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Abstract We characterize the class of committee scoring rules that satisfy the fixed-
majority criterion. We argue that rules in this class are multiwinner analogues of the
single-winner Plurality rule, which is uniquely characterized as the only single-winner
scoring rule that satisfies the simple majority criterion. We define top-k-counting
committee scoring rules and show that the fixed-majority consistent rules are a subclass
of the top-k-counting rules. We give necessary and sufficient conditions for a top-k-
counting rule to satisfy the fixed-majority criterion. We show that, for many top-k-
counting rules, the complexity of winner determination is high (formally, we show that
the problem of deciding if there exists a committee with at least a given score is NP-
hard), but we also show examples of rules with polynomial-time winner determination
procedures. For some of the computationally hard rules, we provide either exact FPT
algorithms or approximate polynomial-time algorithms.
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1 Introduction

Amultiwinner voting rule is a formal procedure for selecting a subset of predetermined
size from the available candidates in accord with the preferences of an electorate
(such a subset of candidates is usually referred to as a committee). Parliamentary
elections constitute one of the most classic examples where multiwinner rules are
regularly used. For country-wide elections, societies typically use the district-based
First-Past-the-Post rule, or a party-list system, or somemixture of the two [nonetheless,
some countries use other rules for this purpose, such as SNTV or STV (Lijphart
and Aitkin 1994)]. In smaller-scale elections, where it is possible for the voters to
rank all the candidates, many other rules become available; for example, the k-Borda
rule (Debord 1992) selects committees where each member receives broad support
from the electorate, the Chamberlin–Courant rule (Chamberlin and Courant 1983)
finds committees with diverse membership, and the Monroe rule (Monroe 1995) is
designed to achieve proportional representation.

Apart frompolitical elections,multiwinner rules are useful formanyother purposes:
to shortlist candidates for a job interview (Barberà and Coelho 2008; Elkind et al.
2017), to determine the locations of public facilities (Zanjirani andHekmatfar 2009), in
awide range of scenarioswhere resources need to be selected and assigned to the agents
for their (shared) use (Skowron et al. 2016), in segmentation problems (Kleinberg
et al. 2004), or even in search strategies of genetic algorithms (Faliszewski et al. 2017;
Sawicki et al. 2017). In business applications, company strategists deciding which sets
of products to advertise on the front pages of their websites implicitly use multiwinner
elections to make their choices (Lu and Boutilier 2011, 2015). Since these tasks are
very different in spirit, one may presume that not all rules are equally suitable for all
scenarios. This makes the question of comparing different rules, and of understanding
their nature and their shortcomings (including their computational difficulty), very
relevant.

One approach to advance our understanding of the nature of multiwinner rules
is to view them as extensions of certain well-understood single-winner ones. For
example, Single Non-Transferable Vote (SNTV) can clearly be viewed as an extension
of Plurality, because it selects the k candidates with the k highest numbers of the first-
place votes. However, this is not the only point of view that one can take in generalizing
Plurality. For instance, one could argue that a voter’smost preferred committee consists
exactly of those k candidates that this voter ranks in top k positions, and, so, if under
the Plurality rule a voter gives a point only to his or her most preferred candidate, then
under a multiwinner Plurality a voter should give points only to those candidates that
belong to his or her most preferred committee. In fact, this is exactly how the Bloc
rule works, and one can argue that Bloc is an extension of Plurality to the multiwinner
setting as well. Naturally, there are also many other rules that would qualify for this
title. Our goal in this paper is to seek and study such rules.

Our goal requires some justification. It is widely acknowledged that the single-
winner Plurality rule has only one advantage: simplicity. Apart from this, it is
considered a very bad rule—for instance, during the “Voting Power in Practice” work-
shop, held in 2010 at the Chateau du Baffy, Normandy, the participants (who were
experts in voting procedures) were asked to rank election rules. Laslier (2012) reports
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that Plurality was considered the worst. One of the most serious drawbacks of Plu-
rality is that voters are pressured to vote for one of the two candidates they predict
are most likely to win, even if their true most preferred candidate is neither of them;
they do that from the fear of casting a ‘wasted vote’ (Dummett 1984). However, in the
multiwinner setting this pressure becomes milder, because there are more candidates
to be elected. We view this as one reason why multiwinner analogues of Plurality are
worth investigating.

We seek multiwinner analogues of Plurality within the family of committee scoring
rules, recently introduced by Elkind et al. (2017). This is a natural choice because
Plurality belongs to the class of positional scoring rules and committee scoring rules
generalize this class to the multiwinner setting. (However, looking for such rules
beyond the class of committee scoring rules would not be unthinkable.) Further, we
take the following axiomatic approach. We note that Plurality is the only single-
winner scoring rule that satisfies the simple majority criterion,1 which stipulates that
a candidate ranked first by more than half of the voters must be the unique winner
of the election. The fixed-majority criterion, introduced by Debord (1993), extends
this notion to the world of multiwinner elections by requiring that, if there is a simple
majority of voters, each of whom ranks the same k candidates in the top k positions
(perhaps in a different order), then these k candidates should form the unique winning
committee.2 Thus, all in all, we seek committee scoring rules that satisfy the fixed-
majority criterion.

One can verify that SNTV fails the fixed-majority criterion for all k > 1, but that
Bloc does satisfy it. Yet, Bloc is not the only fixed-majority consistent rule within the
class of committee scoring rules. In fact, our approach led us to the discovery of a
new class of voting rules, which includes all committee scoring rules satisfying the
fixed-majority criterion. We call them top-k-counting rules. As in the case of Bloc,
they take only the top k preferences of the voters into consideration. Specifically,
under a top-k-counting rule, each voter awards points to every committee on the basis
of the number of this voter’s top k candidates that are members of the committee;
the committee with the most points collected from all the voters wins. The function
that determines the score of a committee based on the number of committee members
ranked in the top k positions by a voter will be called the counting function. As it turns
out, the nature of this function (e.g., whether it is convex or concave) has very strong
impact on both axiomatic and computational properties of the voting rule it defines.

We provide an (almost) full characterization3 of fixed-majority consistent com-
mittee scoring rules and we analyze the computational complexity of their winner
determination problems. More specifically, we obtain the following results:

1. We prove that all committee scoring rules that satisfy the fixed-majority criterion
are top-k-counting rules and we establish a condition on the counting function that
is necessary and sufficient for the corresponding top-k-counting rule to satisfy the

1 In the literature, simple majority is often referred to as majority. However, we write ‘simple majority’ to
clearly distinguish it from qualified majority and from fixed-majority.
2 In Sect. 3.1 we argue that, indeed, this is a natural extension of the simple majority property.
3 We consider the case where there are at least twice as many candidates as the size of the committee. We
are not sure whether this restriction can be dropped.
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fixed-majority criterion. This condition is a fairly mild relaxation of the classic
notion of convexity; in particular, if the counting function is convex then the
corresponding top-k-counting rule satisfies the fixed-majority criterion.

2. We show that a number of top-k-counting rules are NP-hard to compute4 (for
example, we show an example of a rule that closely resembles the Bloc rule and is
hard even to approximate). There are, however, some polynomial-time computable
ones (for example, the Bloc and the Perfectionist rules; the latter one is introduced
in this paper).

3. We show that if the counting function is concave, then the corresponding top-
k-counting rule fails the fixed-majority criterion, but the rule seems to be
computationally easier than in the convex case. Specifically, for top-k-counting
rules defined via concave counting functions we present a polynomial-time
(1 − 1

e )-approximation algorithmand an exact fixed-parameter tractable algorithm
(parameterized by the number of voters) for the problem of computing the highest-
scoring committees.

All in all, there is no unique multiwinner analogue of Plurality, even if we restrict
ourselves to polynomial-time computable committee scoring rules, but there is a rich
class of such rules that deserves further investigation.

2 Preliminaries

An election is a pair E = (C, V ), where C = {c1, . . . , cm} is a set of candidates
and V = (v1, . . . , vn) is a collection of voters. Throughout the paper, we reserve
the symbol m to denote the number of candidates. Each voter vi is associated with a
preference order �i in which vi ranks the candidates from his or her most desirable
one to his or her least desirable one (we assume the unrestricted domain, i.e., each
voter is free to choose any preference order). If X and Y are two (disjoint) subsets of
C , then by X �i Y we mean that for each x ∈ X and each y ∈ Y it holds that x �i y.
For a positive integer t , we denote the set {1, . . . , t} by [t].

Single-Winner Voting Rules A single-winner voting ruleR is a function that given an
election E = (C, V ), outputs a subset R(E) ⊆ C of candidates that are called (tied)
winners of this election. There is quite a variety of single-winner voting rules, but for
this paper it suffices to consider scoring rules only. Given a voter v and a candidate c,
we write posv(c) to denote the position of c in v’s preference order (for example, if
v ranks c first then posv(c) = 1). A scoring function for m candidates is a function
γm : [m] → R+ such that for each i ∈ [m − 1] we have γm(i) ≥ γm(i + 1) (by
R+ we mean the set of nonnegative real numbers). Each family of scoring functions
γ = (γm)m∈N (one function for each possible choice ofm) defines a voting ruleRγ as
follows. Let E = (C, V ) be an election withm candidates. UnderRγ , each candidate
c ∈ C receives score(c) := ∑

v∈V γm(posv(c)) points and the candidate with the
highest number of points wins. (If there are several such candidates, then they all tie
as winners; the term single-winner voting rule refers to the fact that we use the rule to

4 See Remark 4 in Sect. 4 for an exact explanation of this statement.
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fill-in a single position, and not to indicate that the rule is resolute.) We often refer to
the value score(c) as the γ -score of c.

The following scoring functions and scoring rules are particularly interesting. The
t-Approval scoring function αt is defined as αt (i) := 1 for i ≤ t and αt (i) := 0
otherwise. (If t is fixed, then the definition of αt does not depend on m; in such cases,
αt can both be viewed as a scoring function and as a family of scoring functions.) For
example, Plurality isRα1 , the t-Approval rule isRαt , and the Veto rule isR(αm−1)m∈N .
The Borda scoring function (for m candidates), βm , is defined as βm(i) := m − i , and
Rβ is the Borda rule, where β = (βm)m∈N. This notation for these scoring functions
will be used throughout the paper.

Multiwinner Voting Rules A multiwinner voting rule R is a function that given an
election E = (C, V ) and a number k representing the size of the desired committee,
outputs a family R(E, k) of size-k subsets of C ; the sets in this family are the com-
mittees that tie as winners. As in the case of single-winner voting rules, one may need
a tie-breaking rule to get a unique winning committee, but we ignore this aspect in the
current paper.

We focus on the class of committee scoring rules, introduced by Elkind et al.
(2017) (we remark that the conference version of their paper was published in 2014).
Consider an election E = (C, V ) and some committee S of a given size k. Let
v be some voter in V . By posv(S) we mean the sequence (i1, . . . , ik) that results
from sorting the set {posv(c) : c ∈ S} in a strictly increasing order. For example, if
C = {a, b, c, d, e}, the preference order of v is a � b � c � d � e, and S = {a, c, d},
then posv(S) = (1, 3, 4). If I = (i1, . . . , ik) and J = ( j1, . . . , jk) are two strictly
increasing sequences of integers, then we say that I (weakly) dominates J (denoted
I � J ) if it ≤ jt for each t ∈ [k]. For positive integers m and k, k ≤ m, by [m]k we
mean the set of all strictly increasing size-k sequences of integers from [m].

Definition 1 (Elkind et al. 2017) A committee scoring function for a multiwinner
election with m candidates, where we seek a committee of size k, is a function
fm,k : [m]k → R+ such that for each two sequences I, J ∈ [m]k it holds that if
I � J then f (I ) ≥ f (J ).

Intuitively, the function fm,k from Definition 1 assigns to each sequence I of k
positions the number of points that a committee C gets from a voter v when the
members of C stand on exactly the positions of I in the preference order of v.

A committee scoring rule is defined by a family of committee scoring functions
f = ( fm,k)k≤m , which contains one function for each possible choice of m and k.
Analogously to the case of single-winner scoring rules, we will denote such a mul-
tiwinner rule by R f . Let E = (C, V ) be an election with m candidates and let k,
k ≤ m, be the size of the desired committee. Under the committee scoring rule R f ,
every committee S ⊆ C with |S| = k receives score(S) := ∑

v∈V fm,k(posv(S))

points (for this notation, the election E = (C, V ) will always be clear from the con-
text). The committeewith the highest scorewins. (If there are several such committees,
then they all tie as winners.)
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Many well-known multiwinner voting rules are, in fact, committee scoring rules.
Consider the following examples (we will use them throughout the paper to illustrate
various points):

1. The SNTV, Bloc, and k-Borda rules pick k candidates with the highest Plurality,
k-Approval, and Borda scores, respectively, and so they are defined through the
following scoring functions:

f SNTVm,k (i1, . . . , ik) := ∑k
t=1 α1(it ) = α1(i1),

f Blocm,k (i1, . . . , ik) := ∑k
t=1 αk(it ),

f k-Bordam,k (i1, . . . , ik) := ∑k
t=1 βm(it ).

Note that f SNTVm,k is defined as a sum of functions that do not depend on eitherm or

k, f Blocm,k is defined as a sum of functions that depend on k but not m, and f k-Bordam,k

is defined as a sum of functions that depend on m but not k.5

2. The two versions of the Chamberlin–Courant rule that we consider are defined
through the following committee scoring functions, respectively:

f β-CC
m,k (i1, . . . , ik) := βm(i1),

f αk-CC
m,k (i1, . . . , ik) := αk(i1).

The first one defines the classical Chamberlin-Courant rule (Chamberlin and
Courant 1983) and the second one defines what we refer to as the k-Approval
Chamberlin–Courant rule [approval-based variants of the Chamberlin–Courant
rule were first mentioned by Thiele (1895) and recently they were recalled by
Procaccia et al. (2008); they were studied further, for example, by Betzler et al.
(2013), Aziz et al. (2017), and Skowron and Faliszewski (2017)]. For brevity, we
sometimes refer to the k-Approval Chamberlin–Courant rule as the αk-CC rule.

Intuitively, under the Chamberlin–Courant rules, each voter is represented by the
committee member that this voter ranks highest; the Chamberlin–Courant rule
chooses a committee S that maximizes the sum of the scores that the voters give to
their representatives in S (which characterizes the total satisfaction of the society
with the assignment of representatives to the voters).

3. We introduce the Perfectionist rule. This rule is defined through scoring functions
of the form:

f Perfm,k (i1, . . . , ik) := αk(ik).

In other words, a voter gives score of 1 to a committee only if its members occupy
the top k positions of his or her vote. The rule is not necessarily very appealing, but

5 One could define the Borda scoring function so that βm (i) = −i , removing the dependence on m.
However, the traditional definition, βm (i) = m − i , is much more common and, on the formal ground, we
require the values of the scoring functions to be nonnegative.
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it has interesting features that will illustrate several points that wemake throughout
our discussion.

Belowwe provide an example election where SNTV, Bloc, k-Borda, β-CC, αk-CC,
and Perfectionist give different outcomes (with the exception that the results of Bloc
and αk-CC are the same).

Example 1 Let us consider the set of candidates C = {a, b, c, d, e, f, g, h} and eight
voters with the following preference orders:

v1 : a � f � c � g � h � e � b � d, v2 : c � e � g � h � a � f � b � d,

v3 : a � f � c � h � g � e � b � d, v4 : d � e � h � g � a � f � b � c,

v5 : b � c � g � h � a � e � f � d, v6 : e � g � d � h � a � b � f � c,

v7 : b � d � h � g � a � e � f � c, v8 : f � h � d � g � a � b � e � c.

Let the committee size k be 2. It is easy to compute the winners under the SNTV
and Bloc rules. For the former, the unique winning committee is {a, b} (these are the
only two candidates that are ranked in the top positions twice), and for the latter it is
{e, f } (these are the only two candidates that are ranked among top two positions three
times; all the other candidates are ranked there at most twice). A somewhat tedious
calculation shows that the unique k-Borda winning committee is {g, h}, which follows
since the Borda scores of the candidates a, b, c, d, e, f, g, h are, respectively:

32, 22, 23, 23, 28, 26, 35, 35.

Further calculations show that under the (classical) Chamberlin–Courant rule, the
unique winning committee is {c, d}. (While it is tedious to compute these results by
hand, and indeed we used a computer to find them, the intuition for the k-Borda and
Chamberlin–Courant winners is as follows: g and h are always ranked in the middle
of each vote, or slightly above, so that they get high total Borda score, whereas c and d
are ranked so that one of them is (almost) always ahead of g and h, whereas the other
one is in the last position. This way, as representatives, c and d get higher scores than
g and h, even though their total Borda score is lower.)

On the other hand, it is relatively easy to verify that under αk-CC, the winning
committee is {e, f } (itsαk-CC score is six; there is no other committeewhosemembers
are ranked among the top two positions of six or more voters).

Finally, let us consider the Perfectionist rule. It assigns two points to committee
{a, f }, one point to each of {b, c}, {b, d}, {c, e}, {d, e}, {e, g}, and { f, h}, and zero
points to all the other committees. Thus, {a, f } is the unique winning committee.

All the above rules are examples of OWA-based committee scoring rules, i.e., their
committee scoring functions can be expressed as ordered weighted averages (OWAs)
of single-winner scores. Formally, an OWA operator � of dimension k is a sequence
� = (λ1, . . . , λk) of nonnegative reals6 and the class of OWA-based rules (due to
Skowron et al. 2016) is defined as follows.

6 We slightly generalize the notion and, unlike Yager (1988), we do not require that λ1 + · · · + λk = 1.
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Definition 2 Let � = (�m,k)k≤m be a family of OWA operators such that �m,k =
(λ1m,k , . . . , λkm,k) has dimension k (one size-k vector for each pair m, k). Let γ =
(γm,k)k≤m be a family of (single-winner) scoring functions (one scoring function for
each pairm, k). Then γ together with� define a family of committee scoring functions
f = fm,k(�, γ ) such that for each (i1, . . . , ik) ∈ [mk] we have:

fm,k(i1, . . . , ik) =
k∑

t=1

λtm,kγm,k(it ).

The committee scoring rule R f corresponding to the family f is called OWA-based.

Intuitively, the OWA operators specify to what extent the voters care about each
member of the committee, depending on how this member is ranked among the other
ones. For example, rules with OWA operators of the form (1, . . . , 1), such as SNTV,
Bloc, or k-Borda, care about all the committee members equally, whereas rules with
OWA operators of the form (1, 0, . . . , 0), such as our two versions of the Chamberlin–
Courant rule, care about the top-ranked committee members only. Rules of the first
type are calledweakly separable, and those of the second type are called representation
focused (Elkind et al. 2017; Faliszewski et al. 2016). Naturally, there are also many
other choices of OWA operators. For example, the t-Approval variant of the Propor-
tional Approval Voting rule (αt -PAV) uses OWA operators of the form (1, 1

2 , . . . ,
1
k ),

indicating the decreasing attention the voters pay to their lower-ranked committee
members; the Perfectionist rule uses the OWA operator (0, . . . , 0, 1). For more dis-
cussions regarding the OWA-based rules, we refer the reader to the works of Skowron
et al. (2016), Aziz et al. (2017, 2015), and Lackner and Skowron (2017) (the latter
ones include a more detailed discussion of PAV; see also the work of Kilgour (2010)
for a description of this rule).

Remark 1 We note that in most cases the OWA vectors �m,k used to define OWA-
based rules do not depend on m. Yet, formally, we allow for such a dependence in
order to build the relation between our general framework in which committee scoring
functions fm,k might depend on m in any, even not very intuitive, way, and the world
of OWA-based rules.

Naturally, there are also committee scoring rules that are not OWA-based. For
example, Faliszewski et al. (2017) study the family of �p-Borda rules, with committee
scoring functions of the following form (p ≥ 1):

f
�p-Borda
m,k (i1, . . . , ik) := p

√
∑k

t=1 β
p
m(it ).

In particular, they discuss how the �p-Borda rules (for p > 1) are, in a certain
sense, between the k-Borda rule (which is simply the �1-Borda rule) and the classical
Chamberlin–Courant rule (which, with slight abuse of notation, could be referred to
as �∞-Borda).
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3 Fixed-majority consistent rules

We are ready to start our quest for finding committee scoring rules that can be seen as
multiwinner analogues of Plurality.Webegin by describing the fixed-majority criterion
that, in our view, encapsulates the idea of “closeness” to Plurality. Then, we provide
a class of committee scoring rules—the class of top-k-counting rules—that contains
all the rules which satisfy the fixed-majority criterion. Finally, we provide an almost
complete characterization of those top-k-counting rules that have the fixed-majority
property.

3.1 Initial remarks

One of the features that distinguishes Plurality among all the other scoring rules is the
fact that it satisfies the simple majority criterion.

Definition 3 A single-winner voting rule R satisfies the simple majority criterion if
for every election E = (C, V )where more than half of the voters rank some candidate
c first, it holds that R(E) = {c}.

Importantly, the simple majority criterion indeed characterizes Plurality within the
class of single-winner scoring rules. The result is a part of folklore (we provide the
proof for the sake of completeness).

Proposition 1 Let γ = (γm)m∈N be a family of single-winner scoring functions that
defines a scoring ruleRγ . Then,Rγ satisfies the simple majority criterion if and only
if for each m it holds that γm(1) > γm(2) = · · · = γm(m) (that is, if and only if Rγ

coincides with Plurality).

Proof It is straightforward to verify that if for each m we have γm(1) > γm(2) =
· · · = γm(m) then Rγ satisfies the simple majority criterion. For the other direction,
assume thatRγ satisfies the simple majority criterion. This immediately implies that
for each m ≥ 2 we have γm(1) > γm(m) (otherwise all the candidates would always
tie as winners). Hence for m = 2 the result follows.

Let us fix m ≥ 3. For each positive integer n, define the election En = (C, Vn)
with the candidate set C = {c1, . . . , cm} and with Vn containing:

n + 1 voters with preference order c1 � c2 � · · · � cm and

n voters with preference order c2 � c3 � · · · � cm � c1.

SinceRγ satisfies the simplemajority criterion, it must be the case that c1 is the unique
Rγ -winner for each En . Further, for a given value of n, the difference between the
scores of c1 and c2 in En is:

score(c1) − score(c2) = (
(n + 1)γm(1) + nγm(m)

) − (
(n + 1)γm(2) + nγm(1)

)

= γm(1) − γm(2) + n
(
γm(m) − γm(2)

)
.
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Thus, if it held that γm(2) > γm(m), then—for large enough value of n—candidate
c1 would not be a winner of En . This implies that γm(2) = · · · = γm(m). Since
γm(1) > γm(m), we reach the conclusion that γm(1) > γm(2) = · · · = γm(m). 
�

There are at least two ways of generalizing the simple majority criterion to the
multiwinner setting. We choose perhaps the simplest one, the fixed-majority criterion
introduced byDebord (1993) (other notions of majority studied byDebord are variants
of the Condorcet principle and are incompatible with Plurality and scoring rules in
general).

Definition 4 A multiwinner voting ruleR satisfies the fixed-majority criterion for m
candidates and committee size k if for every election E = (C, V ) with m candidates
the following holds: if there is a committee W of size k such that more than half of
the voters rank all the members of W above the non-members of W (equivalently:
put the candidates from W on top), then R(E, k) = {W }. We say that R satisfies the
fixed-majority criterion if it satisfies it for all choices of m and k (with k ≤ m).

Remark 2 Another possible way of extending the simple majority criterion to the
multiwinner case would be to say that if a committee W is such that for each c ∈ W
a majority of voters rank c among their top k positions (possibly a different majority
for each c), then W must be a winning committee. However, consider the following
votes over the candidate set {a, b, c}:

v1 : a > b > c, v2 : a > c > b, v3 : b > c > a.

For k = 2, all three committees, {a, b}, {a, c}, and {b, c} have majority support in
the sense just described. We feel that this is against the spirit of the simple majority
criterion (since at most one candidate can be ranked on the top position by more than
half of the voters, we feel that there should be at most one committee that can claim to
have the majority support). Thus, and since we have not found any other convincing
ways of generalizing the simple majority criterion to the multiwinner setting, we focus
on Debord’s fixed-majority notion.

It seems that the fixed-majority criterion is far more important for the multiwinner
setting than the simple majority criterion is for the single-winner one. For example,
one can verify that the Bloc rule satisfies the fixed-majority criterion and, in fact, this
property is crucial in explaining its inner workings (we characterize the Bloc rule as
the unique committee scoring rule that is noncrossing monotone and that satisfies the
fixed-majority criterion7). This is important as in practice Bloc is among the most
commonly used multiwinner rules. Further, the fixed-majority property may be useful
when arguing that a given voting rule is appropriate for a setting where the selected
committee needs strong legitimization: If a rule fails the fixed-majority property, then
it is possible that even though a majority of the voters agree which committee is the

7 For a discussion of noncrossing monotonicity that leads to this characterization, see the work of Fal-
iszewski et al. (2016).
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best, a different committee is elected (whose legitimacy might be questioned by this
majority).8

While the Bloc rule satisfies the fixed-majority criterion, the SNTV rule does not
(it will follow formally from our further discussion). This means that in our axiomatic
sense, Bloc is closer to Plurality than SNTV. This is quite interesting since one’s first
idea of generalizing Plurality would likely be to think of SNTV. Yet, Bloc is cer-
tainly not the only committee scoring rule that satisfies our criterion. For example, the
Perfectionist rule satisfies the fixed-majority criterion and, indeed, closely resembles
Plurality. The following remark strongly highlights this similarity.

Remark 3 Consider a situation where the voters extend their rankings of candidates
to rankings of committees in some natural way (see, e.g., the work of Barberà et al.
(2004) for an overview of how this may be done). Then, for each voter, the best
committee would consist of his or her k best candidates. As a result, running Plurality
on the profile of preferences over the committees would give the same result as running
Perfectionist over the profile of preferences over the candidates.

Naturally, not all committee scoring rules satisfy the fixed-majority criterion. For
example, neither k-Borda nor the Chamberlin–Courant rule do. To see this, it suffices
to note that for k = 1 they both become the single-winner Borda rule, which fails the
simple majority criterion.

3.2 Top-k-counting rules

To characterize the committee scoring rules that satisfy the fixed-majority criterion, we
introduce the class of scoring functions that depend only on the number of committee
members ranked in the top k positions.

Definition 5 We say that a committee scoring function fm,k : [m]k → R+ is top-k-
counting if there is a function gm,k : {0, . . . , k} → R+ such that gm,k(0) = 0 and for
each (i1, . . . , ik) ∈ [m]k we have fm,k(i1, . . . , ik) = gm,k(|{t ∈ [k] : it ≤ k}|). We
refer to gm,k as the counting function for fm,k . We say that a committee scoring rule
R f is top-k-counting if it can be defined through a family of top-k-counting scoring
functions f = ( fm,k)k≤m .

Both Bloc and Perfectionist are top-k-counting rules. The former uses the linear
counting function gm,k(x) = x , while the latter uses the counting function gm,k which
is a step-function: gm,k(x) = 0 for x < k and gm,k(k) = 1. Another example of a
top-k-counting rule is the αk-CC rule, which uses the counting function gm,k such that
gm,k(0) = 0 and gm,k(x) = 1 for all x ∈ [k].

Top-k-counting rules have a number of interesting features. First, their counting
functions have to be nondecreasing. Second, every top-k-counting rule is OWA-based.
Third, every committee scoring rule that satisfies the fixed-majority criterion is top-k-
counting. We express these facts in the following two propositions and in Theorem 4.

8 Naturally, on its own, the fact that a rule is fixed-majority consistent is not sufficient to claim that this
rule is good for such a setting.
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For the rest of the paper we make the assumption that m ≥ 2k; this assumption is
technical as our arguments are greatly simplified by the fact that we can form two
disjoint committees of size k. Further, it is also quite natural: one could say that if
we were to choose a committee consisting of more than half of the candidates, then
perhaps we should rather be voting for who should not be in the elected committee.
We are not sure whether this assumption can be dropped.

Proposition 2 Let m ≥ 2k and let fm,k : [m]k → R+ be a top-k-counting scoring
function defined through a counting function gm,k . Then, gm,k is nondecreasing.

Proof Let t ∈ {0, . . . , k} be a number. Consider the sequences It = (1, . . . , t, k +
1, . . . , k+(k−t)) and It+1 = (1, . . . , t+1, k+1, . . . , k+(k−t−1)) from [m]k . (Note
that we need m ≥ 2k for defining I0.) Since It+1 � It , we have that fm,k(It+1) ≥
fm,k(It ). By the definition, however, we have that fm,k(It+1) = gm,k(t + 1) and
fm,k(It ) = gm,k(t). Hence, gm,k(t + 1) ≥ gm,k(t). 
�
Without the assumption that m ≥ 2k, Proposition 2 would have to be phrased

more cautiously, and would speak only of the existence of a nondecreasing counting
function. (For example, for m = k, the function gm,k could be arbitrary.)

Proposition 3 Every top-k-counting rule is OWA-based.

Proof Let us consider a top-k-counting rule R f , where f = ( fm,k)k≤m is the
corresponding family of top-k-counting functions defined by a family of counting
functions (gm,k)k≤m . Let us consider one function fm,k from this family. We know
that fm,k : [m]k → R+ is a top-k-counting scoring function defined through a count-
ing function gm,k so that fm,k(i1, . . . , ik) = gm,k(s), where s = |{t ∈ [k] : it ≤ k}|.
As gm,k(0) = 0, we have

fm,k(i1, . . . ik) = gm,k(s) − gm,k(0) = ∑s
t=1(gm,k(t) − gm,k(t − 1))

= ∑k
t=1 αk(it ) · (gm,k(t) − gm,k(t − 1)),

from which we see that R f is OWA-based through the family of OWA operators:

�m,k = (gm,k(1) − gm,k(0), gm,k(2) − gm,k(1), . . . , gm,k(k) − gm,k(k − 1)),

and the family of k-Approval scoring functions (γm,k = αk). 
�
In the next theorem (and inmany further theorems)we speak of a committee scoring

rule R f defined through a family of committee scoring functions f = ( fm,k)2k≤m .
We use this notation as a shorthand for the assumption that the theorem is restricted
to the cases where 2k ≤ m.

Theorem 4 Let f = ( fm,k)2k≤m be a family of committee scoring functions. Then, if
R f satisfies the fixed-majority criterion, then R f is top-k-counting.

Proof Let us fix two numbers m and k such that 2k ≤ m. Consider an election with
m candidates, where a committee of size k is to be elected. For each positive integer
t such that 0 ≤ t ≤ k we define the following two sequences from [m]k :
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1. It = (1, . . . , t, k + 1, . . . , k + k − t) is a sequence of positions of the candidates
where the first t candidates are ranked in the top t positions and the remaining
k − t candidates are ranked just below the kth position.

2. Jt = (k − (t − 1), . . . , k,m − ((k − t) − 1), . . . ,m) is a sequence of positions
where the first t candidates are ranked just above (and including) the kth position,
whereas the remaining k − t candidates are ranked at the bottom.

Among these, Ik = (1, . . . , k) is the highest-scoring sequence of positions and Jk =
(m − (k − 1), . . . ,m) is the lowest-scoring sequence. Further, for every t we have
It � Jt and, in effect, fm,k(It ) ≥ fm,k(Jt ).

We claim that if there exists some t ∈ {0, . . . , k} such that fm,k(It ) > fm,k(Jt ) then
R f does not have the fixed-majority property. For the sake of contradiction, assume
that there is some t such that fm,k(It ) > fm,k(Jt ). Let E = (C, V ) be an election
with m candidates and 2n + 1 voters. The set of candidates is C = X ∪ Y ∪ Z ∪ D,
where X = {x1, . . . , xt }, Y = {yt+1, . . . , yk}, Z = {zt+1, . . . , zk}, and D is a set of
sufficiently many dummy candidates so that |C | = m. We focus on two committees,
M = X ∪ Y and N = X ∪ Z . The first n + 1 voters have preference order X � Y �
Z � D, and the next n voters have preference order Z � X � D � Y . Note that the
fixed-majority criterion requires that M be the unique winning committee.

Committee M receives the total score of (n + 1) fm,k(Ik) + n fm,k(Jt ), whereas
committee N receives the total score of (n + 1) fm,k(It ) + n fm,k(Ik). The difference
between these values is:

(n + 1) fm,k(Ik) + n fm,k(Jt ) − (n + 1) fm,k(It ) − n fm,k(Ik)

= fm,k(Ik) + n fm,k(Jt ) − (n + 1) fm,k(It ) =
= fm,k(Ik) − fm,k(It ) + n

(
fm,k(Jt ) − fm,k(It )

)
,

which, for a large enough value of n, is negative (since, by assumption, we know that
fm,k(Jt ) < fm,k(It ) and so fm,k(Jt ) − fm,k(It ) is negative). That is, for large enough
n, committee M does not win the election and R f fails the fixed-majority criterion.

So, ifR f satisfies the fixed-majority criterion, then for every t ∈ {0, . . . , k}wehave
that fm,k(It ) = fm,k(Jt ). This, however, means that fm,k is a top-k-counting scoring
function. To see this, consider some sequence of positions L = (�1, . . . , �k) ∈ [m]k
where exactly the first t entries are smaller than or equal to k. Clearly, we have that It �
L � Jt and so fm,k(It ) = fm,k(L) = fm,k(Jt ), which means that fm,k(i1, . . . , ik)
depends only on the cardinality of the set {t ∈ [k] : it ≤ k}. Sincem and k were chosen
arbitrarily (with 2k ≤ m), this completes the proof. 
�

Unfortunately, the converse of Theorem 4 does not hold: αk-CC, for example, is a
top-k-counting rule that fails the fixed-majority criterion.

Example 2 Consider an election E = (C, V )withC = {a, b, c, d}, V = (v1, v2, v3),
and k = 2. Let the preference orders of the voters be:

v1 : a � b � c � d, v2 : a � b � c � d, v3 : c � d � a � b.
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Fig. 1 Illustration of the
condition from Theorem 5

kk1 k1 + k2 k − k2

gm,k(k1 + k2) − gm.k(k1)

gm,k(k) − gm,k(k − k2)

The fixed-majority criterion requires {a, b} to be the only winning committee, while
under αk-CC, other committees, such as {a, c}, have strictly higher scores. (Inciden-
tally, this example also witnesses that SNTV fails the fixed-majority criterion; this is
hardly surprising since SNTV is not a top-k-counting rule.)

3.3 Criterion for fixed-majority consistency

In this section, we provide a formal characterization of those top-k-counting rules that
satisfy the fixed-majority criterion. Together with Theorem 4, this gives an almost full
characterization of committee scoring rules with this property.

Theorem 5 Let f = ( fm,k)2k≤m be a family of committee scoring functions with
the corresponding family (gm,k)2k≤m of counting functions. Then, R f satisfies the
fixed-majority criterion if and only if for every k,m ∈ N, 2k ≤ m, it holds that:

(i) gm,k is not constant, and
(ii) for each pair of nonnegative integers k1, k2 with k1 + k2 ≤ k, we have that:

gm,k(k) − gm,k(k − k2) ≥ gm,k(k1 + k2) − gm,k(k1).

(Condition (ii) in Theorem 5 is a relaxation of the convexity property for function
gm,k and is illustrated in Fig. 1; We discuss this in more detail after the proof of the
theorem.)

Proof of Theorem 5 Let fm,k be one of the committee scoring functions and gm,k be
its corresponding counting function. By Proposition 2, gm,k is nondecreasing so the
fact that it is non-constant is equivalent to gm,k(k) > gm,k(0). Moreover, we note
that conditions (i) and (ii) imply that for each k′ with 0 ≤ k′ ≤ k − 1, we have
gm,k(k) > gm,k(k′). To see this we take k2 = 1 and note that for each k1 it holds
that gm,k(k) − gm,k(k − 1) ≥ gm,k(k1 + 1) − gm,k(k1). As gm,k(k) > gm,k(0), for

123



Multiwinner analogues of the plurality...

some k1 we have that gm,k(k1 + 1) − gm,k(k1) > 0. Thus, gm,k(k) > gm,k(k − 1).
Since gm,k is nondecreasing, it is also true that gm,k(k − 1) ≥ gm,k(k′). It follows that
gm,k(k) > gm,k(k′).

Let us now show that if for each m and k, gm,k satisfies (ii), thenR f has the fixed-
majority property. Let E = (C, V ) be an election with n voters and m candidates
for which there is a size-k committee M such that a majority of the voters rank all
members of M in the top k positions, but M loses to some committee S �= M (also of
size k). That is, we have score(S) ≥ score(M). Let ξ be a rational number, 12 < ξ ≤ 1,
such that exactly ξn voters rank all the members of M in the top k positions; we will
refer to these voters as M-voters and to the others as non-M-voters.

Without loss of generality, we can assume that all the non-M-voters have identical
preference orders. Indeed, if it were the case that fm,k(posvi (S))− fm,k(posvi (M)) >

fm,k(posv j
(S)) − fm,k(posv j

(M)) for some two non-M-voters vi and v j , then we
could replace the preference order of v j with that of vi and increase the advantage of
S over M . If for all non-M-voters this difference were the same, then we could simply
pick the preference order of one of them and assign it to all the other ones.

Let k1, k2, k3, and k4 be four numbers such that:

1. k1 is the number of candidates from S ∩ M that the non-M-voters rank among
their top k positions,

2. k2 is the number of candidates from S\M that the non-M-voters rank among their
top k positions,

3. k3 is the number of candidates fromC\(S∪M) that the non-M-voters rank among
their top k positions, and

4. k4 is the number of candidates from M\S that the non-M-voters rank among their
top k positions.

Without loss of generality, we can assume that k4 = 0 and that |S\M | = k2 (since
m ≥ 2k, we can replace all members of M\S with candidates from C\M , and,
similarly, we can ensure that all members of S\M are ranked among the top k positions
by non-M-voters; these changes never decrease the score of S relative to that of M).
In effect, we have that k1 +k2 +k3 = k and, since |S∩M |+ |S\M | = k, we have that
|S ∩ M | = k − k2. We can assume that k2 > 0 as otherwise we would have S = M .
Given this notation, the difference between the scores of M and S is:

score(M) − score(S) = ξn · gm,k(k) + (1 − ξ)n · gm,k(k1) − ξn · gm,k(k − k2)

− (1 − ξ)n · gm,k(k1 + k2)

= ξn · (
gm,k(k) − gm,k(k − k2)

) − (1 − ξ)n · (
gm,k(k1 + k2) − gm,k(k1)

)

> 0,

where the second equality holds due to rearranging of terms, and the final inequality
is an immediate consequence of the assumptions regarding the value of ξ and the
properties of gm,k (namely, that gm,k(k) − gm,k(k − k2) ≥ gm,k(k1 + k2) − gm,k(k1)
and that gm,k(k) − gm,k(k − k2) > 0). This, however, contradicts the assumption that
score(S) ≥ score(M) and, so, R f satisfies the fixed-majority criterion.
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We now consider the other direction. For the sake of contradiction, let us assume
thatR f satisfies the fixed-majority criterion but that there exist m and k such that it is
not the case that conditions (i) and (ii) are both satisfied. If condition (i) is not satisfied
and gm,k is a constant function, then R f fails the fixed-majority criterion because
it always outputs all the subsets of size k, independently of the voters’ preferences.
Thus we assume that gm,k is not constant. Thus, suppose that condition (ii) does not
hold and there exist k1 and k2 with k1 + k2 ≤ k such that gm,k(k) − gm,k(k − k2) <

gm,k(k1 + k2) − gm,k(k1). We form an election with m candidates, c1, . . . , cm , and
2n+1 voters (we describe the choice of n later). The first n+1 voters have preference
order:

c1 � c2 � · · · � cm,

and the remaining n voters have preference order:

c1 � · · · � ck1 � cm � cm−1 � · · · � ck1+1.

Since R f satisfies the fixed-majority criterion, in this election it outputs the unique
winning committee M = {c1, . . . , ck}. However, consider committee S:

S = {c1, . . . , ck1+k2 , cm, . . . , cm−(k−k1−k2)+1}.
Since m ≥ 2k, the difference between the scores of M and S is:

score(M) − score(S)

= (n + 1)gm,k(k) + ngm,k(k1) − (n + 1)gm,k(k1 + k2) − ngm,k(k − k2)

= n
(
gm,k(k) − gm,k(k − k2)

) + gm,k(k)

− n
(
gm,k(k1 + k2) − gm,k(k1)

) − gm,k(k1 + k2).

Since gm,k(k) − gm,k(k − k2) < gm,k(k1 + k2) − gm,k(k1), we observe that for large
enough n the difference score(M)−score(S) becomes negative. This is a contradiction
showing that (ii) holds. 
�

Let us take a step back and consider what condition (ii) from Theorem 5 means
(recall Fig. 1). Intuitively, it resembles the convexity condition, but ‘focused’ on
gm,k(k) (see the explanation below).

Definition 6 Let gm,k be a counting function for some top-k-counting function
fm,k : [m]k → R+. We say that gm,k is convex if for each k′ such that 2 ≤ k′ ≤ k, it
holds that:

gm,k(k
′) − gm,k(k

′ − 1) ≥ gm,k(k
′ − 1) − gm,k(k

′ − 2).

On the other hand, we say that g is concave if for each k′ with 2 ≤ k′ ≤ k it holds
that:

gm,k(k
′) − gm,k(k

′ − 1) ≤ gm,k(k
′ − 1) − gm,k(k

′ − 2).
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Using inductive reasoning, we see that the above definition of a convex top-k-
counting function is equivalent to requiring that for each k′, k′′, and d such that
k′′ ≤ k′ ≤ k, k′′ − d ≥ 0, and k′ − d ≥ 0, it holds that:

gm,k(k
′) − gm,k(k

′ − d) ≥ gm,k(k
′′) − gm,k(k

′′ − d).

Condition (ii) of Theorem 5 is of the same form, except that we fix k′ to be k (i.e., we
‘focus on gm,k(k)’), set d = k2, and set k′′ = k1 + k2.

The notions of convexity and concavity are standard, but allow us to express many
features of top-k-counting rules in a very intuitive way. For example, the following
corollary is an immediate consequence of Theorem 5.

Corollary 6 Let f = ( fm,k)2k≤m be a family of top-k-counting committee scoring
functions with the corresponding family (gm,k)2k≤m of counting functions. The fol-
lowing statements hold:

1. if gm,k are convex, then R f satisfies the fixed-majority criterion, and
2. if gm,k are concave but not linear (that is, R f is not Bloc) then R f fails the

fixed-majority criterion.

The counting function for the Bloc rule is linear (and, thus, both convex and con-
cave), and the counting function for the Perfectionist rule is convex, so these two rules
satisfy the fixed-majority criterion. On the other hand, the counting function for αk-CC
is concave and, so, this rule fails the criterion (as we observed in Example 2). (It may
be helpful to remark here that committee scoring rules are uniquely represented by
their committee scoring functions, up to affine transformations; this result is provided
in the technical report version of the work of Faliszewski et al. (2016).)

By Proposition 3, a family of concave counting functions gm,k corresponds to a
nonincreasing OWA operator and a family of convex counting functions corresponds
to a nondecreasing one. Skowron et al. (2016) provided evidence that rules based on
nonincreasing OWA operators are computationally easier than those based on general
OWA operators (while computing the exact winning committees tends to be compu-
tationally hard in both cases, there are, for example, polynomial-time constant-factor
approximation algorithms whenever the operators are nonincreasing; unless P = NP,
such algorithms do not exist for many rules based on the other OWA operators). In
Sect. 4 we show that this seems to be the case for top-k-counting rules as well, but we
also provide a striking example highlighting a certain dissimilarity.

3.4 Characterization of Bloc within committee scoring rules

We conclude this section by noting that Theorems 4 and 5, together with a result of
Faliszewski et al. (2016), suffice to characterize Bloc within the class of committee
scoring rules. To present this result, we need the following definition of Elkind et al.
(2017):

Definition 7 A multiwinner rule R is noncrossing-monotone if the following holds:
Whenever committeeW of size k iswinning in some election E , thenW also iswinning
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in every election E ′ resulting from shifting somemember c ofW one position forward
in some vote (provided that c does not pass any other member of W ).

Faliszewski et al. (2016) have shown that a committee scoring rule is noncrossing
monotone if and only if it is weakly separable, that is, if and only if its scoring
functions f = ( fm,k)k≤m are of the form:

fm,k(i1, . . . , ik) = γm,k(i1) + γm,k(i2) + · · · + γm,k(ik), (1)

where γ = (γm,k)k≤m is a family of single-winner scoring functions. Since the scoring
functions of the Bloc rule are the only top-k-counting scoring functions of this form
[this also follows by uniqueness of representation of committee scoring rules (Fal-
iszewski et al. 2016)], by Theorems 4 and 5 we get the following corollary.

Corollary 7 Bloc is the only committee scoring rule that is both fixed-majority con-
sistent and noncrossing monotone.

This corollary calls for two comments. First, the reader may complain that Theo-
rems 4 and 5 assume that the number of candidates is at least twice as large as the
committee size, but in Corollary 7 we do not make this assumption. Indeed, Theo-
rems 4 and 5 suffice for Corollary 7 only for the case where 2k ≤ m. For the case
where 2k > m, one can show that the result still holds by using the fact that noncross-
ing monotonicity guarantees that our committee scoring rule have scoring functions
of the form (1). Indeed, it suffices to consider an election with:

n + 1 votes of the form c1 � c2 � · · · � ck � ck+1 � · · · � cm, and

n votes of the form ck+1 � c1 � · · · � ck−1 � ck+2 � · · · � cm � ck .

If it were the case that γm,k(1) > γm,k(k) then, for sufficiently large n, candidate
ck+1 would have higher γm,k-score than ck in the above election and, in consequence,
the committee {c1, . . . , ck} would not be winning. Thus our rule would not be fixed-
majority consistent. The same would hold if we had that γm,k(1) = · · · = γm,k(k),
but γm,k(k + 1) > γm,k(m): For sufficiently large n, ck+1 would have higher γm,k

score than ck . Naturally, if γm,k(1) = · · · = γm,k(m), then all committees would
always win and the rule would not be fixed-majority consistent either. Thus the only
functions γm,k remaining are such that γm,k(1) = · · · = γm,k(k) > γm,k(k + 1) =
· · · = γm,k(m). Such functions generate exactly the Bloc rule, which is fixed-majority
consistent.

Faliszewski et al. (2016) characterize Bloc as the only committee scoring rules that
is top-k-counting and weakly separable, which is the same result as ours, but phrased
in terms of syntactic properties of scoring functions and not in terms of axiomatic
properties.

4 Complexity of top-k-counting rules

In this section, we consider the computational complexity of winner determination
for top-k-counting rules which are based on either convex or concave counting func-
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tions. Throughout this section, we focus on committee scoring functions of the form
fm,k : [m]k → N, that is, on functions that always return nonnegative integers as
scores. This is a technical assumption, motivated by the fact that representing arbi-
trary real numbers on a computer can be problematic. To avoid confusion, we mention
this assumption explicitly in each relevant theorem.

Remark 4 For a committee scoring ruleR f , when we say that this rule is NP-hard to
compute, we formally mean that, given an election E = (C, V ), a committee size k,
and a nonnegative integer T , the problem of deciding if there exists a committee S of
size k whose score is at least T is NP-hard. Indeed, if we were able to compute anR f

winning committee of size k in polynomial time, then we could solve this decision
problem in polynomial time as well, by checking if the score of the winning committee
is at least T (provided that f were polynomial-time computable). Conversely, if we
knew that our decision problem were NP-hard, then we would also know that the
ability to compute winning committees underR f implies the ability to solve NP-hard
problems.

We start by considering several examples. It is well-known that Bloc winners can
be computed in polynomial time; this is so since one can compute the score of each
candidate separately. It turns out that the same holds for the Perfectionist rule, albeit
following different reasoning.

Proposition 8 Both Bloc and Perfectionist winners are computable in polynomial
time.

Proof The case of Bloc is well-known (to form a winning committee of size k it
suffices to pick k candidates with the highest k-Approval scores). To find a size-k
winning committee under the Perfectionist rule, for each voter v we consider the set
of his or her top-k candidates as a committee, and compute the score of that committee
in the election. We output those committees—among the considered ones—that have
the highest score. Correctness follows by noting that the committees considered by
the algorithm are the only ones with nonzero scores. 
�

While the above result is very simple, it is also very interesting. For example,
Perfectionist is the first example of a polynomial-time computable committee scor-
ing rule that is not weakly separable [see the discussions of Elkind et al. (2017)
and Faliszewski et al. (2016)]. Further, it stands in sharp contrast to the results of
Skowron et al. (2016). By Proposition 3, Perfectionist is defined through the OWA
operator (0, . . . , 0, 1), and Skowron et al. have shown that, in general, rules defined
through this operator are NP-hard to compute and very difficult to approximate. Their
result, however, relies on the fact that voters can approve any number of candidates,
while in our case they must approve exactly k of them. This shows very clearly that
even though top-k-counting rules are OWA-based, we cannot simply carry-over the
computational hardness results of Skowron et al. (2016) or Aziz et al. (2015) to our
framework.

We can generalize Proposition 8 to rules that are, in some sense, similar to
Perfectionist. To this end, and to facilitate our later discussion regarding the com-
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plexity of top-k-counting rules, we define the following property of counting
functions.

Definition 8 Let gm,k be a counting function for a top-k-counting function
fm,k : [m]k → N. We define the singularity of gm,k , denoted by sing(gm,k), to be

sing(gm,k) = argmin
2≤i≤k

(
gm,k(i) − gm,k(i − 1) �= gm,k(i − 1) − gm,k(i − 2)

)
.

Loosely speaking, sing(gm,k) is the smallest integer in {2, . . . , k} for which the
differential of gm,k changes. For Bloc (which is an exception) we define sing(gm,k) to
be∞, since the differential is a constant function. Naturally, for all other non-constant
rules, the singularity is finite. For example, for Perfectionist we have sing(gm,k) = k.

We generalize the polynomial-time algorithm for Perfectionist to similar rules, for
which the value sing(gm,k) is close to k.

Proposition 9 Let R f be a top-k-counting rule for a family f = ( fm,k)2k≤m of
polynomial-time computable committee scoring functions ( fm,k : [m]k → N) with the
corresponding family of counting functions (gm,k)2k≤m. Let q be a constant, positive
integer such that k−sing(gm,k) ≤ q holds for all m and k. ThenR f has a polynomial-
time computable winner determination problem.

Proof Let the input consist of election E = (C, V ) and positive integer k, and let W
be a winning committee in R(E, k). We assume that q < k

2 (if it were not the case,
then k ≤ 2q would be small and we could solve the problem using brute-force). We
consider two cases: (1) there is at least one voter that has at least sing(gm,k) of his or
her top k candidates in W ; (2) every voter has less than sing(gm,k) of his or her top k
candidates in W .

If case (1) holds, then we can compute W (or some other winning committee)
by checking, for each voter v, all the committees that consist of at least sing(gm,k)

candidates that v ranks among his or her top k positions. Since k − sing(gm,k) ≤ q,
the number of committees that we have to check for each voter is:

k∑

t=sing(gm,k )

(
k

t

)(
m

k − t

)

≤ (q + 1) ·
(

k

k − sing(gm,k)

)(
m

k − sing(gm,k)

)

,

which is a polynomial in k and m. The above inequality requires some care: We have
that sing(gm,k) > k

2 (because k − sing(gm,k) ≤ q < k
2 ) and, in effect, we have

that for each t ∈ {sing(gm,k), . . . , k} it holds that
(k
t

) = ( k
k−t

) ≤ ( k
k−sing(gm,k )

)
and

( m
k−t

) ≤ ( m
k−sing(gm,k )

)
.

If case (2) holds, then from the fact that gm,k(x) − gm,k(x − 1) is a constant for
x ≤ sing(gm,k), we infer that gm,k(x) is effectively linear. Then, it suffices to compute
the winning committee using the Bloc rule. While we do not know which of the two
cases holds, we can compute the two committees, one as in case (1) and one as in case
(2), and output the one with the higher score (or either of them, in case of a tie). 
�
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Example 3 Consider the following committee scoring function:

f ′
m,k(i1, . . . , ik) = fBloc(i1, . . . , ik) + fPerf(i1, . . . , ik)

= αk(i1) + · · · + αk(ik−1) + 2αk(ik).

As a simple application of Proposition 9, we get that the committee scoring rule R f ′
defined through f ′ is polynomial-time computable. This rule can be seen as a variant
of Bloc, where a voter gives additional one bonus point to a committee if he or she
approves of all its members. By Corollary 6, this rule is fixed-majority consistent.

It is also interesting to consider the rule which is defined through the following
committee scoring function:

f ′′
m,k(i1, . . . , ik) = fSNTV(i1, . . . , ik) + fPerf(i1, . . . , ik) = α1(i1) + αk(ik).

The corresponding rule is also polynomial-time computable (it suffices to compute an
SNTV winning committee, and compare it with such committees whose all members
stand on first k positions in some voter’s preference ranking), but it is not a top-k-
counting rule and, so, it fails the fixed-majority criterion.

Yet, as one might expect, not all top-k-counting rules are polynomial-time solvable
and, indeed, most of them are not (under standard complexity-theoretic assumptions).
For example, αk-CC is NP-hard (this follows quite easily fromTheorem 1 of Procaccia
et al. (2008); we include a brief proof to substantiate the discussion and give the reader
some intuition).

Proposition 10 For αk-CC it is NP-hard to decide whether or not there exists a
committee with at least a given score (recall that k in αk-CC is the committee size and,
thus, is part of the input).

Proof sketch The NP-hardness follows easily from a standard reduction from the
Exact Cover by 3- Sets problem, abbreviated as X3C. In an instance of X3C
we are given a family of m subsets, S1, . . . , Sm , each of cardinality 3, chosen from a
given universal setU = {x1, . . . , x3n}, andwe ask if there are n subsets from the family
whose union isU . Additionally, we assume that each element ofU belongs to at most
three subsets [it is well-known that this variant of X3C remains NP-complete (Garey
and Johnson 1979)].

Given an instance of X3C, we create a candidate for each subset and a voter for
each element ofU . Voters rank the subsets to which they belong in their top positions,
then they rank some n dummy candidates (different ones for each voter), and then all
the remaining candidates (in some arbitrary, easy to compute, order). We ask for a
committee of size k = n (and we assume that n ≥ 3; this is a technical assumption
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as for n = 1 and n = 2 our construction is formally incorrect9). There is a winning
committee with score 3n if and only if the answer for the input instance is “yes.” 
�

We generalize the above NP-hardness result to the case of convex top-k-counting
rules R f for which there is some constant c such that for each k and m it holds that
k − sing(gm,k) ≥ k/c (that is, to the case of convex counting functions for which the
differential changes ‘early’). The proof of this result is fairly technical and is available
in Appendix A.

Theorem 11 Let R f be a top-k-counting rule defined through a family f of top-k-
counting functions fm,k : [m]k → N ( fm,k : [m]k → N) with the corresponding family
of counting functions (gm,k)k≤m that do not depend on m, gm,k = gk, and such that:

1. For each x, 0 ≤ x ≤ k, gk(x) is computable in polynomial time with respect to k
(that is, there is a polynomial time algorithm that given x and k outputs gk(x)).
Moreover, for each k, gk(k) is polynomially bounded in k.

2. There is a constant c such that, for each size of committee k greater than some
fixed constant k0, gk is convex and k − sing(gk) ≥ k/c.

Then, deciding if there is a committee with at least a given score is NP-hard for R f .

Let us now discuss the assumptions of the theorem, where they come from and why
we believe they are natural (or necessary).

First, the assumption that the counting functions are computable in polynomial time
is standard and clear. Indeed, it would not be particularly interesting to seek hardness
results if already the counting functions were hard to compute.

Second, we believe that the assumption that the counting functions gm,k do not
depend on m is reasonable. For example, it is quite intuitive that adding some candi-
dates that all the voters rank last should not have any effect on the committee selected
by a top-k-counting rule. (The assumption is also very helpful on the technical level.
Our construction uses a number of dummy candidates that depends on the values of
the counting function. If the values of the counting function depended on the number
of candidates, we might end up with a very problematic, circular dependence.)

Third, the assumption that there is a constant c such that for any large enough
committee size k we have k− sing(gk) ≥ k/c says that the function “shows its convex
behavior” early enough. As shown in Proposition 9, some assumption of this form is
necessary (though there is still a gap, since the bounds from the theorem and from
Proposition 9 do not match perfectly), and it is the core of the theorem.

Finally, perhaps the least intuitive assumption in this theorem is the requirement that
for a given committee size k, the highest value of the counting function is polynomially
bounded in k. The reason for having it is that, if the highest value were extremely
large (say, exponentially large with respect to k) then, for sufficiently few voters
(for example, polynomially many), the rule might degenerate to a polynomial-time

9 This is so, because we require that each voter (i.e., each element) ranks each of the sets to which he or
she belongs among top k positions. By assumption, each element belongs to at most 3 sets, so we need
k = n ≥ 3. Given an instance of X3C where n = 1 or n = 2, we can solve it using a brute-force algorithm
(we have to either try each set or each pair of sets as a solution) and, depending on the outcome, either
output a fixed yes-instance or a fixed no-instance of our problem.
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computable one (for example, it might resemble the Perfectionist rule for this case).
Exactly to avoid such problems, in our proof we use a number of voters that depends on
gk(k). Our reduction would not run in polynomial time if gk(k)were superpolynomial.

A result similar to Theorem 11, but for concave rules, is possible as well [and, in
essence, follows from the proofs of Skowron et al. (2016) and Aziz et al. (2015)].
Thus, in general, top-k-counting functions tend to be NP-hard to compute. What can
we do if we need to use them anyway? There are several possibilities. Next we consider
approximability and fixed-parameter tractability as possible approaches.

4.1 Approximability

First, for concave top-k-counting rules we can obtain a constant-factor approxima-
tion algorithm [we deduce it from the result of Skowron et al. (2016), which—in
essence—boils down to optimizing a submodular function using the seminal results
ofNemhauser et al. (1978)]. In particular, the next result applies to theαk -PAVrule (that
is, to the top-k-counting rule based on the OWAoperators of the form (1, 1

2 ,
1
3 , . . . ,

1
k );

recall its discussion from Sect. 2).

Theorem 12 Let R f be a top-k-counting rule defined through a family f of
(polynomial-time computable) top-k-counting functions fm,k : [m]k → N with corre-
sponding counting functions gm,k that are concave. Then there is a polynomial-time
algorithm that, given an election E and a committee size k, computes a committee
W of size k, whose score, under R f , is at least a (1 − 1

e ) fraction of the score of the
winning committee(s) from R f (E, k).

Proof This follows from the fact that concave top-k-counting rules correspond to
OWA-based rules that use nonincreasing OWA operators. For such rules, there is a
(1− 1

e )-approximation algorithm for computing the score of the winning committees
and for computing a committee with such a score (Skowron et al. 2016, Theorem 4).


�
Such a general result for convex counting functions seems impossible. Let us con-

sider a convex counting function gm,k(x) = max(x − 1, 0) that is nearly identical
to the linear counting function used by Bloc. Let us refer to the top-k-counting rule
defined by (gm,k)k≤m as NearlyBloc. If we had a polynomial-time constant-factor
approximation algorithm for NearlyBloc, we would have a constant-factor approxi-
mation algorithm for the Densest at most K Subgraph problem (abbreviated
as DamkS; see below). Taking into account the results of Khuller and Saha (2009),
Raghavendra and Steurer (2010), and Alon et al. (2011), this seems very unlikely.

Given a graph G, we refer to its sets of vertices and edges as V (G) and E(G),
respectively. The density of a graph G is defined as δ = |E(G)|

|V (G)| .

Definition 9 In theDensest at most K Subgraph problem,DamkS, we are given
a graph G and we ask for a subgraph of G of the highest possible density with at most
K vertices.

The proof of the next theorem is available in Appendix B.
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Theorem 13 There is no polynomial-time constant-factor approximation algorithm
for the problem of computing the score of a winning committee under NearlyBloc,
unless such an algorithm exists for the DamkS problem.

Nonetheless, for top-k-counting rules that are not too far from αk-CC, we have a
polynomial-time approximation scheme (PTAS), that is, an algorithm that can achieve
any desired approximation ratio, as long as the number of candidates is not too large
relative to the committee size. This result holds even for rules that are not concave
(provided they satisfy the conditions of the theorem); the result follows by noting that
our voters have non-finicky utilities (Skowron et al. 2016).

Theorem 14 Let R f be a top-k-counting committee scoring rule, where the family
f = ( fm,k)k≤m ( fm,k : [m]k → N) is defined through a family of counting functions
(gm,k)k≤m that are: (a) polynomial-time computable and (b) constant for arguments
greater than some given value �. If m = o(k2), then there is a PTAS for computing
the score of a winning committee under R f .

Proof We use the concept of non-finicky utilities provided by Skowron et al. (2016).
Adapting their terminology, we say that a single-winner scoring function γm : [m] →
N (for elections with m candidates) is (ξ, δ)-non-finicky for ξ, δ ∈ [0, 1], if each of
the highest �δm� numbers in the sequence γm(1), . . . , γm(m) is greater or equal to
ξγm(1). It is easy to see that αk is (1, k

m )-non-finicky.
Consider an input election E = (C, V ) with m candidates, and committee size k,

such that m = o(k2). By Proposition 3, we know that fm,k is OWA-based, that it uses
some OWA operator�m,k that has nonzero entries on the top � positions only, and that
it uses scoring function αk (which is a (1, k

m )-non-finicky). Thus, due to Skowron et al.

(2016), there is a polynomial-time
(
1 − � exp

(
− k2

m�2

))
-approximation algorithm for

computing the score of a winning committee under f . Using the assumption that
m = o(k2), the approximation ratio of the algorithm is:

α = 1 − � exp

(

− k2

m�2

)

= 1 − � exp

(

− k2

o(k2)�2

)

= 1 − � exp

(

− 1

o(1)

)

= 1 − o(1).

This completes the proof. 
�
Theorem 14 is quite remarkable even for the case of αk-CC (let alone that it

applies to a somewhat more general set of rules). Indeed, generally, variants of the
Chamberlin–Courant rule that use some sort of approval scoring function are hard to
compute (Procaccia et al. 2008; Betzler et al. 2013) and the best possible approxima-
tion ratio for a polynomial-time algorithm, in the general case, is 1 − 1

e [this result
was observed by Skowron and Faliszewski (2017) and follows from results for the
MaxCover problem (Feige 1998)]. This upper bound, however, relies on the fact that
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there is no connection between the size of the input election, the committee size, and
the number of candidates that each voter approves. We obtain a PTAS because we
assume that for the committee size k each voter approves of k candidates, and that the
number m of candidates is such that m = o(k2).

One may ask how likely it is that this last assumption holds. As a piece of anecdotal
evidence, we mention that in the 2015 parliamentary elections in Poland, there were
k = 460 seats in the parliament and m ≈ 8000 candidates. In this case, m/k2 ≈
0.0378, which suggests that our algorithm could be effective (provided that the voters
could say which k candidates they approve of; likely, this would require some sort of
simplified ballots, for example, allowing one to approve blocks of candidates).

4.2 Fixed-parameter tractability

If one were not interested in approximation algorithms but still wanted to use
top-k-counting rules, then one might seek fixed-parameter tractable algorithms. In
parameterized complexity we concentrate on some distinguished parameter of the
problem, such as the number of candidates or the number of voters. We say that a
parameterized problem is fixed-parameter tractable (is in FPT) if there is an algorithm
that, given an instance of this problem of size n with parameter t , computes an answer
for the problem in time f (t)nO(1), where f is some computable function (such an
algorithm is also said to run in FPT time with respect to parameter t). For a detailed
description of parameterized complexity, we point the readers to the books by Downey
and Fellows (1999), Niedermeier (2006), and Cygan et al. (2015).

We start with a simple observation, namely that a winning committee can be com-
puted for every top-k-counting rule in FPT time for the parameterization by the number
of candidates.

Proposition 15 LetR f be a top-k-counting committee scoring rule, where the family
f = ( fm,k)k≤m ( fm,k : [m]k → N) is defined through a family of counting functions
(gm,k)k≤m (that are computable in FPT time with respect to m). There is an algorithm
that, given a committee size k and an election E, computes a winning committee from
R f (E, k) in FPT time with respect to the number m of candidates.

Proof The algorithm simply computes the score of every possible committee and
outputs the one with the highest score. With m candidates and committee size k, the
algorithm has to check

(m
k

) = O(mm) committees, and checking each committee
requires FPT time only. 
�

For rules based on concave counting functions we can also provide a far less trivial
FPT algorithm for the parameterization by the number of voters (the proof, which
uses a somewhat technical trick on top of solving a mixed integer linear program is
available in Appendix C). The algorithm applies, for example, to the αk-PAV rule,
which uses OWA operators of the form (1, 1

2 ,
1
3 , . . . ,

1
k ), so its counting functions are

of the form gPAVm,k (x) = ∑x
t=1

1
t , and are concave. (See Sect. 2 for literature pointers

regarding the PAV rule.)
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Theorem 16 Let R f be a top-k-counting committee scoring rule, where the family
f = ( fm,k)k≤m ( fm,k : [m]k → N) is defined through a family of concave counting
functions (gm,k)k≤m (that are polynomial-time computable). There is an algorithm
that, given a committee size k and an election E, computes a winning committee from
R f (E, k) in FPT time with respect to the number n of voters.

To summarize, it appears that most (but certainly not all) top-k-counting rules are
NP-hard to compute. For top-k-counting rules based on concave counting functions,
there are good polynomial-time approximation algorithms and some exact FPT algo-
rithms. On the other hand, for rules based on convex functions the situation is much
more difficult. Aside from several algorithms that do not depend on concavity or con-
vexity of the counting function (for instance the algorithms from Theorem 14 and
Proposition 15), so far we only have evidence for computational hardness.

5 Related literature

The rules considered in this paper form a subfamily of the OWA-based rules of
Skowron et al. (2016). A specific subclass of OWA-based rules—when voters express
their preferences in the form of approval ballots—has been already mentioned in the
early work of Thiele (1895). More recently, Aziz et al. (2017), Brill et al. (2017),
and Sánchez-Fernández et al. (2017) analyzed selected axiomatic properties of the
Thiele methods, and Aziz et al. (2015) studied their computational complexity. For
a more general overview of approval-based multiwinner rules we refer the reader to
the book by Kilgour (2010). It is also worth noting that there exist other OWA-based
approaches to multiwinner voting [see, e.g., the work of Elkind and Ismaili (2015)],
which, however, do not directly apply to our setting.

More generally, the class of OWA-based rules is a subclass of the class of committee
scoring rules (Elkind et al. 2017). Committee scoring rules have been recently axiomat-
ically characterized by Skowron et al. (2016), and Faliszewski et al. (2016) classified
voting rules within this class in the form of a hierarchy. The studies of axiomatic
properties of other committee scoring rules also include the work of Debord (1992),
who characterized k-Borda voting rule. There is also a substantial literature describ-
ing axiomatic properties of other types of multiwinner rules—for an overview of this
literature we refer the reader to the work of Elkind et al. (2017) and to the survey of
Faliszewski et al. (2017).

Establishing the complexity of winner determination under various multiwinner
rules is an active area of research. These studies were pioneered by Procaccia et al.
(2008),who proved that computingwinners under theChamberlin–Courant committee
scoring rule is NP-hard10 and, in consequence, motivated many researchers to seek
ways of circumventing this result. For example, Betzler et al. (2013) have shown
that the rule is polynomial-time computable for the case of single-peaked preferences
and Yu et al. (2013) have done the same for single-crossing ones [Elkind and Lackner
(2015), Skowron et al. (2015b), Peters (2018), and Peters and Lackner (2017) provided
further generalizations and improvements to these results]. Betzler et al. (2013) studied

10 They also considered Monroe’s rule, which is closely related but is not a committee scoring rule itself.
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the problem from the perspective of parameterized complexity theory, whereas Lu
and Boutilier (2011) analyzed the possibility of approximation and proved that a
simple greedy procedure guarantees the approximation ratio of 1 − 1/e (the ratio
relates the scores of the winning committee and the one provided by the algorithm).
Later, Skowron et al. (2015a) improved this result by showing a polynomial-time
approximation scheme. Oren and Lucier (2014) proved that if the voters arrive in a
random order then the greedy algorithm can be easily adapted to the online setting,
preserving the approximation ratio arbitrarily close to 1 − 1/e; they also observed
that for certain specific distributions of votes this approximation ratio can actually
improve. Skowron and Faliszewski (2017) studied FPT approximation algorithms of
the approval-based Chamberlin–Courant rule and Faliszewski et al. (2016) showed
that often in practice the quality of approximation can be improved by employing
certain clustering algorithms.

So far, analysis of the complexity of other committee scoring rules received far
less attention, but this seems to be changing quickly. For example, it was shown
that finding winners according to the proportional approval voting rule (the PAV rule),
another approval-based committee scoring rule, is NP-hard (Aziz et al. 2015; Skowron
et al. 2016), but there exist good approximation algorithms for the problem (Skowron
et al. 2016; Skowron 2016; Byrka et al. 2017). The complexity of other selected
subclasses of committee scoring rules has been studied by Skowron et al. (2016) and
by Faliszewski et al. (2016). There also exists a literature studying the computational
complexity of other multiwinner rules, which do not belong to the class of committee
scoring rules, such as Minimax Approval Voting (MAV): finding winners under MAV
is NP-hard (LeGrand 2004), yet there exists a PTAS for the problem (Byrka and
Sornat 2014). Parameterized complexity and parameterized approximations of the rule
were considered by Misra et al. (2015) and Cygan et al. (2017). The computational
complexity of these and other important issues pertaining to MAV were considered
by Baumeister et al. (2010, 2015, 2016), Baumeister and Dennisen (2015).

Our work regards the model of multiwinner elections where the voters rank the can-
didates and it is the voting rule’s task to (implicitly) derive rankings of the committees
(in a systematic way, according to the principles that underlie the given rule). Another
approach, pioneered by Fishburn (1981a, b), is to require that the voters rank the
committees explicitly. This approach is useful when there are dependencies between
the candidates that are hard (or impossible) to capture within simple preference orders
(e.g., when it is important that allmembers of an elected committee canwork together),
but can be used directly only in very limited settings (for example, there are 252 com-
mittees of five out of ten candidates; it would be unreasonable to ask voters to rank
them all). In other cases, one has to rely on concise means of expressing voters’ prefer-
ences, such as the formalism of CP-nets (Boutilier et al. 2004). Multiwinner elections
of this type are often studied within the area of voting in combinatorial domains (Lang
and Xia 2015).
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6 Conclusions and further research

Aiming at finding a multiwinner analogue of the single-winner Plurality rule, we
have shown that the answer is quite involved. While it is tempting to view SNTV as
a natural analogue of Plurality, a closer look reveals that it fails the fixed-majority
criterion (which Plurality satisfies in the single-winner setting). We have found that,
among all committee scoring rules, only the top-k-counting rules—a class of rules we
have defined in this paper—have a chance of satisfying the fixed-majority criterion,
and we have characterized when this happens. Specifically, we have shown that the
committee scoring rules which satisfy the fixed-majority criterion are exactly those
top-k-counting rules whose counting functions satisfy a relaxed variant of convexity.

For example, the Bloc and Perfectionist rules both satisfy the fixed-majority crite-
rion and, so, in some sense, they are among the multiwinner analogues of Plurality
(for the Perfectionist rule this goes quite deep). On the other hand, a variant of the
Chamberlin–Courant rule based on the k-Approval scoring function is top-k-counting,
but fails the fixed-majority criterion.

We believe that it is very interesting to focus on top-k-counting rules based either
on convex or on concave counting functions. These two classes of rules are different in
some interesting ways: top-k-counting rules based on convex counting functions are
fixed-majority consistent, but seem very hard to compute (with a few exceptions); this
stands in contrast to top-k-counting rules based on concave counting functions, which
fail the fixed-majority criterion (the borderline case of Bloc rule excluded), but are
much easier to compute (typically still NP-hard, but with constant-factor polynomial-
time approximation algorithms and FPT algorithms for the parameterization by the
number of voters).

Our work leads to a number of open questions. In the axiomatic direction, it would
be interesting to consider notions analogous to the fixed-majority criterion for the
setting where voters do not provide preference orders but, instead, simply indicate
which candidates they do or do not approve. On the computational front, it would
be interesting to find more powerful algorithms for computing winning committees
under various top-k-counting rules (e.g., for the αk-PAV rule).
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A Proof of Theorem 11

We prove NP-hardness of the problem by giving a reduction from theClique problem
on regular graphs (a graph is regular if all its vertices have the same degree). In the
Clique problem we are given a graph G and an integer h, and we ask if there exists a
set of h pairwise adjacent vertices in G (such a set of vertices is referred to as a size-h
clique). The problem remains NP-complete when restricted to regular graphs (Garey
and Johnson 1979).

Let G be the input regular graph, let h be the size of the clique sought for, and
let δ be the common degree of G’s vertices. If h > δ + 1, then, of course, the graph
does not contain a size-h clique and we output a fixed “no”-instance of our problem.
Otherwise, we output an instance according to the following construction (intuitively,
since each gk is convex, the rule promotes situations where voters rank manymembers
of the committee among their top k candidates; we exploit this fact).

We set the committee size k to be (c + 2)h (recall that c is defined in the theorem
statement). Since gk does not depend on the number of candidates in the election, this
fixes the counting function that we work with and we will denote it g. If k ≤ k0 (recall
that k0 is defined in the statement of the theorem), then we solve the input instance
using brute force in polynomial time and output either a fixed “yes”-instance or a fixed
“no”-instance, depending on the result.

We note that for each i , 1 ≤ i ≤ sing(g), all the values g(i) − g(i − 1) are
equal and, without loss of generality, we can assume them to either all be 0s or all
be 1s (if this were not the case, we could scale g appropriately). Similarly, since
g is convex, we can assume that g(sing(g)) − g(sing(g) − 1) > 1. We note that
k − sing(g) ≥ k/c = (c + 2)h/c > h and, so, sing(g) < k − h.

We form an election with the following candidates:

1. For each vertex v from the graph G, we create a candidate v.
2. We create a set {c1, . . . , csing(g)−2} of candidates, called the edge-filler candidates.

These candidates will be in the top-k positions of all the voters, and hence will be
chosen to every winning committee.

3. Wecreate a set {b1, . . . , bk−h−(sing(g)−2)}of candidates, calledgeneral-filler candi-
dates. There will be sufficientlymany voters who rank them in their top-k positions
so that they will also be in every winning committee.

4. We also create a set of dummy candidates, such that each dummy candidate is
ranked among the top-k positions of exactly one voter.

Let m be the total number of edges in G. For each edge e, we create a set of 2g(k)
voters corresponding to this edge; each voter in this set has the following candidates
in the top k positions of his or her preference order:

1. The two candidates corresponding to the endpoints of e.
2. All the edge-filler candidates.
3. Sufficiently many dummy candidates (such that they are ranked among top k

positions only by this voter).
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Further, we create 2g(k) · (m + h) · g(k) filler voters, who rank the following
candidates in the top k positions:

1. All the edge-filler candidates.
2. All the general-filler candidates.
3. Sufficiently many dummy candidates (different dummy candidates for each filler

voter).

(The role of the 2g(k) multiplicity factor regarding both the edge voters and the
filler voters is to ensure that the best committee does not contain any of the dummy
candidates; this will become clear later in the proof.)

We askwhether there is a committeeW whose score is at least T = T1+T2+T3+T4,
where:

T1 = 2g(k) · (m + h) · g(k) · g(k − h),

T2 = 2g(k) · m · g(sing(g) − 2),

T3 = 2g(k) · δh · (g(sing(g) − 1) − g(sing(g) − 2)
)
,

T4 = 2g(k) · (h
2

)(
g(sing(g)) − g(sing(g) − 2)

− 2(g(sing(g) − 1) − g(sing(g) − 2))
)
.

Note that each Ti , 1 ≤ i ≤ 4, is nonnegative (for T4 this is due to convexity of g).
The meaning of these values will become clear throughout the proof. This finishes the
construction. Due to the assumptions regarding the counting function, the reduction
is polynomial-time computable.

Let us now argue that the reduction is correct. First, we claim that if a committee
W has a score of at least T , then it must contain all the edge-filler candidates and
all the general-filler candidates. We note that altogether we have k − h edge-filler
and general-filler candidates. Consider some committee W ′ that contains k − h − x
candidates of these two types, where x ≥ 1. This means thatW ′ contains at most h+x
dummy candidates.

Let y be the number of filler voters that rank at least k − h members of W ′ among
their top k positions. Let us call these filler voters well-satisfied. For each of the
well-satisfied filler voters, the members of W ′ ranked on top k positions are (a) the
k − h − x edge-filler and general-filler candidates from W ′, and (b) at least x unique
dummy candidates. Thus it must hold that xy ≤ h+x and, so, y ≤ h

x +1. If x ≥ 2, then
it must be that y ≤ h. If x = 1, then this inequality gives us that y ≤ h + 1. However,
for y to be h + 1, W ′ would have to consist of k − h − 1 edge-filler and general-filler
candidates and h+1 dummy candidates. Each of these dummy candidates would have
to be ranked among top k positions by exactly one of the y well-satisfied filler voters.
This wouldmean that for each edge voter, the onlymembers ofW ′ ranked by this voter
among top k positions would be (some of) the edge-filler candidates. Consequently,
all the edge voters would rank at most k − h − 1 members of W ′ among their top k
positions. In either case (that is, irrespective if x = 1 or x ≥ 2), we can upper-bound
the score of committeeW ′ by assuming that there are 2g(k) · (m+h) · g(k)−h voters
that assign score g(k − h − 1) to W ′ and 2g(k) · m + h voters that assign score g(k)
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to it. In effect, we have the following inequalities (also see the explanations below):

score(W ′) ≤ (
2g(k) · (m + h) · g(k) − h)

) · g(k − h − 1) + (2g(k) · m + h) · g(k)
= 2g(k) · (m + h) · g(k) · g(k − h − 1) − h · g(k − h − 1)

+ (2g(k) · m + h) · g(k)
< 2g(k) · (m + h) · g(k) · (

g(k − h) − 1
) − h · g(k − h − 1)

+ (2g(k) · m + h) · g(k)
= T1 − 2g(k) · (m + h) · g(k) − h · g(k − h − 1)

+ (2g(k) · m + h) · g(k)
= T1 − 2g(k) · (m + h) · g(k) − h · g(k − h − 1)

+ 2g(k) · m · g(k) + h · g(k)
= T1 − 2g(k) · h · g(k) − h · g(k − h − 1) + h · g(k) ≤ T1 < T .

The second inequality holds because g(k − h) > g(k − h − 1) + 1 (which holds due
to the fact that g is convex, g(sing(g)) − g(sing(g) − 1) > 1, and sing(g) < k − h).
Further inequalities hold due to simple calculations. Due to the above reasoning, we
can assume that every committee with score at least T contains all the k − h filler
candidates.

Consider some committee that contains all the k−h filler candidates. We claim that
if this committee contains some dummy candidates then there is another committee
with a higher score. Why is this so? Assume that the committee contains some z
dummy candidates (z ≤ h). If we simply removed these dummy candidates (obtaining
a smaller committee) then we would lose at most z · g(k) points. Then, we could
bring the committee back to its intended size by performing the following operations
sufficiently many times: Either adding to the committee a single vertex candidate
(already connected by an edge to one from the committee) or adding to the committee
two vertex candidates connected by an edge. Each of these actions increases the score
of the committee by at least 2g(k)

(
g(sing(g)) − g(sing(g) − 1)

)
> 2g(k) (because

for each edge there are 2g(k) corresponding edge voters). Thus, we would obtain a
committeewith a score higher than the onewehave startedwith. (Note that, technically,
there might be no sequence of operations that brings our committee back to size k,
but this would only happen if the graph had too few edges to contain a clique of size
h and we could recognize that this is the case in polynomial time.)

Let W be some winning committee that contains all the k − h filler candidates,
and some h vertex candidates (by the above paragraph, this committee cannot contain
any dummy candidates), and let r be the number of edges that connect the vertices
corresponding to the vertex candidates from W . Let us now calculate the score of W .
The filler voters provide score T1. The situation regarding the edge voters requires
more care.

Each edge voter gets score at least g(sing(g)− 2) due to the edge-filler candidates.
For each edge for which at least one endpoint is in W , we get additional g(sing(g) −
1) − g(sing(g) − 2) points, and for each edge whose both endpoints are in W , we get
yet additional g(sing(g)) − g(sing(g) − 1) points. Thus, the edge voters give W the
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following score (see detailed explanations below):
(

2g(k) · m · g(sing(g) − 2)

)

︸ ︷︷ ︸
=T2

+
(

2g(k) · δh · (
g(sing(g) − 1) − g(sing(g) − 2)

)
)

︸ ︷︷ ︸
=T3

+
(

2g(k) · r · (
g(sing(g)) − g(sing(g) − 2) − 2(g(sing(g) − 1) − g(sing(g) − 2))

)
)

︸ ︷︷ ︸
≤T4

.

The first main term corresponds to the points all the edge voters receive, the second is
the correction for edge voters that correspond to edges that have at least one endpoint in
W (note that if for some edge both its endpoints belong toW , then we add g(sing(g)−
1) − g(sing(g) − 2) twice, once for each endpoint), and the final term corresponds
to the correction for edges that have two endpoints in W . Let us now explain why
this final correction is appropriate. Consider some edge voter for an edge whose both
endpoints are in W . For this voter, we account g(sing(g) − 2) points that each edge
voter gets, we account g(sing(g)−1)−g(sing(g)−2) points for each of the endpoints,
and g(sing(g)) − g(sing(g) − 1) − 2(g(sing(g) − 1) − g(sing(g) − 2)) points of the
final correction. Altogether, this sums up to:

g(sing(g) − 2) + 2(g(sing(g) − 1) − g(sing(g) − 2)) + g(sing(g))

− g(sing(g) − 1) − 2(g(sing(g) − 1) − g(sing(g) − 2)) = g(sing(g)).

This means that, indeed, we compute the score of edge voters for edges whose both
endpoints are inW correctly. The same holds for all the other edge voters (and follows
directly from the above analysis).

Finally,we note that the score ofW thatwe obtain from the edge voters ismaximized
when r is maximized. The maximum value that r may have is

(h
2

)
, which happens if

and only if the vertex candidates in W correspond to a clique. Then the score that the
edge voters provide equals T2 + T3 + T4 and the total score of the committee is T .

We conclude, that there exists a committee with score at least T if and only if the
input graph contains a size-h clique.

B Proof of Theorem 13

Let θ be a positive real, 0 < θ < 1. For the sake of contradiction, let us assume
that there is a polynomial-time algorithm A that, given an election E and committee
size k, outputs a committee W such that, under NearlyBloc the score of W is at
least a θ fraction of the score of the winning committee. Using A, we will derive a
θ
2 -approximation algorithm for the DamkS problem.

Let I be an instance of the DamkS problem with a graph G and an integer K .
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Our algorithm proceeds as follows. For each B, 1 ≤ B ≤ K , we form an election
EB = (CB, VB) where:

1. The set of candidates is CB = V (G) ∪ ⋃
e∈E(G) De, where for each e ∈ E(G),

De = {de,1, . . . de,B−2} is the set of dummy candidates needed for our construc-
tion.

2. The collection VB of voters is such that for each edge e = {u1, u2} ∈ E(G) we
have exactly one voter with preference order of the form {u1, u2} � De � · · · .

For each election EB , we run algorithm A to find a committee WB of size B. Each
such committee WB generates an induced graph GB with the vertex set V (G) ∩ WB .
We let G0 be the trivial subgraph of G consisting of two vertices and their connecting
edge (if G had no edges, then we could output a trivial optimal solution at this point).
We output the densest graph among G0,G1, . . . ,GK .

Let us now argue that the above algorithm is a θ
2 -approximation algorithm for the

DamkS problem. Let OPT be an optimal solution for I , with the densest subgraph G ′
consisting of B vertices and X edges. By definition, G ′ has density δ = X

B . For each
B let us consider two cases:

Case 1: X ≤ B
θ
. In this case, the density of the optimal graph is at most equal to 1

θ
.

However, a trivial solution with two vertices connected with an edge has density
equal to 1

2 . Thus, in this case this trivial solution is
θ
2 -approximate.

Case 2: X > B
θ
. In this case we know that there exists a size-B committee for

election EB with score at least X . Indeed, the committee that consists of the
vertices from G ′ obtains one point for each edge from G ′ and has score X . Thus
A for EB and committee size B outputs a committee W ′ with score at least θX .
Let U ′ = W ′ ∩ V (G) (that is, let U ′ be the part of this committee that consists
of the vertex candidates) and let D′ = W ′ − U ′ (that is, let D′ be the set of
dummy candidates from W ′). We observe that the graph induced by U ′ has at
least θX −|D′| edges. To see this, note that since each dummy candidate is ranked
among top B positions by exactly one voter, removing a dummy candidate from the
committee—in effect decreasing the committee size—decreases the total score by
at most one. Thus the committee consisting only of candidates from U ′ has score
at least θX − |D′| and each of the points obtained by this committee comes from
an edge between some members of U ′.
The graph induced by U ′ has density δ′ such that:

δ′ = θX − |D′|
B − |D′| = θX

B
· B(θX − |D′|)
θX · (B − |D′|) = θδ · B(θX − |D′|)

θX · (B − |D′|) ≥ θδ,

where the last inequality follows from the assumption that B < θx . Indeed, note
that:

B(θX − |D′|) = θXB − B|D′| ≥ θXB − θX |D′| = θX · (B − |D′|).

By our assumptions, one of these conditions must hold. This means that the graph
induced by U ′ is a θ -approximate solution for I .
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Since in both cases we obtain at least θ
2 -approximate solutions, our algorithm is θ

2 -
approximate. Since it is clear that it runs in polynomial time, the proof is complete.

C Proof of Theorem 16

Our algorithm is based on solving a mixed integer linear program (MILP) in FPT time
with respect to the number of integral variables. The key trick is to use non-integral
variables in such a way that in every optimal solution they have to take integral values
[this technique was first used by Bredereck et al. (2015)].

Let k be the input committee size and E = (C, V ) be the input election, where
C = {c1, . . . , cm} is the set of candidates, V = (v1, . . . , vn) is the collection of voters.

We enumerate all the nonempty subsets ofV as S1, . . . , S2n−1. For each i ∈ [2n−1],
let T (Si ) denote the largest set of candidates that satisfies the following condition:
Every voter in Si ranks each candidate from T (Si ) among the top k positions and no
other voter ranks either of the candidates from T (Si ) among top k positions. Note
that T (S1), . . . , T (S2n ) is a partition of C . We illustrate this partition in the following
example.

Example 4 Consider an election E = (C, V ) with C = {a, b, c, d, e, f } and
V = (v1, . . . , v6), where the voters have the following preference orders (we set
the committee size k = 3 and, thus, we list only top k positions for each vote):

v1 : c � d � f � · · · , v2 : c � d � e � · · · , v3 : a � b � c � · · · ,

v4 : c � e � f � · · · , v5 : d � e � f � · · · , v6 : a � b � e � · · · .

Wehave the following sets: T ({v3, v6}) = {a, b} since only voters v3 and v6 rank a and
b on top three positions (and there are no other candidates they both rank among their
top three positions). Then, we have: T ({v1, v2, v3, v4}) = {c}, T ({v1, v2, v5}) = {d},
T ({v2, v4, v5, v6}) = {e}, and T ({v1, v4, v5}) = { f }. For every other subset Si of
voters, we have T (Si ) = ∅. For example, T ({v4, v5}) = ∅ for the following reasons:
The candidates that both v4 and v5 rank on top three positions are e and f . However,
each of these candidates is ranked among top three positions also by some other
voter(s).

Our algorithm forms a mixed integer linear program with the following variables.
We have 2n − 1 integer variables, z1, . . . z2n−1, where, intuitively, each zi describes
howmany candidates from the set T (Si )we take into the winning committee. For each
i ∈ [n] we also have an integer variable xi , which describes how many candidates
from the top k positions of the preference order of voter vi belongs to the winning
committee. Finally, for each variable xi , we have rational variables xi, j , 0 ≤ xi, j ≤ 1,
such that (intuitively) each xi, j is 1 if xi is at least j . We present our mixed integer
linear program in Fig. 2. To solve this program, we invoke Lenstra’s famous result in
its variant for mixed integer programming (Lenstra 1983, Section 5).

Now it remains to argue that it indeed outputs a correct solution, that is, that the
variables z1, . . . , z2n−1 describe a winning committee. If all the variables have the
intended, intuitive values (as described in the preceding paragraph), then—with our
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maximize n
i=1

k
j=1 xi,j · (gm,k(j) − gm,k(j − 1))

subject to:

(a)
2n−1

i=1

zi = k,

(b) xi =
j : i∈Sj

zj i, ∈ [n]

(c)
k

j=1

xi,j = xi i, ∈ [n]

(d) 0 ≤ xi,j ≤ 1 i, ∈ [n]; j ∈ [k]
(e) 0 ≤ zi ≤ |T (Si)|, i ∈ [2n − 1]

Fig. 2 The Mixed Integer Linear Program used in the proof of Theorem 16

maximization goal in mind—one can verify that variables z1, . . . , z2n−1 describe a
winning committee. Thus we show that, indeed, all the variables have their intended
values.

Due to constraints (a) and (e), variables z1, . . . , z2n−1 certainly describe a possible
committee of size k (from each set T (Si ) we take zi arbitrary candidates). Constraints
(b) ensure the correct values of variables x1, . . . , xn . Finally, the maximization goal
and constraints (c) ensure that each variable xi, j is 1 exactly if xi ≥ j and is 0
otherwise. This is so, because gm,k is concave. Thus, if for some values j and j ′ with
j < j ′ it were the case that xi, j < 1 and xi, j ′ > 0 then increasing xi, j and decreasing
xi, j ′ by the same amount [without breaking constraint (d)] would yield a higher value
of the function to be maximized.
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