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The stability properties of a natural convection boundary layer (NCBL) adjacent to an
isothermally heated vertical wall with Prandtl number 0.71 are numerically investigated
in the configuration of a temporally evolving parallel flow. The instantaneous linear
stability of the flow is first invesitgated by solving the eigenvalue problem with a ‘frozen’
base flow. The critical point is found to be Grδ = 454.2 with the most unstable
wavenumber of k = 0.0544, where Grδ is the Grashof number based on the velocity
integral boundary layer thickness δ. Temporal responses of the discrete perturbation
modes are numerically obtained by solving the two-dimensional linearised disturbance
equations using a ‘frozen’ base flow as an initial-value problem at various Grδ. The
resultant amplification rates of the discrete modes are compared with the quasi-steady
eigenvalue analysis, and both two-dimensional and three dimensional full direct numerical
simulations of the temporally evolving flow. The selective amplification that is commonly
found in the spatially developing NCBL is also observed in the temporally evolving
case. The amplification rate predicted by the linear theory compares well with the direct
stability analysis from Grδ ∼ 8500 to a transition point of Grδ ∼ 1.3×104, confirming the
temporally evolving NCBL shares very similar instantaneous stability properties to the
‘frozen’ steady base flow in this range. The transition Grashof number also coincides with
the sudden change in the base flow and the mean flow statistics. The direct simulations
show the value of the transition Grashof number depends on the initial perturbation
amplitude. After the transition point, the direct stability results diverge from the linear
stability predictions as the non-linear mechanisms become important.

Key words:

1. Introduction

Thermally driven natural convection boundary layers (NCBL) commonly arise in
natural and industrial flows. The stability of the NCBL is of interest as it addresses
the initial stage of the infinitesimal disturbance development that later leads to the
laminar–turbulent transition.
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Eckert (1951) investigated the laminar spatially developing NCBL in air subjected
to natural disturbances using an interferometer. That experimental work indicated the
laminar boundary layer amplifies a band of frequencies before the flow undergoes tran-
sition. Similar behaviour, later termed selective amplification, was confirmed by several
experimental investigations in steady, spatially developing NCBLs (Dring & Gebhart
1969; Knowles & Gebhart 1968; Mahajan & Gebhart 1979; Hieber & Gebhart 1971).
Early theoretical studies were carried out by Plapp (1957) and Szewczyk (1962) with
experimental support, followed by a numerical investigation by Kurtz & Crandall (1962)
using a finite difference method.

The marginal stability curves to the spatially developing NCBL flow adjacent to an
isothermal wall were obtained numerically by Nachtsheim (1963) for Pr = 0.733 and
Pr = 6.7 with an iterative Newton–Raphson method. The resultant marginal stability
results were in good agreement with the experimental results obtained by Szewczyk
(1962), Eckert et al. (1955) and Kurtz (1961). Experimental work by Polymeropoulos
& Gebhart (1967) and Knowles & Gebhart (1968) also demonstrated the validity of
applying the parallel-flow linear stability theory to the NCBL flow along a vertical wall
with constant heat flux. Knowles & Gebhart (1968) showed that the NCBL flow is more
unstable to the two-dimensional disturbances than the three-dimensional disturbances
using a similar method to that of Squire (1933). Dring & Gebhart (1968) extended
this work by theoretically investigating further downstream locations away from the
neutral curve. It was showed that the NCBL flow is sharply filtering for a narrow band of
frequencies that amplify more strongly than the other frequencies. This frequency band,
however, is much higher than the most unstable frequency at the critical point (i.e.
the frequency that is amplified first). The results were confirmed by Dring & Gebhart
(1969) in their experimental work. On the basis of the linear stability theory, Gill &
Davey (1969) presented the linear stability results for a thermally stratified NCBL with
Dirichlet boundary conditions. Their work was later extended by McBain et al. (2007)
with Neumann boundary conditions, using both eigenvalue and direct stability analysis.
It was found that the amplification of the infinitesimal disturbances are eventually limited
by non-linear effects.

Little work has been dedicated to the stability of unsteady NCBLs. Joshi & Gebhart
(1987) investigated the transient stability of a spatially developing (where the boundary
layer thickness δ is growing in both time and space, in the presence of the leading edge
effect) NCBL flow in water with constant heat flux using anemometer and thermocouple
measurements. The experimental work demonstrated that at larger downstream distances
the transient flow may become unstable and undergo laminar–turbulent transition in
the purely conductive regime before the arrival of the leading edge signal. Krane &
Gebhart (1993) further investigated the transient stability of such a one-dimensional
flow (Pr = 6.7) by assuming a slowly varying base flow and employing a quasi-static
formulation (initially proposed by Shen (1961)). The frequency which has the maximum
amplification rate from their marginal stability results was found to be slightly lower than
the observed frequency band in the experimental work by Joshi & Gebhart (1987). The
inaccuracy of the quasi-steady flow formulation for impulsively started flows (Shen 1961)
was suggested as the probable cause of this discrepancy. A similar numerical approach was
adopted by Brooker et al. (2000), who investigated the transient stability properties of a
NCBL at Pr = 6.25 and Pr = 7 in a square cavity both experimentally and numerically.
The two-dimensional parabolic stability analysis showed that the temperature signal is
amplified more strongly than the velocity signal in the cavity. Since the cavity is limited
by the top and bottom walls, all the disturbances are quickly damped by the base flow
near the presence of the top and bottom wall. Despite the quasi-static assumption in



Stability of a Temporally Evolving NCBL 3

the eigenvalue calculations, the numerical results are still in good agreement with their
experimental measurements.

The present paper concerns the flow stability of a temporally developing NCBL adja-
cent to a vertical heated isothermal wall of infinite extent. Practically, such temporally
developing flows are of crucial importance, in particular, to those start-up unsteady flows
where the non-dimensional downstream distance Rax = gβθx3/νκ is very large and a
parallel flow could exist for a significant amount of time before the arrival of the leading
edge signal (Goldstein & Briggs 1964).

The paper is organized as follows: An overview and a mathematical description of the
problem is given in §2. The instantaneous linear stability of the NCBL flow is examined
as an eigenvalue problem in §3 and an initial-value problem in §4. The stability map is
obtained via the eigenvalue calculations with the assumption of a steady base flow. Using
the linearised disturbance equations, the initial-value problem is also solved by freezing
the base flow. The resultant two-dimensional temporal responses of the artificial discrete
modes demonstrate the selective amplification behaviour as in spatially developing flows.

The direct stability results are in good agreement with the eigenvalue analysis. Further
direct stability analyses are carried out in §5 to incorporate the effects of the non-linearity
and unsteadiness in the base flow. The resultant amplification rates are compared with
the linear stability predictions. Section §6 briefly summarizes the findings in this paper.

2. Mathematical Description

2.1. Problem Definition

The problem under consideration is governed by the incompressible Navier–Stokes
equations, together with the conservation of mass and energy. By employing the Boussi-
nesq approximation, those equations, in dimensionless form, read:

∂ui
∂xi

= 0, (2.1a)

∂ui
∂t

+ uj
∂ui
∂xj

= − ∂p

∂xi
+ Pr

∂2ui
∂x2j

+ θδi1, (2.1b)

∂θ

∂t
+ uj

∂θ

∂xj
=
∂2θ

∂x2j
, (2.1c)

where the subscripts i, j = 1, 2, 3 represent the x, y, z axes, in which directions are stream-
wise, wall-normal and span-wise respectively, δi1 denotes the Kronecker delta, i.e. δi1 = 1
if i = 1 otherwise δi1 = 0. The gravitational vector g is in the negative x direction, as
depicted in the schematic sketch in figure 1. The Prandtl number Pr = ν/κ = 0.71 is
given by the ratio of the viscosity ν to the thermal diffusivity κ. Temperature is made
dimensionless with the temperature difference ∆T = Tw − T∞, i.e. θ = (T − T∞)/∆T .
The problem under consideration has no natural length scale as the isothermal wall
extends indefinitely in both stream-wise (x) and span-wise (z) directions. The intrinsic
length scale Ls = κ2/3/(gβ∆T )1/3, time scale ts = κ1/3/(gβ∆T )2/3 and velocity scale
Us = (κgβ∆T )1/3 are therefore employed to non-dimensionalize the other terms in
equation (2.1) accordingly.

2.2. Linearised Disturbance Equations

We initially examine the characteristics of the two-dimensional linearised system.
Two-dimensional perturbations (ũ, ṽ, p̃, θ̃) are superimposed upon the flow system by
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Figure 1. The development of the unsteady natural convection boundary layer profiles
(non-dimensional stream-wise velocity u in solid lines and temperature θ in dashed lines) at
two different time instants t1 and t2, with t2 > t1

substituting u = Ub + ũ, v = ṽ, p = pb + p̃, θ = θb + θ̃ into the governing equation (2.1),
where the subscript b denotes the instantaneous base flow profiles. After omitting the time
variation in the base flow and higher-order non-linear terms, the dimensionless linearised
disturbance equations (LDE) are obtained as:

∂ũ

∂x
+
∂ṽ

∂y
= 0, (2.2a)

∂ũ

∂t
+ Ub

∂ũ

∂x
+ ṽ

∂Ub
∂y

= −∂p̃
∂x

+ Pr
(∂2ũ
∂x2

+
∂2ũ

∂y2

)
+ θ̃, (2.2b)

∂ṽ

∂t
+ Ub

∂ṽ

∂x
= −∂p̃

∂y
+ Pr

(∂2ṽ
∂x2

+
∂2ṽ

∂y2

)
, (2.2c)

∂θ̃

∂t
+ Ub

∂θ̃

∂x
+ ṽ

∂θb
∂y

=
∂2θ̃

∂x2
+
∂2θ̃

∂y2
. (2.2d)

The validity of Squire’s theorem was demonstrated by Knowles & Gebhart (1968) for the
temporal stability analysis of a spatially developing NCBL flow, so the two-dimensional
system (2.2) is expected to be most unstable to two-dimensional perturbations.

The base flow profiles Ub and θb are prescribed by the laminar analytical solution to
the flow system (2.1), given by Illingworth (1950) and Schetz & Eichhorn (1962) at some
desired t or Grδ. For Pr 6= 1, the analytical solution can be expressed in the dimensionless
form:

θb(η) = erfc(η), (2.3a)

Ub(η, t) =
4t

1− Pr

[
i2erfc(η)− i2erfc(

η√
Pr

)
]
, (2.3b)

where η = y/2
√
t is a similarity parameter, erf(η) is the error function of η, erfc(η) =

1 − erf(η) is the complementary error function and inerfc(η) is the nth integral of
the complementary error function: ierfc(η) = exp(−η2)/

√
π − ηerfc(η) and i2erfc(η) =(

erfc(η)− 2ηierfc(η)
)
/4. In the present study, the boundary layer thickness δ is defined
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by the integral of the velocity profile over the maximum velocity Um:

δ =

∫ ∞
0

u

Um
dy, (2.4)

and Grδ = gβ∆Tδ3/ν2 denotes the Grashof number based on the velocity integral
boundary layer thickness δ.

3. Eigenvalue Results

3.1. Quasi-Steady Approximation

Eigenvalue analysis is commonly used to analyse the linear stability of steady base
flows. To obtain an exponential disturbance growth, a steady base flow profile (constant
Ub and θb in the disturbance equations (2.2)) is required. In the present study, the base
flow is ‘frozen’ at some arbitrary non-dimensional time t so that a steady base flow profile
is obtained.

Since the base flow thermal boundary layer thickness has a length scale of t1/2

depending on the non-dimensional time t (Patterson & Imberger 1980), the thermal
boundary layer evolves with a time scale of(

1

t1/2
∂t1/2

∂t

)−1
= 2t, (3.1)

and the perturbation quantities evolve with a time scale of(
1

At

∂At
∂t

)−1
=

1

σk
, (3.2)

where At is the amplitude of the perturbation and σk denotes the amplification rate
of wavenumber k. The quasi-steady approximation may be justified by the argument
that the time scale of the evolution of the base flow and that of the perturbations are
separated, i.e. the perturbations are independent of the timescale of the evolution of the
base flow when the time scale ratio 2tσk is large so that the base flow can be treated as
a quasi-steady state.

This quasi-steady approximation for the unsteady temporally developing parallel
boundary layer is analogous to the quasi-parallel approximation in the Orr–Sommerfeld
equations for the steady spatially developing boundary layers (Gebhart & Mahajan
1982) and has been applied to the linear stability analyses for a temporally evolving
Rayleigh layer problem (Otto 1993), an unsteady Stokes layer problem (Wu & Cowley
1995) and a time-dependent natural convection in a cavity (Brooker et al. 2000) with
good accuracy.

3.2. Freezing the Base Flow

For the problem considered here, it is convenient to introduce a similarity coordinate
in order to freeze the base flow:

ξ =
x

2
√
t
, (3.3a)

η =
y

2
√
t
, (3.3b)

τ = τ0
1/3t, (3.3c)

where τ0 is an arbitrarily chosen constant at which time instant the base flow is ‘frozen’.
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Under these coordinates, the analytical laminar solutions (2.3) read:

θb(η) = erfc(η), (3.4a)

Ub(η, τ) ≡ Vb(η)
τ

τ01/3
=

4τ

(1− Pr)τ01/3
[
i2erfc(η)− i2erfc(

η√
Pr

)
]
, (3.4b)

where Vb is a shape function of the velocity profile. From equation (3.4), the two-
dimensional solution is dependent on time t (or τ/τ0

1/3 equivalently) and is independent
of stream-wise coordinate ξ. Since the unsteady temporally developing flow is parallel to
the heated surface, the velocity integral boundary layer thickness δ as well as the Grashof
number Grδ vary with the non-dimensional time t (or τ) only.

The velocity perturbations in equation (2.2) can be described by a perturbation stream
function Ψ to ensure continuity, from which

ũ ≡ ∂Ψ

∂y
=
∂Ψ

∂η

∂η

∂y
, (3.5a)

ṽ ≡ −∂Ψ
∂x

=− ∂Ψ

∂ξ

∂ξ

∂x
. (3.5b)

The linear stability equations for the natural convection boundary layer are obtained
after taking the out-of-plane component of the curl of the momentum equations (2.2b)
and (2.2c).( ∂

∂τ
− ξ

2τ

∂

∂ξ
− η

2τ

∂

∂η

)
∆Ψ +

τ1/2

2τ01/2

(
Vb
∂∆Ψ

∂ξ
−Vb′′

∂Ψ

∂ξ

)
=
Pr

4τ
∆2Ψ +

2τ1/2

τ01/2
∂θ̃

∂η
, (3.6a)( ∂

∂τ
− ξ

2τ

∂

∂ξ
− η

2τ

∂

∂η

)
θ̃ +

τ1/2

2τ01/2
Vb
∂θ̃

∂ξ
− θb

′

4τ

∂Ψ

∂ξ
=

1

4τ
∆θ̃, (3.6b)

where the prime ′ denotes the differentiation with respect to η, and

∆ =
∂2

∂ξ2
+

∂2

∂η2
, (3.7)

For large enough τ , the first terms in equations (3.6) can be simplified as:

∂

∂τ
− ξ

2τ

∂

∂ξ
− η

2τ

∂

∂η
∼ ∂

∂τ
. (3.8)

It is noted that the conduction and viscous terms are retained even though they have
the same asymptotic behaviour. Nevertheless, consider the perturbation normal modes
given in equation (3.9):

Ψ = ψ(η)eiα(ξ−cτ), (3.9)

where i =
√
−1 is the imaginary unit, α = 2

√
tk denotes the normalized wavenumber and

ψ is the amplitude of the stream function. The imaginary part ci of the complex number
c = cr + ici determines whether the perturbation wave α will be amplified (ci > 0) or
damped (ci < 0) in time by the base flow, while the real part cr indicates phase speed of
the wave α.

The temperature perturbation can also be described in a similar form using the
amplitude function of the temperature perturbation s:

θ̃ = s(η)eiα(ξ−cτ). (3.10)

The flow is then frozen at τ = τ0 (so that t0 = τ0
2/3, where t0 is the non-dimensional



Stability of a Temporally Evolving NCBL 7

time instant in the intrinsic scale) after the substitution of equations (3.9) and (3.10)
into (3.6). The stability equations are obtained as

iα
[(Vb

2
− c
)
(ψ′′ − α2ψ)− Vb

′′

2
ψ
]

=
Pr

4τ0

(
ψ′′′′ − 2α2ψ′′ + α4ψ

)
+ 2s′, (3.11a)

iα
[(Vb

2
− c
)
s− 1

4τ0
θb
′ψ
]

=
1

4τ0
(s′′ − α2s). (3.11b)

The resulting equations (3.11) are solved for the complex number c, which permits non-
zero solutions for s and ψ at given positive α and τ0 (equivalently, Grδ), as an eigenvalue
problem. The amplification rate in the intrinsic scale is therefore

σk = τ0
1/3αci = t0

1/2αci. (3.12)

For the isothermal vertical plate, the boundary conditions are defined for the pertur-
bations:

ψ(0) = ψ′(0) = s(0) = 0, (3.13a)

ψ(∞) = ψ′(∞) = s(∞) = 0. (3.13b)

The velocity perturbations must vanish at the vertical wall (impermeability & non-slip
conditions) and the temperature perturbation goes to zero at the isothermal wall. In the
far field, both temperature and velocity perturbations should decay towards zero so that
the perturbation is confined to the boundary layer.

3.3. Eigenvalue Solutions

Solutions to the linear stability equations (3.11) are obtained by solving the eigenvalue
problem with varying τ0 and α using the generalized Schur decomposition (‘QZ’) algo-
rithm. The second-order finite difference method is used to numerically discretize the
equations. Implementing the boundary conditions given in (3.13), calculation is carried
out in a domain size of 0 < η < 10 with Ny = 1024 uniformly distributed nodes. Domain
and grid size dependency tests are carried out to ensure a reliable solution.

In order to compare with the direct simulation results, the τ0-dependent eigenvalue
solutions are also presented in terms of Grδ. Here, the boundary layer thickness is given
by

δ ≡
∫ ∞
0

Ub
Um

dy =

∫ ∞
0

Ub
Um

dη
∂y

∂η
= 2Cτ01/3, (3.14)

where

C =
4
∫∞
0

[
i2erfc(η)− i2erfc(η/

√
Pr)

]
dη

erfc(ηm)− erfc(ηm/
√

Pr)
∼ 0.855, (3.15)

is a constant since the base flow velocity profile Ub and the maximum velocity Um are
both linearly proportional to time in the similarity coordinate, and ηm is the maximum
velocity location that satisfies:

√
Pr ierfc(ηm) = ierfc(

ηm√
Pr

). (3.16)

Hence, the Grashof number is given by:

Grδ =
8C3

Pr2 τ0. (3.17)

The evolution of the base flow boundary layer is therefore slow when compared with the
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Figure 2. Linear stability margin of the temporally evolving NCBL for Pr = 0.71; (a): Marginal
stability plane; (b): Enlarged near the critical point; black solid: Neutral curve, where αci = 0;
dash-dotted contours: constant amplification rate αci = 0.004, αci = 0.008, and αci = 0.01; with
constant wavenumber k trajectories in the marginal stability plane, blue dashed: k = 0.0243;
black dash-dotted: k = 0.0486; red solid: k = 0.0544; turquoise dotted: k = 0.0971;

perturbation evolutions when the time scale ratio

2tσk = 2αciτ0 ∼ O(Grδ), (3.18)

is large enough.
The resulting stability margin for Pr = 0.71 is shown in figure 2 with the trajectories

of the constant wavenumber k. It shows that the base flow at given Grδ is unstable
to a range of wavenumbers and selectively amplifies the perturbations, similarly to the
spatially developing cases in Mahajan & Gebhart (1979) and Qureshi & Gebhart (1978).
The maximum amplification rates (αci > 0.01) can be found in a core region between
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Grδ ∼ 2300 and Grδ ∼ 11700 for a small band of frequencies from k ∼ 0.0337 to
k ∼ 0.0950.

The critical point, that is the minimum τ0 at which the base flow is linearly unstable,
and the corresponding wavenumber and phase velocity are τ0 = 45.7978, α = 0.3894 and
c = cr = 0.1193 in the similarity coordinate, or more generally:

Grδ = 454.2, k = 0.0544, Up = 3.0551,

where Up = 2τ0
2/3cr. On the other hand, in the spatially developing NCBL the critical

point is found at a much higher Grashof number, i.e. Grδ = 642.9 and k = 0.0529
(Nachtsheim 1963; Ostrach 1952). It is also interesting to find that at the critical point,
the phase speed of the most unstable wavenumber Up equals the maximum stream-wise
velcoity Um in the temporally evolving NCBL.

In figure 2 (a), the trajectory of the constant wavenumber at k = 0.0971 intersects the
neutral curve at Grδ ∼ 950 and Grδ ∼ 7000. This suggests the discrete mode (k = 0.0971)
follows a ‘damped-amplified-damped’ pathway, i.e. the disturbance wave first starts to be
amplified at about Grδ ∼ 950, and is later damped from Grδ ∼ 7000. Similar behavior
can be found for the most unstable wavenumber k = 0.0544 towards Grδ ∼ 20000.
In contrast to the spatial cases (Dring & Gebhart 1968, 1969), the wavenumber which
receives the maximum total amplification ςmax is not necessarily higher than the most
unstable frequency at the critical point (in this case k = 0.0544), but is dependent on
the pathway through the marginal stability map in figure 2. The total amplification is
defined by equation (3.19):

ςk =

∫ Grδ2

Grδ1

σk(k,Grδ)dt. (3.19)

Here, ςk represents the total amplification of wavenumber k from Grδ1 to Grδ2 . Figure 3
depicts the total amplification of perturbation modes at k = 0.0243, k = 0.0486 and
k = 0.0971 with a fixed starting point of Grδ1 = 250. The discrete mode k = 0.0486 first
becomes unstable to the base flow and receives the most amplification among the three
modes up to Grδ2 ∼ 2500. After this range, the total amplification of the discrete mode
k = 0.0971 outgrows that of k = 0.0486 for a short period. The most amplified frequency
later switches back to k = 0.0486 since the instantaneous amplification rate of k = 0.0971
starts to drop at Grδ2 ∼ 3500, as indicated by figure 2. At about Grδ2 ∼ 7000, the total
amplification of k = 0.0971 starts to decrease as the instantaneous amplification rate is
negative (i.e. perturbation experiences damping).

4. Direct Solution to the LDE with ‘Frozen’ Base Flow

4.1. Initial Value Problem on Two-Dimensional Frozen Base Flow

The linear stability properties of the temporally evolving flow may also be obtained by
a full solution of the perturbation equations. The linearised disturbance equations (2.2)
are spatially discretized using the finite volume method. The non-linear advection terms
are discretized by a fourth-order scheme, whilst all other spatial terms are second-order
accurate. The second-order Adams–Bashforth method is adopted as the time stepping
scheme with the Crank–Nicolson method used for the diffusive terms. The code has been
extensively validated in a number of the natural convection problems (Williamson et al.
2012, 2016).

The stream-wise (x) boundaries are made periodic to eliminate the leading edge
effect so that a temporally evolving flow is obtained. The velocity and the temperature
perturbations are restricted by the non-slip and non-permeability boundary conditions
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Figure 3. Total amplification of discrete modes of k = 0.0243 (black dotted), k = 0.0486 (red
dash-dotted) and k = 0.0971 (blue dashed), with Grδ1 = 250; Inset shows ςk at small Grδ2
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Figure 4. The computational domain and coordinates for the direct numerical simulations,
the vertical isothermal wall is colored in orange

on the isothermal wall (ũ = ṽ = θ̃ = 0 at y = 0). In the far field, both velocity and
temperature perturbation decay, i.e. ũ = ṽ = θ̃ = 0 at y = Ly. A schematic diagram of
the simulation domain is shown in figure 4.

The base flow profiles Ub and θb are obtained as the laminar analytical solutions given
by equation (2.3) at some desired base flow boundary layer Grashof number Grδ0 . To
investigate the stability properties of the flow, the initialized base laminar boundary
layer is augmented with a stream-wise temperature perturbation that decays in the wall-
normal direction:

θ̃n = θb(y)An sin (2πn
x

Lx
), (4.1)

where n is a real positive integer indicating the mode number (n/Lx) and the wavenum-
ber (k = 2πn/Lx) of the sinusoidal perturbation. The amplitude of the temperature
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perturbation An is selected so that the perturbation interacts with the base flow linearly,
i.e. the amplification rate of the perturbation is independent of An. In the present study,
it is chosen as An = 10−3. It is noted that there is no velocity perturbation added to
the flow as the velocity field is coupled to the temperature field and will respond directly
to the temperature perturbation while remaining divergence free. The instantaneous
linear stability of the unsteady flow is examined by integrating the linearised disturbance
equations (2.2) for choices of perturbation wavenumber k in time for a ‘frozen’ (steady)
base flow at time t (which is equivalent to the Grashof number based on the base flow
boundary layer thickness Grδ) as an initial-value problem.

4.2. Solutions to the Linearised Disturbance Equations

The two-dimensional solutions to the disturbance equations are numerically obtained
in a domain of Lx × Ly = 1035 × 1035 with a Nx × Ny = 1024 × 1024 Cartesian grid.
The grid is uniform in the stream-wise (x) direction, but is geometrically stretched with
a maximum stretching rate of γ = 1.24% in the wall-normal (y) direction. Additional
simulations varying the domain size and the grid size were undertaken to ensure the
solution is not adversely affected by the numerical settings.

The initial value problem is investigated by monitoring the time traces of the pertur-
bation quantities θ̃ and ũ at an arbitrary fixed point (xp,yp) within the boundary layer.
Given the base flow profiles Ub and θb at some instantaneous base flow Grδ0 , the flow is
unstable to the perturbation of wavenumber k if the amplitude of the perturbation grows
with time. Here, the subscript 0 indicates the initialization quantities.

The time traces in figure 5 show that the velocity and temperature perturbations have
a constant phase difference, and the envelopes of the perturbation signals of wavenumber
k should follow the exponential growth Ane

σkt (or decay, depending on the sign of σk)
in time. The amplification rate σk is defined by

σk ≡
1

At

∂At
∂t

, (4.2)

where the instantaneous perturbation amplitudes At, at time t, of the solutions to the
linearised disturbance equations (2.2) are obtained by taking the fast Fourier transform
in the stream-wise (x) direction of the perturbation quantities θ̃ and ũ at y = yp. The
development ofAt is depicted at four instances in figure 6, showing the temporal responses
of the normal modes at different Grδ0 .

From figure 6, it is clear that the velocity and temperature perturbations share the
same exponential slope, such that

σk,ũ = σk,θ̃ = σk, (4.3)

for all k cases in the linear stage of the steady base flow. The normal modes are damped at
small Grδ0 , as shown in figure 5 (a) and figure 6 (a). The laminar base flow is then filtering
for a specific marginally unstable wavenumber (σk = −0.0001 ∼ 0, see k = 0.0486 in (c)
where the envelope is almost horizontal) at critical Grδ. With increasing Grδ, the range
of discrete modes that are unstable to the base flow are broadened until all modes shown
are amplified (σk > 0) by the base flow at different rates at Grδ0 = 1992.1.

It is worth noting that there is always a region where the amplitude of the perturbation
does not follow the linear growth/decay immediately after the disturbance is introduced
into the base flow. This process, also known as receptivity, tunes the artificial perturbation
to an appropriate initial amplitude and phase condition as the boundary layer receives
the external disturbance (Morkovin 1969; Reed et al. 1996; Saric et al. 2002). The details
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Figure 5. Time traces of the velocity and temperature perturbations θ̃ (black solid), ũ (red
dash-dotted) at location (xp, yp)=(647.6, 0.2) for (a): Base flow at Grδ0 = 249.3 and k = 0.0243
(n = 4); (b): Base flow at Grδ0 = 454.3 and k = 0.0243 (n = 4); (c): Base flow at Grδ0 = 454.3
and k = 0.0486 (n = 8); (d): Base flow at Grδ0 = 454.3 and k = 0.0971 (n = 16); (e): Base flow
at Grδ0 = 704.3 and k = 0.0486 (n = 8); (f): Base flow at Grδ0 = 704.3 and k = 0.0971 (n = 16);
(g): Base flow at Grδ0 = 1992.1 and k = 0.0486 (n = 8); (h): Base flow at Grδ0 = 1992.1 and
k = 0.0971 (n = 16); dashed lines: exponential envelopes of the signals
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Figure 6. Time traces of the velocity and temperature perturbation amplitudes At,ũ and At,θ̃
at y = yp = 0.2, ‘frozen’ base flow at (a): Grδ0 = 249.3; (b): Grδ0 = 454.3; (c): Grδ0 = 704.3;
(d): Grδ0 = 1992.1;

Grδ0 n k σk (LDE) σk (ES)

454.3 4 0.0243 -0.0034 -0.0029
454.3 8 0.0486 -0.0001 -0.0002
454.3 16 0.0971 -0.0098 -0.0098
704.3 4 0.0243 0.0039 0.0034
704.3 8 0.0486 0.0103 0.0102
704.3 12 0.4454 0.0073 0.0073
704.3 16 0.0971 -0.0076 -0.0077
1992.1 4 0.0243 0.0243 0.0243
1992.1 8 0.0486 0.0343 0.0343
1992.1 12 0.4454 0.0494 0.0494
1992.1 16 0.0971 0.0532 0.0531

Table 1. Amplification rate σk for perturbation θ̃ signals at given pairs of Grδ and k; LDE:
Linearised disturbance equations; ES: Eigenvalue solutions

of the receptivity process, however, are beyond the scope of the present study. We shall
only focus on the flow stability after the receptivity.

The detailed linear stability solutions to the ‘frozen’ base flows at given pairs of Grδ0
and k are tabulated in table 1. Both linearised disturbance solutions and eigenvalue
calculations are in good agreement.
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Case Initial Condition Perturbations An Nx ×Ny(×Nz) ∆ymin γ
DNS-A(2D) Grδ0 = 249.3 k = 0.0243 10−3 1024× 1024 2× 10−4 1.48%
DNS-B∗(2D) Grδ0 = 249.3 k = 0.0486 10−3 1024× 1024 2× 10−4 1.48%
DNS-C(2D) Grδ0 = 249.3 k = 0.0971 10−3 1024× 1024 2× 10−4 1.48%
DNS-D(3D) Grδ0 = 22.5 k = 0.0486 10−3 1024× 512× 1024 4.5× 10−4 3.56%
DNS-E(3D) Grδ0 = 3000 k = 0.0486 10−2 1024× 512× 1024 4.5× 10−4 3.56%
DNS-F(3D) Grδ0 = 3000 Multi-modal 10−3 1024× 512× 1024 4.5× 10−4 3.56%

Table 2. Simulation settings of the direct stability analyses; ∗: Both velocity and temperature
fields are perturbed by pre-tuned perturbations from the linearised disturbance equations

5. Direct Numerical Simulation

5.1. Direct Stability Analysis using Full Navier–Stokes Equation

Using the same numerical techniques in §4, the full Navier–Stokes equations (2.1) are
numerically solved in both two-dimensional and three-dimensional forms to incorporate
the effects of the temporally evolving base flow and of nonlinearity on flow stability.

The boundary conditions for the velocity and temperature fields are the non-slip &
isothermal non-permeable wall, i.e. u = v = w = 0 and θw = 1 at y = 0 and the slip wall
condition in the far field, i.e. ∂u

∂y = ∂θ
∂y = 0 at y = Ly. Periodic boundaries are imposed

in stream-wise and span-wise directions to allow a temporally evolving flow. Temporal
responses of the perturbation waves are monitored and compared with the instantaneous
linear stability solutions to address the unsteady effect of the base flow.

5.2. Direct Numerical Simulation Results

The direct numerical calculations are carried out in a domain of Lx × Ly(×Lz) =
1035 × 1035(×1035) with a non-staggered Cartesian grid. The grid is uniform in the
stream-wise (x) and span-wise (z) directions, but is geometrically stretched with a
maximum stretching rate of γ in the wall-normal (y) direction. Simulation settings are
listed in table 2. To minimize the extent of the receptivity process, in case DNS-B both
the temperature and velocity fields are perturbed with ‘pre-tuned’ perturbations from the
linearised ‘frozen base flow’ simulation. For the two-dimensional simulation, temperature
perturbations in the form of equation (4.1) are examined individually by looking at
the temporal responses after feeding the discrete modes (initial perturbations) into the
prescribed laminar base flow. In the present study, the two-dimensional simulations are
initialized at Grδ0 = 249.3 with discrete perturbation modes of k = 0.0243, k = 0.0486,
and k = 0.0971. As the base flow profiles θb and Ub follow the laminar analytical
solution (2.3), the perturbation quantities are sought to be θ̃ = θ−θb and ũ = u−Ub. The
resultant time traces show that the discrete modes k = 0.0243 and k = 0.0486, figures 7
(a-c), are amplified with time by the evolving base flow, whereas the perturbation at
k = 0.0971, figure 7 (d), is damped out at about Grδ ∼ 7000 after a short period
of amplification. Such behaviour confirms the discrete mode k = 0.0971 following
the ‘damped-amplified-damped’ pathway as predicted by the ‘quasi-steady’ eigenvalue
analysis results shown in figure 2.

At some large Grδ the unstable temporal signals (cases DNS-A and DNS-B) no longer
follow the exponential growth of the sinusoidal signals, indicating non-linear behaviour
as the boundary layer grows thicker. The development of the harmonics, which are
usually generated by the non-linear interactions, are compared with that of the initial
perturbations to investigate this non-linearity. As indicated by figure 8, the higher
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Figure 7. Time traces of the perturbation signals at point (xp, yp)=(647.6, 0.2) for (a): case
DNS-A, raw signal (with base flow); (b): case DNS-A, perturbation signal (analytical base flow
subtracted); (c): case DNS-B, perturbation signal (analytical base flow subtracted); (d): case
DNS-C, perturbation signal (analytical base flow subtracted); black solid: Temperature signals;
red dashed: velocity signals
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Figure 8. Development of the harmonics; (a): case DNS-A, initial perturbation k = 0.0243; (b):
case DNS-B, initial perturbation k = 0.0486; black solid: perturbations; red dashed: harmonic
waves

harmonics of the perturbation waves are both increasing their strength as the base flow
continues to evolve. In figure 8 (a), the harmonic mode (k = 0.0486) grows rapidly
and later overwhelms the initial perturbation at large Grδ, as the harmonic mode at
k = 0.0486 is less stable to the base flow than the initial perturbation (k = 0.0243)
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according to the marginal stability plane (figure 2). The harmonic mode in this case not
only receives energy from the initial perturbation but also gets amplified by the base
flow. In figure 8 (b), since the discrete mode at k = 0.0971 experiences damping for
Grδ > 7000 in the linear regime, the development of the harmonic mode (k = 0.0971)
depends solely on the non-linear mechanisms. Consequently, the resultant non-linearity
in the case DNS-A appears more powerful than in the case DNS-B (see also figure 7) as
the harmonic wave is amplified much more quickly than the initial perturbation.

The temporal response of discrete wavenumber k = 0.0486 is also examined using
three-dimensional direct simulations. To investigate the effect of the initial conditions,
the laminar flow is initialized at Grδ0 = 22.5 for case DNS-D and at Grδ0 = 3000
for case DNS-E and case DNS-F. The amplitude of the finite disturbance is chosen as
An = 10−3 for case DNS-D and case DNS-F and An = 10−2 for case DNS-E. In case
DNS-F, multiple temperature normal modes, in the form of equation (5.1), are added to
the base flow solution to thermally perturb the boundary layer:

θ̃x = θb(y)An

7∑
r=0

sin (2r
2πx

Lx
), (5.1)

where r is an integer specifying the components of the sinusoidal perturbation. While
the base flow lies in the laminar linear regime, each of the individual components are
expected to interact linearly with the base flow.

A random background white noise, given in equation (5.2), is also superposed on the
initial temperature field to trigger the three-dimensional laminar–turbulent transition for
case DNS-F (Nakao et al. 2017).

θ̃0 = A0[RAND(0, 1)− 0.5], (5.2)

where A0 = 10−6 is the amplitude of the background white noise and RAND(0, 1) denotes
a random number generator which generates statistically uniformly distributed random
numbers between 0 and 1.

In figure 9, the amplification rate σk of the perturbation mode k = 0.0486 is compared
with the linear stability results. Due to the inevitable receptivity, the perturbation does
not follow the prediction of the linear stability analysis instantly but is tuned by the base
flow to a suitable magnitude for a short period after it is introduced into the flow. Such
receptivity effects can also be observed in DNS-B in figure 9 (a) where both temperature
and velocity fields are perturbed by the solutions to the linearised disturbance equations,
indicating the magnitude and phase relation obtained from the ‘frozen base flow’ no longer
holds for the unsteady base flow due to the additional terms in the unsteady Navier–
Stokes equations. Consequently, we are not able to determine the minimum value of τ0 or
equivalently, Grδ for which the quasi-steady approximation is valid, i.e. to what extent
can Grδ be deemed as ‘large enough’ so that the slowly varying base flow assumption
holds. At large Grδ, as depicted by figure 9, the amplification rate predicted by the quasi-
steady eigenvalue analysis shows reasonably good agreement with the direct stability
analysis in the linear range.

The two-dimensional simulation (case DNS-B) shows similar development to the three-
dimensional simulations (case DNS-D and DNS-F) up to the initial stage of the non-linear
behaviour (before the amplification rate reaches its minimum at around Grδ ∼ 2 × 104

for case DNS-D and DNS-F). The velocity amplification rate (σũ) is found slightly larger
than that of the temperature (σθ̃) in the linear region as shown in figure 9 (b), so that
equation (4.3) does not hold for the unsteady base flow.

In cases DNS-B, D and F, at about Grδ ∼ 1.3×104 the amplification rate obtained by
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Figure 9. Amplification rate comparison for wavenumber k = 0.0486; (a): Temperature
amplification rate; (b): Velocity and temperature amplification rate in the linear range of the
unsteady flow (not all data are shown for clarity)

direct stability analysis differs from the eigenvalue solution, indicating the onset of the
non-linearity. This Grashof number, on the other hand, coincides well with the sudden
change in the mean flow statistics such as the wall shear stress and the Nusselt number,
as shown in figure 10. Here, the wall shear stress τw = ν∂u/∂y is normalized by

τw
∗ = τw/(ρgβθwδ), (5.3)
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Figure 10. Mean flow statistics (not all data are shown for clarity), (a): normalized wall shear
stress development; (b): the Nusselt number development;

and the Nusselt number is defined by

Nuδ = −
δ ∂θ∂y |y=0

θw
. (5.4)

Since the mean flow velocity and temperature distribution follow the analytical solu-
tion (2.3), an analytical correlation of the normalized wall shear stress and the Nusselt
number can be derived in equation (5.5)

Nuδ =
δ√
πt
∼0.965, (5.5a)

τ∗w =
2
√

Prt
√
πδ(
√

Pr + 1)
∼ 0.302. (5.5b)

A sudden drop of the wall shear stress from the analytical correlation can be found
in figure 10 (a) whilst a sudden increase in the Nusselt number is observed in (b) at
around the transition Grashof number. Similar behaviour is found in case DNS-E with
a smaller Grashof number at around Grδ ∼ 104. Such sudden changes in the mean
flow statistics were also observed in a DNS study for the temporally developing NCBL
by Abedin et al. (2009) (also shown in figure 10) at around Grδ ∼ 104. This point
is the critical Grashof number that indicates the onset of laminar–turbulent transition
of the unsteady NCBL. From figure 9 and figure 10, it can be seen that the choice of
the initialization of the laminar flow in terms of Grδ0 (at which time instant that the
perturbations are fed into the laminar base flow) has minimal effect on the transition
Grashof number. Nevertheless, the initial amplitude of the infinitesimal perturbation
plays an important role in determining this parameter. A ten-fold increase in the initial
perturbation amplitude leads to an earlier transition without having much effect in the
tuning and linear range. The discrepancy between Abedin et al. (2009) and the present
study may due to the settings, such as the perturbation modes, amplitude, span-wise
(background) perturbations.

6. Conclusion

In this paper, the stability properties of an unsteady, temporally evolving NCBL
adjacent to an isothermally heated vertical wall are investigated. The laminar base flow
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is shown to be initially filtering for a specific marginally unstable wavenumber, and
broadening to a range of unstable wavenumbers with increasing Grδ. At high enough Grδ
in the linear region, the initially unstable modes are damped. The critical Grδ at which
a single mode first become unstable is found to be lower than the corresponding critical
Grδ for a spatially developing NCBL (Nachtsheim 1963). At the critical Grδ = 454.2,
the phase velocity Up of the most unstable wavenumber (k = 0.0544) is found to be the
same as the maximum velocity Um of the base flow, which was also observed by Armfield
& Patterson (1992). In contrast to the observations in the spatially developing NCBL
flows (Dring & Gebhart 1968, 1969), the most amplified frequency is not necessarily
higher than the initially unstable wavenumber (k = 0.0544), but strongly depends on the
pathway through the marginal stability map. The amplification rate predicted by the
eigenvalue analysis and direct numerical simulations is similar in the linear range (see
figure 9), showing that the instantaneous stability properties of an unsteady, temporally
evolving NCBL are very similar to those of a steady NCBL at the same local Grδ.
However, the perturbation taken from the linearised ‘frozen’ base flow still undergoes
the receptivity process (see case DNS-B), indicating the magnitude and phase relation of
the perturbation obtained in the steady, linearised NCBL does not hold in the unsteady
NCBL. By comparing the amplification rates, it is found that the amplification rate
calculated from the direct stability analysis diverges from the linear stability predictions
after a transition point. In contrast to the parabolic stability analysis for the two-
dimensional square cavity case (Brooker et al. 2000), we found that the velocity signals
are amplified at a slightly higher rate than the temperature signals in the linear region.
The Grashof number at transition is found to be independent of the time that the
perturbations are applied (in terms of Grδ), but is related to the initial amplitude of
the perturbation. From the present study, the transition value is Grδ ∼ 1 × 104 for
An = 10−2 and Grδ ∼ 1.3× 104 for An = 10−3. The transition value also coincides with
the sudden change in mean flow statistics that indicates laminar–turbulent transition,
such as the wall shear stress and the Nusselt number.
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