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Abstract

Concise presentations for groups are useful for both theoretical and computa-
tional purposes. We give short 2-generator presentations for the 3-dimensional
unitary groups U3(q) and SU3(q) for q up to 11.
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1. Introduction

Study of presentations for interesting groups dates back to the early days
of what was known as abstract group theory. We investigate presentations
for small unitary groups. Vital tools used are computer implementations of
algorithms devised or improved by Charlie Sims. The 3-dimensional special
unitary group SU3(q) is the cover of the projective special unitary group U3(q).
Unitary groups appeared, as hyperorthogonal, in 1899 in Dickson [9] where it is
shown that U3(q) is simple for q > 2, while U3(2) has order 72.

Concise presentations for the 3-dimensional unitary groups are challenging to
produce. The printed version (Conway et al) of the Atlas [8] gives presentations
for many groups but not for 3-dimensional unitary groups. The more recent,
online (Wilson et al) Atlas [23] includes presentations for the five smallest simple
ones. We provide short presentations on generating pairs for U3(q) and SU3(q)
for q ≤ 11. Most of these are new and include each U3(q) which appears in the
printed Atlas tables.

Unitary groups are not handled in Babai et al 1997 [1]. Later work has led
to short presentations on non-minimal generating sets for general q. Hulpke
and Seress 2001 [19] give presentations which are short in theoretical terms.
Guralnick et al 2008 [11] give presentations on 3 generators and at most 21
relators for SU3(q). They have significantly more relators and they are much
longer than ours for small q. In [11] short presentations for individual groups
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(like ours) are used both in their own right and as building blocks for short
presentations for other groups or families of groups.

Leedham-Green and O’Brien have developed Magma code [20] which is used
in the Matrix Group Recognition Project. For unitary groups there are presen-
tations on 4 generators and with up to 22 relators.

We use case-inverse notation with generator names: upper-case letters de-
note inversion so that, for example, A = a−1. We give our presentations via
sequences of relators (with generator names implicit). We use braces, so that
{a2, b3} denotes a presentation for the modular group defined on the generating
sequence (a, b). Most of our presentations are on generators a and b, in which
case u is used for ab and v for aB. When a presentation includes only u and
v, the generating sequence is (u, v). Generator orders give useful information
about a presentation. Since these orders may not be explicitly revealed in the
relators of some of our presentations, we say (m,n)-generated to specify orders
m and n for the generators in the generating sequence.

Conciseness of a presentation can be measured in various ways including
the size of the generating set, the size of the defining set of relators, and the
length of relators. Various notions of presentation length are considered in
detail in [11, Section 1.2]. Our presentations are on minimal generating sets.
We define length to be the sum of the lengths of the relators as words in the
group generators and their inverses. Another measure is efficiency, introduced
by Epstein in 1961 in connection with the study of 3-manifolds. A presentation
is efficient if it achieves the well-known lower bound on number of relators, which
is the number of generators plus the rank of the Schur multiplier. A detailed
study of efficient presentations for finite simple groups appeared in 2014 [5].

In Table 1 we provide summary information on a selection of the shortest
known presentations on generating pairs. The corresponding presentations ap-
pear in two tables in Section 3, where we give further details about the groups
and their presentations. In the Notes column of these tables: M means minimal
possible length; E means efficient; T means the presentation described in Ta-
ble 1; and G means good for coset enumeration, CE-good (defined later). The
corresponding presentations for Table 1 are identified by T in the later tables.

Previously published presentations show that the groups U3(2), U3(3), U3(4),
U3(5) and U3(8) are efficient. Here we give efficient presentations for SU3(2),
U3(7) and U3(11). We give presentations with 2 generators and 3 relators for
each of the remaining groups, U3(9), SU3(5), SU3(8) and SU3(11).

Our results come from computations which use techniques based on pro-
cedures described in Sims’ book [22]. Many of our presentations come from
calculations which rely on the Todd-Coxeter Schreier-Sims algorithm. Since his
book, Sims, jointly with some of the authors of this paper, used such ideas
in [18, 13] to construct short presentations. Our computer calculations use
GAP, Magma and some standalone programs. They sometimes use significant
resources.

Presentations of a group can vary significantly according to the generating
set on which they are defined. Specifically, a relator on one generating set may
not be a relator for another. In 1936 Philip Hall [12] described this phenomenon
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Table 1: Properties of selected shortest presentations

Group Group No of Pres Gen Total
Name Order Rels Length Orders Cosets Notes
U3(2) 72 3 20 (4,4) 73 MEG
SU3(2) 216 2 16 (4,12) 229 MEG
U3(3) 6048 2 19 (4,12) 198076 ME
U3(4) 62400 2 22 (5,13) 1557671 ME
U3(5) 126000 3 28 (5,4) 1240589 E
SU3(5) 378000 3 29 (4,5) 19731726
U3(7) 5663616 2 24 (16,16) 20018866 E
U3(8) 5515776 3 36 (21,21) 11300294 E
SU3(8) 16547328 3 39 (7,63) 24855963 G
U3(9) 42573600 3 38 (8,40) 51230621 G
U3(11) 70915680 3 44 (4,20) 86351677 EG
SU3(11) 212747040 4 46 (10,30) 298839543 G

in terms of defining subgroups – that is, kernels of maps from the underlying
free group on the generating set. We call these presentation kernels. We say
that two presentations are variants if they have the same presentation kernel.
Some of our processes for modifying presentations produce variants while others
may change the presentation kernel.

By identifying redundant relators in a presentation and deleting them from
it we obtain shorter variants. By amalgamating two relators (replacing them
by one which, in the context of the rest of the presentation, implies both) we
obtain variants with fewer relators which may also be shorter. Other kinds of
relator deletion or amalgamation may define a different group.

We can change generating sets by applying automorphisms of the underlying
free group, exemplified in [15]. This way we get presentations which may have
different presentation kernels, but they do have the same number of relators.
They may vary in length and we target short presentations. More details can
be found in Section 2.

We use coset enumeration to confirm that our presentations define groups of
interest. Sims [22, Chapters 4, 5, 6 and 7] studies coset enumeration and related
topics in depth and provides a solid foundation for our work. We generally use
the ACE coset enumerator, as available via GAP [10] and Magma [2], or as a
standalone program [17] for some more difficult cases.

In addition to shortness and efficiency, we evaluate presentations from a
performance point of view by providing some coset enumeration statistics, along
the lines of [5]. Quite different figures can arise from presentation variation and
from enumeration strategy changes so, for consistency, we provide the total
number of cosets used in a successful enumeration over the trivial subgroup
using the Hard strategy of ACE4. These enumerations, available via [17], are
for performance assessment and are not the best way to verify presentation
correctness. We call a presentation CE-good if total cosets is less than twice
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the index, for this strategy choice. We provide short, CE-good presentations for
each of our groups.

2. Details

In [7] we observed that U3(11) arises as a section of a one-relator quotient
of the modular group. This quotient has a short presentation which enables us
to build short, 2-generator presentations for both U3(11) and SU3(11). Since
short presentations were not readily available for other unitary groups, we were
motivated to find them for U3(q) and SU3(q) for q up to 11.

The modular group is relevant to 3-dimensional unitary groups in that only
five are not (2, 3)-generated, namely U3(2), SU3(2), U3(3), U3(5) and SU3(5)
(see [21]). So all the others are presentable as quotients and one, U3(4), is known
to be a one-relator quotient [3].

In addition to observing that a group is a section of another with a con-
cise presentation, we have two ways for finding short presentations for specific
groups. One, coming from Methods 1 and 3 in [4, 5], begins with lists of short
presentations. The other, Method 2, starts with generating sets for specific
groups.

• Presentation enumeration. We generate and investigate all (up to appro-
priate equivalence) short presentations with suitable structure, and check
if we have found a presentation for a group of interest. We use canonical
forms to provide representative presentations. Notions of equivalence and
canonicity are exemplified in [15, 7]. Presentation enumeration is the basis
for claims that certain presentations are shortest, cf. [3].

• Generating sets. We consider generating pairs for groups based on ma-
trix or permutation representations, sometimes using complete sets [14]
to facilitate the process. We can construct presentations on pairs with
specific properties. We use the Todd-Coxeter Schreier-Sims algorithm as
implemented by the Magma command FPGroup, which uses the ideas of
[6], to obtain initial presentations on the chosen generators.

Once we have a presentation we try to reduce the number of relators or
shorten the presentation by relator deletion and by relator amalgamation. We
use various tools, especially coset enumeration, to investigate the presentations
which arise.

We also use Tietze transformation-based approaches. We have a standalone
program automac (automorphic Andrews-Curtis) which is based on ACME
(Andrews-Curtis Move Enumerator) [16]. It combines length-preserving au-
tomorphisms of the extended symmetric group [15] and some Whitehead auto-
morphisms with Andrews-Curtis moves.

Many effective instances of presentation manipulation by amalgamation of
power relators with other relators appear in the literature. Some applications
appear in [5] together with a theorem and a corollary which apply to efficient
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presentations, and a more general extension for other presentations. These are
constructive and work very well in practice.

Let G be a simple group or a stem extension of a simple group. Then certain
relator amalgamations applied to presentations of G give presentations for stem
extensions of G. If a presentation of G includes proper power relators whose
base words generate the underlying free group and if combining two of these
power relators gives a perfect group then we get a stem extension. More general
combination of relators may lead to other preimages.

As the groups of interest become larger, presentation enumeration becomes
less effective for finding relevant presentations so most of our results come via
generating sets. Asymptotically, almost all pairs of elements of finite simple
groups generate the group. Moreover, even for one particular generating pair,
there are arbitrarily many different presentations. Our approach enables us to
navigate through some of these in structured ways and has proved very effective
for finding short presentations for groups which are not too large.

Our general aim is to find concise presentations and possibly longer presenta-
tions which are good for computation. We find it useful to classify presentations
according to generating pairs, presentation kernels and presentation variants.

It is straightforward in principle to find all generating pairs for our groups.
A problem is that, as the groups get larger, the number of generating pairs
grows as the square of the group order. Taking the automorphisms of the group
into account we reduce the number of generating pairs that we need consider to
about the group order divided by a small constant. This is still challengingly
large.

For q ≤ 5 we compute complete sets of generating pairs, as in [14], but this
is not well suited to larger groups. We reduce the number that we examine
in various ways. In practice for our groups we use conjugacy classes to get
representatives which avoid some duplication. Given a pair of classes we select
a representative of the larger class and test all members of the smaller class.
Sometimes we just take random generating pairs.

3. Interesting presentations

The study of unitary groups and their covering groups has a long history.
We intend to describe this more thoroughly in another paper, where we also
detail the computations which lead to the results in this section. In Table 2,
we highlight a selection of the more interesting presentations and some of their
properties for the smaller groups, and do the same for the larger groups in
Table 3.

All minimal generating sets for U3(2) are equivalent modulo automorphisms
of the group and the underlying free group. This means that U3(2) is efficient
on all generating pairs. We give a canonical (as in [15]) representative of an
efficient 2-generator (4, 4)-presentation with shortest length, 20.

There are 36 presentation kernels for SU3(2) and all have efficient presen-
tations. We give a canonical representative of an efficient, (4, 12)-presentation
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with shortest length, 16. Adding the relator b4 we get an another shortest length
presentation for U3(2).

Table 2: Selected presentations of the smaller groups

Relators Group Gen Total
u = ab, v = aB Name Orders Cosets Notes

a4, aababAbb, aaBababb U3(2) (4,4) 73 METG
aababAbb, aabbABAb SU3(2) (4,12) 229 METG
a3bAbAb, a2b2AB3Ab2 U3(3) (4,12) 198076 MET

a2ba2B2, a3bABABAba3B U3(3) (8,12) 8878 EG
a4bAbAb, a3BAb2ABA2B2 U3(4) (5,13) 1557671 MET
a2babAbab, a6b2AbAb2 U3(4) (15,15) 3953806 ME
a2ba2B2, ababAB5AbAb2 U3(4) (10,15) 3939040 ME
a2, b3, u7v2u4vuv2u2v2 U3(4) (2,3) 103904 MG

a2b3, (V 7)Av2u4vV Av2u2v2 U3(4) (2,3) 485506 ME
a5, a2bABabaBAb, ab2Ab2ab2AB2 U3(5) (5,4) 1240589 ET

a5b4, (ab)2AbbaBabABB, (aab)2Ababb(ab)2 U3(5) (5,4) 186408 EG
a4, (abb)2aB3, a2b(aB)3aba2B2 SU3(5) (4,5) 19731726 T

a3baBAAbaB, a5b7, (a3B)2BabaBB SU3(5) (15,21) 468456 G

The group U3(3) is discussed in [14] and [3]. Four efficient presentations are
listed in [3], including the (4, 12)-generated one of Table 2. It has length 19 but
is not CE-good. However the length 21, (8, 12)-presentation in Table 2 is. The
online Atlas presentation is (2, 6)-generated, has 5 relators and length 67. The
diversity of presentations for this relatively small group is perhaps surprising.
There are 2784 presentation kernels on generating sequences.

In [3] five new, efficient presentations for U3(4) were given. The shortest
efficient presentations have length 22, one of which is listed there. There are 3
presentation kernels which have canonical representatives with that length and
we list those in Table 2.

By enumerating one-relator quotients of the modular group {a2, b3}, we find
that U3(4) has length 47 and longer presentations. We tabulate a canonical
(as in [7]) representative which is CE-good. By examining all shorter, perfect,
one-relator quotients, we conclude this is shortest possible. It is a variant of
the 5-relator, length 87 presentation in the online Atlas. Theorem 4.1 of [3]
gives us many ways to build efficient presentations with the same length from
it. For example, we can replace the power relators by their product a2b3 and
change any of the eight occurrences of a to A in the other relator. We give one
instance in Table 2, which is much worse for coset enumeration. There are 2
(2, 3)-presentation kernels for U3(4). For the other, we have found length 59,
but not shorter, presentations as one-relator quotients.

The group U3(5) is discussed in detail in [5], which includes a length 28
presentation, which is not CE-good. We also tabulate an efficient, length 38
presentation which is CE-good. The online Atlas presentation has 5 relators
and length 50. Relator amalgamation of two pairs of powers in it leads to
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various other efficient presentations.
No efficient presentation for SU3(5) is known. This group remains the small-

est possible counterexample to the conjecture that the covering groups of all
finite simple groups are efficient. Previously found shortest 3-relator presenta-
tions have length 30. We have now found one with length 29 which we tabulate.
We also give a length 37, CE-good presentation which is a canonical form of a
presentation from [4].

Since our presentations for the larger groups are longer, Table 3 is structured
differently. Presentations precede group properties on separate lines.

The group U3(7) was not previously known to be efficient. From random
generating sets we found various efficient presentations. From these, automac
gave shorter efficient presentations with length 24. We tabulate a canonical
representative. Since we have such short efficient presentations, we have not
analysed other presentations in detail. We did find various reasonably short, 3-
relator presentations which are CE-good and tabulate one of them. The online
Atlas (2, 3)-presentation has 6 relators, length 205, but is poor for coset enumer-
ation, using 53248855 total cosets over the trivial subgroup. Our methods give
a 5-relator variant {a2, b3, (u4v4)3, (u3v3)3uv2uv3, u3v2u3v11u6v2u2vu2v3u3v2}
which is shorter (length 183) and better for coset enumeration, using 14592554
total cosets.

Two efficient presentations for U3(8) produced by relator deletion from pre-
sentations based on random generating pairs appear in [5]. Applying automac

to the shorter one, we get the tabulated, length 36 presentation which is almost
CE-good.

For U3(8) there are 2916 (2, 3)-generating pairs with 2 presentation kernels.
We have identified the presentation kernel for standard generators of the online
Atlas. We find a 5-relator, length 143 presentation, which is shorter than that in
the online Atlas (7 relators, length 203) and is very good for coset enumeration,
namely

{a2, b3, u19, uv3uv3u2vu3vu2v3, uvuvuv2uv4uvuv4uv2uvuvuv3}
which uses 5747911 total cosets over the trivial subgroup and is a practical pre-
sentation for these generators. From this we can build a length 127 presentation,
replacing a2 and b3 by a2b3, giving an efficient presentation for U3(8) on the
Atlas standard generators, but very difficult for coset enumeration.

For the other (2, 3)-presentation kernel we obtain analogous results. They
are much better for coset enumeration. We can derive a reasonably short (length
59), efficient presentation on u and v which is CE-good and we tabulate it.

By investigating random generating pairs for U3(8) we found various 4-
relator presentations which include two or three power relators. Then amal-
gamating power relators we found the tabulated instance of a shortest one for
SU3(8).

No 2-generator presentation for U3(9) had been written down. No efficient
presentation is known, but we have found presentations with one extra relator.
From random generating sets we obtained presentations with 3, 4 and 5 relators
including one 3-relator presentation which is (40, 10)-generated and has length
43. Applying automac we found the CE-good, (8, 40)-generated presentation
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with length 38 that we tabulate.
For U3(9) there are 4536 (2, 3)-generating pairs with 14 presentation ker-

nels. They lead to four presentations with 4 relators which we tabulate. All
of these 4-relator presentations are CE-good. By replacing a2 and b3 by their
product a2b3 we obtain four different 3-relator ones for U3(9) which also enu-
merate well. Then moving to generators that correspond to u and v (replacing
a2, b3 by (vUv)2, (Uv)3) we get much shorter presentations which enumerate
slightly better. Amalgamation of (vUv)2 and (Uv)3 to uvUvuV for these four
presentations gives a perfect group in only one case, namely the first, which we
tabulate.

We also sampled (3, 4)-generating sets, giving more 4-relator presentations
suitable for relator amalgamation. We tabulate a shortest one found from these.

No 2-generator presentation for U3(11) had been written down until recently.
Reasonably short presentations for this group can be constructed because it is
a section of a group which has a short presentation.

Using presentation enumeration [7] we investigated groups G presented as
quotients of the modular group {a2, b3} by adding one extra relator w(a, b). For
w with length up to 36 there are, up to equivalence, 8596 different presentations,
and we found out enough to conclude that none of them defines a unitary group.

We did, however, find a finite quotient G with order 3829446720. This group
has a length 36 extra relator u5vu2v2uv5uv (where u = ab and v = aB). We
observed that |G| is a multiple of the order of U3(11) and showed that G has
U3(11) as a section. This gives many ways of producing short presentations for
U3(11).

We can obtain a presentation for the subgroup H = 〈b, ba〉 of index 2 in G by
Reidemeister-Schreier rewriting. Now H maps onto U3(11), and factoring out
the kernel of that mapping gives a presentation for a group which has U3(11)
as an index 3 subgroup. Another rewrite gives the first presentation for U3(11)
in Table 3. Each of the power relators is individually redundant. Deleting any
one gives us a 5-relator presentation whose coset enumeration behaviour is only
a little worse.

Other ways of looking at the subgroup lattice of G lead to various other
short presentations for U3(11) and for SU3(11), all of which enumerate quite
nicely. Those presentations provide further opportunities for investigation.

For U3(11) there are 8640 (2, 3)-generating pairs with 10 presentation kernels.
We can reduce a presentation for one of them to 4 relators, which gives our
second presentation in Table 3. It is quite hard for coset enumeration.

Now amalgamating a2 and b3 to a2b3 gives a perfect group so it is a stem
extension. The corresponding enumeration over 〈uv2〉 is about ten times harder
than for the presentation with unamalgamated relators, and gives the same
index. So this 3-relator presentation with length 103 defines U3(11) and was
our first efficient presentation for it. The alternative amalgamation to A2b3 also
gives a perfect group, again U3(11), but a better variant for coset enumeration,
using about half as many cosets. Instead, moving to a (37, 37)-presentation on
u and v, replacing a2 by (vUv)2 and b3 by (Uv)3, we obtain a much shorter 4-
relator presentation. Then, amalgamating the power relators, we obtain a third
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efficient presentation which we tabulate. It is shorter, length 55, and better for
coset enumeration but still quite difficult.

We can obtain a CE-good, efficient presentation. We sampled (3, 4)-generating
sets. We applied automac to their presentations and obtained as shortest for
U3(11) a (4, 20)-generated one. Amalgamating the power relators in that, we
get a shortest efficient presentation so far discovered, which is CE-good and we
tabulate it.

The shortest presentations we have for SU3(11) are derived from our first
presentation for U3(11). We tabulate a canonical example with 4 relators and
length 46. We are able to find 3-relator presentations for SU3(11) by looking at
the 10944 (2, 4)-generating pairs which have 38 presentation kernels. From one
of these we obtain a (4, 111)-presentation for SU3(11) which is CE-good and
tabulated.

4. Concluding remarks

We have short presentations on generating pairs for the 3-dimensional uni-
tary groups U3(q) and SU3(q) for q up to 11. We have not needed to go beyond
length 46 for our shortest presentation for any of them. The efficiency question
remains unresolved for the perfect proper covers, SU3(5), SU3(8) and SU3(11),
and for one of the simple groups, U3(9), all of which have trivial multiplier.
Efficiency with 2 generators means 2 relators, but the closest we have found are
3-relator presentations.

There are still many unresolved questions for unitary groups. Are they all ef-
ficient? If so, are they efficient on every generating set? What are their shortest
presentations? What are the shortest presentations on generating pairs? What
are the shortest efficient presentations? Which unitary groups are one-relator
quotients of the modular group? We have answered these questions in some
cases for the groups we study.
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Table 3: Selected presentations of the larger groups

Group Group No of Pres Gen Total
Name Order Rels Length Orders Cosets Notes

aabaabaaB, abAbaBABabAbABB
U3(7) 5663616 2 24 (16,16) 20018866 ET

a4, aabaBabaaBB, abAbABBAbbabbbABaBB
U3(7) 5663616 3 34 (4,43) 7178305 G

(abaB)2, a2ba2BA2B, a3B2abAb2A2b2AbaB2

U3(8) 5515776 3 36 (21,21) 11300294 ET
uvUvuV, u(uv)5vu2v5u4v3, uv(uv4)2uvuv3uv4uv3

U3(8) 5515776 3 59 (21,21) 8164048 EG
a6bAbAb, ababbabbabaBB, aaabABabAABabaB

SU3(8) 16547328 3 39 (7,63) 24855963 TG
aaabABABAb, abaBAbABBAbAB, aaaBabAbABAAbAB

U3(9) 42573600 3 38 (8,40) 51230621 TG
a2, b3, uvuv7uvuvu7v, u2v3u2v3u2vuvu2vu2vuv

U3(9) 42573600 4 95 (2,3) 43365169 G
a2, b3, (u3v3)3, uv2u3v2uv4u2v4uv2u3v2

U3(9) 42573600 4 95 (2,3) 48669618 G
a2, b3, (u2v2)3, uv10uv7u3vu3v7

U3(9) 42573600 4 95 (2,3) 49089008 G
a2, b3, (u3v3)3, u2v6u2v6u2v4u2vu2v4

U3(9) 42573600 4 103 (2,3) 60405092 G
uvUvuV, uvuv7uvuvu7v, u2v3u2v3u2vuvu2vu2vuv

U3(9) 42573600 3 51 (80,80) 47134355 G
a3, (abAbb)2abABB, abAbabbabAbabbABaBAbb

U3(9) 42573600 3 39 (3,4) 70214845 G
a10, b10, Aba3BA3b2, a2B3Ab3aB, aBaBaBABAbAbAb, (aB)10

U3(11) 70915680 6 76 (10,10) 73211636 G
a2, b3, (uv2)5, u3v2uv3uv4uv5u2vuvu2v4u2v

U3(11) 70915680 4 103 (2,3) 1141445437
uvUvuV, (uv2)5, u3v2uv3uv4uv5u2vuvu2v4u2v

U3(11) 70915680 3 55 (37,37) 1676694061 E
A3b(ab)2, abAbaBaBBaB, abABabbaBAbABabbaBAbaBBBB

U3(11) 70915680 3 44 (4,20) 86351677 ETG
a10, a3bA3BaBB, aaB3Ab3aB, ababAbAbABaBaB

SU3(11) 212747040 4 46 (10,30) 236468860 TG
a3bAb, a2baB2ABAbab3(ab2)2(AB)2B, a3B3A(B2a2)2B3AB2a2B3(a2B2)4

SU3(11) 212747040 3 73 (4,111) 298839543 G
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