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On regular dessins d’enfants with 4g automorphisms
and a curve of Wiman

Emilio Bujalance, Marston D.E. Conder, Antonio F. Costa,
and Milagros Izquierdo

ABSTRACT. In this article we show that with a few exceptions, every regular
dessin d’enfant with genus g having exactly 4g automorphisms is embedded in
Wiman’s curve of type II.

1. Introduction

In 1896, Wiman [19] gave two (smooth, irreducible) complex algebraic curves
for each genus g > 2: one with equation y? = 229! — 1 admitting an automor-
phism of order 4g + 2, and another with equation y? = x(229 — 1) admitting an
automorphism of order 4g. These curves are known as Wiman’s curves of type
I and IT respectively. In 1997 Kulkarni [16] showed that, with one exception for
genus g = 3, Wiman’s curve of type II is the only Riemann surface of given genus
g > 2 admitting an automorphism of order 4g, the exception being Picard’s curve
(y® = 2* — 1); see also [15]. Wiman’s curves of type II have exactly 8¢g automor-
phisms, except in the case ¢ = 2, when the curve has 48 automorphisms (and is
the curve of genus 2 having the maximum number of automorphisms). Recently
Bujalance, Costa and Izquierdo [6] showed that for g > 31 the curves admitting
exactly 4¢g automorphisms form an open curve F in moduli space. (In fact, this is
the complex projective line (or Riemann sphere) with three punctures.)

The methods used to prove the results above were combinatorial. By the works
of Riemann, Poincaré, Klein and others, every complex (real) algebraic curve can
be uniformised by a class of Fuchsian (NEC) groups. This provides a well defined
hyperbolic structure on the surface underlying the algebraic curve.

On the other hand, in 1980 Belyi [1] made an influential discovery now known
as Belyi’s Theorem: a complex curve X is defined on a number field if and only
if X is a covering of the projective line ramified at most over three points, say 0,
1 and co. The covering map is called the Belyi map. In combinatorial language,
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a complex curve X is defined over a number field if and only if its uniformising
(surface) Fuchsian group I is a subgroup of a triangle group A(l,m,n). The Belyi
map induces a cell-decomposition of X: the dessin d’enfant H, also called a map
(if m = 2) or a hypermap [11]. The pre-images of 0 give the hypervertices, the
pre-images of 1 the hyperedges, and the pre-images of co the hyperfaces of H. The
genus of H is the genus of X, and the uniformising group H is called the hypermap
group. The dessin d’enfant H is regular if the subgroup I is normal in A(l,m,n).

Given a regular dessin d’enfant H on a curve X, then by uniformisation one
has Aut(H) < Aut(X). This lets us show here that dessins d’enfants have the same
property as curves, namely as in the following, which is a generalisation to each
genus g > 2 of an earlier result of Girondo [12].

THEOREM 1.1. For all integer values of g > 2 other than 3, 6, 12 and 30,
there are exactly two reqular dessins d’enfant of genus g with orientation-preserving
automorphism group of order 4g. In the exceptional cases g = 3, 6, 12 and 30,
there are one, three, two and two additional dessins respectively. Moreover, for
every g > 2 the regular map W, with orientation-preserving automorphism group
of order 8g corresponding to Wiman’s curve of type II with equation y* = x(x29 —1)
can be obtained as a medial subdivision of each of the two non-sporadic dessins with
4g orientation-preserving automorphisms.

To prove this theorem, we follow closely the methods used in [6].

2. Background

2.1. Fuchsian Groups and Riemann Surfaces. Here we follow [17].

A Fuchsian group T is a discrete group of conformal isometries of the hyperbolic
plane . We shall consider here only Fuchsian groups with compact orbit space
D/T (which is then a closed surface). If A is any such group, then its algebraic
structure is determined by its signature

(2.1) (hyma,...,m,.).

The number h is the topological type of D/T, called the genus of I', and the integers
m; > 2 (for 1 <4 < r) are the branch indices over points of D/I" in the natural
projection 7 : D — D/T'. A Fuchsian group with signature (g; —) is called a surface
Fuchsian group.

Associated with each Fuchsian group I' with signature (h;mg,...,m,), there
exists a canonical presentation for I', with generators

Z1,...,x, (elliptic elements) and
ai,bi,...,a4,b, (hyperbolic elements),

subject to the defining relations

x' =1 (for 1 <i<r), and

K3
Ti1...Tp€1...€L alblaflbfl - ahbhaglbgl =1.

In the rest of this paper, we will denote by A(l,m,n) a Fuchsian group with
signature (0;1, m, n), otherwise known as the ordinary (I, m, n) triangle group. This
has the somewhat simpler presentation (z,y | 2! = y™ = (zy)" =1).
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The hyperbolic area of an arbitrary fundamental region of a Fuchsian group I'
with signature (2.1) is given by

T
1
2.2 A)=272h—2 1-—— .
22) p(a) w( 3 m))
Furthermore, any discrete group A of conformal isometries of D containing I’
as a subgroup of finite index is also a Fuchsian group, and the hyperbolic area of a
fundamental region for A is given by the Riemann-Hurwitz formula:

(2.3) AT = p(T)/p(A).

In particular, if T" is a surface Fuchsian group of genus ¢ then u(T") = 27(2¢g — 2)
and hence the Riemann-Hurwitz formula becomes

(2.4) 292|A:F|<2h2+i<172)>.

i=1

A Riemann surface is a surface endowed with a complex analytical structure.
There is a well-known functorial equivalence between Riemann surfaces and com-
plex algebraic smooth curves.

Let X be a compact Riemann surface of genus g > 1. Then there exists a surface
Fuchsian group I" such that X = D/T, and if G is any group of automorphisms of
X, then there exists a Fuchsian group A containing I' and a surface epimorphism
0 : A — G such that ker@ = I'. This epimorphism € is the monodromy of the
regular (orbifold-)covering D/T" — D/A. In particular, the full automorphism group
Aut(X) is isomorphic to A/T" for some Fuchsian group A containing T

In general, given Fuchsian groups A and A with A < A, Singerman’s Theorem
(in [17]) tells us that the structure of A (and hence also of D/T") is determined by
the structure of A and the monodromy ¢ : A — ¥ja.5|, where ¥ja.5| denotes the
symmetric group on the cosets of A in A. In fact 0 is a transitive representation,
and A is the pre-image under 6 of the stabiliser Stab(1) of the trivial coset.

2.2. Dessins d’enfants, maps and hypermaps. Here we follow the seminal
papers on maps and hypermaps on Riemann surfaces by Jones and Singerman [14],
and Corn and Singerman [11]; see also [13].

Belyi’s Theorem (from Belyi’s influential paper [1] in 1980) states that a plane
complex curve X is defined over a number field if and only if there is a finite N-
sheeted covering 8 : X — C of the projective line ramified on at most three points
{0,1,00}. The meromorphic function § is called the Belyi function.

Translating this into the world of Fuchsian groups and hyperbolic 2-orbifolds,
we have an orbifold-covering 8 : D/T' — D/A(l,m,n), where + + L + 1 < 1. The
meromorphic function S induces a cell-decomposition H of the Riemann surface X
called a dessin d’enfant. In general this is a hypermap, with the pre-images of 0
providing the hypervertices, the pre-images of 1 the hyperedges, and the pre-images
of co the hyperfaces. It can also be viewed as a bipartite graph, with ‘black’ vertices
representing the hypervertices, and ‘white’ vertices representing the hyperedges,
and edges between them representing the pre-images of the line segment [0,1].
Also if [ = 2 then this hypermap is a map. From now on, we will use the terms
dessin d’enfant and hypermap interchangeably. The order of the parameters I, m,n
is not important for dessins d’enfants, but we will usually suppose that | < m <n.
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The dessin H is said to have type (I,m,n), and f T' = H = Hgl(Stab(l))
then A has monodromy 6s : A(l,m,n) — G, with image G being a subgroup of
Y|a:g| called the monodromy group of H and denoted by Mon(#). In particular,
G has a presentation of the form (a,s | a! = s™ = (as)” = --- = 1). We will be
interested only when H = T’ is a surface Fuchsian group, and in such cases H =TI is
called the hypermap group, and is the uniformising group (and fundamental group)
of the Riemann surface X. Note that Mon(#) is the monodromy group of the
covering D/T" — D/A(l,m,n). Cycles of the permutation a are the cycles around
hypervertices, while those of s are the cycles around (hyper)edges, and those of as
are the cycles around hyperfaces, consistent with the orientation of X.

Two dessins d’enfants of type (I, m,n) are isomorphic if their hypermap groups
are conjugate in A(l,m, n), in which case they define the same complex structure of
X =H/H = H/T. Also note that for any dessin d’enfant H on a Riemann surface
X =H/T, one has Aut(H) < Aut(X). In particular Aut(H) < Mon(H) = G.

A dessin d’enfant H with hypermap group H is called regular if Aut(H) acts
transitively on the cosets of H, so that Aut(H) = Mon(H) = G. In that case,
H =T is a normal subgroup of A(l,m,n), and G is isomorphic to A(l,m,n)/T and
hence to a subgroup of Aut(X).

A regular dessin d’enfant H with monodromy group G = {(a, s) = A(l,m,n)/T
is said to be reflexible if it is isomorphic to its mirror image, in which case the
group G has an automorphism taking a — a~! and s — s~ '; and otherwise H is
said to be chiral. Equivalently, a dessin d’enfant is reflexible if and only if it is
embedded in a symmetric Riemann surface (which means that the surface admits
an anti-conformal automorphism of order 2, called an anti-conformal involution or
a symmetry of the surface); see [3]. Symmetric Riemann surfaces are also called
real Riemann surfaces, because they correspond to real algebraic curves.

Finally, we explain how to construct a medial (or medial subdivision) Med(H)
of a regular dessin or hypermap H of type (m,m,n), as in [12]. Every black or
white vertex of the bipartite graph associated with H becomes a white vertex of
Med(H), and the black vertices of Med(#) are taken as the midpoints of edges of
H. In this way, every black vertex of Med(H) is joined to just two white vertices
(incident in H with the edge it came from), while each white vertex is joined with
m black vertices, coming from its incident edges in H. The medial Med(H) is
then a regular hypermap (indeed a regular map) of type (2,m,2n), and Aut(H) is
isomorphic to a subgroup of index 2 in Aut(Med(H)); see [12].

3. Regular dessins d’enfants with 4¢g automorphisms

In this paper we are interested in finding all regular hypermaps with automor-
phism group of order 4¢g, where g is the genus. We will identify a hypermap H with
its monodromy (or algebraic hypermap) 6 : A(l,m,n) — G; see [14, 11, 8.

ProrosIiTION 3.1. Every regular hypermap of genus g > 2 with automorphism
group of order 4g¢ is isomorphic to one of those described in the list below:
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,4g,4g9) — Caqy for any g > 2;

,4,2g) — Cy4 © Cy (central product), for any g > 2;

,12) — Cia, for g = 3;

) — C3 x Cs, for g = 6;

) — SL(2,3), for g =6;

)—>D4><C'37 for g = 6;

) — (2, 3,4) (the binary octahedral group), for g = 12;
) =

0

)
i

(2
(4
(3
(3
(4,6,
(4
(4
(4
(4

)

) 9

(C3 x Cg) x Cy, for g =12;
,6,10) — SL(2,5), when g = 30;
(10 : A(4,6,10) — Cy5 x Dy, for g = 30.

Moreover, every one of the above hypermaps is reflexible.
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Note that in items (5) and (9), the group G happens to be the binary tetrahe-
dral group and the binary icosahedral group respectively, just as G is the binary
octahedral group in item (7).

PROOF. By an easy calculation using the Riemann-Hurwitz formula 2.4, all
possible triples (I,m,n) and corresponding genera g with |G| = 4¢ are given in
Table 1 below.

(I,m,n) genus g (l,m,n) genus g (I,m,n) genus g
(2,49,4g) any g>2 | (3,6,29) anyg=>2 | (4,4,29) anyg=>2
(6,6,5) 15 (6,6,4) 6 (6,6,3) 3
(6,11,4) 66 (6,10,4) 30 (6,9,4) 18
(6,8,4) 12 (6,4,4) 3 (5,19,4) 190
(5,18,4) 90 (5,16,4) 40 (5,15,4) 30
(5,12, 4) 15 (5,10,4) 10 (5,5 8) 20
(5,5, 9) 45 (5,5,5) 5 (4,7,9) 126
(4,7,8) 28 (4,7,7) 14 (3 4 12) 3
(3 1 J11) 33 (3,11,12) 66 (3,11,13) 429
(3,10, 14) 105 (3,10,12) 30 (3,10, 10) 15
(3,9,17) 153 (3,9,16) 72 (3,9,15) 45
(3,9,12) 18 (3,9,9) 9 (3,8,23) 276
(3,8,22) 132 (3,8,21) 84 (3,8,20) 60
(3,8, 18) 36 (3,8,16) 24 (3,8, 12) 12
(3,8,8) 6 (3,7,41) 841 (3,7,40) 420
(3, 7 39) 273 (3,7,36) 126 (3, 7 35) 105
(3,7,28) 42 (3,7,21) 21

TABLE 1. Triples (I,m,n) giving |G| = 4¢

For example, if 2 =1 < m < n then 2g — 2 :4g(0—2+3—(%+%+%)), from
which it follows that 4g(-= + 1) = 2, and then since each of m and n must divide
|G| = 4g we find the only solution is (m,n) = (4¢g,4g). Similarly, if 3=1<m <n
then 3 divides |G| = 4g and 29 —2 = 4g(0—2+3— (3 + L + 1)) = %2 —4g(L + 1),

m n
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from which it follows that 4g(% + 1) =2+ 2—3", and hence either {m,n} = {6,2g},

m T
or (m,n) is one of a number of small sporadic possibilities as given in the table.
Next, for each candidate for the parameters [, m, n and g, we need to check if
there exists an epimorphism 6 : A(l,m,n) — G to some group G of order 4g.

This is easy in the first case, where (I, m,n) = (2,4¢,4g), because the image as
of the element xy of A(2,4¢g,4g) = (x,y | 2% = y* = (zy)*Y = 1) has order 4g and
so G is cyclic, and then the image a of  must be (as)?9, and this determines the
epimorphism 6 uniquely. In the second case, where (I,m,n) = (3,6,2g), the image
as of zy has order 2¢g and so generates a subgroup of index 2 in G, but then that
subgroup must contain a (since it has odd order 3) and hence also s = a~'as, which
is impossible since 8 is surjective. In the third case, where (I,m,n) = (4,4,2g), the
element as generates a cyclic subgroup of index 2 containing both a? and s?, and
it follows that a? = (as)? = s, making G a central product of Cs, and Cj.

These three cases were also studied in [6], and they give items (1) and (2) in
the statement of the Proposition.

Type (3,4,12) was dealt with in [19, 16] when considering Picard’s curve of
genus 3, and gives item (3). The other sporadic cases can be handled using the
LowIndexNormalSubgroups facility in the MAGMA computation system [2] to de-
termine whether or not the relevant triangle group A(l,m, n) has a smooth quotient
of the expected order. This gives the remaining items (4) to (10). For the cases
with genus g < 101, the required computations were already done some years ago
by the second author in the search for regular maps and hypermaps; see [8, 9, 10].

Presentations for the group G in terms of the generating pair (a,s) = (2?,y?)
in the ten items in the resulting list (for this Proposition) are as follows:

(1) G={(a,s|a*=1, a=(as)?) = Cy, for every g > 2;

(2) G={(a,s|a*=1, a®> = s> = (as)?) = Cyy o C, for every g > 2;

(3) G={(a,s|a®>=s*=][a,s]=1)=2Cla;

(4) G={(a,s|a®>=s=1, stas=a"1)=2C5xCs;

(5) G={(a,s|a*=1, a®> = s> = (as)®) 2 SL(2,3);

(6) G={(a,s|a*=3s°=1, s?2=(as)?) = Dy x Cs;

() G={a,s|a*=1, a®> =53 = (as)?) = (2,3,4);

(8) G={(a,s]|a*=3s"=a"1s%as®> =as lalsasas ' =1) = (C3 x Cg) x Cy;
(9) G={(a,s|a*=1, a®> =35> = (as)®) = SL(2,5);

(10) G ={a,s|a*=355=(as)!? =[a?,s] = a"'s%as® = 1) = C5 x Dy.

Note that in many cases at least one of the relations a' = s™ = (as)” = 1 is
missing but still holds in the group G, and is redundant. Similarly, in item (8) the
relation [a?, s] = 1 holds in G but is redundant.

It is now an easy exercise to verify that in each of the above cases, the group G
admits an automorphism taking a — a~! and s — s~!, and hence the associated

hypermap H is reflexible, as required. (In some cases this also follows from the
content of [9, 10, 6, 7].) O

Next, we consider in more detail the two infinite families of regular dessins
given in items (1) and (2) of Proposition 3.1.
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Item (1) is a family of ‘cyclic’ regular maps M, of type (4¢, 4¢), each with mon-
odromy 6 : A(2,4g,49) — Clug, for all g > 2. The monodromy group Mon(M,)
can be taken as the permutation group of degree 4¢g generated by the permutations

a=(1,2g4+1)(2,29+2)(3,2g + 3)...(29,49) and as=(1,2,3,...,4g).

Item (2) is a family of regular hypermaps H, of type (4,4,2g), each with
monodromy 6o : A(4,4,2g) — Cay ¢ Cy, and with Mon(H,) generated by

a=(1,29+1,9+1,39+1)(2,49,9 +2,39)(3,49 — 1,9 +3,3g — 1) ...
as=(1,2,3,...,2g — 1,29)(2g+ 1,29 + 2,...49 — 1,4g) and

The associated signatures (0;2,4g,4g) and (0;4, 4,2g) are both in Singerman’s
list [18] of non-maximal signatures for Fuchsian groups, and each forms an index 2
‘normal’ pair with the signature (0;2,4,4g), for every g > 2. For genus g > 3 the
signature (0;2,4,4¢) is maximal, while for g = 2, Singerman’s list of non-maximal
signatures includes the pair ((0;2,4,38), (2,3,8)) as well.

The signature (0;2,4,4g) is closed related to Wiman’s curve of type II with
equation y? = x(x29 — 1) mentioned in Section 1. In [16] it was shown that this
curve W, is determined by a regular map of type (4, 4¢g) with automorphism group
G of order 8¢. In this case G is isomorphic to the semi-direct product Cyy X24—1 Co,
with presentation (a,s | a® = s* = (as)¥ = 1, a(as)a = (as)?971), realisable by
the permutations

a=(1,49+1)(3,8¢ — 1)(5,8¢ — 3)(7,8¢ —5) ... (49 — 3,49 + 5)(4g — 1,49 + 3)
(2,69)(4,69 — 2)(6,69 — 4)(8,69 — 6)...(2g9 — 2,49 + 4)(2g,49 + 2)
(29 +2,89)(2g +4,8¢ —2)(2g + 6,89 — 4) ... (49 — 2,69 + 4)(4g, 69 + 2)
and
as=(1,2,3,...,49g — 2,49 — 1,4g9)(4g+ 1,49+ 2,49+ 3, ...,8g — 2,8¢ — 1,8¢).

Wiman’s curve of type II for genus g = 2 is also known as Bolza’s curve, and is
determined by the regular map Ws of type (3, 8) with automorphism group GL(2, 3)
of order 48, having presentation (a, s | a®> = s = (as)® = (asasas™1)2 =1).

In [12] Girondo showed that the dessin associated with Wiman’s curve of genus
2 can be constructed as a medial of each of the dessins Mo and Hs (defined above).
We can now complete the proof of Theorem 1.1, which generalises Girondo’s dis-
covery to every genus g > 2.

PRrROOF. By Proposition 3.1 and the comments following it, we need only show
that the epimorphisms 61 : A(2,4g,4g) — Cuq and 05 : A(4,4,2g) = Caq0Cy given
earlier both extend to an epimorphism 6 : A(2,4,4g) = Cag Xa5—1 Co.

Such an extension of #; was proved by Kulkarni in [16], and also by Bujalance
and Conder in the final section of [4], and both extensions were proved to exist by
Bujalance, Costa and Izquierdo in [6]. Here we give a direct verification, by showing
that the epimorphism 6 : A(2,4,4g) — Ciy X24—1C> detemined by the presentation
(a,s | a®> = s* = (as)" =1, a(as)a = (as)?971) for the group G = Cay 51 Co
restricts to each of the unique epimorphisms 6; and 6s, using material from [5].

Before doing that, we note that s? is an involution in the index 2 subgroup
generated by as, and so s? = (as)?9 = (as)~29.

Now let z, y and z be the standard generators for A = A(2,4,4g), satisfying
2?2 = y* = 2% = zyz = 1. Then we can proceed as follows:
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Case (1). By case N8 in [5, Section 3|, there is a unique Fuchsian subgroup of
index 2 in A with signature (0;2,4g,4g), namely the subgroup A; generated by
y? and z~!. The images of these elements in G = Cag Nog—1 Cy are s? and as,
which generate a cyclic group of order 4g, and hence we have a restriction to the
given epimorphism 6, : A(2,4g,4g) — Cu4. In particular, also the map W, of type
(2,4, 4g) corresponding to Wiman’s curve of type II and genus g is obtained from
the map M, of type (2,2g,2g) by a (1, c0)-subdivision.

Case (2). By a different application of case N8 in [5, Section 3], there is a unique
Fuchsian subgroup of index 2 in A with signature (0; 4, 4, 2g), namely the subgroup
Ay generated by y and z?. The images of these elements in G = Coy X9y_1 Co
are s and (as)™?, which generate a central product of Cy and Cy, of order 4g
(with the involution s? = ((as)~2)9 generating the centre). Hence we also have a
restriction to the given epimorphism 6, : A(4,4,2g) — Ca4 ¢ Cy. In particular, also
the map W, of type (2,4,4g) corresponding to Wiman’s curve is obtained from the
hypermap 4 of type (4,4,2¢g) by a (0, 1)-subdivision.

This completes the proof of Theorem 1.1. O
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