
Investigating how hardware architectures are ex-
pressed in high-level languages for an SKA algorithm

Krystine Dawn Sherwin∗, Ben Stappers†, Prabu Thiagaraj‡, Kevin I-Kai Wang∗, and Oliver Sinnen∗
∗Department of Electrical and Computer Engineering, University of Auckland
tshe835@aucklanduni.ac.nz, k.wang@auckland.ac.nz, o.sinnen@auckland.ac.nz

†School of Physics and Astronomy, University of Manchester
ben.stappers@manchester.ac.uk

‡University of Manchester; Raman Research Institute, Bangalore
prabu@rri.res.in

Abstract—High-level approaches to hardware development can
expedite the design process, allowing for rapid design space
exploration. However, in order to generate optimised solutions
expert intervention is often still required. This work seeks to
explore the relationship between high-level descriptions and the
resulting hardware architecture. This aims to reduce the barrier
to entry for software developers (without hardware expertise) to
produce optimised hardware designs through application of clas-
sical loop optimisation techniques. An algorithm from the Square
Kilometre Array (SKA) is chosen to demonstrate the effects of
such changes in a real world, real-time application requiring
high throughput and low power consumption, taking a systematic
approach in order to achieve an optimised result. A systolic
array design is also discussed and compared with the software
style changes. The Intel FPGA SDK for OpenCL (AOCL) Offline
Compiler (AOC) is used here for verification and synthesis of the
designs being examined, targeting an Arria-10 FPGA accelerator.

I. INTRODUCTION

Being able to develop algorithms at a high level, agnostic
to the hardware being used, allows for rapid exploration of the
impact that changes in the structure of the algorithm can have.
For large scale applications, as in the Square Kilometre Array
(SKA), such exploration is vital to finding an optimised solution
across a range of options, particularly when heterogeneous
systems are introduced with multiple accelerators. The high
performance requirements of the SKA, along with the nature
of the algorithms needed, presents an opportunity to explore
loop descriptions in software and the resulting output, as well
as how to use OpenCL to describe a systolic array structure.

The main contributions of this paper are as follows, (1)
Systematic exploration of code manipulations at a high level and
how these translate to hardware, (2) An experimental evaluation
of such manipulations, and (3) A real world investigation of
how to represent systolic arrays in OpenCL.

Section II explores the current state-of-the-art for optimisation,
looking in particular at compiler level techniques. The algorithm
being explored is introduced in Section III, followed by
discussion of the high-level optimisations explored here in
Section IV. An evaluation is presented in Section V before
conclusions are drawn in Section VI.

II. RELATED WORK

High level approaches attempt to make FPGA development
more accessible. Approaches such as LegUp utilise the familiar
C programming language for hardware description [1], while

others such as OpenCL provide more explicit control over
hardware generation without relying on tool specific pragmas
and optimisations [2]. In addition, OpenCL is available across
multiple hardware platforms [3] with support from a variety
of manufacturers and vendors, leading to its focus here.

While high level approaches are capable of producing
functionally correct hardware, current techniques often still
require manual intervention to achieve high performance [4].
This requires similar levels of expert knowledge as low level
approaches in order to most effectively utilise the resources
available [5]. Previous work discusses system design with
OpenCL [6], showing a number of techniques with no effort
made to compare them. Further work is required to reduce
this barrier to entry, and provide an increased ability to convey
information to the compiler for optimisation.

III. FOLDING AND OPTIMISATION MODULE

The SKA project seeks to answer big questions about the
Universe through the use of a very large, intercontintental array
of radio telescopes. Within the SKA, there exists a sub-element
called the Pulsar Search Engine (PSS). This sub-element
takes raw data input, outputting filtered data with pulsar
candidates identified for further processing [7]. For processing
the large amounts of data coming in, current designs for the
PSS incorporate a number of heterogeneous nodes, each one
containing significant amounts of memory, along with a pair
of multicore CPUs, and both a GPU and FPGA accelerator [7].

The Folding and Optimisation (FLDO) module of the PSS
is used as a case study for this work. This module, positioned
at the end of the PSS takes all pulsar candidates for each
chunk of data, and finds optimal values for three parameters.
Each candidate will be output as a folded data cube, consisting
of array dimensions up to 128×128×64. The first of these
dimensions corresponds to frequency, while the other two
correspond to time. Additional information is also output for
tracking the signal-to-noise ratio (SNR) across the search space.

Initial estimates allow for the time-series data to be folded
into the data cube during the Folding (FOLD) stage. The pulsar
parameters map the input values to be accumulated in each bin,
normalising for the count in each. From here, the parameters
are adjusted to find the maximum SNR in the Optimisation
(OPT) stage. This adjustment is implemented as a realignment
of the bins in the data cube.



TABLE I
CODE MODIFICATIONS AND EXPECTED RESULTS

Name Technique Brief description Expected benefit Expected negative

A=# Unroll
Perform # iterations of loop A

in parallel
Significantly increased resources,

reduced fmax, increased cycle latency

B=# Unroll
Perform # iterations of loop B

in parallel
Increased resources, reduced fmax,
potentially increased cycle latency

C=# Unroll
Perform # iterations of loop C

in parallel
Potentially reduced memory,

reduced cycle latency
Increased logic

D=# Unroll
Perform # iterations of loop D

in parallel
Potentially reduced memory,

reduced cycle latency

MOV Code motion
Move code outside of loop

to reduce recalculation
Increase fmax and/or
reduced cycle latency

Increased memory

C+D Fusion
Merging loops C and D into one,
additional check for final iteration

Reduced cycle latency
Increased logic,

potentially reduced fmax
B&C Flatten Reduce nesting by iterating B and C together Reduced complexity Increased calculaton redundancy

A<>B Interchange
Rearrange the order of A and B loops

such that A is nested in B
Reduced cycle latency Reduced data sharing

copy Copy only
Copy input directly to output

without performing bin shifting
Reduced resources,

reduced cycle latency
No calculations performed

(incorrect results)

The optimisation is carried out through a heavily nested loop
structure in order to maximise data reuse. This work focuses on
the inner-most parameter, performing an exploration of high-level
descriptions and the corresponding hardware architecture.

At this stage, the data cube has been reduced to the two time
dimensions, with the inner-most parameter corresponding to the
pulsar period derivative, Ṗ , resulting in an acceleration of the
period. Within each trial, the degree of bin shifting is determined
by the current Ṗ and sub integration, with calculations in loops
A and B respectively. Loop C then further reduces data to a
single dimension for calculating SNR, with loop D being used
for output. This is illustrated in Algorithm 1.

The change in bin shift between Ṗ trials for each sub
integration is linear. Along with the accumulating nature required
for reducing the data to a one dimensional array, this leads to
the potential for a systolic array approach for this algorithm.

IV. HIGH-LEVEL OPTIMISATIONS

The code modifications investigated are summarised in Table
I with a brief description as well as the expected change in
hardware. Starting with optimisations provided by OpenCL,
pipelines can be automatically generated based on dependency
analysis, and can produce hardware with multiple operations in
each clock cycle [2]. Next is loop unrolling, whereby multiple
loop iterations can be explicitly run in parallel.

Changes to code structure can also be implemented, and are
generally used in order to present the underlying algorithm in

Algorithm 1: Base algorithm
Input: p, pdot_0, pdot_step, t_0, t_step, nudot, deltaNu

1 A: for trial=0 to TRIALS do
2 bin_sums = {0};

/* pdot calculations */
3 B: for sub_int=0 to SUB_INTS do

/* bin shift calculations */
4 C: for bin=0 to PHASE_BINS do
5 input_bin = (bin - bin_shift) % PHASE_BINS;
6 bin_sum[bin] += input[sub_int][input_bin];

7 D: for bin=0 to PHASE_BINS do
8 output bin_sum[bin];

such a way as to allow for the compiled code to operate in a
more optimal way. For example better memory access patterns,
or more exposed parallelism may be achieved this way [8]. The
first technique, MOV, takes code from a nested loop which does
not change across iterations of the loop and moves it outside of
the loop. Next, sequential loops can be combined (fusion) or split
(fission), changing the loop bounds as necessary. Similarly, loop
flattening can be used to combine nested loops. Interchanging
the order of nested loops alters the order of iterations. In
addition, certain techniques can be combined with each other,
in some cases providing a result which is not just the sum of
its parts. As an example, when performing both unrolling and
code motion the amount of logic to replicate may be reduced.

Systolic arrays present another option for implementation.
These are well suited for hardware, but are only possible with
certain algorithm structures. Here, this allows for usage of local
memory to reduce loads from global memory and improve data
reuse, providing for a highly parallelised design, theoretically
capable of outputting at a rate of one trial every cycle. In order
to achieve this, the algorithm can be restructured in order to
explicitly describe the desired hardware structure, shown in Fig.
1. In contrast to the initial algorithm which requires a loop nest
of depth 4 to cover all P trials, the systolic array is described
here using a loop nest of depth 3. This loops through the full
2D systolic array inside of an iterator over the full P and Ṗ
search space. This approach results in a relatively complex
code base compared to the above, but should be capable of
significantly improved performance.

Fig. 1. Desired systolic array structure



TABLE II
HARDWARE RESULTS, MIRRORING THE METRICS DESCRIBED BY NANE ET AL. [9]

Optimisation Frequency Total_time_ms Cycles trials/s Logic Memory bits RAM
base 262.2 66.02 17.3M 993k 59444 4017346 389
MOV 240 72.43 17.4M 905k 65466 4004866 383
C+D 250 41.72 10.4M 1.57M 57243 4006658 389
B&C 264.1 16.04 4.24M 4.09M 58286 4028418 393
A<>B 279.5 15.05 4.21M 4.35M 60611 4017154 398

B&(C+D) 266.7 16.02 4.27M 4.09M 55556 4002626 387
B<>(C+D) 259.3 16.21 4.2M 4.04M 56544 4004482 386

copy 261.5 3.06 800k 21.4M 54105 2773506 307

V. EVALUATION

In this section, compilation results are compared with our prior
expectations: first for the baseline implementation, comparing
with the software reference; then for the loop transformations;
and finally looking at the systolic array implementation.

A. Hardware/software setup

For the prototype designs and experiments we employed the
Nallatech 385A FPGA PCIe accelerator card in conjunction
with an Intel Core i7-6700K CPU@4.0GHz, and 64GB of
RAM. CentOS version 7.3.1611 is used, along with Intel FPGA
SDK for OpenCL (AOCL) version 16.0.2.

For this initial investigation, the dimensions of the array have
been reduced from 64×128 to 8×8, and the Ṗ search space
reduced from 512 possibilities to 8. This was done primarily to
reduce the time taken for synthesis and verification. To prevent
loops from being automatically unrolled, explicit pragmas have
been added to the base code. The exact number of P trials was
controlled by the host without requiring recompilation, however
each test was carried out to provide a consistent sample size
of 65536 Ṗ trials in total. This was done to allow the hardware
pipelines to operate for a time under full load, giving a more
representative measure of the expected real performance.

B. Baselines

A throughput of 65536 Ṗ trials in 0.26ms is required for
the real system. An initial version of C++ code is able to
perform the necessary calculations in 60ms. While this is
significantly slower than required, it was sufficient for verifying
values produced by hardware. The base hardware version is
able to provide the required values in 66ms, slightly slower
than the software performance. This time does not include the
overheads for launching and copying data to/from the accelerator.
Initial experiments showed this to generally contribute an
additional 1-3ms across all tests. Hardware details are given
in Table II, along with the other code modifications examined
here. Performance is measured using hardware performance
counters on memory accesses which are inserted during initial
compilation, providing a minor additional resource overhead.

C. Simple loop transformations

From the results in Table II, comparisons can be made
between the resource utilisation and cycle latencies for the
modifications being made. However, there is significant variation
in frequency which does not appear to be consistent between
combinations, giving overall performance variation of ±20%.

Table IV presents additional compilations with unrolls enabled.
As can be seen from this table and Table II there are some

TABLE III
GENERALISATIONS FROM TABLES II AND IV

Name Apparent benefit Apparent negative

A=#
Increased resources,

increased cycle latency,
increased complexity

B=# Reduced cycle latency Increased resources

C=#
Increased resources,

increased cycle latency
D=# Reduced resources Increased cycle latency

MOV Reduced memory Increased logic

C+D
Reduced resources,

reduced cycle latency

B&C
Reduced logic,

reduced cycle latency
Increased memory,

reduced parallelism capability

A<>B Reduced cycle latency
Increased logic,

reduced parallelism capability

Fig. 2. Graph showing performance comparisons between selected optimisations,
including both the software reference and hardware copy-only versions.

interesting remarks to be made about particular combinations.
When performing both loop fusion and loop flattening without
unrolling, i.e. B&(C+D), the results appear as expected with
the effects of both individual optimisations being combined.
However, attempting to unroll B results in the compiler adding
extremely large delays (over 1200 cycles) between iterations,
as well as significantly higher logic utilisation, in an attempt
to compensate for what the compiler perceives as inter-iteration
dependencies. Unrolling both A and B also results in a drop in
performance, though not as severe. This is due to serialisation
of the C loop performed by the compiler in order to avoid
inter-iteration dependencies. It should also be noted that the
best performing result is achieved purely through full unrolling
of certain loops. This may be somewhat misleading as full
unrolling is only possible due to the reduced size requirements
explored here and thus producing a disproportionate effect on
the throughput and resource usage due to reduced overheads.

Table III provides an overview of the effect each of the
code modifications has on the resulting hardware. Where it was
expected that code motion would result in increased memory the
actual result is a reduction in memory at the cost of increased



TABLE IV
SELECTED HARDWARE RESULTS WITH UNROLLING

Optimisation Frequency Total_time_ms Cycles trials/s Logic Memory bits RAM
C+D C=8 255.1 2.21 564k 29.7M 56559 4023170 398

B&C B=8,D=8 244.4 3.39 829k 19.3M 63626 4020290 402
B&(C+D) B=8 207.4 3670 761M 17.9k 86382 4997757 501

A<>B C=8,D=8 260.9 3.98 1.04M 16.5M 59921 4045826 402
copy D=8 252.8 1.18 298k 55.5M 61752 2837250 334

A=2 229.3 78.27 17.9M 837k 69499 4135426 408
B=2 229 9.76 2.24M 6.71M 66699 4093186 408
C=2 255.5 67.74 17.3M 967k 60007 4044994 388
D=2 260.3 66.51 17.3M 985k 59377 3968066 389

A=2,B=2 228.62 120.12 27.5M 546k 82364 4256322 433
C=8,D=8 264.1 2.15 568k 30.5M 57356 4028610 400

logic. This is believed to be a product of using more registers
for storage rather than RAM blocks. In general, it is believed
that these differences are a result of the compiler performing
unexpected optimisations. Selected optimisations are also shown
in Fig. 2, allowing comparisons between their performance.

D. Systolic array approach

Through implementation of a systolic array, it was possible
to reach significantly higher performance, without a significant
increase in logic or memory requirements. This was able to be
achieved for a single kernel design, using 60939 logic elements,
487 RAM blocks, and 14 DSPs, operating at a frequency of
280.7MHz. As would be expected, as the total number of Ṗ
trials increases, the number of cycles per trial approaches 1. This
is shown in Table V. When set to 65536 total trials as before,
the systolic array was able to produce the results in only 0.25ms,
slightly faster than that required by the SKA. However in the
current implementation it is not possible to directly extend this
to the full scale. This is primarily due to automatic usage of
RAM blocks by the compiler. Each RAM block currently only
contains 2 values. This does not change with the array size,
resulting in significant over allocation of resources. It is unknown
as to why the arrays have been assigned to RAM blocks rather
than utilising registers. This issue must be resolved in order to
achieve the necessary performance at the required scale.

VI. CONCLUSIONS

In this paper we carried out a systematic exploration of high-
level code manipulations to reason about hardware translations
for an FPGA accelerator. This was carried out on a scaled down,
real world algorithm from the SKA PSS sub-element. A variety
of code optimisation techniques were applied individually, as well
as a selection of combinations. Changes in synthesised results
were compared with expectations based on the changes made
at the software level, with differences highlighted and possible
reasons provided. With a real world performance target of 0.26ms
for 65536 trials, these optimisation techniques were unable to
achieve a total time lower than 2.15ms, even at a significantly
reduced data scale. In contrast, a highly specialised systolic array
approach was able to achieve a total time as low as 0.25ms.
However, at present the code used is not suitable for operation
at the full scale required and more work is yet to be done.

Future work aims to incorporate optimisations explored here
into the compiler level, rather than requiring significant code level
modifications by a designer. This is intended to improve the porta-
bility of OpenCL with pragmas for such optimisations, reducing

the requirement for manual structural changes . Improved design
space exploration is also possible through modelling of optimi-
sation effects, reducing the need for lengthy hardware synthesis.

ACKNOWLEGMENT

We gratefully acknowledge that this research was financially
supported by the SKA funding of the New Zealand Government
through the Ministry of Business, Innovation and Employment
(MBIE). The authors would also like to thank the rest of the
SKA-TDT for their input and work on the pulsar search pipeline.

REFERENCES

[1] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. H. Anderson
et al., “Legup: High-level synthesis for fpga-based processor/accelerator
systems,” in Proceedings of the 19th ACM/SIGDA International Symposium
on Field Programmable Gate Arrays, ser. FPGA ’11. New York, NY,
USA: ACM, 2011, pp. 33–36.

[2] T. S. Czajkowski, U. Aydonat, D. Denisenko, J. Freeman, M. Kinsner,
D. Neto et al., “From opencl to high-performance hardware on fpgas,”
in 22nd International Conference on Field Programmable Logic and
Applications (FPL), Aug 2012, pp. 531–534.

[3] H. Wang, J. Gante, M. Zhang, G. Falcao, L. Sousa, and O. Sinnen,
“High-level designs of complex fir filters on fpgas for the ska,” in 2016
IEEE 18th International Conference on High Performance Computing
and Communications; IEEE 14th International Conference on Smart
City; IEEE 2nd International Conference on Data Science and Systems
(HPCC/SmartCity/DSS), Dec 2016, pp. 797–804.

[4] Y. Zhang, M. Sinclair, and A. A. Chien, “Improving performance portability
in opencl programs,” in Supercomputing, J. M. Kunkel, T. Ludwig, and
H. W. Meuer, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013,
pp. 136–150.

[5] M. A. Ozkan, O. Reiche, F. Hannig, and J. Teich, “Fpga-based accelerator de-
sign from a domain-specific language,” in 2016 26th International Conference
on Field Programmable Logic and Applications (FPL), Aug 2016, pp. 1–9.

[6] I. Janik, Q. Tang, and M. Khalid, “An overview of altera sdk for opencl:
A user perspective,” in 2015 IEEE 28th Canadian Conference on Electrical
and Computer Engineering (CCECE), May 2015, pp. 559–564.

[7] L. Levin, W. Armour, C. Baffa, E. Barr, S. Cooper, R. Eatough et al.,
“Pulsar searches with the ska,” arXiv preprint arXiv:1712.01008, 2017.
[Online]. Available: https://arxiv.org/abs/1712.01008

[8] R. Sotomayor, L. M. Sanchez, J. G. Blas, A. Calderon, and J. Fernandez, “Aki:
Automatic kernel identification and annotation tool based on c++ attributes,”
in 2015 IEEE Trustcom/BigDataSE/ISPA, vol. 3, Aug 2015, pp. 148–153.

[9] R. Nane, V. M. Sima, C. Pilato, J. Choi, B. Fort, A. Canis et al., “A survey
and evaluation of fpga high-level synthesis tools,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 35, no. 10,
pp. 1591–1604, Oct 2016.

TABLE V
HARDWARE RESULTS FOR SYSTOLIC ARRAY DESCRIPTION

Total Ṗ trials Total_time_ms Cycles trials/s
4096 0.03 8.42k 137M

16384 0.07 19.6k 234M
32768 0.14 39.3k 234M
65536 0.25 70.2k 262M
524288 1.89 531k 277M

https://arxiv.org/abs/1712.01008

	I Introduction
	II Related work
	III Folding and optimisation module
	IV High-level optimisations
	V Evaluation
	V-A Hardware/software setup
	V-B Baselines
	V-C Simple loop transformations
	V-D Systolic array approach

	VI Conclusions
	References

