
Reference Coupling: An Exploration of Inter-project
Technical Dependencies and their Characteristics

within Large Software Ecosystems

Kelly Blincoea,∗, Francis Harrisonb, Navpreet Kaurb, Daniela Damianb

aUniversity of Auckland, New Zealand
bUniversity of Victoria, BC, Canada

Abstract

Context: Software projects often depend on other projects or are developed

in tandem with other projects. Within such software ecosystems, knowledge

of cross-project technical dependencies is important for 1) practitioners under-

standing of the impact of their code change and coordination needs within the

ecosystem and 2) researchers in exploring properties of software ecosystems

based on these technical dependencies. However, identifying technical depen-

dencies at the ecosystem level can be challenging.

Objective: In this paper, we describe Reference Coupling, a new method that

uses solely the information in developers online interactions to detect technical

dependencies between projects. The method establishes dependencies through

user-specified cross-references between projects. We then use the output of this

method to explore the properties of large software ecosystems.

Method: We validate our method on two datasets — one from open-source

projects hosted on GitHub and one commercial dataset of IBM projects. We

manually analyze the identified dependencies, categorize them, and compare

them to dependencies specified by the development team. We examine the

types of projects involved in the identified ecosystems, the structure of the iden-

∗Corresponding author
Email addresses: kblincoe@acm.org (Kelly Blincoe), francish@uvic.ca (Francis

Harrison), kaur.navpreet472@gmail.com (Navpreet Kaur), danielad@uvic.ca (Daniela
Damian)

Preprint submitted to Elsevier February 2, 2019

tified ecosystems, and how the ecosystems structure compares with the social

behaviour of project contributors and owners.

Results: We find that our Reference Coupling method often identifies tech-

nical dependencies between projects that are untracked by developers. We de-

scribe empirical insights about the characteristics of large software ecosystems.

We find that most ecosystems are centered around one project and are inter-

connected with other ecosystems. By exploring the socio-technical alignment

within the GitHub ecosystems, we also found that the project owners social be-

haviour aligns well with the technical dependencies within the ecosystem, but

the project contributors social behaviour does not align with these dependencies.

Conclusions: We conclude with a discussion on future research that is en-

abled by our Reference Coupling method.

1. Introduction

Software is not developed in isolation anymore. Whether open source or

corporate-led, software development takes place within “a collection of software

projects which are developed and which co-evolve together in the same envi-

ronment”, and which are referred to as software ecosystems [1]. Within such

ecosystems, projects depend on one another [1], and yet awareness of such de-

pendencies is not trivial. Identifying technical dependencies to external projects

within the ecosystem is important for two main reasons: First, developers need

to understand how their tasks and code changes impact other projects and who

they need to coordinate their changes with at the ecosystem level [1, 2]. For

open source ecosystems in particular, it is also important for attracting new

contributors [1] since dependencies to other projects within an ecosystem are

more likely to attract attention. Newcomers might decide to join the project

based on a deeper knowledge of the structure of the system as well as of its exter-

nal dependencies. Second, information about software ecosystems and technical

dependencies within them enables further exploration and modeling of software

ecosystems, an area currently understudied in the software engineering litera-

2

ture [3].

However, identifying technical dependencies between projects on a large scale

has proven to be difficult [4]. Existing static dependency analysis approaches

do not identify dependencies across projects. Methods for extracting exter-

nal dependencies from a project’s source code or configuration files have been

proposed [1, 4, 5, 6, 7, 8, 9, 10, 11], but these approaches limit the types of de-

pendencies detected to explicit relationships. Implicit relationships like depen-

dencies on web services, operating systems, or hardware are not always visible in

configuration files or source code. Further, methods that extract dependencies

from source code require large amounts of memory and computation time, so

they cannot be employed across a large set of projects [12]. Methods that are

applied to configuration or build files are not memory or computation-intensive,

but such files are not always available or accurate since not all projects use a

package manager.

Without a way to easily establish a comprehensive set of dependencies be-

tween projects, software practitioners are unable to quickly identify the external

dependencies of a software project or understand where their project sits within

a software ecosystem.

In this paper, we propose a new method, Reference Coupling, to detect cross-

project dependencies that leverages solely the information in the developers’ so-

cial interactions. The social aspects of a project and its surrounding ecosystem

significantly influence the way in which the software project will evolve over

time [13], and they cannot be ignored in the development of models, guide-

lines and best practices for the analysis and maintenance of software ecosys-

tems’ health [14]. Reference Coupling mines the references to other projects

that developers make in their online interaction (referred to as cross-references

henceforth). We validated the method in identifying true cross-project technical

dependencies by using it in two large datasets of GitHub and IBM projects and

comparing its results with manually identified cross-references in each dataset.

We found that the Reference Coupling method does identify technical depen-

dencies between projects, and we describe several properties of the ecosystems

3

identified using this method. Reference coupling represents a significant novel

complement to the other existing, but insufficient, code-based or configuration

file-based methods to identify external dependencies within a project’s ecosys-

tem. Our method identifies ecosystems of projects within the same organization,

and also outside of the organization for which there are technical dependencies,

often hidden or even unknown to developers within a project.

Having identified external technical dependencies to projects in our datasets,

we further used our Reference Coupling method with a popular community

detection algorithm [15] to identify ecosystems across all GitHub-hosted projects

and explore socio-technical aspects within these ecosystems. We found that the

developers’ socio-technical behavior within GitHub project ecosystems differs

between the project owners and actual contributors. Our analysis illustrates the

potential for further analysis of software ecosystems’ health, something difficult

to assess given the dynamic nature of relationships within the ecosystem, as well

as the lack of a centralized management structure for overseeing the ecosystem’s

health and survival, most often typical of open source projects [14].

Our previous conference publication reported on some elements of this work

[16]; however, this paper introduces numerous extensions to our work. Specifi-

cally this paper extends our previous publications by:

• describing how to utilize the Reference Coupling method on a wide variety

of software tools (compared to just GitHub in the conference publication).

• validating the Reference Coupling approach on a new dataset from a pro-

prietary ecosystem of IBM projects.

• providing a more detailed understanding of the types of dependencies that

are captured by the Reference Coupling method through the analysis and

categorization of dependencies from the IBM ecosystem and a more de-

tailed analysis of the dependencies on GitHub.

• extending the discussion to further describe how the Reference Coupling

method can be used to support software developers and software engineer-

4

ing researchers.

The paper has also been significantly restructured to better describe our research

methods, development, validation and application of the Reference Coupling

technique.

The rest of the paper is structured as follows: Section 2 provides an overview

of related work in software ecosystems and dependency conceptualizations. The

Reference Coupling method is described in Section 3. Our research methods

are presented in Section 4. Our results are presented in Section 5. In Section 6,

we summarize our findings and discuss open questions for future research. We

provide a brief conclusion in Section 7.

2. Related Work

The term software ecosystem (SECO) has emerged as a paradigm to un-

derstand the dynamics and heterogeneity in collaborative software engineering.

Unlike natural ecosystems, however, there is no common definition for SECO.

Two different perspectives on SECOs have been identified in the literature,

namely business-centric and platform-centric [3]. The business-centric defini-

tion refers to the holistic, business-oriented perspective of a SECO as a network

of actors, organizations and companies [17, 18, 19]. The platform-specific per-

spective emphasizes the social and technical aspects of a set of software projects,

technical platforms, and communities, in line with work of [20, 21]. In our work,

we take a platform-specific perspective to leverage and study the socio-technical

relationships within ecosystems. The ecosystems we consider are not limited to

only those projects in the same organization, but also include projects outside

of the organization for which there are technical dependencies.

The software ecosystems that received the most attention in previous liter-

ature include those around Eclipse (e.g. [6, 22]), Ruby on Rails (e.g. [23, 24]),

Apache (e.g. [7, 9]), and GNOME (e.g. [13]). Notable research developments

also exist in the area of frameworks for analysis of Open Source Software Ecosys-

tems (OSSECOs) (e.g. [21]), OSSECO health measurement (e.g. [25]), and tools

5

for visualizing OSSECO projects (e.g. [26]).

Recent extensive literature surveys show a growing interest in studies of

ecosystems, both in the domain of proprietary [27] as well as open source soft-

ware development [3]. In the proprietary software space, the focus has been on

the organizational and business aspects of the ecosystems, with a clear lack of

deeper investigations of technical and collaborative aspects of work [27]. In the

open source software ecosystems space, the pressing research challenges include

the development of methods and tools for the ecosystem modelling and analysis,

socio-technical theories to explain the interplay between the social and technical

system within ecosystems, as well as the diagnostic and monitoring of ecosystem

quality and health [3].

An important step in this direction lies with methods for the identification

of a project’s external technical dependencies within its ecosystem, in order to

study its structure and socio-technical aspects. Analysis of a project’s source

code is a common technique to identify technical dependencies within a project

(intra-project). However, these techniques do not scale up well to identify depen-

dencies between projects (inter-project). Lungu et al. [5] describe several meth-

ods for extracting inter-project dependencies by considering external method

and class calls in a project’s source code. However, when investigating a large

number of projects, obtaining the source code for every project is not always

feasible. Collecting source code data across an entire versioning system would

require multiple Terabytes of data and more than a year in processing time [12].

Ossher et al. [4] introduced a technique that analyzes import statements in Java

source code to resolve inter-project dependencies. Businge and Serebrenik [6]

employ a similar technique in their study of the Eclipse ecosystem. However, this

technique still requires obtaining a large amount of source code and, therefore,

requires a large amount of memory. These techniques, therefore, are limited in

the number of projects that can be studied.

Previous studies have also proposed ways to identify technical dependencies

without relying on analysis of source code. One method is to identify technical

dependencies by examining declared dependencies from a project’s configuration

6

files or its build files from a dependency management tool like Maven [1, 7, 8,

9, 10, 11]. However, not all projects declare dependencies in configuration files

or employ a dependency manager, and, even for those that do, the data can be

missing. Bavota et al. [9] found that this information was missing in 37% of

releases in a study of the Apache project. Syeed et al. [23] extracted metadata on

inter-project dependencies from the published specifications at rubygems.org in

their study of the Ruby on Rails ecosystem. However, the specified dependencies

may be out of date and the approach is specific to only projects that publish

dependency specifications.

Considering the social aspects of software ecosystems are also important [3].

The work of Mens and his colleagues highlights the role that social aspects

play in the future understanding and development of tools, prediction models,

guidelines and best practices that allow ecosystem communities to improve upon

their current practices [13]. Several other studies [28, 29] have explored ways to

detect social connections in software ecosystems. These studies used community

detection algorithms to detect communities across GitHub projects focusing on

relationships between developers.

We use technical dependencies for community detection since the structure

of an ecosystem is defined by its technical dependencies [5]. Thung et al. [30]

constructed similar project-to-project networks for GitHub-hosted projects. In

their networks, edges between projects represent a single developer contributing

to both projects. Since developers can often work on multiple independent

projects, sharing developers is not an indication of a technical dependency and

their network is more of a social perspective.

In our approach, we propose a method for automatic identification of techni-

cal dependencies that does not rely on analyzing source code, but takes advan-

tage of the cross-references that can be made in developers’ social interactions.

These cross-references are user-specified links between a pair of projects. They

are made in comments on work items, pull requests, issues, and commits as de-

velopers coordinate and manage their work dependencies. With these identified

technical dependencies we were then able to conduct a socio-technical analy-

7

sis of the behavior of different project members, namely project owners and

contributors in the GitHub ecosystem.

3. Reference Coupling

To identify dependencies between projects, we relied on comments made by

the developers within one project’s tasks, issues, pull requests and commits that

cross-reference another project. Modern collaborative software development

tools make it easy for developers to create links between projects within their

comments. We call this conceptualization of dependencies between projects

Reference Coupling.

To develop the Reference Coupling method, we manually examined cross-

references between projects on several software development tools to under-

stand how they could be automatically extracted. We examined comments that

cross-reference other projects on the following, popular open source software

code hosting platforms, forges, and issue trackers: GitHub, GitLab, BitBucket,

SourceForge, and Jira. We also examined cross-references in a proprietary soft-

ware ecosystem by examining the comments in an IBM set of products that

together form the Rational solution for Collaborative Lifecycle Management

(CLM).

We found that all of the open source software code hosting platforms, forges,

and issue trackers we examined (GitHub, GitLab, BitBucket, SourceForge, and

Jira) employ Markdown languages, which allow plain text to be formatted in

a lightweight way. When a Markdown language is employed and a user cross-

references another project in a comment using the appropriate syntax, a link to

the other project is automatically created, making it easier to navigate between

the projects. Due to the adoption of these Markdown languages, cross-references

to other projects are created in a standard format to enable these automatic

links to be created. GitHub, Bitbucket, and GitLab all extend the Common-

Mark specification [31], which was introduced to standardize markdown imple-

mentations. Jira and SourceForge, use their own Markdown languages.

8

Table 1: Syntax of Cross-References

Tool Link To
Syntax

Example
Project Identifier Artifact Type Artifact ID

GitHub,
Issues/Pull Requests OWNER/PROJECT # NUMBER rails/rails#123

GitLab,

Bitbucket, and
Commits OWNER/PROJECT @ SHA twbs/bootstrap@6e2a82

Jira

SourceForge Issues
PROJECT[/SUBPROJECT] bugs NUMBER allura:bugs:#123

PROJECT[/SUBPROJECT] features #NUMBER allura:features:#123

Commits PROJECT[/SUBPROJECT] code SHA allura:code:3b9d48

IBM CLM Work Item

— [work] item NUMBER work item 123

— task NUMBER task 456

— story NUMBER story 789

— defect NUMBER defect 123

— URL NUMBER https://jazz.net/jazz/resource/itemName/

com.ibm.team.workitem.WorkItem/123

*Text in [] is optional

The one proprietary software tool ecosystem we reviewed, the IBM CLM

suite, did not employ a Markdown language. However, it still allowed explicit

links to be created between projects using a graphical user interface. When

entering text in a comment, users can click on a button that will allow them to

insert a link to a work item. This will open a window which will allow the user

to search for the work item(s) they wish to link to.

For all of these tools, whether they employ a Markdown language or not,

the format of the cross-references in the comment follows the same high-level

pattern with an optional project identifier followed by the artifact type and

the artifact identifier. The project identifier is optional in the cases that all

projects in the ecosystem share the same instance of the project management

tool, resulting in unique artifact identifiers across all of the projects, as is the

case in the IBM CLM ecosystem. Given the commonality of the syntax across all

of these tools, such cross-references can be automatically extracted. Thus, our

Reference Coupling method identifies dependencies by considering the following

pattern in comments:

<project identifier (optional) ><artifact type ><artifact identifier >

The detailed syntax for the various tools and artifact types is shown in Table 1.

If this method were to be implemented in a tool, these cross-references could

9

be automatically stored in a separate database table when they are created,

making the detection of dependencies nearly real-time. Post-hoc analysis, where

cross-references have not been previously extracted and stored, could be done

in O(n) time where n is the number of comments to be analyzed since one

computation is required for each comment to examine whether there is a cross-

reference to another project.

4. Research Methodology

4.1. Research Questions

We validated the Reference Coupling method on two datasets — one from

open-source projects hosted on GitHub and the one commercial dataset of IBM

projects. Our validation was guided by the following research questions:

RQ1a: Does the Reference Coupling method identify inter-project technical de-

pendencies on GitHub issue, pull request, and commit comments? If so, what

are the characteristics of these dependencies?

RQ1b: Does the Reference Coupling method identify inter-project technical de-

pendencies on IBM work item comments? If so, what are the characteristics of

these dependencies?

We then explored the characteristics of as well as socio-technical alignment

within the identified GitHub ecosystems by asking: RQ2: What ecosystems

exist across GitHub-hosted projects and what is their structure?, and RQ3: Do

the project owners’ and contributors’ social behaviours align with the technical

dependencies?

4.2. Research Setting and Data Collection

To answer our research questions, we conducted an analysis of the comments

and cross-references in the GitHub and IBM CLM projects.

4.2.1. GitHub

We obtained data from the GHTorrent [32] project, which provides a mirror

of the GitHub API data. GHTorrent obtains its data by monitoring and record-

10

ing GitHub events as they occur. We used the MySQL 2014-04-02 dataset to

obtain information on the projects since this paper extends our previous con-

ference publication which used this dataset [16]. This dataset contains data on

2,399,526 repositories, 3,426,046 users, and their events — including commits,

issues, pull requests and comments. We define a project as a repository and all

of its forks as recommended by Kalliamvakou et al. [33].

Since the MySQL database contains only the first 256 characters of com-

ments, we obtained all comments from GHTorrent’s main MongoDB server in

May 2014. The MongoDB contains the full text of all comments. These com-

ments were downloaded and stored in a PostgreSQL database for analysis. No

pre-processing was needed.

Using our Reference Coupling method, we identified 89,784 comments in

the GitHub data with a cross-reference to another project1. There are 29,018

repositories (18,533 unique projects when forks are considered) that make a

cross-reference to another project. While this is only a small portion of the

total number of repositories in our dataset, this is expected since Kalliamvakou

et al. [33] have found that the majority of the projects on GitHub are personal

and inactive.

4.2.2. IBM Collaborative Lifecycle Management (CLM)

We collected data from the products in the IBM Rational solution for Collab-

orative Lifecycle Management (CLM). CLM brings together requirements man-

agement, quality management, change and configuration management, project

planning and tracking on common uniform platform. CLM consists of number

of products including Rational Team Concert (RTC), Rational Quality Man-

ager (RQM), Rational DOORs Next Generation (DNG), Rational Requirement

Composer (RRC), Rational Software Architect (RSA), Rational Rhapsody and

Rational insight. The IBM CLM ecosystem is broken into 16 distinct projects.

1These cross-references and the scripts used to identify them are available in a replication

package at https://doi.org/10.5281/zenodo.2555526

11

Method	
Validation	

Method	
Application	

RQ1a:	GitHub		 RQ1b:	IBM	

Two	Coders	

Manual	analysis	of	200	random	
cross-references	
•  Technical	dependency?	
•  If	yes,	type	of	dependency?	

Compare	IBM	Developer	specified	
dependencies	to	cross-references	
	

Manual	analysis	of	111	cross-references	
not	declared	as	dependency	by	devs	

RQ2	 RQ3	

mjgallag/meteor-bootstrap-3

yabawock/bootstrap-sass-rails

twbs/bootstrap
twitter/recess

todc/todc-bootstrap
FortAwesome/Font-Awesome

uq-eresearch/aorra

netdna/bootstrap-cdn

MaxCDN/bootstrap-cdn

dart-lang/dartlang.org

rouge8/Font-Awesome

Use	cross-references	to	construct	a	
technical	dependency	network		
	

Identify	ecosystems	using	Louvain	
community	detection	method	[11]	
	

Characterize	ecosystems	by:	
•  Manual	analysis	of	visualizations	
•  Compute	network	statistics	
•  Examine	project	README	files	

Construct	project-to-	
project	networks	based		
on	the	“following”	and		
“starring”	activity	of	the	
project	owners		and	contributors		
	
Compare	edge	weights	of	these	social	
networks	with	the	edge	weights	from	
the	dependency	network	
	

Figure 1: Summary of Research Methods

For each CLM project, we collected data on all work items created from

2005 to 2015. A work item is a task or an issue that must be attended to

during development. The data was downloaded in XML format from the IBM

REST API and converted into JSON and stored in PSQL tables. For each work

item, we collected the metadata, history, and comments. No pre-processing was

done on the data. The dataset consisted of 3,009 work items with a total of

17,708 comments. There were 635 cross-references to another project within

those comments. All projects contain cross-references.

4.3. Research Methods

An overview of our research methods to answer each research question are

shown in Figure 1 and described in detail in the following subsections.

12

4.3.1. Reference Coupling: Method Validation

To validate the Reference Coupling method, we used the method to identify

cross-references between projects in both GitHub and the IBM CLM products.

We automatically extracted these cross-references with pattern matching using

Java Regular expressions [34]. Since we are interested only in relationships

between projects, we filtered the cross-references to ignore references within the

same project.

RQ1a: Does the Reference Coupling method identify inter-project technical

dependencies on GitHub issue, pull request, and commit comments? If so, what

are the characteristics of these dependencies?

To verify that the cross-references to other projects made in comments on

GitHub identified through the Reference Coupling method are a valid concep-

tualization of dependencies, we examined 200 random comments which were

classified as dependencies using the Reference Coupling method since they cross-

referenced another project. Different types of comments may be made on differ-

ent artifacts. To ensure our analysis included various types of cross-references

that may occur, we ensured our randomly selected 200 comments were equally

distributed across each of the following relationships: 1) commit comment cross-

references another commit, 2) commit comment cross-references an issue or pull

request, 3) an issue or pull request comment cross-references a commit, and 4)

an issue or pull request comment cross-references another issue or pull request.

Thus, there were 50 random comments selected from each of these types of

cross-references.

This manual content analysis [35] was performed by two people familiar with

software development practices. They classified a comment as a technical de-

pendency if the comment described a work dependency, either direct or indirect,

between the two projects. For each dependency, they also noted if the depen-

dency was direct (between the two projects) or indirect (both projects depend

on a third project).

The same two people further examined the comments that were classified as

13

technical dependencies to identify the types of dependencies that are identified

using the Reference Coupling method. The dependencies were classified using

common dependency types that can be declared in issue tracking systems:

• Duplicate: the issue/commits on the two projects are duplicates of each

other. Within a project, duplicate issues would describe the same problem.

Across projects, an example of a duplicate issue could be both projects

have created issues to deal with a breaking API change from a shared

dependency.

• Blocking: an issue/commit on one project is blocking work in the other

project. For example, one project is waiting for the other project to release

a promised API change before they can finalize a new feature that will be

enabled by that API change.

• Resolving: an issue/commit on one project resolves an issue in the other

project. For example, one project had security issues which it has inherited

from a project it depends on. Once the other project fixes its security

issues, the issue will be resolved in the dependent project as well.

• Affecting: an issue/commit on one project is impacted by an issue/commit

on the other project. In other words, changes need to be made in the first

project due to changes made in the other project. For example, a project

deprecates an old API which would cause any projects using that old API

to update to a more recent API.

When a dependency did not fit one of these categories, open coding was used

to identify the type of dependency [36]. The cross-references that did not match

one of the pre-defined dependency types were reviewed and conceptually similar

comments were grouped into categories. This resulted in two new dependency

categories being introduced, Leveraging and Updating, which are described in

Section 5. Each coder independently did the manual analysis and coding. Then

the two coders met to discuss their results and try to come to a consensus.

The coders were able to come to a consensus for all items after this discussion,

14

Table 2: Inter-coder Reliability: Kohen’s Kappa

Initial Agreement Initial Cohen’s Kappa Final Agreement Final Cohen’s Kappa

Existance of Dependency 99% 0.828 100% 1

Direct/Indirect 97% 0.807 100% 1

Affecting 88.5% 0.678 100% 1

Blocking 98.5% 0.911 100% 1

Duplicate 96.5% 0.895 100% 1

Leveraging 98.5% 0.660 100% 1

Resolving 92% 0.826 100% 1

Updating 98.5% 0.816 100% 1

resulting in 100% agreement. Table 2 shows the inter-coder reliability using

Kohen’s Alpha for each of the categories for the intial independent coding and

the final agreed upon codes. Cohen’s alpha was calculated using ReCal [37].

RQ1b: Does the Reference Coupling method identify inter-project technical

dependencies on IBM work item comments? If so, what are the characteristics

of these dependencies?

To validate the Reference Coupling method identifies true technical depen-

dencies between the IBM projects, we are able to compare the dependencies

identified using the Reference Coupling method to the developer declared de-

pendencies. For each work item, the metadata contains information on depen-

dencies between the work items captured by the developers along with the type

of dependency. IBM developers can choose between 26 established dependency

classifications such as Depends On, Blocks, Duplicate Of, and Resolves.2 Of

the 26 classification, only 14 are used by the IBM developers in our dataset.

These 14 dependency classifications are described in Table 3. We grouped the

classifications into types, since there are pairs of classifications which represent

reciprocal relationships.

We analyze these developer specified dependencies to see how many were

also identified by the Reference Coupling method. In addition, we also manu-

ally analysed the cases where the Reference Coupling method identified a depen-

dency, but the IBM developers did not indicate the dependency within the work

2https://jazz.net/help-dev/clm/index.jsp?topic=%2Fcom.ibm.team.concert.sdk.doc%2Ftopics%2Fr link domains.html

15

Table 3: Types of Dependencies

Dependency Type Classification Description

Blocking
Blocks The work item blocks work item X

Depends on The work item depends on work item X

Resolving
Resolves The work item resolves work item X

Resolved by The work item is resolved by work item X

Duplicate
Duplicated by The work item is duplicated by work item X

Duplicate of The work item is a duplicate of work item X

Affecting
Affected by Defect A work item is affected by a defect

Affects Plan Item The work item impacts plan item X

Parent/Child
Parent The work item is a parent of work item X

Children The work item is a child of work item X

Related
Related The work item has a general relationship with work

item X

Related Change Request The work item is related to a change request item

Planning
Contributes to The work item contributes to work item X

Tracks The work item tracks work item X

item. We analysed these cases to determine if the Reference Coupling method

identifies cases of true technical dependencies that had not been marked as such

by the IBM developers. In the case that the manual analysis revealed a technical

dependency, we also categorized the type of dependency using the same cate-

gories as used by the IBM developers to understand what types of dependencies

Reference Coupling captures.

4.3.2. Reference Coupling: Method Application

RQ2: What ecosystems exist across GitHub-hosted projects and what is their

structure?

To illustrate the applicability of our method, we constructed a network of

the technical dependency relationships established through Reference Coupling

as described in Section 3. The Dependency Network is defined as a directed

graph Gd =< V,E >. The set of vertices, denoted by V , is all GitHub projects

involved in at least one cross-reference. There are 18,533 projects in this set.

The set of edges, denoted by E, is a set of node pairs E(V) = {(x, y)|x, y ∈

V }. If the project represented by node xi cross-referenced the project repre-

16

sented by node yj , there is a directed edge from xi to yj . The weight of each edge

is the count of cross-references for the pair of projects. We filtered the edges

to only consider dependencies between nodes if the pair of projects have been

cross-referenced two or more times to capture only the stronger dependencies.

It is important to note that this directed graph captures the direction of

the cross-referencing comments and not the direction of the dependencies that

those comments imply. A project could cross-reference another project because

it is blocked by that project or because it is blocking that project. The nuances

of the dependency direction are not captured by our method.

To identify ecosystems across projects hosted on GitHub, we used the pop-

ular Louvain community detection method [15] on the Dependency Network

established through Reference Coupling. The Louvain method is a greedy opti-

mization method that aims to partition a network into communities of densely

connected nodes and optimize the modularity of the network. Modularity is de-

fined as “the number of edges falling within [communities] minus the expected

number in an equivalent network with edges placed at random [38].” High mod-

ularity scores indicate that there are dense connections within the communities

but sparse connections across communities, showing that an optimal solution

has been found. When high modularity scores are obtained, the communities

have significant real-world meaning [15]. The Louvain method is comprised of

two steps. It first optimizes modularity locally by looking for small communi-

ties. Then it aggregates the nodes in each small community and builds a new

network with these aggregated nodes. It iterates on these two steps until the

modularity is maximized. The Louvain method outperforms all other commu-

nity detection methods in terms of both the modularity that is achieved and

the computation time [15].

In our network, the identified communities represent sets of projects densely

connected by technical dependencies. Since dependencies that exist between

projects define the structure of an ecosystem [5], these communities represent

software ecosystems.

To identify properties of the identified ecosystems, we:

17

• Analyzed visualizations of the Dependency Network. Visualizations of

each ecosystem detected by the Louvain community detection method (as

described above) were manually reviewed. We used the Gephi [39] graph-

ing tool to create these visualizations. One of the authors inspected these

visualizations of the network to visually identify patterns. The identified

patterns were cross-checked by two of the other authors.

• Computed network statistics for each of the ecosystems, such as in-degree

and out-degree of the nodes.

• Examined the types of projects involved in the ecosystems by reviewing

the GitHub README files of the most well-connected project node in

each of the ecosystems.

RQ3: Do the project owners’ and contributors’ social behaviours align with

the technical dependencies?

To complement our investigation of technical dependencies and connect-

edness of projects in GitHub, we also sought to understand the social be-

haviour of project owners/contributors in relation to the ecosystems we identi-

fied. We studied two of GitHub’s social relationships, following users and star-

ring projects. On GitHub, users can follow other users to receive notification

on their activity and star a repository to bookmark it or indicate interest in the

project. To understand how the social behaviour of project owners/contributors

relates to the identified ecosystems, we examine the alignment between social

and technical connections between the projects.

To answer RQ3, we construct project-to-project networks based on the fol-

lowing and starring activity of the project owners and contributors.

Project Owners. We constructed two networks using the following and star-

ring relationships by considering the actions of the project owners. The Owner

Stars Network, Gos =< V,E >, and the Owner Follows Network, Gof =<

V,E >, are both undirected graphs whose set of vertices is all GitHub projects

involved in at least one cross-reference. For the Owner Follows Network, there

is an edge from nodes xi to yj if the owner of project xi follows the owner of

18

project yj . There is an edge from xi to yj in the Owner Stars Network if an

owner of any project in our dataset has starred both project xi and project yj .

Project Contributors. We constructed two additional networks using these

following and starring relationships by considering the actions of the project

contributors (users who have made commits on the project or are members

of the project). The Contributor Stars Network, Gcs =< V,E >, and the

Contributor Follows Network, Gcf =< V,E >, are also undirected graphs whose

set of vertices is all GitHub projects involved in at least one cross-reference. The

Contributor Follows Network has an edge from nodes xi to yj if a contributor of

project xi follows a contributor of project yj . The Contributor Stars Network

has an edge from xi to yj if a contributor to any project in our dataset has

starred both project xi and project yj .

To compare the social connections with the technical dependencies, we com-

pare the edge weights of these two networks with the edge weights of the De-

pendency Network constructed to answer RQ2. Pearson correlations were used

since the data was normally distributed. The edge weights of these networks

represent the following:

• Dependency Network Gd: Number of technical dependencies, measured

through Reference Coupling, between the two project nodes.

• Owner Follows Network Gof : 0 if neither project owner follows the other,

1 if one project owner follows the other project owner, and 2 if both project

owners follow each other.

• Owner Stars Network Gos: Number of project owners who have starred

both projects.

• Contributor Follows Network Gcf : Number of contributors with following

relationships for the pair of projects.

• Contributor Stars Network Gcs: Number of project contributors who have

starred both projects.

19

5. Results

5.1. Method Validation on GitHub Data

RQ1a: Does the Reference Coupling method identify inter-project technical

dependencies on GitHub issue, pull request, and commit comments? If so, what

are the characteristics of these dependencies?

Of the 200 examined cross-references, we obtained 96.5% precision as 193

were found by the two manual coders to be true technical dependencies. We are

unable to calculate recall of our method since we do not have a ground truth

set of all dependencies.

Of these 193, 176 (91%) were direct dependencies between the two projects

and 17 (9%) were indirect dependencies where the two projects both depend on

a third project.

Dependency between the two projects. The most common type of dependency

found was a direct technical dependency between the two projects. An example

of a direct technical dependency is when an issue created in one project depends

on a fix/update in another project. Another example is when a project needs

to be updated based on changes made in another project.

Below we provide three examples of cross-reference comments that are in-

dicative of direct technical dependencies between the two projects. Project

names follow the pattern user/repository where user is the owner’s GitHub lo-

gin and repository is the name of the project repository.

Issue #449 on the sensu/sensu project describes an issue that is the result

of the interaction between the sensu/sensu code and the ruby-amqp/amq-client

library. The comment references a commit on the ruby-amqp/amq-client that

fixes the issue.

“I verified that the problem is still the one referenced in ruby-amqp/amq-

client#14. This fix is not merged with amq-client’s ‘0.9.x-stable’

branch. This is why I am still hitting it. The commit ruby-amqp/amq-

client@60f1c59 is the fix but it resides only in the master branch.”

20

Issue #8 on the tsujigiri/axiom project notes that changes must be made to

the code base to allow an upgrade to the latest release of the ninenines/cowboy

project.

“Upgrade Cowboy: After Cowboy 0.6.1 Cowboy’s http req record was

made opaque and can not be used directly anymore. I didn’t really

have the time yet to look into it, but it looks like we just need to

remove all references to the record from the documentation and add

directions on how to access cowboy req:req() via the cowboy req func-

tions. See ninenines/cowboy#266 and ninenines/cowboy#267.”

Commit 81bbbec21c04b6392f6892f7735243387d295337 on the joyent/node

project closes isaacs/node-graceful-fs issue #6, which describes a problem in

the isaacs/node-graceful-fs code stemming from the use of joyent/node. GitHub

allows automatic closure of issues through commit comments, even when the

commit is in a different repository.3

“This fixes isaacs/node-graceful-fs#6.”

Both projects depend on a third project. We also identified some cases

where the comments describe a dependency on a third project that is not cross-

referenced. For example, everzet/capifony’s pull request #376 cross-references

composer/composer’s issue #1453, but the problem stems from the use of the

symfony/symfony project. After identifying the source of the problem, a new is-

sue (#411) is created on the everzet/capifony project that identifies the changes

that need to be made to the way the symfony environment is set so that the

composer/composer code executes correctly.

“As described in #376 capifony should execute composer with the

right symfony environment set. Currently, with --no-scripts op-

tion removed in #376, composer is always executing symfony scripts

with default dev environment.”

3https://github.com/blog/1439-closing-issues-across-repositories

21

Table 4: Types of Dependencies Identified by Reference Coupling

Dependency Type Count (Ratio)

Resolving 74 (38.3%)

Duplicate 43 (22.3%)

Affecting 43 (22.3%)

Blocking 18 (9.3%)

Updating 9 (4.7%)

Leveraging 6 (3.1%)

5.1.1. Dependency Categories

Most (178 of 193 or 92%) of the dependencies were able to be assigned to

one of the four pre-existing dependency types (duplicate, blocking, resolving or

affecting). The remaining cross-references were examined and open coding was

used to generate additional dependency categories. Only two new categories

were created by the two manual coders, both of which are specific to cross-

project dependencies:

• Leveraging: the two projects depend on a third project and both experi-

ence the same issue due to this shared dependency. One of the projects

leverages a solution to this problem that has been generated by the other

project.

• Updating: one of the projects depends on the other project and is updating

to a more recent version of the other project.

Table 4 shows the breakdown of how often each dependency type appeared

in our data. Resolving is the most common dependency type.

Answer to RQ1a: The Reference Coupling method does identify inter-

project technical dependencies on GitHub pull request, issue and commit

comments; 96.5% of manually analyzed comments revealed technical de-

pendencies between the cross-referenced projects. Of these, most are direct

22

Table 5: Types of Dependencies Not Identified by IBM Developers.

Dependency Type Count

Duplicate 57

Related 42

Parent/Child 28

Affecting 10

Blocking 6

Planning 2

Resolving 1

dependencies between the two projects, but some are a shared dependency

on a third project. We further classified these dependencies and found that

the Reference Coupling method identifies a variety of dependency types.

The most common type of dependency identified is Resolving: where a

change in one project resolves an issue in the other project.

5.2. Validating Method on IBM Data

RQ1b: Does the Reference Coupling method identify inter-project technical

dependencies on IBM work item comments? If so, what are the characteristics

of these dependencies?

The Reference Coupling method identified dependencies between 2108 pairs

of work items, 635 of which are inter-project dependencies. Of the inter-project

dependencies, 146 (23%) were marked as technical dependencies by the IBM

developers. Table 5 shows the types of dependencies that were both identified

by Reference Coupling and the IBM developers. The most common types of

dependencies that were identified by both the Reference Coupling method and

the IBM developers are duplicates, related, and parent/child relationships.

However, there were 489 inter-project dependencies identified by the Ref-

erence Coupling method which were not marked as dependencies by the IBM

23

developers. To validate that our Reference Coupling method was, in fact, identi-

fying dependencies, despite the fact that not all were marked as such within the

repository, two coders familiar with software development practices reviewed

a random sample of 111 of the 489 work items and manually assessed if the

Reference Coupling method identified a valid technical dependency. The two

coders achieved a 95% inter-coder reliability. They discussed any cases where

their coding did not align and came to a concenus.

Of the 111 work items, all were found to have dependencies with other

projects by the coders. The coders also categorized these 111 dependencies using

the dependency types in Table 3. They also used an additional type (Unknown)

to label dependencies that did not easily fit into one of the 26 pre-established

dependency types.

Table 6 shows the types of dependencies that were evident among the pairs

of work items. The most common dependency type that was identified by our

Reference Coupling method but was not marked as a dependency by the IBM

developers was ‘Affected by Defect’. For example, this comment describes how a

defect, which is associated to a different project, caused problems on the current

project.

“The Validate is not defined error from comment 2 was fixed in defect

162650.”

Another common dependency type identified by Reference Coupling but not

flagged as a dependency by the developers is ‘Related’. For example,

“This is related to item 125838.”

The links between projects are not as clearly seen in the textual comments

in IBM CLM, since the project associated with the work item is only available

in the metadata on the work item. In these cases, it would be quite easy for

developers to be unaware that a coordination need with another project exists

since the fact that these work items are part of another project is not apparent.

24

Table 6: Types of Dependencies Not Identified by IBM Developers.

Dependency Type Count

Affecting 73

Related 30

Planning 1

Blocking 1

Unknown 6

Answer to RQ1b: The Reference Coupling method does identify inter-

project technical dependencies on IBM work item comments. It identifies a

wide variety of dependency types. The most common type of dependency

that is found with the Reference Coupling method but missed by the IBM

developers is the ‘Affecting’ category.

5.3. Applying Reference Coupling to identify and examine GitHub ecosystems

5.3.1. Ecosystem Identification

RQ2: What ecosystems exist across GitHub-hosted projects and what is their

structure?

Figure 3 shows the full Dependency Network, though for visibility we only

display nodes with degree of 3 or greater. As visible on the graph, most of

the nodes (10,484 of 18,533 projects or 57%) are part of the largest connected

component (commonly referred to as the giant component [40]), which is the

largest subgraph in which every node is connected to every other node by some

path. The connected components isolated from the giant component are primar-

ily comprised of same owner communities in which all nodes in the connected

component are projects owned by the same GitHub user or organization. For

example, the second largest connected component is comprised of 65 nodes, of

which, all but two are owned by GitHub user deathcap.4 Most of the nodes

4https://github.com/deathcap

25

0
50
0

10
00

15
00

20
00

25
00

With Outliers

1
2

3
4

5
6

7
8

Outliers Removed

Figure 2: Number of unique cross-referenced projects for all projects that make at least one

cross-reference to another project on GitHub.

isolated from the giant component are connected to only a small number of

nodes. In fact, 75% of nodes not in the giant component are connected to only

one other node.

Figure 2 shows boxplots for the number of unique cross-references for each

project which cross-references at least one other project. These boxplots show

that while some projects make cross-references to many other projects, most

projects have only a small number of other projects which they cross-reference.

Since we are most interested in studying the popular GitHub ecosystems, we

focus our analysis on the interconnected part of the network or the giant com-

ponent. Figure 4 shows the giant component. The color of the nodes represent

26

Figure 3: All GitHub projects with cross-references. The largest connected component (or

giant component) is easily identified as the well-connected subgraph appearing in the center

of the graph.

communities as detected by the Louvain method. We obtained a modularity

score of 0.913 (out of a possible range of 0 to 1). This high modularity score

indicates that the detected communities are much more tightly connected by

technical dependencies than would appear in a random graph.

There were 43 ecosystems identified in this network. Nodes are sized ac-

cording to their authority to display the nodes that are more prominent in each

ecosystem. When a node has a high number of cross-reference relationships

pointing to it, it has a high authority value [41]. Table 7 shows the most well-

connected project node (highest Authority value) in each of the ecosystems.

Properties of GitHub Ecosystems

Ecosystems revolve around one central project. As depicted in Figure 4, each

ecosystem appears to revolve around one main project. In Table 7, the most

well-connected project node in each ecosystem is listed along with a description

27

astropy/astropy

zendframework/Component_ZendDb

jquery/jquery-wp-content

troopjs/troopjs-browser

mitchellh/vagrant

getlantern/lantern-ui

zendframework/Component_ZendTest

troopjs/troopjs-bundle

zendframework/Component_ZendConfig

zendframework/Component_ZendDom

pnorman/openstreetmap-carto

zendframework/Component_ZendHttp

zendframework/Component_ZendView

facebook/hhvm

UnionOfRAD/framework

jquery/qunit

Homebrew/linuxbrew

alexmmm/json-schema

shirayuki/openstreetmap-website

zendframework/Component_ZendVersion

Majkl578/nette

daviddavis/katello-cli

mjgallag/meteor-bootstrap-3

refinery/refinerycms

dmascia/RemixChart

zcbenz/chromium

use-init/init

TooTallNate/node-gyp

zendframework/Component_ZendLoader

ecomfe/edp-build

owncloud/apps

zendframework/Component_ZendSession

travis-ci/travis-ci.github.com

Joshua-Anderson/dpl

macgitver/macgitver

travis-ci/travis-cookbooks

scottgonzalez/jquery

symfony/DoctrineBridge

zendframework/Component_ZendCache

zargony/rust-fuse

stevengj/PyPlot.jl

koraktor/steam-condenser-java

padrino/padrino-docs

JuliaLang/julia

doctrine/DoctrineMongoDBBundle

pllim/pysynphot

fb55/htmlparser2

jawshooah/homebrew

zendframework/Component_ZendCode

troopjs/troopjs-core

marcj/Propel2

chapmanb/cloudbiolinux

spree/spree_gateway

jrburke/r.js

zendframework/Component_ZendForm

chapmanb/bcbio-nextgen-vm

zendframework/Component_ZendDebug

karmi/rubygems-aws

opdemand/deis-cookbook

zendframework/Component_ZendConsole

symfony/symfony

zendframework/Component_ZendDi

assaf/vanity

zendframework/Component_ZendUri

scambra/devise_invitable

zendframework/Component_ZendServiceManager

snarfed/activitystreams-unofficial

whs/chromium.src

mongoid/moped

zendframework/Component_ZendStdlib

pjackson28/theme-gc-intranet

basho/riak_kv

Katello/katello-cli

jashkenas/coffee-script

kevin-smets/angular-bleed

leobalter/qunitjs.com

zendframework/zf2

wet-boew/theme-base

zendframework/Component_ZendMvc

Homebrew/homebrew

elasticsearch/elasticsearch-ruby

JuliaLang/julialang.github.com

lostisland/faraday

travis-ci/travis-build

EricDunsworth/theme-gc-intranet

webpack/less-loader

alrra/server-configs

kachick/rubinius

travis-ci/travis-core

macgitver/libGitWrap

zendframework/Component_ZendJson

IronLanguages/main

dcestari/TextSecure-iOS

garethr/vagrantboxes-heroku

zendframework/Component_ZendBarcode

troopjs/troopjs-data

wyuenho/backgrid-filter

nareshv/hhvm

bundler/bundler

nickl-/composer

zendframework/Component_ZendPaginator

koraktor/steam-condenser-ruby

losttime/steam-condenser-php

mapbox/millstone

hacken-in/puppet-hackenin

wayneeseguin/rvm

zendframework/Component_ZendAuthentication

noflo/noflo-ui

nulltoken/libgit2

chapmanb/homebrew-cbl

symfony-cmf/MenuBundle

symfony/FrameworkBundle

borland/ironlanguages-main

zendframework/Component_ZendTag

thekid/xp-framework

indirect/ember-rails

h5bp/server-configs-apache

mirage/opam-repository

rogerwang/node

Ocramius/doctrine2

plentz/jruby_report

zendframework/Component_ZendSerializer

eurodev/symfony

zendframework/Component_ZendXmlRpc

CocoaPods/Core

satyr/coco

yyx990803/npm

xp-framework/remote

radar/spree_gateway

troopjs/troopjs

hhatto/autopep8

getlantern/lantern-controller

RedWolves/jquery-wp-content

chris-morgan/rust-http

joyent/node

travis-ci/docs-travis-ci-com

wayneeseguin/rvm-test

zendframework/Component_ZendMemory

zendframework/Component_ZendModuleManager

SLaks/SLaks.Blog

alphagov/static

wet-boew/theme-gcwu-fegc

MicahChalmer/rust-fuse

gruntjs/grunt-contrib-requirejs

zendframework/Component_ZendFileh5bp/server-configs

zendframework/Component_ZendLog

xp-framework/xp-framework

parndt/decorators

zendframework/Component_ZendLdap

isaacs/npm

zendframework/Component_ZendInputFilter

gruntjs/grunt-contrib-compass

zendframework/Component_ZendNavigation

Behat/MinkSelenium2Driver

cosm/jshintrb

Ocramius/common

ielgnaw/edp-doctor

yahonda/oracle-enhanced

sferik/rails_admin

lovanwubing/r.js

gregbell/active_admin

Polymer/projects

pjackson28/theme-gcwu-fegc

spree/spree

travis-ci/travis-api

troopjs/troopjs-utils

vtsvang/grunt-contrib-nodeunit

RestKit/RestKit

tenderlove/psych

zendframework/Component_ZendI18n

webpack/jade-loader

basho/riak_api

OCamlPro/opam-repository

radar/spree

leobalter/jquery-wp-content

DieBuche/openstreetmap-website

bajtos/libuv

symfony/symfony-docs

Sparks-Creative-Limited/angular.js

openid/ruby-openid

rails/rails

getlantern/lantern_aws

michaelficarra/CoffeeScriptRedux

bootstraponline/gollum-lib

avsm/mirage

ecomfe/edp-doctor

henrikhodne/travis-core

joyent/libuv

Wizcorp/distribute

doctrine/mongodb

mongoid/mongoid-site

humdedum/homebrew

cup-of-giraf/symfony

zendframework/ZF2Package

michaelficarra/commonjs-everywhere

mapnik/node-mapnik

Homebrew/homebrew-science

nukomeet/coworfing

kswedberg/grunt-jquery-content

JuliaStats/DataArrays.jl

pjackson28/theme-ogpl

Katello/katello

mono/monomac

dbashford/mimosa-client-jade-static

owncloud/documentation

zendframework/Component_ZendValidator

am11/WebEssentials2013

jruby/jruby

composer/getcomposer.org

zendframework/Component_ZendFeed

rbranson/node-ffi

mpapis/rubygems-bundler

georgethomas/node-restify

Polymer/PointerGestures

avsm/homebrew

heuermh/cloudbiolinux

dcjones/Gadfly.jl

mapnik/mapnik-packaging

ntomka/bolt

fabpot/Twig

Polymer/labs

zendframework/Component_ZendFilter

Mithgol/node-pre-gyp

marijnh/tern

zimbatm/homebrew-versions

doctrine/common

kmcallister/servo

Supacoco/generators

marijnh/CodeMirror

yii2-chinesization/yii2-zh-cn

thekid/xp-contrib

sjackman/homebrew

Homebrew/homebrew-versions

zendframework/Component_ZendMail

dbashford/mimosa-require

angular-ui/ui-map

rsim/oracle-enhanced

rspec/rspec-rails

rkh/dpl

fussl/passme

genesis/wordpress

mxcl/homebrew

arthurschreiber/rugged

xp-framework/core

xp-framework/rest

hcatlin/sass-spec

jquery/jquery-ui

chancancode/rails

merk/Citadel

cowboy/grunt

dbashford/logmimosa

getlantern/lantern-common

mapnik/mapnik

ipython/ipython

FabienPennequin/scalastic

radar/spree_auth_devise

webpack/webpack

zjhiphop/troopjs-core

ecomfe/edp-minify

spree/spree_reviews

CocoaPods/guides.cocoapods.org

jquery/bugs.jquery.com

symfony/MonologBundle

astropy/package-template

bradt/wp-migrate-db

kevva/image-min

astropy/photutils

Behat/MinkExtension

jquery/blog.jquery.com-theme

gruntjs/grunt-contrib-jshint

yabawock/bootstrap-sass-rails

adhearsion/adhearsion-i18n

SciTools/iris-test-data

gruntjs/grunt-contrib-uglify

cucumber/multi_test

pwnall/rails5738

kennethreitz/grequests

symfony/Icu

rogerwang/blink

h5bp/ant-build-script

basho/riak_ensemble

bnoordhuis/node-iconv

h5bp/node-build-script

davidavdav/NamedArray

porada/middleman-autoprefixer

rspec/rspec-its

vtjnash/ODE.jl

jck/uhdl

CocoaPods/cocoapods-integration-specs

Ocramius/OcraDiCompiler

ocamllabs/opamfu

zendframework/zf2-documentation

mreid-moz/s3funnel

cambridge-healthcare/dockerfiles

anl/kitchen-gce

isaacs/read-installed

rubinius/rubinius-ast

JuliaLang/julia-ipython

isaacs/cluster-master

Ocramius/OcraServiceManager

tianon/dockerfiles

cowboy/node-exit

JuliaLang/IterativeSolvers.jl

alexcrichton/libuv

symfony/TwigBundle

tzinfo/tzinfo-data

jlaws/JLAddressBook

jroweboy/rust-mustache

Homebrew/homebrew-headonly

jquery/qunit-reporter-junit

rspec/rspec-mocks

alphagov/ci-puppet

jhelwig/technosorcery.net

h5bp/server-configs-nginx

jquery/grunt-jquery-content

getlantern/laeproxy

sebastianbergmann/phpunit-documentation

xp-framework/xp-runners

Behat/MinkSahiDriver

jsdoc3/jsdoc3.github.com

travis-ci/travis-tasks

dbashford/mimosa-testem-require

yaauie/cliver

progrium/pluginhook

gruntjs/gruntjs.com

wp-cli/wp-cli.github.com

wp-cli/package-index

composer/installers

madskristensen/CssSorter

gruntjs/grunt-contrib-jade

SciTools/iris-code-generators

gds-operations/puppet-elasticsearch

yeoman/grunt-usemin

adobe/brackets-shell

ianwhite/orm_adapter

tknerr/vagrant-plugin-bundler

Katello/katello-installer

kbhomes/google-music-mac

GeekOnCoffee/spree_product_sort

zendframework/ZendOAuth

rlidwka/yapm

symfony/HttpFoundation

symfony/DomCrawler

cordoval/symfony-standard

JeremyLetang/rust-sfml

sebastianbergmann/dbunit

doctrine/DoctrineORMModule

RiotGames/vagrant-berkshelf

sonata-project/SonataDoctrinePhpcrAdminBundle

alphagov/panopticon

propelorm/propelorm.github.com

propelorm/PropelBundle

Homebrew/homebrew-dupes

rails/sass-rails

kriswallsmith/assetic

wet-boew/wet-boew-styleguide

rspec/rspec-core zendframework/Component_ZendSoap

ariatemplates/ariatemplates

yeoman/yeoman

karma-runner/karma

emberjs/website

getlantern/lantern

wp-cli/wp-cli

mbostock/d3

visionmedia/express

adobe/brackets

travis-ci/travis-ci

carlhuda/bundler

AFNetworking/AFNetworking

CocoaPods/Specs

kennethreitz/requests

owncloud/mirall

flori/json

KnpLabs/KnpMenuBundle

yeoman/generator-angular

jquery/web-base-template

travis-ci/dpl

CocoaPods/Xcodeproj

kennethreitz/httpbin

gma/nesta

CocoaPods/CocoaPods

twbs/bootstrap

ocaml/opam

gollum/gollum-lib

gruntjs/grunt

emberjs/ember.js

greasemonkey/greasemonkey

bower/bower

senchalabs/connect

josegonzalez/homebrew-php

basho/basho_docs

angular-ui/bootstrap

mozilla/rust

koraktor/steam-condenser

Constellation/escodegen

basho/eleveldb

owncloud/calendar

symfony/AsseticBundle

shama/gaze

basho/riak-erlang-client

sympy/sympy-bot

padrino/padrino-framework

libgit2/libgit2

FriendsOfSymfony/FOSUserBundle

middleman/middleman

Shopify/active_merchant

mperham/sidekiq

emberjs/data

madskristensen/WebEssentials2013

mojombo/jekyll

rubygems/rubygems

documentcloud/backbone

nex3/sass

libgit2/rugged

libgit2/objective-git

mirage/mirage-www

MacRuby/MacRuby

jruby/jruby-rack

sebastianbergmann/phpunit-mock-objects

caolan/async

joyent/http-parser

gruntjs/grunt-contrib-coffee

GroupTalent/epf

yiisoft/yii2

berkshelf/berkshelf

ocaml/opam-repository

LearnBoost/mongoose

chriseppstein/compass

Sylius/Sylius

jnicklas/capybara

sebastianbergmann/phpunit

sinatra/sinatra.github.com

jmreidy/grunt-browserify

karma-runner/grunt-karma

basho/node_package

celluloid/reel

basho/riak_search

oneclick/rubyinstaller

adobe/brackets-app

gruntjs/grunt-contrib-copy

adobe/brackets-edge-web-fonts

ecomfe/edp

spree/spree_social

rubinius/rubinius

pry/pry

cowboyd/therubyracer

symfony-cmf/CoreBundle

basho/yokozuna

symfony-cmf/SimpleCmsBundle

Polymer/PointerEvents

jquery/sizzle

knockout/knockout

alphagov/smart-answers

doctrine/DoctrineModule

sonata-project/SonataAdminBundle

JuliaLang/IJulia.jl

JuliaOpt/JuMP.jl

sensiolabs/SensioDistributionBundle

geoadmin/mf-geoadmin3

jquery/jquery

sympy/sympy

noflo/noflo

rstudio/ggvis

swcarpentry/bc

libgit2/pygit2

laurentj/slimerjs

rubygems/rubygems.org

twitter/recess

sparklemotion/nokogiri

phinze/homebrew-cask

jruby/warbler

libgit2/libgit2sharp

guard/guard-rspec

joshdmiller/ng-boilerplate

mongodb/node-mongodb-native

pypa/pip

h5bp/html5-boilerplate

mozilla/servo

bickerstoff/zf2-documentation

the-grid/the-graph

jquery/api.jquerymobile.com

jnicklas/turnip

alphagov/govuk_content_models

todc/todc-bootstrap

bcardarella/client_side_validations

fog/fog

FortAwesome/Font-Awesome

facebook/hiphop-php

ecomfe/edp-core

owncloud/core

Behat/MinkBrowserKitDriver

tombh/deis-cookbook

alphagov/frontend

Polymer/polymer-ui-elements

xp-lang/compiler

noflo/dataflow-noflo

Constellation/esmangle

koraktor/steam-condenser-php

jquery/api.qunitjs.com

travis-ci/travis-assets

gruntjs/grunt-contrib-handlebars
laverdet/node-fibers

paulcbetts/ModernHttpClient

spacetelescope/PyFITS

wet-boew/wet-boew-xsl

padrino/padrino-recipes

bnoguchi/hooks-js

elia/activeadmin-mongoid

lindahua/NumericExtensions.jl

dotcloud/stackbrew

minrk/ipython_extensions

npm/read-installed

mzabaluev/grust

swiftmailer/swiftmailer

developmentseed/node-sqlite3

drublic/css-modal

basho/riak-ruby-client

fraction/fraction

berkshelf/vagrant-berkshelf

heartsentwined/ember-auth

rails/strong_parameters

documentcloud/underscore

adhearsion/punchblock

hcatlin/libsass

basho/giddyup

guard/listen

ryanmcgrath/twython

travis-ci/travis

cloudhead/less.js

chris-morgan/ncurses-rs

composer/composer

Modernizr/Modernizr

Leaflet/Leaflet.draw

saghul/pyuv

gammapy/gammapy

rspec/rspec-expectations

basho/riak_control

basho/cuttlefish

trinidad/trinidad

bhollis/maruku

paulmillr/chokidar

ariya/phantomjs

matplotlib/matplotlib

rogerwang/node-webkit

ipython/nbconvert

schmittjoh/serializer

mapbox/mapbox.js

alphagov/gds-api-adapters

jonleighton/poltergeist

rails/activeresource

kchmck/vim-coffee-script

bundler/bundler-site

caskroom/homebrew-fonts

rubygems/rubygems-aws

gravitystorm/openstreetmap-carto

rails/sprockets-rails

scikit-learn/scikit-learn

MayhemYDG/4chan-x

SciTools/iris

SlexAxton/require-handlebars-plugin

angular/angular.js

LearnBoost/socket.io

jashkenas/backbone

schmittjoh/JMSSecurityExtraBundle

genemu/GenemuFormBundle

basho/riak_test

emberjs/ember-dev

schmittjoh/JMSI18nRoutingBundle

jgm/pandoc

zendframework/zf-web

stefanpenner/ember-app-kit

sstephenson/sprockets

Parallels/vagrant-parallels

lifo/docrails

bjz/glfw-rs

statsmodels/statsmodels

wet-boew/wet-boew

geemus/excon

symfony-cmf/RoutingBundle

h5bp/mobile-boilerplate

Leaflet/Leaflet.markercluster

requests/requests-oauthlib

osmlab/openstreetmap-upcoming-features

dotcloud/docker

strongloop/loopback

swcarpentry/site

component/builder.js

dotcloud/docker-registry

pivotal/pivotal_workstation

jshint/jshint

alessandro277/homebrew-php

douglasduteil/ui-utils

bnoordhuis/libuv

snarfed/webutil

gruntjs/grunt-contrib-sass

aredridel/html5

swcarpentry/boot-camps

travis-ci/blog-travis-ci-com

gds-operations/puppet-graphite

troopjs/troopjs-jquery

gruntjs/grunt-contrib

trustmaster/goflow

gruntjs/grunt-contrib-internal

xp-framework/xp-language

xp-framework/xp-contrib

Polymer/todomvc

xforty/vagrant-drupal

troopjs/troopjs-requirejs

composer/satis

janestreet/core

gruntjs/grunt-contrib-jst

coreos/coreos-vagrant

berkshelf/solve

rspec/rspec-support

substack/node-mkdirp

CocoaPods/cocoapods-downloader

isaacs/read-package-json

doctrine/DoctrineBundle

npm/npm-registry-mock

symfony-cmf/RoutingAutoBundle

ipython/ipython-components

rust-lang/rfcs

yeoman/generator-webapp

basho/bitcask

macournoyer/thin

fgrehm/vagrant-lxc

systemed/iD

basho/riak-python-client

gkz/LiveScript

rack/rack

andrew/node-sass

sebastianbergmann/php-code-coverage

yeoman/generators

openstreetmap/openstreetmap-website

caskroom/homebrew-versions

LightTable/LightTable

mongoid/mongoid

uq-eresearch/aorra

tkf/emacs-ipython-notebook

travis-ci/travis-web

OCamlPro/opam

mapbox/tilemill

mirage/mirage

alphagov/govuk_content_api

ernie/ransack

RiotGames/ridley

sonata-project/SonataDoctrineORMAdminBundle

mapbox/carto

emberjs/ember-rails

elasticsearch/cookbook-elasticsearch

spree/deface

ruby-amqp/bunny

wet-boew/GCWeb

freerunningtechnologies/spree_reviews

basho/riak

Polymer/docs

rails/arel

progrium/dokku

nodejitsu/node-http-proxy

airblade/paper_trail

ivaynberg/select2

mathnet/mathnet-numerics

Ocramius/ProxyManager

jtriley/StarCluster

less/less.js

seancribbs/webmachine-ruby

owncloud/contacts

clutchski/coffeelint

swig/swig

jekyll/jekyll

sensio/SensioDistributionBundle

sstephenson/rbenv

jquery/plugins.jquery.com

propelorm/Propel2

seattlerb/minitest

arashpayan/appirater

GoogleCloudPlatform/gsutil

rails-api/active_model_serializers

Nami-Doc/LiveScript

zendframework/Component_ZendMime

apmasell/vapis

rogerwang/WebKit_trimmed

bnoordhuis/node

sferik/t

fgrehm/vagrant-cachier

tmatilai/vagrant-proxyconf

doctrine/DoctrineMongoODMModule

simonster/MAT.jl

jonnor/microflo

alphagov/business-support-finder

Polymer/platform

getlantern/www.getlantern.org

symfony-cmf/Testing

alphagov/transformation-dashboard

owncloud/media

astropy/coordinates-benchmark

libgit2/libgit2.github.com

haml/html2haml

ghedo/p5-Git-Raw

jwarkentin/node-monkey

aheckmann/mquery

developmentseed/node-blend

fog/fog-core

jekyll/help

numpy/numpydoc

isaacs/npmconf

boot2docker/boot2docker-cli

rails/journey

rumblelabs/asset_sync

Uncommon/Xit

shazow/urllib3

chaplinjs/chaplin

RubyMoney/money

adamfisk/LittleProxy

rowanj/gitx

pivotal-sprout/sprout

zendframework/Component_ZendServer

tmpvar/jsdom

necolas/normalize.css

schmittjoh/JMSSerializerBundle

ocamllabs/rwo-comments

adhearsion/adhearsion

nodejitsu/forever

yeoman/yeoman.io

brunch/brunch

fnichol/chef-rvm

symfony/symfony-standard

owncloud/music

Katello/hammer-cli-katello

mapbox/node-sqlite3

reactphp/react

node-inspector/node-inspector

agrobbin/uclass

visionmedia/jade

jsdoc3/jsdoc

sul-dlss/spotlight

Sylius/Sylius-Docs

yiisoft/yii

Leaflet/Leaflet

spree/spree_active_shipping

msysgit/msysgit

composer/packagist

cboden/Ratchet

middleman/middleman-blog

Seldaek/monolog

doctrine/doctrine2

rubyspec/rubyspec

bestiejs/lodash

intridea/multi_json

symfony-cmf/symfony-cmf

jquery/learn.jquery.com

zendframework/zf1

LearnBoost/stylus

symfony-cmf/CreateBundle

JamesMGreene/qunit

sleeper/generator-backbone

travis-ci/travis-boxes

owncloud/appframework

lautis/uglifier

halostatue/diff-lcs

phpspec/phpspec

cucumber/cucumber-html

Modernizr/modernizr.com

Polymer/more-elements

jrburke/require-cs

substack/browser-pack

gruntjs/grunt-contrib-watch

YorickPeterse/oga

gruntjs/grunt-contrib-compress

gruntjs/grunt-contrib-qunit

requirejs/xrayquire

yeoman/grunt-regarde

Modernizr/grunt-modernizr

yola/demands

nicoulaj/vagrant-maven-plugin

owncloud/3rdparty

Pybonacci/poliastro

IainNZ/MathProg.jl

JuliaLang/ODE.jl

thomas-mcdonald/bootstrap-sass

jkbr/httpie

ernie/squeel

elixir-lang/elixir-lang.github.com

owncloud/mozilla_sync

component/component

hadley/devtools

jquery/jquery-mobile

tiennou/nested_form

alphagov/government-service-design-manual

rdoc/rdoc

basho/webmachine

rails/docrails

gitextensions/gitextensions

mishoo/UglifyJS2

doctrine/phpcr-odm

inkling/Subliminal

steeve/boot2docker

pypa/virtualenv

mbostock/topojson

drapergem/draper

stof/DoctrineMongoDBBundle

plataformatec/devise

zendframework/Component_ZendProgressBar

boto/boto

imathis/octopress

doctrine/mongodb-odm

adamv/homebrew-alt

owncloud/documents

zendframework/ZendDeveloperTools

simonster/DataFrames.jl

alphagov/design-principles

phoenixsong6/homebrew-php

dbashford/mimosa

msysgit/git

yeoman/generator-backbone

boot2docker/boot2docker

SimonSapin/servo

ericam/susy

swcarpentry/website

spree/spree_auth_devise

rvm/rvm-site

dbashford/mimosa-live-reload

gildegoma/travis-cookbooks

alphagov/rummager

ocamllabs/ocaml-ctypes

cowboyd/libv8

noflo/fbp

jdorn/sql-formatter

tmm1/http_parser.rb

toranb/ember-data-django-rest-adapter

jquery/jquery.com

xdissent/karma-browserify

bflad/chef-docker

guzzle/guzzle3

jgm/pandoc-templates

dbashford/mimosa-bower

brunch/uglify-js-brunch

middleman/middleman-sprockets

ForbesLindesay/component-website

rvm/rvm-binary

rubygems/bundler-api

sebcrozet/kiss3d

mistydemeo/tigerbrew

yyuu/pyenv

orgsync/active_interaction

wkhtmltopdf/wkhtmltopdf

thekid/xp-experiments

ichuan/bower-angular-latest

cucumber/gherkin

doctrine/dbal

basho/riak_core

ansible/ansible

lsegal/yard

ngbp/ng-boilerplate

visionmedia/expressjs.com

blakewatters/TransitionKit

rvm/gem-wrappers

jquery/download.jqueryui.com

karmi/tire

MatthewMueller/cheerio

WinRb/vagrant-windows

projecthydra/sufia

zendframework/ZendSkeletonApplication

capnregex/spree_auth_devise

jquery/jquerymobile.com

gulpjs/gulp

hotosm/HDM-CartoCSS

Exercise/FOQElasticaBundle

FriendsOfSymfony/FOSRestBundle

gollum/gollum

mishoo/UglifyJS

mapbox/wax

mapnik/mapnik-reference

php/php-src

padraic/mockery

zendframework/Component_ZendEscaper

ShaunK/node-soap

cadencemarseille/rust-pcre

yahonda/rails-dev-box-runs-oracle

zendframework/Component_ZendCrypt

marijnh/tern_for_vim

fb55/CSSselect

terinjokes/gulp-uglify

hegemonic/catharsis
aik099/qa-tools

shama/grunt-hub

symfony/SwiftmailerBundle

jimhester/knitrBootstrap

fredrik-johansson/mpmath

JuliaLang/Cairo.jl

jquery/jquery-release

n1k0/casperjs

vojtajina/testacular

karmi/retire

alphagov/publisher

Behat/Mink

jzaefferer/jquery-validation

substack/node-browserify

github/markup

netdna/bootstrap-cdn

roboguice/roboguice

visionmedia/nib

markevans/dragonfly

postrank-labs/goliath

amatsuda/kaminari

bblimke/webmock

oclint/oclint

git-tfs/git-tfs

refinery/refinerycms-blog

mitchellh/vagrant-aws

jquery/api.jqueryui.com

gravitystorm/mapnik-reference

creationix/nvm

alphagov/govuk_need_api

alphagov/travel-advice-publisher

strongloop/loopback-workspace

paulmillr/brunch-with-chaplin

doctrine/annotations

substack/module-deps

gruntjs/grunt-init

basho/riak-erlang-http-client

jnr/jnr-posix

craigcitro/r-travis

stevengj/PyCall.jl

diaspora/diaspora-project-site

sfackler/rust-postgres

mongodb/mongo-php-driver

discourse/discourse

sonata-project/SonataMediaBundle

mapnik/carto-parser

yeoman/generator

cucumber/cucumber-jvm

mikey179/xp-framework

wyuenho/backgrid

ivanov/ipython

alexaitken/guard-konacha

spree/spree_i18n

MaxCDN/bootstrap-cdn

mdevils/node-jscs

owncloud/news

sensio/SensioGeneratorBundle

zendframework/Component_ZendMath

gruntjs/grunt-contrib-imagemin

symfony-cmf/symfony-cmf-docs

JuliaStats/Distributions.jl

caarlos0/bootstrap-sass

dmathieu/travis-web

fabpot/Silex

TwP/directory_watcher

yeoman/yo

alphagov/licence-finder

yyuu/pyenv-virtualenv

angular-ui/angular-ui.github.com

json-api/json-api

bower/bower.github.io

openlayers/openlayers.github.io

lkcampbell/brackets-ruler

adobe-research/theseus

cfjedimaster/brackets-jshint

Homebrew/homebrew-binary

mroth/lolcommits

thoughtbot/suspenders

ipython/nbviewer

wp-cli/builds

wojsmol/wp-cli.github.com

HarlanH/DataFrames.jl

gibiansky/IHaskell

tPl0ch/symfony-docs

nodejitsu/haibu-carapace

sensio/SensioFrameworkExtraBundle

dbashford/mimosa-server

yohanboniface/django-leaflet-storage

sensiolabs/security-advisories

gruntjs/grunt-contrib-htmlmin

alphagov/feedback

strongloop/loopback-angular

benbalter/wordpress-plugin-tests

shtylman/node-browser-resolve

eclipsesource/jshint-eclipse

astropy/astropy-website

jekyll/jekyll-import

Circadio/circadio-issues

JuliaLang/libuv

JuliaDSP/DSP.jl

railsinstaller/railsinstaller-nix

thoughtbot/shoulda

openlayers/ol3

felixge/node-formidable

spree/spree-guides

gruntjs/grunt-contrib-stylus

typhoeus/typhoeus

opdemand/deis

celluloid/celluloid

thoughtbot/shoulda-matchers

dotcloud/docker-py

jrburke/requirejs

cucumber/cucumber

justinfrench/formtastic

vcr/vcr

andrenarchy/krypy

bower/decompress-zip

barmstro/web-animations-tools

henrikhodne/travis-cookbooks

SLaks/WebEssentials2013

adam-gegotek/symfony

zcbenz/node

pjackson28/GCWeb

jpcamara/jruby

wyuenho/backgrid-select-all

tUrG0n/nconf

robertkowalski/normalize-package-data

wet-boew/theme-ogpl

avsm/mirage-www

StemerdinkIT/SensioFrameworkExtraBundle

achempion/simple_form

yiisoft/yii2-framework

willthames/ansible

liberfa/erfa

nulltoken/libgit2sharp

porterjamesj/ipython

drewwells/lolsrv

cowboy/wesbos

lukesarnacki/travis-web

dbashford/mimosa-iced-coffeescript

wking/email-issue-reply-testing

enricosada/IronLanguages

Homebrew/homebrew-boneyard

AgilTec/spree_fancy

ecomfe/edp-add

wet-boew/theme-gc-intranet

SynoCommunity/spksrc

gruntjs/grunt-lib-phantomjs

test-unit/test-unit-activesupport

ecomfe/edp-project

webpack/webpack.github.com

globalize/globalize-versioning

vincent-hugot/iTeML

JamesMGreene/qunit-assert-html

meskyanichi/hirefire-resource

rubysl/rubysl-socket

astropy/astropy-api

obspy/sandbox

sproutsocial/es6-import-validate

gruntjs/grunt-contrib-livereload

owncloud/bookmarks

plepe/pgmapcss

jpetazzo/dind

fabpot/sphinx-php

webpack/enhanced-require

pao/Monads.jl

peterflynn/brackets-commands-guide

tzinfo/tzinfo

rabbit-shocker/rabbiter

jquery/contribute.jquery.org

symfony-cmf/MediaBundle

adobe/CodeMirror2

npm/npmjs.org

avsm/ocaml-github

headius/thread_safe

osmlab/editor-imagery-index

craue/CraueFormFlowBundle

freerange/mocha

jcrocholl/pep8

JuliaLang/METADATA.jl

ffi/ffi

jruby/activerecord-jdbc-adapter

Joshua-Anderson/travis-core

webpack/enhanced-resolve

svenfuchs/globalize3

edgecase/ECSlidingViewController

BlueSpire/Durandal

ivanov/vim-ipython

mperham/dalli

mruby/mruby

danez/symfony-docs

pydata/pandas

jquery/api.jquery.com

passy/generator-canjs

troopjs/troopjs-todos

ivanov/matplotlib

ennova/postmarkdown

phpDocumentor/Reflection

polyfractal/athletic

CanCanCommunity/cancancan

stefanpenner/ember-inflector

graydon/rust-www

joyent/node-website

rails/cache_digests

ryanb/nested_form

elasticsearch/elasticsearch

ryanb/cancan

xp-framework/rfc

mne-tools/mne-python

haml/haml

naholyr/doggybag

openlayers/openlayers

einaros/ws

alphagov/signonotron2

schisamo/vagrant-omnibus

mapbox/markers.js

timholy/HDF5.jl

strongloop/strong-remoting

Behat/SahiClient

isaacs/nopt

paylogic/pip-accel

isaacs/node-graceful-fs

d3/d3-plugins

gammapy/tevpy

ayosec/adminful

karbarcca/Datetime.jl

mcuadros/homebrew-hhvm

marionettejs/backbone.marionette

dennisreimann/ioctocat

globalize/globalize

lyrixx/symfony

igrigorik/em-http-request

eventmachine/eventmachine

middleman/middleman-guides

sensiolabs/SensioFrameworkExtraBundle

noflo/noflo-runtime-base

ecomfe/edp-webserver

whit537/www.gittip.com

JustinTulloss/zeromq.node
kanso/kanso

RiotGames/berkshelf

technoweenie/faraday

jquery/testswarm

wycats/thor

pjackson28/theme-base

minrk/ipython

tiagohillebrandt/builds

alphagov/slimmer

silexphp/Silex-WebProfiler

Asquera/elasticsearch-rake-tasks

BrewTestBot/homebrew

astropy/astroquery

defunkt/hub

sebastianbergmann/phpunit-selenium

diaspora/diaspora

marijnh/acorn

noflo/noflo-runtime

Polymer/polymer

yellapuhari/web-base-template

sennza/Chassis

jquery/qunitjs.com

basho/riak_pb

progrium/buildstep

robrich/orchestrator

vjeux/jDataView

github/pages-gem

github/github-services

zendframework/Component_ZendText

stucki/docker-cyanogenmod

samoht/opam-repository

zimbatm/raven-ruby

ms-ati/docile

SirVer/ultisnips

xianyi/OpenBLAS

brianmario/mysql2

vmg/redcarpet

shama/grunt

malfaux/http-parser

tenerd/CoffeeScriptRedux

agrobbin/active_admin

jlertle/generator-ember

jnunemaker/twitter

gma/nestacms.com

jquery/jquery.org

gulpjs/gulp-util

bolt/bolt-docs

kizu/bemto

RapotOR/ConsoleBundle

benmills/robotskirt

dbashford/mimosajs.com

nesquena/rabl

dpb587/symfony-docs

cucumber/cucumber-rails

NickQiZhu/dc.js

scipy/scipy

rstudio/shiny

sstephenson/ruby-build

kykyev/almond

isaacs/npm-www

geoadmin/mf-chsdi3

basho/riak_cs

Polymer/ShadowDOM

zendframework/Component_ZendPermissionsAcl

protomouse/homebrew-versions

200Creative/spree_bootstrap_frontend

andrioni/MPFI.jl

Obvious/phantomjs

ctalkington/node-archiver

Behat/MinkSeleniumDriver

kartena/Proj4Leaflet

zendframework/ZFTool

zerebubuth/openstreetmap-cgimap

rafaelfranca/simple_form-bootstrap

thedarkone/rails-dev-boost

hhvm/packaging

adobe/brackets.io

owncloud/gallery

rails/protected_attributes

facebook/tornado

ecomfe/edp-bcs

propelorm/Propel

snkinard/steam-condenser-java

nanoc/nanoc

PyTables/PyTables

guard/guard

cython/cython

eztierney/tern

Sylius/SyliusResourceBundle

hcatlin/sassc

cebe/markdown

jlogsdon/php-cli-tools

madskristensen/zencoding

adobe/brackets-registry

JuliaLang/ZMQ.jl

npm/npm

realworldocaml/examples

ebryn/ember-model

numpy/numpy

yohanboniface/Leaflet.Storage

rlinehan/dotfiles

shawnbot/aight

yeoman/generator-karma

vmg/clar

smockle/smockle

laktek/jQuery-Smart-Auto-Complete

zeromq/pyzmq

UnionOfRAD/lithium

sferik/twitter

Shopify/liquid

yyuu/homebrew

Ocramius/mongodb-odm

alphagov/maslow

KnpLabs/KnpMenu

Polymer/HTMLImports

Polymer/polymer-elements

agnat/node_mdns

NV/CSSOM

square/crossfilter

mikeal/request

owncloud/android

simplepie/simplepie

FriendsOfSymfony/FOSCommentBundle

protobox/protobox-web

symfony-cmf/ContentBundle

alphagov/whitehall

symfony/Form

dart-lang/dartlang.org

marsuboss/yii2

jfirebaugh/openstreetmap-website

osmlab/openstreetmap-website

zendframework/Component_ZendEventManager

zendframework/Component_ZendCaptcha

ruby/ruby

superdweebie/mongodb-odm

iangreenleaf/brunch-with-chaplin

cucumber/cucumber-ruby-core

ecomfe/edp-package

thetallgrassnet/thetallgrass.net

t-8ch/urllib3

cldwalker/hirb

mongoid/mongoid.github.com

phpBB-Blog/phpBB-Blog-for-3.1

daviddavis/katello

chevex/homebrew

astropy/ccdproc

mcavage/node-fast

zendframework/Component_ZendPermissionsRbac

weierophinney/ZendSkeletonApplication

nishigori/nyancat-phpunit-resultprinter

travis-ci/travis-worker

sm/sm-libraries

JuliaStats/GLM.jl

jDataView/jBinary

Nami-Doc/coco

yorah/libgit2

twalpole/sass

le-phare/BazingaJsTranslationBundle

rouge8/Font-Awesome

thekid/behave

gildegoma/travis-build

trondn/libuv

bsmr-ruby/travis-boxes

avsm/mirage-tcpip

alphagov/prototyping

d3/d3-geo-projection

rspec/rspec-activemodel-mocks

discoproject/odisco

travis-ci/travis-images

wet-boew/bookmark

yiiext/trash-bin-behavior

astropy/astropy-APEs

rubinius/rubinius-melbourne

isaacs/osenv

fvdm/nodejs-youtube

symfony/Filesystem

yellow5/foreigner-matcher

Homebrew/homebrew-games

lsegal/rubydoc.info

sinatra/sinatra-contrib

rkh/rack-protection

rzezeski/yokozuna

teropa/build-your-own-angularjs

meryn/normalize-package-data

symfony-cmf/Routing

ruflin/Elastica

SciTools/cartopy

sonata-project/SonataUserBundle

eregon/racc

ilpaijin/generator-chromeapp

fsharp/FSharp.Data

EppO/rolify

snarfed/bridgy

gkz/prelude-ls

typhoeus/ethon

mapbox/tilelive-mapnik

toivoh/Debug.jl

phusion/baseimage-docker

npm/read-package-json

JuliaLang/DataStructures.jl

jquery/jqueryui.com

isaacs/npm-registry-mock

ecomfe/edp-lint

chapmanb/bcbio-nextgen

gharlan/propelorm.github.com

norman/friendly_id

snrs/sonorous

brandon-fryslie/ember-rest.coffee

wvengen/foodsoft

carsomyr/rbenv-bundler

nipy/PySurfer

Sylius/Sylius-Standard

Valloric/YouCompleteMe

angular-ui/ui-router

hacken-in/website

angular-ui/angular-ui

JuliaStats/DataFrames.jl

aidahz/riak_core

jvperrin/date_validator

ohler55/oj

guzzle/guzzle

dsc/coco

BanzaiMan/travis-api

meskyanichi/backup

MagLev/maglev

cucumber/cucumber-js

basho/riaknostic

strongloop/sls-sample-app

doctrine/mongodb-odm-documentation

jrburke/almond

Shopify/active_fulfillment

ipython-contrib/IPython-notebook-extensions

troopjs/troopjs-contrib-browser

gruntjs/grunt-contrib-clean

assaf/zombie

owncloud/chat

madskristensen/vswebessentials.com

ebryn/backburner.js

spree/spree_fancy

1up-lab/FOSMessageBundle

jm81/dm-devise

staabm/Propel2

akeneo/pim-community-standard

lusis/chef-kibana

spacetelescope/pysynphot

luislavena/rake-compiler

springmeyer/node-pre-gyp

ocaml/opam2web

protobox/protobox

rails/coffee-rails

gotcha/ipdb

spree/spree_wishlist

karmi/tire-contrib

nobu/mruby

Ocramius/annotations

yatskevich/grunt-bower-task

camptocamp/c2cgeoportal

tomaz/appledoc

kevinwallace/qemu-docker

Kodowa/Light-Table-Playground

twitter/bootstrap

flyboarder/AirOS

gettalong/kramdown

test-unit/test-unit

phpspec/prophecy

crabtw/rust-bindgen

fruux/sabre-dav

autozimu/julia_zh_cn

tildeio/router.js

Behat/MinkZombieDriver

mozilla/rhino

kevinykchan/knife-joyent

mapbox/node-pre-gyp

bobthecow/psysh

macgitver/DiffViewer

plataformatec/simple_form

TooTallNate/node

webbj74/puppet-fitbit

symfony/Validator

iml/homebrew-science

henrikhodne-test/travis-test

Alamoz/docrails

rixbeck/bolt

Kroisse/rust-mustache

Kroisse/rust-http

arq5x/gemini

mbrubeck/servo

thekid/xp-language

RiotGames/buff-config

bdowling/jquery-ui

Ocramius/DoctrineModule

tricknotes/ember.js

digitalkaoz/composer

ielgnaw/edp

tomhughes/openstreetmap-website

tianon/brew

yanniks/linuxbrew

am11/CssSorter

alphagov/planner

sensiolabs/Silex-Connect

avsm/ocaml-cohttp

jquery/events.jquery.org

yeoman/generator-mocha

kanso/couchtypes

scottgonzalez/grunt-wordpress

gruntjs/grunt-contrib-yuidoc

IcecaveStudios/archer

qqueue/html5chan

Ocramius/LazyMap

janestreet/bin_prot

OpenUserJs/OpenUserJS.org

s-mage/rush

jquery/demos.jquerymobile.com

peterflynn/svg-preview

symfony/Serializer

ruby-llvm/ruby-llvm

celluloid/dcell

bryanwb/chef-ark

mongoid/origin

versgui/Form

KentBeck/junit

dbashford/mimosa-import-source

UnionOfRAD/manual

daliwali/fortune

drublic/h5bp-stylus

mikel/mail

webpack/worker-loader

dahlbyk/libgit2sharp

forresto/dataflow-noflo

kartikprabhu/activitystreams-unofficial

besanek/PresenterTester

PythonCharmers/python-future

gruntjs/grunt-cli

angular/angular.dart

obspy/obspy

stereobooster/execjs

jeremy/mail

bundler/bundler-features

artsy/garner

voloko/sdoc

AngryLawyer/rust-sdl2

camptocamp/cgxp

openlayers/cla

angular-ui/ui-utils

strongloop/loopback-datasource-juggler

troopjs/troopjs-composer

component/builder2.js

celluloid/celluloid-io

OCamlPro/opam2web

mono/mono

adobe/brackets-phonegap

Addepar/ember-table

brson/rust-sdl

cjdelisle/cjdns

davidbkemp/node-gyp

dbashford/mimosa-copy

peerigon/alamid

brianc/node-postgres

sinatra/sinatra

webpack/grunt-webpack

mirage/mirage-tcpip

mapbox/tilelive-vector

silexphp/Silex

Ocramius/hiphop-php

chrmoritz/homebrew-binary

dbashford/mimosa-server-reload

basho/stanchion

basho/riak_pipe

Mange/roadie

mitchellh/vagrant-rackspace

oxpeck/spree

iloveitaly/spree_volume_pricing

gagern/urllib3

robotology/gazebo_yarp_plugins

yakaz/elasticsearch-action-updatebyquery

wanderview/node-tap

yeoman/yeoman-generator-list

realworldocaml/scripts

tricknotes/ember-data

drublic/mobile-boilerplate

stof/MinkBrowserKitDriver

dsheets/ocaml-sodium

tkellen/node-liftoff

NUBIC/ncs_mdes

jruby/jruby-launcher

slang800/jade-book

mapnik/mapnik-support

rossant/ipycache

timmywil/grunt-bowercopy

symfony/WebProfilerBundle

rspec/rspec-dev

rweng/pry-rails

sikachu/rails

heroku/heroku-buildpack-nodejs

saltstack/salty-vagrant

craftsmen/dad

ariatemplates/usermanual

JuliaStats/StatsBase.jl

jlong/sass-twitter-bootstrap

kof/node-qunit

SciTools/biggus

dtao/safe_yaml

bnoordhuis/node-buffertools

indirect/haml-rails

npm/npm-www

fabpot/Pimple

developmentseed/bones

dbashford/mimosa-less

starsquare/Buzz

openstreetmap/mod_tile

alphagov/govuk_frontend_toolkit

thehogfather/brackets-code-folding

nemerle/red_tint

henrikhodne/travis-assets

h5bp/html5boilerplate.com

macgitver/MacGitverModules

meemoo/dataflow

zeromq/zeromq4-x

symfony/Console

rodyhaddad/angular.js

myint/perceptualdiff

romanzenka/cloudbiolinux

sympy/sympy-live

basho/riak-php-client

yujinakayama/transpec

cujojs/rest

pjackson28/wet-boew

stereobooster/jshintrb

bower/registry

scraperwiki/tang

doctorjnupe/cookbook-elasticsearch

fredrikbonander/karma

noflo/noflo.github.io

dbashford/mimosa-sass

yakaz/elasticsearch-query-indices2416

bjeanes/squash-web

roryk/ipython-cluster-helper

jonatack/polyamorous

mapbox/tm2

galymzhan/composer

bhollis/middleman-sprockets

ruby-korea/ruby-korea.github.io

ecomfe/edp-test

webpack/core

vmeurisse/node-phantom

thekid/stomp

phpspec/phpspec2-site

michaelficarra/cscodegen

ivanov/IHaskell

mapbox/tilemill-win-launcher

spagalloco/em-twitter

Polymer/toolkit-ui

gruntjs/grunt-contrib-nodeunit

wp-cli/server-command

gregbell/arbre

glaszig/SZTextView

le717/brackets-html-skeleton

kevarch/symfony-docs

alexcrichton/rust

frozenice-/yeoman-generator-list

schmittjoh/JMSDebuggingBundle

rogerwang/chromium.src

cristianosistemas/phpunit-documentation

h5bp/server-configs-gae

indutny/libuv

capdevc/flycheck

EricDunsworth/theme-gcwu-fegc

bolt/bolt

rtfd/readthedocs.org

Katello/runcible

spree/spree-product-assembly

doctrine/DoctrinePHPCRBundle

mletterle/rust-http

dbashford/mimosa-combine

nicksp/generator-bbb

richardhinkamp/bolt-docs

getlantern/statshub

elasticsearch/kibana

joblib/joblib

rvagg/nan

robin850/coffee-rails

aFarkas/html5shiv

piuccio/ariatemplates

s17t/owncloud

4chan/4chan-JS

vtsvang/grunt-contrib-uglify

jingweno/msgpack_rails

the-grid/the-behavior

tanmaykm/DataFrames.jl

novalis/bitcask

krlmlr/r-travis

jmikola/mongo-php-driver

gordonslondon/FOSUserBundle

dbashford/mimosa-lint

claes08/symfony-standard

chapmanb/gemini

EricDunsworth/GCWeb

dbashford/mimosa-minify-css

adridu59/rust-tuts

pry/pry-coolline

SciTools/iris-sample-data

Incubaid/baardskeerder

embarkmobile/android-maven-example

njx/brackets-bower

featurist/spawn-cmd

robotology/yarp

mozilla-servo/rust-mozjs

dbashford/mimosa-minify

skivvies/angular.js

zeromq/libzmq

isaacs/libuv

acdha/openseadragon

schmittjoh/JMSDiExtraBundle

Polymer/CustomElements

puppetlabs/puppetlabs-mongodb

gildegoma/travis-images

steveluscher/sass-brunch

dbashford/mimosa-coffeescript

brainstorm/ipython-cluster-helper

intridea/tweetstream

poise/python

projectblacklight/blacklight

naderman/composer

dotless-de/vagrant-vbguest

luislavena/rb-readline

mpapis/executable-hooks

vangdfang/git

mbostock/smash

rlane/glfw-rs

mattwildig/sinatra.github.com

michaelficarra/esfuzz

avsm/mirage-platform

thorin/redmine_ldap_sync

aaronbushnell/generator-tmproject

strongloop/strong-supervisor

dbashford/skelmimosamirage/opam-repo-dev

ranmocy/guard-rails

loladiro/REPL.jl

jzaefferer/node-testswarm

robertkowalski/osenv

topazproject/topaz

brianmario/yajl-ruby

xforty/chef-drupal

jbcrail/Haywire

fengmk2/node-gyp

jnicklas/celluloid-zmq

intimidate/generator-webapp

basho/riak_dt

adobe/brackets-updates

isaacs/npmjs.org

lastguest/Twig-extensions

cedriclombardot/Propel

dbashford/mimosa-web-package

evanlucas/npm-registry-mock

statbit/composite_primary_keys

peter-murach/github

net-ssh/net-ssh

JabbR/JabbR

dotcloud/gordon

rubygems/guides

jtriley/scp.py

magiclabs/alchemy_cms

rstacruz/js2coffee

kbond/symfony-standard

basho/leveldb

davey3000/chromium

leafo/scssphp

snarfed/oauth-dropins

lyridious/homebrew

ivantsepp/jekyll

KiNgMaR/libuv

dsheets/opam-repository

netj/homebrew-boneyard

danielholmes/symfony-docs

PaulKinlan/yeoman.io

rolandwalker/homebrew-cask

spraints/git-tfs

eugeneo/brackets

symfony-cmf/SearchBundle

megies/obspy

Netpositive/ndeploy

WouterJ/symfony

anarchivist/archivesspace

ecomfe/edpx-ub-ria

g2p/blocks

rosa-abf/vagrantboxes-heroku

paul90/Smallest-Federated-Wiki

minrk/zguide

thekid/xp-runners

Ocramius/phpcr-odm

am11/zencoding

ruby-amqp/rubybunny.info

zgramana/router.js

johnmdonahue/npmjs.org

nicksp/generator-angular

cablegram/guard-rails

troopjs/troopjs-net

nodejitsu/forever-monitor

gregkare/jekyll

symfony/EventDispatcher

kmcallister/html5

kasperisager/vanilla-bootstrap

ecomfe/edp-codegen

jmeas/grunt

mhitza/Propel2

pigoz/mpv

mono/mono-tools

simonster/HDF5.jlsleuthkit/sleuthkit

macgitver/libHeaven

spacetelescope/stsynphot

samoht/htcaml

Respect/Loader

schweikert/fping

mapbox/carmen

drbrain/net-http-persistent

marijnh/tern_for_sublime
sjackman/abyss

RubenVerborgh/N3.js

mojombo/github-flavored-markdown

jquery/2012-dev-summit

doctrine/migrations

alphagov/puppet-jenkins

git/git

marijnh/CodeMirror2

HipByte/motion-cocoapods

stream-utils/raw-body

Orange-OpenSource/YACassandraPDO

Uncodin/bypass

dmajda/pegjs

seattlerb/minitest-bacon

dabeaz/ply

aeolus-incubator/bundler_ext

isaacs/rimraf

wkhtmltopdf/qt

carlhuda/bundler-site

cloudhead/lesscss.org

njh/redstore

keithw/mosh

flyerhzm/switch_user

jnr/jnr-constants
jruby/bytelist

mapbox/tilelive.js

susestudio/studio-help

rpflorence/ember-qunit

msysgit/Git-Cheetah

chobie/php-uv

JuliaLang/openlibm

wkhtmltopdf/wkhtmltopdf.github.io

developmentseed/node-get

nomiddlename/log4js-node

dahlbyk/posh-git

ocaml/camlp4
josh/brew-pip

loopj/jquery-tokeninput

resolve/refinerycms-blog

mozilla-servo/rust-http

ionrock/cachecontrol

distler/syntax

myronmarston/vcr

OpenStreetMap/iD

bergie/dnode-php

jlong/sass-bootstrap

zf-fr/zfr-oauth2-server-module

skaes/rvm-patchsets

fgrehm/bindler

IcecaveStudios/woodhouse

sdegutis/zephyros

romanbsd/fast-stemmer

parndt/seo_meta

kr/pty

basho/erlang_js

petermichaux/maria

rayo/xmpp

spastorino/rails-api

substack/node-detective

xaviershay/rspec-fire

mozilla-servo/rust-geom

mbostock/us-atlas

technicalpickles/rspec-spies

visionmedia/expresso

zedshaw/mongrel2

cmus/cmus

lra/mackup

basho/lager

tenderlove/racc

benlemasurier/stormfs

ultravideo/kvazaar

vakata/jstree

FriendsOfSymfony/FOSFacebookBundle

codahale/bcrypt-ruby

libLAS/libLAS

travis-ci/travis-rubies

ContinuumIO/anaconda-ec2

RiotGames/berkshelf-api

nipy/nitime

taldcroft/asciitable

nose-devs/nose

s-u/Cairo

isaacs/init-package-json

jbarnette/isolate

brainspec/enumerize

McNetic/PHPZipStreamer

copiousfreetime/hitimes

thomasboyt/defeatureify

anba/rhino

PromyLOPh/pianobar

marcodaniel/mdframed

geophysics/MoPaD

v8/v8

angular-ui/angular-ui-docs

palantir/tslint

seebees/node-1

basho/sidejob

wpreul/node-fork

mpapis/bundler-unload

andreacremaschi/SpatialDBKit

avsm/melange

noflo/noflo-gestures

jshint/site

Shopify/active_utils

cowboy/node-findup-sync

jts/sga

rtomayko/posix-spawn

hall5714/angular-ui-bootstrap

mathie/broken_cucumber_demo

jruby/jruby-ossl

phlipper/chef-monit

madebymany/sir-trevor-js

Figure 4: Ecosystems in the largest connected component of GitHub-hosted projects. Project

names follow the pattern user/repository where user is the owner’s GitHub login and repository

is the name of the project repository.

of the project, the number of stars the project has, the size of the associated

ecosystem, and the node’s degree. Each of these projects has a higher in-degree

than out-degree with the exception of the mxcl/homebrew project. On the

other hand, low-degree project nodes are four times as likely to be dependent

on another project than they are to have a project depend on them. This

shows that ecosystems are being formed around a central project with the other

projects in the ecosystem mostly depending on that central project. This results

28

Table 7: Ecosystems in GitHub. Details of the most well-connected node in each ecosystem.
Project Description Stars Ecosystem Size Degree (in,out)

joyent/node Framework 39,373 10.08% 69 (53,16)

symfony/symfony Framework 10,985 8.46% 93 (53,40)

rails/rails Framework 29,744 7.92% 93 (65,28)

JuliaLang/julia Programming Language 5,531 6.74% 51 (35,16)

rubygems/rubygems Package Manager 1,304 6.04% 22 (14,8)

mxcl/homebrew Package Manager 13,723 3.94% 48 (21,27)

zendframework/zf2 Framework 5,841 3.88% 72 (65,7)

travis-ci/travis-ci Development Tool (Continuous Integration Platform) 3,693 3.50% 70 (54,16)

wet-boew/wet-boew Framework 688 3.34% 19 (15,4)

twbs/bootstrap Framework 41,828 3.29% 9 (9,0)

dbashford/mimosa Development Tool (Browser development) 472 2.43% 25 (20,5)

h5bp/html5-boilerplate Framework 31,926 2.37% 19 (15,4)

mitchellh/vagrant Framework 9,274 2.10% 23 (15,8)

libgit2/libgit2 Library 5,161 2.05% 20 (11,9)

Behat/Mink Development Tool (Testing) 673 1.99% 13 (9,4)

OCamlPro/opam Package Manager 118 1.89% 9 (8,1)

basho/riak Database 2,520 1.83% 27 (18,9)

Polymer/polymer Library 8,787 1.83% 16 (11,5)

mapnik/mapnik Development Tool (Toolkit for developing mapping applications) 1,003 1.78% 20 (12,8)

mozilla/rust Programming language 5,604 1.78% 36 (29,7)

alphagov/static Other (GOV.UK static files/resources) 67 1.73% 13 (10,3)

adobe/brackets Development Tool (code editor) 23,921 1.46% 26 (16,10)

CocoaPods/CocoaPods Development Tool (dependency manager) 5,711 1.46% 14 (9,5)

yeoman/yeoman Development Tool (web development tools) 7,246 1.46% 18 (13,5)

angular/angular.js Framework 42,950 1.40% 12 (8,4)

dotcloud/docker Development Tool (application container engine) 14,270 1.35% 24 (19,5)

emberjs/ember.js Framework 14,185 1.29% 20 (12,8)

owncloud/core Other (personal cloud storage tool) 3,222 1.19% 26 (13,13)

typhoeus/typhoeus Library 2,465 1.19% 6 (4,2)

facebook/hhvm Other (Virtual machine) 11,506 1.08% 15 (10,5)

celluloid/celluloid Framework 2,855 0.86% 9 (6,3)

xp-framework/rfc Framework 0 0.86% 16 (14,2)

rogerwang/node-webkit Framework 19,737 0.86% 16 (11,5)

ecomfe/edp Development Tool (front-end development platform) 264 0.86% 18 (15,3)

kennethreitz/requests Library 13,812 0.81% 13 (10,3)

documentcloud/underscore Library 7,135 0.81% 6 (4,2)

middleman/middleman Development Tool (website generator) 4,179 0.75% 8 (5,3)

elasticsearch/elasticsearch Other (search and analytics tool) 10,700 0.70% 11 (11,0)

chapmanb/bcbio-nextgen Other (RNA-seq analysis tool) 173 0.59% 10 (9,1)

wp-cli/wp-cli Development Tool (command line interface for WordPress) 1,968 0.59% 13 (9,4)

cucumber/cucumber Development Tool (Testing) 5,142 0.49% 7 (4,3)

jsdoc3/jsdoc Development Tool (API documentation generator) 2,909 0.49% 6 (3,3)

propelorm/Propel Development Tool (Object-Relational Mapping) 893 0.49% 7 (7,0)

in a star pattern. The twbs/bootstrap ego network (Figure 5) clearly depicts

this pattern within the graph.

Predominant type of ecosystems is software development support. Interest-

ingly, nearly all of the ecosystems are centered around projects whose purpose

29

mjgallag/meteor-bootstrap-3

yabawock/bootstrap-sass-rails

twbs/bootstrap
twitter/recess

todc/todc-bootstrap
FortAwesome/Font-Awesome

uq-eresearch/aorra

netdna/bootstrap-cdn

MaxCDN/bootstrap-cdn

dart-lang/dartlang.org

rouge8/Font-Awesome

Figure 5: twbs/bootstrap Ego Network. Portraying a sample star pattern in the network.

Table 8: Ecosystem Types. Nearly all support software development.

Type Count

Software Development Tool 14

Framework 13

Library 5

Package Manager 3

Programming Language 2

Database 1

Other 5

is to support software development, such as frameworks, libraries and program-

ming languages. In fact, as shown in Table 8, of the 43 ecosystems, there are

only 5 whose purpose is not to support software development. The 14 software

development tools include a testing tool, a continuous integration platform, and

an API documentation generator. The type of each ecosystem is also shown in

Table 7.

Ecosystems are interconnected. The graph in Figure 3 shows two types of

communities that occur in GitHub-hosted projects, those that are part of the

largest connected component and those that are isolated from the largest con-

30

nected component. The majority of project nodes, 10,484 or 57%, are involved

in the largest connected component, indicating that many ecosystems are con-

nected to each other across the projects in our Dependency Network. The next

biggest connected component in the graph is only 65 nodes indicating that the

ecosystems that are isolated are small and have not attracted public attention.

Figure 4 displays the interconnected part of the network, and the connec-

tions between the ecosystems are apparent. As an example, Figure 6 shows

the rubygems/rubygems ego network, clearly depicting its connection to the

rails/rails project. This is not surprising, since the rubygems project is a pack-

age management framework for the Ruby programming language and rails/rails

is a web application framework written in Ruby. There is a direct connection

between the rubygems/rubygems and rails/rails nodes. In addition, there are

projects, like carlhuda/bundler and airblade/paper trail, which connect the two

projects.

Answer to RQ2: The Reference Coupling method can be used to

identify and examine ecosystems. The predominant type of ecosystems

on GitHub is software development support. Ecosystems tend to revolve

around one central project and be interconnected to other ecosystems.

5.3.2. Investigation of Socio-Technical Alignment within the Ecosystems

RQ3: Do the project owners’ and contributors’ social behaviours align with

the technical dependencies?

Project Owners: Table 9 shows strong, positive correlations between the

technical dependencies and the social behaviour of the owners. Along with these

strong correlations, Figure 7 shows a pronounced star pattern in the Owner

Follows Network. This indicates that the project owners in an ecosystem tend

to follow the owner of the central repository.

Project Contributors. As shown in Table 10, the social behaviour of project

contributors does not align with the technical dependencies. This indicates

31

bundler/bundler

wayneeseguin/rvm

rails/rails

jruby/jruby

rspec/rspec-rails

gds-operations/puppet-elasticsearch

carlhuda/bundler

rubygems/rubygems

oneclick/rubyinstaller

rubinius/rubinius

rubygems/rubygems.org

jruby/warbler

airblade/paper_trail

rdoc/rdoc
headius/thread_safe

freerange/mocha

globalize/globalize

whit537/www.gittip.com

ms-ati/docile

ruby/ruby

webbj74/puppet-fitbit

bundler/bundler-features

thorin/redmine_ldap_sync

rubygems/guides

jbarnette/isolate

Figure 6: rubygems/rubygems Ego Network. Portraying connections between ecosystems.

Table 9: Project Owners: correlations between technical dependencies and social behaviour.

Pearson Correlation p-value

Technical Dependencies and Following 0.91 <0.001

Technical Dependencies and Stars 0.79 <0.001

that, while the project owners seem to follow the right people and are aware of

the right projects based on the technical dependencies that exist in the ecosys-

32

Figure 7: The Owner Follows Network, Gof .

Table 10: Project Contributors: correlations between technical dependencies and social be-

haviour.

Pearson Correlation p-value

Technical Dependencies and Following 0.0002 0.98

Technical Dependencies and Stars 0.001 0.88

tem, the social behaviour of project contributors is not aligned with project

dependencies.

Figure 8 shows the Contributor Follows Network. As shown, the structure

is quite different than the Dependency Network. Communities do not have one

central project and the network is much more densely connected.

Answer to RQ3: The Reference Coupling method can be useful for

other investigations of software ecosystems where identification of inter-

project technical dependencies is needed. We investigated social behaviour

in software ecosystems. We found that the project owners social behaviours

33

Figure 8: The Contributor Follows Network, Gcf .

do align with the technical dependencies, but the project contributors social

behaviours do not align with the technical dependencies.

6. Discussion

The method we proposed in this paper, Reference Coupling, identifies cross-

references to other projects within a project’s ecosystem in the comments made

by developers on project artifacts like issues, commits, pull requests or work

items. We showed that the method outputs are a valid conceptualization of

technical dependencies by analyzing the content of these cross-references and

comparing the cross-references to dependency relationships identified by the

development team.

Our method adds to the important, but scarce, research that leverages the

social aspects of work within software ecosystems [13]. Reference Coupling de-

tects technical dependencies that may not manifest themselves in source code by

34

identifying tasks, issues, pull requests, or commits that rely on another project,

and, therefore, it can identify dependencies not identified by other methods.

Our results show that the cross-references identify many different types of de-

pendencies including duplicates, affecting, blocking, and related relationships.

Our method is analogous to the logical coupling method that detects de-

pendencies within a project proposed by Gall et al. [42] except at the ecosys-

tem level. Where logical coupling detects dependencies when artifacts have

been worked on together, our method detects dependencies when issues, pull

requests or commits have been worked in conjunction with another project (as

evidenced through user-specified cross-references). Thus, the dependencies es-

tablished through our method are those that are logical.

Limiting the detected dependencies to those that are logical is important

when using those dependencies to identify ecosystems. Methods that detect

technical dependencies between projects through analysis of code or configu-

ration files may not be best suited for identifying software ecosystems. For

example, when one project uses another project, it does not necessarily mean

the two software projects are evolving together in the same environment, espe-

cially when the dependency is to an established, off-the-shelf software package.

Thus, identifying all relationships that manifest in the source code or configura-

tion files may result in dependencies that are not important for the identification

of ecosystems.

For the GitHub projects, we used Reference Coupling to identify and ex-

plore ecosystems. To do this, we used a popular community detection algo-

rithm [15] on the dependency network, which identifies clusters of nodes densely

connected by technical dependencies. These detected communities represent

software ecosystems. Through analysis of the resulting ecosystems found in

GitHub-hosted projects, we showed that the ecosystems are centered mostly

around projects that support software development through developing frame-

works and toolkits. The predominant structure of the ecosystems is a star where

one central project is the hub of the ecosystem.

Our method also allows for the identification of dependencies across ex-

35

tremely large sets of projects. For example, we ran our method on all public

projects hosted on GitHub. Other methods that detect dependencies are limited

to analyzing a given project or set of projects. Analyzing the dependencies of

a popular project through its source code or configuration files to identify its

ecosystem would not identify projects that rely on that project. We saw that

most ecosystems across the GitHub-hosted projects are centered around one

main project and many projects depend on that project without a reciprocal

relationship. These relationships would be missed if only the dependencies of

the main project were studied to identify its ecosystem. Since the ecosystems

are not always well-defined, it would be impossible to know which other projects

to consider for analysis. Thus, our method is better suited to identifying ecosys-

tems since it is not limited in the number of projects it can analyze.

6.1. A Research Agenda

The ability to easily identify technical dependencies between a large set of

projects opens the door for many interesting avenues of research.

Socio-technical analysis. Studies that have attempted to study how commu-

nication aligns with dependencies across projects have been limited to studying

well-defined ecosystems where dependency information is publicized in some

way. For example, dependencies can be made available through a project’s

configuration files, build files, or through publicly available dependency specifi-

cations [1, 7, 8, 9, 10, 23, 11]. Our method allows the identification of technical

dependencies more broadly across projects and opens the door to continuing

the study of socio-technical alignment across a larger set of projects and their

stakeholders.

In this study, we found that when dependencies exist between a pair of

projects, the project owners tend to be following the owner of the other project.

Conway was the first to describe the possibility of an alignment between social

connections and technical dependencies in software engineering projects, com-

monly referred to as Conway’s law [43]. The transparent nature of GitHub could

encourage technical connections between projects by providing an awareness of

36

activity across projects. An interesting future research question is understand-

ing how and when these technical dependencies and social connections came to

exist. Did the social connections exist first and result in a technical dependency

or did the technical dependency exist first and result in a social connection? If

the social connections existed first, what was the driver behind the creation of

the technical dependency? Perhaps, the awareness of the other project, enabled

through GitHub’s notifications, was enough to spur a technical dependency in-

dicating that GitHub’s transparency is changing the landscape of OSS projects.

These research questions could be investigated in future research.

While the project owners’ social behaviours (following users and starring

projects) aligned with the technical dependencies in our study, we did not wit-

ness such an alignment for all project contributors. The follower network of

project contributors showed that there were no clear central projects and com-

munities were densely connected. This is in contrast to the technical dependency

network. These results align with recent research that found that the reasons

behind following others extends beyond project coordination needs [44]. Fu-

ture work should investigate the usefulness of following others for coordination

purposes.

It is also worth studying in more detail the coordination needs of developers

on OSS projects. Perhaps the mere existence of a technical dependency does

not imply a coordination need, especially given the transparent environment

of GitHub. Our previous work [45] begun this investigation, but coordination

needs at the ecosystem level are also worthy of investigation.

Ecosystem emergence and evolution. The most prominent nodes in Fig-

ure 4 are not always the most popular projects on GitHub when considering

the number of stars each project has. In fact, the two projects with the most

stars, angular/angular.js and twbs/bootstrap, have significantly smaller ecosys-

tem size and lower degree than other projects. Future work can investigate how

and why ecosystems emerge and why some projects become popular without

growing a large ecosystem. Such a study could include a temporal analysis of

37

the composition of the ecosystem and density of connections together with a

temporal analysis of project history information such as number of contribu-

tors, forks, stars, etc. It would also be worth triangulating results with other

information on important project events now commonly available through blogs

and wikis. Such a study on the evolution of ecosystems can be a first step in

understanding when and why projects accumulate an ecosystem.

Previous research has examined ecosystem growth [46], but this analysis was

focused on the size of the code base (measured in lines of code) of all projects

within an organization. We propose for future research to expand this view by

considering the growth of an ecosystem also based on the number of projects

that the ecosystem comprises of when considering technical dependencies.

Ecosystem size and strength of connections and project success. On many

open source projects, volunteers are crucial to project success as they rely on

volunteers to submit new features and fix bugs. As a project accumulates more

projects in its ecosystem, it is also likely to increase its contributions as devel-

opers on dependent projects will be more likely to fix bugs that they encounter

through their dependency. Future research could investigate this relationship to

identify if the size of a project’s ecosystem is a good predictor of various project

health and success metrics like the number of contributions it receives or the

number of forks it has.

Automatic detection of inter-project dependencies. Another avenue for future

research is creating tools to make developers aware of their technical dependen-

cies outside of their own project. It is important for developers to know who

they need to coordinate with across the ecosystem and to understand how their

tasks fit into the big picture. For example, when a developer on GitHub creates

a cross-reference to an issue on another project, it could be useful for the de-

veloper to be made aware of other projects that have also cross-referenced that

same issue. The issue may be causing problems in many projects and those

project could minimize duplicated effort by being more aware of each other.

Such a tool could increase awareness of coordination needs that extend outside

38

Figure 9: A proposed improvement to GitHub’s Flavored Markdown, which would not only

create a link to the pull request, issue or commit referenced in the comment, but would also

allow users to click to see what other comments in other projects have also made the same

reference.

project boundaries. For example, in Figure 9, we show a prototype we developed

that improves GitHub’s Flavored Markdown by allowing users to click on the

“Get Suggestions” button to see a list of other comments from other projects

that have made a reference to the same pull request, issue or commit. If there

is a large number of other projects that share the dependency, natural language

processing techniques could be used to summarize the information. This will

allow developers to easily review the details from the other projects that share

the same dependency. Similarly, other tools, including those used at IBM, could

be modified to help developers become aware of inter-project dependencies that

are automatically detected by our Reference Coupling method. Reference Cou-

pling could be used to automatically create dependency relationships between

issues or work items in a project’s issue tracking system.

Automatic detection of inter-project dependencies can also be used by soft-

ware engineering researchers in future unrelated studies. For example, a study

of the effects of multi-tasking across multiple projects could include an analysis

on the dependencies that exist between the projects to better understand the

39

reasons for multi-tasking or the amount of context switch that occurs. Many

other software engineering research studies can benefit from an easy way to

identify inter-project dependencies.

Automatic detection of ecosystems. With the ability to automatically detect

individual technical dependencies between projects, it would also be useful to

automatically detect and visualize ecosystems. Such a tool could help developers

gain a better view of the ecosystem surrounding their project. It could also help

researchers in future studies on software ecosystems.

6.2. Threats to Validity

One threat stems from our selection of the GHTorrent dataset to obtain

the GitHub data. GHTorrent may not be a full copy of all GitHub data [32].

Nevertheless, it is a best-effort approach that has been widely accepted in the

research community as evidenced by its inclusion as the dataset for the MSR

2013 Mining Challenge [47] and the many recent papers that utilize its data in

their analysis.

The GHTorrent dataset used in our analysis is from 2014. The structure and

dynamics of ecosystems could have changed since this dataset was captured. Fu-

ture studies should reevaluate ecosystems using more recent datasets. Such a

study can also consider ecosystem evolution since our results provide a snap-

shot that can be compared against. In this direction, Zhang et al. have used

our Reference Coupling method to identify the GitHub projects in the Rails

ecosystem [48]. They found that developers tend to make more cross-references

to other projects over time.

Our manual exploration of cross reference comments illustrates a variety

of types of technical dependencies found in GitHub cross-references, but these

results can not be generalized. While we achieved saturation in our results, our

results could be impacted by selection bias. To mitigate this, we ensured an

equal number of comments for each source (commit, issue, pull request) were

included in our sample. However, the types of dependencies identified seem

reasonable for any software project. Future work can continue this investigation

40

by examining the content of cross-reference comments across a wide range of

projects and code hosting environments.

Cross-references could appear more frequently when there are a higher the

number of shared contributors between the two projects. We have not controlled

for this since the presence of shared contributors does not diminish the existence

of the dependencies. However, it could mean that dependencies on projects

where there are no shared contributors are not easily found using this method.

Future work should investigate this.

7. Conclusion

In this paper, we proposed a new method for detecting technical dependen-

cies between projects, called Reference Coupling, which utilizes user-specified

cross-references between projects. We validated this method on datasets from

GitHub and IBM. We found that Reference Coupling identifies many dependen-

cies which appear to be untracked by developers. The most common type of

dependency that is untracked by developers but found with Reference Coupling

is ‘Affected by defect’, which indicates that a task is impacted in some way by

another defect. In these cases, especially, it could be useful for other develop-

ers to be aware of other projects that are impacted by the same defect. This

could allow these projects to coordinate their efforts in creating workarounds or

negotiating completion of the defect removal. The Reference Coupling method

enables tools to be developed that can help developers become aware of these

types of shared dependencies.

We also used our Reference Coupling method to identify ecosystems in

GitHub-hosted projects by using an existing community detection algorithm

to identify densely connected clusters of projects. Through an analysis of the

identified ecosystems, we find that most ecosystems are centered around a single

project. While small, unpopular ecosystems remain isolated, most ecosystems

are interconnected. The isolated ecosystems tend to contain projects owned

by the same GitHub user or organization. The popular ecosystems are mostly

41

centered around tools that support software development.

Our Reference Coupling method opens the door for future research in soft-

ware ecosystems including studying the socio-technical relationships, evolution,

health and success of ecosystems.

Acknowledgment

This work was partly funded by NSERC Canada. Thanks to Sunny Wang

and Diksha Sharma for their assistance in the manual content analysis.

References

[1] M. F. Lungu, Reverse engineering software ecosystems, Ph.D. thesis, Uni-

versity of Lugano (2009).

[2] D. Cubranic, G. C. Murphy, J. Singer, K. S. Booth, Hipikat: A project

memory for software development, Transactions on Software Engineering

31 (6) (2005) 446–465.

[3] O. Franco-Bedoya, D. Ameller, D. Costal, X. Franch, Open source software

ecosystems: A systematic mapping, Information & Software Technology 91

(2017) 160–185. doi:10.1016/j.infsof.2017.07.007.

URL https://doi.org/10.1016/j.infsof.2017.07.007

[4] J. Ossher, S. Bajracharya, C. Lopes, Automated dependency resolution

for open source software, in: Proceedings of 7th Working Conference on

Mining Software Repositories, IEEE, 2010, pp. 130–140.

[5] M. Lungu, R. Robbes, M. Lanza, Recovering inter-project dependencies in

software ecosystems, in: Proceedings of the International Conference on

Automated Software Engineering, ACM, 2010, pp. 309–312.

[6] J. Businge, A. Serebrenik, M. van den Brand, Survival of Eclipse third-

party plug-ins, in: Proceedings of 28th International Conference on Soft-

ware Maintenance, IEEE, 2012, pp. 368–377.

42

[7] F. W. Santana, C. M. L. Werner, Towards the analysis of software projects

dependencies: An exploratory visual study of software ecosystems., in: Pro-

ceedings of International Workshop on Software Ecosystems, Citeseer, 2013,

pp. 7–18.

[8] J. M. Gonzalez-Barahona, G. Robles, M. Michlmayr, J. J. Amor, D. M.

German, Macro-level software evolution: A case study of a large software

compilation, Empirical Software Engineering 14 (3) (2009) 262–285.

[9] G. Bavota, G. Canfora, M. Di Penta, R. Oliveto, S. Panichella, How the

apache community upgrades dependencies: An evolutionary study, Empir-

ical Software Engineering (2014) 1–43.

[10] D. M. German, J. M. Gonzalez-Barahona, G. Robles, A model to under-

stand the building and running inter-dependencies of software, in: Pro-

ceedings of 14th Working Conference on Reverse Engineering, IEEE, 2007,

pp. 140–149.

[11] S. Raemaekers, A. van Deursen, J. Visser, Measuring software library

stability through historical version analysis, in: Software Maintenance

(ICSM), 2012 28th IEEE International Conference on, IEEE, 2012, pp.

378–387.

[12] A. Mockus, Amassing and indexing a large sample of version control sys-

tems: Towards the census of public source code history, in: Proceedings of

6th Working Conference on Mining Software Repositories, IEEE, 2009, pp.

11–20.

[13] T. Mens, M. Goeminne, Analysing the evolution of social aspects of open

source software ecosystems, in: S. Jansen, J. Bosch, P. R. J. Campbell,

F. Ahmed (Eds.), Proceedings of the Third International Workshop on

Software Ecosystems, Brussels, Belgium, June 7th, 2011, Vol. 746 of

CEUR Workshop Proceedings, CEUR-WS.org, 2011, pp. 1–14.

URL http://ceur-ws.org/Vol-746/IWSECO2011-1-InvitedPaper-MensGoeminne.pdf

43

[14] T. Mens, B. Adams, J. Marsan, Towards an interdisciplinary, socio-

technical analysis of software ecosystems health, in: Proceedings of the

16th edition of the BElgian-NEtherlands software eVOLution symposium,

Antwerp, Belgium, December 4-5, 2017., 2017, pp. 7–9.

URL http://ceur-ws.org/Vol-2047/BENEVOL 2017 paper 2.pdf

[15] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, E. Lefebvre, Fast unfolding

of communities in large networks, Journal of Statistical Mechanics: Theory

and Experiment 2008 (10) (2008) P10008.

[16] K. Blincoe, F. Harrison, D. Damian, Ecosystems in GitHub and a method

for ecosystem identification using reference coupling, in: Proceedings of the

12th Working Conference on Mining Software Repositories, IEEE Press,

2015, pp. 202–211.

[17] J. Bosch, From software product lines to software ecosystems, in: Soft-

ware Product Lines, 13th International Conference, SPLC 2009, San Fran-

cisco, California, USA, August 24-28, 2009, Proceedings, 2009, pp. 111–119.

doi:10.1145/1753235.1753251.

URL http://doi.acm.org/10.1145/1753235.1753251

[18] S. Jansen, A. Finkelstein, S. Brinkkemper, A sense of community: A

research agenda for software ecosystems, in: 31st International Confer-

ence on Software Engineering, ICSE 2009, May 16-24, 2009, Vancou-

ver, Canada, Companion Volume, 2009, pp. 187–190. doi:10.1109/ICSE-

COMPANION.2009.5070978.

URL https://doi.org/10.1109/ICSE-COMPANION.2009.5070978

[19] K. Manikas, Supporting the evolution of research in software ecosystems:

Reviewing the empirical literature, in: Software Business - 7th Interna-

tional Conference, ICSOB 2016, Ljubljana, Slovenia, June 13-14, 2016,

Proceedings, 2016, pp. 63–78. doi:10.1007/978-3-319-40515-5 5.

[20] M. Lungu, Towards reverse engineering software ecosystems, in: 24th

IEEE International Conference on Software Maintenance (ICSM 2008),

44

September 28 - October 4, 2008, Beijing, China, 2008, pp. 428–431.

doi:10.1109/ICSM.2008.4658096.

URL https://doi.org/10.1109/ICSM.2008.4658096

[21] M. Goeminne, T. Mens, A framework for analysing and visualising open

source software ecosystems, in: Proceedings of the Joint ERCIM Workshop

on Software Evolution (EVOL) and International Workshop on Principles of

Software Evolution (IWPSE), Antwerp, Belgium, September 20-21, 2010.,

2010, pp. 42–47. doi:10.1145/1862372.1862384.

[22] D. Dhungana, I. Groher, E. Schludermann, S. Biffl, Software ecosystems vs.

natural ecosystems: Learning from the ingenious mind of nature, in: Pro-

ceedings of the 4th European Conference on Software Architecture: Com-

panion Volume, ACM, 2010, pp. 96–102.

[23] M. Syeed, K. M. Hansen, I. Hammouda, K. Manikas, Socio-technical con-

gruence in the Ruby ecosystem, in: Proceedings of The International Sym-

posium on Open Collaboration, ACM, 2014, p. 2.

[24] J. Kabbedijk, S. Jansen, Steering insight: An exploration of the Ruby

software ecosystem, in: Software Business, Springer, 2011, pp. 44–55.

[25] S. Jansen, Measuring the health of open source software ecosystems: Be-

yond the scope of project health, Information & Software Technology

56 (11) (2014) 1508–1519. doi:10.1016/j.infsof.2014.04.006.

[26] M. Lungu, J. Malnati, M. Lanza, Visualizing Gnome with the small project

observatory, in: M. W. Godfrey, J. Whitehead (Eds.), Proceedings of

the 6th International Working Conference on Mining Software Reposito-

ries, MSR 2009 (Co-located with ICSE), Vancouver, BC, Canada, May

16-17, 2009, Proceedings, IEEE Computer Society, 2009, pp. 103–106.

doi:10.1109/MSR.2009.5069487.

URL https://doi.org/10.1109/MSR.2009.5069487

45

[27] K. Manikas, K. M. Hansen, Software ecosystems–a systematic literature

review, Journal of Systems and Software 86 (5) (2013) 1294–1306.

[28] S. Syed, S. Jansen, On clusters in open source ecosystems, in: Proceedings

of International Workshop on Software Ecosystems, Citeseer, 2013, pp. 19–

32.

[29] Y. Yu, G. Yin, H. Wang, T. Wang, Exploring the patterns of social behavior

in GitHub, in: Proceedings of the 1st International Workshop on Crowd-

based Software Development Methods and Technologies, ACM, 2014, pp.

31–36.

[30] F. Thung, T. F. Bissyandé, D. Lo, L. Jiang, Network structure of social

coding in GitHub, in: Proceedings of 17th European Conference on Soft-

ware Maintenance and Reengineering, IEEE, 2013, pp. 323–326.

[31] J. MacFarlane, Commonmark spec. 2017, URL http://spec. commonmark.

org/0.25.

[32] G. Gousios, D. Spinellis, GHTorrent: GitHub’s data from a firehose, in:

Proceedings of the 9th Working Conference on Mining Software Reposito-

ries, IEEE, 2012, pp. 12–21.

[33] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German,

D. Damian, The promises and perils of mining GitHub, in: Proceedings

of the 11th Working Conference on Mining Software Repositories, ACM,

2014, pp. 92–101.

[34] Oracle, Java platform standard edition 7

api specification: Package java.util.regex,

https://docs.oracle.com/javase/7/docs/api/java/util/regex/package-summary.html,

accessed 29 November 2016.

[35] K. A. Neuendorf, The Content Analysis Guidebook, Sage, 2016.

46

[36] J. Corbin, A. Strauss, Basics of Qualitative Research: Techniques and Pro-

cedures for Developing Grounded Theory, Sage, 2008.

[37] D. Freelon, Recal oir: Ordinal, interval, and ratio intercoder reliability as

a web service., International Journal of Internet Science 8 (1).

[38] M. E. Newman, Modularity and community structure in networks, Pro-

ceedings of the National Academy of Sciences 103 (23) (2006) 8577–8582.

[39] M. Bastian, S. Heymann, M. Jacomy, et al., Gephi: an open source soft-

ware for exploring and manipulating networks., Proceedings of Interna-

tional AAAI Conference on Web and Social Media 8 (2009) 361–362.

[40] M. Molloy, B. Reed, Critical subgraphs of a random graph, The Electronic

Journal of Combinatorics 6 (R35) (1999) 2.

[41] J. M. Kleinberg, Authoritative sources in a hyperlinked environment, Jour-

nal of the ACM 46 (5) (1999) 604632.

[42] H. Gall, K. Hajek, M. Jazayeri, Detection of logical coupling based on

product release history, in: Proceedings of International Conference on

Software Maintenance, IEEE, 1998, pp. 190–198.

[43] M. E. Conway, How do committees invent, Datamation 14 (4) (1968) 28–31.

[44] K. Blincoe, D. Damian, Implicit coordination supported by GitHub: A

case study of the rails oss project, in: Open Source Systems: Adoption and

Impact, Springer, 2015, pp. 35–44.

[45] K. Blincoe, G. Valetto, D. Damian, Do all task dependencies require co-

ordination? the role of task properties in identifying critical coordination

needs in software projects, in: Proceedings of the 9th Joint Meeting of

the European Software Engineering Conference and the ACM SIGSOFT

Symposium on the Foundations of Software Engineering, ACM, 2013, pp.

213–223.

47

[46] J. W. Paulson, G. Succi, A. Eberlein, An empirical study of open-source

and closed-source software products, IEEE Transactions on Software Engi-

neering 30 (4) (2004) 246–256. doi:10.1109/TSE.2004.1274044.

[47] G. Gousios, The GHTorent dataset and tool suite, in: Proceedings of the

10th Working Conference on Mining Software Repositories, IEEE Press,

2013, pp. 233–236.

[48] Y. Zhang, Y. Yu, H. Wang, B. Vasilescu, V. Filkov, Within-ecosystem issue

linking: a large-scale study of rails, in: Proceedings of the 7th International

Workshop on Software Mining, ACM, 2018, pp. 12–19.

48

