
Astro2020 Science White Paper

Probing the origin of our Universe through
cosmic microwave background constraints on
gravitational waves
Thematic Areas: � Planetary Systems � Star and Planet Formation
� Formation and Evolution of Compact Objects X Cosmology and Fundamental Physics
� Stars and Stellar Evolution � Resolved Stellar Populations and their Environments
� Galaxy Evolution �Multi-Messenger Astronomy and Astrophysics

Principal Author:
Name: Sarah Shandera
Institution: The Pennsylvania State University
Email: ses47@psu.edu
Phone: (814)863-9595

Co-authors: Peter Adshead1, Mustafa Amin2, Emanuela Dimastrogiovanni3, Cora Dvorkin4,
Richard Easther5, Matteo Fasiello6, Raphael Flauger7, John T. Giblin, Jr8, Shaul Hanany9, Lloyd
Knox10, Eugene Lim11, Liam McAllister12, Joel Meyers13, Marco Peloso14, Graca Rocha15,
Maresuke Shiraishi16, Lorenzo Sorbo17, Scott Watson18

1Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801,
USA
2 Department of Physics & Astronomy, Rice University, Houston, Texas 77005, USA
3 University of New South Wales, Sydney NSW 2052, Australia
3 University of New South Wales, Sydney NSW 2052, Australia
4 Department of Physics, Harvard University, Cambridge, MA 02138, USA
5 University of Auckland, Private Bag 92019 Auckland, New Zealand
6 Institute of Cosmology & Gravitation, University of Portsmouth, Dennis Sciama Building,
Burnaby Road, Portsmouth PO1 3FX, UK
7 University of California San Diego, La Jolla, CA 92093
8 Department of Physics, Kenyon College, 201 N College Rd, Gambier, OH 43022
9 University of Minnesota, Minneapolis, MN 55455
10 University of California at Davis, Davis, CA 95616
11 King’s College London, WC2R 2LS London, United Kingdom
12 Cornell University, Ithaca, NY 14853
13 Southern Methodist University, Dallas, TX 75275
14 Dipartimento di Fisica e Astronomia “G. Galilei”,Università degli Studi di Padova, via
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Marcel Demarteau14, Olivier Doré32, Duan Yutong33, Joanna Dunkley34, Jeffrey Filippini35, Si-
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1 Executive Summary
The next generation of instruments designed to measure the polarization of the cosmic microwave
background (CMB) will provide a historic opportunity to open the gravitational wave window
to the primordial Universe. A dedicated effort over the next decade will lead to a guaranteed
detection of the imprint of primordial gravitational waves on the degree-scale B-mode polarization
of the CMB if the predictions of some of the leading models for the origin of the hot big bang
are borne out. A detection would reveal a new scale of high energy physics near the energy scale
associated with Grand Unified Theories, provide the first evidence for the quantization of gravity,
and yield insight into the symmetries of nature, possibly even into deep properties of quantum
gravity. For many, a null result would signal a dramatic shift in our understanding of basic early
Universe cosmology. CMB data will also provide strong limits on nonlinear processes and phase
transitions through constraints on the contribution of gravitational waves to the total energy budget
of the Universe.

The CMB provides a unique probe of high energy phenomena through its record of very high
temperature, early-Universe physics. The scales explored can be as much as 109 times higher than
those achieved in terrestrial colliders. Indeed, while the previous decade of work brought about the
successful operation of the Large Hadron Collider and discovery of the Higgs boson, the lack of
new physics signatures in colliders brings renewed importance to pursuing cosmological probes of
high-energy physics. The observational goal that will allow new phenomena to be tested through
the CMB is clear: we must measure the polarization to high precision.

In the next decade, CMB studies will allow us to address the following key questions:
• How were the seeds for all structure in the Universe created? Is there relic information about
their particular quantum origin?
• Did the same phenomenon that laid down the primordial density perturbations also generate
primordial gravitational waves? If so, what is their spectrum? What does the signal imply for
particle physics at high energies? For gravity?
• Did other highly energetic, nonlinear early-Universe phenomena generate primordial gravi-
tational waves? What do the data tell us about particle physics, including the origin of the hot
Universe, phase transitions, and the origin of the matter/anti-matter asymmetry?

The technical groundwork for more sensitive CMB experiments with stronger foreground char-
acterization capability has been laid by the successful satellite and sub-orbital studies of the last
decade, including the Planck satellite [1], and the ground-based ACT [2], SPT [3], POLARBEAR
[4], and BICEP2/Keck [5] experiments. To access the target thresholds advocated here, next gen-
eration instruments will build on those successes to isolate the cosmic signal from Galactic fore-
grounds through multi-frequency observations, and reduce the sample variance caused by gravita-
tional lensing either through full-sky observations, or through precise measurements of small-scale
fluctuations [6, 3, 7, 8, 9, 10], or both. Through the exciting possibility of a detection as the upper
limit on the tensor-to-scalar ratio improved, this decade’s instruments catalyzed the theory com-
munity to sharpen the understanding of the implications of a B-mode detection. The stage is now
set for the next generation that will either detect primordial B-modes, or reduce the upper limit on
the tensor-to-scalar ratio, r, from the current r ≤ 0.06 at 95% CL [11] by a factor of 10–100 (cf.,
BICEP Array [12], SPT-3G [13], Simons Observatory [14], CMB-S4 [15], and the LiteBIRD [16]
and PICO [17] satellite concepts). These instruments will achieve, at high confidence, sensitivity
thresholds of fundamental importance for our understanding of the origin of the Universe. If vac-

1



uum fluctuations during inflation generate primordial gravitational waves, then for r & 0.01, the
inflaton traverses a super-Planckian field range. Models of inflation with characteristic scale near
the Planck scale, MPl, and that naturally explain scale-dependence in the density fluctuations by
fixing the spectral index to be inversely proportional to the number of e-folds, predict r & 10−3.
If these thresholds are passed without a detection, most textbook models of inflation will be ruled
out; and, while the possibility of an early inflationary phase would still remain viable, the data
would then force a significant change in our understanding of the primordial Universe.

2 Sources of gravitational waves in the early Universe
A. Vacuum fluctuations from inflation: Inflation is an era of accelerated expansion that preceded
the current expanding phase, and provided the energy to heat the Universe to a temperature at
least high enough for big bang nucleosyntheis (BBN) to occur. As a phenomenological model,
inflation successfully reproduces many aspects of the observed Universe, including the lack of
spatial curvature, the adiabatic density perturbations, and the super-horizon coherence of perturba-
tions. During inflation, tiny quantum vacuum fluctuations are amplified and their wavelengths are
stretched to cosmological scales by the accelerated expansion. Quantum fluctuations in the matter
field(s) during inflation provide the seeds for the growth of structure in the Universe.
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Figure 1: Predictions for the tensor-to-scalar ratio r and spectral
index ns for some representative single-field inflationary models in
which ns − 1 ∝ −1/N∗. This class includes monomial models with
V (φ) ∝ φp (dark blue), the Starobinsky (R2) model, and Higgs infla-
tion (orange filled circles). The dashed lines show the predictions of
models in this class as function of the scale in the potential. All models
with Planckian scale can be detected or excluded in the next decade.

Quantum fluctuations of
spacetime itself produce gravi-
tational waves. Their detection
as B-modes in the polarization
of the CMB, with correlations
on scales larger than the Hub-
ble scale at the time of last scat-
tering, would provide strong
evidence that the tensor fluc-
tuations were produced by the
same physics as the observed
scalar fluctuations: quantum
fluctuations of the vacuum.

The amplitude of tensor
fluctuations relative to the scalar
fluctuations, r, directly reveals
the energy scale of inflation.
A measurement of r fixes the
dominant component of the en-
ergy density during inflation,
V , via the relation

V 1/4 = 1.04× 1016 GeV
( r

0.01

)1/4

. (1)

The enormously high energy scale in the prefactor suggests that measurements of the primordial
fluctuations might shed light on high energy physics in a regime far beyond the standard model
of particle physics. Ideally the particle content during the inflationary era can be constrained
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and eventually connected to other data across the vast range of scales separating inflation from
laboratory particle physics.

While aspects of the scalar perturbations (e.g., the shape of the power spectrum and non-
Gaussianity) have well-explored connections to inflationary particle content, the relative amplitude
of the B-mode signal goes further and can provide a unique probe of quantum gravity through its
relation to the inflaton field range. When a scalar field sources inflation, the distance ∆φ that it
moves in field space during inflation is related to the tensor-to-scalar ratio by [18]

∆φ

MPl

&
(r

8

)1/2

N∗ &
( r

0.01

)1/2

, (2)

where MPl is the Planck mass, and N∗ is the number of e-folds between the end of inflation
and the time when the pivot mode, k∗ = 0.05 Mpc−1, exits the Hubble volume during infla-
tion. The right-hand side of Eq. (2) uses a conservative lower limit N∗ & 30 [19, 20, 21].
Why is this field range of interest? It is generally expected that any theory of quantum grav-
ity will introduce new degrees of freedom at or below the Planck scale that can interact with
the inflaton. Unless a symmetry forbids these interactions, one expects sub-Planckian features
in the inflaton potential that prevent ∆φ & MPl. The relation in Eq. (2) then implies that a
detection of r & 0.01 would be strong evidence for such a symmetry. The importance of a
detection of r may be even more profound: the permissibility of a Planckian field range in a
consistent, nonperturbative theory of quantum gravity, irrespective of the symmetries that might
protect the inflaton potential, remains the subject of considerable debate [22, 23, 24]. It is truly
remarkable that CMB data can weigh in on quantum gravity. Searching for evidence of large-
field models sets the threshold for Science Objective A1 in Table 1 of the Summary section.
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Figure 2: B-mode spectrum from vacuum fluctuations
(solid lines, top to bottom: r = 0.06, 10−3, 10−4), from
gravitational lensing of E-modes (dashed orange line),
and from an example with contribution from vacuum
fluctuations with r = 1.6× 10−4 and particle production,
generating strong large angular scale B-modes (dotted
line) [25]).

Following on the discussion above, one
way to classify inflation models is by the
typical scale of structure in the potential -
the scale over which its value changes ap-
preciably. Improved constraints on r, to-
gether with better characterization of the
scalar spectrum (via the spectral index ns),
will allow large classes of single-field in-
flation models to be ruled out in the next
decade, even in the absence of a detection
of primordial gravitational waves. A class
of models of particular interest are those
that explain the observed value of the
spectral index via ns − 1 ∝ − 1

N∗
[26, 27,

28, 15]. An upper limit of r < 10−3 would
rule out all such models that naturally,
in this sense, explain the current central
value of the spectral index, and that have a
characteristic scale set by the Planck scale
MPl. Models that would be excluded in-
clude the historic “R2” model [29] (pre-
dicting r > 0.003) and monomial infla-
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tion, V (φ) ∝ φp, including string theory motivated models [30]. Finding evidence of natural,
Planck-scale models, or ruling them out, sets Science Objective A2 and is illustrated in Figure 1.

Regardless of the details of the inflationary model, the gravitational-wave background should
have super-horizon coherence [31, 32]. Confirming this prediction through measurements of cor-
relations in the B-mode signal on angular scales θ & 2◦ is Science Objective A3.

B. Particle sources during inflation: During inflation, additional fields (besides the inflaton)
can act as extra sources of gravitational waves that can dominate over the vacuum fluctuations.
The presence of those fields in the inflationary context is natural from a top-down perspective;
string theory, for example, provides plenty of candidates [33]. In the well-studied case of axion
inflation [34], the sourced tensor power spectrum can deliver a large (and chiral) gravitational wave
signal even if the scale of inflation is well below the scale in Eq. (1). In general, the phenomenology
of sourced gravitational waves is strikingly different from that of amplified vacuum fluctuations.
Figure 2 compares a representative particle-sourced B-mode power spectrum to that from vacuum
fluctuations. Although the model must be tuned to give a large signal at measurable scales, it
provides an important example of a distinguishable spectrum.

Quite generally, if primordial B-modes are detected, distinguishing models for their origin
will require a careful analysis of the spectrum. A sourced tensor spectrum can present broad
features [25, 35, 36], characterized by a detectably large (and running) spectral index nt ≡ d lnPt

d ln k
=

O(1) (Fig. 2, Science Objective B1). The sourced spectrum is chiral, which can be seen in non-
zero EB and TB correlations [37], and a fully chiral tensor spectrum can be detectable at the
2σ level in a cosmic variance-limited experiment as long as r > 0.01 [38, 39]. Finally, sourced
B-modes may have detectably large non-Gaussianities spanning a rich class of bispectra [40].

C. A gravitational wave probe of post-inflationary particle physics:

frequency (Hz)

energy scale (GeV)

Figure 3: CMB constraints on the stochastic gravitational wave
background. The solid black line is the 2015 direct CMB limit of
r < 0.12 (nt = 0) on the low-frequency stochastic background.
The indirect constraint (dashed line) comes from the Ωgw limit from
the CMB together with other cosmological data ([41], 2015 data).
The primordial spectrum is shown for r = 0.11 and nt = −r/8
(green). Curves in red show schematic example signals that could
arise from (left) the electromagnetic phase transition [42], (center)
a new physics phase transition, and (right) re-heating.

In a cooling universe one
may expect short periods with
complex, nonlinear field dynam-
ics, including phase transitions,
non-perturbative particle produc-
tion, and the formation of soli-
tons/defects (see, e.g., [43]). These
processes generically produce a
gravitational-wave spectrum ex-
tending over just a few decades in
frequency. The signal is sharply
peaked, with the peak frequency
scaling as f ∼

√
H0H∗ where

H∗ is the Hubble scale at the
time of production [44, 45]. For
example, the reheating process
after inflation and phase transi-
tions associated with the origin of
the matter/anti-matter asymmetry
may lead to spectra of this type,
shown in Figure 3.

While a few narrow frequency
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bands are being (or will be) probed by direct detection (e.g., LIGO at f ∼ 102Hz, LISA at f ∼
10−3Hz [42]), the CMB is sensitive to the total integrated number of relativistic degrees of freedom
at the time of recombination [46] and constrains the total energy density in gravitational waves
integrated over all sub-horizon wavelengths. Assuming no radiation-like new particles, current
data restrict Ωgw,0 . 1–2 × 10−6. Limits on the integrated Ωgw,0 from the CMB constrain the
strength of all nonlinear particle processes in the early Universe, and can be combined with data
from direct-detection experiments to constrain the shape of the primordial spectrum [41]. Science
Objective C1 is the expected improved upper limit on Ωgw,0.

D. Non-inflationary models for the origin of the cosmological perturbations: Inflation is
not the only proposed mechanism for generating the cosmological perturbations. Alternative sce-
narios include Ekpyrotic and Cyclic models [47, 48], String Gas Cosmology [49, 50], and a matter
bounce [51, 52]. Much less community effort has gone into developing these alternatives, but the
expectation is that the original Ekpyrotic scenario predicts a very small value of r [53], while String
Gas Cosmology predicts a value observable with near-term experiments. In many realizations of
non-inflationary scenarios, the predictions are model dependent and an observation of r alone may
not be enough to distinguish them from inflation. However, when the amplitude of r is combined
with constraints from other observables (such as the shape of the gravitational wave spectrum) it
may be possible to distinguish these scenarios from inflation [54].

3 Summary and Recommendations
CMB polarization experiments will provide a unique observational window into fundamental par-
ticle physics and gravity above about 10 TeV, through searches for the signatures of gravitational
waves. The sentiment expressed in the last decadal review still stands: in pushing forward our
understanding of the earliest phases of the Universe, “The most exciting quest of all is to hunt for
evidence of gravitational waves that are the product of inflation itself.” [55]. At the same time, new
data may uncover signatures beyond the simplest predicted spectrum, either from non-vacuum
sources during inflation, from energetic particle processes after inflation, or from alternatives to
inflation. With either a detection or an upper limit, next generation polarization surveys have the
potential to continue the rich legacy of cosmological discovery as the driver of innovation in fun-
damental particle physics and gravity.

Gravitational wave physics Target
A1: Large-field inflation models∗ r & 0.01

A2: Natural, Planck-scale inflationary potentials ∗ r & 0.001

A3: Primordial origin for B-modes correlations on scales θ & 2◦

B1: Matter sources σ(nt) > 1

C1: Energetic phase transitions Ωgw < 10−7

Current bounds: r < 0.06 at 95% CL [11] and Ωgw < 10−6 [41].

Table 1: Science objectives, where a detection above the target limit would provide evidence for the
listed phenomena. The asterisk indicates statements that rely on single-field (adiabatic) inflationary
vacuum fluctuations as the main gravitational wave source.
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