) and to Kepler data for

characterizing transiting planets (Placek et al., 2014).

Bayesian evidence does not affect the relative magnitudes of the posterior probabilities,

therefore it may be ignored in the cases where parameter estimation is the only goal.

Consequently, more often than not, data modellers using the Bayesian approach overlook

the Bayesian evidence, which is often expensive to compute even though it provides a

straightforward way of performing model selection. With numerical computations of

log-evidence (lnZ), the NS algorithm provides an affordable way to compute Bayesian

evidence and perform model selection.

NS focuses on calculating the evidence value as its primary task and the computation

of the posteriors as a by-product. The evidence value is the result of an integration and

is computed numerically, as a summation, by the NS algorithm. NS essentially samples
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N points from the prior pdf, sorting them according to their log-likelihood values. At

each iteration, the lowest log-likelihood point is discarded and replaced by a new sample

which is chosen from the prior pdf and accepted only if it has a higher log-likelihood

than the point that was discarded. Once the change in the computed log-evidence values

falls below a threshold value, the algorithm terminates.

In this project, the MultiNest algorithm is used, a reportedly more efficient and robust

variation of the NS algorithm. The improvements of MultiNest over NS are detailed in

(Feroz et al., 2009). MultiNest increases the efficiency of the NS algorithm by clustering

the samples into ellipsoids, bounded by their worst log-likelihood values. The new

samples are taken from the interior of these ellipsoids, which makes MultiNest more

efficient. Since a large range of evidence values is being dealt with, MulNest computes

and deals with log-evidence values instead, as a matter of mathematical convenience.

Feroz et al. (2009) note that MultiNest is controlled by two main parameters, N and

e. The number of sampled points, N , must always exceed the dimensionality of the

parameter space and must be large enough to allow adequate sampling of all regions

of the parameter space, for an accurate calculation of the log-evidence. The efficiency

parameter, e, controls the sampling volume and must be set to 1 for maximum efficiency

in parameter estimation problems and to a lower value if one is interested in the evidence

value as well. The MultiNest algorithm converges and terminates when the contribution

from the current set of points to the log-evidence value falls below a user-specified

threshold (ranging between 0 to 1), the tolerance (tol) value (Feroz et al., 2013).
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Methodology

4.1 The GPU-accelerated Binary-lens Modelling Code

The binary-lens microlensing modelling code utilized in this project has been developed

by Ling (2013). There are two modelling approaches used in his code, the magnification

map approach and the dynamic light curve engine.

Inverse ray shooting (IRS) (Wambsganss et al., 1992), a brute force numerical technique,

is used in the magnification map approach. In this technique, billions of light rays are

shot backwards from the lens plane onto the source plane to determine the magnification

of each pixel on the source plane.

This bypasses the computational difficulty of inverting the N2 +1 degree polynomial for

an N -lens system. Rather, the general lens equation is used in a straightforward manner

to compute the light ray paths. The lens equation maps each position on the lens plane

to a corresponding position (x, y) on the source plane.

A large number of rays are mapped from a uniform distribution on the lens plane onto a

corresponding distribution on the source plane. Each ray is computed, weighted by the

limb-darkening profile as described by Ling (2013) and then accumulated and stored as

a two dimensional array of theoretical solutions called a magnification map, representing

each pair of lens geometry parameters {q, d}. Figure 4.1 is a visual representation of a

magnification map where the brighter regions depict higher magnification.

Once this magnification map has been created, lines representing source tracks can be

drawn across it to extract theoretical light curves parameterised by {t0, tE , u0, α, ρ}.

The image-centred inverse ray shooting technique is used in the dynamic light curve

engine approach. Here the rays are shot from just those regions of the lens plane that

18
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Figure 4.1: This figure shows a magnification map with a source star track drawn
across it. α is the source trajectory angle with respect to the lens and u0 is the projected
distance (in Einstein radius units) of closest approach of the source to the lens. The
magnification map is a two dimensional array of theoretical solutions of the lens equation
for a pair of lens geometry parameters; q, the mass ratio and d, the separation of the
lens components. Brighter regions on the magnification map depict higher magnification
regions. The curves and cusps of the pattern in the centre of the magnification map

are the caustics which represent regions of theoretically infinite magnification.

map to the source disk. The dynamic light curve engine is useful when modelling complex

microlensing events with orbital motion effects, for instance. It is also appropriate when

setting the parameters {q, d} free during the optimization process, where a magnification

map can not be reused. For each amplification point to be computed a new magnification

map has to be generated.

The Graphics Processing Unit (GPU) is a massively parallel processor that can perform

calculations on massive amounts of data simultaneously. Since the inverse ray shooting

technique is highly parallel, researchers have begun accelerating their gravitational lens-

ing and microlensing modelling codes using GPU architectures (Ling, 2013, McDougall,

2014, Thompson et al., 2010). Using GPU-architecture, Ling (2013) has achieved im-

pressive improvements in the computational speed for the computationally expensive
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task of magnification map generation as well as a high performance extraction of light

curves from the magnification maps.

For a microlensing event without the orbital motion effect, the magnification map is

easily reused to extract many light curves. Within one magnification map the downhill

simplex method is used to optimize in the parameter space {t0, tE , u0, α, ρ}. Hundreds

or thousands of magnification maps have to be searched in the parameter space {q, d}.
It is possible to search thousands of magnification maps since the GPU-accelerated code

takes only seconds to generate a magnification map. Therefore, the magnification maps

can be generated on demand for a specific q and d parameter combination without

storing them on disk.

A grid search coupled with the downhill simplex method finds candidate models opti-

mised in the parameter space {t0, tE , u0, α, ρ} with different q and d combinations. How-

ever, these models have not been optimized in the parameter space {q, d}. These initial

models therefore act as an input to a modified Markov Chain Monte Carlo (MCMC)

method for finding a more accurate model, optimized in the entire parameter space

{q, d, t0, tE , u0, α, ρ} for a binary lens microlensing model. The more accurate model is

generated by the dynamic light curve engine which computes a light curve on demand

without generating a magnification map.

This modified MCMC algorithm has mechanisms to avoid getting stuck in a local min-

ima. It is part of the dynamic light curve engine which, in addition to optimizing the

entire parameter space, is capable of dealing with complex microlensing events. For

instance, in modelling complex microlensing events with orbital motion effects, a magni-

fication map can not be reused and for each magnification point to be computed a new

magnification map has to be generated. This makes the modelling of complex events

even more time consuming and computationally expensive. The GPU-accelerated dy-

namic light curve engine which can compute light curves on demand has significant

advantages in such modelling.

In this research, a specific methodology has been developed, particularly for model selec-

tion problems, by implementing the Bayesian-based MultiNest optimization algorithm.

The MultiNest algorithm replaces the MCMC algorithm in finding more accurate pa-

rameter estimates and provides the additional functionality of straightforward Bayesian

model selection. Since MultiNest requires thousands of likelihood evaluations for conver-

gence, the advantages offered by a GPU-accelerated modelling code can be appreciated.



Chapter 4. Methodology 21

4.2 MultiNest Implementation

In this work, MultiNest v3.8 was used with N = 200 points and tol = 0.5 to achieve

adequate accuracy without a prohibitively long computation time. Lower values of

tolerance result in higher accuracy in the log-evidence estimates but require a much

longer computation time. The quality of the log evidence estimates also increases by

increasing the number of the N samples but once again this gain in accuracy occurs at

the expense of speed.

PyMultiNest (Buchner et al., 2014), the Python interface to MultiNest, allowed the

efficient integration of the MultiNest optimisation method with the binary lens modelling

code by Ling (2013). PyMultiNest requires two major functions to be specified, the prior

pdf and the log-likelihood function.

For defining the prior pdf, the MultiNest algorithm has a native parameter space whereby

each parameter value varies from 0 to 1. This “unit hypercube sampling space” is ex-

plained in detail in (Feroz et al., 2009). Uniform priors were adopted for the parameters

d, t0, tE , u0, α and log-uniform priors for the parameters q and ρ since these two parame-

ters range over several orders of magnitude. Hence, the MultiNest native space and our

parameter space coincide, and it becomes a trivial matter of converting the unit inter-

val [0, 1] to the chosen parameter space interval. The determination of prior parameter

space intervals is discussed in more detail in the Section 4.3

In the implementation of the MultiNest algorithm via PyMultiNest, a log-likelihood

function has been used, as briefly derived below and given by the equation (4.5). The

treatment of Sivia and Skilling (2006) has been followed in the choice of the log-likelihood

function and so the reader is also referred to this textbook for full details on the deriva-

tion.

Assuming independent data, the likelihood is the product of that for each datum:

L = P (D|X,M) =
N∏
k=1

P (Dk|X,M) (4.1)

where Dk is the k-th datum. Assuming independent Gaussian measurement errors, the

probability of an individual datum can be stated as:

P (Dk|X,M) =
1

σk
√

2π
exp

[
−(Fk −Dk)

2

2σ2k

]
, (4.2)

where σ2k is the error bar on Dk and Fk is the k-th ideal (noiseless) datum generated

by an adequate model described by parameters X. With equations (4.1) and (4.2) the
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likelihood function can be approximated as follows:

P (D|X,M) ∝ exp

[
−χ

2

2

]
, (4.3)

where χ2 is the sum of squares of the normalized residuals,

χ2 =
N∑
k=1

(
Fk −Dk

σk

)2

. (4.4)

The log-likelihood is then,

lnL = ln [P (D|X,M)] = C − χ2

2
. (4.5)

In addition to the log-evidence values, MultiNest outputs the maximum likelihood es-

timates (MLE), the maximum a-posteriori (MAP) parameter estimates and the mean,

each with associated uncertainties. Given flat priors, the posterior pdf becomes directly

proportional to the likelihood function. For this reason the MAP estimates are equiv-

alent to the MLE estimates. The MAP parameter estimates are used to compute the

best-fit model light curves. The log-evidence values, the MAP and the mean parameter

estimates have been reported for the analyses of the synthetic and real event in the

respective chapters.

4.3 The Modelling Strategy

The same strategy was used to model the synthetic event and the real event. In all the

MultiNest modelling runs the value of the constant in the log-likelihood equation (4.5)

was fixed at a value of 104, which is an arbitrarily chosen value for the constant, C, in

Equation 4.5. This value affects the absolute evidence value but does not affect model

comparison as long as it is fixed at one value for all the models being tested.

In microlensing modelling, large parameter spaces need to be explored for all the pa-

rameters and in the Bayesian framework, prior intervals would ideally reflect the entire

range of parameter values considered viable. However, this approach of using the entire

ranges of parameter values for prior intervals was found to be infeasible and was aborted

due to it being extremely time consuming, while not returning comparable parameter

estimate results.

For the events modelled in this research, a glance at the light curve data reveals that these

are not single-lens events, since there are perturbations in the light curve rather than it
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being a symmetrical bell curve (for a single-lens). However, an initial FSPL modelling

is carried out to determine the starting points for t0, tE , u0 and ρ to be specified for

the downhill simplex optimization performed for each q, d during the grid search of the

parameter space.

For the FSPL modelling, the magnification map technique was used to compute the light

curves on a single magnification map, with mass fraction, q = 0, separation, d = 0 and

angle, α = 0. As a result, it usually takes on the order of minutes for the algorithm to

converge, depending on the complexity of the event being modelled. Therefore, it was

affordable to assign a wide range to the prior intervals for the initial FSPL modelling.

The time span of the magnification event (roughly estimated from the light curve) was

taken to be the prior interval for the parameter t0. The prior intervals for the parameters

tE , u0 and ρ were determined to be the range of values generally considered typical

for these parameters. The parameter tE is typically less than 200 days. For high

amplification events, u0 is roughly the inverse of the magnification at t0. Furthermore, ρ

is typically approximately 0.001-0.005 for main sequence stars and approximately 0.01-

0.02 for red giant source stars.

A fixed grid-search was performed for the finite-source binary-lens (FSBL) model with

7 parameters. The grid search was performed over the range −4 < log 10(q) < 0.0 and

−1.0 < log 10(d) < 0.6 with 40 uniform divisions for each parameter range. For each of

the 1600 magnification maps created, α was explored over the range 0.0 < α < 2π with

72 uniform divisions of the parameter search range of α. Each of these 72 values of α

along with the user-specified starting points for t0, tE , u0 and ρ are fed into the downhill

simplex optimization algorithm. The grid search results aided in restricting the prior

intervals for the 7 FSBL parameters.

For the FSBL with parallax effects (FSBLπ) model, the same constrained prior intervals

for the 7 parameters are used as for the FSBL modelling. In addition, the prior intervals

for parameters πE,N and πE,E were specified to be the range of values generally considered

typical for parallax parameters. Another round of FSPL modelling was also carried out

using the same prior intervals for t0, tE , u0 and ρ, as used for the FSBL models. This is

done so that the prior intervals for the all the models being compared would match and

the comparison would be a fair one.

Grid-search results were used to constrain the prior intervals hence the prior volumes,

for all the models being tested using the MultiNest algorithm. The prior intervals were

also subdivided for the degenerate parameters d and u0 into equally spaced subintervals

and searched in parallel using MultiNest. In this approach, the evidence values had been

artificially boosted by the same factor by which the prior volumes had been reduced.

Rather than correcting the evidence values by that factor, by taking certain measures in
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the modelling strategy, the need for correcting the evidence values was eliminated and

ensured a fair model selection process.

It was specified whether the degenerate parameter d was optimised in the wide or close

separation region by appending the letter W or C to the model acronyms respectively. To

indicate whether u0 was optimised in the positive or negative region for that particular

model, positive or negative signs were appended respectively, as shown in Tables 5.2 and

6.2.

It was ensured that the prior volumes were reduced by the same factor for all the

models being tested. This was done by using the same prior interval for each particular

parameter across all the models being tested. It was also ensured that the subintervals

were equally spaced. As a result, for all the models, evidence values were boosted by the

same factor. Since this factor cancels out while taking the ratio of the evidence values

of any two models being compared, ultimately the artificial boosting of the evidence

values does not affect our model selection results. This is similar to artificially boosting

the evidence values by increasing the value of the constant, “C”, in the log-likelihood

equation (4.5). In both cases, the artificial boosting does not affect the final results.

Therefore, the comparison of models using this strategy remains fair and valid.

All the FSPL models and some of the FSBL and FSBLπ models converged according to

the convergence criteria of the MultiNest algorithm as specified, within reasonable time

limits, which are detailed in Tables 5.2 and 6.2.

After running the MultiNest algorithms till convergence or till the time limit was reached,

parameter estimates and model evidences were extracted, as shown in Chapters 5 and

6, respectively.

For the real event, the most favourable model was used to derive the scaling coefficient

in the normalization of data to obtain a χ2 per degree of freedom (dof) equal to 1.

This is common practice in model fitting to observed microlensing data and is done here

to follow the same practice as employed in Kains et al. (2013), the paper with which

results obtained in this research are compared. In re-scaling the error bars, the simple

scaling relation σ′i = k ∗ σi was used, where σ′i is the re-scaled error bar of the ith data

point and σi is the original error bar. The scaling coefficient, k, was determined such

that χ2/dof ≈ 1. MultiNest runs were repeated on the data with re-scaled error bars

and then analysed as shown in Chapter 6. For the synthetic data, the objective was to

recover the true model with the true parameter estimates that were used to generate

the synthetic event. The rescaling procedure did not seem necessary for the synthetic

event.
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Generation and Analysis of the

Synthetic Event

5.1 Generation of the Synthetic Data

The objective of analysing synthetic data was to show that the true model with the

true parameters could be recovered. Therefore, the synthetic data generated represents

a theoretical light curve with error bars added and does not emulate a complex real

microlensing event.

Following Skowron et al. (2009), the synthetic microlensing data was generated by taking

the following steps:

1. A binary lens model was arbitrarily chosen with parameter values designated “ac-

tual values” as given in Table 5.3. Using these parameter values, a magnification,Ai,

versus time, ti, curve was generated using the dynamic light curve engine. A time

range was specified and parameter values were chosen, to simulate a high mag-

nification event as illustrated in Figure 5.1 and with caustic crossing features as

illustrated in Figure 5.3.

2. The baseline magnitude in the I band was fixed at I0 = 15.0.

3. The blending fraction (ratio of the lensed source flux to the total blend flux), fs

is sampled randomly from a uniform distribution between 0 and unity, to obtain

a different fs value for each point on the light curve.

4. Given I0 and fs, magnification data, Ai, at time, ti, were converted to magnitudes,

Ii, using,

Ii = I0 − 2.5 log[fsAi + (1− fs)]. (5.1)

25
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Table 5.1: Prior Distributions for Model Parameters for the Synthetic Event

Parameter Interval Distribution
Variable

t0 (JD) [7045.0, 7055.0] Uniform

tE (day) [101.74, 101.88] Log-Uniform

u0 [-0.03, -0.01] (Negative) Uniform

[0.01, 0.03] (Positive) Uniform

q [10−2.3, 10−1] Log-Uniform

d (RE) [100.18, 100.4] (Wide) Log-Uniform

[10−0.3, 100.18] (Close) Log-Uniform

α (rad) [2.5, 3.5] Uniform

ρ [10−2.3, 10−2.0] Log-Uniform

πE,N (θE) [-0.1, 0.1] Uniform

πE,E (θE) [-0.1, 0.1] Uniform

This gives a theoretical light curve of magnitude versus time, without errors.

5. By sampling from a Gaussian distribution with mean, 0 and standard deviation, 0.1

and then taking their absolute values, different sized error bars for each magnitude,

Ii, were obtained.

5.2 Analysis of the Synthetic Event

The synthetic event was modelled using the modelling strategy as described in Subsec-

tion 4.3. Grid search results for the finite-source binary lens model of the synthetic event

are presented as a χ2 map in Figure 5.2. The prior intervals for all the parameters in

Table 5.1 were chosen to enclose regions with χ2 values of less than 700.

The parameter estimates for the most favourable model (FSBLW+) that was selected

are shown in Table 5.3. The MAP parameter estimates have been reported, which were

used to generate the model light curve and the caustics diagrams as shown in Figure 5.1

and Figure 5.3 respectively. Also reported are the mean and respective uncertainty

values. As can be seen in the table, all the parameter estimates agree with the actual

values that were used to generate the synthetic event. In Figure 5.4, the probability

distribution for each of the parameters of our most favourable model are presented.

Comparing all the models, including the ones that were aborted after a certain time, the

most favourable model selected would be the FSBLπW- model which does not correspond

to the true model. On the other hand, simultaneously comparing only the models that
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Figure 5.2: χ2 values are indicated by the colour bar, brighter colours indicating a
higher χ2 value. Log values of the mass fraction extend from -4.0 to 0.0 whereas log

values of separation, extend from -1.0 to 0.6.

had fully converged and choosing the model with the highest log-evidence value, the most

favourable model (FSBLW+) corresponds to the true model that was used to generate

the synthetic event.

Furthermore, the difference in the log-evidence values, ∆ lnZ, between the fully con-

verged model solutions (FSBLW+ , FSBLπW+, FSBLW-) are less than 1.1 and using

Jeffreys’ scale, these models would be considered equally probable as well. However,

ultimately the model with the highest log-evidence value out of the fully converged

solutions was selected and this corresponds to the true model as mentioned above.

The log-evidence values and the run time for all the models are shown in Table 5.2.

There is a large difference in the log-evidence values between the binary-lens and single-

lens models, therefore, there is ‘decisive’ evidence favouring the binary-lens models over

the single-lens models, using Jeffreys’ scale.
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Table 5.2: MultiNest log-evidences (lnZ) for all the models tested for the synthetic
event.

Model lnZ Convergence Status (Time)

FSBLW+ 9970.966 ± 0.355 Fully Converged (14.8 hrs)

FSBLπW+ 9970.917 ± 0.356 Fully Converged (18.4 hrs)

FSBLW- 9970.382 ± 0.359 Fully Converged (14.3 hrs)

FSBLπC- 9926.981 ± 0.377 Fully Converged (20.6 hrs)

FSBLπW- 9971.508 ± 0.349 Aborted (24.5 hrs)

FSBLC- 9849.876 ± 0.260 Aborted (24.5 hrs)

FSBLπC+ 9823.031 ± 0.264 Aborted (24.5 hrs)

FSBLC+ 9806.577 ± 0.261 Aborted (24.5 hrs)

FSPL- -584611.645 ± 0.375 Fully Converged (11.6 s)

FSPL+ -594080.768 ± 0.376 Fully Converged (74.4 s)

Table 5.3: MultiNest Parameter Estimates for the Synthetic Event for the Most
Favourable Model (FSBLW+).

Parameter MAP Mean ± Uncertainty Actual

t0 (JD) 7050.081 7050.012 ± 0.168 7050.0

tE(days) 65.511 65.321 ± 0.660 65.4

u0 0.020 0.020 ± 0.001 0.02

q 0.032 0.033 ± 0.001 0.033

d 2.392 2.399 ± 0.017 2.4

α (rad) 3.000 3.000 ± 0.003 3.0

ρ 0.007 0.007 ± 0.0002 0.007

πE,N 0.0 0.0 ± 0.0 0.0

πE,E 0.0 0.0 ± 0.0 0.0
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Figure 5.3: Caustic curves for the most favourable model (FSBLW+) for the synthetic
event, with the source trajectory in the direction indicated by the arrow and the source

star size indicated by the solid circle on the trajectory.
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Figure 5.4: Grey bars show the probability distribution of all the parameters of the
most favourable model (FSBLW+) . The histograms have been normalized so that the
area under the bars and the gray curve representing the kernel density estimate totals

to one.
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Analysis of the Real Event

OB11-0251

In demonstrating the methodology developed in this research, on a real event, OB11-

0251, the results obtained using this methodology were compared with the results pub-

lished by Kains et al. (2013). The published results show OB11-0251 to be a giant

planet beyond the snow line with a mass ratio of q = 1.92 ± 0.12 and separation of

d = 1.408± 0.019.

The modelling strategy as described in Subsection 4.3 was used to model the real event.

Grid search results for OB11-0251 are presented as a χ2 map in Figure 6.1. The prior

intervals for all the parameters in Table 6.1 were chosen to enclose regions with χ2 values

of less than 6× 104.

Table 6.1: Prior Distributions for Model Parameters for OB11-0251

Parameter Interval Distribution

t0 (JD) [5781.0, 5782.0] Uniform

tE (day) [101.77, 101.85] Log-Uniform

u0 [-0.07, -0.03] (Negative) Uniform

[0.03, 0.07] (Positive) Uniform

q [10−3, 10−2] Log-uniform

d (RE) [100.18, 100.4] (Wide ) Log-Uniform

[10−0.3, 100.18] (Close) Log-Uniform

α (rad) [1.6, 4.6] Uniform

ρ [10−2, 10−1.5] Log-uniform

πE,N (θE) [-0.1, 0.1] Uniform

πE,E (θE) [-0.1, 0.1] Uniform

32
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Figure 6.1: This χ2 map is a visual representation of the grid search results for
the event OB11-0251. χ2 values are indicated by the colour gradient, brighter colours
indicating a higher χ2 value. Log values of the mass fraction extend from -4.0 to 0.0

whereas log values of separation, extend from -1.0 to 0.6.

MultiNest was run on OB11-0251 raw data and then on rescaled data with a time limit

of 10 days. Some of the model solutions obtained from the run on the rescaled data

achieved full convergence.

Table 6.2 shows all the models tested along with their log-evidence and χ2/ dof values.

As mentioned in the introduction to Bayesian inference, all the models tested can be

simply compared simultaneously and the model with the highest log-evidence value can

be chosen as the most favourable model or the Jeffreys’ scale can also be referred to

compare models.

Comparing all the models, including the ones that were aborted due to the time limit,

FSBLC- is obtained as the most favourable model, which does not correspond to the

published results by Kains et al. (2013). Comparing only the models that had fully

converged and choosing the model with the highest log-evidence value, FSBLW+ is

obtained as the most favourable model which does not correspond to results by Kains

et al. (2013) either.
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Table 6.2: MultiNest log-evidences (lnZ) for the models tested for OB11-0251. In
brackets it is specified whether the degenerate parameter d was searched in the wide or
close separation region and whether u0 was searched in the positive or negative region

for that particular model.

Model lnZ Convergence Status (Time)

FSBLW+ 8059.292 ± 0.363 Fully Converged (7.8 days)

FSBLπW+ 8058.900 ± 0.374 Fully Converged (8.6 days)

FSBLW- 8058.600 ± 0.367 Fully Converged (7.5 days)

FSBLC- 8099.526 ± 0.350 Aborted (10 days)

FSBLπC- 8099.155 ± 0.376 Aborted (10 days)

FSBLπW- 8059.082 ± 0.371 Aborted (10 days)

FSBLπC+ 8007.104 ± 0.281 Aborted (10 days)

FSBLC+ 8001.962 ± 0.243 Aborted (10 days)

FSPL- -1703713.603 ± 0.375 Fully Converged (173 s)

FSPL+ -1704157.617 ± 0.377 Fully Converged (286 s)

However, when a pairwise comparison is made between the models using Jeffreys’ scale,

the difference between FSBLW+ and FSBLπW+ and between FSBLC- and FSBLπC- is

found to be less than 1.1, and it can be inferred that the two pairs of models are equally

probable. None of these models correspond directly to the model solution published by

Kains et al. (2013), which is a FSBLπW- model.

The most favourable models obtained from the results are FSBLW+ and FSBLπW+

which are equally probable. However, the model with parallax effects, FSBLπW+ was

selected as the representative most favourable model, to compare the parameter esti-

mates of this model solution with those of Kains et al. (2013).

Table 6.3 shows the parameter estimates for the selected model for OB11-0251. The

MAP parameter estimates were used to generate the model light curve and the caustics

diagram as shown in Figure 6.2 and Figure 6.3 respectively. The table also shows the

mean parameter estimates and the respective uncertainty values.

In comparing the parameter estimates with those reported by Kains et al. (2013), the

parameter differences in sigma units were calculated. As represented in the table 6.3,

the parameter α was converted to a negative angle equivalent to the positive value which

was originally obtained.

In Figure 6.4, the probability distribution for each of the parameters of the selected

model is presented.
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Table 6.3: MultiNest Parameter Estimates for OB11-0251

Parameter MAP Mean Parameter Estimates Difference Ratio of
± Uncertainties (Kains et al., 2013) (σ) Error Bars

t0 (MHJD) 5781.128 5781.374 ± 0.002 5781.503 ± 0.004 28.84 0.5

tE (days) 63.47 63.41 ± 0.26 63.88 ± 0.46 0.89 0.56

u0/10−2 5.44 5.44 ± 0.03 -5.63 ± 0.04 3.80 0.75

q/10−3 2.50 2.54 ± 0.04 1.92 ± 0.12 4.90 0.33

d 1.51 1.52 ± 0.003 1.408 ± 0.019 5.82 0.16

α (rad) 4.44 4.45 ± 0.01 -1.855 ± 0.002 4.41 5.0

ρ/10−2 1.160 1.131 ± 0.07 1.39 ± 0.05 3.01 1.4

πE,E -0.09 -0.04 ± 0.05 0.09 ± 0.01 2.54 5.0

πE,N 0.007 0.02 ± 0.01 -0.34 ± 0.05 7.06 0.2
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Figure 6.3: Caustics pattern for the event OB11-0251 shown as the diamond shaped
curves and the critical curve is represented by the circle. The source star trajectory is
drawn across the plane with solid black line, the arrow indicating its direction and the

small circle drawn upon it indicating the finite size of the source star.
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Figure 6.4: Grey bars show the probability distribution of all the parameters of the
most favourable model. The histograms have been normalized so that the area under

the bars and the grey kernel density estimate curve totals to one.
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Discussion and Conclusion

A new modelling strategy for microlensing modelling has been developed in this project,

which offers a different approach to the model selection problem in particular. This

methodology is based on Bayesian principles and allows us to compare alternative models

against the same data set and to make a quantitative preference for one model out of

two or more competing models. This methodology can also prevent implausible values

for the physical parameters entering the scenario by informing the priors with knowledge

obtained from Galactic models, for example.

During the research, prior intervals that reflected the entire range of possible parameter

values were used during the preliminary MultiNest runs but they had to be aborted

since the run-time for these runs were longer than affordable, on the order of several

days to weeks, while the data obtained during the run suggested that there was difficulty

obtaining convergence or viable solutions. These preliminary runs were done on several

real events and proved to be challenging especially for the caustic crossing events due

to the aforementioned reasons.

The exception to this were the FSPL models, for which it was feasible to assign the

entire range of possible parameter values and still achieve convergence with a runtime

on the order of minutes, as explained in Section 4.3. This was possible for the FSPL

models since the magnification map technique as described in Section 4.1 could be used

to generate light curves for these simpler models. For each FSPL model only one mag-

nification map with q = 0 and d = 0 would have to be created and then thousands of

light curves could be generated from this magnification map within seconds to minutes,

enabling a fast convergence.

However, for the binary-lens models the magnification map technique could not be used

since q and d were to be optimised as free parameters. Therefore, the dynamic light curve

38
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engine technique had to be used. While it can generate a light curve without having to

generate a magnification map, it is considerably slower in generating thousands of light

curves.

Narrower prior intervals had to be carefully chosen for the binary lens models to keep

computer time within affordable limits. The non-Bayesian method of a grid search

coupled with downhill simplex optimization were included in our modelling process to

achieve this. It provided a bird’s-eye view of the χ2 landscape to locate the regions of

the parameter space to be explored further with MultiNest, essentially narrowing down

the prior intervals.

In fact, despite narrowing the prior intervals, the MultiNest runs for some of the models

tested still had to be aborted as shown in Tables 5.2 and 6.2, due to the relatively longer

run-times compared to the other models being tested in parallel.

The methodology was demonstrated using synthetic data as well as data for a real

microlensing event, OB11-0251. To demonstrate the capability of the methodology to

perform model selection, various models with different numbers of parameters, including

FSPL and FSBL models, were tested. The presence or absence of the parallax effect in

the binary-lens models were also tested. There is usually a degeneracy between the wide

and close separation solutions, and between positive and negative impact parameter, u0

solutions. Therefore, models with various degenerate scenarios were tested as well.

For the synthetic event, the correct model with accurate parameter estimates, was re-

covered. However, for OB11-0251, the model preference resulting from the methodology

used in this project did not agree with that of the benchmark, (Kains et al., 2013).

Furthermore, the parameter estimates recovered by the methodology used in this re-

search project, roughly matched the previously published results but did not match

them precisely.

Therefore, it is inferred that for complex, real microlensing events, especially caustic

crossing events, the computation resources available may not be sufficient to success-

fully use the methodology that was tested in this project. However there is potential for

further refining this methodology and using it as a definitive model selection methodol-

ogy, demonstrated as a proof of concept by the synthetic event modelling results.

An improvement would be to use Bayesian priors specifically derived for the caustic

crossing binary-lens parameters as discussed in Cassan et al. (2010) instead of using

uniform priors as was done in this project.

Given computational resources, another improvement would be to choose the entire

range of possible parameter values as the prior intervals. In other words, to essentially
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remove the need for a grid search coupled with the downhill simplex method or similar

non-Bayesian optimization method as an initial step to narrow down the prior intervals

to be searched using MultiNest. This would considerably simplify the strategy and make

it a stand-alone Bayesian optimisation methodology rather than a hybrid of Bayesian

and non-Bayesian optimisation methods.
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