
Discovery and Ranking of Functional Dependencies

Ziheng Wei
The University of Auckland

Email: zwei891@aucklanduni.ac.nz

Sebastian Link
The University of Auckland

Email: s.link@auckland.ac.nz

Abstract—Computing the functional dependencies that hold
on a given data set is one of the most important problems in
data profiling. Our research advances state-of-the-art in various
ways. Utilizing new data structures and original techniques for the
dynamic computation of stripped partitions, we devise a new hy-
bridization strategy that outperforms the best algorithms in terms
of efficiency, column-, and row-scalability. This is demonstrated
on real-world benchmark data. We show that current outputs
contain many redundant functional dependencies, but canonical
covers greatly reduce output sizes. Smaller representations of
outputs are easier to comprehend and use. We propose the
number of redundant data values as a natural measure to rank
the output of discovery algorithms. Our ranking assesses the
relevance of functional dependencies for the given data set.

I. INTRODUCTION

Data profiling comprises the activities that determine meta
data about a given data set [1]. In practice, data profiling
is a scientific approach towards data preparation, a resource-
intense task in data science projects. Applications include data
cleaning, integration, repository design, quality, preparation
for analytics, and query optimization [1]. A fundamental task
in data profiling is the discovery of data dependencies that
hold on the given data set. Since the 1980s many advances
have been made. We will focus on functional dependencies
(FDs). These have received most attention from academia and
industry, due to their usefulness in many applications [2], [6],
[9], [10], [12], [14], [16], [19], [20].

An FD X → Y with column sets X and Y expresses
that the combination of values on the columns in X uniquely
determines the value on each of the columns in Y . The
discovery problem for FDs is to compute the set of FDs that
are satisfied by a given relation. For example, the benchmark
data set ncvoter with 1,000 rows and 19 columns exhibits
758 FDs with minimal left-hand sides (LHSs), and 3,754 total
occurrences of attributes in those FDs. In general, the discovery
problem is computationally challenging. There are relations
over any given number of columns whose best representation
of the satisfied FDs is of exponential size [13]. The decision
variant is to decide for a given relation r and a given positive
integer k if there is an FD X → A with A /∈ X and |X| ≤ k
that is satisfied by r. The decision variant is NP-complete
[5] and W [2]-complete in k [4]. Despite these fundamental
barriers to generally efficient solutions, known algorithms
can quickly solve many real-world instances. For example,
row/column-based algorithms are efficient whenever the given
data set has few columns/rows, respectively. However, real-
world data, especially big data, have typically many rows
and columns. The recent hybrid algorithm [16] combines row-
and column-based approaches to address larger data sets. For
example, it can find the 40,195 LHS-reduced FDs that the

TABLE I. SNIPPET OF NCVOTER TO ILLUSTRATE DATA REDUNDANCY

voter first last name gen street zip
id name name suffix der address city state code

131 joseph cox m 1108 highland ave new bern nc 28562
131 joseph cox m 9 casey rd new bern nc 28562
657 essie warren f 105 south st lasker nc 27845
725 lila morris f 500 w jefferson st jackson nc 27845
244 sallie futrell f 9802 us hwy 258 murfreesboro nc 27855
247 herbert futrell m 9802 us hwy 258 murfreesboro nc 27855
440 barbara johnson f 6155 kimesville rd liberty nc 27298
464 albert johnson m 6155 kimesville rd liberty nc 27298
265 w johnson m 11957 us hwy 158 conway nc 27820
272 clyde johnson m 8944 us hwy 158 conway nc 27820
26 louise johnson f 113 gentry st #20 wilkesboro nc 28659
42 walter johnson m 169 otis brown dr wilkesboro nc 28659
604 christine davenport f 1710 matthews rd robersonville nc 27871
751 christine hurst f 106 w purvis st robersonville nc 27871

benchmark data set diabetic with 101,766 rows and 30 columns
exhibits in 2,865 seconds using 2,253 MB of main memory. In
the hybrid algorithm, a switch of strategies occurs whenever
the current strategy is not working well, that is, if either too
many FDs are invalidated or too few invalid FDs are found.
However, a switch from the current strategy is never based on
evidence that the other strategy will be successful. The lack
of evidence leaves room to improve efficiency and scalability,
which can make data sets with more rows, columns, and
FDs accessible to FD discovery. Our first major contribution
is a new hybrid algorithm with innovations in strategy and
technology. Strategically, we switch from a column- to a row-
based approach whenever it is likely that many FDs can
be validated. Technically, this is made possible by a novel
data structure and the first algorithm that computes stripped
partitions dynamically. Experiments show that our algorithm
leverages conservative main memory resources to outperform
the state-of-the-art in run times, row- and column-scalability.
For example, it discovers the 40,195 LHS-reduced FDs of
diabetic within 848 seconds using 4,301 MB of main memory.

The aim of discovery algorithms is to represent the set of
valid FDs efficiently. In previous work the representation is a
left-reduced cover, minimizing the LHS X of FDs X → Y .
This has two shortcomings. Firstly, left-reduced covers may
contain many redundant FDs. Non-redundant representations
are smaller, and easier to process for computers and humans.
Our second main contribution shows how quickly canonical
covers can be computed and how much they reduce output
sizes. They achieve an average of 50% savings on bench-
mark data. Ten of our data sets are smaller and achieve a
reduction by 25%, while the remaining eleven data sets are
larger and achieve a reduction by over 70%. For example, a
canonical cover for ncvoter consists of only 185 FDs with 927
total attribute occurrences, reducing the left-reduced cover by
approximately 4 times in size. The canonical cover can be
computed in 0.023 seconds from the left-reduced cover.

Secondly, the output of FD discovery algorithms is not
ranked. The more FDs are returned for a given data set, the
more difficult it becomes for users to assess their relevance.
As stated before [16], ultimately, a domain expert must assess
whether an FD is meaningful for the application domain. Even
though FDs that only hold accidentally on the data set are still
useful for some applications, such as query optimization, it
is still beneficial to automatically rank the relevance of the
discovered FDs for the given data set. As our third major
contribution we propose data redundancy as a natural measure
of relevance. It is natural for at least two reasons. 1) FDs are
a major source for data redundancy, having brought forward
Boyce-Codd and Third Normal Form proposals [11], [17].
Consequently, the number of redundant data values caused by
an FD indicates the relevance of this FD for normalization.
2) Data redundancy caused by an FD X → Y measures how
many instances of the pattern “X-value determines Y -value”
actually occur in the data set, again showing how relevant the
pattern is. Applying our ranking to the FDs exhibited by real-
world benchmark data, a quantitative and qualitative analysis
illustrates that our measure can provide effective guidance
for data stewards in assessing the relevance of discovered
FDs. Finally, we report results for the two most common
interpretations of missing values. Since values are missing
frequently, such distinction is important for applications.

For illustration consider ncvoter, with a small snippet
shown in Table I. Among many FDs, the full data set satisfies
σ1 = ∅ → state, σ2 = last name, zip code → city,
σ3 = last name, gender, zip code → name suffix, and σ4 =
voter id → state. Recall that the occurrence of a data value
is redundant for a set Σ of constraints [17] whenever every
change of this value to a different value at this occurrence
incurs a violation of some constraint in Σ. Hence, the value is
fixed for this occurrence given Σ. For example, changing any
occurrence of the state value ‘nc’ will result in the violation
of σ1. This FD expresses that the state value is constant
in the data set. It is meaningful because the data set only
considers voters from the state ‘nc’. As a consequence, FD σ1
causes 1,000 data value occurrences to be redundant. Similarly,
FD σ2 causes 182, FD σ3 causes 61, and FD σ4 causes 2
redundant occurrences in ncvoter. For instance, each of the
bold occurrences in Table I are redundant due to the FD σ2.
While highly ranked FDs attract interest from data stewards,
low ranked FDs do, too. For example, FD σ4 has the likely
key voter id on its LHS, and the only violation of the key
in the full data set is illustrated by the first two tuples in
Table I. More insight unfolds when we exclude null markers
from redundant occurrences. In this case, FD σ3 causes only 2
redundant occurrences instead of the 61 when null markers are
included. If nearly all redundant data values caused by an FD
are null markers, then it is likely that the FD is not relevant
for the data set.

Organization. We explain our contributions over related work
in Section II, fix notation in Section III, present our discovery
algorithm in Section IV, explain our experimental results for
our discovery algorithms in Section V, and for our rankings in
Section VI, respectively. We conclude and outline future work
in Section VII. More details have been made available in a
technical report [18].

II. RELATED WORK

Revisiting a large body of previous work, we describe how
we advance the FD discovery problem by i) new techniques
that improve state-of-the-art in efficiency, row-, and column-
scalability, and ii) the size and ranking of the output.

FD discovery. Since the 1980s, many FD discovery algorithms
addressed data sets with a large number of either rows or
columns. An important technique models the search space
of FDs as an attribute lattice [9]. This is traversed level by
level from smaller to larger sets of attributes. An attribute
set is pruned if no attributes are functionally dependent on
the set. Other column-based algorithms introduced different
pruning and lattice traversal strategies [2], [14], [20]. Row-
based algorithms use agree sets, determined by all pairs of
distinct rows in the input. Based on maximal agree sets [10]
or their set complements [19], the algorithms use hypergraph
transversals to generate the output FDs. An FD-tree manages
an FD set [6]. Examining all agree sets iteratively, an FD-tree
is updated until it represents the output set. A column-based
hybrid algorithm was introduced for the discovery of minimal
keys [7]. Their algorithm traverses from the top and bottom
of the attribute lattice simultaneously, essentially ’halving’
the search space by faster pruning. Combining the row-based
algorithm from [9] with the column-based algorithm from
[6] was used to discover FDs [16]. The column-based part
validates the FDs of an FD-tree [6] and switches to the row-
based algorithm when too many FDs are invalidated. The row-
based part generates FDs that do not hold on the input, and
switches to the column-based part whenever too few of such
invalid FDs are found. Novelty. Our article introduces extended
FD-trees and a dynamic data manager (DDM) for stripped
partitions. Our new hybrid strategy follows the column-based
approach over extended FD trees, but uses the DDM as a row-
based technique when many FDs are likely to be valid.

Covers. FD sets can be represented by different notions of
covers [11]. A non-redundant cover does not contain any
FD that is implied by the remaining FDs in the cover. The
results of previous algorithms are given by left-reduced covers.
That is, for each column A the cover contains all valid FDs
X → A with minimal LHS X . Canonical covers are non-
redundant left-reduced covers with unique LHSs [11]. Novelty.
We demonstrate on real-world benchmarks that canonical
covers can greatly reduce output sizes with typically small
overheads of running time.

Ranking FDs. Despite the savings by canonical covers, not all
FDs are equally relevant for the given data set. We are unaware
of any measures for ranking discovered FDs. Recently, genuine
FDs were used to estimate which FDs are likely to hold on
the ‘true’ completion of an incomplete data set by imputing
null marker occurrences [3]. However, genuine FDs do not say
anything about the relevance of the FDs for the underlying data
set. Instead, we regard the number of redundant data value
occurrences that an FD causes as the arguably most natural
measure for relevance. The notion of a redundant data value
occurrence [17] justifies schema normal forms for Boyce-
Codd, Third, and Fourth normal forms [11], [17]. It has never
been used to rank FDs. Novelty. We measure the relevance of
an FD for a data set by the number of redundant data value
occurrences it causes.

III. PRELIMINARIES

We fix some notions and notation required for the exposi-
tion of our approach.

A relation schema is a finite, non-empty set R of attributes
(or columns). With each attribute A, we associate a domain
dom(A) of values that can occur in A. We assume a total order
on R, that is, R = {A1, · · · , An}. This allows us to use posi-
tive integers to identify columns. For X = {A1, A2, · · · , An},
we write X as A1A2 · · ·An and XY as the set union X ∪ Y .
A tuple t over R, or row, maps each A ∈ R to a value in
dom(A). Two tuples are equal if they have matching values
on all the attributes, and distinct otherwise. For X ⊆ R and
a tuple t over R, t(X) denotes the projection of t onto X . A
relation is a finite set of tuples. The active domain of A ∈ R
for a given relation r is adomr(A) = {t(A) | t ∈ r}.

A functional dependency (FD) over R has the form X → Y
where X,Y ⊆ R. We call X the left-hand-side (LHS) and Y
the right-hand-side (RHS) of the FD. A relation r satisfies the
FD X → Y (or X → Y holds on r), denoted by r � X → Y ,
if for all t, t′ ∈ r, t(X) = t′(X) implies t(Y) = t′(Y). If
r does not satisfy X → Y , we say r violates X → Y . For
fixed r, we say that the FDs satisfied by r are valid. We write
X 6→ Y if none of the FDs X → A for any A ∈ Y holds on r.
In consistency with previous work but by abuse of terminology,
we also say in this case that X → Y is invalid. Non-FDs are
invalid FDs where the RHS is the complement of the LHS,
that is, X 6→ R−X . For an FD set Σ∪{X → Y }, relation r
satisfies Σ, denoted by r � Σ, if r satisfies all the FDs in Σ.
We say Σ implies X → Y , denoted by Σ � X → Y , if every
relation that satisfies Σ also satisfies X → Y . Σ′ is a cover
of Σ whenever Σ and Σ′ imply the same set of FDs. The FD
discovery problem is to compute for any given relation r a
cover for the set of FDs that hold on r.

An FD set Σ is left-reduced if for every FD X → Y ∈ Σ
and for all proper subsets Z ⊂ X it is not true that Σ � Z → Y
holds. State-of-the-art algorithms such as [16] represent their
output as left-reduced covers where every RHS consists of a
single attribute. An FD set Σ is non-redundant if there is no FD
σ ∈ Σ that is already implied by the set Σ−{σ} of remaining
FDs, that is, if there is no FD σ ∈ Σ such that Σ− {σ} � σ.
In this article we are specifically interested in computing left-
reduced, non-redundant covers with unique LHSs. These are
also known as canonical covers [11].

The X-equivalence class of tuple t ∈ r is the set [t]X =
{s ∈ r | s(X) = t(X)}. The stripped partition of r over
X is πX(r) = {[t]X | t ∈ r, |[t]X | ≥ 2}. We sometimes
omit r and write πX if r is fixed. We use |πX(r)| and
||πX(r)|| to denote the number of sets (aka the cardinality)
in πX(r), and the total number of tuples (aka the size) in
the sets of πX(r), respectively. In previous FD discovery
algorithms [9], [16], stripped partitions either sample non-FDs
or validate candidate FDs, but sampling and validation have
never been combined. The reason is that no technique had
been devised that can manage stripped partitions efficiently.
They have huge memory requirements if the size of a relation
or the number of valid FDs is large. We establish the first
technique of dynamically computing stripped partitions. This
overcomes memory limitations of static computations, using
memory effectively whenever more FDs are likely to be valid.

IV. DISCOVERY ALGORITHMS

We introduce the dynamic hybrid algorithm (DHyFD). We
describe how previous approaches can be improved, describe
our extension of FD trees, and our dynamic data manager.
These result in our new hybrid strategy which leads to DHyFD.

A. Revisiting previous algorithms

Column-based Algorithm. The column-based algorithm in [9]
models the search space of FDs as an attribute lattice. The
algorithm traverses the lattice from bottom to top. At each
level, the LHS and RHS of an FD are attribute sets. Each
pair of LHS and RHS is validated using the stripped partition
of the LHS. If an FD does not hold, new LHSs on the next
level for the same RHS attribute are generated. The stripped
partition of the new LHSs are computed. This process is
infeasible if there are too many columns. Generating LHSs by
levels typically enumerates the entire lattice if valid FDs exist
at different levels. Stripped partitions duplicate the original
input aggressively, consuming any available memory for inputs
with too many rows. Stripped partitions are efficient for FD
validation. Validating X → Y usually requires a mapping from
the X-values to their Y -values. Once duplicated X-values are
found, unmatched A ∈ Y -values invalidate X → A. This
method is inefficient on larger inputs. For example, validating
X → A and XB → A (assume X → A is invalid) creates
mappings for X- and XB-values. Hence, many X-values are
computed redundantly. Such redundancy causes inefficiency if
the input contains too many rows and columns. If πXB could
be generated dynamically from πX , then only B-values needed
extraction. Computation would become more efficient. Hence,
using previously computed stripped partitions can decrease the
cost of FD validation effectively. Another challenge is to let
stripped partitions consume only reasonable memory.

Row-based Algorithm. The agree sets of the row-based algo-
rithm [6] consists of those attributes on which two tuples have
matching values. That is, ag(t, t′) = {A ∈ R | t(A) = t′(A)}.
The agree set of r is the set of agree sets for all pairs of distinct
tuples in r, that is, ag(r) = {agr(t, t′) | t, t′ ∈ r, t 6= t′}.
Importantly, the agree set for each pair of distinct tuples
implies the non-FD ag(t, t′) → R − ag(t, t′). Starting with
the FD ∅ → R, the row-based algorithm processes the sets
in ag(r) iteratively, inducing new FDs that do not contradict
any of the non-FDs implied by the agree sets processed so far.
Details are in Section IV-C. Inducing FDs from non-FDs uses
a tree-like data structure called FD-tree [6]. As in Figure 1,
the LHS of an FD is represented by a path in the FD-tree
where each node represents an attribute in the LHS with labels
of RHS attributes. An FD-tree provides quick access to all
FDs that do not contradict any of the non-FDs processed so
far. A new observation is that the induction algorithm of [6]
only handles singleton RHS of implied non-FDs. Instead of
inducing new FDs based on the non-FD X 6→ R − X , the
process iteratively induces new FDs based on the invalid FDs
X 6→ A for all A ∈ R − X . FD-trees are implemented as a
linked data structure. Hence, path traversal is costly as links
are maintained by heap memory. Our observation can thus
significantly reduce time spent on FD induction as the number
of non-FDs can be quadratic in the number of tuples.

Hybridization. The strategy of the sampling-focused hybrid
algorithm [16], see the left of Figure 2, has three components

Fig. 1. The FD-tree (left) and extended FD-tree (right) for FDs A → B,
AB → CD, and CD → B

and two phases. On input r over R, the sample component
computes a stripped partition for each attribute in R. Then the
sorted neighborhood pair selection method [8] extracts non-
FDs by sampling agree sets of the stripped partitions. The
agree sets are sampled from tuple pairs of the same equivalence
class in the stripped partition. Here the underlying sorting
algorithm of the method determines the neighborhood of the
tuples. The validation component validates candidate FDs, and
uses invalid FDs to update an FD-tree. The induction phase
uses either the non-FDs from the sample component or the
invalid FDs from the validation component to induce new FDs.
The algorithm [16] starts with the sampling phase, and then
applies invalid FDs to update the FD-tree. Once too few new
samples (non-FDs) are generated, the algorithm switches to the
validation phase. Likewise, it switches back to the sampling
phase if too many FDs are invalidated.

The hybrid algorithm implements the row-based algorithm
as induction component. No advantage is taken of the column-
based approach in which stripped partitions reduce redundant
computations of values on the LHS of FDs. However, adapting
the validation method from the column-based algorithm proves
challenging. Here, a larger stripped partition is computed by
joining the stripped partitions of two adjacent prefix blocks
[9]. For example, πXAB is computed by intersecting πXA and
πXB . Hence, all invalid LHSs need to be known before the
stripped partitions on a higher level can be computed. Due to
the randomness in FD induction some of the invalid LHSs are
eliminated by invalid FDs. This means each level of the FD-
tree contains only some but not all of the invalid FDs. Hence,
FD induction can make the computation of stripped partitions
obsolete. The major challenge in hybridizing column- and row-
based algorithms is to dynamically compute stripped partitions
while avoiding excessive memory consumption. It is always
better not to use invalid FDs from the validation component if
more general non-FDs can be found. For example, the invalid
FD X 6→ Y over R could be inefficient in two ways. Firstly,
there may be a non-FD X 6→ R −X such that Y ⊆ R −X .
Secondly, X 6→ Y may induce new FDs that could still be
invalidated by a non-FD X ′ 6→ R−X ′ where X ⊆ X ′.

B. An Overview of DHyFD

We introduce the dynamic hybrid algorithm for FD dis-
covery (DHyFD), as shown on the right of Figure 2. Firstly,
DHyFD performs synergized FD inductions on an extended
FD-tree. In comparison, the extended FD-tree is more efficient
for searching FDs than the classical FD-tree [6], and the new
induction method dramatically eliminates redundant traversals.
Secondly, DHyFD introduces a dynamic data manager (DDM)

Fig. 2. Sampling-validation hybridization strategy

to help with FD validation and non-FD sampling. Balancing
the main memory use by stripped partitions with the cost
of validation, DDM dynamically refines stripped partitions
so that FD candidates can be validated efficiently. While
validating FDs, new non-FDs are extracted. As the refined
partition contains more equivalence classes with fewer tuples,
the extraction of non-FDs based on tuple pairs from the same
class is more efficient. The non-FDs are finally applied to the
extended FD-tree to derive new FDs.

Before going into details, we outline DHyFD as illustrated
in Figure 3. Given a relation r over schema R, DDM pre-
computes stripped partitions for each singleton attribute of R.
The partitions are refined later dynamically. Before any itera-
tion, a set of initial non-FDs (aka initial samples) are sampled
from the pre-computed stripped partitions. This step extracts
a wide range of non-FDs to perform synergized induction on
the extended FD-tree, providing a good first approximation of
the final FD-tree. DHyFD then starts validating the extended
FD-tree level by level. The current level is called the validation
level (vl). DHyFD validates the FDs on the current vl by
stripped partitions from DDM. During validation, a set of non-
FDs is generated. Afterwards, synergized induction uses these
non-FDs to derive new FDs. After induction, DHyFD decides
if DDM can perform better by refining stripped partitions. The
decision applies a novel measure called efficiency-inefficiency
ratio. We refer to the validation level vl at which the latest
refinement occurred as the controlled level (cl). In essence,
the refined stripped partitions are based on the FDs associated
with nodes at the controlled level. At the end of an iteration,
DHyFD either computes the nodes at the next validation level
or terminates if the extended FD-tree does not require further
traversal. Next, we provide the details of each component.

C. Extended FD-Trees

FD-trees [6] facilitate FD induction. We enhance FD
induction by extended FD-trees that help derive candidate FDs
and validate them faster.

Let Σ be a set of FDs over R. Assuming attributes of R
are integers, an extended FD-tree has the following properties:
(1) A unique root node represents the empty LHS; (2) Each
node represents an attribute in R except the root node; (3)
Each node only has children of larger attributes; (4) For
each FD A1 . . . An → Y ∈ Σ, there is a path representing
A1 . . . An where An is called an FD-node; (5) Each FD-node

Fig. 3. Overview of DHyFD

is associated with a non-empty attribute set as the RHS of
an FD; (6) Each node is assigned a positive integer id; (7)
The default id of a node A ∈ R is A; and (8) Given a DDM
of relation r over R and a node with id i where i > |R|,
the (i − |R|)-th stripped partition in the DDM is πX′ where
X ′ ⊆ X and X is the path from the root to the node.

Example 1: The right of Figure 1 shows an extended FD-
tree of the FDs A → B, AB → CD, CD → B. The integer
ids are shown at the bottom right. The extended FD-tree has
fewer RHS labels than the FD-tree on the left of Figure 1.

The novelty of extended FD-trees is a new type of node,
called FD-node, which stores RHS attributes of FDs. In con-
trast, nodes of an FD-tree store RHS attributes not only for the
FDs represented by themselves but also for FDs represented
by their descendants. In the left of Figure 1 the root node
and the nodes at level 1 all have B as a RHS attribute even
though only node A represents FD A→ B. This overhead in
labeling is often inefficient. Thus, an FD-tree requires typically
more maintenance of RHS attributes than extended FD-trees.
Excessive labeling of RHS attributes does not accelerate FD
search. For example, on the left of Figure 1, if we search for
X → B, checking nodes for FDs with attribute B on the RHS
does not prune the search space: indeed, the root node and the
nodes at level 1 all have B as a RHS attribute.

A core idea of DHyFD is to smartly apply stripped parti-
tions for the validation of FD candidates that are associated
with FD-nodes on the current validation level vl. Smartly
means that the stripped partitions were dynamically computed
with respect to the controlled level cl ≤ vl, that is, from the
paths of length cl in the extended FD-tree. A key observation is
that, even if cl < vl, the stripped partition πX′ of the controlled
level cl can still be used to validate the node’s underlying
FD X → Y once πX′ has been further refined to πX (see
Algorithm 5 for details). However, this refinement can only
happen when X ′ is a subset of X . An array of the stripped
partitions with respect to the controlled level cl is maintained
by the DDM. In addition, the DDM assigns integer ids to nodes
in the extended FD-tree that can index this array. For this to
happen, the node id must be consistent, that is, the attribute set
X ′ of the stripped partition πX′ must be a subset of the path
that leads to the FD-node representing X → Y on the current
validation level vl. Hence, a major task of DDMs is to assign
consistent ids to the nodes of the extended FD-tree. During FD
validation, DHyFD must know all the nodes at vl such that

the nodes on the next level can be traversed. However, after
validating current FD candidates, the FD induction process
may introduce new nodes by inserting a completely new path
or extending an existing one.

Example 2: Let FD AC → E be the only path in an
extended FD-tree over R = {A,B,C,D,E}. If non-FD
AC 6→ BDE is applied to the tree, ABC → E and
ACD → E are induced. To add ACD → E, RHS E of
FD-node C is removed and a child FD-node D is appended
to node C. In the end, node C is no longer an FD-node and
its child FD-node D stores E as RHS. To add ABC → E, a
new path ABC is created from node A since the only existing
path is ACD. Suppose the validation level is 2 before non-FD
AC 6→ BDE is implied. One can only retrieve FD-node C
from level 2 of the tree. After induction, node B from the new
path ABC is added to level 2. Without knowing the new node
B, it is impossible to validate ABC → E by only exploring
the children of node C at level 2.

Algorithm 1 assigns consistent ids while adding a new FD
path. The algorithm checks if the new FD requires new nodes
at the end of some path (step 5-8). If it does, the new nodes
are assigned the ids from their ancestors at the controlled level
(step 11 - 14). The new nodes are added to the validation level
(step 15) for correct traversal of the FD-tree.

Algorithm 1 Add FD
1: Input: An FD X → Y over R, the root node root of an FD-tree,

controlled level cl, the set vl nodes of all nodes at validation level vl
2: Output: a new FD-tree with FD X → Y
3: current = root
4: i = 1, n = |X|
5: while i ≤ n do
6: if current has child c of Ai ∈ X then
7: current = c, i = i+ 1
8: else break
9: while i ≤ n do

10: Create a new node c of Ai ∈ X as the child of current
11: if i > cl then
12: Assign id of current as id of c
13: else
14: Assign the order of Ai in R as id of current
15: if i = vl then vl nodes = vl nodes ∪ {c}
16: current = c, i = i+ 1

17: Let rhs(current) be the RHS of current
18: rhs(current) = rhs(current) ∪ Y
19: Return root

D. Synergized Induction

Given a non-FD X 6→ Y over R, classical FD induction
[6] updates a given FD set over R using X 6→ A for all
A ∈ Y . Hence, if |Y | > 1, multiple traversals of an FD-
tree are caused. This can trigger overheads because FD-trees
are linked-based data structures and stored in heap memory.
We introduce synergized FD induction that processes several
RHS attributes at once to minimize traversals. Given a non-FD
X 6→ Y , no FD X ′ → Y ′ can be valid when X ′ ⊆ X and
Y ′ ⊆ Y hold. Synergized FD induction augments X ′ → Y ′

to create all non-trivial candidates for valid FDs.

Example 3: Let AC → E and AC → BE be FDs. If
AC 6→ BDE is a non-FD on a given relation, the two FDs
cannot be valid. ABC → E and ACD → E are all non-
trivial candidates of valid FDs that result from augmenting

AC → E. ACD → BE, ABC → E, and ACE → B are all
non-trivial candidates of valid FDs that result from augmenting
AC → BE.

Algorithm 2 performs a synergized induction to update an
extended FD-tree given any invalid FDs. It works as follows.
Any FD X ′ → Y ′ where X ′ ⊆ X and Y ′ ⊆ Y cannot be
satisfied by r given the non-FD X 6→ Y . In steps 20-24, the
algorithm only traverses the paths which are subsets of X .
During a traversal, a node’s invalid RHS Y ′ is removed if
the node is an FD-node and Y ′ intersects with Y (step 5-10).
Although X ′ → Y ′ cannot form a valid FD in r, there are
two ways to add another attribute A ∈ R to X ′ such that X ′A
is the LHS of some candidate FD. (1) We take A outside the
union XY ′ (step 12). Then X ′A→ Y ′ is non-trivial and has
a LHS that is not a subset of X . (2) We take A from Y ′ (step
16) and then X ′A → Y ′ − {A} is also non-trivial and has a
LHS that is not a subset of X .

Algorithm 2 Synergized Induction
1: Input: A relation schema R, an invalid FD X 6→ Y , the root node root

of an FD-tree
2: function induct(X,Y)
3: induct recursive(X = {A1, . . . , An}, Y, root)
4: function induct recursive(X = {Ai, . . . , An}, Y, current)
5: if current is an FD-node then
6: Let X′ be the path leading to current
7: Let rhs(current) be the RHS of current
8: removed = rhs(current) ∩ Y
9: Remove FD X′ → removed

10: rhs(current) = rhs(current)− Y
11: if removed 6= ∅ then
12: for each A′ ∈ R− (X ∪ removed) do
13: Y ′ ⊆ removed is the minimal RHS of X′A′
14: Add FD X′A′ → Y ′ if |Y ′| > 0

15: if |removed| > 1 then
16: for each A′ ∈ removed do
17: removed′ = removed− {A′}
18: Y ′ ⊆ removed′ is the minimal RHS of X′A′
19: Add FD X′A′ → Y ′ if |Y ′| > 0

20: for each j ∈ [i, n] do
21: if Aj > max{A′ ∈ R | current has a child of A′} then
22: Return
23: if there is a child c of current with Aj then
24: induct recursive({Aj , . . . , An}, Y, c)

E. Dynamic Data Manager

Our dynamic data manager (DDM) uses extended FD-trees
to compute stripped partitions dynamically and efficiently.
DDM pre-computes stripped partitions for all single attributes
of a given relation schema. These are required during FD
induction when completely new FD paths are added. Moreover,
DDM maintains an array of dynamic stripped partitions. These
are based on the paths ending at the current controlled level.
Hence, they are refined as the controlled level increases. The
ids of nodes in an extended FD-tree index stripped partitions,
which are either pre-computed or dynamic.

Example 4: Figure 4 shows an extended FD-tree over R =
{A,B,C,D,E, F}, with validation and controlled level 3. The
DDM contains πABD, πACD, and πACE , indexed by 1, 2, 3,
respectively. Since node F resides at level 4, its id is that of
its parent node E at the validation level. If the value of an id
exceeds |R|, the id indexes a stripped partition in the DDM.
Here, node E’s id (9) corresponds to πACE as 9 − |R| = 3.

Fig. 4. Example of id assignments

The id (7) of node B is inconsistent because it corresponds
to πABD as 7 − |R| = 1. So, if FD ABC → E is added to
the tree now, node C becomes an FD-node with id 3 (default)
instead of 7.

The main task of a DDM is to update dynamic stripped
partitions and assign nodes with consistent ids in an FD-tree.
Given the nodes at the controlled level, DDM uses the under-
lying paths to compute new stripped partitions. Algorithm 3
updates a DDM from controlled level i to j. For each node at
level j, the algorithm finds the path to the node, and refines the
node’s stripped partition in array A using the new attributes
in the node’s path. The refined partition is appended to the
new array A′ (step 10). The new id of the node is the node’s
position in A′ plus |R| (step 13). Then, the new id is copied to
the node’s descendants, ensuring consistency in the extended
FD-tree. Any new node that is introduced at the controlled
level is not processed by Algorithm 3. Hence, no corresponding
stripped partition exists for such a node. Here, the order of its
attribute is used as the id of this node (default id).

Algorithm 3 Update DDM
1: Input: A relation r over relation schema R, an array A of stripped

partitions from level i, the set L of nodes from level j > i
2: Output: A new array of stripped partitions at level j
3: Let A′ be an array of size |L|
4: i = 1
5: for each node n ∈ L do
6: Let X be the path leading to n
7: Let πX′ = πA where A is the attribute of n
8: if n.id > |R| then
9: πX′ = A[n.id− |R|]

10: Let A′[i] = πX′

11: for each B ∈ X −X′ do
12: A′[i] = refine(r,A′[i], B)

13: n.id = i+ |R|
14: i = i+ 1
15: Copy id of node n to its descendants
16: Return A′

F. Validation and Refinement

For computing stripped partitions efficiently, we use a
domain independent indexing scheme (DIIS). This compresses
an input relation into a two-dimensional array. Given relation
r over R, a DIIS for A ∈ R is a bijective mapping of the
active domain adomr(A) to {1, . . . , |adomr(A)|}. This is easy
to compute, convenient for generating stripped partitions, and
validating FDs. Note that the active domain of A with respect
to r is just the finite set {t(A) | t ∈ r}.

Validation of an FD X → Y returns a set of non-FDs
that cover all RHS attributes in Y that are not functionally
dependent on the given LHS X . Classical FD validation, see
Section IV-C, typically requires multiple runs to find valid
mappings between LHS and RHS values [9], [16]. These
mappings are generated incrementally from the static stripped
partitions of the singleton attributes. Consequently, LHS values
are typically computed redundantly. We now discuss how
DDMs improve classical FD validation. With the aim to avoid
redundant computation, we propose Algorithm 4 to validate
FDs using dynamic stripped partitions.

Algorithm 4 Validation
1: Input: Relation r over schema R, FD X → Y , stripped partition πX′

where X′ ⊆ X
2: Output: Non-FDs that invalidate X → Y ′ where Y ′ ⊆ Y
3: non fds = ∅
4: valid rhs = Y
5: for each S ∈ πX′ do
6: Let π = {S}
7: for each A ∈ X −X′ do
8: π = refine(r, π,A)

9: for each {t0, . . . , tn} ∈ π do
10: for each i ∈ [1, n] do
11: invalid rhs = {A ∈ valid rhs | ti(A) 6= t0(A)}
12: valid rhs = valid rhs− invalid rhs
13: if invalid rhs 6= ∅ then
14: Z = ag(t0, ti)
15: non fds = non fds ∪ {Z 6→ R− Z}
16: if valid rhs = ∅ then
17: Return non fds

18: Return non fds

Given relation r over R and an FD X → Y , a DDM may
hold the stripped partition πX′ instead of πX where X ′ ⊆ X .
In general, it is inefficient to generate πX from πX′ when
validating X → Y . Indeed, the computation of πX must scan
every tuple in πX′ . This wastes resources if X → Y is not
satisfied by r. In fact, the overhead is substantial if there are
many tuples in πX′ . Hence, Algorithm 4 only refines one set
in a stripped partition at a time, using Algorithm 5. It can thus
terminate quickly if a given FD is not satisfied. Algorithm 4
reduces redundant computations of X-values since πX′ is
known. Only (X−X ′)-values are processed (step 7-8) if there
are valid RHSs. That is, in steps 16 and 17 the algorithm
returns a set of non-FDs if there is no valid RHS for X .

Algorithm 5 refines stripped partitions. It stores the new
equivalence classes in an array. Our data compression scheme
eases the allocation of tuples to their new classes in the array,
since the index of each class corresponds to some domain
value. The algorithm refines every class in the input partition
one attribute at a time. When a tuple is allocated to an
empty set, we store the set’s position by retrieving the tuple’s
projected value on the current attribute (step 8). Recording
these positions saves the search for non-empty sets.

G. When to Update Stripped Partitions

For enabling a DDM to decide if the stripped partitions
need updating, we define the efficiency and inefficiency of a
validation level. At each level, the total number of FDs is the
sum of the RHS sizes over the nodes at the current level (also
see line 13 of Algorithm 6), before FD induction takes place
(line 20). The number of valid FDs is counted in the same way

Algorithm 5 Refinement
1: Input: A relation r over relation schema R, a subset π′ of the stripped

partition πX , an attribute A ∈ R
2: Output: A subset of πXA

3: Let sets array = {∅, . . . , ∅} where |sets array| = |r|
4: result = ∅, ids = ∅
5: for each S ∈ π do
6: for each i ∈ S do
7: if sets array[r[i][A]] is empty then
8: ids = ids ∪ {r[i][A]}
9: sets array[r[i][A]] = sets array[r[i][A]] ∪ {i}

10: for each id ∈ ids do
11: if |sets array[id]| ≥ 2 then
12: result = result ∪ sets array[id]
13: sets array[id] = ∅
14: ids = ∅
15: Return result

Fig. 5. An efficiency-inefficiency ratio calculation

(line 13) but after FD induction. The efficiency of the validation
level is the ratio of valid FDs over all FDs (including invalid
FDs) at the given level. Only actually valid FDs require a scan
of all the tuples in a stripped partition. If efficiency is low, more
nodes in higher levels may represent invalid FDs. Generating
stripped partitions for more invalid FDs is inefficient. The
inefficiency of a validation level is the proportion of reusable
nodes over all the FDs that reside in higher levels. Here, a
node is reusable if it is not a leaf. If inefficiency is high, most
FDs in higher levels cannot share stripped partitions. Hence, it
is more efficient to directly validate these FDs when their FD
node is reached. In summary, updates of stripped partitions are
more beneficial when the efficiency at the current validation
level is high and the inefficiency is low. Hence, we define the
efficiency-inefficiency ratio at the current validation level as
the ratio of its efficiency over its inefficiency. Experiments that
determine the actual ratio used by DHyFD are in Section V.

Example 5: Figure 5 shows calculations of the efficiency-
inefficiency ratio. After processing level 2 (left tree), node B
represents the valid FD B → F . The efficiency of level 2 (left
tree) is 1/1 since there is only one FD-node at level 2. Both
nodes B and C are reusable. They lead to 5 FDs: ABD → C,
ABD → E, ACD → B, ACD → F and ACEF → B. So,
the inefficiency is 2/5 and the ratio is 2.5. After processing
level 3 (right tree), the FD ABD → CE is valid but the node
D in path ABD is not reusable. The other FD ACD → BF
at level 3 (right tree) is not valid. Hence, the efficiency is 1/2.
By an induction on invalid FD ACD 6→ BF , a new path
ACDE is constructed. The reusable nodes at level 3 (node
D and E) lead to 3 FDs: ACDE → B, ACDE → F , and
ACEF → B. So, the inefficiency is 2/3 and the ratio is 0.75.

H. DHyFD algorithm

Algorithm 6 implements DHyFD. It starts by initializing
the DDM and extended FD-tree (lines 3-4). The controlled
and validation levels are tracked by the variables cl and vl,
respectively. DHyFD performs the sorted neighborhood pair
selection sampling only once at the beginning to extract a
diverse selection of non-FDs (line 5). Re-sampling would only
cause computational overheads. For example, sampling with an
input of 1, 000 tuples already compares more than 1 million
tuple pairs according to Section V. In lines 14-18, the DDM of
DHyFD finds a stripped partition (lines 15-16), and validates
the corresponding FDs level by level with Algorithm 4 (line
18). Subsequently, any identified violations of FDs are used to
update the extended FD-tree with Algorithm 2 (line 20). Lines
21-25 calculate the efficiency-inefficiency ratio to determine if
the DDM should update the stripped partitions (line 27). The
iterations continue until no candidate FD is left (line 11).

Note that sorting non-FDs (in steps 7 and 19) helps
eliminate redundant inductions faster than using non-redundant
non-FDs, as demonstrated in Section V. This is explained as
follows. Let T be an FD-tree. Suppose an update is processed
by a non-FD X 6→ Y . Now consider another update by a non-
FD X ′ 6→ A where X ′ ⊂ X and A′ ∈ Y . Here, X ′ 6→ A is
redundant with respect to X 6→ A. Hence, no new FDs will be
induced if X 6→ A is applied first. In addition, if X ′ 6→ A is
applied first, then some of the new FDs can still be eliminated
by X 6→ A, which causes redundant inductions.

Algorithm 6
1: Input: A relation r over relation schema R
2: Output: The left-reduced cover of the FDs satisfied by r
3: Initialize DDM M with the stripped partitions of all A ∈ R
4: Let tree be an extended FD-tree for the single FD ∅ → R
5: violations is the set of non-FDs extracted by sorted neighborhood pair

selection sampling
6: violations = violations ∪ validate(root, {r})
7: Sort the non-FDs in descending order by the sizes of their LHSs
8: for each X 6→ R−X ∈ violations do tree.induct(X,R−X) .

Algorithm 2
9: Let candidates be the set of nodes at level 1 of tree

10: Let cl = 1, vl = 1, num fds = 0
11: while candidates 6= ∅ do
12: violations = ∅
13: total =

∑
n∈candidates |rhs(n)|

14: for each node ∈ candidates do
15: if node.id ≤ |R| then
16: node.id = argA min{||πA|| | A ∈ R}
17: Let π be the stripped partition assigned to node by M
18: violations = violations ∪ validate(node, π) . Algorithm 4
19: Sort violations in descending order
20: for all X 6→ R−X ∈ violations do tree.induct(X,R−X) .

Algorithm 2
21: reusables = {n ∈ candidates | n is not a leaf}
22: num new fds =

∑
n∈candidates |rhs(n)|

23: num fds = num fds+ num new fds
24: efficiency = num new fds/total
25: inefficiency = |reusables|/(|tree| − num fds)
26: if vl > 1 and efficiency/inefficiency > 3.0 then
27: cl = vl, Update M with reusables . Algorithm 3
28: vl = vl + 1
29: Let candidates be the set of nodes of tree at level vl
30: Return {FDs in tree}

Fig. 6. Time of FD discovery on weather (left) and uniprot 512kr 30c
(right) with different efficiency-inefficiency ratios

V. EXPERIMENTS

We analyze our new FD discovery algorithm over real-
world benchmarks, including run time, memory use, row-
and column-scalability for different interpretations of missing
values. We also analyze the savings in output sizes made by
canonical over left-reduced covers.

We implemented DHyFD in Visual C++. For comparison
we also implemented state-of-the-art algorithms (TANE [9],
FDEP [6], HyFD [16]). These algorithms present benchmark
performances on data sets with large numbers of rows, or
columns, or both [15], [16]. We ran our experiments on an Intel
Xeon 3.6 GHz, 256GB RAM, Windows 10 Dell workstation.
We used real-world data from the UCI machine learning
data repository1 and previous research [16]. The data sets are
available for download2.

A. Parameter Tuning

DHyFD generates stripped partitions dynamically. They
are refined at validation levels with high efficiency and low
inefficiency. However, what actual efficiency-inefficiency ratio
minimizes the running time of DHyFD? The left of Figure 6
shows the time used to discover FDs on the weather data
set for different ratios. It contains 18 columns and more than
260, 000 rows. DHyFD performed best when the ratio was
around 3. For that ratio it discovered the left-reduced cover
of 68 FDs within 50 seconds. While the best ratio depends
on the data, DHyFD performed well on each data set with
ratio 3. As example, the right of Figure 6 shows that the best
ratio on uniprot with 512, 001 rows and 30 columns is 2.5.
Nevertheless, the performance at ratio 3 is satisfying.

B. Performance on Real-world Data

We conduct experiments that discover FDs for a range
of real-world data using DHyFD and other algorithms. In
Section IV-C we described how FDEP can be improved over
its original proposal with classical FD induction over classi-
cal FD-trees [6]. Accordingly, we have two implementations
FDEP1 and FDEP2. Both implement the new synergized
induction on extended FD-trees, but FDEP2 sorts all of the
non-FDs of a relation the same way FDEP does, while FDEP1
computes a non-redundant cover of non-FDs before induction.
We can thus provide fair and comprehensive performance
reports on these algorithms. The row- and column-based
algorithms cannot terminate on all of the data sets within

1https://archive.ics.uci.edu/ml/
2http://bit.do/erhUF

TABLE II. RUNNING TIME (SECONDS) UNDER null = null SEMANTICS, AND MEMORY USAGE (IN MB)

Data set #R #C #FD TANE FDEP FDEP1 FDEP2 HyFD DHyFD Old best HyFD DHyFD
iris 150 5 4 0.001 0.002 0.002 0.002 0.0001 0.0001 0.1 0.67 0.64

balance 625 5 1 0.002 0.031 0.04 0.024 0.001 0.0001 0.1 0.7 0.69
chess 28056 7 1 0.154 50.192 94.13 47.942 0.017 0.017 0.2 12 12

abalone 4177 9 137 0.029 0.785 2.794 1.191 0.03 0.017 0.2 3 3
nursery 12960 9 1 0.241 23.415 26.205 13.684 0.011 0.01 0.5 7 5
breast 699 11 46 0.044 0.127 0.09 0.048 0.02 0.009 0.2 1 1

bridges 108 13 142 0.03 0.011 0.007 0.005 0.004 0.003 0.1 0.7 0.73
echo 132 13 527 0.01 0.007 0.009 0.006 0.003 0.002 0.1 0.69 0.76
adult 48842 14 78 22.491 311.365 278.591 129.174 0.279 0.215 1.1 14 14
letter 20000 17 61 208.67 73.718 130.414 47.4 6.96 2.035 3.4 33 29

ncvoter 1000 19 758 0.444 0.384 0.551 0.216 0.046 0.029 0.4 3 3
hepatitis 155 20 8250 9.851 0.532 0.158 0.153 0.174 0.189 0.6 9 14

horse 368 29 128727 130.527 4.985 4.607 3.334 4.728 2.595 7.1 123 268
plista 1000 63 178152 TL 35.985 17.945 13.894 19.203 15.403 21.7 389 2048
flight 1000 109 982631 TL 16.134 21.28 9.04 37.064 9.934 53.4 841 2048

fd-reduce 250000 30 89571 8.084 TL TL TL 201.005 158.94 41.1 170 181
weather 262920 18 918 TL TL TL TL 332.734 49.839 N/A 140 1024

diabetic 30c 101766 30 40195 TL TL TL TL 2864.84 847.582 N/A 2253 4301
PDBX 17305799 13 68 TL TL TL TL 95.893 100.906 240 6348.8 6451.2

lineitem 6001215 16 3984 TL TL TL TL 1352.87 1047.44 2340 2662.4 27648
uniprot 512kr 30c 512000 30 3703 TL TL TL TL 184.573 75.442 N/A 3481.6 4608

competitive time. Hence, we set the time limit (TL) of the
experiments to 1 hour. Note that HyFD also implements our
synergized FD induction. For our experiments, we show the
number of rows (#R), columns (#C), FDs (#FD) in a left-
reduced cover, incomplete rows (#IR), incomplete columns
(#IC), missing values (#⊥), and the running time in seconds.

Results. Table II summarizes the performance of the FD
discovery algorithms on the real-world data sets. In addition,
we include memory usage of HyFD and DHyFD. Overall, there
are considerable improvements over the previously best known
times. Expectedly, the hybrid algorithms outperform the row-
and column-based algorithms on data with sufficiently many
rows and columns. Note that fd reduced is the only synthetic
data set and an exception. DHyFD performs better than HyFD
and FDEP2 on small data sets with less than 10, 000 rows
or 50 columns. However, FDEP2 performs extremely well on
data with few rows and many columns, such as plista and
flight. The performance of FDEP2 is mainly influenced by
the non-redundant cover of non-FDs. For data with few rows
(e.g. 1000) and few columns, FDEP2 will perform worse than
the hybrid algorithms because FDEP2 computes all the non-
FDs but most of them only create overhead (a redundant non-
FD is only used to traverse an FD-tree but cannot induce new
FDs). If the data set has more columns (e.g. plista, flight),
then the number of useless non-FDs is reduced. Accordingly,
the inductions of FDEP2 become more effective. Nevertheless,
FDEP2 performs always better than FDEP1, which means the
computation of a non-redundant cover of non-FDs does not
yield good performance in practice. Comparing FDEP2 with
FDEP demonstrates the advantages of synergized induction
and extended FD-trees over classical induction and FD-trees.
Note that in the case of abalone the classical method performs
better. This is mainly because excessive labeling in an FD-
tree sometimes does help prune a search space. However,
such situation is rare and less significant. In general, excessive
labeling creates huge overheads, for example, FDEP takes
almost 200 more seconds than FDEP2 to perform the same FD
induction over adult. For these reasons, we will only discuss
FDEP2 in what follows, and simply refer to it as FDEP from

here on. TANE only performs well on fd reduced because
this data is particularly suitable for TANE. TANE traverses
the attribute lattice from bottom to top and all the LHSs of
the FDs discovered in fd reduced only have 3 attributes. As
a result, the FDs with short LHSs will be discovered quickly.
As our implementation of HyFD uses synergized induction
and performs better than the best known bounds, it is further
evidence for the performance gains that synergized induction
facilitates.

DHyFD gains performance over HyFD by leveraging more
memory whenever new FD discoveries are likely. We report
the use of memory by the various algorithms in the technical
report [18]. In brief, TANE uses huge memory even on small
data like horse but does not gain performance. Meanwhile,
DHyFD only uses more memory when it is rational, as
measured by our efficiency-inefficiency ratio. On PDBX ,
only an extremely small number of FDs is satisfied by a
large number of tuples, so non-FDs that derive true FDs
can be sampled easily. DHyFD shows similar efficient time
and memory use as HyFD, which proves that the efficiency-
inefficiency ratio also suggests correctly to DHyFD that more
memory usage will not improve running time further. On other
data, DHyFD outperforms HyFD by better use of memory for
FD validation and non-FD extraction. In fact, DHyFD beats
HyFD in many cases, such as data sets like weather, lineitem
and uniprot 512kr 30c that contain only a small number of
FDs that are randomly spread over the entire FD-tree, and
data sets like diabetic that are highly dimensional and contain
a large number of FDs. Lastly, compared to TANE, DHyFD
uses much less memory.

Additional experiments show how DHyFD leverages the
tradeoff between performance and memory. We quantify on
some benchmarks the performance gain and additional mem-
ory use by DHyFD over HyFD. The performance increase
rate (PIR) is the difference in run time of HyFD and DHyFD
over that of HyFD, and the memory increase rate (MIR) is the
difference in memory use of DHyFD and HyFD over that of
DHyFD on a data set. Figure 7 illustrates how the numbers of
rows and columns in a data set affect the memory use by HyFD

Fig. 7. Memory used in FD discovery on weather fragments with varying
numbers of rows (left) and on diabetic fragments with different numbers of
columns

and DHyFD. All round, additional memory use results in solid
performance gains. With more rows or columns, the PIRs
and MIRs are typically getting closer. Future work may show
how memory use can maximize performance, or for which
efficiency-inefficiency ratio memory use is most effective.

Null semantics. As in practice, many benchmarks contain
missing values. Different interpretations of missing values
cause differences in discovery algorithms and performance.
We report results on the most common semantics that treats
missing values just like any other value (null = null). Results
on the semantics where each missing value is treated as a
unique value (null 6= null) are reported in the technical
report [18]. In brief, null 6= null tends to exhibit more FDs
and, hence, longer runtime, especially on larger data sets. The
performance of the algorithms is similar to null = null.
However, FDEP is fastest on some smaller data sets for
null 6= null: bridges, hepatitis and horse. For weather, diabetic
and PDBX, the ranking is the same: DHyFD is again the fastest
by far on the former two, while HyFD is marginally faster on
PDBX. On uniprot 512kr 30c, HyFD is marginally faster than
DHyFD under null 6= null.

In summary, DHyFD improves state-of-the-art. It performs
well on data with more columns and rows, making effective
use of conservatively more main memory to discover FDs more
quickly. Specialized algorithms outperform hybrids on data
sets for which they are designed. Our optimization of FDEP
is effective on data sets with few rows and many columns.

C. Scalability

We explore the row- and column-scalability of TANE,
FDEP, and both hybrid algorithms. Qualitative and quanti-
tative experiments show how the row and column numbers
impact on the performance of these algorithms. The qualitative
experiments measure the performance of all algorithms on
fragments of weather and diabetic 30c with varying numbers
of rows and columns. The quantitative experiments show
which algorithm performs best on which fragment.

Quantitative Experiments. Each mark in Figure 8 represents
a data fragment where the numbers of rows and columns are
the values at its horizontal and vertical axes, respectively. The
color of a mark denotes the fastest algorithm. FDEP wins
consistently on the left of both charts. As columns increase,
FDEP gains more advantage. For example, in the right of
Figure 8, FDEP performs worse on data with 10, 000 rows
and 20 columns, but better on data with 10, 000 rows and
30 columns. So, FDEP scales well on columns but poorly on
rows. DHyFD wins when more rows and columns are present.
There are only few fragments where HyFD performs better

Fig. 8. Best performers on weather and diabetic 30c

Fig. 9. Row scalability of weather (left) and column scalability on
diabetic 10000r (right)

than DHyFD, and the differences are small in these cases.
This is mainly due to the random behavior of the sampling
method in HyFD. TANE performs poorly as it is targeted at
data with FDs that have smaller LHSs, which happens only
rarely on real-world data.

Qualitative Experiments. Figure 9 shows how much one
algorithm performs better than the others. The left of Figure 9
shows the row scalability of the benchmark algorithms and
DHyFD. We ran FD discovery on weather by selecting
1, 000 - 260, 000 rows with increments of 1, 000 rows. The
time of TANE and FDEP dramatically increases for many
rows. When a data set exceeds approximately 10, 000 rows,
TANE and FDEP are not feasible. HyFD suffered a significant
performance loss at 211, 000 rows. Instead, DHyFD shows
smooth row scalability. The right of Figure 9 shows the column
scalability on diabetic. For comparing the performance of all
algorithms we only selected 10, 000 rows. TANE performs well
when there are less than 15 columns. If there are more than
41 columns, the time of HyFD increases significantly. As the
second vertical axis shows on the right of Figure 9, this change
is caused by the doubling of valid FDs. That means, HyFD
requires much more time to validate FDs. In contrast, DHyFD
handles the situation more smoothly. This demonstrates a huge
improvement achieved by the new validation method and the
DDM. Lastly, FDEP and DHyFD perform similarly on data
sets with few rows. With more columns the performance of
FDEP improves over that of DHyFD. Indeed, FDEP saves
substantial FD validation time when more valid FDs are
exhibited.

D. Covers of FD Profiles

Previous work has represented the output of FD discovery
algorithms as left-reduced covers. Table III contains the results
of applying standard algorithms for the computation of canon-
ical covers from left-reduced ones to the benchmark data [11].
The table shows the number of FDs in a left-reduced cover
(|L-r|), the total number of attributes in a left-reduced cover
(||L-r||), the number of FDs in a canonical cover (|Can|), the
total number of attributes in a canonical cover (||Can||), the
percentage of the ratios |Can|/|L-r| (%Size) and ||Can||/||L-r||

TABLE III. PROPERTIES OF LEFT-REDUCED & CANONICAL COVERS

Data set |L-r| ||L-r|| |Can| ||Can|| %S %C Time
iris 4 16 4 16 100 100 0

balance 1 5 1 5 100 100 0
chess 1 7 1 7 100 100 0

abalone 137 715 41 217 30 30 0.001
nursery 1 9 1 9 100 100 0
breast 46 214 39 184 85 86 0

bridges 142 669 65 337 46 50 0.002
echo 527 2322 93 392 18 17 0.012
adult 78 495 42 267 54 54 0.001
letter 61 786 61 786 100 100 0

ncvoter 758 3754 185 927 24 25 0.023
1001r 19c
hepatitis 8250 54821 2204 14718 27 27 0.927

horse 128727 1045762 34053 267385 26 26 81.85
fd-reduce 89571 358238 1550 6203 2 2 79.46

plista 178152 1397038 22680 166963 13 12 276.35
flight 982631 6106725 83496 520623 8 9 19996

weather 918 7219 514 4061 56 56 0.015
diabetic 40195 464871 32689 378546 81 81 9.14
PDBX 68 157 19 58 28 37 0

lineitem 3984 24927 679 4241 17 17 0.6
uniprot 3703 23530 1677 11179 45 48 0.104

512kr 30c

(%Card), and the time in seconds to compute a canonical from
the left-reduced cover (Time). On average, the canonical covers
have about 50% savings in both the numbers of FDs and total
numbers of attributes, about 25% savings on smaller data sets
(the first ten), and about 70% savings on bigger data sets (the
remaining eleven). This makes the outputs of FD discovery
algorithms not just clearer, because redundancy is avoided,
but also easier to comprehend and process. Our results also
demonstrate potential for future improvements of discovery
algorithms. The gap between left-reduced and canonical covers
shows that current algorithms do not prune many redundant
FDs. However, efficient pruning based on the transitivity rule
of FDs (X → Y and Y → Z imply X → Z) is challenging.

VI. RANKING FDS ACCORDING TO THEIR RELEVANCE

We provide a quantitative and qualitative analysis of ap-
plying our relevance measure of FDs to the canonical covers
of our benchmark data.

A. Quantitative analysis

Table IV lists for each data set the number #values of
data occurrences, the number #red of those that are redundant
excluding null, their percentage %red, the number #red+0 of
those that are redundant including null, and their percentage
%red+0. As stressed before, we let the data speak for itself and
do not judge the FDs in the covers on their meaningfulness.

The table provides the first insight ever on the data re-
dundancy exhibited by the benchmarks, and clearly shows the
significance of the measure by sheer volume. Furthermore, the
impact of nulls can be large.

Figure 10 analyzes for our bigger incomplete data sets how
many FDs cause how much data redundancy, and the time in
seconds to compute all redundant occurrences given the data
set and canonical cover. Each x-value is a given number of
redundant occurrences an FD can exhibit to be listed under
that x-value (and it must exhibit more than the previous x-
value). The x-values always represent 0, 2.5%, 5%, 10%, 15%,
20%, 40%, 60%, 80%, and 100% of the maximum number

TABLE IV. DATA REDUNDANCY IN NUMBERS AND PERCENTAGES

data set #values #red %red #red+0 %red+0
abalone 37,593 67 0.18
adult 683,788 75718 11.07
balance 3,125 0 0
chess 196,392 0 0
fd reduced 7,500,000 2,500,000 33.33
iris 750 31 4.13
letter 340,000 6,809 2
lineitem 96,019,440 11,407,131 11.88
nursery 116,640 0 0
breast 7,689 706 9.18 706 9.18
bridges 1,404 388 28.13 395 28.13
china 4,732,560 1,971,104 41.65 2,022,994 42.75
diabetic 3,052,980 420,607 13.78 474,460 15.54
echo 1,716 375 21.85 416 24.24
flight 109,000 48,297 44.31 100,233 91.96
hepatitis 3,100 1,588 51.23 1,629 52.55
horse 10,304 3,703 35.94 4,854 47.11
ncvoter 19,000 2,886 15.19 3,659 19.26
plista 63,000 27,024 42.9 50,047 79.44
uniprot 15,360,030 1,288,502 8.39 2,556,639 16.64
pdbx 224,975,387 131,743,942 58.56 132,441,479 58.87

Fig. 10. Number of FDs in canonical covers (y-axis) that cause not more
than the given number of redundant occurrences (x-axis), plus time (s) taken
to compute all redundant occurrences in the data set using the canonical cover

of redundant occurrences caused by any FD exhibited in the
data set. The charts show how the relevance of FDs ranks
the output of FD discovery algorithms. Many FDs are ranked
within a low percentile of redundant data values (more than 0
and less than 5% of the maximum). Data stewards may first
focus on the other FDs, including those that are ranked higher,
and those that do not cause any data redundancy because the
latter may indicate keys. FDs in the low percentile need to
be looked at carefully by domain experts: they could indicate
the presence of dirty data or represent FDs that hold only
accidentally. For such FDs it is also useful to analyze how
many of the redundant data values are null marker occurrences.

B. Some qualitative analysis

Let us consider ncvoter for some qualitative illustra-
tions. The introduction listed some FDs with many, very

Fig. 11. Comparison of FD numbers for given numbers of redundancies with
(blue) and without any nulls on LHSs and RHS (orange) across increasing
fragments of ncvoter, plus times to determine them

few, and no redundant occurrences. In particular, σ3 is an
example FD that may hold only accidentally because most
redundant occurrences are nulls (59 out of 61). In con-
trast, σ4 only has 2 redundant occurrences because of some
dirty data. Another example is first name, last name →
name prefix, name suffix, gender which triggers 60 redundant
occurrences, but 40 of those are null. The remaining 20
are all caused by first name, last name → gender, which
appears to be a reasonable constraint. Our rankings provide
data stewards with different ways to analyze the relevance of
FDs for applications. One view is to fix a column of interest,
and see which minimal LHSs cause how many redundant
occurrences in that column. For example, some minimal LHSs
that functionally determine city in ncvoter and cause some
redundant occurrences in city are as follows.

minimal LHSs for city #red #red-0
last name, zip code 158 158
middle name, zip code 231 114
street address 81 81
first name, zip code 71 71
age, gender, zip code, full phone num 173 16
voter id 2 2
last name, age, full phone num, register date 4 0
first name, last name, full phone num, download month 2 0

Here, #red lists the number of any redundant occurrences
while #red-0 lists the number of redundant occurrences that
do not involve any nulls on neither LHS attributes nor city.
This places stronger relevance on the FDs with boldly marked
LHSs, which also appear to represent more reasonable FDs.
Indeed, redundancies caused by FDs that do not involve any
nulls on LHS and RHS attributes are strong evidence of the FD
pattern, and larger numbers of such redundancies are testimony
to the stronger relevance of the FD. Figure 11 compares
the numbers of FDs that cause up to a given number of
redundancies with (blue) and without (organge) nulls. Over
four different fragments of ncvoter with 8k, 16k, 512k, and
1024k tuples, it is interesting to see how these numbers remain
stable, and how many FDs with small redundancies are shifted
to FDs without redundancies when nulls are excluded from
occurrences on LHS and RHS attributes.

VII. CONCLUSION AND FUTURE WORK

DHyFD is a new algorithm for the discovery of FDs. Using
a novel hybridization strategy and the dynamic computation
of stripped partitions, DHyFD outperforms the state-of-the-
art for runtime, row-, and column-scalability, by effective use
of more memory. Hence, DHyFD can handle larger inputs.
Canonical covers significantly decrease the outputs of FD
discovery algorithms by an average 50%. FDs can be ranked by
the number of redundant data values they cause. The ranking
guides data stewards towards FDs of higher relevance. Cover
computation and FD ranking open up new research inquiries.

REFERENCES

[1] Z. Abedjan, L. Golab, and F. Naumann, “Profiling relational data: a
survey,” VLDB J., vol. 24, no. 4, pp. 557–581, 2015.

[2] Z. Abedjan, P. Schulze, and F. Naumann, “Dfd: Efficient functional
dependency discovery,” in CIKM. ACM, 2014, pp. 949–958.

[3] L. Berti-Équille, H. Harmouch, F. Naumann, N. Novelli, and S. Thiru-
muruganathan, “Discovery of genuine functional dependencies from
relational data with missing values,” PVLDB, vol. 11, no. 8, pp. 880–
892, 2018.

[4] T. Bläsius, T. Friedrich, and M. Schirneck, “The parameterized com-
plexity of dependency detection in relational databases,” in LIPIcs-
Leibniz International Proceedings in Informatics, vol. 63, 2017.

[5] S. Davies and S. Russell, “NP-completeness of searches for smallest
possible feature sets,” in AAAI, 1994.

[6] P. A. Flach and I. Savnik, “Database dependency discovery: a machine
learning approach,” AI communications, vol. 12, no. 3, pp. 139–160,
1999.

[7] C. Giannella and C. Wyss, “Finding minimal keys in a relation in-
stance,” http://www.cs.indiana.edu/∼cgiannel/keys.ps, 1999.

[8] M. A. Hernández and S. J. Stolfo, “Real-world data is dirty: Data
cleansing and the merge/purge problem,” Data mining and knowledge
discovery, vol. 2, no. 1, pp. 9–37, 1998.

[9] Y. Huhtala, J. Kärkkäinen, P. Porkka, and H. Toivonen, “Tane: An
efficient algorithm for discovering functional and approximate depen-
dencies,” The computer journal, vol. 42, no. 2, pp. 100–111, 1999.

[10] S. Lopes, J.-M. Petit, and L. Lakhal, “Efficient discovery of functional
dependencies and Armstrong relations,” in EDBT. Springer, 2000, pp.
350–364.

[11] D. Maier, The Theory of Relational Databases. Computer Science
Press, 1983.

[12] H. Mannila and K. Räihä, “Dependency inference,” in VLDB, 1987, pp.
155–158.

[13] ——, “On the complexity of inferring functional dependencies,” Dis-
crete Applied Mathematics, vol. 40, no. 2, pp. 237–243, 1992.

[14] N. Novelli and R. Cicchetti, “Fun: An efficient algorithm for mining
functional and embedded dependencies,” in ICDT. Springer, 2001, pp.
189–203.

[15] T. Papenbrock, J. Ehrlich, J. Marten, T. Neubert, J.-P. Rudolph,
M. Schönberg, J. Zwiener, and F. Naumann, “Functional dependency
discovery: An experimental evaluation of seven algorithms,” PVLDB,
vol. 8, no. 10, pp. 1082–1093, 2015.

[16] T. Papenbrock and F. Naumann, “A hybrid approach to functional
dependency discovery,” in SIGMOD. ACM, 2016, pp. 821–833.

[17] M. W. Vincent, “Semantic foundations of 4NF in relational database
design,” Acta Inf., vol. 36, no. 3, pp. 173–213, 1999.

[18] Z. Wei and S. Link, “Discovery and ranking of functional dependen-
cies,” The University of Auckland, New Zealand, Technical Report
CDMTCS-531, 2019.

[19] C. Wyss, C. Giannella, and E. Robertson, “Fastfds: A heuristic-driven,
depth-first algorithm for mining functional dependencies,” in DaWaK.
Springer, 2001, pp. 101–110.

[20] H. Yao, H. Hamilton, and C. Butz, “Fd mine: Discovering functional
dependencies in a database using equivalences, canada,” in IEEE ICDM,
2002, pp. 1–15.

