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a b s t r a c t 

Highly relevant for both clinical and legal medicine applications, the established radiological methods for 

estimating unknown age in children and adolescents are based on visual examination of bone ossification 

in X-ray images of the hand. Our group has initiated the development of fully automatic age estimation 

methods from 3D MRI scans of the hand, in order to simultaneously overcome the problems of the ra- 

diological methods including (1) exposure to ionizing radiation, (2) necessity to define new, MRI specific 

staging systems, and (3) subjective influence of the examiner. The present work provides a theoretical 

background for understanding the nonlinear regression problem of biological age estimation and chrono- 

logical age approximation. Based on this theoretical background, we comprehensively evaluate machine 

learning methods (random forests, deep convolutional neural networks) with different sim plifications of 

the image information used as an input for learning. Trained on a large dataset of 328 MR images, we 

compare the performance of the different input strategies and demonstrate unprecedented results. For 

estimating biological age, we obtain a mean absolute error of 0.37 ± 0.51 years for the age range of the 

subjects ≤ 18 years, i.e. where bone ossification has not yet saturated. Finally, we validate our findings 

by adapting our best performing method to 2D images and applying it to a publicly available dataset of 

X-ray images, showing that we are in line with the state-of-the-art automatic methods for this task. 

© 2019 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

The progress of physical maturation of young individuals can

e used as a biological marker connected to aging. Estimating bi-

logical age (BA) from physical development is therefore a highly

mportant topic in both clinical and legal (forensic) medicine ap-

lications. In clinical medicine, BA estimation is motivated by di-

gnosis of endocrinological diseases like accelerated or delayed

evelopment in adolescents ( Martin et al., 2011 ), or for opti-

ally planning the time-point of pediatric orthopedic surgery in-

erventions while bones are still growing. Examples of such in-

erventions include leg-length discrepancy correction ( Lee et al.,

013 ) or spinal deformity correction surgery ( Wang et al., 2009 ).

n legal medicine, when identification documents of children or

dolescents are missing, as may be the case in asylum seek-
∗ Corresponding author at: Ludwig Boltzmann Institute for Clinical Forensic Imag- 

ng, Graz, Austria. 

E-mail address: martin.urschler@cfi.lbg.ac.at (M. Urschler). 
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ng procedures ( Schmeling et al., 2011 ) or in criminal investiga-

ions ( Schmeling et al., 2004 ), estimation of physical maturation

s used as an approximation to assess unknown chronological age

CA). 

Established radiological methods for estimation of physical mat-

ration are based on the visual examination of bone ossification in

-ray images ( Greulich and Pyle, 1959; Tanner et al., 1983 ). Ossi-

cation is best followed in the long bones and radiologists mainly

xamine hand bones due to the large number of assessable bones

hat are visible in X-ray images of this anatomical region, together

ith the fact that aging progress is not simultaneous for all hand

ones. More specifically, carpal and distal phalanges are the first

ones to finish ossification, while in radius and ulna, maturation

an be followed up to an age of around 18 years. From the level

f ossification assessed by the radiologist, the estimation of phys-

cal maturation of an individual is then quantified by associating

ts maturity to the age of the subjects in the reference atlas who

howed the same level of ossification. In the remainder of this

anuscript, we will refer to this quantification as biological age as

stimated by radiologists (BAR). 
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A major drawback of the widely used BAR approach is exposure

to ionizing radiation, which cannot be justified in legal medicine

applications for examining healthy children and adolescents with-

out any diagnostic reasons. Furthermore, the dependency on sub-

jective visual comparison to reference X-ray images makes these

methods prone to high inter- and intra-rater variability ( Bull et al.,

1999; Kaplowitz et al., 2011 ). Finally, the population used in build-

ing the reference atlas dates from the middle of the last cen-

tury ( Greulich and Pyle, 1959 ), which, due to changes in nutritional

habits as well as faster development of modern population, leads

to this method being considered inaccurate and outdated ( Cole

et al., 1988; Hackman and Black, 2013; Zabet et al., 2014 ). 

Over the recent years, research in age estimation has exhibited

tremendous interest in magnetic resonance imaging (MRI) as an

ionizing radiation free alternative to develop new schemes for fol-

lowing ossification progress corresponding to the development of

bones ( Dvorak et al., 2007; Terada et al., 2013; Tomei et al., 2014 ).

However, all methods currently developed for estimation of phys-

ical maturation from MRI are still based on visual examination by

a radiologist ( Serinelli et al., 2015; Urschler et al., 2016; De Tobel

et al., 2019 ), thus suffering from the same drawback of inter- and

intra-rater variability as the established methods based on X-ray

images. The present work conducts the first comprehensive evalu-

ation of different strategies that our group has developed for au-

tomatically estimating the progress of physical maturation from 3D

MRI. 

1.1. Related work 

In the age estimation method proposed by Greulich-Pyle (GP),

all hand bones are simultaneously compared to the best match-

ing reference image from an atlas of radiographs ( Greulich and

Pyle, 1959 ). The GP method is preferred by radiologists as it is easy

to use and fast to apply. However, radiologists have to visually ex-

tract and mentally fuse information from different bones, which

makes the GP method highly prone to intra- and inter-rater vari-

ability. To reduce subjectivity, Tanner-Whitehouse (TW2) proposed

the visual examination of 13 selected hand bones that is simpli-

fied by separating their ossification process into stages according

to textual and visual descriptions ( Tanner et al., 1983 ). Individual

stage estimates are then transferred to an ossification score and

fused according to a pre-defined nonlinear function. Both, the os-

sification score and the fusion function, were derived from charac-

teristics of a sample population. Although the TW2 method is more

objective and slightly more accurate compared to GP ( Cole et al.,

1988 ), it is used less frequently in clinical and forensic practice

since it is more time consuming. 

Aiming for reliable and accurate estimation without subjec-

tive influence of the examiner, automated image analysis meth-

ods for age estimation were developed ( Tanner and Gibbons,

1994; Pietka et al., 2001 ). Most prominently, the BoneXpert

method ( Thodberg et al., 2009 ) uses Active Appearance Mod-

els ( Cootes et al., 2001 ) to automatically segment hand bones and

employs principal component analysis to reduce dimensionality of

age relevant shape and appearance feature information before re-

gressing age. To reproduce the BAR, the fusion of individual esti-

mations per bone is calibrated using the same pre-defined nonlin-

ear function developed for TW2. Very recently, deep convolutional

neural networks (DCNN) have shown to be immensely successful

in solving diverse machine learning and computer vision problems,

mainly due to their ability to automatically learn task relevant fea-

tures from large training datasets ( LeCun et al., 2015 ). Spampinato

et al. (2017) investigated several deep learning architectures to as-

sess BAR automatically on a publicly available dataset of subjects

with different genders and ethnicities in the CA range from 0 to 18

years. Recently, Radiological Society of North America (RSNA) orga-
ized a Pediatric Bone Age Challenge intended to show the poten-

ial of machine learning and artificial intelligence in learning BAR

rom 14,036 clinical hand radiographs and corresponding reports

btained from two children’s hospitals ( Larson et al., 2017 ). Eval-

ated on 200 images, whose reference BAR annotation was done

y three radiologists, the winner of the competition used the deep

nception V3 CNN ( Szegedy et al., 2016 ) with additional gender in-

ormation. 

A severe drawback of radiographic age estimation techniques

s exposure to ionizing radiation. This drawback is further ampli-

ed in legal medicine applications, where several anatomical struc-

ures are examined to extend the age estimation range beyond 18

ears, e.g. for adolescent asylum seekers lacking valid identifica-

ion documents. For such multi-factorial age estimation, dental ra-

iography of wisdom teeth ( Demirjian et al., 1973 ) and computed

omography of clavicle bones ( Kellinghaus et al., 2010 ) are em-

loyed in addition to hand radiographs, thereby significantly in-

reasing the required amount of ionizing radiation. Thus, MRI spe-

ific radiological staging schemes are currently seeing a lot of re-

earch interest ( Serinelli et al., 2015; Baumann et al., 2015 ). To the

est of our knowledge, our group is the only one developing au-

omatic MRI-based methods for age estimation in order to simul-

aneously overcome the problems of (1) exposure to ionizing ra-

iation, (2) necessity to define new, MRI specific staging systems

nd (3) subjective influence of the examiner. Working with data

rom an adolescent age range, in Štern et al. (2014) we used a ran-

om forest (RF) ( Breiman, 2001 ) to separately regress CA from im-

ge intensity based features of 11 selected hand bones. There, a

ecision tree excluding metacarpal and phalanx information from

lder subjects served as a heuristic fusion strategy for age esti-

ation, making this method ad hoc and dependent on parameter

uning. In Štern and Urschler (2016) , we explored the capability of

Fs for information fusion by allowing it to internally decide from

hich bones to learn a subject’s CA. Thus, we treated aging as a

lobal developmental process without the need for heuristic fusion

chemes as in Štern et al. (2014) , or pre-defined nonlinear func-

ions as in Tanner et al. (1983) or Thodberg et al. (2009) . However,

y introducing more bones into the RF framework, the space from

hich handcrafted features are generated was increased, making

he regression task harder. To simplify this regression problem,

nlike Kashif et al. (2016) where generic feature generators like

IFT ( Lowe, 2004 ) were evaluated for bone age assessment, we in-

tead utilized a task specific image preprocessing step emphasiz-

ng epiphyseal plates before generating Haar-like features. Follow-

ng current research trends of replacing handcrafted features in RF

ith automatically learned ones, in Štern et al. (2016) we proposed

 DCNN architecture to combine age information from individual

ones in an automatic fashion by letting the DCNN learn directly

he features relevant for age estimation. 

.2. Contribution 

In recent years, our group has initiated the development of fully

utomatic age estimation methods from 3D MRI scans of the hand,

n order to simultaneously overcome problems of exposure to ion-

zing radiation, necessity to define new, MRI specific staging sys-

ems and to eliminate the subjective influence of the examiner.

n this work, we improve our MRI-based age estimation strate-

ies and comprehensively evaluate their performance on a large

ataset. Thus, we extend our previous work in the following as-

ects: 

• We provide a theoretical background for understanding the

high dimensional, nonlinear regression problem of biological

age (BA) estimation from 3D hand MRI. 
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Fig. 1. Overview of our investigated approaches for automatic age estimation from 3D hand MRI. For both regressing age ( age ) and distinguishing minors from adults ( m / a ), 

we evaluate the performance of random regression forests (RRF) and deep convolutional neural networks (DCNNs), when three different input strategies are used for training 

these state-of-the-art machine learning (ML) methods. 
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• We thoroughly investigate different strategies for simplifying

this regression problem by comparing the performance of RFs

using handcrafted feature extraction with DCNNs promising au-

tomatic learning of task specific filters, see Fig. 1 . 
• With the DCNN approach, we inspect the predictor by visual-

izing the changes in anatomical regions that provide the age

relevant information during development. 
• We extend our previously proposed RF and DCNN approaches

by improving data augmentation and increasing robustness of

predictions. 
• We evaluate both approaches on a much larger dataset of 328

subjects. 
• We significantly improve on our previous age estimation re-

sults with both approaches and present the new state-of-the-

art method for 3D hand MRI with our DCNN approach. 

Additionally, since to the best of our knowledge, our methods

re the only ones developed for automatic age estimation from 3D

R images, we validate our findings by adapting our best perform-

ng method and applying it to a publicly available dataset compris-

ng of 2D X-ray images. This allows us to compare our results with

he state-of-the-art automatic age estimation methods for 2D X-ray

mages. 

. Method 

.1. Biological age (BA) estimation 

Biological age (BA) z of a subject with hand bone maturity x

s the expected CA Y of the healthy population that has the same

egree of hand bone maturity X = x : 

 = E(Y | X = x ) . (1)

or now, let us assume that hand bone maturity X is a known bi-

logical marker. In the following Section 2.2 , we present different

trategies for extracting age relevant features x from hand images. 

In statistical decision theory, the conditional expectation E(Y |
 = x ) in (1) is referred to as the regression function, since the best

rediction of Y at any point X = x is the conditional mean, when

est is measured by average squared error ( Hastie et al., 2009 ).

hus, given the dataset of pairs { ( x 1 , y 1 ) , . . . , ( x N , y N ) } ∈ ( X , Y )

ro m N healthy subjects, the conditional expectation in (1) can be

odeled with a regression function f ( · ; θ), whose parameters θ
re estimated as: 

ˆ = arg min 

θ
‖ Y − f ( X ; θ) ‖ 

2 . (2)
or test subject j ∈ { 1 , . . . , M } , es timated BA ˆ z j can then be ob-

ained from the maturity of its hand bones x j as: 

ˆ 
 j = f ( x j ; ˆ θ) , (3) 

Among different functions f ( · ; θ) that can be used to model

he conditional expectation in (1) , for the best performing one in

erms of generalization, the mean absolute error (MAE) between

stimated BA ˆ z and true BA z is minimal. Unfortunately, the BA z

iven with (1) is a latent variable, and therefore neither available

or training the prediction model nor for its evaluation. Thus, to

valuate different models, the estimated BA ˆ z can solely be com-

ared to the available CA y , which leads to an MAE ξ CA → CA defined

s: 

C A → C A = 

1 

M 

M ∑ 

j=1 

∣∣ˆ z j − y j 
∣∣ = 

1 

M 

M ∑ 

j=1 

∣∣ˆ z j − z j + z j − y j 
∣∣

≤ 1 

M 

M ∑ 

j=1 

∣∣ˆ z j − z j 
∣∣ + 

1 

M 

M ∑ 

j=1 

∣∣z j − y j 
∣∣

= ξ F IT + ξ BV . 

(4) 

From (4) we see that the estimation error is composed of two

omponents. The MAE between model prediction and BA ( ξ FIT ) de-

ends on how good a prediction function f ( · ; θ) models the condi-

ional expectation in (1) . While ξ FIT reflects the goodness of fit of

he prediction function, the second component ( ξ BV ), which is de-

ived from the absolute differences between CA and BA of subjects,

olely depends on the M subjects studied in the dataset. Known as

iological variation (BV), this difference varies in the population up

o ± 2 years ( Ritz-Timme et al., 20 0 0 ), making comparison of dif-

erent prediction functions unreliable, when distinct datasets with

 limited number of subjects are involved in experiments. 

To eliminate the influence of biological variation on the

valuation error, the performance of prediction models can

e compared to the biological age as estimated by radiol-

gists (BAR) by utilizing the widely accepted Greulich and

yle (1959) or Tanner et al. (1983) methods. When using BAR

s defined by these methods, an error on the testing dataset

 ξOVtest ) due to subjective interpretation of the respective method

s introduced. However, this error, which is reported around 0.5

ears ( Lynnerup et al., 2008; Martin et al., 2011 ), is much smaller

han the error due to biological variation, ξOVtest < < ξ BV . Never-

heless, an additional estimation error ( ξ B ) due to the bias to-

ards the datasets used for building the atlas in Greulich and

yle (1959) or the nonlinear function in Tanner et al. (1983) is also
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introduced: 

ξCA → BAR = ξ F IT + ξOV test + ξ B . (5)

Up until now, we have presumed that CA Y is statistically de-

pendent on the degree of hand bone maturity X over the whole

age range. However, this dependence is only valid until the CA of

around 18 years, since information on physical development is sat-

urated in hand images after all hand bones have finished ossifica-

tion. Since all the subjects with saturated ossification information

have the same hand bone maturity x , a model f ( · ; θ) trained with

average squared error in (2) learns to predict the average CA of

the subjects older than 18 years in the training dataset. This av-

erage value solely depends on the age range of the training data

and therefore it is not related to the biological development of the

subjects with saturated ossification information. Although the in-

clusion of multi-factorial age relevant information extracted from

wisdom teeth and clavicle bones can extend the range of predic-

tion to CA beyond 18 years as done in legal medicine applications,

in this work we focus on age estimation from a single site, i.e. hand

bones. 

To avoid the problem of saturation of age relevant information,

a common approach in the automatic age estimation methods from

2D X-ray images is to use BAR instead of CA in (2) when training

the model. Such an approach also provides means for more reli-

able comparison of different models, since the bias of the datasets

used for building the Greulich and Pyle (1959) atlas or the nonlin-

ear function in Tanner et al. (1983) presented in (5) is now inte-

grated into the model and therefore no longer contributes to the

evaluation error: 

ξBAR → BAR = ξ F IT + ξOV test + δ · ξOV train . (6)

However, in addition to the observer error on the testing

dataset ξOVtest , if the BAR of a different observer is used during

training, an error ξOVtrain due to his subjective interpretation of the

respective reference method ( Greulich and Pyle, 1959; Tanner et al.,

1983 ) has to be taken into account. Since the predictions of the

two observers are expected to be correlated, we introduce a mul-

tiplicative coefficient δ ∈ [0, 1] in Eq. (6) , which is inversely related

to their inter-observer variability. 

Finally, it is important to understand that due to the bias be-

ing integrated in the model, the estimated age of a model trained

on BAR using Greulich and Pyle (1959) or Tanner et al. (1983) is

not the BA, but an estimation of the BAR. Furthermore, in legal

medicine, the estimation of BAR is often used to approximate CA,

even though it is associated with the largest error: 

ξBAR → CA = ξ F IT + ξOV train + ξ B + ξ BV . (7)

2.2. Bone maturity feature extraction 

Mapping the maturity of bones x to BA z can be seen as a

regression task, where a machine learning method is employed

to learn a regression function f ( X = x ; θ) from annotated training

data as defined in (2) . However, the maturity of hand bones x is

not a single hand bone feature that can be physically measured,

but a combination of appearance features that defines the current

stadium of a continuous physical process of hand bone maturation.

Thus, to learn the regression function f ( X = x ; θ) , the maturity of

the hand bones x has to be extracted from each hand image I in a

dataset. 

In traditional machine learning methods like support

vector machines ( Cortes and Vapnik, 1995 ) or random

forests ( Breiman, 2001 ), handcrafted feature extraction is em-

ployed as a preprocessing step to the regression task. Thus, to

generate handcrafted feature extractors that are essential for

performing successful age estimation, prior knowledge of the

potential image information that define bone maturity is highly
mportant. By automatically learning the task specific filters,

tate-of-the-art DCNN approaches promise that no separate pre-

rocessing step is needed. However, to achieve that, DCNN models

ave a significantly higher number of parameters θ that have to

e learned in order to simultaneously extract the relevant image

eatures and perform regression. Consequently, compared to RF,

raining of a DCNN requires a larger training dataset to prevent

ver-fitting. 

In order to compare the performance of different machine

earning methods for 3D MRI age estimation when a limited

ataset is available, we conducted an extensive evaluation of three

ifferent strategies depending on the simplification level of this

igh dimensional, nonlinear regression problem, see Fig. 1 . Thus,

e evaluated the performance of RF and DCNN based methods

 Section 2.3 ) when trained on (1) the whole raw input image , (2)

he cropped age relevant structures to reduce variations in pose

 Section 2.2.2 ), and (3) the response of hand-crafted filter based en-

ancement of the age relevant structures to reduce variation in pose

nd appearance ( Section 2.2.3 ). 

.2.1. Whole image 

Following the spirit of deep CNNs to learn complex tasks solely

iven raw input images, as also successfully explored by partici-

ants at the RSNA Pediatric Bone Age Challenge for age estimation

rom X-ray images, this strategy takes the whole MRI volume as

nput for nonlinear regression, without any simplification of the re-

ression problem. This approach, which is highly dependent on the

vailability of large datasets, is the most demanding to train a pre-

iction model, since age relevant information has to be extracted

rom the high dimensional space corresponding to all voxels in the

hole MRI volume. 

.2.2. Cropping age relevant structures 

In this preprocessing step, the input image domain is simpli-

ed for the regression task by eliminating hand pose variations

n the images. As shown in Fig. 1 , we extract the same 13 bones

 ∈ (b 1 , . . . , b 13 ) tha t radiologists use in the TW2 method for BAR

stimation. To localize bones in the 3D MRI volumes, we developed

 fully automatic method able to predict the location of anatomical

andmarks defined between the hand and wrist bones, see Fig. 1 .

etails of this method are explained in Payer et al. (2016, 2019) .

he obtained anatomical landmarks are used to crop a cube for

ach individual bone I b = I b (k 1 , k 2 , k 3 ) used in the experiments.

he size of each cube is chosen in a way that guarantees encap-

ulation of the epiphysial and metaphysial parts of the bone inside

f the cube. By cropping the bones, they are all brought into the

ame canonic position with the k 2 axis of the cube corresponding

o the main bone axis, see Fig. 1 . Thus, all bones are aligned and

sed either directly to learn the regression function in (2) or as an

nput to the filter based enhancement of the age relevant struc-

ures. 

.2.3. Filter based enhancement of age relevant structures 

For our investigated age range between 13 and 25 years, the

ain aging information is contained within the developmental

evel of the epiphyseal gaps of long bones, since ossification in

arpal bones has already been completed. Therefore, this prepro-

essing step enhances the appearance of the epiphyseal plate com-

ared to surrounding anatomical structures in the 3D image of the

ropped bone. Due to the planar shape of the epiphyseal plate,

hich is orthogonal to the k 2 axis of the cropped bone image (see

ig. 1 ), the epiphyseal plate can be enhanced by filtering the bone

mage I b = I b (k 1 , k 2 , k 3 ) with a 1D Laplacian of Gaussian (LoG) fil-

er along the k 2 axis: 

 

2 G (k 2 ;σ ) = 

(
k 4 2 

σ 4 
− 1 

σ 2 

)
e −

k 2 
2 

2 σ2 , (8)
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Fig. 2. Inspired by how radiologists perform visual age estimation independently from a set of selected bones, our DCNN architecture consists of one feature extraction and 

encoding (FEE) block per bone followed by two fully convolutional layers (fc) combining individual bone specific information into the final prediction ( f o ) for the hand. 
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here the parameter σ corresponds to the width of the epiphy-

eal plate. Since the width of the epiphyseal plate decreases with

ging, we sum the filtering responses for different σ to ensure the

nhancement of plates with different widths: 

 

b 
F = 

∑ 

σ∈ { σmin ,σmax } 
∇ 

2 G (k 2 ;σ ) ∗ I b (k 1 , k 2 , k 3 ) . (9) 

.3. Machine learning methods 

We experimented with the two currently dominant machine

earning approaches in medical image analysis applications by in-

estigating the RF approach that uses handcrafted feature gener-

tion and the DCNN method that promises automatic feature ex-

raction when trained for age estimation. As an input to our RF

nd DCNN methods, we used either the 13 cropped bone im-

ges (see Section 2.2.2 ), or epiphyseal gap enhanced images of

he 13 bones (see Section 2.2.3 ). Additionally, we experimented

ith DCNN trained on whole hand images (see Section 2.2.1 ). Both

ethods were evaluated for the regression task, where either CA

r BAR is used as a target. When estimating whether a subject is

 minor or an adult, we used our DCNN architecture trained for a

lassification task. 

.3.1. RF 

In terms of performance, the great success of the RF approach

o modeling complex nonlinear functions lies in the ensemble of

eak learner models. Each of the trees in an RF is trained in a

ierchical fashion to give a prediction with a set of simple de-

isions from weak learners, with each of them performing bet-

er than by random guess. The key aspect of the RF to general-

ze well even in the presence of a limited dataset is that each

ree provides uncorrelated predictions when combined into an en-

emble prediction. Nevertheless, compared to DCNNs, which au-

omatically learn features relevant for the task, features used by

he RF have to be constructed manually. Since after cropping, the

piphyseal plate is orthogonal to the k 2 axis of the bone im-

ge, we generate features for the RF as an average image value

long a randomly generated line of length d parallel to the k 2 axis

((k 1 , k 2 = K 2 , k 3 ) , (k 1 , k 2 = K 2 + d, k 3 )) . Thus, in each tree node of

he RF, a feature is generated based on either the cropped bone

mages I b (see Section 2.2.2 ) for method rf-reg or on the epi-

hyseal plate enhanced bone images I b 
F 

(see Section 2.2.3 ) for

ethod rf-reg-enh . Specifically, feature generation occurs by ran-

omly selecting a hand bone b out of the set of 13 possible

ones, followed by randomly generating a bone image coordinate

(k 1 = K 1 , k 2 = K 2 , k 3 = K 3 ) as well as a length d along the k 2 axis. 

Regression RF: Similar to Criminisi et al. (2013) and Štern and

rschler (2016) , a most informative feature/threshold pair is found
t each node of the T trees of a forest, such that the training sam-

les reaching the node are best discriminated over the ages. This

eature is determined by maximinizing information gain IG : 

G = V ar(S n ) −
∑ 

i ∈{ L,R } 

| S n,i | 
| S n | V ar(S n,i ) . (10)

ere Var ( · ) is the variation of age in the set of subjects S n whose

and bone images reached the node n . The bone images of the

ubjects in the set S n are pushed to the left ( L ) or right ( R ) child

ode according to the splitting decision made by thresholding a

eature response. The selected feature and threshold from a pool

f randomly generated N F features and N T thresholds are stored

n each node to be used during testing. When the maximum tree

epth N D is reached, or there is no further improvement in IG , the

ecursive splitting procedure is finished. In the leaf nodes of each

ree, we store a list of ages of all subjects that reached the node. 

During testing, the feature response is computed for a test sub-

ect based on the stored feature parameters, and the subject is

assed to the left or right child node according to the result of

hresholding. Differently to our previous RF method ( Štern and

rschler, 2016 ), where the estimated age was calculated by aver-

ging the mean ages of subjects stored in the reached leaf nodes,

n this work we robustly estimate the age from the combined set

f all ages accumulated from the reached leaf nodes of all trees in

he RF. Estimated age is calculated as a truncated mean of this set

fter discarding 5% of ages with highest and 5% with lowest values,

espectively. 

.3.2. DCNN 

Due to their ability to automatically learn task relevant fea-

ures, DCNNs have recently attracted great interest in both the

omputer vision and medical image analysis communities. To pre-

ent overfitting due to the large amount of training parame-

ers, a common approach when working with limited datasets is

o finetune a DCNN architecture pretrained on a large training

ataset ( Spampinato et al., 2017 ). However, this is only possible

hen working with 2D images, as no pretrained networks like Im-

geNet ( Russakovsky et al., 2015 ) exist for 3D images. Therefore, in

his work, we focus on exploiting the flexibility of building a task

pecific DCNN architecture φ( θ) suitable for working with a limited

ataset of 3D images. 

Inspired by the idea of the best performing radiological TW2

ethod that estimates ossification stages of hand bones separately

efore combining them with a nonlinear function, our proposed

CNN architecture shown in Fig. 2 consists of per-bone feature ex-

raction and encoding (FEE) blocks that are combined with two

ully connected layers to model a nonlinear fusion function. Due to
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Fig. 3. Biological age as estimated by radiologists (BAR) and chronological age (CA) 

distributions of our N = 328 dataset. 
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1 http://ipilab.usc.edu/BAAweb/ , as of Jun. 2017. 
their excellent capabilities for extracting task relevant features, our

FEE blocks have a similar structure as proposed in the widely used

LeNet ( LeCun et al., 1998 ) or VGG ( Simonyan and Zisserman, 2015 )

architectures. Thus, the repeating structure of our FEE block con-

sists of two consecutive convolution layers and one max-pooling

layer, where Rectified Linear Units ( ReLUs ) are used as nonlinear

activation functions ( Nair and Hinton, 2010 ). Depending on the

bone it is related to, our FEE block is either four levels deep for

radius and ulna, or three levels deep for the remaining hand long

bones, see Fig. 2 . To extract features from 3D MR images, we use

3 × 3 × 3 filters in the convolutional layers. The FEE block finishes

with a fully connected layer, leading to an encoded output feature

representation for each cropped bone f b . To fuse feature represen-

tations into a single feature vector f i , we use a fully connected

layer followed by a ReLU activation unit. Finally, the age estimate is

obtained after a fully connected layer with a single continuous age

prediction output. In our experiments with whole hand images as

input, we used the same architecture but with only one FEE block

that is four levels deep. 

We studied different numbers of filter outputs in our FEE

block and outputs of the fully connected layers, but we could

not find a single combination of hyperparameters that showed

superior performance. Moreover, due to a limited dataset com-

bined with strong data augmentation, the prediction perfor-

mance remained dependent on when training was stopped

long after training has reached a plateau, even when differ-

ent levels of dropout ( Srivastava et al., 2014 ) were included

in the fully connected layers. Differently from our previous

work ( Štern et al., 2016 ), where a single combination of hyperpa-

rameters was used to generate a DCNN, in this work we followed

the traditional and widely used idea of neural network ensem-

bles ( Hansen and Salamon, 1990 ) to improve on generalization ca-

pabilities. In common DCNN ensemble approaches, uncorrelated

predictions are achieved by each DCNN being trained on differ-

ent bootstrap samples of the original training dataset, i.e. a bag-

ging strategy ( Breiman, 1996 ), and with different random ini-

tializations of the DCNN parameters. Following recent findings

in Lee et al. (2015) and Lakshminarayanan et al. (2017) that dif-

ferent random initializations are more beneficial for decorrelating

ensemble models, in our approach we additionally use a different

set of hyperparameters for each DCNN φe ( θθθ e ) : 

φE ( θθθ E ) = 

1 

N e 

N e ∑ 

e =1 

φe ( θθθ e ) , (11)

with θθθE = 

[
θθθ1 , . . . , θθθN e 

]
bei ng the set of parameters of the N e DC-

NNs in the ensemble φE ( θθθE ) . 

Regression DCNNs : Associated with the regression target y n , a

training sample s n , n ∈ { 1 , . . . , N} can be the 13 cropped bone im-

ages I b ( Section 2.2.2 ) in the cnn-reg experiments, the 13 epiphy-

seal plate enhanced bone images I b 
F 

( Section 2.2.3 ) in the cnn-

reg-enh experiments or a whole hand image I in the cnn-reg-hand

experiments. Optimizing a regression ensemble of DCNN architec-

tures φE with ensemble parameters θθθE is performed by stochastic

gradient descent by minimizing an L 2 loss: 

ˆ θ
age 

E = argmin θθθ E 

1 

2 

N ∑ 

n =1 

∥∥φE (s n ;θθθ E ) − y n 
∥∥2 + λ

∥∥θθθ E 

∥∥2 
, (12)

where λ is a parameter determining the strength of the weight

decay regularization term. 

Classification DCNNs : When estimating whether a subject is a

minor or an adult, we compare the classification results derived

by thresholding the result of the regression DCNN ( cnn-reg ) with

the classification results obtained by training the same architecture
ith a multinomial logistic classification loss computed as soft-

ax: 

ˆ 
m/a 

E = argmin θθθ E 

N ∑ 

n =1 

∑ 

j∈{ m,a } 
−y j n log 

e φ
j 
E 
(s n ;θθθ E ) ∑ 

k ∈{ m,a } e φ
k 
E 
(s n ;θθθ E ) 

+ λ
∥∥θθθ E 

∥∥2 
. 

(13)

n this cnn-class experiment, the binary variable y n is defined as 1

or a minor ( m ) and 0 for an adult ( a ). 

.4. Materials 

3D MRI dataset: Our 3D MRI dataset was collected at the Lud-

ig Boltzmann Institute for Clinical Forensic Imaging in Graz as

art of a study investigating the role of MRI in forensic age esti-

ation, which was performed in accordance with the Declaration

f Helsinki and approved by the ethical committee of the Medi-

al University of Graz (EK 21,399 ex 09/10). All eligible participants

rovided written informed consent. For underage participants writ-

en consent of the legal guardian was additionally obtained. Exclu-

ion criteria were history of endocrinal, metabolic, genetic or de-

elopmental disease. The dataset consists of N = 328 3D hand MRI

olumes acquired from male Caucasian volunteers with known CA

etween 13 and 25 years, with N = 141 subjects aged less than or

qual to 18 years. All MRI examinations were performed on a 3.0

 scanner (Tim Trio, Siemens Healthineers, Germany), in prone po-

ition with outstretched fixed left arm using a head and a neck

oil together to cover the hand and the wrist simultaneously. The

RI protocol used for acquiring the 3D volumetric images was

n isotropic T1 weighted 3D VIBE sequence with a water selec-

ive prepulse, at a resolution of 0.45 × 0.45 × 0.9 mm 

3 and image

ize 294 × 512 × 72 voxels. Image acquisition time was 4 min, how-

ver, this time can be reduced by parallel imaging and undersam-

ling ( Neumayer et al., 2018 ). BAR was determined by consensus

f two radiologists experienced in age estimation from X-ray and

R images. The distribution of CA and BAR in our MRI dataset is

iven as a histogram with bins of one year in Fig. 3 . 

2D X-ray dataset : In order to reproduce our findings from 3D

R age estimation on a publicly available dataset of 2D X-ray im-

ges, we extracted all 835 images of subjects older than 10 years

rom the publicly available Digital Hand Atlas Database . 1 This al-

owed us to compare our method to other state-of-the-art auto-

atic methods developed specifically for 2D X-ray data on the

ame dataset. The maximal CA of the subjects in this dataset is 19

ears and all subjects show an approximately uniform age distri-

ution. The average size of these images is 1563 × 2169 pixels and

e used a histogram matching preprocessing step to normalize in-

ensities regarding contrast and brightness. 

http://ipilab.usc.edu/BAAweb/
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. Experimental setup 

.1. Implementation details 

For all experiments, we scaled and shifted the intensity values

f raw hand images such that intensity values are in the range

rom −1 to 1. In the experiments with cropped bone images, we

nsured that the epiphysis and metaphysis part of the bone were

ontained within the cube. In experiments with 3D MR data, we

sed trilinear interpolation to resample the cropped cubes to a

ize of 40 × 40 × 40 voxels for radius and ulna, and due to training

ime and memory restrictions, 24 × 24 × 24 voxels for the remain-

ng hand long bones. When conducting experiments with 2D X-ray

maging data, the size of the resampled region was 80 × 80 pixels

or all bones. In the whole hand experiments, 3D MR images were

esampled to the size of 96 × 128 × 32 voxels and when working

ith 2D X-ray images only the region that contained the hand was

esampled to 256 × 256 pixels. 

In DCNN experiments with both MRI and X-ray datasets, we

sed an ensemble of five architectures with different numbers of

ntermediate outputs in the FEE block. In the experiments with 13

ropped hand bones, we used the following N e = 5 combinations of

ntermediate outputs in the FEE block: (16,16,32,32), (8,16,32,64),

32,32,32,32), (16,32,32,64) and (16,32,64,64). The fully connected

ayer f b at the end of the FEE block has 256 outputs generating

he feature vector of the individual bone and the fully connected

ayer f i generates 1024 outputs. In both the MRI and X-ray im-

ge based DCNN experiments with the whole hand, we used only

ne FEE block with increased number of intermediate output fil-

ers: (16,32,6 4,128), (32,32,6 4,6 4), (16,6 4,6 4,6 4), (16,6 4,6 4,128) and

16,32,32,128). We also increased the number of outputs of the

ully connected layer f b at the end of the FEE block to 1024. The

ully connected layer f i generates 1024 outputs. In all experiments

ith DCNN, the fully connected layer f o generates either one out-

ut for regression, or two outputs for classification. Optimization

f DCNN was done with the TensorFlow framework ( Abadi et al.,

016 ) using the optimizer ADAM ( Kingma and Ba, 2015 ) with a

aximum of 20,0 0 0 iterations when trained using cropped bone

mages and 40,0 0 0 iterations when whole hand images were used

or training. We used a mini-batch size of 8, a learning rate of

0 −5 , and an L 2 weight decay parameter λ = 0 . 0 0 05 for regular-

zation. In all our experiments with RF, we used T = 100 trees with

aximal tree depth of N D = 25 . At each split node, N F = 200 ran-

omly generated features and N T = 10 candidate thresholds were

enerated. 

In the 3D MR experiments with enhanced epiphyseal plates, the

oG filters from (8) were applied to the images with σ between

min = 0 . 5 mm and σmax = 3 mm . 

Data augmentation : Differently to our previous work ( Štern

t al., 2016 ), where the size of the training dataset was increased

y a fixed number of images that were augmented, in this work

mages were additionally transformed on-the-fly in a data aug-

entation step using values randomly sampled from a uniform

istribution within the following intervals. The intensity values

ere shifted by [ −0 . 1 , 0 . 1] and scaled by [0.8,1.2]. Additionally, the

ropped 3D MR or 2D X-ray bone images were geometrically trans-

ormed using translation by [ −2 mm , 2 mm ] , scaling by [0.85, 1.15],

nd rotation by [ −5 ◦, 5 ◦] in each dimension. 

.2. Evaluation setup 

In all our evaluation experiments, we used a four fold cross-

alidation such that each sample from our dataset was tested ex-

ctly once. In each cross-validation fold, the tested samples resem-

led the same age distribution as in our whole dataset. During

raining, subjects were randomly sampled from both 3D MR and
D X-ray datasets such that the age distribution was uniform over

he whole training age range. When training DCNN for majority

ge classification, we randomly sampled subjects such that the two

lasses were equally represented. 

3D MRI age regression experiment: In our MRI age regression ex-

eriment, we differentiated four cases depending on which age

he method was trained and evaluated on: the method trained

n BAR and evaluated on BAR (BAR → BAR), trained on BAR and

valuated on CA (BAR → CA), trained on CA and evaluated on

AR (CA → BAR), and finally trained on CA and evaluated on CA

CA → CA). Due to the limitation in the range of prediction caused

y the saturation of the hand bones (see Section 2.1 ), in the re-

ression experiment CA → BAR and CA → CA, the CA of subjects

lder than 19 years was clamped to 19 years. We compute mean

nd standard deviation of absolute differences between predicted

nd ground truth age as our error measure (MAE). Additionally,

e generate a discretized distribution of differences between pre-

icted and ground truth age in a range from −3 years to +3 years

ith a bin size of 1 year. 

2D X-ray age regression experiment: To compare performance

ith other recently published methods on the 2D X-ray hand im-

ges, we adapted our DCNN architectures for whole hand images

 cnn-2d-hand ) and cropped 13 hand bones ( cnn-2d-bones ) to work

ith 2D images. All our 2D DCNN architectures were trained sep-

rately for male and female subjects older than 10 years in the X-

ay Digital Hand Atlas Database . Since the carpal bones are an im-

ortant source of age relevant information for the subjects in this

ge range, we also investigated a DCNN architecture ( cnn-2d-bones-

arpal ) that in addition to the 13 hand bone images also takes into

ccount an image of the cropped carpal bones. Due to the flexi-

ility of our DCNN architecture (see Fig. 2 ), this was achieved by

dding an additional FEE block to our cnn-2d-bones architecture.

e evaluated our results in terms of the MAE and discretized dis-

ribution between predicted and different ground truth ages (BAR1,

AR2, CA) provided in the dataset. 

3D MRI classification experiment: With the majority age thresh-

ld of 18 years, we defined minors as positive samples and adults

s negative samples. We evaluate classification experiments by in-

pecting true positives (TP), true negatives (TN), false positives (FP)

nd false negatives (FN). From the true positive rate (TPR, sen-

itivity) and the true negative rate (TNR, specificity) for different

hresholds of the classifiers, we derive receiver operating character-

stic (ROC) curves by plotting sensitivity over 1 - specificity. Since

e defined correctly classified minors as true positives, sensitiv-

ty indicates the percentage of minors that are correctly classified

s minors. To compare classifiers, we use the area under the ROC

urve (AUC). 

. Results 

In our experiments for age estimation from 328 hand MRI vol-

mes, we investigated the performance of RF and DCNN based

ethods when trained on whole raw input images, cropped age

elevant structures to reduce variation in pose, or the response of

he handcrafted filter based enhancement of age relevant structures

o reduce variation in pose and appearance. Comprehensive cross-

alidation results in terms of MAE are shown in Table 1 for all sub-

ects and separately for subjects where the age relevant informa-

ion is not yet saturated, i.e. with a BAR between 13 and 18 years.

dditionally to the MAE, in Table 1 we also show the discretized

istribution of the difference between predicted and ground truth

ge. We compare the results with our previous work ( Štern et al.,

016 ), where a single DCNN was trained either on the same 13

ropped bone images ( cnn-reg-2016 ) or 13 epiphyseal plate en-

anced bone images ( cnn-reg-enh-2016 ). Additionally, we give more

etailed insight into the error of our compared methods in Fig. 4 .
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Fig. 4. Mean absolute difference of predicted and groundtruth age shown separately for one year age groups for (a) BAR → BAR, (c) CA → BAR, and continuously for (b) 

BAR → CA and (d) CA → CA (see also Table 1 ). 
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There, we show the results separately for each one year age group

when predicted age is compared to BAR ( Fig. 4 a and 4 c), and

continuously when predicted age is compared to CA ( Fig. 4 b and

4 d). 

In Fig. 5 , we show the feature response of convolutional layer

f 3 (see Fig. 2 ), when cnn-reg-hand is trained on BAR. The heatmap

value in the images corresponds to the accumulated feature re-

sponse of all subjects in our 3D MR dataset on the position rel-

ative to a reference hand pose of a subject whose hand contour is

superimposed to the image. 

In Table 2 , we show the results of our DCNN methods for 2D X-

ray images evaluated on subjects in the Digital Hand Atlas Database

older than 10 years and compare results with the state-of-the-art

DCNN-based BoNet method of Spampinato et al. (2017) . 

For majority age classification, the ROC curves and their corre-

sponding AUC are shown in Fig. 6 for our best performing cnn-

reg method by varying the threshold of the regression predictions.

Furthermore, for the same architecture trained with a classifica-

tion loss ( cnn-class ), ROC curves and AUC are shown by varying

the threshold of the prediction output. Additionally, we show the

performance when BAR, i.e. the radiological estimation of BA uti-

lizing the widely accepted Greulich and Pyle (1959) method, was

thresholded at 18 years (BAR ≥ 18) or 19 years (BAR = 19) to distin-

guish minors from adults. Finally, in Table 3 we compare cnn-reg,

cnn-class and radiological assessment based majority age classifiers

in terms of their specificity for several fixed sensitivities, i.e. 99%,

95%, 89% (BAR ≥ 19) and 69% (BAR ≥ 18), which are also visualized

as horizontal lines in the ROC plot in Fig. 6 . 

Training DCNNs for one fold of the cross-validation was around

6 h for 3D MRI data and 2 h for 2D X-ray images, respectively,

while testing a single volume/image takes less than a second on

our system with Intel Core i7 CPU and NVIDIA Geforce GTX 1080
GPU with 8 GB of RAM. t  
. Discussion 

In this work, we presented our fully automatic age estima-

ion method for 3D MRI scans of the hand, which is an objective,

oftware-based solution for age estimation that avoids the need for

onizing radiation. Extending our previous works ( Urschler et al.,

015; Štern and Urschler, 2016; Štern et al., 2016 ), we thoroughly

nvestigated the two most powerful machine learning methods

sed in medical image analysis, i.e. RF and DCNN, regarding their

ge estimation accuracy on our unique dataset of 328 MR images. 

.1. 3D MRI age regression 

With an absolute deviation of 0.20 ± 0.42 years for our cnn-

eg method when training on BAR and comparing predictions with

AR, our method based on mimicking radiologists performing TW2

utperforms by a large margin all our previous results for age

stimation from MR images (see Table 1 ). Moreover, on our full

ataset ( all subjects ) similar results were also obtained for the rf-

eg-enh method (0.23 ± 0.45 years). Performance gains compared

o our previous work ( cnn-reg-enh-2016 with MAE of 0.36 ± 0.30

ears) were achieved by improving data augmentation and increas-

ng robustness of predictions in both methods. Regarding data aug-

entation, improvements were due to on-the-fly processing and

ncreasing the range of possible intensity and geometrical transfor-

ations. Regarding robustness, for our RF-based method we intro-

uced a novel scheme for robustly averaging all the ages stored in

he forest’s leaf nodes during training as explained in Section 2.3.1 .

or the DCNN based method, we achieved robustness by using an

nsemble of neural networks, following recent developments in

edical image analysis ( Suk et al., 2017; Benou et al., 2017 ). 

Compared to our previous work, we also increased the evalua-

ion dataset to 328 MR images, which allows us to draw stronger
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Fig. 5 . Visualization of the activation of convolutional layer f 3 for different ranges 

of BAR predictions, when training our DCNN on the whole hand 3D MRI data. Ac- 

cumulated feature responses from all datasets are registered to the same reference 

image, whose contours are superimposed on the image. 

Fig. 6. Results for distinguishing minors from adults when training our best per- 

forming DCNN architecture directly for classification ( cnn-class ), when thresholding 

estimations from our age regression approach ( cnn-reg ), or when using two distinct 

age thresholds on the radiologist’s prediction. Defining correctly classified minors 

as true positives, we visualize ROC curves and area under the curve (AUC). 
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tatistical conclusions from our findings. This full dataset is roughly

niformly distributed regarding CA, however, when working with

AR the data are highly biased towards subjects, where age rele-

ant information saturates, i.e. subjects with a BAR of 19 years (see

ig. 3 ). Nevertheless, when evaluating solely on the subset of sub-

ects where the age relevant information is not yet saturated, i.e.

ith a BA between 13 and 18 years as determined by radiologists,

he result of our cnn-reg method shows an unprecedented accuracy

0.37 ± 0.51 years). In this age range, with an absolute deviation

f 0.48 ± 0.56 years the RF-based method ( rf-reg-enh ) is no longer

ompetitive compared with the DCNN result, which indicates the

ood performance of RF on subjects where age information is sat-

rated, but underlines its lower capability to discriminate different

ges during development, see Fig. 4 a for each age group separately.

evertheless, the results of both investigated methods are below

he best reported inter-rater variabilities of radiologists, which are

round 0.5 years ( Lynnerup et al., 2008; Martin et al., 2011 ). 

Facing a lack of methods for age estimation from 3D MRI out-

ide of our group, we performed an extensive evaluation of our
nvestigated machine learning methods with three different strate-

ies depending on the simplification level of the high dimensional,

onlinear age regression problem: (1) providing the whole raw in-

ut image to the method, (2) cropping age relevant structures to

educe variations in pose, and (3) further simplification by hand-

rafted filter based enhancement of the age relevant structures . The

etailed results of our experiments on the subjects where age in-

ormation is not yet saturated show that for the RF-based methods,

he filter based enhancement of the age relevant structures is a

rucial preprocessing step ( rf-reg-enh vs. rf-reg , see subjects ≤ 18 in

able 1 and Fig. 4 a for each age group separately). However, given

he same preprocessing, it is outperformed by cnn-reg-enh with an

bsolute deviation of 0.41 ± 0.54 years. Interestingly, the best per-

ormance of all our experiments (0.37 ± 0.51 years) can be seen for

he DCNN based method without any filter based enhancement but

olely with cropping age relevant structures ( cnn-reg ). This finding

an be interpreted with the handcrafted preprocessing filter being

ailored to the enhancement of plate-like structures, which is ben-

ficial during early stages of epiphyseal gap development, but in

ater stages when the epiphyseal gap loses this characteristic, this

lter may eliminate age relevant information. On the other hand,

NNs trained on the whole raw input image information are ca-

able of adapting their convolution filters to extract age relevant

eatures for the whole age range. We did not see this behaviour

n our previous work ( Štern et al., 2016 ). This can be explained

ith the stronger data augmentation used in the present work that

rastically increased the training samples, thus allowing the DCNN

o learn age relevant features directly from raw image informa-

ion. Both preprocessing strategies, cropping age relevant structures

nd filter based enhancement depend on the location of anatomi-

al structures, for which we have already developed landmark lo-

alization methods showing state-of-the-art accuracy and robust-

ess when tested on the same 3D MRI dataset ( Payer et al., 2019;

rschler et al., 2018 ). When skipping the cropping of age relevant

tructures, but instead applying the DCNN on the whole raw input

mage ( cnn-reg-hand ), we achieve a slightly worse performance of

.48 ± 0.53 years. This indicates that despite extensive data aug-

entation, our training dataset of 328 MR images is not sufficient

o directly learn the possible range of anatomical variations simul-

aneously with pose variations from the whole input images. Nev-

rtheless, our visualization experiment (see Fig. 5 ) shows that cnn-

eg-hand is able to automatically learn the convolutional features

or extracting age information from different regions depending on

he age range. While in younger subjects, the DCNN focuses on

he region of the epiphyseal gap in metacarpals and proximal pha-

anges, for older subjects the remaining age relevant information

s located in the epiphyseal gaps of radius and ulna. This visual-

zation also confirms that our cropping of age relevant structures

implifies the age regression problem, thus enabling a DCNN to

chieve state-of-the-art performance even in the presence of a lim-

ted dataset. 

.2. 2D X-ray age regression 

Due to the lack of publicly available MRI datasets or differ-

nt methods for automatic age estimation from MRI, we addition-

lly adapted our DCNN to 2D images and compared its perfor-

ance with other recently published methods on the widely used

-ray Digital Hand Atlas Database . From Table 2 , we see that our

roposed method outperforms the BoNet approach of Spampinato

t al. (2017) in all experiments regarding BAR estimation, i.e. for

ale, female and male-female combined evaluation setups. Again,

ropping the bones was beneficial ( cnn-2d-hand vs. cnn-2d-bones ).

oreover, due to the flexibility of our architecture, we were able

o incorporate the carpal bones ( cnn-2d-bones-carpal ), which fur-

her improved our results since these bones are relevant for the
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nvestigated age range that starts at 10 years. On the same dataset,

ut on the age range from 2–17 years, the commercial BoneX-

ert ( Thodberg et al., 2009 ) method, which was trained on an in-

ouse dataset of more than 1500 images, has a root-mean-square

rror (RMSE) of 0.64 years for the male population ( Thodberg and

aevendahl, 2010 ). Stated as an RMSE, we achieve an error of 0.77

ears in our age range between 10 and 19 years, however results

re not directly comparable due to the restricted age range used

or our method, and due to BoneXpert not being able to reliably

redict the challenging last two years when different bones satu-

ate in ossification. Nevertheless, the BoneXpert method is among

he top five at the RSNA challenge 2 , with no significant difference

ompared with the top performing, heavily tuned deep CNN meth-

ds. The method of ( Larson et al., 2017 ), which was among the top

en at the RSNA challenge, also was evaluated on the Digital Hand

tlas Database ( Larson et al., 2017 ). It showed an RMSE of 0.73

ears but solely when trained on all X-ray images from the RSNA

hallenge, while their result decreased to an RMSE of 1.08 years af-

er training on a subset of 1558 images. Thus, our approach, which

as not originally developed for 2D hand X-rays, may be consid-

red in line compared with the state-of-the-art in this application.

.3. BAR vs. CA in age estimation 

As explained in Section 2.1 , the methods trained with biolog-

cal age as estimated by radiologists (BAR) are not predicting the

true” biological age, but reproduce the estimation of radiologists

hen using an atlas based Greulich and Pyle (1959) or a staging

ased Tanner et al. (1983) method. Instead, as defined by (1) , to

stimate biological age, methods have to be trained with CA on

arge datasets representing the population. However, due to the

roblem of saturation (see Section 2.1 ), the prediction of a model

rained on CA corresponds to BA only for the subjects whose hand

one ossification is not finished. Therefore, from here on we dis-

uss the results only for the subjects younger than 18 years, see

ubjects ≤ 18 in Table 1 and Fig. 4 . When evaluated on BAR, our

ethods trained with CA as regression target show an increased

rror compared with the methods trained with BAR (0.53 ± 0.61

s. 0.37 ± 0.51 years for cnn-reg ). This increased error was to be

xpected, since our dataset of 328 MR images is not large enough

o represent the whole population. However, from the distribution

f errors on subjects below 18 years shown in Table 1 , it can be

een that there is an increase in subjects being underestimated,

hich supports the observation that children nowadays mature

arlier ( Zabet et al., 2014 ). Thus, our results indicate that estab-

ished radiological BA estimation methods are no longer estimating

he average CA of the children that have the same level of bone

aturity but introduce a systematic error ξ B (see Eq. (5) ). 

When using the model trained on CA for predicting CA, the

verall error of 0.82 ± 0.65 years for cnn-reg is significantly higher

han when compared to BAR. This is due to the biological variation

n maturity of subjects having the same chronological age. In le-

al medicine, this difference due to biological variation is neglected

nd BAR is used to approximate CA (1.02 ± 0.79 years), which we

ere able to objectively and automatically reproduce when train-

ng cnn-reg with BAR (0.99 ± 0.72 years). Moreover, our cnn-reg

rained on CA is more accurate compared with using BAR to ap-

roximate CA. Thus, our results show that DCNNs are not only ca-

able of reproducing age estimation as performed by a radiologist,

ut also to provide more accurate and objective estimation of CA. 
2 http://rsnachallenges.cloudapp.net/competitions/4 , as of Jun. 2018. 

http://rsnachallenges.cloudapp.net/competitions/4
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Table 2 

Results of our automatic age estimation methods adapted to work with 2D images, when applied to a publicly available 2D X- 

ray image dataset and compared to the recent work of Spampinato et al. (2017) (BoNet). Methods were trained and evaluated 

for males (M), females (F) and both combined (ALL) using two radiological readings (BAR1,BAR2) as well as chronological age 

(CA) of 835 subjects older than 10 years. 

BAR1 → BAR1 BAR2 → BAR2 CA → CA 

(mean ± std [years]) (mean ± std [years]) (mean ± std [years]) 

error histogram [years] error histogram [years] error histogram [years] 

(| −3| −2| −1|0|+1|+2|+3|) (| −3|-2| −1|0|+1|+2|+3|) (| −3| −2|-1|0|+1|+2|+3|) 

M BoNet 0.68 0.74 −
(Spampinato et al., 2017) − − −
cnn-2d-bones 0.54 ± 0.60 0.57 ± 0.60 0.86 ± 0.63 

|2|9|102|214|82|9|0| |0|11|89|197|68|4|0| |6|28|95|140|93|21|0| 

cnn-2d-bones-carpal 0.49 ± 0.60 0.57 ± 0.60 0.77 ± 0.60 

|1|13|66|238|92|8|0| |1|3|57|198|100|11|0| |0|23|89|157|93|20|0| 

cnn-2d-hand 0.58 ± 0.64 0.66 ± 0.65 0.89 ± 0.67 

|2|14|97|207|86|10|2| |1|12|99|175|69|13|0| |8|40|92|137|90|15|1| 

F BoNet 0.79 0.75 −
(Spampinato et al., 2017) − − −
cnn-2d-bones 0.70 ± 0.61 0.68 ± 0.65 1.00 ± 0.73 

|1|13|105|157|124|17|0| |3|5|73|173|137|25|1| |5|20|80|124|107|33|7| 

cnn-2d-bones-carpal 0.66 ± 0.61 0.60 ± 0.62 0.90 ± 0.70 

|0|7|80|174|132|24|0| |3|8|102|194|97|13|0| |2|29|67|153|92|29|5| 

cnn-2d-hand 0.89 ± 0.75 0.77 ± 0.70 1.20 ± 0.96 

|2|41|108|135|95|29|7| |2|31|107|156|96|23|2| |16|37|63|89|47|21|3| 

ALL BoNet 0.73 0.74 −
(Spampinato et al., 2017) − − −
cnn-2d-bones 0.62 ± 0.61 0.62 ± 0.63 0.93 ± 0.69 

|3|22|207|371|206|26|0| |3|16|162|370|205|29|1| |11|48|175|264|200|54|7| 

cnn-2d-bones-carpal 0.57 ± 0.61 0.58 ± 0.61 0.83 ± 0.66 

|1|20|146|412|224|32|0| |4|11|159|392|197|24|0| |2|52|156|310|185|49|5| 

cnn-2d-hand 0.73 ± 0.72 0.72 ± 0.68 1.03 ± 0.82 

|4|55|205|342|181|39|9| |3|43|206|331|165|36|2| |24|77|155|226|137|36|4| 

Table 3 

Majority age classification performance of regression ( cnn-reg ), classification 

DCNNs ( cnn-class ), and radiologist evaluated as false positive rates (FPR) and 

the corresponding number of false positives (FP) for fixed false negative rates. 

FPR (FP) 

FNR = 31% FNR = 11% FNR = 5% FNR = 1% 

(BAR ≥ 18) (BAR = 19) 

cnn-reg 2.1% (4) 9.0% (17) 27.5% ( 52 ) 67.2% ( 127 ) 

cnn-class 1.1% ( 2 ) 12.2% (23) 35.4% (67) 81.0% (153) 

radiologist 5.3% (10) 7.9% ( 15 ) 100.0% (189) 100.0% (189) 

5

 

h  

n  

D  

t  

a  

fi  

i  

p  

b  

t  

d

 

o  

f  

o  

w  

m  

d  

F  

c  

n  

c  

a  

d  

t  

m  

e  

s  

a  

m

6

 

a  

C  

o  

w  

i  

i  

a  

o  

t  

o

 

t  

i  

d  

a  

t  

i  

a  
.4. 3D MRI majority age classification 

To determine legal majority age in forensic applications, a

ighly relevant question is to classify whether a subject is a mi-

or below 18 years. Therefore, we evaluated our best performing

CNN approach regarding its classification performance either by

hresholding the estimation of cnn-reg , or by retraining the same

rchitecture with a classification loss ( cnn-class ). Regarding classi-

cation performance as measured by AUC, we see from our results

n Fig. 6 that thresholding the estimate of cnn-reg is superior com-

ared to cnn-class . This indicates that the regression loss (12) is a

etter discriminator, since, unlike the pure 0–1 distance classifica-

ion loss (13) , it also takes into account the distance of the pre-

icted age from the majority age threshold during training. 

In Table 3 and with the dots in Fig. 6 , we also show the results

f BA performed by radiologists being used to distinguish minors

rom adults. When the majority age threshold is set to 18 years

f BAR or more, we can see that more than 30% of minors are

rongly classified as adults, which is the ethically more relevant

isclassification that needs to be avoided. This error can be re-

uced by increasing the threshold to 19 years of BAR, but still the

NR is more than 10%. For further reduction of minors wrongly
lassified as adults, the GP method performed by radiologists can-

ot be used. On the other hand, with our method we can more ac-

urately follow closure of epiphyseal gaps until the moment when

ll bones have finished ossification and minors can no longer be

istinguished from adults based solely on hand images. Thus, until

hat moment our method is able to further reduce misclassifying

inors as adults in a tradeoff between sensitivity and FPR. How-

ver, due to biological variation, this tradeoff will always result in

ubstantial numbers of misclassifications, and has to be taken into

ccount when using biological development of the hand for esti-

ating chronological age. 

. Conclusion 

In this work, an objective software-based solution for automatic

ge estimation from 3D MRI scans of the hand was presented.

ompared with other groups working on automatic age estimation,

ur approach does not depend on the need for ionizing radiation,

hich is critical in legal medicine applications involving healthy

ndividuals. Our thorough evaluation of different machine learn-

ng methods revealed that our DCNN based regression approach

chieves the new state-of-the-art accuracy compared with previ-

us MRI-based methods. Moreover, when adapted for 2D images,

he same method is in line with state-of-the-art methods devel-

ped specifically for X-ray data. 

On our MRI dataset of 328 images, we have shown that the in-

roduction of prior knowledge on where age relevant anatomical

nformation is located is beneficial for the DCNN to learn this high

imensional nonlinear regression problem. Nevertheless, it may be

ssumed that in the presence of a much larger training dataset,

he need for such a preprocessing step could be overcome, which

s also indicated by the results of the recent RSNA challenge on

ge estimation from 14,036 2D hand X-ray images, where the best
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performing deep learning methods used the whole hand images as

input. 

While our age regression method has shown to be accurate

for the age range up to 18 years, the legally important classifica-

tion results for determining whether a subject is a minor or an

adult are biologically limited due to the saturation of hand bones

around 18 years. Recent works indicate that combining estimations

from complementary anatomical sites could extend the age esti-

mation to the legally relevant age range up to 25 years. In fu-

ture work, we will investigate the capabilities for automated multi-

factorial MRI-based age estimation to improve the classification

accuracy. 
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