
Optimisation of Convolution of Multiple Different Sized Filters
in SKA Pulsar Search Engine

Haomiao Wang
PARC Lab

University of Auckland
Auckland, NewZealand

hwan938@aucklanduni.ac.nz

Ben Stappers
Jodrell Bank Centre for Astrophysics

University of Manchester
Manchester, UK

ben.stappers@manchester.ac.uk

Prabu Thiagaraj
Raman Research Institute
University of Manchester

Manchester, UK
prabuthiagaraj@gmail.com

Oliver Sinnen
PARC Lab

University of Auckland
Auckland, NewZealand

o.sinnen@auckland.ac.nz

Abstract—Pulsar search is one of the main tasks for the
Square Kilometre Array (SKA) central signal processor (CSP)
sub-element. Because most of the pulsar details are unknown,
many pulsar search approaches are employed. The main
compute-intensive application of the pulsar search modules is
the matched filter group, which convolves the input signals
with a group of filters. High-performance designs on FPGAs
have been proposed that can process multiple large filters
efficiently. But given that in many applications, including the
here targeted pulsar search, filters have different sizes, there
is a high potential for optimisation. This paper investigates
the optimisation of general matched filtering design for the
SKA pulsar search engine. The influence of changing the
number of filters and the difference in sizes is analysed. The
general implementations in time-domain (TD) and frequency-
domain (FD) are optimised, employing the longest processing
time (LPT) first rule to distribute filter templates across
filter processing pipelines. The proposed design is employed
to implement the matched filter groups in two SKA pulsar
modules. The results show that the optimisation can provide
up to 2.1x speedup in TD and 1.2x speedup in FD.

Keywords-FPGA; OpenCL; FIR filter; Pulsar search;

I. INTRODUCTION

The scale of the Square Kilometre Array (SKA) is tens
of times larger than other radio telescope arrays, and so is
the number of received signals. This is a big challenge for
the SKA central signal processor (CSP). One of the main
elements in the CSP is the pulsar search engine (PSS) that
employs several approaches to search for different types of
pulsars. Since most of the details of a pulsar are unknown,
the PSS has to search for a wide range of values for each
parameter. The matched filtering technique is an efficient
approach to recover the polluted signals and it is widely
employed in pulsar search modules. For the SKA1-MID
pulsar search engine, it appears in many modules such as
single pulsar detection (SPDT), Fourier domain acceleration
search (FDAS), and folding and optimisation (FLDO). How-
ever, the employed matched filter groups are not the same
such as the number of filters and the filter tap incremental.

The main feature of the SKA pulsar search module is
that the input data size is hundreds of times larger than the

output data size, and the input data cannot be stored in on-
chip (FPGA) memory. For example, the input signals sizes
to SPDT, TDAS, and FDAS are millions of points. However,
the output signals are all a list of pulsar candidates, whose
sizes are less than 1% of those of input signals. Because of
the huge amount of workload and restricting time limitation,
the needed throughput is high, and the high-end acceleration
devices are required. This makes the high-end FPGA an ideal
hardware accelerator compared to other devices.

In this research, we investigate the FPGA-based optimi-
sation of matched filtering design with different sizes. The
main contributions are as follows:

• Analysis and modeling for various sized matched filter
groups;

• Design of an optimisation approach for the general
FPGA-based matched filtering implementation using
load balance algorithm;

• Employing the proposed design to optimise two
matched filter groups in different SKA1-MID pulsar
search modules and their evaluation.

The rest of the paper is organized as follows. Section II
gives background on matched filtering in radio astronomy
and FPGA as an accelerator. Section III discusses matched
filtering, the design goals, and gives a theoretical analysis. In
Section IV, the proposed designs of the matched filter group
are discussed, and the load balance algorithm is employed
for multiple threads. Section V presents the evaluation, and
the results are discussed. Finally, the conclusions are given
in Section VI.

II. RELATED WORK

High-end FPGA accelerators are widely employed to han-
dle large-scale computation tasks in many radio astronomy
projects [6]. Hundreds of Xilinx FPGAs are installed to ac-
celerate the correlator of the SKAMP project, and the FPGA-
based accelerator appears in the FX correlator of MeerKAT
as well [6]. Besides correlator, high-end FPGA platforms
are employed to handle digital channelised receivers.

Regarding the matched filter technique in pulsar search,
it is widely employed, and many known pulsars have been



found because of it [3]. The basic element of the matched
filtering is the 1D convolution. In [5], it is evaluated on
different platforms, and FPGA devices perform better than
CPU and GPU when there are several hundred coefficients.

III. MATCHED FILTERING

A. FIR Filter

A matched filter is employed to correlate a known tem-
plate with unknown signals to detect the presence of the
template in the unknown signals. For pulsar search, the
details of a pulsar are unknown, and a group of predicted
templates are employed. The signal array is convolved with
Nfilter templates, which can be presented as

y[i][j] =

Ntapi∑
k=1

x[j − k]h[i][k],

for i = 1, 2, ...Nfilter and j = 1, 2, ...Ninput

where y is the filter output plane, x is the input, h is
the coefficient array, and Ntapi is the length of the ith
filter. Regarding the input and coefficient arrays in the
SKA project, all the data types are complex single-precision
floating-point (SF). The lengths from filter1 to filterNfilter

are different, the relationship between these filter is
Ntapi+1 = Ntapi +Ninc

NtapNfilter
= Ntap1

+Ninc(Nfilter − 1),

where we call Ninc the tap incremental. There are
mainly three factors that determine a matched filter group:
1) Nfilter, 2) Ninc, and 3) [Ntap1

, NtapNfilter
]. In this

research, we use MF − (Nfilter, Ninc, Ntap1) to represent
a matched filter group.

For the fundamental element of the matched filter group,
which is the FIR filter, it can be implemented in both
time domain (TDFIR) and frequency domain (FDFIR). For
the large tap TDFIR, the overlap-add (OLA) algorithm can
be employed to split the FIR taps into a group of small
filters. Regarding the FDFIR filter with large input array, the
overlap-save (OLS) algorithm can be employed to divide the
input array into a group of small input arrays [4].

B. Design Goals

For the FPGA-based acceleration, the FPGA configuration
time can be over one second, and even partial reconfiguration
takes tens to a hundred of milliseconds. To avoid configu-
ration, all filters are implemented using one FPGA image
(bitstream file). For the generic implementation [2], the
number of taps of all filters is the same, which is NtapNfilter

,
and one design can implement all filters. If a filter is smaller
than NtapNfilter

, it is padded with zero to make its length
to NtapNfilter

. Since many filters are extended this way,
a large proportion of operations are –unnecessary. In this
research, we investigate the optimisation of the generic
FPGA-based matched filtering implementation. The main

goal is to propose an optimised design for given matched
filter group and a specific FPGA.

C. Theoretical Analysis

1) Time-Domain (TD) Filtering: Based on the features
in Section III-A, the total number of taps is
Nfilter∑
i=1

Ntapi
= NfilterNtap1

+
NincNfilter(Nfilter − 1)

2
.

For a generic matched filter group implementation, the filter
lengths are padded to be the same as NtapNfilter

, and the
sum of all taps is NtapNfilter

Nfilter. It can be seen that the
difference of these two values is NincNfilter(Nfilter−1)/2,
which is related to Ninc and Nfilter, and not affected by
. As the number of FIR filters increases, the ratio of saved
taps approaches 0.5, which means up to 50% of operations
can be saved.

Regarding the OLA algorithm, each filter is split into a
group of small filters, and each length is NOLA−tap, whose
value has to be smaller than NtapNfilter

. By employing the
OLA algorithm, the total number of taps is reduced from
NtapNfilter

Nfilter to
∑Nfilter

i=1

⌈
Ntapi

NOLA−tap

⌉
NOLA−tap. The

smaller the NOLA−tap, the larger the ratio of saved opera-
tions. When NOLA−tap is 1, the ratio of saved taps is the
highest, but might not be achievable due to bandwidth and
resource problems.

2) Fourier-Domain (FD) Filtering: For the straight-
forward FDFIR, the length of an FIR filter does not influence
the execution latency, which is only related to the number of
filters. In the OLS algorithm, the input array is split into a
group of chunks, and the length of each chunk is NOLS−FT ,
which is the Fourier transform length of the OLS algorithm
as well. Each chunk is overlapped with its neighbourhood
chunks, and the length of this overlap is identical to the
number of filter taps.

For any FIR filter i, the number of chunks is
NOLS−chunkNi

=
⌈

Ninput

NOLS−FT−Ntapi

⌉
, and the total number

of saved chunks compared with the generic filter implemen-
tation is

NfilterNOLS−chunkNfilter
−

Nfilter∑
i=1

⌈
Ninput

NOLS−FT −Ntapi

⌉
.

For all Nfilter filters, NtapNfilter
has to be smaller than

NOLS−FT . Figure 1 presents the saved chunks compared
to a generic FDFIR implementation in processing 230 input
points. Figure 1 (left) shows the ratio of saved chunks as
a colour map, depending on the filter incremental (Ninc, y-
axis) and the number of filters (Nfilter, x-axis). To investi-
gate the relationship between the saved ratio and NtapNfilter

.

All points that apply (
⌈
Nfilter

10

⌉
, Nfilter) in Figure 1 (right)

are picked, which is the
red dotted line in Figure 1 (left). This chart depicts

the relationship between the saved ratio (y-axis) and



OLS-FT = 1,024

20 40 60 80 100

Number of FIR filters

2

4

6

8

10

V
al

ue
 o

f i
nc

re
m

en
ta

l

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1

Largest tap/N
OLS-FT

0

0.2

0.4

0.6

0.8

1

R
at

io
 o

f s
av

ed
 o

pe
ra

tio
ns

Figure 1. Saved operations of changing the value of incremental and the
number of filters applying OLS algorithm

FPGA Nodei

FIR filter processor1 FIR filter processor2 FIR filter processorNpu
...

FPGA Nodei

NOLA-TAP-tap 

filterNmul-OLA 

Intermediate arrayNmul-OLAa

Intermediate arrayNmul-OLAb
Coefficient arrayNmul-OLA

Input array (Ninput)

Off-chip memoryOff-chip memory

NOLS-FT-point

FFT 

EngineNmul-OLS 

Output 

arrayNmul-OLSFourier transformed 

coefficient arrayNmul-OLS

Fourier transformed

Input array (Ninput)

Off-chip memory
Off-chip memory

Dot 

product

FPGA Nodei

FIR filter processorNmul-OLA

FIR filter processorNmul-OLS

Figure 2. Architecture of a single processor in multiple OLA-TD and
multiple OLS-FD implementations on one FPGA node

NtapNfilter
/NOLS−FT . If NtapNfilter

equals to NOLS−FT

2 ,
up to 30% (the point of intersection with the green dotted
line) operations can be saved.

IV. OPTIMISATION AND IMPLEMENTATION

A. Implementation

It is assumed that the size of input signals is larger than the
device on-chip memory size and it has to be stored in off-
chip memory during processing. Regarding the coefficient
array, it can be stored in both off-chip memory and on-chip
memory based on its size. The details of the architecture are
depicted in Figure 2, where Npu is the number of processing
units. It equals Nmul−OLA when employing OLA-TD and
equals to Nmul−OLS when employing OLS-FD.

1) OLA-TD : For the OLA-TD algorithm, multiple FIR
filters Nmul−OLA, whose lengths are all NOLA−tap, are im-
plemented in one FPGA image. The number of DSP blocks
on an FPGA NFPGA−DSP and off-chip memory bandwidth
are two main factors that affect the value of Nmul−OLA

when the data types of input signals and coefficient arrays
are floating-point.

The details of one FIR filter processor using OLA-TD
algorithm are depicted in Figure 2. Each processor needs
two buffers in off-chip memory to store the intermediate
arrays, whose length is 2Ninput. Based on the analysis
in Section III-C, the smaller the NOLA−tap, the less the
number of unnecessary operations and used DSP blocks.
However, the decrease of NOLA−tap leads to the increase of

Filter(Nfilter) 

Filter(Nfilter-1)

Filter(Nfilter-Npu+1)

..
.

Filter(Nfilter-2Npu+2)

Filter(Nfilter-Npu)

..
.

Filter(Nfilter-2Npu)

..
.

...

...

...

Processing 
unit 1

Processing 
unit 2

Processing 
unit Npu

Filter(i)

...

OLA-TD Implementation

⌈Ntapi/NOLA-tap⌉ segments

Filter(i)

...

OLS-FD Implementation

⌈Ninput/(NOLS-FT-Ntapi)⌉ segments

Time

Filter(Nfilter-3Npu+1)

Filter(Nfilter-2Npu-1)

Filter(Nfilter-2Npu+1)

Figure 3. Processing order of matched filter group by employing the LPT
rule

Nmul−OLA. This will make the off-chip memory bandwidth
become the main factor that limits the performance.

2) OLS-FD: Regarding the OLS-FD algorithm, we
investigate two main factors 1) the length of the overlapped
part (Ntapi

) and 2) the number of input chunks for the
FIR filter (NOLS−chunki =

⌈
Ninput

NOLS−FT−Ntapi

⌉
). These two

factors for all filters in the matched filter group are not
the same and these changes can be implemented in the
host programs. The overlapped part length can be adjusted
depending on the number of taps before sending to the
FPGA, e.g. using memcpy function in C++. Regarding the
second factor, it can be adjusted by changing the number of
iterations of the outer for loop.

For the FPGA-based implementation, the structure of a
single processor is given in Figure 2. It consists of two parts:
the dot product and NOLS−FT -point FFT engine. It has two
significant differences from the OLA-TD implementation:
1) the input signals and coefficient arrays have to be Fourier
transformed before processing, and 2) the output from FFT
engine can be sent to off-chip memory directly without
loading and adding the output from the previous block.

B. Load Balancing

Based on the above discussion, multiple filters Npu can be
put into one FPGA image. For matched filtering, the longest
processing time rule (LPT) [1], which is a 4/3 approximation
algorithm, can be employed to balance the execution latency
of each thread, i.e. implemented hardware filter. For any
filter i in the matched filter group, where i 6= Nfilter,
Ntapi < Ntapi+1 , so the lengths from the last filter to the
first filter are already in decreasing order. The process order
by employing LPT on Npu processing units is depicted in
Figure 3.

For OLA-TD, the execution time of the ith filter contains⌈
Ntapi

NOLA−tap

⌉
segments, and the latency of each segment is

about the same. For OLS-FD,
⌈

Ninput

NOLS−FT−Ntapi

⌉
segments

with the same latency form the execution latency of the ith
filter. When weighting based on lanchtimes ornumbers of
chunks, the processing order is not rondrobin.



Table I
PROCESSING UNITS FOR ALGORITHMS ON A SPECIFIC DEVICE

Device OLA-TD-(NOLA−tap) OLS-FD-(NOLS−FT )
16 32 64 128 1024 2048 4096

S5

Npu 4 2 1 – 4 3 3
Logic 68% 64% 50% – 85% 68% 72%
DSP 100% 100% 100% – 100% 89% 90%
RAM 32% 26% 20% – 74% 88% 92%
fmax 223.6 226.6 232.5 – 217.0 205.7 177.2

A
10

Npu 15 7 3 1 4 4 3
Logic 47% 33% 25% 21% 28% 33% 26%
DSP 94% 88% 76% 51% 38% 43% 36%
RAM 64% 35% 23% 17% 58% 60% 73%
fmax 153.0 191.0 213.6 258.9 203.5 165.4 158.0

V. EXPERIMENTS AND RESULTS

A. Experimental Setup

Two types of FPGA devices are adopted in this research
and they are used to evaluate the performance of the same
design. We used two FPGA acceleration cards, aTerasic DE5
board with Stratix V, referred to as S5, and a Nallatech 385A
board with Arria 10, referred to as A10. The S5 and A10
cards are connected to the host processor through the PCI
Express (PCIe) bus.

For different FPGA series and devices, the high-level
synthesis approach OpenCL is employed for fast prototyp-
ing. All Intel FPGA-based OpenCL kernels are compiled
using the Intel OpenCL offline compiler (AOCL) version
16.0.0.211.

Two matched filter groups from two pulsar search mod-
ules are evaluated in this section:

• FDAS: MFFDAS − (42, 10, 11)× 2, Ninput = 221

• FLDO: MFFLDO − (64, 1, 1)× 1, Ninput = 210.

B. Resource Usage

The OLA-TD-(NOLA−tap) and OLS-FD-(NOLS−FT ) de-
signs are implemented on both S5 and A10, and the max-
imum numbers of parallelised processing units are given
in Table I. It can be seen that the dominant resource for
OLA-TD-(NOLA−tap) is DSP blocks. Regarding OLS-FD-
(NOLS−FT ), the number of RAM blocks becomes the main
factor that restricts Npu.

Although the compiler versions for both devices are the
same, the board support package (BSP) are provided by
different vendors. For the same kernel code on S5 and A10,
the kernel frequency and the resource costs vary.

C. Latency Evaluation

Since the Intel FPGA-based OpenCL kernel frequency is
decided by the compiler and cannot be set manually, we
compare the number of clock cycles, calculated from the
kernel frequency and the execution latency which are given
in the kernel profile document after execution.

For the generic implementation, the tasks are 43x 421-
tap filters and 64x 64-tap filters, respectively. The best-
performed methods in TD and FD for both S5 and A10

Table II
SPEEDUP OF EMPLOYING LPT ALGORITHM

Device MF
OLA-TD-(NOLA−tap) OLS-FD-(NOLS−FT )

16 32 64 128 1024 2048 4096

S5
FDAS 1.98 1.95 1.83 – 1.16 1.13 0.35
FLDO 1.59 1.33 1 – 1.20 1.02 0.30

A10
FDAS 2.14 2.00 1.87 1.12 0.93 1.12 0.66
FLDO 1.45 1.36 1 0.35 0.94 1.01 0.63

are OLA-TD-(64) and OLS-FD-(2048). Table II gives the
speedups of employing our proposed LPT algorithm when
comparing the execution latencies to the generic implemen-
tation. The LPT approach can achieve up to a 2.14x speedup
in TD and 1.20x speedup in FD. The best performance is
achieved on A10, which are 137ms using OLS-FD (FDAS)
and 0.10ms using OLA-TD (FLDO).

VI. CONCLUSIONS

This paper presented the detailed optimisation of multiple
complex floating-point filters of different sizes. Various
sized matched filter groups were analysed in time-domain
and frequency-domain using the overlap-add algorithm and
the overlap-save algorithm. Both OLA-TD and OLS-FD
processing can improved in comparison to the generic imple-
mentation that extends the lengths of all filters to the largest
filter in the matched filter group. Two matched filter groups
from different SKA pulsar search modules were evaluated.
The execution latencies showed that the optimised designs
with the LPT algorithm are up to 2.1x and 1.2x faster than
the generic implementation, in TD and FD respectively. It
should be noted, that for a specific matched filter group
on different devices, the processing domain and the best
performance parameters of the employed algorithms are
different.

REFERENCES

[1] Graham, R. L. (1969). Bounds on multiprocessing timing
anomalies. SIAM journal on Applied Mathematics, 17(2), 416-
429.

[2] Wang, H., Zhang, M., Thiagaraj, P., & Sinnen, O. (2016,
December). FPGA-based acceleration of FDAS module using
OpenCL. In Field-Programmable Technology (FPT), 2016 In-
ternational Conference on (pp. 53-60). IEEE.

[3] Ransom, S. M., Eikenberry, S. S., & Middleditch, J. (2002).
Fourier techniques for very long astrophysical time-series
analysis. The Astronomical Journal, 124(3), 1788.

[4] Pavel, K., & David, S. (2013). Algorithms for efficient compu-
tation of convolution. In Design and Architectures for Digital
Signal Processing. InTech.

[5] Fowers, J., Brown, G., Wernsing, J., & Stitt, G. (2013). A
performance and energy comparison of convolution on GPUs,
FPGAs, and multicore processors. ACM Transactions on Ar-
chitecture and Code Optimization (TACO), 9(4), 25.

[6] Parsons, A., Werthimer, D., Backer, D., Bastian, T., Bower, G.,
Brisken, W., ... & Greenhill, L. (2009, March). Digital Instru-
mentation for the Radio Astronomy Community. In astro2010:
The Astronomy and Astrophysics Decadal Survey (Vol. 2010).


