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Abstract Future precipitation changes include contributions from both thermodynamic and dynamic
processes. Given that precipitation in the tropics is commonly associated with convergence lines, we
construct a simple linear regression model relating the convergence line frequency and strength to
precipitation at subdaily time scales, and use it to show that changes in the convergence lines are related to
the dynamic change in the precipitation. Given GCM‐predicted convergence line changes, we predict
precipitation changes using the regression model. The so‐predicted precipitation change is equivalent to the
dynamic component of the precipitation change identified in earlier studies that used very different
methods. The difference between the precipitation change in GCMs and that predicted from changes in
convergence lines accounts for thermodynamic and other potentially important dynamic contributions.
More accurate predictions of future precipitation therefore require the accurate simulations of the relatively
short‐lived weather features responsible for convergence lines in the tropics in GCMs.

Plain Language Summary Future changes in precipitation have been shown to have
contributions from both thermodynamic and dynamic processes. Although the thermodynamic part is
reasonably well understood (through the Clausius‐Clapeyron relationship), the dynamic part is not.
Moreover, the spatial pattern of the precipitation change andmuch of the regional uncertainty in projections
of this change, especially in the tropics, are dominated by the dynamic contributions. Therefore, we have
investigated the underlying processes for the dynamic part and discovered that changes in the “weather” of
atmospheric convergence lines constitute a large part of the dynamic contribution to precipitation changes
in a future climate. The implications of this are not only that we now know the main ingredient for change,
but also that it is the weather time scales that we need to simulate well in models for us to predict this
important contribution to climate change.

1. Introduction

Predicting changes in regional precipitation due to greenhouse warming remains an important challenge
(e.g., Knutti & Sedláček, 2013). The two main contributors to this change, both to the mean and the
extremes, are increases in atmospheric moisture due to warming (the primary thermodynamic contribution
to precipitation changes) and changes in the atmospheric circulation (the primary dynamic contribution to
precipitation changes; Allen & Ingram, 2002; Ma & Xie, 2013; O'Gorman, 2015; Pfahl et al., 2017; Tandon
et al., 2018; Wills et al., 2016). The dynamic change in the tropical precipitation is mostly consistent with
changes in the spatial patterns of the low‐level convergence and convection, which are thought to be driven
by changes in the sea surface temperature (SST) gradient, land‐sea temperature contrast, and the local atmo-
spheric circulation (Chadwick et al., 2013; Huang et al., 2013; Kent et al., 2015; Lambert et al., 2017; Ma &
Xie, 2013; Xie et al., 2010). Over the oceans, the spatial pattern of the change in the vertical motion also
appears to be consistent with the idea that changes in the spatial pattern of SST drive most of the change
in the low‐level convergence and the location of the convection (Chadwick et al., 2013; Huang et al., 2013;
Kent et al., 2015; Xie et al., 2010).

Although changes in the precipitation cannot be separated into thermodynamic and dynamic contributions
unambiguously, the idea is useful nonetheless. Several previous studies have devised methods based on the
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convective mass flux to decompose the precipitation changes predicted by GCMs into their thermodynamics
and dynamic contributions (e.g., Chadwick et al., 2013; Kent et al., 2015). Other studies have used the verti-
cally averaged vertical motion to define the dynamic contribution to precipitation change (e.g., Bony et al.,
2013; Endo & Kitoh, 2014). All of these previous studies have been based on monthly mean data.

Large amounts of precipitation in the tropics (30–60% over land and >65% over oceans) fall in relatively
short‐lived events associated with convergence lines (Weller, Jakob, et al., 2017; Weller, Shelton, et al.,
2017). The convergence of mass along these lines is associated with low‐level upward motion which com-
monly triggers convection, although there has been much debate over the decades as to whether conver-
gence should be thought of as a consequence or a cause of (trigger for) convection. It is not the intention
of the present study to address this debate and assign causality; instead, it is to simply exploit the close rela-
tionship between low‐level convergence lines and precipitation. Convergence lines can be formed by
weather features such as the equatorward extension of fronts, gravity waves, boundary layer rolls, evapora-
tively driven cold pools, and topographically generated weather systems such as mountain waves and sea
and land breezes (Weller, Shelton, et al., 2017). However, when averaged over longer time and space scales,
these short‐lived convergence lines form the well‐known tropical convergence zones (Berry & Reeder, 2014;
Hastenrath, 1995; Widlansky et al., 2013; Wodzicki & Rapp, 2016), such as the Intertropical Convergence
Zone and South‐Pacific Convergence Zone that dominate the larger‐scale, longer‐term rainfall variability
(Borlace et al., 2014; Cai et al., 2012; Vincent et al., 2011; Weller et al., 2014).

Weller, Jakob, et al. (2017) made the point that changes in convergence lines, at least qualitatively, appear to
account for the dynamic component of the change in precipitation. The present work builds on Weller,
Jakob, et al. (2017) and addresses quantitatively the question as to whether or not convergence lines are
the tropical weather systems underpinning the dynamic change in the precipitation. To this end, we develop
a simple linear regression model relating the frequency and strength of convergence lines to the precipita-
tion at subdaily time scales and show that the model successfully reconstructs the observed precipitation.
Then, using climate simulations from the models participating in the Coupled Model Intercomparison
Project phase 5 (CMIP5; Taylor et al., 2012) for the late twenty‐first century, we calculate the future changes
in precipitation related solely to changes in the subdaily convergence line occurrence and strength and com-
pare these changes to the dynamic precipitation changes identified by other methods that use monthly aver-
aged fields. We then discuss the relationship of the residual precipitation change (the difference between the
total and dynamic contribution) to the thermodynamic contribution and other dynamic changes not
explained by changes in the convergence lines.

2. Methods
2.1. Observation‐Based Convergence Lines and Precipitation

Instantaneous convergence lines were identified objectively in the European Centre for Medium Range
Weather Forecasting reanalysis (ERA‐Interim; Dee et al., 2011) using 1.5° horizontal resolution wind fields
and applying the method detailed in Weller, Shelton, et al. (2017). The convergence lines are identified in
6‐hourly divergence fields calculated at 850 hPa for the period 1979–2005. In addition, the minimum diver-
gence threshold is set to zero (i.e., all regions of convergence are included), following Weller, Jakob, et al.
(2017). Note that only two points are required by the joining algorithm that is used to link minima points
in the divergence fields for a convergence line to be identified (Weller, Jakob, et al., 2017). However, objec-
tively identified convergence lines are not always geometrically linear whenmore than two points constitute
an identified synoptic feature. The method also identifies geometrically complicated convergence lines. We
refer to all identified convergence features as lines only when they are recognized to be a singular feature by
the joining algorithm. Convergence lines with only two points constitute only a small proportion (~0.1%) of
all lines that are identified in the ERA‐Interim reanalysis. Further, <15% of all convergence lines identified
in ERA‐Interim exhibit a length less than the peak (~600 km) in their distribution, which has a long tail and
50% of lines are longer than ~1,400 km.

Once the convergence lines are identified, they are associated with the National Oceanic and Atmospheric
Administration/Climate Prediction Center morphing technique (CMORPH; Joyce et al., 2004) 6‐hourly
accumulated precipitation when a convergence line is found sufficiently close (i.e., adjacent grid points) to
the precipitation grid point (see Weller, Shelton, et al. (2017) for details). It is noted that ERA‐Interim
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winds are often based on relatively few observations over the tropics, and therefore, the degree to which they
represent reality is uncertain. Similarly, CMORPH has been shown to capture the spatial precipitation
distribution patterns well, although it overestimates the precipitation in the tropic to subtropics, underesti-
mates it in the middle to high latitudes, and overestimates (underestimates) weak (strong) intensities (e.g.,
Joyce & Xie, 2011). However, CMORPH provides higher temporal (subdaily) resolution compared to other
data sets, such as the Global Precipitation Climatology Project.

2.2. CMIP5 Model Convergence Lines and Precipitation

A total of 10 CMIP5 models (Taylor et al., 2012; see Table S1 in the supporting information) are used given
their availability of the required subdaily (6‐hourly) data (Weller, Jakob, et al., 2017). Objectively identified
convergence lines and the associated precipitation are calculated from current climate (historical) simula-
tions with anthropogenic forcing (greenhouse gases, aerosols, and other anthropogenic forcing agents)
and natural forcing (solar and volcanic activities) for the period 1979–2005, and high‐emission future climate
(Representative Concentration Pathway 8.5 (RCP8.5)) simulations for the period 2080–2099. Output from
each model is interpolated onto the ERA‐Interim 1.5° horizontal grid prior to the calculation of divergence,
identifying the convergence lines, and the proportion of precipitation associated with these convergence
lines (see Weller, Jakob, et al. (2017) for extended details of the calculations of convergence lines from mod-
els). Although the interpolation of GCM output (or the stage at which it is performed) is not always ideal,
Weller, Jakob, et al. (2017) show that it did not determine the results of their study. For example, there
are no clear relationships between the original resolution of a model and the respective bias in the historical
simulations (see Table S1 in the supporting information), nor future changes in the dynamic contribution to
precipitation. For all results that show spatial maps, regions with surfaces above 850 hPa are shaded gray as
they are not analyzed.

2.3. Regression Model

We use simple linear regression to estimate the precipitation associated with a convergence line using the
equation PRdyn = a1 · CLS + b, where PRdyn is the grid‐point precipitation associated with a convergence
line and CLS is the instantaneous grid‐point strength of the convergence line (i.e., the strength of the con-
vergence line point closest to the precipitation is assigned to that precipitation point). Using the grid‐point
relationships found for the observations and the individual CMIP5 models over the odd years (e.g., 1999,
2001) during the periods 1998–2013 and 1979–2005, respectively (Figure S2 in the supporting information
shows maps of the observed and MMEM regression coefficients), we reconstruct the climatological precipi-
tation associated with convergence lines over the even years (e.g., 1998, 2000) during the same periods. For
example, when a convergence line occurs, the precipitation is calculated using the strength of the conver-
gence line, then for each grid point, the precipitation is averaged over the historical period to generate clima-
tological maps. Here the reconstructed precipitation is used to represent the dynamic component of
precipitation. For CMIP5 RCP8.5 simulations, we similarly reconstruct the component of the precipitation
associated with convergence lines over the period 2080–2099. However, we use the historical grid‐point
regression relationship so that atmospheric moisture content changes (i.e., the thermodynamic contribution
to total precipitation changes) do not contribute to the reconstruction of the dynamic component of precipi-
tation associated with convergence lines. We discuss the implications of this in following sections. However,
the difference between the future total precipitation changes and the reconstructed precipitation changes is
taken to represent the thermodynamic contribution and other contributions not explained using conver-
gence lines to future total precipitation changes.

3. Results

Although varying in detail, climate models reproduce the overall distribution of precipitation over recent
decades (Figures 1a and 1b) with a spatial correlation of 0.86 and a root‐mean‐square difference of
1 mm/day. Observations show that over much of the globe large fractions of the total precipitation can be
associated with a convergence line (Figure 1c). This is most evident in high‐precipitation regions
(>5 mm/day) of the deep tropics, such as the Indo‐Pacific warm pool, but also midlatitude oceanic regions,
and even over land regions such as South America, with fractions greater than 90%. Areas in which a large
fraction of the precipitation cannot be associated with convergence lines are confined to the subtropics,
where the average precipitation is small (i.e., <1 mm/day). Although models slightly (around 10%)
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overestimate the percentage of the precipitation not associated with convergence lines, they reproduce the
spatial pattern of the convergence line to precipitation relationship well (Figure 1d). It is important to
note that in the main tropical convergence zones the models associate the majority of the precipitation
(>75%) with convergence lines (Figure S1 in the supporting information).

As precipitation in the tropics is frequently associated with a convergence line, we construct a simple linear
regression model for both the observations and each GCM relating the convergence line strength, when pre-
sent, to the associated 6‐hourly precipitation (see section 2 for the model construction and Figure S2 in the
supporting information for the distribution of regression coefficient and intercept terms). We then apply the
regressionmodel using the occurrence and strength of the convergence lines to both observations and GCMs
to estimate the precipitation at each point. The precipitation is estimated for periods different from those
used to develop the regression model. We find that the proportion of the precipitation associated with con-
vergence lines can be faithfully reconstructed (Figures 2a and 2b) with large errors confined to regions away
from the major convergence zones where the mean precipitation is small. The slight overestimation of the
reconstructed precipitation (Figures 2c and 2d) is partly because some convergence lines are dry (Weller,
Jakob, et al., 2017; Weller, Shelton, et al., 2017). The regions with large overestimations in the models are
where the regression coefficients are large compared with those from observations (Figure S2 in the support-
ing information). The inability of the simple regression model to account for these dry convergence lines
leads to an overestimation of the reconstructed precipitation. This overestimation is most evident on the
eastern flanks of the subtropical highs and northern Africa, where the atmospheric moisture is low and
the frequency of dry convergence lines is high. As our focus is on the regions of high precipitation, where
the errors are small, we conclude that the regression model adequately represents the relationship between
convergence strengths and precipitation.

Assuming that the only change in a future climate is a change in frequency and strength of convergence lines
(Figure 3), the future precipitation can be predicted for each GCM by applying the regression model devel-
oped for the current climate to the occurrence and strength changes of convergence lines predicted by each
model. In this case the relationship between the convergence strength and the precipitation in the current
climate defines the contribution to the precipitation change by the dynamic processes that control conver-
gence line occurrence and strength, but excludes the direct thermodynamic effects of a higher water vapor
content in a warmer atmosphere. Note that a possible indirect effect of the increased water vapor in

Figure 1. Comparison of observed and modeled historical climatological precipitation and the proportion not associated
with convergence lines. (a and b) Annual mean total precipitation (in units of mm/day) from observations and the CMIP5
multimodel ensemble mean (MMEM). The black contour in (b) indicates regions where the observed precipitation is
greater than 8mm/day. (c and d) Proportion (in units of %) of the total precipitation shown in (a) and (b), respectively, that
does not occur in the presence of convergence lines. In (c) and (d), the dashed and solid black contours, respectively,
indicate regions where the annual mean precipitation is less than 1 mm/day and greater than 5 mm/day.
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changing the characteristics of convergence lines that form the predictors of the regression model cannot be
excluded by this technique.

We first assess the influence of greenhouse warming on changes in the occurrence and strength of conver-
gence lines, by using future greenhouse‐gas emission scenarios of RCP8.5, covering the 2080–2099 period

(Figure S3 in the supporting information). Projections for this future cli-
mate period show a general reduction in the frequency and strength of
convergence lines over the midlatitudes consistent with warming‐related
widening and poleward expansion of subtropical dry zones (Chou et al.,
2013; Huang et al., 2013; Lu et al., 2007; Scheff & Frierson, 2012; Seager
et al., 2010). In the tropics, large changes in the convergence line fre-
quency are associated with shifts in the major low‐latitude convergence
zones (Huang et al., 2013; Widlansky et al., 2013).

Using the regression model, we now predict the precipitation change due
to changes in convergence line occurrence and strength (Figure 4b). By
construction, this provides a simple yet physically based representation
of a contribution to the dynamic changes hypothesized by other studies
(Bony et al., 2013; Chadwick et al., 2013; Endo & Kitoh, 2014; Kent
et al., 2015). Importantly, the spatial patterns obtained using our simple
prediction strongly resembles those of the previous studies, which are
based on completely different techniques. This strong resemblance
implies that much of the dynamic contribution to precipitation changes
in a warmer climate can be interpreted in terms of changes in the occur-
rence and strength of low‐level convergence lines. While the reasons for
these precipitation changes can be manifold, the similarity highlights
the importance of synoptic‐scale dynamic processes. For example, in deep
convective situations the strength of the low‐level convergence and that of
vertical motion at middle levels are very strongly related. However, the
advantage of using the convergence algorithm is that one can search for
lines and subsample results based on weather feature (i.e., convergence
line), rather than grid point properties such as vertical velocities.

Figure 2. Reconstruction of the observed and modeled historical precipitation associated with convergence lines. (a and
b) Annual mean precipitation (in units of mm/day) estimated via a reconstruction using convergence line frequency and
strength in linear regression models from observations and the CMIP5 multimodel ensemble mean (MMEM). (c and d)
Differences between the amount of precipitation that occurs in the presence of convergence lines and the reconstructed
precipitation (in units of %) from observations and MMEM. In (c) and (d), the dashed and solid black contours, respec-
tively, indicate regions where the annual mean precipitation is less than 1 mm/day and greater than 5 mm/day. Red
shading indicates an overestimation of the reconstructed precipitation.

Figure 3. Future changes in modeled convergence line frequency and
strength. (a and b) The CMIP5 multimodel ensemble mean (MMEM)
changes (RCP8.5 2080–2100 minus historical 1979–2005) in convergence
line frequency and convergence line strength (in percent of the historical
climatology). The boxes in both panels indicate the western tropical Pacific
Ocean and central tropical Indian Ocean regions referred to in the text.

10.1029/2018GL080813Geophysical Research Letters

WELLER ET AL. 2200



Nonetheless, there are some notable exceptions. For example, the large
increases in the equatorial Pacific in the total precipitation change pre-
dicted by the GCMs (Figure 4a; a modified version of that presented in
Figure 4a of Weller, Jakob, et al. (2017)) are usually included in previous
estimates of the dynamic component of precipitation changes (Bony et al.,
2013; Chadwick et al., 2013; Kent et al., 2015; Seager et al., 2010). Our ana-
lysis reveals that this large increase in the total precipitation (particularly
the western Pacific, indicated by the box in Figures 4b and 4c) is asso-
ciated with only a modest increase in convergence line strength
(Figure 3a) and little to no change in frequency (Figure 3b). Instead, this
increase is associated with a relatively large increase in SST (contours in
Figure 4a) and, consequently, atmospheric moisture. Therefore, the differ-
ence between the total precipitation changes and the convergence‐line‐
based estimates of precipitation changes (Figure 4c) is a combination of
the thermodynamic contribution and other dynamic contributions that
cannot be explained using the regression model based on changes in con-
vergence lines alone.

Climate projections show large changes in vertical structure and convec-
tive mass flux in the equatorial Pacific and other regions that are likely
to be extremely important to the total precipitation changes (Chadwick
et al., 2013; Huang et al., 2013; Seager et al., 2010; Tandon et al., 2018).
The difference pattern therefore predominantly highlights the wet‐get‐
wetter, dry‐get‐drier regions. That is, increases in the moisture conver-
gence in moist, rising branches of the broad circulation, and moisture
divergence in the dry, subsidence regions, respectively, cause increased
and decreased precipitation changes in the future (Bony et al., 2013;
Chou et al., 2013; Held & Soden, 2006). It has been suggested that, as
the world warms, there will be small changes in the sensitivity of precipi-
tation to convergence (i.e., the slope (a1) of the regression model as shown
in Figure S4a in the supporting information; e.g., Byrne & O'Gorman,
2016; Singh & O'Gorman, 2013). However, we cannot simply construct
the regression model based on the future relationships as it will automati-
cally, by convention, include large contributions due to thermodynamic
changes (i.e., changes in the intercept (b) of the regression model as
shown in Figure S4b in the supporting information). Such convergence‐
related signals would also inherently be included in the difference pattern.

4. Discussion and Conclusion

Changes to the SST pattern are likely to drive shifts in the position of the
mean low‐level convergence and convection (Ma & Xie, 2013; Widlansky

et al., 2013; Xie et al., 2010). This appears to be the case over the equatorial Pacific where changes in the
reconstructed precipitation show the off‐equatorial convergence zones shifting closer to equator. In the
equatorial western Pacific, there is only a small increase in the precipitation associated with changes in
the convergence lines, and this increase is more connected to increases in the strength of the convergence
lines than increases in their occurrence (cf., Figures 3 and 4). In the tropical Indian Ocean (indicated by
the box in Figures 3 and 4), an overall decrease in the total precipitation is linked to decreases in both
the convergence line occurrence and strength that outweighs an increase from thermodynamic contribu-
tions. Generally, regions showing decreases in the total precipitation are characterized by a decrease in
the convergence line frequency and/or strength. The reduction of the convergence line strength is particu-
larly marked in the midlatitudes and is likely to be the result of weaker meridional temperature gradients
in a future climate.

Figure 4. Future changes in modeled climatological precipitation and its
decomposition. (a) The CMIP5 multimodel ensemble mean (MMEM)
changes (RCP8.5 2080–2100 minus historical 1979–2005) in annual mean
total precipitation (shading) and SST (contours, relative to the tropical
(20°S–20°N) mean warming; in units of °C). Blue or red shading indicate
increased or decreased precipitation and solid or dashed contours indicate
larger or smaller SST warming relative to the tropical mean warming, at
intervals of 0.25 °C. (b) The MMEM change in annual mean precipitation
estimated via the reconstruction using future changes of convergence line
frequency and strength, but applying the current climate linear relationship
between convergence line strength and precipitation. (c) The MMEM dif-
ference between the change in total precipitation in (a) and the change in
the reconstructed precipitation in (b). All color scales indicate precipitation
changes in units of mm/day.
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Transient low‐level convergence lines, defined here using an objectively based line identification technique,
are highly important dynamic features associated with precipitation in the current climate. Using vertical
motion or any other scalar field such as convergence tells us little about the synoptic‐scale phenomena
organizing the precipitation. Imposing geometry on the diagnosis adds information on the synoptics, which
is rarely done in tropical meteorology, but is central to midlatitude meteorology. Overall, we show that the
dynamic contribution to the precipitation change in a warmer world as identified in earlier studies can
almost entirely be accounted for by changes in the convergence lines. This result reveals a key physical
mechanism associated with the change in the precipitation, and highlights that an accurate representation
of the weather in climate models, as expressed by the modeled convergence lines, is essential for reliable
predictions of the future behavior of the Earth's climate.
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