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Abstract

The linkage disequilibrium coefficient r2 is a measure of statistical dependence

of the alleles possessed by an individual at different genetic loci. It is widely

used in association studies to search for the locations of disease-causing genes

on chromosomes. Most studies to date treat r2 as a fixed property of two loci

in a finite population, and investigate the sampling distribution of estimators

due to the statistical sampling of individuals from the population. Here, we

instead consider the distribution of r2 itself under a process of genetic sampling

through the generations. Using a classical two-locus model for genetic drift,

mutation, and recombination, we investigate the probability density function of

r2 at stationarity. This density function provides a tool for inference on evolu-

tionary parameters such as mutation and recombination rates. We reconstruct

the approximate stationary density of r2 by calculating a finite sequence of the

distribution’s moments and applying the maximum entropy principle. Our ap-

proach is based on the diffusion approximation, under which we demonstrate

that for certain models in population genetics, moments of the stationary dis-

tribution can be obtained without knowing the probability distribution itself.
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To illustrate our approach, we show how the stationary probability density of

r2 can be used in a maximum likelihood framework to estimate mutation and

recombination rates from sample data of r2.

Keywords: linkage disequilibrium, r2, stationary distribution, maximum

entropy principle, diffusion approximation, maximum likelihood

1. Introduction

Linkage disequilibrium (LD) refers to the statistical dependence between

alleles found at two genetic loci, taken across individuals in a population. It

has various applications, for example, understanding the evolutionary history

of a species, gene mapping in association studies, and detecting recombination

hotspots (e.g. Pritchard & Przeworski, 2001; Slatkin, 2008). Many statistics for

measuring LD can be found in the literature (Pritchard & Przeworski, 2001).

A common and convenient measure of LD is the squared correlation coefficient

r2, defined below, which has been introduced and studied in many papers (e.g.

Hill & Robertson, 1968; Mueller, 2004; Gupta et al., 2005).

Studies of the distribution of r2 fall broadly into two categories. In the first

case, r2 is treated as a fixed property of two loci in a finite population of inter-

est, and the aim is to investigate the distribution of the sample-based squared

correlation coefficient from a sample of n individuals, which serves as an esti-

mator of this quantity. These studies therefore investigate the distribution of

estimators of r2 due to statistical sampling within a population (e.g. Golding,

1984; Hudson, 1985; Hill & Weir, 1994; Abecasis et al., 2001; Service et al.,

2006). In the second case, r2 is treated as a random variable that evolves over

generations due to genetic processes such as drift, mutation, recombination, and

selection. Thus, variability arises from genetic sampling rather than from statis-

tical sampling. The aim is to study the equilibrium distribution of this random

variable, so that measurements of extant r2 may be used to draw inference on

historical genetic processes. In this paper we focus exclusively on this second

case, building upon foundations established by Ohta & Kimura (1969a,b); Weir
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& Hill (1980); Hill & Weir (1988); and Song & Song (2007).

To investigate the equilibrium distribution of r2, we use the two-locus dial-

lelic (TLD) model treated by previous authors. This model incorporates muta-

tion and recombination, although not selection, and is a generalization of the

classical Wright-Fisher model (Wright, 1931). Consider a population of N in-

dividuals, where N stays constant throughout all generations, and generations

do not overlap. Further consider two diallelic loci with allele types A1 or A2

present at the first locus, and B1 or B2 at the second locus. The population of

interest is diploid so there are four possible types of gamete: A1B1, A1B2, A2B1

and A2B2. Counts of these four gamete types sum to 2N in any generation.

The squared correlation coefficient r2 in a particular generation is defined as

r2 =
D2

p (1− p) q (1− q)
, (1)

where p and q are the marginal frequencies of alleles A1 and B1 in that genera-

tion, D = f11 − pq, and f11 denotes the frequency of gamete A1B1. Following

Song & Song (2007), we use θ = 8Nµ and ρ = 4Nc to denote the scaled muta-

tion and recombination rates, where µ is the equal mutation rate per gene per

generation for both loci:

A1

µ
EGGGGGGGGGGC

µ
A2 B1

µ
EGGGGGGGGGGC

µ
B2 , (2)

and c is the recombination rate per gamete per generation between the two loci.

The TLD model is an irreducible aperiodic discrete-time Markov chain over a

finite discrete state space, which comprises the possible combinations of the four

gamete counts summing to 2N . It therefore converges to a unique stationary

distribution. Our aim is to explore the distribution of r2 with respect to this

stationary distribution.

Exact characterization of the stationary distribution of r2 under the TLD

model is thought to be intractable, but several authors have explored properties

of the distribution under various approximations. Most research has focused

on the mean, E(r2). In general, it is difficult to compute the expectation of a

ratio, so initial work involved approximating this by the ratio of expectations:
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E(r2) ' E(D2)/E{p(1 − p)q(1 − q)} (e.g. Ohta & Kimura, 1969a,b; Weir &

Hill, 1980). More recently, Song & Song (2007) proposed an analytic method

of computing E(r2) under the diffusion approximation: we describe and build

upon their method below. Further properties of the distribution of r2 have been

largely unexplored. Hill & Weir (1988) computed the variance of D2, but com-

mented that using it together with a Taylor series to compute the variance of r2

would likely be inaccurate. Liu (2012) generated an approximate computation

of Var(r2), but his method is slow and requires considerable computing power.

As far as we know, there is no existing tractable method for computing either

Var(r2) or the stationary probability density function, π(r2). Availability of a

computable density function would establish an inferential framework in which

researchers could perform maximum likelihood estimation or derive critical val-

ues for hypothesis tests. Our purpose in this paper is to derive computable

approximations to the variance and higher moments of r2, and thence to con-

struct an approximate probability density function that can readily be used for

inference.

Our computations build on the ideas of Song & Song (2007) (hereafter

S2007). We first show how S2007’s method for finding E(r2) may be extended to

compute a sequence of higher-order moments of r2 at stationarity, from which

the variance of r2 can be obtained. As in S2007, our approach to computing

stationary moments of r2 depends on the technique of diffusion approximation,

which requires the constant population size N to be sufficiently large. We then

use the maximum entropy principle to approximate the stationary probability

density of r2 from the moments obtained. We show how the resulting approxi-

mate density of r2 can be used for maximum likelihood estimation of mutation

rate and recombination rate under the TLD model, using sample observations

of r2. We demonstrate the performance of our novel approach by simulation

studies.
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2. Materials and Methods

2.1. Diffusion approximation

Ohta & Kimura (1969a,b) showed that the computation of certain expec-

tations at stationarity is greatly facilitated by the diffusion approximation for

models in population genetics. S2007 extended the method of Ohta & Kimura

(1969b) to compute the expectation of r2 at stationarity under the TLD model.

The diffusion approximation is a general technique for approximating a discrete

process by a diffusion process that is continuous in both time and state. Asso-

ciated with each diffusion process is a diffusion generator that consists of a set

of partial differential operators, and is key to computing certain expectations.

Let Xt = (p, q,D)t denote the diffusion process corresponding to the TLD

model. In the discrete model, the three variables p, q, and D uniquely determine

the state of the Markov chain in terms of the gamete counts at generation t.

In the diffusion process, p, q, and D are treated as continuous variables which

evolve continuously over time. The diffusion generator used by S2007 differs

from that used by Ohta & Kimura (1969b) by a factor of 2, which does not

affect the stationary distribution. Here we use the diffusion generator L of

S2007:

L =
1

2
p (1− p) ∂2

∂p2
+

1

2

{
p (1− p) q (1− q) +D (1− 2p) (1− 2q)−D2

} ∂2

∂D2

+
1

2
q (1− q) ∂2

∂q2
+D

∂2

∂p∂q
+D (1− 2p)

∂2

∂p∂D
+D (1− 2q)

∂2

∂q∂D

+
θ

4
(1− 2p)

∂

∂p
+
θ

4
(1− 2q)

∂

∂q
−
(

1 +
ρ

2
+ θ
)
D

∂

∂D
.

(3)

The diffusion generator L for any diffusion process is defined such that

∂

∂t
E {f (Xt)} = E {Lf (Xt)} (4)

for any twice continuously differentiable function f with compact support. At

stationarity, E {f (Xt)} does not depend on the time parameter by definition,

so its rate of change on the left-hand side of (4) is zero. Thus, for any suitable
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function f , and for Xt = (p, q,D)t distributed over the continuous state space

[0, 1]2 × [−1, 1] according to the stationary distribution π, we have

E {Lf (Xt)} = 0. (5)

Equation (5) is called the master equation, and it provides considerable power

for computing expectations of certain quantities at stationarity. The method

described by (4) and (5) is general, but the specific form of L in (3) estab-

lishes stationary expectations under the TLD model. Equation (5) may be

applied to any eligible function f . For example, given f (p, q,D) = D, we have

Lf (p, q,D) = −D (1 + ρ/2 + θ) from (3), and therefore the master equation (5)

gives E (D) = 0 under the TLD model at stationarity.

2.2. The method of Song and Song (2007) for computing E
(
r2
)

The primary strategy developed by S2007 is to write r2 as an infinite sum of

monomials in terms of (p, q,D), for which stationary expectations can be com-

puted using the master equation (5). We shall extend this method to compute

higher-order stationary moments of r2 in the following section. We first describe

S2007’s method in detail, as it is vital for the development that follows.

Because the infinite series
∑∞

k=0 y
k converges to 1/(1− y) for 0 ≤ y < 1, we

have 1/ (1− p) =
∑∞

k=0 p
k and 1/p =

∑∞
k=0 (1− p)k when 0 < p < 1 for the

TLD model. Similar results are obtained for 1/q and 1/ (1− q). It follows that

r2 =
D2

p (1− p) q (1− q)
= D2

(
1

p
+

1

1− p

)(
1

q
+

1

1− q

)

=

∞∑
m=0

∞∑
n=0

{
D2pmqn +D2(1− p)mqn +D2pm(1− q)n +D2(1− p)m(1− q)n

}
.

(6)

Under the TLD model, all alleles A1, A2, B1, B2 undergo identical genetic pro-

cesses of mutation, recombination, and drift, so by symmetry the stationary ex-

pectations of D2pmqn, D2 (1− p)m qn, D2pm (1− q)n, and D2 (1− p)m (1− q)n

are all equal. Thus we have

E
(
r2
)

= 4

∞∑
m=0

∞∑
n=0

E
(
D2pmqn

)
. (7)
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The problem of computing E
(
r2
)

therefore reduces to computing E
(
D2pmqn

)
for all pairs of non-negative integers m and n.

Note that E
(
D2pmqn

)
= E

(
D2pnqm

)
for the TLD model due to the sym-

metry of the two loci, so we only focus on expectations with m ≥ n. For each

pair of (m,n) where m ≥ n, inserting f (p, q,D) = Dkpm+2−kqn+2−k into the

master equation (5) with k = 0, . . . , n + 2 generates a system of n + 3 linear

equations. This system includes more than n + 3 unknown expectations, so

it does not have a unique solution unless the computations are carried out in

a particular order. S2007’s innovative idea was to specify an order of compu-

tation such that the number of unknown expectations is reduced to n + 3 at

every iterative step. The computations are executed along an increasing level

of ` = m+ n, while within each level the algorithm follows an increasing order

of n. The computation order is as follows:

(m,n) :

`=0︷ ︸︸ ︷
(0, 0)→

`=1︷ ︸︸ ︷
(1, 0)→

`=2︷ ︸︸ ︷
(2, 0)→ (1, 1)→

`=3︷ ︸︸ ︷
(3, 0)→ (2, 1)

→
`=4︷ ︸︸ ︷

(4, 0)→ (3, 1)→ (2, 2) · · · .

(8)

When this order is followed, S2007 showed that each system of linear equations

then includes exactly n+ 3 unknown expectations:

E
(
pm+2qn+2

)
, E

(
Dpm+1qn+1

)
, E

(
D2pmqn

)
, . . . , E

(
D2+npm−n

)
, (9)

one of which is the expectation E
(
D2pmqn

)
needed for the computation of

E
(
r2
)

in (7). As byproducts, other expectations are obtained which are not

needed for computing E
(
r2
)
, but we shall show in the following section that

these can be used to compute higher-order moments of r2.

In practice, we truncate the infinite sum (7) at some finite value to compute

E
(
r2
)
. Given a value of `, the truncated summation

E
(
r2
)
`

= 4

m+n=`∑
m,n≥0

E
(
D2pmqn

)
(10)

serves as an approximation to E
(
r2
)
. As ` varies from 0 to ∞, we obtain a

monotonically increasing sequence of partial sums
{

E
(
r2
)
`

}∞
`=0

. Since E
(
r2
)

is
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bounded, the convergence of this sequence is guaranteed. Practical results show

that convergence is achieved fairly rapidly as ` increases, although the rate of

convergence tends to be faster for smaller ρ and larger θ. S2007 demonstrated

that for all settings of ρ and θ they explored, the truncation E
(
r2
)
`max

served

as a good approximation to E
(
r2
)

when the truncation level was `max = 700.

2.3. Reformulation of the diffusion generator

To extend the method of S2007 to compute higher-order moments of r2,

we first change variables in the TLD model as follows. Let u = 1 − 2p and

v = 1 − 2q. By the fact that 0 < p, q < 1, we have −1 < u, v < 1 and thus

0 ≤ u2, v2 < 1. This reformulation has the property that a relabeling of allele

A1 to A2 has the effect of mapping u to −u. This is a more advantageous way

of expressing the symmetry between the two alleles than the previous mapping

of p to 1− p, and considerably simplifies the ongoing computations.

Since p = (1 − u)/2 and q = (1 − v)/2, we have p (1− p) =
(
1− u2

)
/4

and q (1− q) =
(
1− v2

)
/4. In addition, ∂/∂p = −2∂/∂u and ∂/∂q = −2∂/∂v.

Then the diffusion generator (3) of the TLD model in terms of the new variables

(u, v,D) can be written as

L∗ =
1

2

(
1− v2

) ∂2

∂v2
+

1

2

{
1

16

(
1− u2

) (
1− v2

)
+Duv −D2

}
∂2

∂D2

+
1

2

(
1− u2

) ∂2

∂u2
+ 4D

∂2

∂u∂v
− 2Du

∂2

∂D∂u
− 2Dv

∂2

∂D∂v

− 1

2
θu

∂

∂u
− 1

2
θv

∂

∂v
−
(

1 +
1

2
ρ+ θ

)
D

∂

∂D
.

(11)

The definition of r2 in terms of the new variables is

r2 =
D2

p (1− p) q (1− q)
=

16D2

(1− u2) (1− v2)
. (12)

For 0 ≤ u2, v2 < 1, we have 1/
(
1− u2

)
=
∑∞

k=0 u
2k and 1/

(
1− v2

)
=
∑∞

l=0 v
2l.

Substituting these into (12) yields

r2 = 16
∞∑
k=0

∞∑
l=0

D2u2kv2l. (13)
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The advantage of the change in variables is seen by comparing (13) with the

previous expression (6). The expression in (13) can be raised to higher powers

while still producing only monomial terms, unlike the expression in (6) which

would involve cross-terms of the form pk(1 − p)k
′
ql(1 − q)l

′
. Although such

cross-terms could be reduced to monomials of the form pmqn by binomial ex-

pansions, this would result in a mixture of positive and negative terms, which

is problematic for numerical computation due to cancellation errors.

We now seek to find E
(
r2M

)
for M = 1, 2, . . .. Because |u2| < 1 and |v2| < 1,

we can apply the negative binomial series to the factors of the denominator in

(12), yielding(
1− u2

)−M
=

∞∑
K=0

(
K +M − 1

K

)
u2K ,

(
1− v2

)−M
=

∞∑
L=0

(
L+M − 1

L

)
v2L.

(14)

Combining equations (12) and (14) gives

E
(
r2M

)
= E

{
16MD2M

(
1− u2

)−M (
1− v2

)−M}
= 16M

∞∑
K=0

∞∑
L=0

(
K +M − 1

K

)(
L+M − 1

L

)
E
(
D2Mu2Kv2L

)
.

(15)

Then the problem of computing the moment of r2 of order M reduces to comput-

ing expectations of the form E
(
D2Muivj

)
for all combinations of non-negative

even integers i and j. To compute these expectations, we follow the procedure

of S2007’s original algorithm described in the last section, but using variables

u and v to replace p and q respectively, and using the new diffusion genera-

tor (11) to replace the original generator (3). For example, we can see from (9)

that if m and n are sufficiently large positive even integers, the n+ 3 expecta-

tions contain expectation E
(
D4um−2vn−2

)
needed for computing E

(
r4
)
, expec-

tation E
(
D6um−4vn−4

)
needed for computing E

(
r6
)
, and other expectations

needed for computing higher-order moments of r2. Similar to S2007, we set

`max = 2(K + L) to be the truncation level and use

E
(
r2M

)
`max

= 16M
`max∑

K,L≥0

(
K +M − 1

K

)(
L+M − 1

L

)
E
(
D2Mu2Kv2L

)
(16)

as an approximation to E
(
r2M

)
.
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2.4. Maximum entropy principle

Information entropy was first introduced by Shannon & Weaver (1948) as

a measure of the probabilistic uncertainty inherent in a probability distribu-

tion. The maximum entropy principle states that, having satisfied all known

constraints, the most reasonable probability distribution for representing a sys-

tem is the solution with maximal entropy. The so-called Maxent principle is

widely used in various scientific areas such as statistical mechanics, computer

science, biology, economics and finance (e.g. Berger et al., 1996; Tagliani, 1999;

Wu, 2003; Yeo & Burge, 2004), but as far as we know, its only application in

population genetics to date is in Liu (2012). The Maxent principle is a powerful

technique for representing an unknown distribution subject to some known con-

straints, such as the finite sequence of moments of the distribution as we have

derived here.

Suppose we are seeking the true probability density function π (x) of random

variable X; however, we know nothing about the distribution except for some

moments mi = E
(
Xi
)
, i = 1, . . . , n, where mi is the ith moment of π (x).

The Maxent solution is π̃n (x) that maximizes the expectation of the negative

logarithm of the density function of X, while satisfying all the specified moment

constraints. Let Ω denote the support of π, which here is [0, 1] corresponding

to the range of r2. We therefore seek π̃n that maximizes the entropy of the

distribution:

I (π̃n) = −
∫

Ω

π̃n (x) log {π̃n (x)} dx (17)

subject to ∫
Ω

xi π̃n (x) dx = mi for i = 0, 1, . . . , n. (18)

By application of the corresponding Lagrange function and the Euler-Lagrange

equation, it is readily shown that the Maxent density function is

π̃n (x) = exp
(
λ0 + λ1x+ λ2x

2 + · · ·+ λnx
n
)
, (19)

where λ = (λ0, λ1, . . . , λn) solves the following unconstrained minimization
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problem:

arg min
λ

{∫
Ω

exp

(
n∑

i=0

λix
i

)
dx−

n∑
i=0

λimi

}
. (20)

The density π̃n (x) in (19) is normalized due to the constraint for i = 0 in (18).

Here, we apply (19) and (20) to obtain π̃n
(
r2
)
, the Maxent solution based on n

moments to the stationary probability density function π of the random variable

r2. Convergence of π̃n to π is guaranteed as n→∞, because π is determined by

the moment sequence {mi}∞i=0, and since |r2| < 1 the error in omitting moments

higher than n tends to zero as n→∞. We describe methods for selecting n in

the next section.

There are two difficulties when solving the minimization problem (20) nu-

merically. First, it is challenging to evaluate the definite integral in the ob-

jective function. We address this using Gaussian-Legendre quadrature nodes

(Hildebrand, 1987). Second, computation of the objective in (20) is numeri-

cally unstable due to the power moments mi, which become extremely small for

large i. We therefore transform the power moments into corresponding Cheby-

shev moments, and then apply the Maxent principle to these shifted moments.

The transformation to Chebyshev moments greatly improves the performance

of numerical optimization algorithms for Maxent problems (Silver & Röder,

1997). After applying the Gaussian-Legendre nodes and Chebyshev moments,

we employ the trust region optimization algorithm (Wright & Nocedal, 1999)

to solve the resulting optimization problem. See Liu (2012) for more technical

details about the computation. For more details about the Maxent approach,

see Jaynes (1982) and Cover & Thomas (2012).

2.5. Sequential updating algorithm

Using our method based on (9) and (16), we can obtain a series of arbitrarily

many stationary moments of r2. We therefore need to decide upon an appro-

priate number of moments to use when constructing the Maxent density of r2.

In principle, we expect a larger number of moments to yield a more accurate

approximation to the true density function π; however, it also becomes more dif-

ficult and time-consuming to compute the optimal solution to the minimization
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problem (20) because the dimension of the unknown λ increases. To address

this problem, we propose a criterion based on the sequential updating method

of Wu (2003). Instead of simultaneously using all the moments available, we

incorporate the moments one by one from lower to higher order, and update the

Maxent density of r2 sequentially until some specified criterion is satisfied.

We describe the approach in a general setting following the last section.

Suppose the first k moments, mi for i = 1, 2, . . . , k, are used to construct the

Maxent density π̃k (x). Using π̃k (x), the moment of X of order k + 1 can be

predicted by

m̃k+1 =

∫
Ω

xk+1π̃k (x) dx. (21)

The difference between the predicted moment m̃k+1, based on the kth-order

approximation π̃k, and the true moment mk+1, from the analytic computation,

serves as an indicator to decide whether more moments are needed. If m̃k+1

is very close to mk+1, this suggests that most of the information contained in

mk+1 may already be provided by the first k moments, in which case little may

be lost by omitting the moment mk+1. We use the percentage bias bk defined

below to measure the difference between mk+1 and m̃k+1:

bk =
m̃k+1 −mk+1

mk+1
× 100%. (22)

Thus, bk is an indicator of the performance of using moments of order up to k

to construct the density of X. In general, we expect bk to tend towards zero

as k increases. In our computation, we first set a threshold for bk at a small

percentage, say 1%. Starting with k = 1 moment, we increment k at each step

until bk is found to be under the threshold. We then use the Maxent density π̃k

as our final estimate.

3. Results

3.1. Expectation and variance of r2

To verify our proposed method, we computed a series of moments of r2 for

various values of ρ and θ following S2007. Results were obtained for all combina-

tions of ρ ∈ {0, 1, 2, 5, 10, 20} and θ ∈ {0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 2.0, 4.0, 6.0, 8.0, 10.0}.
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Results of E
(
r2
)

from our method using (16) were in all cases identical to those

obtained by S2007 to the three decimal places supplied by S2007; see Table 1

in S2007 for details. This provides evidence of the correctness of our computa-

tions, since the two methods adopt different sets of model variables and diffusion

generators.

In addition, by adopting the change of variables we have proposed and us-

ing (16) and (9), the variance and higher-order moments of r2 can readily be

evaluated. Using the same truncation level (say 700), both approaches require

a similar amount of computation time (roughly two minutes on a 1.3 GHz lap-

top); however, S2007’s method only gives E
(
r2
)
, whereas we obtain the first

M moments of r2 (say M = 20). The computation time for our method re-

mains almost the same if more moments are computed while the truncation

level remains constant.

Here we show the results of Var
(
r2
)
, the variance of r2, which is of particular

interest. This can be obtained by our method using the first two moments of

r2. As far as we know, Var
(
r2
)

in the TLD model has previously only been

obtained by a lengthy computation in Liu (2012); however, Liu (2012) indicated

that his computation was not satisfactory for small θ due to limitations of

computing power. Our method for Var
(
r2
)
, based on (16) and (9), is more

reliable as it is analytic and does not involve any density approximation or

numerical optimization or integration, only the solution of a system of linear

equations. Both methods rely on the same assumption (in common with S2007)

that the process is adequately approximated by the diffusion approximation.

Table 1 shows results for Var
(
r2
)

from our computation for ρ, θ as above.

Our results are almost identical to those of Liu (2012) for θ > 1, although there

are larger discrepancies for smaller θ, as anticipated. From Table 1 it can be

seen that the variance of r2 appears to be a decreasing function of ρ if θ is fixed.

When ρ is fixed, Var
(
r2
)

typically increases to a peak, and then declines again

as θ increases.
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Figure 1: Relationship between the percentage bias bk and the number of moments used, k,

for (ρ, θ) = (10, 1) (left) and (ρ, θ) = (0, 0.1) (right).

3.2. Maxent density of r2

Using the moments obtained from (9) and (16), we can also construct the

Maxent density of r2 for any parameters (ρ, θ). We use the sequential updating

approach to select an appropriate number of moments for each (ρ, θ). Figure 1

shows convergence of the indicator bk to zero as the number of moments k

increases, for two settings of (ρ, θ). The rate of convergence depends on the

values of ρ and θ. For example, b4 is almost zero when (ρ, θ) = (0, 0.1), while

for (ρ, θ) = (10, 1), it is clearly larger than zero.

Figure 2 presents Maxent densities of r2 for two different choices of param-

eters (ρ, θ), using 1% as the threshold for terminating the sequential updating

algorithm. Computation time for constructing the Maxent density of r2 for one

pair of (ρ, θ) is roughly two minutes on a 1.3 GHz laptop.

3.3. Maximum likelihood inference

We now demonstrate how the Maxent density of r2 may be used to estimate

ρ and θ from simulated data using maximum likelihood. Estimation of these

parameters is of particular interest for comparing mutation and recombination
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Figure 2: Maxent density functions of r2 for two different settings of ρ and θ, constructed

using moments of order up to n as selected by the sequential updating algorithm.

rates in different parts of the genome, or for detecting outliers that might suggest

the influence of other genetic forces such as natural selection. In what follows,

we consider how the parameters ρ and θ may be estimated from a sample of S

values of r2 obtained from S independent pairs of loci. For the present study,

we disregard variability due to estimating r2 from sample data at each pair of

loci.

The Maxent density of r2 we construct is based on the diffusion approxima-

tion, so the population size needs to be sufficiently large for this approximation

to be reasonable. For this reason, it is difficult to simulate the discrete TLD

model directly due to the enormous state space, which consists of all possible

genotype counts (x1, x2, x3, x4) ∈ {0, 1, . . . , 2N}4 such that x1 + x2 + x3 + x4 =

2N . Adequate sampling of such a large state space at equilibrium is compu-

tationally impracticable. It is also unclear how to deal with the case where a

locus is temporarily fixed for a single allele, because r2 is then undefined for all

generations until a mutation occurs. Simulations in S2007 imply that excluding

these cases makes a substantial difference to the equilibrium distribution ob-

tained. We are not aware of alternative methods for sampling directly from the
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Figure 3: Histogram of 10,000 observations of r2 generated by the rejection sampling method

from the Maxent density of r2 when ρ0 = 5 and θ0 = 0.01. The red solid curve on the

plot represents the true Maxent density. The dashed curve represents the Maxent density

constructed using the MLEs
(
ρ̂, θ̂

)
= (5.10, 0.01) with 95% confidence intervals (4.86, 5.35)

for ρ and (0.0099, 0.0102) for θ.

diffusion process corresponding to the TLD model. Since the Maxent density of

r2 for any parameters (ρ, θ) can be obtained, we instead generate samples of r2

directly from this distribution using rejection sampling (Gilks & Wild, 1992).

As an example, we used (ρ0, θ0) = (10, 1) to generate sample observations of

r2. Based on a 5% threshold, the sequential updating algorithm terminated for

these parameters at five moments, so the Maxent density of r2 was taken to be

π̃5

(
r2; ρ0, θ0

)
. We then generated a sample of 10,000 observations of r2 from

the density π̃5

(
r2; ρ0, θ0

)
using the rejection sampling method, and then ap-

plied maximum likelihood estimation to obtain maximum likelihood estimates

(MLEs)
(
ρ̂, θ̂
)

by numerically maximizing the log-likelihood based on recon-

structing π̃n
(
r2; ρ, θ

)
at every candidate pair (ρ, θ). Each likelihood evaluation

involved constructing the moment sequence m1,m2, . . . , using (16) and (9),
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and reconstructing the density π̃n using (19) and (20), where n is selected by

the sequential updating algorithm at each iteration. Confidence intervals were

constructed as Wald intervals based on the inverse Hessian at the maximum

in the usual manner. From the sample data, the estimates of the parameters

were
(
ρ̂, θ̂
)

= (9.86, 1.03) with 95% confidence intervals (9.32, 10.40) for ρ and

(0.99, 1.06) for θ. The results have reasonably good precision for both param-

eters. On a 1.3 GHz laptop, the computation took approximately 25 minutes

to generate the data and obtain the MLEs, so the approach is also feasible in

terms of efficiency.

We repeated the procedure above 100 times. Inference results are shown

in the first row of Table 2. Our procedure yields approximately unbiased es-

timation for both parameters with satisfactory confidence interval coverage for

95% confidence intervals. We also conducted simulation studies using other set-

tings as shown in Table 2. The results indicate that the method has a similar

performance in these cases.

For practical applications, smaller values of θ may be of interest, say 0.01.

Simulating data by rejection sampling becomes rather slow for small θ, because

the Maxent density of r2 is very spiked close to zero. Once the data are obtained,

maximum likelihood estimation is efficient as before. We show an example result

in Figure 3, using data generated with ρ0 = 5 and θ0 = 0.01.

An illustrative application of our maximum likelihood method to real data

is given in Zhang (2017), using human genetic data from the 1000 Genomes

Project (1000 Genomes Project Consortium, 2015). Estimates of (ρ, θ) were ob-

tained with good precision, with coefficients of variation typically around 2% to

8%. However, the estimates themselves do not have a straightforward biological

interpretation, as loci were included in the study conditional on polymorphism

with minor allele frequencies over 5%, thereby inflating the associated estimates

of θ.

Various other inferential questions may be addressed using the framework

we describe here. One application that might be of interest is the detection of

recombination hotspots (Wall & Stevison, 2016) by estimating (ρ, θ) in different
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zones along a chromosome. Sample sizes may be enlarged by incorporating

several different within-pair spacings, d, into a single analysis, for example by

parametrizing ρ as a function of d and estimating the corresponding parameters

using our method. Interest might then focus on changes in those parameter

estimates along the chromosome. Another application is to use the Maxent

density of r2 to establish critical values for hypothesis tests, for example to test

whether an observed value of r2 is consistent with hypothesized values of ρ and

θ.

4. Discussion

We have constructed the stationary probability density function of r2 under

the TLD model using a maximum entropy approach based on a series of the

distribution’s moments, which can be obtained under the diffusion approxima-

tion without knowledge of the distribution of r2 itself. As a byproduct, we have

created a fast, analytic computation of the variance of r2, which was previously

only available via an extremely lengthy computation derived by Liu (2012). We

have shown how this Maxent density can be used to estimate the evolutionary

parameters ρ and θ from sample observations of r2. The performance of the

method has been illustrated by simulation studies.

The Maxent principle is a powerful tool to represent the density of a proba-

bility distribution based on information known about the distribution, such as

the sequence of moments we have used here. The Maxent density will converge

to the true density for sufficiently many moments, but the rate of convergence is

not known in general. Specifying the number of moments, n, therefore becomes

an important part of a Maxent analysis. Our calculation in (16) delivers long

moment sequences with little additional computational effort; but to convert

n moments into a Maxent density, we optimize over the (n + 1)-dimensional

variable λ in (20), which does become more time-consuming as n increases.

In this work we selected n using the percentage bias in forward-prediction of

the next moment as a stopping criterion, and we found that the magnitude
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of the bias decreased rapidly and monotonically towards zero as n increased.

However, a monotonic improvement cannot be guaranteed in all contexts, and

empirical assessment such as that shown in Figure 1 is needed to verify the

stopping criterion in practice. More stringent stopping criteria, for example in-

volving forward-prediction of multiple moments instead of just one, are readily

implemented.

The diffusion approximation provides a convenient and relatively fast way

of computing the moments of r2; however, we do not necessarily need to rely

upon it. The Maxent approach can also be applied to other sources of mo-

ments, for example, the moments from accurate coalescent simulations, or the

analytic moments of the original discrete process if these can be found. The

diffusion approximation adds an extra layer of approximation error beyond the

approximation of using Maxent procedures to represent a distribution from its

moments. Thus the performance of our Maxent computation of the true density

function at stationarity of the original discrete model can only be as good as

the diffusion approximation itself.

S2007 mentioned that although mutation is assumed to be symmetric and

recurrent for the TLD model, their method of calculating E
(
r2
)

can be gener-

alized to models with different mutation structures. They also commented that

their method might also be generalized to genetic models with natural selection.

Our approach to computing the moments of r2 is based on the same ideas as

S2007, so it is likely that it too has wider applicability than the TLD model

alone. For models with different mutation structures, the diffusion generator in

(11) is replaced by the appropriate alternative, but there is no impact on equa-

tions (12) to (16). Thus, although the system of linear equations will involve

different values of E(D2Mu2Kv2L) under such models, we expect the solving

algorithm to remain applicable. Investigating these alternative models, and de-

riving the corresponding diffusion generators and systems of linear equations

similar to those presented in (9), is a suitable focus for future research.
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